Abstract: A method for the manufacture of a plastics product (1) and a plastics product (1), which plastics product (1) comprises a first (2) and a second (3) component that are both manufactured completely or partially from moulding plastics, and which first component (2) is manufactured by moulding in a mould, such as by injection moulding, and which second component (3) is made by a process in which it is built in a layer-by-layer fashion, such as by 3D-printing, and having a mounting surface (7); and wherein the first component (2) is ready-moulded and ejected from the mould prior to it being joined with the second component (3) to form the plastics product (1). By the first layer of material formed in the 3D-printing process of manufacturing the second component (3) being formed on a surface having the same shape as the mounting surface (7) of the first component (2), it is enabled to manufacture a product with a high degree of design individuality, while simultaneously parts of the product can be made with very fine tolerances.
A method for the manufacture of a plastics product and a product made by the method

FIELD OF APPLICATION OF THE INVENTION

The present invention relates to a method for the manufacture of a plastics product, such as a building element for a toy building set, and a plastics product manufactured by the method, which plastics product comprises a first and a second component that are both manufactured completely or partially from moulding plastics, and which first component is manufactured by moulding in a mould, such as by injection moulding, and which second component is made by a process in which it is built in a layer-by-layer fashion, such as by 3D-printing, and having a mounting surface; and wherein the first component and the second component are joined permanently to form the plastics product, the first component being ready-moulded and ejected from the mould prior to it being joined with the second component.

By 'permanent joining' is to be understood any joining made in such a manner that it is not intended that the first and second components can be separated from each other after being joined permanently. Examples of permanent joining of plastics products include gluing, welding, or soldering.

STATE OF THE ART

Today, several embodiments of production of plastics products are known by which the products are built in a layer-by-layer fashion, eg by repeated solidification of a thin liquid layer on a substrate and a previously solidified liquid layer, by repeated printing with a thermo-plastic plastics material on a substrate, or on a previously printed layer of plastics material, or by repeated soldering in a layer-by-layer fashion of plastics material eg by use of laser. A common designation for those processes is "rapid prototyping", as those
processes are extremely suitable for the production of single or relatively small numbers of identical products.

Moreover, the development of in particular apparatuses with associated software for 3D-printing has made it possible for households and others to print various products entirely in accordance with one’s own design.

WO 2010071445 teaches a method for the manufacture of a plastics product by which a layered component is first manufactured eg by 3D-printing; and wherein that first component is subsequently arranged in a moulding tool having a mould cavity capable of receiving the layered first component, and moreover space for plastics to be introduced which will thereby bond to the surface of the 3D-printed component.

Hereby it is enabled to eg 3D-print a part of the product following which that component may partake as a core constituent in the finished product in that it is possible to subsequently mould, in the moulding tool, eg by injection moulding, a surface on the 3D-printed product which has a surface which is far smoother than the surface of the 3D-printed product.

US 7,110,562 B1 teaches an auditory device and a method of manufacturing the auditory device, wherein the outermost component of the part of the auditory device that is fitted into the ear is, based on a scanning, customer-fitted individually and manufactured by means of a kind rapid prototyping, eg SLA; and wherein a wire and a speaker are injection moulded together in another component. The injection-moulded component, including speaker and wire, is inserted into the outermost component and is interconnected therewith by means of a link module.

Hereby, it is made possible to adapt the shape of that part of the auditory device which fitted into the ear to the individual user to the effect that it
becomes as invisible as possible, and it makes it easy to replace defective parts, if any. Moreover, it is not as costly and time-consuming to manufacture a new outer part of the auditory device in case the fit is not optimal.

US 5,939,008 teaches a rapid prototyping apparatus and its method of making three-dimensional objects, wherein the three-dimensional object is made by sequentially depositing multiple layers material on a flexible sheet substrate which is, upon completion, peeled away from the object. The sheet substrate may be a polymer, e.g. acrylic.

Hereby a substrate is accomplished for printing of three-dimensional objects that does not distort or in any other way damage the object, i.e., in that, following printing of the object, the substrate is easily peeled away from the object.

OBJECT OF THE INVENTION

Based on this, it is the object of the present invention to provide a method as set forth above, whereby it is possible to produce a product wherein a part of the product is made with very fine tolerances, but wherein the other part can be produced with a high degree of freedom to design the product in accordance with individual desires.

This is accomplished in accordance with the invention in that the first layer of material formed in the 3D-printing process of manufacturing the second component is formed on a surface having the same shape as the mounting surface of the first component.

According to a preferred embodiment, the mounting surface of the first component will abut on a correspondingly configured mounting surface of the...
second component when the second component has been manufactured and joined with the first component.

The second component may optionally be manufactured as a separate element relative to the first component which is subsequently joined with the first component by gluing, welding, soldering, or other joining method.

Alternatively, the first component may be manufactured first, following which the second component is manufactured by 3D-printing directly on the mounting surface of the ready-welded first component.

By a preferred embodiment of the invention, one or more further moulded components is/are made in addition to the first component; and wherein the second component is subsequently joined with more from among the first and the further components.

In this context, the moulded components are, during joining with the second component, advantageously arranged in a fixture which is configured such that the first and the further components are retained in a specific position relative to each other. Moreover, the fixture may be configured such that it ensures that the surface of the block is positioned accurately relative to the print on top, and such that one hereby controls the orientation of the block relative to the setting of the printer for the starting point in the x- and y-directions.

The invention further relates to a plastics product comprising a first component and a second component that both have a mounting surface; and wherein the two components are secured to each other in such a way that the mounting surfaces on the first and second components are joined and abut on each other; and wherein the first component is moulded, and the second component is built in a layer-by-layer fashion from a plastics material,
such as by 3D-printing; and which product is manufactured by the method said forth above.

In this context, the mounting surface of the first component may be configured on a plate-shaped part of the first component, and from the plate-shaped part, on the opposite side of the mounting surface, one or more flanges may extend at an angle to the plate-shaped part.

It is particularly easy to join the two components if the plate-shaped part, where the mounting surface extends, is essentially plane.

Moreover, one or more of the flanges may advantageously be configured as an uninterrupted round-going flange.

Particularly advantageously, the plate-shaped part has an outer periphery, and one of the round-going flanges extends from the outer periphery on the plate-shaped part.

According to a further advantageous embodiment, one or more of the flanges extend(s) essentially at right angles to the plate-shaped part.

The present invention is particularly suitable in the context of toy building sets comprising a plastics product as set forth above, wherein the first component constitutes a building element of the toy building set comprising a number of building elements; and wherein the building elements comprise building elements having a body part with a surface on which a number of coupling studs are provided, and building elements that are, on the opposite side, configured with a number of flanges that extend from the side of the body part which is opposite to the surface; and wherein those flanges are configured such that they form coupling flanges that can be interconnected with the coupling studs on another building element; and wherein the surface
of the body part on the first component comprises the mounting surface for permanent joining with the second component.

LIST OF FIGURES

Figure 1: shows, in a perspective view, a joined plastics product according to the invention;

Figure 2: shows, in a perspective view, a first part of the plastics product shown in Figure 1;

Figure 3: shows, in a perspective view, a second part of the plastics product shown in figure 1;

Figure 4: shows, in a perspective view, an alternative embodiment of a joined plastics product according to the invention, shown arranged in a fixture;

Figure 5: shows, in a perspective view, a building element of the plastics product shown in figure 4, seen from one side;

Figure 6: shows, in a perspective view, a building element of the component shown in figure 5, seen from below.

EMBODIMENT OF THE INVENTION

Thus, figure 1 shows a plastics product in the form of a rear spoiler 1 which may, for instance, be mounted on a model vehicle (not shown) built of building elements from a toy building set, and the rear spoiler 1 comprises a first component in the form of a building plate 2 on which a second component 3 is provided which is manufactured by a method in which it is built in a layer-by-layer fashion, such as by 3D-printing.
Figures 2 and 3 show the same components as were shown in figure 1, but in a non-assembled state, and it will appear from figure 2 that the building plate 2 has a plane surface 7 on which a number of coupling studs 5 are configured that are, in a known manner, configured such that they can be interconnected with other elements of the (not shown) toy building set. For instance, the building element 4 shown in figures 5 and 6 may be interconnected with the building plate 2 by the underside of the building element 4 being pressed down onto the coupling studs 5 on the building plate 2 to the effect that the sides of the coupling studs 5 abut on the inner side of the round-going flange 8 configured along the building element 4.

However, in accordance with the invention, it is an option to mount the second component 3 instead, whereby the assembled rear spoiler 1, as shown in Figure 1, resembles an actual rear spoiler to a far higher degree than that which can be obtained exclusively by means of box-shaped building elements using the building plate 2 and the two building elements 4, as shown in figure 2. Hereby it is enabled that individually designed pieces can be printed, i.e. "customization", and that a more realistic and organic appearance can be obtained in toy building sets by use of the invention.

According to the invention, the building plate 2 is manufactured first by means of a commonly known modelling process, such as by injection moulding, wherein a suitable amount of fluid plastics material is injected into a substantially closed mould cavity in a moulding tool. Such moulding processes being commonly known to the person skilled in the art, they are not shown herein.

Moreover, the second component 3, which is shown in figure 3, is manufactured in a commonly known process, whereby that component is built in a layer-by-layer fashion from plastics. Today, several embodiments of
such production processes for the manufacture of plastics products are known, whereby the products are built layer by layer, e.g., by repeated solidification of a thin liquid layer on a substrate and on a previously solidified liquid layer, or by repeated printing with a thermoplastic plastics material on a substrate or on a previously printed layer of plastics material. A common designation for those processes is "rapid prototyping", and such processes are extremely suitable for the production of single or relatively small numbers of identical products.

Underneath the building plate 2, two building elements 4 are mounted which are of the type shown in Figures 5 and 6, and which may constitute a part of the toy building set or a part of the building plate 2.

Figure 4 shows an alternative embodiment of the invention, two building elements 4 being used, as shown in Figures 5 and 6, as the first component; and wherein the two building elements 4 are arranged in a fixture 10 that retains them in a position relative to each other by means of a number of guide pins 12 and a number of platforms 11 that are configured on the fixture 10.

The plastics product 1 shown in figure 4 is thus constituted of two building elements 4 that constitute a first component 4, and a further component 4, both of which are made in a mould, and the second component 3 corresponding to the disclosures of figure 3, but is 3D-printed layer by layer on top the surface 9 of the first component 4 and the further component 4. It being difficult to 3D-print without substrate, the fixture 10 is configured such that the three platforms 11 each has a surface which is flush with the surface 9 of the two building elements 4.
Claims

1. A method for the manufacture of a plastics product (1), which plastics product (1) comprises a first (2) and a second (3) component that are both manufactured completely or partially from moulding plastics, and which first component (2) is manufactured by moulding in a mould, such as by injection moulding, and which second component (3) is made by a process in which it is built in a layer-by-layer fashion, such as by 3D-printing, and having a mounting surface (7); and wherein the first component and the second component are joined to form the plastics product, the first component (2) being ready-moulded and ejected from the mould prior to it being joined with the second component (3), characterised in that the first layer of material formed in the 3D-printing process of manufacturing the second component (3) is formed on a surface having the same shape as the mounting surface (7) of the first component (2).

2. A method according to claim 1, characterised in that the mounting surface (7) of the first component (2) abuts on a correspondingly configured mounting surface (6) of the second component (3) when the second component (3) has been manufactured and joined with the first component (2).

3. A method according to one or more of the preceding claims, characterised in that the second component (3) is manufactured as a separate element relative to the first component (2) which is subsequently joined with the first component (2) by gluing, welding, soldering or other joining method.

4. A method according to one or more of the preceding claims, characterised in that the first component (2) is manufactured first, following
which the second component (3) is manufactured by 3D-printing directly onto the mounting surface (7) of the ready-welded first component (2).

5. A method according to one or more of the preceding claims, characterised in that one or more further moulded components is/are made in addition to the first component (2); and wherein the second component (3) is subsequently joined with more from among the first (2) and the further components (4).

6. A method according to claim 5, characterised in that the moulded components (2, 4) are, during joining with the second component (3), arranged in a fixture (10) which is configured such that the first and the further components (2, 4) are retained in a specific position relative to each other.

7. A plastics product comprising a first component (2) and a second component (3) that both have a mounting surface (6, 7); and wherein the two components (2, 3) are secured to each other in such a way that the mounting surfaces (6, 7) on the first (2) and second (3) components are joined and abut on each other; and wherein the first component (2) is moulded, and the second component (3) is built in a layer-by-layer fashion from a plastics material, such as by 3D-printing; characterised in that it is manufactured by the method according to one or more of the preceding claims.

8. A plastics product according to claim 7, characterised in that the mounting surface (7) of the first component is configured on a plate-shaped part of the first component (2); and in that, from the plate-shaped part (2), on the opposite side of the mounting surface, one or more flanges (8) extend(s) at an angle to the plate-shaped part (2).
9. A plastics product according to claim 8, characterised in that the plate-shaped part (2), where the mounting surface (7) extends, is essentially plane.

10. A plastics product according to claim 7 or 8, characterised in that each of one or more of the flanges (8) is configured as an uninterrupted round-going flange (8).

11. A plastics product according to claim 10, characterised in that the plate-shaped part (2) has an outer periphery; and wherein one of the round-going flanges (8) extends from the outer periphery of the plate-shaped part (2).

12. A plastics product according to one or more of claims 7 through 11, characterised in that one or more of the flanges (8) extend(s) essentially at right angles to the plate-shaped part (2).

13. A toy building set comprising a plastics product (1) according to one or more of claims 7 through 12, characterised in that the first component (2) constitutes a building element (4) of the toy building set comprising a number of building elements (4); and wherein the building elements (4) comprise building elements (4) having a body part with a surface (9) on which a number of coupling studs (5) are provided, and building elements (4) that are, on the opposite side, configured with a number of flanges (8) that extend from the side of the body part which is opposite to the surface (9); and wherein the flanges (8) are configured such that they form coupling flanges (8) that can be interconnected with the coupling studs (5) on another building element (4); and wherein the surface (9) of the body part on the first component (2) comprises the mounting surface (7) for permanent joining with the second component (3).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. B29C67/00 B29C70/68 B29C70/78

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
* "A" document defining the general state of the art which is not considered to be of particular relevance
* "B" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* "C" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* "D" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* "E" document member of the same patent family

Date of the actual completion of the international search: 16 October 2013
Date of mailing of the international search report: 28/10/2013

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Whelan, Natalie
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 581 445 AI (TEXAS INSTRUMENTS INC [US]) 2 February 1994 (1994-02-02) col umn 8, line 45 - col umn 9, line 13 col umn 10, line 18 - line 33 col umn 11, line 15 - line 22</td>
<td>1,2,4,6,7</td>
</tr>
<tr>
<td>X</td>
<td>WO 2010/071445 AI (OM BE PLAST AS [NO]; LIE GUNNAR BJ0ERN [NO]) 24 June 2010 (2010-06-24) the whole document</td>
<td>7-12</td>
</tr>
<tr>
<td>X,P</td>
<td>WO 2013/004720 AI (LEGO AS [DK]; BACH ERIK [DK]; GJ0ERUP THOMAS [DK]) 10 January 2013 (2013-01-10) page 3, line 15 - line 24 page 4, line 10 - line 17 page 5, line 8 - page 6, line 2 figures 3a-3c</td>
<td>1-3, 5,7-13</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 102008012064 A1</td>
<td>10-09-2009</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2011077760 A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 704271 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4433293 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9303047 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69313756 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69313756 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0581445 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0581445 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2110571 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3555968 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0740445 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 932746 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6169605 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6175422 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 331237 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010071445 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013004720 A1</td>
</tr>
</tbody>
</table>