4493

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

21 June 2001 (21.06.2001)

(10) International Publication Number

WO 01/44938 A2

&1
@
@2)
@5)
26)

(30

(7)

(72)

International Patent Classification”: GO6F 9/46
International Application Number: PCT/US00/33323
International Filing Date: 8 December 2000 (08.12.2000)
Filing Language: English
Publication Language: English
Priority Data:

09/464,945 16 December 1999 (16.12.1999) US
Applicant: THUNDER RIVER TECHNOLOGIES,

INC [US/US]; 23 Corporate Plaza Drive, Suite 250,
Newport Beach, CA 92660 (US).

Inventors: HANKINSON;, Bradley, K., T.; 4441-3 Via
Sepulveda, San Diego, CA 92122 (US). SUGGS, Brian,
D.; 7362 Mannix Court, San Diego, CA 92129 (US).

74

31

(84)

Agent: MEADOR, Terrance, A.; Gray Cary Ware & Frei-
denrich, LLP, 401 B Street, Suite 1700, San Diego, CA
92101-4297 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished
upon receipt of that report.

[Continued on next page]

(54) Title: FEDERATED OPERATING SYSTEM FOR A SERVER

Federated Operating System Architecture
~-Member Hierarchy-

Proto Member:
-parent class

communication

-utility functions

-Member-to-Member

~memory managemant

|— 405

Bootable Member: 40
~CPU-specific code

/415
Receiver Member:
-TCP/IP passive fin TCP/IP bodi
-Application connectlon
management

}— 420

TCR/IP

spafcher Member:
-Resource aflocation
-HTTP sesslon
-Mail session management

(in

3
~dynamic data creation
-static data management
-HTTP data delivery (in TCP/IP embodiment]

-Mail data delivery {in TCP/IP embodiment)

| — 425

(57) Abstract: A server, methods, and software, for implementing a distributed, high capacity, high speed, operating system are
disclosed. One embodiment concerns a Web server that is implemented with a plurality of members which are categorized into
@O member classes. Each member class has a distinct specialized operating system that is optimized for its function. Together, the
operating systems of the members make up an operating system referred to as the Federated Operating System™. One illustrative
embodiment includes a receiver member, a dispatcher member, and a responder member. Each member has an internal network
interface for coupling to an internal network which is used for communications between the members. Members can be located
~~ in the same enclosure or can be separated over large distances. Receiver members and responder members also have an external
network interface for coupling to an external network such as the Internet. Receiver members receive requests from clients over the
external network, and pass off data from the requests to dispatcher members over the internal network. A dispatcher member uses the
internal network to send information to a responder member, instructing the responder member to send data requested by the client
to the client over the external network. Preferred embodiments of the invention use address and host lookup algorithms that execute
in a fixed amount of time even when searching large databases, which permits real time processing of a large number of connections.

wO 01/44938 A2 1D N0 OO A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/44938 PCT/US00/33323

10

15

20

FEDERATED OPERATING SYSTEM FOR A SERVER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a distributed operating system for a digital computer
system. More particularly, the invention concerns a high speed server in which
different functions of the server's state machine are distributed across a plurality of

processors running a plurality of operating systems.

2. Description of the Related Art

The explosion in usage of the World Wide Web over the global Internet has
created a corresponding need for servers that have the capability to host large web
sites with increased speed and reliability. The Internet employs fiber optic cable and
high speed switches and routers to carry all forms of digital content, for example
voice, data, and video, across the globe at gigabit data rates (soon to be terabit data
rates). On the Internet, the maximum number of users that a server must support is
unpredictable and variable, and can range from a handful of users to potentially
millions of users, which contrasts with local area networks (LANS) wherein the
maximum number of users is relatively small. Consequently, there is a need for
servers for use on the Internet that can support a large number of users and that can

operate at terabit data rates.

WO 01/44938 PCT/US00/33323

10

15

20

A common solution for operating a large Web site is to construct a server farm.
Constructing a server farm entails connecting together muitiple servers (perhaps
hundreds) with various networking schemes to approximate a single more powerful
system. Constructing and operating a server farm is typically an expensive
undertaking because server farms require a large amount of space which must be
equipped with specialized cooling and power facilities. Additionally, server farms
commonly require a staff of engineers to maintain. Server farms generally are
complex, and commonly are unreliable due to an excessive amount of downtime.
Another shortcoming of server farms is that they cannot provide the power and
scalability that is often required by large and growing Web sites.

Symmetric Multi Processing (SMP) servérs are a known alternative to server
farms. However, the limited scalability of SMP servers generally makes themill-
suited to the needs of large scale Web sites. SMP servers and server farms often
cannot handle the high stress, fast growth environment of the Web. For example,
secure transactions, which are necessary for e-commerce, are known to frequently
bog down SMP servers and server farms.

Computers that are networked over long distances, for example over the
Internet, often have protracted response times due to the geographic distance
between the client and the server. In order to decrease the time required for a

server to respond to requests from clients, Web servers are sometimes replicated at

WO 01/44938 PCT/US00/33323

10

15

20

one or more locations which are closer to clients. For example, a client in Japan
seeking a connection with a server hosting an e-commerce Web site in Seattle,
Washington, might be coupled to a duplicate server in Tokyo rather than the main
server in Seattle, Washington. This places the data closer to the user. However, it
is difficult to maintain consistency between the data served by duplicate servers,
especially if the content is dynamically generated. For example, if a customer uses
the on-line ordering capability of one Web server, and later attempts to check the
status of an order on a duplicate server, the customer may not get accurate
information. When duplicate servers are used, it is also difficult to accurately track
hits to a Web site for advertising purposes.

In prior art Internet servers, frequently one machine performs (executes) the
entire TCP/IP state diagram, which oftentimes results in sluggishness. In systems in
which functions are distributed with clustering software, the distributed functions are
typically layered on top of operating systems, for example Linux or Windows NT,
which perform generally identical services. Consequently, the computing is
distributed at the application level, which frequently results in latencies and other
difficulties.

Accordingly, there is a need for a server with increased speed, security, reliability,
scalability, capacity, and cost effectiveness, that also has reduced space, power,

and cooling requirements, as well as reduced maintenance and operating costs.

WO 01/44938 PCT/US00/33323

10

15

20

SUMMARY OF THE INVENTION

Various aspects of the invention boncern a server, methods, and software for
implementing a distributed, high capacity, high speed, operating system referred to
as the Federated Operating System™ (Federated OS™). (“Federated Operating
System™" and “Federated OS™" are trademarks of Thunder River Technologies,
Inc.)

One embodiment of the invention concerns a web server that is implemented
with a plurality of members which are categorized into member classes. Each
member class has a distinct specialized operating system that is optimized for its
function. Although each class of operating system is unique, most member classes,
or all member classes, have common characteristics inherited from a common
parent class. Together, the operating systems of the members make up the
Federated Operating System. One illustrative embodiment includes at least one
receiver member, at least one dispatcher member, and at least one responder
member. Each member has an internal network interface for coupling to an internal
network which is used for communications between the members. The internal
network can be implemented with, for example, a backplane, a crossbar switch, a
LAN, a WAN, or a wireless link (which could include a satellite link). Receiver
members and responder members also have an external network interface for

coupling to an external network such as the Internet. The external network can also

WO 01/44938 PCT/US00/33323

10

15

20

be, for example, a LAN, a WAN, or a wireless network (which could include satellite
links).

Receiver members receive requests from clients over the external network, and
pass off data from the requests to dispatcher members over the internal network.
The dispatcher member that is used for a particular connection uses the internal
network to send information to a responder member, instructing the responder
member to send data requested by the client to the client over the external network.

Members preferably are implemented with member hardware units that
preferably include at least one CPU, RAM, ROM, an internal network interface, and
an external network interface. (Alternately, members can be implemented as
separate processes or threads on a uniprocessor or SMP (Symmetric Multi
Processing) system.) Member hardware units preferably can be reconfigured to
operate as any member class, which permits reconfiguring member hardware units
during operation of the server for load balancing or to replace defective member
hardware units.

Preferred embodiments of the invention use address, port, and host lookup
algorithms that execute in a fixed amount of time even when searching databases
with a large number of entries. For example, in an HTTP (Hyper Text Transfer
Protocol) embodiment, large databases containing IP (Internet Protocol) addresses
and TCP (Transmission Control Protocol) port numbers, and large databases

containing host names, can be searched in a fixed amount of time. This allows the

WO 01/44938 PCT/US00/33323

10

15

server to operate in real time even while handling a large number of simultaneous
connections.

It is possible to locate different members in the same enclosure, or to separate
members over small or large distances. For example, a receiver and dispatcher
could be located in Seattle, Washington, while a responder of the same server could
be located in Tokyo, Japan, in order to provide fast responses to clients in Japan.

The invention provides its users with a number of advantages such as increased
speed, throughput, reliability, scalability, performance, security, and manageability.
A server implementing the Federated OS can be scaled up to handle an extremely
large volume of Web traffic, including encryption/decryption (for example, secure
sockets layer (SSL) transactions used for e-commerce), without performance
degradation. Additionally, a server embodying the Federated OS can be
implemented in a compact enclosure without special power and cooling
requirements, and can be managed and configured from a console by a single
technician with minimal training. The invention also provides other advantages and

benefits, which are apparent from the following description.

WO 01/44938 PCT/US00/33323

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A is a block diagram of a member hardware module in accordance with
an illustrative embodiment of the invention.

Figure 1B is a perspective view of member hardware modules and backplanes
in accordance with an illustrative embodiment of the invention.

Figure 1C is a top view of ICs and a circuit board in accordance with illustrative
embodiments of the invention.

Figure 2 is a block'diagram of a server implementing the Federated OS in its
operative environment, in accordance with an illustrative embodiment of the
invention.

Figure 3 is a block diagram of a server implementing the Federated OS in
accordance with an illustrative embodiment of the invention.

Figure 4A is a diagram illustrating the relationships between some members of
the Federated OS in accordance with an illustrative embodiment of the invention.

Figure 4B is a block diagram of components of a server implementing a
Federated OS in its operative environment in accordance with an illustrative
embodiment of the invention.

" Figure 5 is a block diagram of a server in its operative environment in which
members are geographically dispersed, in accordance with an illustrative

embodiment of the invention.

WO 01/44938 PCT/US00/33323

10

15

Figure 6 is a block diagram of a server in its operative environment in which
some members are coupled directly to the Internet backbone, in accordance with an
illustrative embodiment of the invention.

Figure 7 is a block diagram of a server with a remote datastore, in its operative
environment, in which some members are coupled directly to the Internet backbone,
in accordance with an illustrative embodiment of the invention.

Figure 8 is a diagram of components of the Federated OS, including
ThunderOS, in accordance with an illustrative embodiment of the invention.

Figure 9A is a block diagram illustrating the relationships between members of
ThunderOS, in accordance with an illustrative embodiment of the invention.

Figure 9B is a block diagram illustrating functions and interactions in a bootable
member in ThunderOS, in accordance with an illustrative embodiment of the
invention.

Figure 9C is a block diagram illustrating functions and interactions in a receiver
member in ThunderOS, in accordance with an illustrative embodiment of the
invention.

Figure 9D is a block diagram illustrating functions and interactions in a
dispatcher member in ThunderOS, in accordance with an illustrative embodiment of

the invention.

WO 01/44938 PCT/US00/33323

10

15

Figure 9E is a block diagram illustrating functions and interactions in a static
responder member in ThunderOS, in accordance with an illustrative embodim.ent of
the invention.

Figure OF is a block diagram illustrating functions and interactions in a dynamic
responder member in ThunderOS, in accordance with an illustrative embodiment of
the invention.

Figure 10 is a block diagram illustrating distribution of functions between
receiver, dispatcher, and responder members in accordance with an illustrative
embodiment of the invention.

Figure 11 is a diagram of a receiver TCP connection state machine, in
accordance with an illustrative embodiment of the invention.

Figure 12 is a diagram of a dispatcher TCP connection state machine, in
accordance with an illustrative embodiment of the invention.

Figure 13 is a block diagram illustrating an distributed TCP/IP computing system
in accordance with an illustrative embodiment of the invention.

Figure 14A is a flow chart illustrating a method for initializing a server in
accordance with an illustrative embodiment of the invention.

Figure 14B is a flow chart illustrating a method for initializing a server in

accordance with another illustrative embodiment of the invention.

WO 01/44938 PCT/US00/33323

10

15

10

Figure 15 is a diagram illustrating data flow between a client, receiver,
dispatcher, and responder, to service a client request in accordance with an
illustrative embodiment of the invention.

Figure 16A is a flow chart illustrating a method for responding to a request
received over an external network in accordance with an illustrative embodiment of
the invention.

Figure 16B is a flow chart illustrating a method for responding to a request
received over an external network in accordance with another illustrative
embodiment of the invention.

Figure 16C is a flow chart illustrating a method for responding to a request
received over an external network in accordance with another illustrative
embodiment of the invention.

Figure 16D is a flow chart illustrating a method for responding to a request
received over an external network in accordance with another illustrative
embodiment of the invention.

Figure 17 is a top view of a signal bearing optical disc in accordance with an

illustrative embodiment of the invention.

WO 01/44938 PCT/US00/33323

10

15

20

11

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Definitions:

Distributed: A characteristic of a system whose functionality is split among
multiple subsystems, each of which implements a portion of the functionality and
which, ideally, can operate simultaneously resulting in faster overall completion of a
given task.

Real time: A characteristic of a system that takes no more than a known, fixed
amount of time to complete a given task.

Server: A computer system that serves up data and/or receives data and/or
processes data.

Client: A device that sends requests and data to servers and receives data in
response to those requests. A client can also receive data transmitted from a server
that was not sent in response to a request by the client.

VME: Refers to the "WVERSAmodule Eurocard" computer architecture developed
by Motorola and defined in the original VMEbus specification (IEEE-1014-1987) and
later revisions such as VME64 (ANSI/VITA 1-1994), VME64x, and VME320.

Herein the words “preferable” and “preferably” refer to an element, act, structure,
material, or characteristic, that is not required, but which is desirable to include.

Herein use of the term “for example” means that the exemplary elements, acts,

structure, material, or characteristics which are explicitly stated are not required, and

WO 01/44938 PCT/US00/33323

10

15

20

12

that other elements, acts, structure, material, or characteristics can be used,

performed, or included.

Overview of some different aspects of the invention

The invention, includes, but is not limited to, the following aspects. One aspect
of the invention includes embodiments of a digital computer system that implements
a Federated Operating System™. Other aspects of the invention include
embodiments of a server that implement a Federated Operating SystemTM. Other
aspects of the invention include embodiments of a server that implement a
distributed TCP/IP state machine. Other aspects of the invention are methods for
responding to a request received over an external network. Other aspects of the
invention are methods for responding to a request (that does not have to be received
over an external network). Other aspects of the invention are methods for initializing
a server (or a digital computer system). Other aspects of the invention include
embodiments of a signal bearing medium tangibly embodying machine-readable
code which is gxecutable by a digital processing apparatus for implementing a
distributed server. Other aspects of the invention include embodiments of a signél
bearing medium tangibly embodying a program of machine-readable instructions
executable by a digital processing apparatus to perform a method for responding to

a request. Other aspects of the invention are also described herein.

WO 01/44938 PCT/US00/33323

10

15

20

13

Overview of the Federated Operating System
The Federated Operating System (OS) is the general architecture of the

invention. The Federated OS is a distributed operating system that is implemented
with a plurality of members that are categorized into member classes. Each
member is an instance of a member class, and can be referred to as a node. Each
member class has a distinct specialized operating system (which can also be
referred to as an operating system kernel) that is optimized for its function.
Together, the operating systems of the members make up the Federated 0S. The
members of the Federated OS operate together in concert to perform the functions
of a server. Thus the system is an integration of multiple operating systems, and is
therefore referred to as a federation of members. Each member could operate alone
to perform its function, but preferably members of the Federated OS operate
cooperatively to implement a server.

The characteristics of the specific operating system implemented by each
member are defined by the specific hardware, firmware and/or software combination
used to implement that particular member. Thus, the uniqueness of the members is
due to hardware, firmware and/or software differences. Although not required,
preferably all members (except the configurator member) have common
characteristics inherited from a common parent member (using object oriented
inheritance). The parent (base) member class from which other member classes

preferably are derived contains (among other things) the functionality necessary for

WO 01/44938 PCT/US00/33323

10

15

20

14

synchronous member-to-member communications over an internal network, and
preferably also includes an event driven processing loop.

The member classes include, for example, the following classes: receiver,
dispatcher, responder, configurator, guardian, persistent storage, system
administrator notifier, decoder, routing manager, and bootable, plus proto and
external network member classes which are abstract classes. (The term
“responder” includes both static responder and dynamic responder classes.) Other
classes could also be used. Members of different classes perform different
functions. A server implementing a Federated OS preferably includes at least one
receiver member, at least one dispatcher member, and at least one responder
member (and preferably also includes one or more additional members in other
member classes). In an alternative embodiment, a dispatcher member is not
included, and the functionality of a dispatcher member is implemented on a receiver
member and/or a responder member (or could be implemented on another member,
from another member class). Embodiments that are coupled to an external network
include at least one member that is coupled to the external network (and preferably
include at least one receiver and at least one responder that are coupled to the
external network). In embodiments that are not coupled to an external network, a
receiver member and/or a responder member need not be included. The number

of members in a server, and the classes of the members in a server, are determined

WO 01/44938 PCT/US00/33323

10

15

20

15

by the services that are to be provided by the server, the load on the system, human
intervention, and other factors.

Each member includes a hardware and/or software combination that implements
an operating system which is different from the operating systems of members in
different classes. For example, receiver members implement the same receiver
operating system, but dispatcher members implement a dispatcher operating system
which is different than the receiver operating system. In the Federated OS, unique
characteristics of each member class are implemented at the operating system level.
Thus the operating systems for the receiver, dispatcher, responder, and other
classes are all different (although preferably they all have common inherited
characteristics). This is unlike the prior art, wherein distributed computing often
entails clustering software which operates above operating systems which provide
essentially identical services. It is possible to subclass new member classes from
existing member classes. A new member class would contain all of the functionality
of the parent member class plus some new functionality. For example, a dynamic
responder can be subclassed from a static responder. As shown in the illustrative
embodiment of Figure 9A, the dynamic responder inherits all of the functionality of
the parent static responder, and adds additional functionality related to generating
dynamic data. Although not required, preferably the Federated OS is implemented
in the C++ programming language, which facilitates implementing the inheritance

hierarchy of the operating systems of the members.

WO 01/44938 PCT/US00/33323

10

15

20

16

The Federated OS is not limited to TCP/IP (Transmission Control
Protocol/Internet Protocol) implementations, but rather can implement any network
communication protocol, for example Netware, VINES, AppleTalk, DECNET, SNA,
0OSlI, ATM, netBIOS, and IP-over-SONET. Other communication protocols could
also be used. Also, the Federated OS can be used both with packet based
communication systems, and with circuit based communication systems in which a
dedicated circuit is used for the communication. The Federated OS can also be
implemented in systems that have no external network, for example, systems that
processes data that is received from removable media. For ease of description, but
with no limitation intended thereby, TCP/IP embodiments of the Federated OS are
often described herein.

Unlike the prior art wherein one machine performs the entire state diagram for
the communication protocol suite being used, in the Federated OS, tasks are
distributed between the processors in a plurality of members. Thus, in a TCP/IP
embodiment of the Federated OS, the TCP/IP state machine is distributed across a
plurality of members. In other words, the TCP/IP tasks are split up, and states on
TCP/IP state diagrams are mapped to different members. Consequently, the
servicing of a single IP address is distributed across the network interfaces of a
plurality of members (which can be located either in the same enclosure or in
separate enclosures). In embodiments using communication protocols other than

TCP/IP, the state machine for those other protocols is also distributed across the

WO 01/44938 PCT/US00/33323

10

15

20

17

members. Thus, response generation and data delivery to one or more clients is
processed by multiple members in parallel. In a TCP/IP embodiment, the capability
for multiple IP address support is generally limited only by the amount of memory
that is available, which permits scaling to support millions or more IP addresses. In
a TCP/IP embodiment, the number of simultaneous TCP/IP connections that can be
supported is also generally limited only by the amount of memory that is available,
which permits scaling to support millions or more of simultaneous TCP/IP
connections. Thus, a TCP/IP embodiment can deliver high volumes of data, for
example to hundreds of thousands or more, of simultaneously connected Internet
users.

With the Federated OS, multithreaded, distributed systems are implemented
with multiple, (preferably) single-threaded members. The members of a Federated
0S individually typically do not multitask. (However, multitasking by members is
pbssible.) The Federated OS as a whole accomplishes parallel processing because
each member functions in parallel with other members. For example, in a TCP/IP
embodiment, the Federated OS implements parallel processing of intemnet protocols,
because each member executes specific aspects of the TCP/IP protocol in parallel
with other members. Consequently, the processing of core Internet functions is
accelerated. Similarly, in an OSI (Open System Interconnection) embodiment, the
Federated OS implements parallel handling of different layers of the Open System

Interconnection (OS!) 7 layer stack.

WO 01/44938 PCT/US00/33323

10

15

20

18

Servers implemented with the Federated OS are well suited for many high
performance applications, for example, deploying large-scale Internet/intranet
applications such as e-commerce, Web hosting, multimedia delivery (video and
audio on demand), specialized military projects, wireless infrastructure, and Internet
based games. In addition to use with the Internet, the Federated OS could be used

with other types of broadband, packet-based public networks.

Hardware for the Federated Operating System

As mentioned above, the characteristics of the specific operating system
implemented by each member are defined by the specific hardware, firmware (for
example ROM), and/or software combination used to implement that particular
member. Members of the Federated OS are implemented in respective member
hardware units (which can be referred to as nodes), which can be implemented in a
variety of ways. In some embodiments of the Federated OS, each member
(instance) is implemented with a separate hardware module. Thus, in these
embodiments each member hardware unit is implemented as a member hardware
module. Figure 1A is a block diagram of an illustrative embodiment of a member
hardware module 105. Member hardware module 105 includes at least one CPU
110a (central processing unit), an internal network interface 1 15, an external
network interface 120, Random Access Memory (RAM) 125, and a small amount of

non-volatile memory (ROM) 130 to store the initial program image that is used to

WO 01/44938 PCT/US00/33323

10

15

20

19

load subsequent instances of a Federated OS kernel. Member hardware units can
be implemented with the same or different CPUs, the same or different amounts of
memory, and with the same or different types of network interfaces. The internal
network interface and the external network interface in member hardware units
preferably are both configured for bidirectional communications (inputting and
outputting data and other signals). It is not necessary to provide an external network
interface 120 for members that will not be used to communicate with the external
network, although preferably all member hardware units include an external network
interface so that each module has the capability to function as a receiver or
responder if necessary. The internal network interface is used for communications
between member hardware units over the internal network, and the external network
interface is used for communications with clients over the external network.
Optionally, the external network interface can also be used for internal
communications between member hardware units by providing a communication
path in the event of hardware faults or other failures. Although not required, to
increase performance, preferably each member maintains internal network
messaging information such that each member knows the necessary network.
routing information used to send messages to other members that the member
communicates with.

If a member hardware unit includes more than one CPU, preferably the CPUs of

the member hardware unit are interconnected. Although not required, preferably

WO 01/44938 PCT/US00/33323

10

15

20

20

each CPU is coupled to each network interface of the member hardware unit, and
the RAM and ROM are coupled to each CPU. Any number of CPUs that can be
practicably coupled can be used in a member. For example, each member
hardware unit has two CPUs 110a and 110b.

Preferably, the Federated OS is implemented with portable source code, which
permits supporting heterogeneous CPU hardware, thereby allowing the freedom to
choose from different processors and different vendors. This portability facilitates
optimizing members for specific functionality. For example, an implementation of a
member can be optimized to use DSP (Digital Signal Processor) based
encryption/decryption engines to support SSL (Secure Sockets Layer) or other
secure protocols. Preferably, dependencies on a processor's native byte order,
word size, etc., are encapsulated in a minimal code module for each type of
processor. Each CPU can be any type of digital processing apparatus, and
preferably each CPU is a high speed digital processing apparatus. If a module has
more than one CPU, it is not necessary for the CPUs in a module to be the same
make or model. Preferably CPU 110a is one PowerPC, and CPU 110b another
PowerPC which is the same as the PowerPC used for CPU 110a. Alternatively, the
CPUs could be x86 processors, high speed digital signal processors (DSPs)
produced by Texas Instruments, or any other processor (which can also be referred

to as a digital processing apparatus).

WO 01/44938 PCT/US00/33323

10

15

20

21

The processors in the Federated OS operate as one integrated computing
system made up of a plurality of processors. The number of processors can range
from a few processors, to hundreds (or more) of processors, with the number of
processors being dependent on the number of members and the number of
processors used to implement the members. Processor power can be easily added
to a server which implements the Federated OS by adding member hardware units
to the system, without the extensive LAN and software configuring that is typically
required in prior art Unix or NT server farms.

An exemplary stand alone server implementing the Federated OS in a single
enclosure contains a number of rows of member hardware modules and their
associated backplane, a network crossbar switch to interconnect the rows of
member hardware modules, a network switch coupled to the external network
interfaces, interconnects for the network switches, a power conditioning DC power
supply, (optional) battery backup with related charging circuitry, and mass data
storage. In embodiments in which members are physically separated, the
enclosures housing separated members are interconnected via local or long
distance network links, which permits the implementation of geographically
distributed systems.

Preferably, the physical packaging of member hardware units and the internal
network topology are designed to allow for scalability in terms of the number of

member hardware units (and CPUs) supported. For example, in an illustrative

WO 01/44938 PCT/US00/33323

10

15

20

22

embodiment illustrated in Figure 1B, member hardware modules 105a, 105b, have
low power dissipation and are shaped (have a form factor) so that a number of
member hardware modules can be installed side by side in a row of typically 10 to
50 modules, and so that several rows can be stacked vertically in a bookshelf-like
arrangement. [n this‘embodiment the modules in a given row plug into a backplane
(for example backplanes 155 and 160), which provides all of the connections for
each module’'s power and networking interfaces. The backplane also contains the
interconnections needed for networking among the modules in a given row, and also
provides one or more network connections 165a, 165b, that are used to interconnect
with one or more additional rows. The interconnect used in each backplane
preferably is a high-bandwidth, low-latency crossbar (“switched fabric”) allowing
multiple pairs of modules to communicate simultaneously. In implementations using
multiple backplanes, the interface between backplanes preferably is a switched
fabric similar to that used to interconnect modules.

Member hardware units (and backplanes) can be located physically proximate to
each other or may be coupled over large distances. For example, member
hardware units can be located in the same enclosure, or in different enclosures in
the same building, or can be separated by larger distances, for example one or more
kilometers, or even thousands of kilometers. The link coupling a backplane to other
modules or backplanes of the internal network can be, for example, fiber optic cable

having a length from about a centimeter to many kilometers, and could even extend

10

15

20

WO 01/44938 PCT/US00/33323

23

to opposite ends of the globe. One example of an implementation in which some
member hardware units are located remotely relative to other member hardware
units is an embodiment where members that are responsible for encryption and
decryption of secure messaging are located in a secure physical environment that is
remote from other modules of the Federated OS. Preferably the Federated OS is
implemented with a large number (hundreds) of CPUs in a compact enclosure.

In another embodiment, referred to as a “system on a chip” embodiment
illustrated in Figure 1C, the CPU(s), network interfaces, RAM, and ROM, of a
member hardware unit are integrated into a single integrated circuit (IC). In this
embodiment one or more ICs 175a, 175b, which contain those elements, and
internal network interconnect hardware, are mounted on a single circuit board 180.
In this embodiment preferably the circuit board is made in the same physical shape
as the member hardware modules discussed above, and can be plugged into the
same backplane. In the system on a chip embodiment, the internal network 183
interconnects all of the CPUs on the board. Circuit board internal network interface
185, and circuit board external network interface 187 are provided for connecting off
the board. In a variation of this embodiment, one or more of the ICs each contain
multiple member hardware units (CPU/network interface/RAM/ROM combinations),
which are interconnected within each IC, and which also interface off the chip to the
internal network on the board, and to the external network. Thus, multiple member

hardware units are implemented in a single IC. Also, subsystems can be

WO 01/44938 PCT/US00/33323

10

15

20

24

implemented on a single chip which includes multiple processor modules and a

network switch.

Internal network and external network

As discussed above, the Federated OS includes a plurality of members. As
illustrated in Figure 2, the members of the Federated OS 205 communicate with
each other over an internal network 210, whicﬁ can be, for example, a backplane, a
crossbar switch network, a local area network (LAN), a wide area network (WAN), or
any other suitable type of wireline or wireless network. Preferably, the internal
network has high bandwidth and low latency. Optionally, the internal network can be
made up of a plurality of networks which are integrated, for example, in a backplane.
Examples of implementations of the internal network inCIude: a backplane such as
VME64 or CompactPCl, crossbar switch networks such as Race++, SCI (Scalable
Coherent interface), and Myrinet, proprietary custom network interfaces, LANs such
as Ethernet, and WANSs such as SONET or ATM.. The WAN can use any type of
high speed transmission system. Preferably, the internal network is implemented
with SCI, which is a high performance, packet communication and switching
technology. Other possibilities are fibrechannel and skychannel, or any other way of
establishing communication between the members. The internal network could also
be adapted for use with emerging interconnection standards such as InfiniBand.

The internal network interface 115 (Figure 1) of each member is coupled to the

WO 01/44938 PCT/US00/33323

10

15

20

25

internal network. Consequently, all of the members are coupled to the internal
network and can communicate with each other over the internal network.

In some alternative embodiments of a server implementing the Federated OS,
there is no connection to an external network. For example, a computational engine
server that receives data from removable media, or via physical sensors, chemical
sensors, optical sensors, and/or audio sensors need not be coupled to an external
network. Preferably, at least one receiver 225 and one responder 220 are coupled
to an external network 215. The internal network interface 115 of each member
hardware module 105 is for coupling to the internal network 210, and the external
network interface 120 of each member hardware module 105 is for coupling to the
external network 215. As mentioned above, it is not necessary for members that are
not coupled to the exte{r’al network to have an external network interface, although
preferably all members do have an external network interface. The members that
are coupled to the external network can be coupled with, for example, Ethernet
connections, or ATM. The external network can be any type of LAN and/or WAN,
and can be any type of wireline or wireless network. Although the Federated OS is
optimized for large extemal networks such as the Internet, it could also be used with
smaller WANSs or LANSs.

Although in Figure 2 all of the members that are coupled to the external network
are coupled to the same place in the external network, this is not required. In other

words, members may be coupled to the external network at different locations in the

WO 01/44938 PCT/US00/33323

10

15

20

26

external network. Also, the external network interface of one or more of the
members may be coupled to the Internet by direct connection to the Internet
backbone, which is accomplished by connecting the respective network interface

directly to one or more of the main providers of the Internet backbone.

Real time, distributed, and object oriented

- Federated OS members (preferably) are real time because each (preferably)
runs as a single task that can be preempted only by a fixed number of interrupts,
which each have known, bounded, execution times. The Federated OS as a whole
(preferably) is real time because the service and protocol algorithms (preferably) are
all executed in real time. For example, in a TCP/IP embodiment, the receiver
member process preferably receives TCP/IP packets in real time. As a further
example, in a TCP/IP embodiment, IP address lookups and host name lookups are
preferably accomplished in real time.

- The Federated OS is distributed because operating system services (such as
the TCP/IP protocols in a TCP/IP embodiment) are distributed across the member
operating systems (which are coupled on the internal network), and because the
Federated OS supports distributing functionality among different members.

- The Federated OS is (preferably) object oriented because, (1) members

(preferably) are derived from and inherit behavior from a parent class, and the

WO 01/44938 PCT/US00/33323

10

15

20

27

members expand on what is inherited; and (2) because (preferably), the system is

built with object oriented tools.

Real time address lookup and host lookup
In a TCP/IP embodiment, for HTTP (Hyper Text Transfer Protocol), a client

sends a packet of information containing an |P address, a pbrt number, and a host
name to the server to define the service provided by the server that the client desires
to access. It is possible to have multiple host names supported at the same IP
address, and conversely, it is possible to have multiple IP addresses that correspond
with a single host name. The IP address relates to Internet protocol (IP), the port
relates to transmission control protocol (TCP), and the host name relates to Hyper
Text Transfer Protocol (HTTP).

Generally, in servers known in the art, operating systems and/or applications
must search for matches to the IP addresses, TCP port numbers, and other data
such as host names in incoming messages. |P addresses and host names in
incoming messages are compared to (possibfy) numerous |IP addresses and
(possibly) numerous host names stored in respective databases that are accessible
to the server. Typically the networking code of the operating system is responsible
for processing the IP address and TCP port number of an incoming packet in order
to determine if the packet belongs to a hew or existing connection, and to determine

the appropriate application to send the data to. Other data in the message (for

WO 01/44938 PCT/US00/33323

10

15

20

28

example, a host name) may need td be searched by the application (for example, an
HTTP Web server) in order to process the incoming packet.

TCP/IP embodiments of the Federated OS (preferably) use the "Trie" data
structure in its search algorithms in order to quickly and deterministically search for a
match among a large number of IP addresses, and among a large number of host
names. An algorithm using the “Trie” data structure generally requires the same
amount of search time regardless of the size of the database to be searched. This
type of algorithm is referred to as being deterministic because the search time for
each type of search is constant and does not depend on the size of the pool to be
searched. In contrast, prior art servers typically use algorithms (for example, hash
tables) that approximate deterministic performance only if the size of the pool to be
searched is small enough. This approach is used in the prior art in order to minimize
the amount of memory required to maintain the data structures required by the
search algorithm, and is based on an assumption that only a limited number of
simultaneous sessions need to be supported. The search time required for prior art
search methods generally increases if additional addresses are added to the
database, and consequently prior art systems generally cannot be operated in real
time. In contrast, wherever possible the Federated OS uses algorithms using the
Trie data structure, which have execution times that are not affected by the number
of data structures to be searched. As a result of using deterministic search

algorithms, the Federated OS requires a constant amount of time to process each

WO 01/44938 PCT/US00/33323

10

15

29

incoming packet, even when su.pporting a large number of sessions. Use of the
deterministic algorithms allows the Federated OS to operate in real time, because all
searches are completed in the same fixed short amount of time, and because the
fixed amount of time is short enough to allow the system to be operated in real time.
In a TCP/IP embodiment, it can be said that the Federated OS has a real time
TCP/IP state machine. A real time state machine could also be implemented in non
TCP/IP embodiments of the Federated OS. Although using deterministic algorithms
significantly improves performance and is preferred, use of deterministic search
algorithms in the Federated OS is not required.

In a preferred TCP/IP embodiment, the Federated OS can support millions of
simultaneous TCP/IP connections, and can host at least hundreds of thousands of
IP addresses and hundreds of thousands of host names with no performance
degradation. This is due to the design approach and the algorithms used, and isa
result of the ability to process an incoming packet in a known amount of time
regardless of how many other active connections are being maintained. Prior art
TCPI/IP servers, on the other hand, frequently experience significant performance
degradation or even failure when attempting to maintain a large number of
connections, or when attempting to support a large number of IP addresses, even

when the majority of those connections are idle.

WO 01/44938 PCT/US00/33323

10

15

20

30

Event/Network driven

Although not required, preferably the Federated OS is event driven/network
driven. In other words, the network protocol functionality is active and invokes the
appropriate service only when there is data to be acted upon. (In a TCP/IP
embodiment, an example of an event is receipt of a TCP/IP packet resulting from a
user clicking on a hyperlink on a Web page). In contrast, in conventional servers,
applications drive the protocol stack, such that applications read data from the

network and block until the data is available.

Multiple external networks

Although not required, the Federated OS can be coupled to more than one
external network. For example, a receiver and responder of a server implementing
the Federated OS can be coupled to a first external network, and another receiver
and another responder of the server can be coupled to another external network. A
server implementing the Federated OS, which is coubled to more than one external
network, can be configured to prevent data transfer between different external
networks, or can be configured to implement a routing function to pass any data
between any two external networks, or can be configured to implement a firewall by
selectively passing data between two external networks. Routing can be
implerhehted with a routing manager member (for example the routing manager

member 920 shown in Figure 9A). Similarly, a firewall manager member (for

WO 01/44938 PCT/US00/33323

10

15

20

31

example the firewall manager member 928 shown in Figure 9A) can be used to
selectively pass permitted data from one external network to another external

network.

Security features

The Federated OS has a number of features that enhance security. For
example, clients are connected to the external networlg but are not connected to the
internal network, and the external network is used only to transfer data to and from
clients. “Denial of Service" attacks are mitigated by the members’ capabilities to
process incoming packets at network speed (in preferred embodiments). Preferably
all client data is passed via safe container objects, and bounds checking is enforced,
thereby mitigating buffer overflow attacks. Also, encryption/decryption can be
delegated to members geographically separated in physically secure locations.
Firewall protection can be easily realized, for example to provide security in systems

coupled to multiple external networks.

Member Classes

As mentioned above, each member class has a distinct specialized operating
system that is optimized for its specific function. For example, each receiver
member has a receiver operating system, each dispatcher member has a dispatcher

operating system, and each responder member has a responder operating system.

WO 01/44938 PCT/US00/33323

10

15

20

32

Different member classes are different unique subclasses of the parent class, which
is referred to as the proto class. An exception is the configurator class, which may
or may not be a subclass of the proto class. Examples of member classes are
receiver 225, dispatcher 230, responder 220, configurator 235, guardian 240,
persistent storage 245, system administrator-notifier 250, decoder 255, and routing
manager 260 classes (illustrated in Figure 2), in addition to the bootable class.
Additionally, there are proto member and external network member classes, which
are abstract classes that are not implemented as members, but which are parent
classes for members. One illustrative embodiment of a server implementing the
Federated OS includes one receiver member, one dispatcher member, and eight
responder members (and preferably also includes a guardian member). The
Federated OS is scalable in the sense that members can be added or removed as
desired. It is possible to include a large number of responders, for example 400
responders, and even greater numbers of responders could be used. If each
responder transmits data at, for example, 2.5 gigabits per second, and if there are,
for example, 400 responders, then the Federated OS would have a capability of
delivering one terabit (2*° bits per second) of data. Each responder could be
coupled, for example, to an OC-48 connection to transmit data at 2.5 gigabits per
second.

Although not required, preferably, every member hardware unit has the

capability to be dynamically reconfigured during operation (“on the fly") to perform

WO 01/44938 PCT/US00/33323
33

the function of any non abstract member. In other words, the CPU(s) of a member
preferably can be dynamically assigned any of the member functions. For example,
if a dispatcher becomes inoperable, a responder or receiver, for example, could be
dynamically reconfigured during operation of a server to function as a dispatcher.

5 This capability also permits dynamic load balancing. Dynamically reconfiguring
member hardware units permits fault recovery without loss of service. Thus, a
server implementing the Federated OS is a fault tolerant distributed system that can
reallocate services away from failed member hardware units (or failed member ICs).

Preferably, all members are derived from a bootable member which preferably is
10 derived from a proto member. Alternatively, members can be implemented without
being derived from another member, in which case such members must implement
intermember communication functionality.
Member classes are described as follows:
- Receiver member:
15 Preferably, one or more receivers are included in the Federated OS.
Although described in this section in terms of “the receiver”, there can be more
than one receiver.
Preferably, the receiver is derived from an external network member.

In embodiments that include a receiver, the receiver is coupled to an external

20 network.

10

15

20

WO 01/44938 PCT/US00/33323

34

The receiver handles client connection management. For example, in response
to connection requests from clients, the receiver establishes connections between
clients and the server. For example, in TCP/IP embodiments, the receiver
establishes TCP connections with clients. Establishing a connection usually does
not involve transfer of client data.

The receiver preferably is the only network interface of a particular server that a
remote client can transmit to.

The receiver can receive or transmit data over the external network, but in
TCP/IP embodiments the receiver generally only transmits header data, for example,
a handshake to establish a connection.

In embodiments which include a receiver and a dispatcher, once a connection is
established between a client and the server, and data is received, the receiver
hands off the data to a dispatcher. For example, in a TCP/IP embodiment, the data
could be a HTTP request.

In TCP/IP embodiments, the receiver processes [P and TCP, and preferably
also processes ARP (Address Resolution Protocol) and ICMP (Intemet Control
Message Protocol).

In a TCP/IP embodiment, although not required, the receiver preferably has only
a partial TCP/IP state machine.

In TCP/IP embodiments, the receiver preferably manages IP fragment

reassembly.

WO 01/44938 PCT/US00/33323

10

15

20

35

In TCP/IP embodiments, the receiver preferably maintains some TCP state
information.

- Dispatcher member:

Preferably, one or more dispatchers are included in the Federated OS.

Although described in this section in terms of “the dispatcher” there can be more
than one dispatcher.

Dispatchers need not be coupled to the external network, which enhances
security.

The dispatcher preferably manages resource allocation, for example determining
which responder(s) to assign to respond to each client request. The data required to
respond to a request can be spread across more than one responder.

In a TCP/IP embodiment, the dispatcher preferably performs active connection
management, and service management including for example HTTP session
management, mail session management, and FTP.

In a TCP/IP embodiment, the dispatcher processes connections which are in
states which allow data transfer to occur. The dispatcher preferably maintains a
record of the state of each connection that the dispatcher is processing. The state
information includes items required by the TCP specification (for example, sequence
numbers) as well as information required by the Federated OS (for example, which
responder and response identifier is associated with a given connection.) For

example, a connection is associated with a particular service, and the service code

WO 01/44938 PCT/US00/33323

10

15

20

36

associates a response object with the connection. The response identifier is state
information that is saved in the dispatcher which identifies the response object, and

is, for example an integer that serves as an index that the dispatcher hands off to a

responder which allows the responder to identify the correct response information.

Other state information regarding connections is preferably maintained by other
members.

- Responder member:

Preferably, one or more responders are included in the Federated OS.
Although sometimes described in this section in terms of “the responder” there can
be more than one responder, and preferably there are many responders in a server.

Preferably, the responder is derived from an external network member.

In embodiments that include a responder, the responder is coupled to an
external network.

The responder transmits data.

The responder preferably can manage and transmit static data, and/or create,
manage, and transmit dynamic data.

The responder performs the function of sending requested data to a specific
client.

In a TCP/IP embodiment, the responder transmits HTTP data, mail data, and/or

data for other services.

WO 01/44938 PCT/US00/33323
37

Although not required, preferably at least one member of the Federated OS
includes a non real time layer. For example, a responder can include a non real
time layer for running non real time programs (for example Java). Preferably the
non real time layer is Linux. Alternatively, the non real time layer could be an open

5 source non real time layer such as FreeBSD, or OpenBSD or a non open source
non real time layer such as AlX or Solaris, or any other open source or non open
source non real time layer. The Federated OS can be used to implement an
operational server even if there is no interface to a non real time layer, but in that
case the server cannot run non real time programs. The non real time layer, for

10 example Linux, runs as a task on a member of the Federated OS.

Preferably, there are two main behaviors of a responder: (1) transmit static data
cached in the responder and/or load static data onto the responder; (2) service
dynamic data requests, for example, by generating response(s) with an application
running on a Java virtual machine running in the non real time layer of the

15 responder.

In a TCP/IP embodiment, preferably, responders are divided into two groups
which include (1) static responder members, and (2) dynamic responder members.
Static responder members, for example, manage and transmit static data for HTTP,

FTP, mail, and other services.

20 Dynamic data can be created by any member of the Federated OS, in either the

real time layer or the non real time layer. For example, a dynamic responder

WO 01/44938 PCT/US00/33323

10

“15

20

38

member can request data from a persistent storage member (for example persistent
storage member 475 in Figure 4B) and optionally combine that data with other data
(for example an HTTP header) and transmit the combined data to the client. In
another example, a dynamic responder member can request data from an external
database server (for example, external database server 485 in Figure 4B), and
optionally combine that data with other data and transmit the combined data to the
client. It is not necessary for a dynamic responder to have a non real time layer. If a
dynamic responder has a non real time layer, then the dynamic responder
implements non real time layer scheduling, and a non real time layer messaging
interface (for example to Linux or Solaris). Dynamic responder members transmit
dynamic data to the client. Preferably dynamic respondér members are derived

from a static responder member.

- Configurator member:

A configurator is not required in embodiments of the Federated OS that are
preconfigured.

Although described in this section in terms of “the configurator” there can be
more than one configurator in a server. However, preferably there is only one
configurator in a server. |

The configurator has a user interface for loading, modifying and saving the
overall system configuration. Preferably, the configurator also allows the user to

query the system for its current configuration, and to monitor its operation.

WO 01/44938 PCT/US00/33323

10

15

20

39

Preferably, the configurator is language encoding neutral, and numerous languages
(for example, English, Japanese, German, etc.) are fully su‘pported in the user
interface. Preferably the user interface is a graphical user interface, which is used in
conjunction with a monitor, mouse, and keyboard.

As shown in Figure 3, one illustrative embodiment of a server 300 implementing
the Federated OS includes a server housing 305 which includes the member
hardware units and the internal network (for example the member hardware modules
and internal network shown in Figure 2). The server is coupled to the external
network at one or more locations. This illustrative embodiment of the server
preferably also includes a monitor 310, a mouse 315, and a keyboard 320, which are
coupled to a configurator member.

In the HTTP service of a TCP/IP embodiment, the system configuration includes
items such as the IP addresses and TCP ports on which to listen. The configurator
provides a centralized configuration of the entire system, which in a TCP/IP
embodiment preferably includes all core Internet services, such as for example, an
HTTP service, an FTP service, an IMAP email service, and a POP3 email service.

When configuring the system, the configurator transmits code to other members,
or informs other members of the location of code, which the other members run in
order to become instances of specific classes of members required for a given
configuration. This code can be stored in a ROM, a persistent storage member, or

in another storage device.

WO 01/44938 PCT/US00/33323

10

15

20

40

The configurator member does not have to be a subclass of the proto member,
because it is not necessary for the configurator member to participate in the real-
time operation of the server. Preferably, the configurator is not a subclass of the
proto member, and is not a real time member. If the configurator is not implemented
as a subclass of the proto member, the configurator member must still implement -
the same messaging protocol as the proto member, so that the configurator member
will be able to communicate with the real time members. The configurator may be
implemented, for example, as a standard process on a non real-time operating
system (for example, MacOS or Linux), along with the device drivers needed to
communicate with the server's internal network.

- Guardian member:

One or more guardian members may optionally be included in the Federated
0OsS.

Although described in this section in terms of “the guardian”, there can be more
than one guardian.

The guardian member monitors the health of the system by receiving periodic
status messages from the other members, as well as by initiating periodic queries to
the other members. Accordingly, the guardian receives data periodically, for
example, once per second (or any other period of time), from members over the

internal network. Preferably, the guardian monitors both hardware and software.

WO 01/44938 PCT/US00/33323

10

15

20

41

The system can be configured so that one or more guardians monitor one or more
other guardians.

Through the guardian(s), the server is able to detect malfunctioning member(s)
and dynamically reconfigure the system on the fly by assigning another member
hérdware unit to perform the function of each respective malfunctioning member.
The guardian can accomplish this by loading the data that the failed member was
responsible for, onto the hardware unit of another member of the same class as the
failed member, and then informing members of the change. For example, the
response data of a failed responder is loaded onto another responder, and affected
dispatcher(s) are informed of the new location of the affected responses. If there are
no other members of the same class as a failed member, or if the existing members
are unable to accept the relocated functionality, the class of an existing member may
be changed to the class of the failed member by restarting the existing member
hardware unit (which may require relocating that member’s functionality to the
hardware unit(s) of yet another member(s). Thus, the architecture is self monitoring
and self healing.

If a CPU fails, the failure is detected by a guardian and the failed member's
tasks are transparently reallocated to another processor in another member, and an
alert for other members is posted on the internal network. If a CPU in a member has
not failed, but if an internal communication c_hannel in the member is unavailable due

to hardware or software failure, preferably the failed member automatically reroutes

WO 01/44938 PCT/US00/33323
42

messages with no service loss. If this is not possible, the failure will be detected by
the guardian and recovery proceeds as for the case of a CPU failure.
Load balancing:' The architecture of the Federated OS inherently implements
load balancing, because the load is inherently distributed across the members. For
5 example, in a TCP/IP embodiment, the TCP/IP state machine is distributed across a

plurality of members. Preferably, the Federated OS also includes intelligent load
balancing for dynamically assigning resources to match changing user demand.
Dynamic load balancing can be accomplished, for example, by having a dispatcher
assign tasks to the responder that the dispatcher determines is most lightly loaded.

10 Alternatively, or in addition to dynamic load balancing controlled by dispatchers,
dynamic load balancing can be accomplished by having responders determine when
they are underutilized. When a dispatcher and/or responder(s) determine that one
or more responders are lightly loaded, the functionality of two or more responders
can be consolidated on a smaller number of responders (in a manner similar to that

15 used for recovering from a failed member). The class of the resulting unused
member(s) can be changed by restarting the unused member(s) as members of
member classes that are experiencing a greater load, for example, receivers. Static
load balancing can be simply implemented by dividing the data among the
responders. Another approach for load balancing is a geographic algorithm, in

20 which the responder that is geographically closest to the requesting client is

selected. Yet another approach for load balancing is a network topology algorithm in

WO 01/44938 PCT/US00/33323

10

15

43

which the responder that is closest to the client in terms of network topology is
selected. The responders’ loads can also be distributed based on the capabilities of
each responder. For example, responses requiring encryption capabilities are
assigned to responders that have encryption capabilities. Load balancing can be
automated, or can require human intervention.

- Persistent storage member:

One or more persistent storage members may optionally be included in the
Federated OS. Persistent storage members are unique with respect to the other
member classes in that they have a direct interface to one or more data storage
devices. Consequently, hardware used to implement a persistent storage member
must have an interface for coupling to one or more data storage devices. Persistent
storage members are responsible for serving raw data to and from the other
members. This permits the processors of the members to share a large amount of
storage, preferably terabytes of high speed (gigabit/second) redundant Fiber
Channel RAID (Redundant Array of Independent Disks) storage. Any other type and
size of storage could also be used, for example, conventional.hard drives, optical
discs, ROM, etc. Optionally, a persistent storage member may include a large
amount of high speed RAM, which is used to cache data in a memory resident

database. Optionally, the persistent storage member may emulate a file system.

WO 01/44938 PCT/US00/33323

10

15

20

44

-Svystem Administrator Notifier member:

One or more system administrator notifier members may optionally be included
in the Federated OS. In the event of a disruption, such as a power or telephone
service outage, event-based remote alerts notify the system administrator personnel,
for example by pager or cell phone. The system administrator notifier either detects
the disruption itself or is informed of the disruption by another member, and then the
system administrator notifier attempts to contact the system administrator personnel
to notify them of the disruption. Optionally, the functionality of a system
administrator notifier member can be included in a guardian member.

- Decoder member:

One or more decoders may optionally be included in the Federated OS.

A decoder is a member specifically optimized to handle encryption/decryption or
authentication functions, for example, in TCP/IP embodiments, SSL (Secure Sockets
Layer) session management. An illustrative embodiment of a decoder member
includes a large number of specialized CPUs (for example RISC processors, or
digital signal processors), with each CPU simultaneously handling the computation

intensive aspects of encryption/decryption for a given connection.

-Routing manager member:

" One or more routing managers may optionally be included in the Federated OS.
A routing manager maintains address routing tables. For example, in a TCP/IP

embodiment, a routing manager member maintains IP routing tables.

WO 01/44938 PCT/US00/33323

10

15

20

45

-Firewall manager member:

One or more firewall manager members may optionally be inciuded in the
Federated OS. A firewall manager member determines which data is to be passed
from one external network to another.

-Proto member:

The proto member is the parent class of the other real time member classes.
Preferably, all real time member classes inherit the properties of the proto member.
(As menfioned above, the configurator member, need not be a subclass of the proto
member.)

The proto member class is an abstract class, which means that there is not a
member instance created that is only a proto member, but rather, each real time
member preferably is an instance of one of the subclasses derived from the proto
member class.

The proto member functionality includes, for example, memory management,
self health monitoring, member to member communications, and utility functions.
Self health monitoring means that the member has the ability to measure its
performance and load, and to determine its “health” by determining the state of the
hardware, firmware, and software components that comprise the member. The
proto member can include a capability to determine when \there is a problem with a
member and then request help, and/or can include the capability to share data with

other member(s) that analyze the data and determine whether there is a problem.

WO 01/44938 PCT/US00/33323

10

15

20

46

Member to member communications functionality is functionality for sending and
responding to messages from other members. For example, a proto member
includes functionality for responding to a message from a configurator informing the
member which class of member that it will be, for example, a receiver. The proto
member preferably also includes functionality for receiving and loading code
implementing the designated member class assigned to a member. In other words,
preferably every member (except perhaps the configurator member) has the ability
to receive a message, which is itself a new instance of the operating system. For
example, the contents of the message could be the operating system code to
transform a bootable member into, for example, a receiver. As discussed above, a
member can subsequently be transformed into another class of member, for
example, a dispatcher.’

-External Network member:

The external network member preferably is a subclass of a bootable member,
and preferably is the parent class of receiver and responder members. An example
of an external network member 916 is shown in Figure 9A. Receiver and respoﬁder
members preferably inherit properties from the external network member, such as
external network interfacing capability, and raw protocol support. An example of raw
protocol support in a TCP/IP embodiment is parsing and generation of IP and TCP
packets. The external network member class preferably is an abstract class, which

means that there is not a member instance created that is only an external network

WO 01/44938 PCT/US00/33323

10

15

20

47

member, but rather, each receiver and responder member preferably is an instance
of a subclass derived from the external network member class. There is possibly a
different external network member used for each external network interface, for
example Myrinet, Ethernet, and ATM. Alternatively, there is a single external
network member that support a plurality of external network interfaces.

-Bootable member:

Bootable members are a subclass of the proto member. Thus, bootable
members inherit the functionality of the proto member. Bootable members,
however, must define CPU specific code necessary to implement that functionality.
A bootable member is a bare bones instance of a Federated OS real-time member.
Because bootable members have CPU specific code, bootable members are not
necessarily identical. Thus, bootable members for X86, PowerPC, and DSP
processors are different from each other. CPU specific code can include, for
example, specific byte ordering and word size. Typically, the executable code fora
bootable member is part of the firmware (non volatile memory) of a member (node),
so that when power is supplied to the member, the member becomes an instance of
a bootable member.

Each member class (except possibly the configurator class and the proto class)
preferably is a child class of a bootable member. Bootable members have the ability
to receive and load the executable code to implement a designated member class |

assigned to a member. In other words, every bootable member, or subclass of a

WO 01/44938 PCT/US00/33323

10

15

48

bootable member, has the ability to receive a message which contains a new
instance of an operating system. For example, the message could contain the
operating system code to transform a bootable member into, for example, a receiver.
As discussed above, a member can subsequently be transformed into another class
of member.

Figure 4A illustrates the hierarchial relationship between a proto member 405, a
bootable member 410, a receiver member 415, a dispatcher member 420, and a
responder member 425 in an illustrative embodiment of the Federated OS. Figure
4A illustrates that bootable members preferably are instances of the proto member,
and that member classes operating as nodes of the Federated OS preferably are
instances of a bootable member (although the bootable members need not be
identical). Figure 4B is a block diagram of a server 440 in its operative environment,
implementing an illustrative embodiment of a Federated OS. Figure 4B illustrates
receivers 445, dispatchers 450, responders 455, configurator 460, guardian 465,
decoders 470, persistent storage members (data servers) 475, guardian 480,
external database server 485, internal network 490, external network 492, and
clients 495. The external database servers shown in Figure 4B are conventional
servers that optionally can be coupled to the internal network of a server

implementing the Federated OS.

WO 01/44938 PCT/US00/33323

10

15

20

49

Internal Network Module

Preferably the proto member and the configurator member include an internal
network module (for example the internal network module 902 shown in Figure 9A).
The internal network module includes for example, an internal network interface,
message data structures, and messaging protocol, which are used to facilitate
communications over the internal network. Internal network modules are specific to
a particular internal network protocol. For example, depending on the protocol used
on the internal network, one of the following internal network modules is used: a
switched fabric crossbar, for example Myrinet, a bussed backplane, for example
VME, or a WAN, for example SONET. The internal network module is not a member

class.

Embodiment with geographic dispersion of members

In one embodiment of the Federated OS, at least one member is located at a
different location than other members. This is possible because with the Federated
08, it is not necessary for the members (or processors) to be physically close or
contiguous. Members do not have to be located in the same enclosure, in the same
room, or even on the same continent. In other words, members can be separated
and can be located anywhere as long as they can communicate with each other over
an internal network. For example, the internal network can be implemented with a
WAN using a SONET transmission system, rather than with a VMEbus backplane.

(Transmission systems other than SONET could also be used.) This could be

WO 01/44938 PCT/US00/33323

10

15

20

50

useful, for example, to locate one or more responders in a different location than the
remainder of the Federated OS. For example, a responder could be located in
Tokyo in order to locate data close to clients in Japan, to enable quick servicing of
requests from clients located in Japan, while the receiver and dispatcher remain
housed at a main location in Seattle, Washington. Even though the data can be
located remotely from other members of the Federated dS, only one session per
client is required for this embodiment, as in other embodiments. Thus, in this
embodiment a responder can be located near clients without the need to replicate
entire servers, and without the undesirable consequences of replicating servers,
such as generating excessive traffic, and difficulty in tracking the number of hits to a
site.

In another implementation of this geographically dispersed members
embodiment, numerous responders of the same Federated OS can be located at
various locations throughout the world. For example, one or more receivers and
dispatchers, and preferably other members, could be housed at a main facility at, for
example, Seattle Washington, while one or more responders are located at, for
example, New York, London, Berlin, Hong Kong, and Tokyo. It would be possible to
locate a large number of responders, for example hundreds (or more), which are all
members of a single Federated OS, at various locations throughout the world.

Responders could also be located on satellites.

WO 01/44938 PCT/US00/33323

10

15

20

51

Figure 5 illustrates a server 505 implementing a geographically dispersed
members embodiment, using a SONET transmission system for the internal network
510, in which one responder 515 is located in New York, two responders 520, 525
are located in Tokyo, and in which one responder 530 and the remainder of the
members 535 are located in Seattle. Locating a responder in Seattle is not required.

In the embodiments in which members are geographically dispersed, any of the
members can be located remotely from any of the other members, as long as the
members are able to communicate with each other over an internal network. Thus,
this embodiment is not limited to locating only responders remotely from other
members. For example, a receiver, or a receiver and a responder, could be located
remotely from the remainder of the members of a Federated 0S. The geographic
dispersion embodiment is of particular interest for Internet applications, which
preferably are implemented with a ThunderOS embodiment of the Federated OS.

Embodiment with direct internet backbone connection

A server 605 in accordance with another embodiment of the invention is
illustrated in Figure 6. In this embodiment, one or more receivers 610 and
responders 615 are coupled directly to the Internet backbone 620 (the external
network). This reduces the number of hops, thereby increasing speed.

Embodiment with direct Internet backbone connection and remote datastore

In another embodiment illustrated in Figure 7, one or more receivers and

responders are coupled directly to the Internet backbone 710 (external network) as

WO 01/44938 PCT/US00/33323

10

15

20

52

in'the preceding embodiment. In this embodiment a dispatcher 720 is coupled to a
dispatcher 725 over a secure private connection 730. Dispatcher 725 is coupled to
one or more decoders 735 (which both encrypt and decode) implementing SSL
(Secure Sockets Layer) and to one or more responders 740. Responders 740 are
coupled to the external network. Responders 740 are also coupled to decoders 735.
Dispatcher 725, decoders 735, and responders 740 are located at a secure site
(which typically is geographically remote from receiver 743, dispatcher 720, and
responders 750), for example in a bank or a corporation that desires to maintain
control of the data on the responders 740. This embodiment could be used, for
example, by a corporation or bank that desires to make data available over the
Internet, while leaving the datastore under the control of the corporation or bank, and
while maintaining extremely high speed for the receiver and responders that are
coupled directly to the backbone. In this embodiment, a client sends an encrypted
message to the receiver 745, which is transferred from the receiver to dispatcher
720, and which is then sent from dispatcher 720 to dispatcher 725 over private
connection 730. Dispatcher 725 then sends the message to one of decoders 735
which decodes the message and returns the decoded message to dispatcher 725.
Dispatcher 725 then sends a message identifying the location of the requested data
to one of responders 740, which sends the data to one of decoders 735 where the
data is encrypted and then returned to the one of the responders 740, which then

sends the encrypted data to client over the Internet.

WO 01/44938 PCT/US00/33323

10

15

53

Asymmetrical and symmetrical embodiments

Some embodiments of the invention may be referred to as being asymmetrical.
A Web server implementation of the invention is one example of an embodiment that
typically will be asymmetrical. These embodiments are referred to as being
asymmetrical because the amount of data received by the server is usually much
smaller than the amount of data that is output by the server. (However, it is possible
that the data flow could be asymmetrical in the other direction, where the amount of
data received by the server is larger than the amount of data that is output by the
server, for example, in a mail server that receives a lot of mail that is not retrieved.)
Other embodiments of the invention may be referred to as being symmetrical. A
mail sérver (from which the mail is regularly retrieved) is an example of an
embodiment that typically will be symmetrical. Another example of an embodiment
that is typically symmetrical is a telephony embodiment, wherein IP packets carry
voice data. These embodiments are referred to as being symmetrical because the
amount of data received by the server is roughly similar to the amount of data that is
output by the server. It is possible for an implementation of the invention to have
both asymmetric and symmetric characteristics. For example, a server could
function as a typical Internet data server, and could also function as a mail server

and/or a voice data server.

WO 01/44938 PCT/US00/33323

10

15

20

54

Thunder Operating System™ (ThunderOS™)

(“Thunder Operating System™" and “ThunderOS™" are trademarks of Thunder
River Technologies, Inc.)

ThunderOS, which is one of many possible embodiments of the Federated OS,
is a specific instance of the Federated OS which is optimized for Internet servers,
and which is the preferred embodiment of the Federated OS. ThunderOS is a
distributed, scalable TCP/IP implementation of the Federated OS. In the Thunder
OS embodiment of the Federated OS (which can include various embodiments of
ThunderOS), the members run operating systems which together make up
ThunderOS. As in the Federated OS in general, with ThunderOS each member
class runs a unique operating system. ThunderOS includes a distributed TCP/IP
state machine. ThunderOS incorporates TCP/IP and Internet server software which
is highly optimized for the Internet. Preferably Thunder OS is implemented in the
C++ programming language, which facilitates implementing the inheritance heirarchy
of the operating systems of the members.

For increased speed, ThunderOS is implemented such that key Internet services
and protocols are implemented directly as part of the distributed operating system.
These key Internet software services and protocols include:

- HTTP (Hyper Text Transfer Protocol);

- FTP (File Transfer'ProtocoI);

- IMAP (Internet Messaging Access Protocol); and

WO 01/44938 PCT/US00/33323

10

15

20

55

- POP3 (Post Office Protocol 3).

In addition to these key Internet software services and protocols, other lower
level network protocols typically found in operating systems such as TCP/IP, DNS
(Domain Name Server), ARP (Address Resolution Protocol), UDP (User Datagram
Protocol), and ICMP (Internet Control Message Protocol), are preferably also
included in Thunder OS. ThunderOS preferably also includes WAP (Wireless
Application Protocol), SSL (Secure Sockets Layer), and other services and
protocols. These services and protocols are implemented in a distributed manner,
utilizing multiple member classes to distribute the processing involved. In
ThunderOS implementations of these services and protocols execute in realtime
with respect to incoming network packets. This means that incoming packets are
each processed in a bounded amount of time regardless of the number of active
connections a server is maintaining. Synchronous messaging is used to enforce
realtime deadlines, and a realtime TCP/IP state machine is implemented with
constant-time algorithms.

An illustrative embodiment of ThunderOS 805 illustrated in Figure 8 includes
TCP/IP (Transmission control Protocol/Internet Protocol), HTTP (Hyper Text
Transfer Protocol), FTP (File Transfer Protocol), IMAP (Internet Messaging Access

Protocol), DNS (Domain Name Service), efc.

As illustrated in Figure 8, in the ThunderOS embodiment of the Federated OS,

the Federated OS preferably runs a non real time layer on designated processors or

WO 01/44938 PCT/US00/33323

10

15

20

56

members, to support tools for generating dynamic content such as, for example,
Java, Python, PERL, FastCGl, CGI, Smalltalk, PHP, Erang, C++, and others.
Consequently, optional end user applications written for these languages or
environments can run on the non real time layer. ThunderOS members are
implemented as single threaded, real time processes, with optional support for
interfacing to the non-real time system which is allowed to run when the real time
process is idle. The non real time layer can support multitasking, with muitiple
processes or threads of execution. Preferably the non real time layer is a Linux
kernel, although other non real time systems could be supported. Operating the
Linux layer above ThunderOS ensures that existing Linux applications can run “as
is". With ThunderOS managing Internet services in real-time and Linux providing
standards-based open interfaces, a server implemented with this embodiment of the
Federated OS provides a powerful platform for hosting large, dynamic Web sites.

Dynamic content can be generated in the real time layer, or by applications that
run in the non real time layer. For example, for a non real time layer, a Java virtual
machine is provided for Java applications, and a Perl interpreter is provided to run
applications written in Perl. These applications create dynamic data in response to a
request, but do not need visibility into how that data is delivered back to the
requesting client.

Figure 9A is a block diagram illustrating the relationships between members of

ThunderOS. Figure 9A includes internal network modules 902, configurator member

WO 01/44938 PCT/US00/33323

10

15

20

57

904, proto member 906, bootable member 908, persistent storage member 910,
guardian member 912, dispatcher member 914, external network member 916,
encoder/decoder member 918 (also referred to as a decoder member), routing
manager 920, receiver member 922, static responder member 924, dynamic
responder member 926, and firewall manager member 928. Thunder OS is
implemented to be language encoding neutral, as indicated in the configurator
member 904 and proto member 906 boxes in Figure 9A, which means that a wide
variety of languages are supported in addition to English. Figure 9B is a block
diagram illustrating functions and interactions in a bootable member 908 in
ThunderOS. Figure 9C is a block diagram illustrating functions and interactions in a
receiver member 922 in ThunderOS. Figure 9D is a block diagram illustrating
functions and interactions in a dispatcher member 914 in ThunderOS. Figure 9E is
a block diagram illustrating functions and interactions in a static responder member
924 in ThunderOS. Figure 9F is a block diagram illustrating functions and
interactions in a dynamic responder member 926 in ThunderOS. In ThunderOS,
responder members are either static responder members or dynamic responder
members.

TCP as implemented in ThunderOS (referred to as ThunderTCP), utilizes the
distributed nature of the Federated OS to enhance the servicing of TCP connections.
The TCP specification (Internet Requests for Comments (RFC) 793, which is

incorporated herein by reference) describes a state machine with eleven states.

WO 01/44938 PCT/US00/33323

10

15

20

58

However, only a few of these states are involved in the actual data transfer. The
nature of these states causes TCP to lend itself to a distributed implementation such
as in ThunderOS. A server implemented with ThunderOS is implemented as a
distributed state machine which uses connection objects to hold the necessary state
information.

Distribution of the implementation of TCP in ThunderOS is described, with
reference to Figure 10, as follows. The creation of a con.nection (TCP's “three way
handshake”) has a minimal dependence on the service, and requires only
knowledge of which services to associate with given port numbers. This part of the
TCP state machine is efﬁci_ently distributed to a separate member, which is the
receiver member 1005. This receiver member is able to manage a large number of
connections, and generally is not burdened with service specific processing.

Once a connection is established, a connection object is created ona dispatcher
member 1010, and this object is associated with the current TCP port. The
dispatcher (1) manages various aspects of the data transfer portion of the TCP
specification, such as acknowledgments aid retransmissions, and (2) invokés the
appropriate service. The service functionality can exist on the dispatcher member,
and/or on a different member (or members), and typically will be distributed on both
the dispatcher member and at least one other class of member. Typically data

generation and transmission aspects of the service will be carried outon a

WO 01/44938 PCT/US00/33323

10

15

20

59

responder member, thereby relieving the dispatcher member of much of the
processing.

The end of the chain is the responder member 1015. The responder requires
only minimal communication with the dispatcher. This communication takes place in
order for the responder to know which data to transmit, when to transmit the data,
and how much of the data to transmit (or retransmit, in the case of time-outs). The
responder does not need to maintain any persistent state information between
invocations, because the dispatcher supplies the necessary connection state
information to the responder on each invocation. Multiple responder members can
be associated with a given dispatcher, thereby permitting multiple connections to be
serviced in parallel. Additionally, multiple dispatchers can be associated with a
given receiver member.
| With ThunderOS, the data structures which associate client and server IP
addresses and TCP ports with a connection object and with a given service, can be
searched in a constant period of time. That is, the time to perform the lookup is
independent of the number of currently active connections or the number of
services. The lookup is performed to find the record containing the current
connection state information associated with the connection identified by the client
and server IP addresses and TCP port numbers. Host lookups are also

accomplished in a constant period of time. This approach eliminates many of the

WO 01/44938 PCT/US00/33323

10

15

20

60

limitations of conventional TCP implementations. Wherever possible, available
memory is the only limitation to the number of active connections supported.

Prior art server software oftentimes handles multiple clients simuitaneously by
invoking a separate instance of the server process to handie each connection.
Consequently, a large number of clients using relatively slow network interfaces can
require a large amount of system resources, even if the actual servicing of the
clients is trivial due to the low bandwidth of their connection. ThunderOS, on the
other hand, uses a single-threaded event driven approach to manage incoming
packets, in combination with distributed parallel execution to generate and transmit
outgoing data. This approach permits the system to operate fast enough to respond
to events (incoming network packets) in real time. Furthermore, distributing the data
generation and transmission across multiple members allows the system to scale.
This approach allows a single server to manage a much larger number of clients
than would otherwise be possible.

State information

In order to service requests from clients, state information for each connection
must be maintained. In ThunderOS this state information is maintained by the
receiver and/or dispatcher. Different members can maintain portions of the state
information at different times. Each member maintains only a portion of the overall
state, and the entire state is stored across a plurality of members. TCP ports can be

characterized as either, (1) listening for communication from a client, or (2) having

WO 01/44938 PCT/US00/33323

10

15

20

61

an established connection. The absence of a connection is referred to as a closed
state (not really a state), which is the entry point into the state machine. Figure 11
illustrates a receiver TCP connection state machine 1105, and Figure 12 illustrates a
dispatcher TCP connection state machine 1205, for ThunderOS. These state
machines are described in the following sections.
Receiver TCP connection state machine

The receiver's state machine 1105 in the ThunderOS embodiment is illustrated
in Figure 11. When a new connection is initiated by a client, the client sends a TCP
packet (packet 1) with the SYN flag set in the TCP header. When the receiver
receives such a packet with a destination IP address and TCP port that the receiver
has been configured to listen to, and the receiver has not already allocated a data
structure for this connection (as identified by both the source and destination IP
address and TCP port numbers) the receiver creates a connection by allocating a
new data structure to hold the state information for the connection. The receiver's
connection trie data structure is then updated to reference this newly allocated
structure, so that when a future packet with the same IP addresses and TCP ports is
received, the existing data structure will be found. The newly allocated data
structure is initialized to indicate the connection is in the SYN_RCVD state. The
receiver then sends a packet (packet 2) back to the client acknowledging the
received packet. This packet also has the SYN flag set as well as the ACK flag.

When the receiver subsequently receives a packet (packet 3) acknowledging packet

WO 01/44938 PCT/US00/33323

10

15

20

62

2, it transitions to the DISPATCHER_RELAY state and sends a message to the
dispatcher with the necessary information for the dispatcher to create a new
connection state record. This completes the exchange known as TCP's “three-way
handshake". .

While a connection is in the DISPATCHER_RELAY state, the relevant data from
any packets received by the receiver is simply forwarded to the dispatcher. The
dispatcher informs the receiver whether the connection should remain in the
DISPATCHER_RELAY state, whether it should transition to the F IN_WAIT2 state, or
whether it should be closed. The dispatcher also informs the receiver whether any
final acknowledgements or resets should be sent back to the client, and whether the
TCP port should be marked as being in the TIME_WAIT state. For connections in
the FIN_WAIT2 state, if the FIN flag is set in the incoming packet, the connection is
closed and the port is marked as being in the TIME_WAIT state. Note thatin
conventional TCP implementations the TIME_WAIT state is an actual state of the
state machine. In the ThunderTCP implementation, TIME_WAIT is indicated in a
data structure that is outside of the scope of the state machine and which gets
checked before the state machine is invoked. When a connection is closed on the
receiver, the data structure that was allocated for the connection state information is
released. The states SYN_RCVD, and FIN_WAIT2 correspond to the corresponding
states of the state diagram contained in the TCP specification (RFC 793.) The state

DISPATCHER_RELAY indicates that the connection is in one of the states that is

WO 01/44938 PCT/US00/33323

10

15

20

63

handled by the dispatcher. Note that all data transfer occurs in this state and also
that the receiver needs to perform very little processing for connections in this state.
For server services, such as HTTP, that do not initiate connections to the client, the
additional state of SYN_SENT is not used.

Dispatcher TCP connection state machine

The dispatcher’s state machine 1205 in the ThunderOS embodiment is
illustrated in Figure 12. When the dispatcher receives a new connection from the
receiver, it allocates a new data structure to hold the connection state information,
and returns an identifier for the allocated structure to the receiver. This identifier will
be used by the receiver to associate future messages with the connection. The
state of the connection is set to ESTABLISHED and processing continues as for
connections that are initially in the ESTABLISHED state.

For connections in the ESTABLISHED or CLOSE_WAIT state, the service
specific code determines which responder will be used to acknowledge data
received from the client and to send data to the client. The service specific code is
responsible for instructing a responder to send the response data, along with the
necessary TCP acknowledgment information back to the client. If the response data
is not immediately available, only the acknowledgment, if needed, is sent. The
amount of data that can be sent to the client is also limited by the TCP
acknowledgment sequence number and window size sent by the client in each TCP

packet.

WO 01/44938 PCT/US00/33323

10

15

20

64

For connections in the ESTABLISHED, FIN_WAIT_1, or FIN_WAIT_2 state, any
data received from the client is passed on to the service associated with the
connection. (The service specific processing can occur on the dispatcher itself, or
can be distributed across other members.)

For connections in the ESTABLISHED state, if the client has closed its end of
the connection, the connection state is set to CLOSE_WAIT. If the service has
closed the server's end of the connection, the state is set to FIN_WAIT_1.

For connections in the CLOSE_WAIT state, if the service has closed the server's
end of the connection, the state is set to LAST_ACK.

For connections in the LAST_ACK state, if the client has acknowledged all of the
server's data, the connection state data structure is deallocated and the receiver is
told to close the connection.

For connections in the FIN_WAIT _1 state, if the client has closed its end of the
connection but has not acknowledged all of the server's data, the state is set to
CLOSING. If the client has closed its end of the connection and has acknowledged
all of the server's data then the connection state data structure is deallocated and
the receiver is told to send a final acknowledgment and mark the connection as
being in TIME_WAIT. If the client has not closed its end of the connection and has
acknowledged all of the server's data and the service will accept further client data
after closing the server's end of the connection, then the state is set to FIN_WAIT_2.

If the client has not closed its end of the connection and has acknowledged all of the

WO 01/44938 PCT/US00/33323

10

15

20

65

server's data and the service will not accept further client data after closing the
server's end of the connection, then the connection state data structure is
deallocated and the receiver is told to set its connection state to FIN_WAIT_2.

For connections in the FIN_WAIT_2 state, if the client has closed its end of the
connection, then the connection state data structure is deallocated and the receiver
is told to send a final acknowledgment and mark the connection as being in
TIME_WAIT.

For connections in the CLOSING state, if the client has acknowledged all of the
server's data, then the connection siate data structure is deallocated and the
receiver is told to mark the connection as being in TIME_WAIT.

In accordance with the TCP specification, when data is transmitted, a timer is
started. If the timer expires before the data is acknowledged by the client, the
appropriate responder is notified to retransmit the necessary data. Acknowledgment

time-outs and TCP reset messages can also cause a connection to be closed.

Distributed TCP/IP implementation in ThunderOS
The ThunderOS embodiment of a distributed TCP/IP implementation allows

multiple members and their associated external network interfaces to collectively
service a single IP address. Specifically, the TCP/IP state machine is distributed
across one receiver and one or more responders (and preferably one or more

dispatchers), so that an IP address is serviced by a receiver and one or more

WO 01/44938 PCT/US00/33323

10

15

20

66

responders (and preferably one or more dispatchers). The existence of multiple
responders, with their associated external network interfaces, allows the ThunderOS
embodiment of a distributed TCP/IP implementation to transmit data at rates that
would exceed the capabilities of a single external network interface. Adding
additional responders to a server increases the server's capacity to transmit data for

the service or services associated with a specific IP address.

Alternative embodiment of distributed TCP/IP implementation

Another embodiment of a distributed TCP/IP implementation, illustrated in Figure
13, does not require the Federated OS but can be implemented on a single
computer 1302 with one or more CPUs 1305, with a plurality of external network
interfaces 1310a-1310e, and with or without an operating system. In this
embodiment, one or more receivers 1315, one or more dispatchers 1320 and one or
more responders 1325 are implemented as processes or threads executing on the
computer. Because these processes or threads execute on a single computer they
can communicate among themselves without requiring an internal network. This
communication is achieved through shared memory, message queues, or other
inter-process or inter-thread communication method. The receiver, dispatcher and
responder processes or threads in this embodiment perform similarly to the receiver,
dispatcher and responder members described in the ThunderOS embodiment of a

distributed TCP/IP implementation. Thus, methods for initializing a server, and

WO 01/44938 PCT/US00/33323

10

15

20

67

methods for responding to requests in this alternative embodiment, are implemented
analogously to the methods in the ThunderOS embodiment. Specifically, the
servicing of a single IP address is distributed across a receiver process or thread,
one or more dispatcher processes or threads, and one or more responder processes
or threads. A dedicated external network interface is coupled to the receiver
process or thread, and one or more dedicated external network interfaces are
coupled to each responder. Collectively these processes or threads, with their
dedicated external network interfaces, provide services for one or more P
addresses. The servicing of a single IP address is not processed by a single
external network interface but rather is distributed among multiple external network
interfaces. A single receiver can service one or more IP addresses. Preferably, a
receiver is coupled to a single external network interface, although multiple external
network interfaces can be coupled to a single receiver.

A variation of the preceding embodiment of a distributed TCP/IP implementation
also does not require the Federated OS, but can be implemented on multiple
computers. Each computer has one or more CPUs, one or more internal network
interfaces, and one or more external network interfaces. Each computer can
operate with or without an operating system. In each computer, preferably the
internal network interface and the external network interface are not a shared single
interface, but preferably are separate distinct interfaces. In this embodiment, one or

more receivers, one or more dispatchers, and one or more responders are

WO 01/44938 PCT/US00/33323

10

15

20

68

implemented as processes or threads executing on each computer. Preferably,
each of these processes or threads executes on a dedicated computer. Preferably,
these processes or threads communicate among themselves using an internal
network. The internal network can be any wireline, wireless, optical, or other
networking system that can interconnect computers, for example, Ethernet, Gigabit
Ethernet, Token Ring, Fibre Channel, or InfiniBand. The receiver, dispatcher and
responder processes or threads in this embodiment perform similarly to the receiver,
dispatcher and responder members described in the ThunderOS embodiment of a
distributed TCP/IP implementation discussed herein. Thus, methods for initializing a
server, and methods for responding to requests in this alternative embodiment, are
implemented analogously to the methods in the ThunderOS embodiment.
Specifically, the servicing of a single IP address is distributed across a receiver
process or thread, one or more dispatcher processes or threads and one or more
responder processes or threads. Preferably, a dedicated external network interface
is coupled to the receiver process or thread, and one or more dedicated external
network interfaces are coupled to each responder. Collectively these processes or
threads, with their (preferably) dedicated external network interfaces, provide
services for one or more IP addresses. The servicing of a single IP address is not
processed by a single computer or a single external network interface but rather is
distributed among multiple computers and multiple external network interfaces. A

single receiver can service one or more IP addresses. Preferably, a receiver is

WO 01/44938 PCT/US00/33323

10

15

20

69

coupled to a single external network interface, although multiple external network
interfaces can be coupled to a single receiver.

Alternative distributed TCP/IP embodiments need not include a dispatcher
process or thread but rather can incorporate the dispatcher functionality in the

receiver and/or responder processes or threads.

Methods of configuration and operation

Prior to processing requests from clients, the server is configured by the
configurator. Although configuration by the configurator could be automatic,
configuration is typically accomplished by the configurator in response to operator
input. The operator can either manually enter the configuration data, or load a
previously saved configuration. The operator then initiates the loading of the
configuration onto the server. The selected configuration identifies which OS
member OS instance will be loaded onto each participating member hardware unit.

A typical example of configuring a server is as follows: A receiver, a dispatcher
and a number of responders are designated. In some alternative embodiments, no
dispatchers are designated, and dispatcher functionality is implemented on a
receiver and/or a responder. In these alternative embodiments, acts that would
have been performed by a dispatcher are performed by one or more receivers
and/or one or more responders. After the members are designated, the appropriate

executable code is then downloaded to those member hardware units and is

WO 01/44938 PCT/US00/33323

10

15

20

70

executed. The receiver is then told what |P addresses and TCP port numbers to
accept connections on, and which dispatchers to associate with those connections.
The dispatcher is then told what services to associate with each of those IP
address/TCP port pairs. For the HTTP service, the dispatcher is also told which host
names to accept requests for. The response data is then loaded onto the
responders. This can be raw static data, and/or executable code that is to be run to
generate dynamic data. As each response is loaded, the dispatcher is informed of
its location. As soon as the dispatcher is informed of the location of the response, it
updates its data structure used to lookup responses, so that the server is ready to
serve that response the next time a client requests it. Figure 14A is a flow chart
illustrating a method for initializing a server in accordance with an illustrative
embodiment of the invention. Figure 14B is a flow chart illustrating a method for
initializing a server in accordance with another illustrative embodiment of the
invention.

Figure 15 illustrates data flow between the client 1505, receiver 1510, dispatcher
1515, and responder 1520, for servicing a request from the client, in the ThunderOS
embodiment. A typical transaction between a client and a server proceeds as
follows: A client initiates a request which results in a connection being established
by exchanging a number of TCP packets between the client and a receiver member
of the server. As each packet is received, the receiver must lookup the IP

addresses and TCP ports contained in the packet and determine if they correspond

WO 01/44938 PCT/US00/33323

10

15

20

71

with an existing connection. Preferably this lookup is implemented using the “Trie"
data structure to provide deterministic execution time, regardless of how many active
connections the receiver is maintaining.

If the connection successfully reaches the "established" state, the client can then
send data containing the actual request information. The receiver pulls out headers
from received data, and also pulls out the payload, and passes the payload “as is” to
the dispatcher. For an HTTP request, the data (payload) includes the HTTP header
(which includes, for example, a command to get data at a specified URL), and the
HTTP payload data if any. When the receiver receives the packet with this data, it
sends the data to the dispatcher. When the dispatcher receives the request data for
a new connection, it allocates a data structure to hold the state of the connection
and returns an identifier to the receiver which allows the receiver to associate future
data with this connection on the dispatcher. The receiver saves this identifier in its
data structure associated with this connection.

The dispatcher then processes the request data to determine what response to
send. Preferably, part of this processing uses the "Trie" data .structure to efficiently
locate the correct response. Based on the data record resulting from this search,
the dispatcher sends a message to the appropriate responder telling it to send some
of the data back to the client. (The amount of data the client is ready to receive, as
well as acknowledgements of what data the client has already received, are part of

the information contained in every TCP packet sent by the client.) The responder

WO 01/44938 PCT/US00/33323

10

15

20

72

replies to the dispatcher with an identifier to identify the unique instance of the
response associated with this connection. This is necessary for dynamic data where
each connection would result in possibly different data being returned in response to
identical requests. The responder also tells the dispatcher the size of the response
data, if known, so that the dispatcher can determine when the complete response
has been sent. The dispatcher uses the size of the response data when calculating
the next sequence number. The responder sends the response data to the client.

When the client receives the response data packets, it sends acknowledgement
packets back to the receiver, which indicate what data the cﬁent has successfully
received and how much more data it is now willing to accept. The receiver receives
this packet and performs the IP address and TCP port lookup again, and determines
that this packet belongs to an established connection. The receiver then sends the
necessary information from the packet, along with the connection identifier
previously saved for this connection, to the dispatcher. The dispatcher receives this
message and uses the identifier to locate the appropriate connection state
information. The dispatcher then uses the acknowledgement information along with
the saved state information to determine what portion of the data can now be sent.
Sequence numbers in the dispatcher are incremented by the number of transmitted
bytes. The dispatcher then sends a message to the appropriate responder. This
message contains the previously saved response identifier along with the

information indicating what portion of the data to send. The dispatcher also

WO 01/44938 PCT/US00/33323

10

15

20

73

maintains timers that cause it to tell the responders to resend data that has not been
acknowledged within the appropriate amount of time. The client again receives this
data and sends the next acknowledgement.

This cycle continues until all of the response data has been sent by the
responder and acknowledged by the client, at which time the dispatcher informs the
receiver that the connection is to be closed. The dispatcher also informs the
responder that the unique instance of the response for this connection is no longer
needed. And finally, the dispatcher deallocates the data structure containing the
state information for this connection. The final closing of the connection involves a
few more packets being exchanged between the client and the receiver, after which
the receiver deallocates its data structure containing the state information for the
connection. Error conditions, cancelled requests, etc., result in processing in
addition to that described above. Figure 16A is a flow chart illustrating a method for
responding to a request received over an external network in accordance with an
illustrative embodiment of the invention. Figure 16B is a flow chart illustrating a
method for respondiﬁg to a request received over an external network in accordance
with another illustrative embodiment of the invention. Figure 16C is a flow chart
illustrating a method for responding to a request received over an external network
in accordance with another illustrative embodiment of the invention. Figure 16D isa
flow chart illustrating a method for responding to a request received over an external

network in accordance with another illustrative embodiment of the invention.

WO 01/44938 PCT/US00/33323

10

15

20

74

Signal Bearing Medium

Another aspect of the invention is a signal bearing medium tangibly embodying
machine-readable code executable by a digital processing apparatus for
implementing any of the embodiments of a server or digital computer system
described herein. Another aspect of the invention is a signal bearing medium
tangibly embodying a program of machine-readable instructions executable by a
digital processing apparatus to perform any method described herein, including for
example, methods for responding to a request received over an external network,
methods for responding to a request (that does not have to be received over an
external network), or methods for initializing a server. In a preferred embodiment of
the invention, the machine-readable code comprises software object code.

The code may reside in one or more of various types of signal-bearing media.
For example, the code may be embodied in a signal-bearing medium such as optical
disc 1705 shown in Figure 17. The optical disc can be any type of signal bearing
disc, for example, a CD-ROM, CD-R (a recordable CD-ROM that can be read on a
CD-ROM drive), CD-RW (multiple-write CD), CD-E (recordable and erasable CD), or
DVD (digital video disc), and typically will be a CD-ROM. Alternatively, instead of, or
in addition to an optical disc, the signal bearing medium may include one or more of
the following: a magnetic data storage diskette (floppy disk), a Zip disk, DASD

storage (e.g., a conventional "hard drive" or a RAID array), magnetic tape, RAM,

WO 01/44938 PCT/US00/33323
75

electronic read-only memory (e.g., ROM, EPROM, or EEPROM), paper punch

cards, or transmission media such as digital and/or analog communication links.

WO 01/44938 PCT/US00/33323
76

Pseudo Code

The following pseudo code describes the implementation of an illustrative
TCP/IP embodiment of the Federated OS, which includes Thunder OS and

illustrative member classes:

Receiver event loop pseudo code:

loop forever
Get next event
If event is received IP datagram
10 If the IP datagram contains a valid TCP segment
Search active connection list for match of TCP segment's IP addresses/TCP ports
If found
If connection state is Syn Received
If TCP segment has valid sequence numbers
15 If TCP reset flag is set
remove connection from active connection list
deallocate connection
Else
If TCP Syn flag is set
20 send TCP reset to client
remove connection from active connection list

deallocate connection

WO 01/44938

10

15

20

PCT/US00/33323
77

Else
If TCP acknowledge is valid
send new connection message to Dispatcher
store Dispatcher's connection ID in connection object
set connection state to Dispatcher Relay
Else
send TCP reset to client
Else
If TCP reset flag is not set
‘send TCP Ack to client
If connection state is Relay to Dispatcher
send connection ID and segment data to Dispatcher
If Dispatcher’s reply is Time Wait
remove connection from active connection list
add connection to Time Wait list
If Dispatcher's reply is Time Wait/Ack
send TCP Ack to client
remove connection from active connection list
add connection to Time Wait list
If Dispatcher's reply is Closed or Reset
remove connection from active connection list

If Dispatcher's reply is Fin Wait 2

WO 01/44938

10

15

20

PCT/US00/33323
78

set connection state to Fin Wait 2

If connection state is Fin Wait 2

If TCP segment has valid sequence numbers

Else

If TCP reset flag is set

remove connection from active connection list

deallocate connection

If TCP Syn flag is set
send TCP reset to client
remove connection from active connection list
deallocate connection
Else
If TCP acknowledge is valid
If TCP Fin flag is set or segment has new data
send TCP Ack to client
If TCP Fin flag is set
remove connection from active connection list
add connection to Time Wait list
Else

send TCP reset to client

If TCP reset flag is not set

WO 01/44938 PCT/US00/33323
79

send TCP Ack to client
Elsé (connection not found in active connection list)
If TCP segment Reset flag is clear
Search Time Wait list for match of TCP segment's IP addresses/TCP ports
5 If found
| send TCP reset to client
Else
if TCP reset flag is nof set
If TCP segment SYN flag is set and Ack flag is not set
10 Search active service list for match of destination IP address/TCP port
If service found
Allocate and initialize new connection
store service ID in connection object
set connection state to Syn Received
15 Insert new connection in active connection list
send TCP Syn/Ack to client
start retransmission timer
Else
send TCP reset to client
20 Else
send TCP reset to client

If the IP datagram contains a valid ICMP segment

WO 01/44938
80

Process ICMP segment
If event is retransmission timeout
If state of timed out connection is Syn Received
Update connection establishment timeout
5 If connection establishment time exceeded
send TCP reset to client
remove connection from active connection list
deallocate connection
Else
10 resend TCP Syn/Ack to client
restart retransmission timer for this connection
If event is Time Wait timeout
remove connection from Time Wait list
If event is service configuration message
15 Install or remove service data
If event is system status query
Reply with system and specific service status
If event is system reboot message
Load and run new system executable code
20 If event is system shutdown message

Halt processor

PCT/US00/33323

WO 01/44938 PCT/US00/33323
81

Dispatcher event loop pseudo code:

loop forever
Get next event
5 If event is received new connection message
allocate new connection
initialize new connection with TCP segment info and service ID from received message
send reply with connection ID to receiver
If TCP Fin flag is set
10 set connection state to Close Wait
Else
set connection state to Established
send data from TCP segment to service referenced in connection message
set connection's response ID to value returned by service
15 send message to Responder to send TCP ack and optional resp;)nse data to client
start retransmission timer
If event is received segment for existing connection message
update connection info from message data
If TCP Reset flag is set
20 send Closed reply to Receiver
deallocate connection

Else

WO 01/44938 PCT/US00/33323
82

If TCP Syn flag is set
send Reset reply to Receiver
deallocate connection
_ Else
5 If TCP segment has invalid sequence numbers
send message to Responder to send TCP ack to client
Else
If TCP Ack flag is set
stop retransmission timer for acknowledged data
10 If connection state is Established
send new data from TCP segment to response referenced by response ID
If clients receive window has available space
send message to Responder to send TCP ack and additional response dat
Else
15 If new data was received
send message to Responder to send TCP ack to client
If Fin has been sent by the responder and acknowledged by the client
If TCP Fin flag is set
send Time Wait/Ack reply to Receiver
20 deallocate connection
Else

send Fin Wait 2 reply to Receiver

WO 01/44938

10

15

20

PCT/US00/33323
83

deallocate connection
If Fin has been sent by Responder but not acknowledged
If TCP Fin flag is set
set connection state to Closing
Else
set connection state to Fin Wait 1
If Fin has not been sent by Responder and TCP Fin flag is set
set connection state to Close Wait
If connection state is Close Wait
send new data from TCP segment to response referenced by response ID
If clients receive window has available space
send message to Responder to send TCP ack and additional response d:
if Fin has been sent by Responder
set connection state to Last Ack
If connection state is Closing
If Fin has been sent by the responder and acknowledged by the client
send Time Wait reply to Receiver
deallocate connection
If connection state is Fin Wait 1
send new data from TCP segment to response referenced by response ID
If Fin has been sent by the responder and acknowledged by the diient
If TCP Fin flag is set

WO 01/44938 PCT/US00/33323
84

send Time Wait/Ack reply to Receiver
deallocate connection
Else
If new data was received
5 send message to Responder to send TCP ack to client
If response accepts further data
set connection state to Fin Wait 2
Else
send Fin Wait 2 reply to Receiver
10 deallocate connection
Else
If TCP Fin flag is set
set connection state to Closing
If connection state is Fin Wait 2
15 send new data from TCP segment to response referenced by response D
If TCP Fin flag is set
send Time Wait/Ack reply to Receiver
deallocate connection
Else
20 If new data was received
send message to Responder to send TCP ack to client

If connection state is Last Ack

WO 01/44938 PCT/US00/33323
85

Iif Fin has been sent by the responder and acknowledged by the dient
send Closed reply to Receiver
deallocate connection
If event is retransmission timeout
5 send Resend Packet message to Responder
restart retransmission timer for this connection
if event is service configuration message
Install or remove service data
If event is system status query
10 Reply with system and specific service status
If event is system reboot message
Load and run new system executable code
if event is system shutdown message
Halt processor
15
It will be apparent to persons skilled in the art that various changes and

madifications can be made to the illustrative embodiments of the invention described

herein without departing from the scope of the invention as defined by the claims.

20 What is claimed is:

WO 01/44938 PCT/US00/33323

10

15

86

CLAIMS

1. A digital computer system, comprising:

a first CPU running a first operating system;

a first internal network interface coupled to the first CPU, the first network
interface for coupling to an internal network;

a second CPU running a second operating system;

a second internal network interface coupled to the second CPU, the second
network interface for coupling to the internal network; and

wherein the first and second operating systems have different characteristics

and common characteristics.

2. The digital computer system of claim 1 wherein some state information
concerning a TCP connection is maintained by the first operating system, and some

state information concerning the TCP connection is maintained by the second

operating system.

3. The digital computer system of claim 2 where the first operating system and the

second operating system collectively service at least one common IP address.

WO 01/44938 PCT/US00/33323
87

4. The digital computer system of claim 1 further comprising:
a third CPU running a third operating system;
a third internal network interface coupled to the third CPU, the third network
interface for coupling to the internal network; and
5 wherein the first, second, and third operating systems have different

characteristics and common characteristics.

5. The digital computer system of claim 4 wherein:
the first operating system is a receiver operating system;
10 the second operating system is a responder operating system;
the third operating system is a dispatcher operating system; and
the first, second, and third operating systems have common characteristics

inherited from a common parent.

15 6. The digital computer system of claim 4 further comprising:
a first external network interface coupled to the first CPU; and

a second external network interface coupled to the second CPU.

7. The digital computer system of claim 6 where the first operating system and the

20 second operating system collectively service at least one common IP address.

WO 01/44938 PCT/US00/33323

10

15

20

88

8. The digital computer system of claim 4 further comprising the internal network,
and wherein the internal network is coupled to the first, second, and third internal

network interfaces.

9. The digital computer system of claim 4 wherein some state information
concerning a TCP connection is maintained by the first operating system, and some

state information concerning the TCP connection is maintained by the third operating

system.

10. The digital computer system of claim 9 wherein:
the first operating system is configured at least to look up IP addresses and TCP
ports, and to establish TCP connections;
the second operating system is configured at least to send response data; and
the third operating system is configured at least to maintain connection state

information, and to determine what response to send.

11. A server, comprising:
a first member hardware unit having a first member hardware unit memory
containing a first operating system, the first member hardware unit having an internal

network interface for coupling to an internal network;

WO 01/44938 PCT/US00/33323
89

a second member hardware unit having a second member hardware unit
memory containing a second operating system, the second member hardware unit
having an internal network interface for coupling to the internal network; and

wherein the first and second operating systems have some different

5 characteristics.

12. The server of claim 11 wherein some state information concerning a TCP
connection is maintained on the first member hardware unit, and some state

information concerning the TCP connection is maintained on the second hardware

10 unit.

13. The server of claim 11 wherein:

the first operating system has characteristics of at least a receiver operating

system,

15 the second operating system has characteristics of at least a responder

operating system;

the first member hardware unit has an external network interface for coupling to

an external network; and

the second member hardware unit has an external network interface for coupling

20 to the external network.

WO 01/44938 PCT/US00/33323

10

15

20

90

14. The server of claim 11 where the first operating system and the second

operating system collectively service at least one common IP address.

15. The server of claim 11 further comprising the internal network, and wherein the
internal network is coupled to the internal network interfaces of the first and second

member hardware units.

16. The server of claim 11 further comprising:

a third member hardware unit having a third member hardware unit memory
containing a third operating system, the third member hardware unit having an
internal network interface for coupling to the internal network; and

wherein the first, second and third operating systems have some different

characteristics.

17. The server of claim 16 wherein some state information concerning a TCP
connection is maintained on the first member hardware unit, and some state

information concerning the TCP connection is maintained on the third hardware unit.

18. The server of claim 16 wherein a real time TCP/IP state machine is collectively

implemented on a plurality of the member hardware units.

WO 01/44938 PCT/US00/33323

10

15

20

91

19. The server of claim 16 wherein state information concerning a TCP connection
is maintained on the first member hardware unit and the third member hardware
unit, and wherein at least some of the state information maintained on the first

member hardware unit is different than the state information maintained on the third

member hardware unit.

20. The server of claim 19 wherein:

the first operating system is configured at least to look up IP addresses and TCP
ports, and to establish TCP connections;

the second operating system is configured at least to send response data; and

the third operating system is configured at least to maintain connection state

information, and to determine what response to send.

21. The server of claim 20 where the first operating system and the second

operating system collectively service at least one common IP address.

22. The server of claim 19 wherein:
the first operating system is a receiver operating system;
the second operating system is a responder operating system;

the third operating system is a dispatcher operating system;

WO 01/44938 PCT/US00/33323

10

15

92

the first member hardware unit has an external network interface for coupling to

an external network; and

the second member hardware unit has an external network interface for coupling

to the external network.

23. The server of claim 19 wherein the first, second, and third operating systems

have common characteristics inherited from a common parent.

24. The server of claim 23 further comprising the internal network, and wherein the
internal network is coupled to the internal network interfaces of the first, second, and

third member hardware units.

25. The server of claim 23 wherein the external network interface of the first member
hardware unit and the external network interface of the second member hardware
unit are coupled to the external network at different locations on the external

network.

26. The server of claim 23 wherein at least one external network interface is coupled

directly to the Internet backbone.

WO 01/44938 PCT/US00/33323
93

27. The server of claim 23 wherein:
the first operating system includes a portion of an HTTP server;
the second operating system includes a portion of an HTTP server; and

the third operating system includes a portion of an HTTP server.

28. The server of claim 27" wherein the portions of the HTTP server in the first,

second, and third operating systems together make up an HTTP server.

29. The server of claim 23 wherein:
10 the first operating system includes a portion of an FTP server;
the second operating system includes a portion of an FTP server;
the third operating system includes a portion of an FTP server; and
the portions of the FTP server in the first, second, and third operating systems
together make up an FTP server.
15
30. The server of claim 23 wherein:
the first member hardware unit memory includes first member hardware unit
memory ROM containing a bootable member;
the second member hardware unit memory includes second member hardware

20 unit memory ROM containing a bootable member; and

WO 01/44938 PCT/US00/33323

10

15

20

9

the third member hardware unit memory includes third member hardware unit

memory ROM containing a bootable member.

31. The server of claim 23 wherein:

the first member hardware unit includes at least one first member hardware unit
CPU;
the first member hardware unit memory includes first member hardware unit

memory RAM;

the second member hardware unit includes at least one second member

hardware unit CPU,

the second member hardware unit memory includes second member hardware

unit memory RAM,

the third member hardware unit includes at least one third member hardware

unit CPU; and

the third member hardware unit memory includes third member hardware unit

memory RAM.

32. The server of claim 23 wherein the first member hardware unit accomplishes IP

address lookups in real time.

WO 01/44938 PCT/US00/33323

10

15

20

95

33. The server of claim 32 wherein the first member hardware unit uses an IP

address lookup search algorithm that uses a Trie data structure.

34. The server of claim 32 wherein the third member hardware unit accomplishes

host name lookups in real time.

35. The server of claim 23 wherein the member hardware units process requests

from clients in real time.

36. The server of claim 23 wherein at least one member hardware unit runs a non

real time layer and a real time layer.

37. The server of claim 23 wherein at least one member hardware unit is located in

a different enclosure than at least one other member hardware unit.

38. The server of claim 23 wherein at least one member hardware unit is located at

least 1 kilometer from at least one other member hardware unit.

39. A server, comprising:

at least one receiver member having an internal network interface for coupling to

an internal network;

WO 01/44938 PCT/US00/33323

10

15

20

9

at least one dispatcher member having an internal network interface for coupling
to the internal network; and
at least one responder member having an internal network interface for coupling

to the internal network.

40. The server of claim 39 wherein:

the at least one receiver member has an external network interface for coupling
to an external network; and

the at least one responder member has an external network interface for

coupling to the external network.

41. The server of claim 40 wherein state information concerning a TCP connection
is maintained by the receiver member and the dispatcher member, and wherein at
least some of the state information maintained on the receiver member is different

than the state information maintained on the dispatcher member.

42. The server of claim 41 wherein one of the at least one receiver member, at least
one dispatcher member, and at least one responder member collectively service at

least one common |P address.

WO 01/44938 PCT/US00/33323

10

15

97

43. The server of claim 42 further comprising the internal network, and wherein the
internal network is coupled to the internal network interface of the at least one
receiver member, the internal network interface of the at least one dispatcher

member, and the internal network interface of the at least one responder member.

44. The server of claim 42 wherein:

the at least one receiver member has memory containing a receiver operating
system;

the at least one dispatcher member has memory containing a dispatcher
operating system;

the at least one responder member has memory containing a responder
operating system; and

wherein the receiver operating system, the dispatcher operating system, and the
responder operating system are different operating systems having at least some

different characteristics.

45. The server of claim 44 wherein the receiver operating system, the dispatcher
operating system, and the responder operating system have some common

characteristics inherited from a common proto member.

WO 01/44938 PCT/US00/33323
98

46. The server of claim 42 wherein:

the at least one receiver member memory includes ROM containing a receiver

member bootable member;

the at least one dispatcher member memory includes ROM containing a

5 dispatcher member bootable member; and

the at least one responder member memory includes ROM containing a

responder member bootable member.

47. The server of claim 46 wherein a TCP/IP state machine is collectively

10 implemented on a plurality of members.

48. The server of claim 47 wherein the TCP/IP state machine is real time.

49. The server of claim 47 wherein:
15 the at least one receiver member includes RAM and at least one-CPU;
the at least one dispatcher member includes RAM and at least one CPU; and

the at least one responder member includes RAM and at least one CPU.

50. The server of claim 47 wherein the at least one receiver member accomplishes

20 IP address lookups in real time.

WO 01/44938 PCT/US00/33323

10

15

20

99

51. The server of claim 50 wherein the at least one receiver member uses a Trie

data structure in its IP address lookup search algorithm.

52. The server of claim 50 wherein at least one member runs a non real time layer

and a real time layer.

53. The server of claim 47 wherein at least one responder member is located in a

different enclosure than at least one receiver member.

54. The server of claim 47 wherein at least one responder member is located at

least one kilometer away from at least one receiver member.

55. The server of claim 47 wherein the external network interfaces of at least one
responder member and at least one receiver member are coupled to the external

network at different locations on the external network that are separated by at least

one kilometer.

56. The server of claim 47 wherein the external network interfaces of at least two

responder members are coupled to the external network at different locations on the

external network.

10

15

20

WO 01/44938 PCT/US00/33323
100

57. The server of claim 47 wherein the external network interface of at least one

member is coupled directly to the Internet backbone.

58. The server of claim 47 wherein different portions of an HTTP server are

implemented in a plurality of different member operating systems.

59. The server of claim 47 wherein different portions of an FTP server are

implemented in a plurality of different member operating systems.

60. The server of claim 47 further comprising at least one configurator member

having an internal network interface for coupling to the internal network.

61. The server of claim 47 further comprising at least one guardian member having

an internal network interface for coupling to the internal network.

62. The server of claim 47 further comprising at least one persistent storage

member having an internal network interface for coupling to the internal network.

63. The server of claim 47 further comprising at least one decoder member having

an internal network interface for coupling to the internal network.

WO 01/44938 PCT/US00/33323

10

15

20

101

64. The server of claim 47 further comprising at least one system administrator

notifier member having an internal network interface for coupling to the internal

network.

65. A server, comprising at least three member hardware units, each member
hardware unit having an internal network interface for coupling to an internal network
and an external network interface for coupling to an external network, each member
hardware unit having memory containing an operating system, wherein at least one
of the operating systems is a receiver operating system, at least one of the operating
systems is a dispatcher operating system, and at least one of the operating systems

is a responder operating system.

66. The server of claim 65 wherein state information concerning a TCP connection
is maintained on at least two member hardware units, and wherein at least some of
the state information maintained on the at least two member hardware units is

different.

67. The server of claim 65 wherein:
the memory of each member hardware unit includes ROM containing a

respective bootable member,

the memory of each member hardware unit includes RAM; and

WO 01/44938 PCT/US00/33323

10

15

102

each member hardware unit has at least one CPU.

68. The server of claim 65 further comprising the internal network, wherein the

internal network is coupled to the internal network interface of each member

hardware unit.

69. The server of claim 65, wherein the operating systems process requests from
clients in real time, and wherein at least one receiver operating system uses a Trie

data structure in its IP address lookup search algorithm.

70. The server of claim 65 wherein a receiver operating system and a responder

operating system collectively service at least one common IP address.

71. The server of claim 65 wherein the operating systems of at least three of the

members have some common characteristics inherited from a common proto

member.

72. The server of claim 65 wherein the operating system of at least one member

implements a non real time layer and a real time layer.

WO 01/44938 PCT/US00/33323

10

15

20

103

73. A server comprising:

at least one CPU running a plurality of processes including at least one receiver
process, and at least one responder process;

a memory coupled to the at least one CPU;

a plurality of external network interfaces coupled to the CPU; and

wherein each receiver process is associated with at least one corresponding
external network interface, and each responder process is associated with at least
one corresponding external network interface, and wherein one of the at least one
receiver process and at least one corresponding responder process collectively

service at least one common |P address.

74. The server of claim 73 wherein a TCP/IP state machine is distributed across at

least two of the processes.

75. The server of claim 73 wherein the processes process requests from clients in’

real time.

76. The server of claim 73 wherein the server includes a real time layer and a non

real time layer.

WO 01/44938 PCT/US00/33323
104 :

77. The server of claim 73 wherein a receiver process and a plurality of responder

processes collectively service at least one common IP address.

78. The server of claim 73 wherein the at least one CPU also runs at least one

5 dispatcher process.

79. The server of claim 78 wherein a TCP/IP state machine is distributed across at

least two of the processes.

10 80. The server of claim 78 wherein state information concerning a TCP connection
is maintained by at least one receiver process and at least one dispatcher process,
and wherein at least some of the state information maintained by the at least one
receiver process is different than the state information maintained by the at least one
dispatcher process.

15

81. The server of claim 78 wherein the processes process requests from clients in

real time.

82. The server of claim 78 wherein the server includes a real time layer and a non

20 real time layer.

WO 01/44938 PCT/US00/33323

10

15

20

105

83. The server of claim 78 wherein a receiver process, at least one dispatcher
process, and a plurality of responder processes collectively service at least one

common [P address.

84. A server comprising:

at least one CPU running a plurality of threads including at least one receiver
thread, and at least one responder thread;

a memory coupled to the at least one CPU;

a plurality of external network interfaces coupled to the CPU; and

wherein each receiver thread is associated with at least one corresponding
external network interface, and each responder thread is associated with at least
one corresponding external network interface, and wherein one of the at least one
receiver thread and at least one corresponding responder thread collectively service

at least one common P address.

85. The server of claim 84 wherein a TCP/IP state machine is distributed across at

least two of the threads.

86. The server of claim 84 wherein the threads process requests from clients in real

time.

WO 01/44938 PCT/US00/33323

10

15

20

106

87. The server of claim 84 wherein the server includes a real time layer and a non

real time layer.

88. The server of claim 84 wherein a receiver thread and a plurality of responder

threads collectively service at least one common IP address.

~,

89. The server of claim 84 wherein the at least one CPU also runs at least one

dispatcher thread.

90. The server of claim 89 wherein a TCP/IP state machine is distributed across at

least two of the threads.

91. The server of claim 89 wherein state information concerning a TCP connection
is maintained by at least one receiver thread and at least one dispatcher thread, and
wherein at least some of the state information maintained by the at least one '

receiver thread is different than the state information maintained by the at least one

dispatcher thread.

92. The server of claim 89 wherein the threads process requests from clients in real

time.

WO 01/44938 PCT/US00/33323

10

15

20

107

93. The server of claim 89 wherein the server includes a real time layer and a non

real time layer.

94. The server of claim 89 wherein a receiver thread, at least one dispatcher thread,
and a plurality of responder threads collectively service at least one common iP

address.

95. A method for responding to a request received over an external network,
comprising:

using a first operating system to receive a request over the external network;

using the first operating system to lookup an IP address and TCP port received
over the external network;

identifying a second operating system associated with the IP address and TCP
port found in the lookup;

passing request data from the first operating system to a second operating
systeh;

using the first and second operating systems to maintain state information;

using the second operating system to identify response data and a
corresponding third operating system;

using the second operating system to send a message that identifies the

response data and instructs a third operating system to transmit the response data;

WO 01/44938 PCT/US00/33323

10

15

20

108

using the third operating system to transmit the response data over the external

network; and _

wherein the first, second, and third operating systems are different operating

systems.

96. The method of claim 95 further comprising using the first operating system to

establish a TCP connection.

97. The method of claim 95 further comprising:
using the first operating system to extract an HTTP header from a message

received over the external network, and to send a message including the HTTP

header.

98. A method for responding to a request received over an external network,
comprising:

running at least a receiver operating system on a first member hardware unit;

running at least a responder operating systeh on a second member hardware
unit;

receiving, with the first member hardware unit, a request transmitted over the

external network;

WO 01/44938 PCT/US00/33323

10

15

20

109

sending over the internal network, a message from the first member hardware

unit to the second member hardware unit; and

transmitting response data over the external network from the second hardware

unit.

99. The method of claim 98 wherein the request includes an HTTP header.

100. The method of claim 99 further comprising identifying the correct response

to the request.

101. The method of claim 100 further comprising conducting an |P address

lookup in real time.

102. The method of claim 101 wherein the request is processed in real time.

103. The method of claim 102 further comprising running different portions of an

HTTP server on the receiver operating system and the responder operating system.

104. A method for responding to a request received over an external network,

comprising:

running a receiver operating system on a first member hardware unit;

WO 01/44938 PCT/US00/33323

10

15

20

110

running a dispatcher operating system on a second member hardware unit;

running a responder operating system on a third member hardware unit;

receiving, with the first member hardware unit, a request transmitted over the
external network;

sending over an internal network, to the second member hardware unit, request
data received by the first member hardware unit;

sending over the internal network, to the third member hardware unit, a
message from the second member hardware unit instructing the third member
hardware unit to transmit some response data over the external network; and

transmitting response data over the external network from the third hardware

unit.

105. The method of claim 104 wherein the request data includes an HTTP

header.

106. The method of claim 105 further comprising:

identifying, with the second member hardware unit, the correct response to the
request;

identifying, with the second member hardware unit, the third member hardware
unit that has the correct response data out of a plﬁrality of member hardware units

having response data, and sending to the third member hardware unit the message

WO 01/44938 PCT/US00/33323

10

15

20

111

instructing the third member hardware unit to transmit some response data over the

external network; and
transmitting, information identifying the unique instance of the response
associated with the connection, and information indicating the size of the response

data, from the third member hardware unit to the second member hardware unit over

the internal network.

107. The method of claim 106 further comprising monitoring, with a guardian

member, the condition of at least one member.

108. The method of claim 107 further comprising changing the functionality of a

member from one member class to another member class.

109. The method of claim 107 wherein requests are processed in real time.

110. The method of claim 109 wherein |P address lookups are accomplished in

real time.

111. The method of claim 110 further comprising providing a non real time

operating environment as a task of a real time operating environment.

WO 01/44938 PCT/US00/33323
112

112. The method of claim 111 further comprising running different portions of an

HTTP server on different operating systems of the plurality of the operating systems.

113. The method of claim 112 further comprising:
5 looking up an IP address and TCP port contained in the request to determine if
they correspond with an existing connection;
establishing a connection with a requesting client if a connection is not already
established;
allocating a data structure in the second member hardware unit, to hold state
10 information regarding the connection;
transmitting a connection identifier from the second member hardware unit to the
first member hardware unit; and
allocating a data structure in the first member hardware unit, to hold étate
information regarding the connection.
15
114. The method of claim 113 further comprising:
receiving, with the first member hardware unit, an acknowledgment from a client;
determining, with the second member hardware unit, that all of the response

data has been acknowledged by the client;

WO 01/44938 PCT/US00/33323
113

sending a message, over the internal network, from the second member
hardware unit to the first member hardware unit, informing'the first member
hardware unit that a connection is to be closed;
sending a message, over the internal network, from the second member
5 hardware unit to the third member hardware unit, informing the third member
hardware unit that the unique instance for the response for the connection is no
longer needed,; |
deallocating a data structure in the second member hardware unit containing
state information for the subject connection with the client; and
10 closing the connection and deallocating, in the first member hardware unit, a

data structure containing state information for the connection.

115. The method of claim 114 further comprising configuring a server by:
assigning a receiver member class to at least one member hardware unit;
15 assigning a dispatcher member class to at least one member hardware unit; and

assigning a responder member class to at least one member hardware unit.

116. A method for initializing a server, comprising:
defining a plurality of members by assigning an operating system member class

20 to each of a plurality of member hardware units, the assigned operating system

WO 01/44938 PCT/US00/33323

10

15

20

114

member classes including at least one receiver member, and at least one responder
member;

downloading operating system executable code to each member;

defining at least one TCP port and at least one IP address for each receiver

member to accept connections on,

associating a receiver member and at least one other member with at least one
connection;

determining a service to associate with at least one IP address/TCP port pair;

determining which host names to accept requests for;

loading response data onto at least one responder member; and

updating a corresponding data structure used to lookup responses, with the

identity and location of the response data in the at least one responder member.

117. A method for initializing a server, comprising:

defining a plurality of members by assigning an operating system member class
to each of a plurality of member hardware units, the assigned operating system
member classes including at least one receiver member, at least one dispatcher
member, and at least one responder member;

downloading operating system executable code to each member;

defining at least one TCP port and at least one IP address for each receiver

member to accept connections on;

WO 01/44938 PCT/US00/33323

10

15

20

115

informing each receiver member of at least one dispatcher member to associate
with at least one connection;

informing at least one dispatcher member of a service to associate with at least
one IP address/TCP port pair;

informing at least one dispatcher member of which host names to accept HTTP
requests for;

loading response data onto at least one responder member;

informing at least one dispatcher member of the identity and location of the data
in at least one responder member, and

updating a corresponding dispatcher member data structure used to lookup

responses, with the identity and location of the data in the at least one responder

member.

118. A signal bearing medium tangibly embodying machine-readable code
executable by a digital processing apparatus for implementing a distributed server,
the code comprising:

at least a receiver operating system,

at least a responder operating system; and

wherein the receiver and responder operating systems are configured to

communicate with each other over an internal network.

WO 01/44938 PCT/US00/33323
116

119. A signal bearing medium tangibly embodying machine-readable code
executable by a digital processing apparatus for implementing a distributed server,
the code comprising:
a receiver operating system;
5 a dispatcher operating system;
a responder operating system; and
wherein the receiver, dispatcher, and responder operating systems are

configured to communicate with each other over an internal network.

10 120. The signal bearing medium of claim 119 wherein the receiver operating
system, the dispatcher operating system, and the responder operating system are
different operating systems having at least some different characteristics, and
wherein the receiver operating system, the dispatcher operating system, and the
responder operating system have some common characteristics inherited from a

15 common proto member.

121. The signal bearing medium of claim 119 wherein the operating systems are

configured to process requests from clients in real time.

WO 01/44938 PCT/US00/33323

10

15

117

122. The signal bearing medium of claim 119 wherein at least one receiver

operating system uses a Trie data structure in an |P address lookup search

algorithm.

123. The signal bearing medium of claim 119 wherein at least one operating

system includes a non real time layer and a real time layer.

124. The signal bearing medium of claim 119 wherein different portions of an
HTTP server are implemented in a plurality of the operating systems, such that an

entire HTTP server is implemented across a plurality of the operating systems.

125. The signal bearing medium of claim 119 wherein a real time TCP/IP state
machine is distributed across the receiver operating system and the dispatcher

operating system.

126. The signal bearing medium of claim 119 further comprising:
at least one configurator operating system;
at least one guardian operating system;

at least one persistent storage member operating system; and

WO 01/44938 PCT/US00/33323

10

15

20

118

wherein the receiver, dispatcher, responder, configurator, guardian, and

persistent storage operating systems are configured to communicate with each other

over the internal network.

127. The signal bearing medium of claim 126 further comprising:

at least one decoder operating system;

at least one system administrator notifier operating system; and

wherein the receiver, dispatcher, responder, configurator, guardian, persistent
storage, decoder, and system administrator notifier operating systems are

configured to communicate with each other over the internal network.

128. A signal bearing medium tangibly embodying a program of machine-
readable instructions executable by a digital processing apparatus to perform a
method for responding to a request received over an external network, the method
comprising: |

using at least a receiver operating system to lookup an IP address and TCP port
received over the external network;

identifying response data;

using at least a responder operating system to transmit the response data over

the external network; and

WO 01/44938 PCT/US00/33323

10

15

20

119

wherein the receiver and responder operating systems are different operating

systems.

129. A signal bearing medium tangibly embodying a program of machine-
readable instructions executable by a digital processing apparatus to perform a
method for responding to a request received over an external network, the method
comprising:

using a receiver operating system to lookup an IP address and TCP port
received over the external network;

passing request data from the receiver operating system to a dispatcher
operating system;

using the dispatcher operating system to identify response data;

using the dispatcher operating system to send a message identifying the
response data;

using a responder operating system to transrnit the response data over the
external network; and

wherein the receiver, dispatcher, and responder operating systems are different

operating systems.

130. The signal bearing medium of claim 129, the method further comprising

using the receiver operating system to establish a TCP connection.

WO 01/44938 PCT/US00/33323

10

15

20

120

131. The signal bearing medium of claim 129, the method further comprising

using the receiver operating system to receive a request over the external network.

132. The signal bearing medium of claim 129, the method further comprising
using the receiver operating system and the dispatcher operating system to maintain

state information.

133. The signal bearing medium of claim 129, the method further comprising

monitoring, with a guardian operating system, the condition of at least one member.

134. The signal bearing medium of claim 129, wherein the operating systems

process requests in real time.

135. The signal bearing medium of claim 129, the method further comprising

using a Trie data structure in an IP address lookup search algorithm in the receiver

operating system.

136. The signal bearing medium of claim 129, the method further comprising

providing a non real time operating environment as a task of at least one of the

operating systems.

WO 01/44938

110a

1/26

PCT/US00/33323

105
— \ L~ 115
125 RAME—"cpU
130 —4 RAME ;CPU — 120
105a ///
165a 110b 7
FIG. 1A
_ 155
180 — —187
s 175a-_. ——"'_'-175b
160 L__lTl{_ms
165b N3
s’ FIG. 1B FIG. 1C
215
EROM EXTERNAL 205 70
EXTERNAL NETWORK / EXTERNAL
NETWORK NETWORK
230 oac 240 250 260 rtn I_f_‘ 'j_‘
L 202320 245 R0 g5 KO0 220
| M- | J l__lJ
R|D|c|a]|P S A |D|R R|IR|R
E|l lo|ulES|YD |E|OM E|E|E
225~ c|s(N|A|[RT|SM |c|ua s|s]|s
E|lPIFIR|lso]lT 1 [olTN PlP|P
I{All |p|]1 R|EN|D]|I A o|lolo
VTG |1 |SA|M g EING N|N|N
ElclulAalT® o |R|6GE D|D]|D
RIHIR|NI|EE T E R E|E|E
E|A N | N R|R|[R
RIT T r T
0 |
R E
R
INTERNAL NETWORK
210 -

FIG. 2

PCT/US00/33323

WO 01/44938

2/26

AYOML3N
TVYNY3LX3
OL—

¢ "old

SLE

oce

/

S0€ /

00€

N\

ddvOdAdX \

—

AN

V4

7

HOLINOW

2

PCT/US00/33323

WO 01/44938

3/26

V¥ "Old (juswipoqus dl/doL Ul) AJeAnep Djop |IDR-

Sty —

(juewipoquia dl/dol W) AseAnep Dyop dIIH-

juswebouvw Dp}Op 21D}S-
uoypatd DIPP SlWDUAp-
1laqualy Japuodsay

juaweboubW UO|SSAS IDW-

(juswipoqwa dl/dJL ui) juawaboupw uojsses dlLH-
uolypoo)jp @8sinosay-

0zy —1 1Jaquiay Jayosiondsiq

juawaboupw
uoj}oeuuod uoloonddy-
(juswipoque d]/dOoL ul)-suoloeuuos aAlssod di/doL-

:Jaquiajy JaAladay
1% \

oLy —

apoo o9ads-nNdo-
:Jaquap ajqojoog

\v

suopouny Ayn-
juaweboubw AJowsw-
uoJ}POJUNWWOD
laquajy-0}-Jaquap-
SsD|o }jusiond-

S07 — Jaquisy ojodd

-AyoJpJialH Jaquep-
2Jn}oajlyoly walsAs buyoisadg pejpiapa

PCT/US00/33323

WO 01/44938

4/26

gy "Old

(Hqobi6-i3inw '6'8) uolosuuod iomisu |ouoljdp -

(Aoua}p)-MmO)

‘6'a '31qobI6-1)nw °6'8) }oeuu0ss8lY]

(MO}} DIDP 8}DOIPUl SMOJIID) YJOM}eN dI/dIl ~————— -

mm.?J 067 .\om«
upipiong
Jepuodsay 84T
wioisrsiad 87
N : Jaalas
AN l_rl ~:2m_mumm _ asvqp}oQg
(oepoo15S°ba 1PU19X3
_. 19posag _, 0L7 IEEM‘
__“ , 18pooe(
1
TRV upjpiong |—S9Y
NG.\ —_ _\
o~
__ Ny
,__ \ ,_ Jayoyodsiq ~——0SY
o\
II \ Jayojodsig
(o) S |
.,
Lll‘ FEYNERLW Jojoinbijuon
Ew:o _ _ .

S67

A —\
g Vo

077

0gy—

WO 01/44938

FROM EXTERNAL
NETWORK - 535

#

5/26

TO EXTERNAL
NETWORK

-

PCT/US00/33323

TO EXTERNAL 505

]

NETWORK /

=N

225

DM<—momo[]

DIMITO—-AP>TWNTO

SEATTLE

,— 530

515 —

xmozovmmx[

2MOZOTK»mMMDO

NEW
YORK

520

—525

ADMOZOoOVumao
TTMOZOTVuvmMMD

T0

A
=<
o

INTERNAL NETWORK (SONET)

~ 510

FIG. S

BAckBONE — 620

!

INTERNET

605—=

610—

IMIO—-4A>»TTWNVN—0O

:omozo-umm:a[]——-

L— 615

FIG. 6

PCT/US00/33323

WO 01/44938

6/26

IN3ITD

094

L "9l

0LL
(aNoENIvE

084 ———_,

=

—~—— S7.

oz

0€L

S¢L

1SS

\

////:||mmh

WO 01/44938 PCT/US00/33323
7/26

805

FIG. 8

PCT/US00/33323

WO 01/44938

8/26

juawebouow
uojssas SS-
Jaquwaly Japooe(q/Japoou]

816~
Jaquap
Jabouopy
8Z6—1 llomed) 4

‘wa)sAs a8jbuis b so
ajoijado o0} sisequaw
jusn}isuod jo }8s

Jdiamod |

98X
abow| jooq mau v jo

azIs pIOM-
— Bujiepio 8}Ag-

Bujuuns puo buipoo-

apoo 9oyivads Ndo-
Jaqual ajqvjoog |

806 - #

shosuaboisjay v smo|p
Aysipialy Jaquaw

(9397105 v epoalun)
|odinau bujpoouy abonbup-

pejuali0-}29[qo 8yl | suopoUNWWOD JaqUSK-0}-18qWs

*84N}o8}YoIy
wLWwejsAs Bujoiedp

peibsepe4 o buisn
ning st Sodepunyy

suoljouny Aynn-
Bupiojluow yyoay jes-
juawebouply AJowep-
iJaqwal o0j04d

v—

906 ~

¢v6e "old
Ive °9ld

vé °*Old

SN e

7

J
(xnuj7'spoDW'6 8)

89DJ4aju] SO B8Wl}-]paIuUoN

(218’7108 V'apooiun)

Jpaynau Bujposuz ebonbuv--

89DJJ8JU] BU|YOIDW /UDN-

uojjpinbyyuoy weysAs-

laqualy Jojpinbyuon

wo” |

<06

_
S]
WA |
JSUIIAW
j000304d Bulbossep-
saJnjonJ}s pjop abossep-
80DJJBJU] MJOM}BN |DUJB}U]-
8|Npo| >JOM]}aN |DPuUJlB}Y]
—

PCT/US00/33323

WO 01/44938

9/26

(stavjos 'xnu '68)

aopjJejul bulbossaw J9hvp] awij-|D3JUON-
Bunnpayos J4ado) awi}-]paJuonN-

uoisn|ou} 8|NpPoN

—— ——— —

Jaqua|p awj|pay

1

| Jaquiajy 8wlj|peJuoN]

)

— T)
uo|jpasd DJDP SJWDUAQ- - pajpjjup}su] }oN-
laqua Jepuodsay olwoukg dollepuny aoupjleyu] [Jaquiely 3oDYSQY | | oInpojy uowwo))
9Z6 < 1Koy
AleAljep DJOP |IDW-
Kiaallep o}op dld- juswaboubuw
KJaAnep ©}op dllH- Uo|}28uuod uo}poyddy- .
juswabouow bjop 2iD}S-| | suolosuuos aajssod di/dol- Z¢vé "Old
equap Japuodsey sip}S doliepuny|| |Jequisly JaAl808Yy 4D Jepunyy
926 — h/ 443
WLV | 016
FETEIE] _)
FEUAR el N .eé.m.v_wm
(s3%00d dOL |[Ta3e W d 14 dLLH) o} ‘B'e
puD d] jOo uopvieuab Buliojiuop pJoH ‘b8)
juswaboup)y 89ojAseS- Do 89D} J8}u]
pup bujsiod '6'e) uswaboup yhreH 5
sa)qp} Bupnoy dd _ i W weysAg-{|@21AaQq 8bvi0}S-
dl Uiojupp-| }doddns 1050404d MDY uo|}o8UU0) B8A}}oY- Jaquiey
Jaquap 83DjJaju] XJOM}BN |PUJIBIXT~ Jaquajy Jayosjodsig Jaquap abouoys
Jabouppy Buynoy| | Jequep JomjeN |puseix3 daldepunyy upjpiong juajsisiad

= NN S~

PCT/US00/33323

WO 01/44938

10/26

¥JOM}aN |DUJa}XT

99D}4a}y]
3JoM}aN

g6 'Old
MJOM}BN |oulaju]

|

99D }J3}U]
3IoM}aN

Jowt)

sasuodsay pup
sabossap wa}sAs

sjnoawy)
buibossep

pUD S}UdA3
Jawy] ojpolad

buibossep

co:u._:mzcg\

JeppoO] j}00q puD
uopoinbByuoy apoN

\\ﬂwﬁiw

806

puo buliojiuop
SN}p}S pPuUvL Yi|o8H

BuyJoday

Jaqualy ajgojoog SQ48punyl

o6 "Old

MJOM}BN |DuU4a}XT MJOM}aN |DUdaY]

PCT/US00/33323

WO 01/44938

11/26

89DJJajuy[89D} J8}u[Joull
sdom}aN JHHomieN H
Alquasspay
\ juswboig d
sjaxoRd dol
jusi) 03} Jaalaesg s}axopd
/ 4oL leAles oNyue|I synoow |
senanp sasuodsay pup Buibossep
jnoaw|} e Jaysjodsig o}) sebossa|y wa}sAs pup sjueAl
- se6DUDW UO}}28UU0D)8y / Jawil dlpoiad
mcozomccoo\\\ dl/do1 dJ8Aledey uoj}oauuo)
HOM-8W|] T
SjuaAe Jawy d)l1 pup ojul jexond dJ buibossep
}J0d pub Ssalppd
VTR
SUOI}D8UUC] BARDY dl/dJLl J8Aled8Yy Jaalag
(}dod puvp ssaippp uolpinbjyuo)
dl/dJL JeAles \\ waysAs
Aq pexapul 8li]) Jappo) }jooq pup Bujjsoday
S89]AJaS Pa)|D}suy| uoljpinbyyuoy epopN puo bBujJojjuop
SNIDIS PUD Y}jpdH

226~

laqualy JaAlaoay SOJ3punyl

PCT/US00/33323

WO 01/44938

12/26

MJOM}BN (DuUJa}XJ

89D}Jaju]
3dom}aN

sananp
oW} | -

SUOJ}28UU0) BA|DY \\\

JaboudW uol}o8uuo9d
dl/dol J8ydjpdsig

p}Op
40}D207 Jus)

asuodsay

(-ewvuayy Aq
paxapui a3} 'dlLH
Joj ‘6'3 ‘sainjony}s
D}Dp d1j108ds 891Al8SG)
slo}po07 asuodsay

e

e~

Jebouow
adlAlag JayojodsiQg

Jappo] j}o0q puv
uopoinbiyuoy epopN

v:oz;mz_ 1LV as ‘old
|
B IRV -
NJoMm}sN '
mmmVo,awwm puo
~ (1apuodsay 0}) sabossaly wajsig sjnoawy |
DJRP }us8||2 puD Buibossep

asuodsay

o}
lgml7
dol pup y/

}xood 4oy

\\Co_.ao.:ﬂg\

NEYWETS

uolypanbyjuon

\\ waysAg

laqual Jayojpdsig SsOdspuny]

puUD S}usA3z
Jawy| ojpoped

buibossep

bujjsoday
pup bujio}iuop
SN}o}S puUD YijoeH

PCT/US00/33323

WO 01/44938

13/26

MJOM}aN |DUJa}X]

sjaxond dol Jualny 0} JaAles

S89oUD}Sy|
esuodsay

pipg

asuodsay 213D}S

76

\

89D} 48}y|
340M}aN

\
\

Jabouopy
asuodsay

uojjodnbyyuo)
asuodsay

Japoo] }oo0q puD
uoljoinbiyuoy 8poN

v_gozﬁmz_ |oulaju] 36 ‘9|4
_
99Dy} U[souw)
v._ozwz '
mme/o,nmmm puo
sebossep weysAg sjhoawy |
buibossapy
puD SjusaAjl

~~qipp juepo pup

oju] asuodsey

\S:Ei

JaAles

uoyoinbljuon

\\ waysfg

Jawll] olpojdad

buibosse

bujjsodey
pup bBujiojiuop
SNIDIS PuUD Y}1odH

Jaqueal] Jepuodsay 213P}S SQJapuny]

PCT/US00/33323

WO 01/44938

14/26

MJOM}aN |DUIB}XT

T (xnurq e !
J9Ap) Buissaosoud |
8wl}~]D8JUON |

]

7|
uoj}piausg "
_

D}RQg
ojwouiqg

89D4J8}u]

p}RQ
o|wouiQg

S89UD}SY|
asuodsey

p}pQg
asuodsay o103S

0z6

8oD}Jey]
MJoM}aN

— L_ocm_m juane
suwipay

sjaqond 4oL
ey o}
JeAaleg

Jabouopy
asuodsey

uojjoinbyuo)
asuodsay

Japoo] }ooq pup
uoljoinblyuoy epoN

MJOM}BN |PUJBY] 46 "Old
L
|
89D}Ja8}y[sewl]
dJom}aN)
1oubis ju 6

swpoey pu _M.E_ﬁwwm
i9|npayds sjhosw) |
awyj-1o3y sasuodsay pup mc_mummo.z

Djop juey)d

l\cozzi

J8AJDS

uojjoinbiyuon

\\ waysAs

mmmumwwz weysAs puv sjusA3l

puD Jaull| Olpolddd

buibossep

buiysoday
puo bButiojiuop
SN}p}S PUD Y}|paH

laqwaly Japuodsay olwoukg splapunyl

PCT/US00/33323

WO 01/44938

15/26

3JOM}BN
Jouda}xy

5JOM}BN |DUIB}Y]
(LaNOS '6'3) NVM

0l "ol

NIOM}eN (oudau]
(LANOS '6'@) NVYM

MJom}eN
|oudd}x3

JO JO
(sup1doD0q JWA ((suv)dy20q JWA
:Lmvcoawmm= I -m-mu dUQOI— Q~Lm£o*uammot~ . .moov —UOOI— Qahw>_momm=
SoJdepuny) _l Sodapunyy ;l ﬁmoauc:ﬁ
.
GLOL < oLoL < 500! <

WO 01/44938 PCT/US00/33323
16/26

FIG. 11

1105 Receiver TCP Connection State Machine

\

(No Connection):
Receive SYN|Allocate Connection,
Send SYN/ACK

|

SYN Received \ Receive Reset -
J Deallocate Connection

Receive ACKl

Relay to Dispatche) Receive Dispatcher.TimeWai_
J Deallocate Connection
Set Time Wait flag

Receive Dispatcher TimeWait/Ack
Send Ack, o
Deallocate connection

Receive Dispatcher Set Time Wait flag
Fin Wait 2

Receive Dispatcher Closed or Reset
Deallocate Connection

1

. \ Receive FIN
C:(FIN Wait 2 senaaek -
Deallocate Connection,
Set Time Wait flag

The FIN Wait 2 state can be handled by either
the Receiver or the Dispatcher depending on
whether or not the application will accept more
data after closing its end of the connection.

State transitions occur on receipt of a TCP packet
from the client, or (for the Relay state) on receipt
of the Dispatcher’s reply to the relayed data.

PCT/US00/33323

WO 01/44938

17/26

"J8Al@28y 8y} wouy uolpwiojul }axood padvlas jo jdieses uo JIND20 SUOHISUDI} 81DS
'uo)joeuuod 8y} jo pua s} Buiso)o J8)yp DiDp siow }desop |IIMm uolpojjddp By} Jayjeym

uo Bujpuadep Jaysjpdsig ay} JO JaA1993Y 3y} Jayjle Aq pajpuby 8q upd 8Ipis 7 }OM Nid 8yl
'sayp}s Bujso)) pup ‘| HOM Nid oV ISP ‘YoM 8s01) ‘paysiiqpis3 Ay} Ul pajjwsupbiies

aq upo pjop pabpaimourooun .wﬁEm }DM 9S0]|) puD paysi|qo}s3 8y} Ul pajjiusuvy}

8q UDD ‘D}Dp MBN 'S3}b}s Z HOM Nid PUD ‘I HOM Nid '‘Peysiiqp}s3 ey} ul paAladsal mp uod v}p(Q

J9AI908Y O} }IDM 8wl JuasS 'uol}d2auuod 8}pIojpaq

- J9A1928Y 0} OV /}IOM ouwl]l pebpeymouop :<ﬁ Buisoyjn
B pues ‘uo|}oauuos 8}pIo|paQg |
o pasold juel|d 1 D}Op Jey}inj w
s}deoop uolponddo
e
¢ HOM Nid 'P8s0]2 }jOoU ju3|}d peBpa)Mous oD
‘pabpeimousop ||y 11D jou

JaA|828Y 0} Z }DM Ul4 pues 'uojj}oeuuos 8}po0)|pa('paso)o jusiy

BYop J
'paso]d jou jusld ‘pabpaimouap |1y
JaA1298Y 0O} OVY/3IPM dwll puss
uoyosuuo) ajpboojoeq

I HOM Nid

peso]d jual]d 'pebpaimousdDp ||V _

laAl@oay 0} paso]) puas

A9V 1sSD7

pabpajmouop |1y peso)2 uopoojddy

*_uomo_u uoljoaiddy

-

#_G; ﬁWO_U Umwodu wCO__Ur Umr_m_—ﬂdumm

JaAleo8y wWoyy
cosumccoo o*ouo:< co:owccoo;mcwzgmm

Vm uol}oeuuoy oN ~_

BUIYODJy 9}D}S UuOl}o8uUU0) dIJ1 Jayoypdsig ozl

¢l "ol

PCT/US00/33323

WO 01/44938

18/26

¢l "Old

SOLEL ~ POLEL ~ S0LEL ~ q0LEL ~ DOLEL ~
82v4i8y] T} JULINT) L) RN 89D}Jd}Y] L) JUENT|
MJom}eN HJOM}ON NIOM}ON dJOM}eN MJOM}ON
Jouwiex3y jouda}x3 |oude}xy LV EEI g] 1DUI8}X]

\ / Z /[
\ / \\ (puogiuyu) "6'8) diomjaN / /
\ / / io (194 ‘B'8) \ /
<05l \ / / sng 0/] Ipdeydiied /
N \ y \\\\ / /
\ / s \
A \ .q /
N
$S32%0l14 JO ppaly} S8%04d Jo ppoaiyjl

Joapuodsay

SCEL

§s920l1d Jo ppasy]
Jayoypdsiq s
0c¢tl

JaAlad8y

UOIJDOUNWWOY (PDaJyl-18ju]) SS8901g-Joju]

.

SLEL

waisAs buyindwoy (Buissesoid-}INW 1021418WWAS) NdI 81diINW 40 NdD 81buls

\

Zo¢el

WO 01/44938 PCT/US00/33323
19/26

DEFINE A PLURALITY OF MEMBERS BY ASSIGNING
AN OPERATING SYSTEM MEMBER CLASS TO EACH OF A
PLURALITY OF MEMBER HARDWARE UNITS, THE ASSIGNED
OPERATING SYSTEM MEMBER CLASSES INCLUDING AT LEAST ONE
RECEIVER MEMBER AND AT LEAST ONE RESPONDER MEMBER

!

DOWNLOAD OPERATING SYSTEM EXECUTABLE CODE
TO EACH MEMBER

1

DEFINE AT LEAST ONE TCP PORT AND AT LEAST ONE [P
ADDRESS FOR EACH RECEIVER MEMBER TO ACCEPT CONNECTIONS ON

!

ASSOCIATE A RECEIVER MEMBER AND AT LEAST ONE OTHER
MEMBER WITH AT LEAST ONE CONNECTION

\

DETERMINE A SERVICE TO ASSOCIATE WITH AT
LEAST ONE IP ADDRESS/TCP PORT PAIR

Y
DETERMINE WHICH HOST NAMES TO ACCEPT REQUESTS FOR

Y
LOAD RESPONSE DATA ONTO AT LEAST ONE RESPONDER MEMBER

Y

UPDATE A CORRESPONDING DATA STRUCTURE USED TO LOOK UP
RESPONSES, WITH THE IDENTITY AND LOCATION OF THE RESPONSE
DATA IN THE AT LEAST ONE RESPONDER MEMBER

|

(END)

FIG. 14A

WO 01/44938 PCT/US00/33323
20/26

(START)

1

DEFINE A PLURALITY OF MEMBERS BY ASSIGNING AN
OPERATING SYSTEM MEMBER CLASS TO EACH OF A
PLURALITY OF MEMBER HARDWARE UNITS, THE ASSIGNED
OPERATING SYSTEM MEMBER CLASSES INCLUDING AT LEAST ONE
RECEIVER MEMBER, AT LEAST ONE DISPATCHER MEMBER,
AND AT LEAST ONE RESPONDER MEMBER

\

DOWNLOAD OPERATING SYSTEM EXECUTABLE CODE
TO EACH MEMBER HARDWARE UNIT

|

DEFINE AT LEAST ONE TCP PORT AND AT LEAST ONE IP
ADDRESS FOR EACH RECEIVER MEMBER TO ACCEPT CONNECTIONS ON

\

INFORM EACH RECEIVER MEMBER OF AT LEAST ONE DISPATCHER
MEMBER TO ASSOCIATE WITH AT LEAST ONE CONNECTION

!

INFORM AT LEAST ONE DISPATCHER MEMBER OF A SERVICE TO
ASSOCIATE WITH AT LEAST ONE IP ADDRESS/TCP PORT PAIR

#

INFORM AT LEAST ONE DISPATCHER MEMBER OF WHICH
HOST NAMES TO ACCEPT HTTP REQUESTS FOR

1
LOAD RESPONSE DATA ONTO AT LEAST ONE RESPONDER MEMBER

!

INFORM AT LEAST ONE DISPATCHER MEMBER OF THE IDENTITY
AND LOCATION OF THE DATA IN AT LEAST ONE
RESPONDER MEMBER

1

UPDATE A CORRESPONDING DISPATCHER MEMBER DATA STRUCTURE
USED TO LOOK UP RESPONSES WITH THE IDENTITY AND
LOCATION OF THE DATA IN AT LEAST ONE RESPONDER MEMBER

|
END

FIG. 14B

WO 01/44938 PCT/US00/33323
21/26
FIG. 15
Typical Client Request Processing Data Flow
./.1505 '/1510 /1515 /1520
Client Receiver Dispatcher Responder
\SK
Allocate
S Connection
y/state Data
Structure
Ack)
A Connection
prlicaf,-o Established
Ues! Dn
U New Con ,
Reques} %%ctf’on, Allocate
a Connection
.« 10 State Data
‘WStructure
Process Request
Lookup Response ID
%‘Create
= Response
ce Instance
Respons® Instan
/Send Data
- Response Ddta/
c
al Ack
£ Ack,Co
-g W
- Respon
s
€ Send Data
c /
5| | Response Datdl ——
%n—
K W“
A
%-
. closed | Respopg
ection Con € Insiq
&M nechon ClogggID
Deallocate Deallocate
‘__Ag,js/ Connection Response
State Data nstance

WO 01/44938 PCT/US00/33323
22/26

USE A FIRST OPERATING SYSTEM TO RECEIVE A REQUEST
OVER AN EXTERNAL NETWORK

!

USE THE FIRST OPERATING SYSTEM TO LOOK UP
AN IP ADDRESS AND TCP PORT RECEIVED
OVER THE EXTERNAL NETWORK

|

IDENTIFY A SECOND OPERATING SYSTEM ASSOCIATED
WITH THE IP ADDRESS AND TCP PORT FOUND
IN THE LOOK UP

!

PASS REQUEST DATA FROM THE FIRST OPERATING
SYSTEM TO A SECOND OPERATING SYSTEM

\

MAINTAIN STATE INFORMATION WITH THE FIRST AND
SECOND OPERATING SYSTEMS

l
IDENTIFY RESPONSE DATA AND A CORRESPONDING THIRD

OPERATING SYSTEM WITH THE SECOND OPERATING SYSTEM
\

USE THE SECOND OPERATING SYSTEM TO SEND A MESSAGE THAT
IDENTIFIES THE RESPONSE DATA AND INSTRUCTS A THIRD
OPERATING SYSTEM TO TRANSMIT THE RESPONSE DATA

\

USE THE THIRD OPERATING SYSTEM TO TRANSMIT THE
RESPONSE DATA OVER THE EXTERNAL NETWORK

‘F
END

FIG. 16A

WO 01/44938 PCT/US00/33323
23/26

USE A FIRST MEMBER TO RECEIVE A REQUEST OVER AN
EXTERNAL NETWORK

!

USE THE FIRST MEMBER TO LOOK UP AN IP ADDRESS AND
TCP PORT RECEIVED OVER THE EXTERNAL NETWORK

!

IDENTIFY A SECOND MEMBER ASSOCIATED WITH THE IP
ADDRESS AND TCP PORT FOUND IN THE LOOK UP

G

PASS REQUEST DATA FROM THE FIRST MEMBER TO A
SECOND MEMBER

!

MAINTAIN STATE INFORMATION WITH THE FIRST AND
SECOND MEMBERS

!

IDENTIFY RESPONSE DATA AND A CORRESPONDING THIRD
MEMBER WITH THE SECOND MEMBER

!

USE THE SECOND MEMBER TO SEND A MESSAGE THAT
IDENTIFIES THE RESPONSE DATA AND INSTRUCTS A THIRD
MEMBER TO TRANSMIT THE RESPONSE DATA

!

USE THE THIRD MEMBER TO TRANSMIT THE RESPONSE
DATA OVER THE EXTERNAL NETWORK

FIG. 16B

WO 01/44938 PCT/US00/33323
24/26

START

1

RUN AT LEAST A RECEIVER OPERATING SYSTEM ON A FIRST
MEMBER HARDWARE UNIT

|

RUN AT LEAST A RESPONDER OPERATING SYSTEM ON A
SECOND MEMBER HARDWARE UNIT

1

RECEIVE WITH THE FIRST MEMBER HARDWARE UNIT, A
REQUEST TRANSMITTED OVER THE EXTERNAL NETWORK

1

SEND OVER THE INTERNAL NETWORK, A MESSAGE FROM THE
FIRST MEMBER HARDWARE UNIT TO THE SECOND MEMBER
HARDWARE UNIT

|

TRANSMIT RESPONSE DATA OVER THE EXTERNAL NETWORK
FROM THE SECOND HARDWARE UNIT

(_END)
FIG. 16C

WO 01/44938 PCT/US00/33323
25/26

RUN A RECEIVER OPERATING SYSTEM ON A
FIRST MEMBER HARDWARE UNIT

|

RUN A DISPATCHER OPERATING SYSTEM ON A
SECOND MEMBER HARDWARE UNIT

i

RUN A RESPONDER OPERATING SYSTEM ON A THIRD
MEMBER HARDWARE UNIT

1

RECEIVE WITH THE FIRST MEMBER HARDWARE UNIT, A
REQUEST TRANSMITTED OVER THE EXTERNAL NETWORK

l

SEND OVER AN INTERNAL NETWORK TO THE SECOND MEMBER
HARDWARE UNIT, REQUEST DATA RECEIVED BY
THE FIRST MEMBER HARDWARE UNIT

{]

SEND OVER THE INTERNAL NETWORK TO THE THIRD
MEMBER HARDWARE UNIT, A MESSAGE FROM THE SECOND
MEMBER HARDWARE UNIT INSTRUCTING THE THIRD
HARDWARE UNIT TO TRANSMIT SOME RESPONSE DATA
OVER THE EXTERNAL NETWORK

|

TRANSMIT RESPONSE DATA OVER THE EXTERNAL
NETWORK FROM THE THIRD HARDWARE UNIT

(_END)
FIG. 16D

WO 01/44938 PCT/US00/33323
26/26

1705

FIG. 17

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

