

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局(43) 国際公開日
2010年10月7日(07.10.2010)

PCT

(10) 国際公開番号

WO 2010/113718 A1

(51) 国際特許分類:

B62B 7/04 (2006.01) B62B 9/20 (2006.01)

(21) 国際出願番号:

PCT/JP2010/055051

(22) 国際出願日:

2010年3月24日(24.03.2010)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願 2009-086084 2009年3月31日(31.03.2009) JP

(71) 出願人(米国を除く全ての指定国について): コンビ株式会社 (COMBI CORPORATION) [JP/JP]; 〒1110041 東京都台東区元浅草二丁目6番7号 Tokyo (JP).

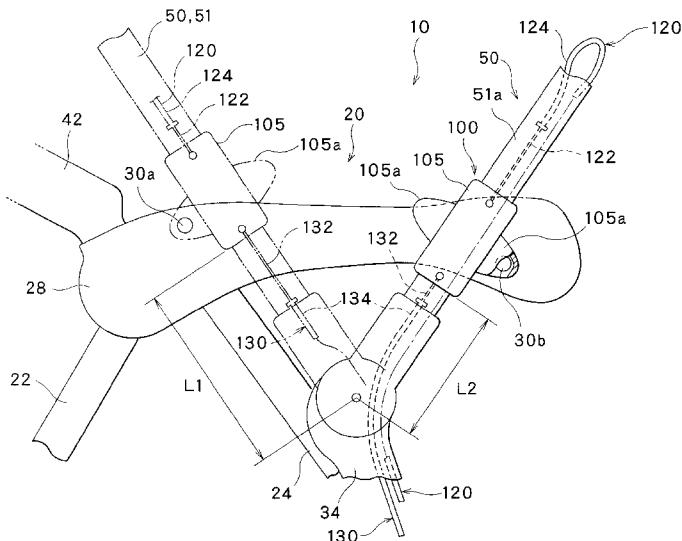
(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 舟倉 健二 (FUNAKURA Kenji) [JP/JP]; 〒1110041 東京都台東区元浅草二丁目6番7号 コンビ株式会社内 Tokyo (JP).

(74) 代理人: 勝沼 宏仁, 外 (KATSUNUMA Hirohito et al.); 〒1000005 東京都千代田区丸の内三丁目2番3号 富士ビル323号 協和特許法律事務所 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


添付公開書類:

— 国際調査報告(条約第21条(3))

(54) Title: BABY CARRIAGE

(54) 発明の名称: ベビーカー

[図10]

規制するロック部材(75, 95)が設けられている。切り換え部材の移動に運動してロック部材を操作する伝達機構(120, 130)が設けられている。

(57) **Abstract:** A baby carriage (10) is provided with a frame section (20), a handle (50) rockably joined to the frame section (20), caster mechanisms (60, 80) for rotatably holding wheels, and switching mechanisms (100) having switching members (105) held at a predetermined position according to the position of the handle (50). Lock members (75, 95) for restricting the rotation of the wheels are provided to the caster mechanisms. The baby carriage is also provided with transmission mechanisms (120, 130) for operating the lock members in association with the movement of the switching members.

(57) **要約:** ベビーカー(10)は、フレーム部(20)と、フレーム部(20)に搖動可能に連結されたハンドル(50)と、車輪を旋回可能に保持するキャスター機構(60, 80)と、ハンドル(50)の位置に応じて所定の位置に保持される切り換え部材(105)を有するスイッチ機構(100)と、を備える。キャスター機構に車輪の旋回を

明 細 書

発明の名称：ベビーカー

技術分野

[0001] 本発明は、ハンドルが前方に傾いた位置と後方に傾いた位置との間を揺動可能であるベビーカーに係り、とりわけ、前脚または後脚に設けられた車輪が、ハンドルの位置に応じて自動的に、ベビーカーの前後方向に対して旋回可能または旋回不可能な状態に切り換えられるベビーカーに関する。

背景技術

[0002] 従来、乳幼児が進行方向の前方を向くようにして乳幼児を乗車させるベビーカーが公知である。さらに、昨今においては、側面視において垂直軸よりも前方に傾斜する第1位置（対面押し位置）と、垂直軸よりも後方に傾斜する第2位置（背面押し位置）との間を揺動可能なハンドルを備えたベビーカーも広く普及している。このようなベビーカーにおいてハンドルが第2位置にある場合、操作者（保護者）は、乳幼児の背面側からハンドルを把持し、乳幼児が進行方向の前方を向くようにしてベビーカーを押し進ませることができる。一方、ハンドルが第1位置にある場合、操作者は、乳幼児に対面する前脚側の位置からハンドルを把持し、後脚側が進行方向の前方となるようにしてベビーカーを押し進ませることができる。

[0003] ところで、ベビーカーの操作性を考慮すると、進行方向の前方側の脚に取り付けられた車輪が前後方向に対して旋回可能であり、進行方向の後方側の脚に取り付けられた車輪が前後方向に対して旋回不可能であることが好ましい。そして、JP 2002-284015 Aには、前脚および後脚に設けられた車輪が、ハンドルの位置に応じて自動的に、前後方向に対して旋回可能または旋回不可能な状態に切り換えられるようになっているベビーカーが開示されている。

[0004] JP 2002-284015 Aに開示されたベビーカーにおいて、ロック切り換え部材が前脚に摺動可能に設けられている。そして、ロック切り換え

部材は、第1位置（対面押し位置）へ摺動するハンドルによって押圧されて摺動し、これにより、車輪を旋回可能な状態または旋回不可能な状態に切り換えるようになっている。

[0005] しかしながら、一般に、前脚の傾斜角度やハンドルの摺動範囲は、乗り心地や操作性等を考慮し、ベビーカーのその他の構成と関連させて設定される。したがって、すべてのベビーカーにおいて、ハンドルがロック切り換え部材を押圧する方向を、ロック切り換え部材の摺動可能な方向、つまり前脚の伸びる方向に揃えることは不可能である。このため、ハンドルの摺動によってロック切り換え部材を滑らかに摺動させることができない、言い換えると、ハンドルによるロック切り換え部材の操作を安定して確実に行なうことができないこともある。そもそも、ベビーカーの全体的な構成によっては、ハンドルを把持しやすくする又はハンドルを操作しやすくするといった観点から、ハンドルを前脚の側方位置まで摺動させることが不適当となる場合もある。この場合、ハンドルを摺動させてロック切り換え部材を押圧することが不可能となる。

発明の開示

[0006] 本発明はこのような点を考慮してなされたものであり、ハンドルの位置に応じた車輪の状態の切り換え操作をより安定して確実に行なうことができるベビーカーを提供することを目的とする。

[0007] 本発明によるベビーカーは、前脚および後脚を有するフレーム部と、第1位置と第2位置との間を摺動可能にフレーム部に連結されたハンドルと、前記前脚および前記後脚のうちの少なくとも一方に設けられたキャスター機構であって、車輪と、前記車輪を回転可能かつ旋回可能に保持する車輪ホルダと、前記車輪の旋回を規制するロック位置と前記車輪の旋回を可能にするロック解除位置との間を移動可能なロック部材と、を有するキャスター機構と、前記ハンドルが前記第1位置にある場合に第1保持位置に保持されるとともに前記ハンドルが前記第2位置にある場合に第2保持位置に保持されるよう構成された切り換え部材を有するスイッチ機構と、前記スイッチ機構と

前記キャスター機構との間に設けられ、前記切り換え部材の前記第1保持位置と前記第2保持位置との間での移動を前記ロック部材に伝達して、前記ロック部材を前記ロック解除位置から前記ロック位置へ或いは前記ロック位置から前記ロック解除位置へ移動させる伝達機構と、を備えることを特徴とする。

[0008] 本発明によるベビーカーにおいて、前記切り換え部材は、前記ハンドルに摺動可能に設けられており、前記切り換え部材は、前記ハンドルが前記第1位置にある場合に前記ハンドル上の前記第1保持位置に配置され、前記ハンドルが前記第2位置にある場合に前記第1保持位置とは異なる前記ハンドル上の前記第2保持位置に配置されるようにしてもよい。

[0009] このような本発明によるベビーカーにおいて、前記フレームは、前記ハンドルが前記第1位置にある場合に前記切り換え部材と係合して前記切り換え部材を前記第1保持位置に保持するようになる第1係合部材と、前記ハンドルが前記第2位置にある場合に前記切り換え部材と係合して前記切り換え部材を前記第2保持位置に保持するようになる第2係合部材と、をさらに有する様にしてもよい。このベビーカーにおいて、前記フレーム部は、前記前脚および前記後脚に連結されたアームレストをさらに有し、前記第1係合部材および前記第2係合部材は、前記アームレストに設けられているようにしてもよい。また、このベビーカーにおいて、前記切り換え部材が前記第1係合部材と係合することにより、前記ハンドルの前記第1位置からの揺動が規制されるとともに、前記切り換え部材が前記第2係合部材と係合することにより、前記ハンドルの前記第2位置からの揺動が規制されるように、前記切り換え部材ならびに前記フレーム部が構成されていてもよい。

[0010] また、このような本発明によるベビーカーにおいて、前記切り換え部材は、前記ハンドルの長手方向に前記ハンドル上を移動可能であり、前記切り換え部材から前記ハンドルの揺動中心までの前記ハンドルの長手方向に沿った長さは、前記切り換え部材が前記第1保持位置に位置している場合と前記切り換え部材が前記第2保持位置に位置している場合とで異なるようにしても

よい。

[0011] あるいは、本発明によるベビーカーにおいて、前記切り換え部材は、前記フレーム部に回動可能に支持され、前記切り換え部材は、前記ハンドルの搖動時における軌道範囲内に、あるいは、前記ハンドルに取り付けられた部材の前記ハンドルの搖動時における軌道範囲内に突出可能な突出部を有し、前記第1位置から前記第2位置へ又は前記第2位置から前記第1位置へ移動中の前記ハンドルあるいは当該ハンドルに取り付けられた部材が前記突出部を押圧することによって、前記切り換え部材が前記第1保持位置と前記第2保持位置との間を回動するように、前記切り換え部材は構成されていてもよい。

[0012] このような本発明によるベビーカーにおいて、前記フレーム部は、前記前脚および前記後脚に連結されたアームレストをさらに有し、前記切り換え部材は、前記アームレストに回動可能に支持されていてもよい。

[0013] また、このような本発明によるベビーカーにおいて、前記切り換え部材は、前記第2保持位置に位置している場合に、前記ハンドルの前記軌道範囲内または前記ハンドルに取り付けられた部材の前記軌道範囲内へ突出し、前記第2位置から前記第1位置に向けて搖動する前記ハンドルまたは前記ハンドルに取り付けられた部材に押圧されるように構成された第1突出部と、前記第1保持位置に位置している場合に、前記ハンドルの前記軌道範囲内または前記ハンドルに取り付けられた部材の前記軌道範囲内へ突出し、前記第1位置から前記第2位置に向けて搖動する前記ハンドルまたは前記ハンドルに取り付けられた部材に押圧されるように構成された第2突出部と、を有するようにしてよい。

[0014] さらに、このような本発明によるベビーカーにおいて、前記切り換え部材が前記第1保持位置と前記第2保持位置との間に位置する場合に、前記切り換え部材が前記第1保持位置または前記第2保持位置に向けて付勢されるよう、前記スイッチ機構は構成されていてもよい。

[0015] また、本発明によるベビーカーにおいて、前記前脚の下端に前脚用のキャ

スター機構が設けられるとともに、前記後脚の下端に後脚用のキャスター機構が設けられ、前記前脚用のキャスター機構および前記後脚用のキャスター機構のうちの一方と前記スイッチ機構との間に第1の前記伝達機構が設けられ、前記前脚用のキャスター機構および前記後脚用のキャスター機構のうちの他方と前記スイッチ機構との間に第2の前記伝達機構が設けられていてもよい。このような本発明によるベビーカーにおいて、前記ハンドルは、前記第1位置において前方に傾斜し、前記第2位置において後方に傾斜するようになっており、前記ハンドルが前記第1位置に位置する場合、前記前脚用のキャスター機構の前記車輪の旋回が規制され、前記ハンドルが前記第2位置に位置する場合、前記後脚用のキャスター機構の前記車輪の旋回が規制されるようにしてもよい。

図面の簡単な説明

[0016] [図1]図1は、本発明の一実施の形態におけるベビーカーの全体構成を説明するための斜視図である。

[図2]図2は、ハンドルが第2位置（背面押し位置）に配置された状態でベビーカーを示す側面図である。

[図3]図3は、ハンドルが第1位置（対面押し位置）に配置された状態でベビーカーを示す側面図である。

[図4]図4は、前脚用キャスター機構を示す側面図である。

[図5]図5は、図4に示された前脚用キャスター機構の縦断面図であって、ロック部材がロック解除位置に配置された状態を示している。

[図6]図6は、図5に対応する断面図であって、ロック部材がロック位置に配置された状態を示している。

[図7]図7は、図6のVII-VII線に沿った断面図である。

[図8]図8は、後脚用キャスター機構を示す側面図である。

[図9]図9は、図8に示された後脚用キャスター機構の縦断面図であって、ロック部材がロック位置に配置された状態を示している。

[図10]図10は、スイッチ機構を説明するための図であって、ベビーカーを

示す部分側面図である。

[図11]図11は、図10に対応する図であって、スイッチ機構の一変形例を説明するための図である。

[図12]図12は、図11のXII-XII線に沿った断面図である。

[図13]図13は、図12に対応する図であって、図12に示された位置とは異なる位置に配置された切り換え部材を示している。

発明を実施するための形態

[0017] 以下、図面を参照して本発明の一実施の形態について説明する。

[0018] 図1～図10は本発明によるベビーカーの一実施の形態を説明するための図である。このうち、図1～図3には、ベビーカーの全体構成が示されている。図1～図3に示すように、本実施の形態におけるベビーカー10は、前脚22および後脚24を有するフレーム部20と、フレーム部20に揺動可能に連結されたハンドル50と、を備えている。また、フレーム部20の前脚22の下端には、前輪61を有する前脚用のキャスター機構60が設けられるとともに、フレーム部20の後脚24の下端には、後輪81を有する後脚用のキャスター機構80が設けられている。

[0019] なお、本実施の形態において、ベビーカー10は、広く普及しているよう（例えば、JP 2006-117012 A）、折り畳み可能に構成されている。また、本実施の形態のベビーカー10においては、ハンドル50をフレーム部20に対して揺動させることにより、操作者（保護者）が乳幼児の背面側からハンドル50を把持してベビーカー10を操縦し、乳幼児が進行方向の前方を向くようにしてベビーカー10を走行させること、並びに、操作者が乳幼児に対面する前脚側の位置からハンドル50を把持してベビーカー10を操縦し、ベビーカー10の後脚側が進行方向の前方となるようにしてベビーカー10を走行させること、の両方が可能となっている。

[0020] ここで、本明細書中において、ベビーカーに対する「前」、「後」、「上」、「下」、「前後方向」、および「上下方向」の用語は、特に指示がない場合、展開状態にあるベビーカー10に乗車する乳幼児を基準とした「前」

、「後」、「上」、「下」、「前後方向」、および「上下方向」を意味する。さらに詳しくは、ベビーカー10の「前後方向」とは、図1における紙面の左下と右上とを結ぶ方向であって、図2および図3における紙面の左右の方向に相当する。そして、特に指示がない限り、「前」とは、乗車した乳幼児が向く側であり、図1における紙面の左下側並びに図2および図3における紙面の左側がベビーカー10の前側となる。一方、ベビーカー10の「上下方向」とは前後方向に直交するとともに接地面に直交する方向である。したがって、接地面が水平面である場合、「上下方向」とは垂直方向をさす。また、「横方向」とは幅方向であって、「前後方向」および「上下方向」のいずれにも直交する方向である。

[0021] まず、ベビーカーの全体構成として、フレーム部20およびハンドル50について説明する。図1に示すように、本実施の形態におけるベビーカー10は、全体的に、前後方向に沿った横方向中心面を中心として概ね対称な構成となっている。図1～図3に示すように、本実施の形態におけるフレーム部20は、それぞれ左右に配置された一対の前脚22と、それぞれ左右に配置された一対の後脚24と、それぞれ左右に配置された一対のアームレスト28と、それぞれ左右に配置された一対の連結杆26と、を有している。

[0022] 前脚22、後脚24および連結杆26は、筒状部材、例えばアルミニウム合金製のパイプ、から形成され得る。一方、アームレスト28は例えば樹脂から形成され得る。前脚22の上方端部は、対応する側（左側または右側）に配置されたアームレスト28の前方部分に回動可能（揺動可能）に連結されている。同様に、後脚24の上方端部が、対応する側（左側または右側）に配置されたアームレスト28の前方部分に回動可能（揺動可能）に連結されている。また、連結杆26の上方部分が、対応する側（左側または右側）に配置されたアームレスト28の後方部分に回動可能（揺動可能）に連結されている。

[0023] フレーム部20は、左前脚22と左連結杆26とを連結する左側方連結部材32、および、右前脚22と右連結杆26とを連結する右側方連結部材3

2をさらに有している。各側方連結部材32は、その前方部分を前脚22の中間部分に回動可能に連結され、その後方部分を連結杆26の下方部分に回動可能に連結されている。側方連結部材32は、例えば、アルミニウム合金製の板材から形成され得る。また、フレーム部20は、左後脚24と左連結杆26とを連結する左ブラケット34、および、右後脚24と右連結杆26とを連結する右ブラケット34と、をさらに有している。各ブラケット34は、その一部分において後脚24の中間部分に回動可能（搖動可能）に連結され、他の部分において連結杆26の下方部分に回動可能に連結されている。

[0024] さらに、本実施の形態におけるベビーカー10は、横方向に延びる構成要素として、一対の前脚22間を連結する前側上部連結ステー36およびフットレス38と、一対の後脚24間を連結する後側上部連結ステー40と、を有している。また、一対のアームレスト28間に屈曲可能なガード部材42が取り外し可能に設けられている。

[0025] このような構成からなるフレーム部20に対し、ハンドル50が搖動可能に連結されている。図1に示すように、本実施の形態において、ハンドル50は、互いに略平行に延びる略直線状の一対の直線部51aと、一対の直線部51a間を連結する中間部51bと、を含み、全体として略U字状の形状を有している。ハンドル50は、U字の両端部を対応する側のブラケット34に回動可能（搖動可能）に連結されている。なお、ハンドル50のブラケット34に対する回動軸線（搖動中心）は、ブラケット34と連結杆26との回動軸線、および、連結杆26と側方連結部材32との回動軸線と一致している。このような構成により、図2および図3に示すように、ハンドル50が、フレーム部20に対して搖動し、ハンドル50の直線部51aはアームレスト28の側方をアームレスト28に沿って移動するようになる。

[0026] アームレスト28の側方を移動可能なハンドル50の一対の直線部51aには、切り換え部材105がそれぞれ設けられている。各切り換え部材105は、直線部51aに沿って直線部51aに対して摺動可能となっている。

さらに、ハンドル50の中間部51bには、切り換え部材105の摺動を遠隔操作する遠隔操作装置53が設けられている。

[0027] 一方、図2および図3に示すように、各アームレスト28には、切り換え部材105と係合してハンドル50の回動を規制する一対の第1係合部材（第1係合突起）30aおよび第2係合部材（第2係合突起）30bが、設けられている。各切り換え部材105は、前方側および後方側に設けられた収容部105aを有している。図10中の部分断面に示すように、収容部105aは下方が開放されている。このため、ハンドル50が所定に位置に配置された状態で遠隔操作装置53を操作して切り換え部材55を上方に摺動させることにより、切り換え部材105と係合部材30a, 30bとの係合を解除することができる。また、逆に、切り換え部材105を下方に摺動させて収容部105aによって係合部材30a, 30bを上方から覆うことにより、切り換え部材105と係合部材30a, 30bとを係合させることができる。

[0028] 前方に設けられた第1係合突起30aと切り換え部材105とが係合し互いに係止されることにより、図3に示すように、ハンドル50が第1位置（対面押し位置）P1に固定される。ハンドル50が第1位置P1に固定された場合、ハンドル50は、側面視において垂直軸に沿うようにして回動軸線（揺動中心）O1上に倒立した位置（図3における一点鎖線の位置）からベビーカー10の前方に傾いた状態（前脚側に傾斜した状態）となり、後脚24と略平行に延びる。そして、操作者は、乳幼児に対面するベビーカー10の前脚側の位置からハンドル50を把持し、ベビーカー10を押し進めることができる。このとき、ベビーカー10の後脚側が、進行方向前方となる。

[0029] 一方、後方に設けられた係合突起30bと切り換え部材105とが係合し互いに係止されることにより、図2に示すように、ハンドル50が第2位置（背面押し位置）P2に固定される。ハンドル50が第2位置P2に固定された場合、ハンドル50は、側面視において垂直軸に沿うようにして回動軸線（揺動中心）O1上に倒立した位置（図2における一点鎖線の位置）から

ベビーカー 10 の後方に傾いた状態（後脚側に傾斜した状態）となり、連結杆 26 と略平行に延びる。そして、操作者は、乳幼児の背面側となるベビーカー 10 の後脚側の位置からハンドル 50 を把持し、乳幼児が進行方向の前方を向くようにしてベビーカー 10 を押し進ませることができる。このとき、ベビーカー 10 の前脚側が、進行方向前方となる。

[0030] なお、本実施の形態において、第 1 係合部材 30a および第 2 係合部材 30b と係合可能な切り換え部材 105 は、後述するように、キャスター機構 60, 80 の車輪 61, 81 の旋回を規制または規制解除するために、ハンドル 50 の揺動運動を異なる運動に変換するスイッチ機構 100 として機能する。

[0031] 以上のような全体構成を有したベビーカー 10 は、各構成部材を互いに回動させることにより、折り畳むことができる。具体的には、第 2 位置 P2 に配置されたハンドル 50 をいったん後上方に引き上げ、その後、下方に押し下げることによって、ブラケット 34 を後脚 24 に対し図 2 において時計回り方向に回動させる。この操作にともなって、アームレスト 28 および側方連結部材 32 は連結杆 26 に対し図 2 において時計回り方向に回動する。このような操作により、側面視においてハンドル 50 と前脚 22 とが略平行に配置されるとともに、ハンドル 50 の配置位置が下げるようになる。以上のようにして、ベビーカー 10 を折り畳むことができ、ベビーカーの前後方向および上下方向に沿った寸法を小型化することができる。一方、ベビーカー 10 を折り畳み状態から展開するには、上述した折り畳み操作と逆の手順を踏めばよい。

[0032] 次に、主に図 4 ～図 7 を参照しながら、前脚用のキャスター機構 60 について説明する。上述したように、一対の前脚 22 の下端には、前脚用キャスター機構 60 がそれぞれ設けられている。二つの前脚用キャスター機構 60 は互いに同一に構成されている。図 4 ～図 6 に示すように、キャスター機構 60 は、前輪（車輪） 61 と、前輪 61 を回転可能かつベビーカー 10 の前後方向に対して旋回可能に保持する車輪ホルダ 62 と、車輪ホルダ 62 に設

けられ、車輪6 1の旋回を規制するロック位置P 1 1と車輪6 1の旋回を可能にするロック解除位置P 1 2との間を移動可能なロック部材7 5と、を有している。

[0033] 図5および図6に示すように、車輪ホルダ6 2は、前脚2 2に固定された基部6 3と、ピン6 3 aを介して基部6 3に固定されたシャフト6 6と、シャフト6 6へ連結された保持部6 7と、を有している。シャフト6 6は、展開状態にあるベビーカー1 0の接地面に略直交して延びている。保持部6 7は、ベアリング7 0を介し、シャフト6 6に回転可能に支持されている（図5参照）。また、保持部6 7は、回転軸7 3を介して前輪6 1を回転可能に保持している。このようなキャスター機構6 0においては、保持部6 7がシャフト6 6に対して回転することにより、車輪6 1がベビーカー1 0の前後方向に対して旋回することができる。

[0034] ところで、回転軸7 3は、ベビーカー1 0の前後方向に沿ってシャフト6 6の軸線からはずれた位置において横方向に延びている。したがって、ベビーカー1 0を走行させる場合、シャフト6 6の軸線が回転軸7 3よりも進行方向の前方に配置されるように、前輪6 1がベビーカー1 0の前後方向に対して旋回する。ここで図5は、ベビーカー1 0が前脚側を進行方向前方として走行する場合のキャスター機構6 0を示しており、図6は、ベビーカー1 0が後脚側を進行方向前方として走行する場合のキャスター機構6 0を示している。また、図4～図6において、一方の前輪6 1は省略されている。

[0035] 図5および図6に示すように、基部6 3には、ロック手段として機能するロック部材7 5が設けられている。ロック部材7 5は、ピン7 6を介し、その一方の端部7 5 aを基部6 3に連結されている。ロック部材7 5は、ピン7 6を中心として、基部6 3に対して揺動可能となっており、図5および図6に示すように、保持部6 7と係合するロック位置P 1 1と保持部6 7に係合していないロック解除位置P 1 2との間を移動する。

[0036] 図6および図7によく示されているように、保持部6 2のロック部材7 5と係合する部分は略円筒状に形成されている。そして、図7に示すように、

円筒状外周面 6 9 a の一部分に、ロック部材 7 5 が嵌り込む凹部 6 9 b が形成されている。上述したロック部材 7 5 のロック位置 P 1 1 とは、ロック部材 7 5 がこの凹部 6 9 b 内に入り込み、ロック部材 7 5 およびシャフト 6 6 に対する保持部 6 7 の回転が規制される位置のことである。このような構成においては、ロック部材 7 5 がロック位置 P 1 1 に配置されると、前輪 6 1 のベビーカー 1 0 の前後方向に対する旋回運動が規制されるようになる。以下において、このように車輪の旋回運動が規制された状態を、単にロック状態とも呼ぶ。なお、ロック部材 7 5 は、図示しないトーションバネにより、ロック解除位置 P 1 2 からロック位置 P 1 1 に向けて付勢されている。

[0037] 次に、主に図 8 および図 9 を参照しながら、一対の後脚 2 4 の下端にそれぞれ設けられた後脚用のキャスター機構 8 0 について説明する。二つの後脚用キャスター機構 8 0 は互いに同一に構成されている。また、後脚用のキャスター機構 8 0 は前脚用のキャスター機構 6 0 と略同一に構成されている。すなわち、図 8 および図 9 に示すように、キャスター機構 6 0 は、後輪（車輪）8 1 と、後輪 8 1 を回転可能かつ前後方向に対して旋回可能に保持する車輪ホルダ 8 2 と、車輪ホルダ 8 2 に設けられ、車輪 8 1 の旋回を規制するロック位置 P 1 1 と車輪 8 1 の旋回を可能にするロック解除位置 P 1 2 との間を移動可能なロック部材 9 5 と、を有している。図 9 に示すように、車輪ホルダ 8 2 は、後脚 2 4 に固定された基部 8 3 と、ピン 8 3 a を介して基部 8 3 に固定され展開状態にあるベビーカー 1 0 の接地面に略直交して延びるシャフト 8 6 と、ベアリング 9 0 を介してシャフト 8 6 へ回転可能に支持された保持部 8 7 と、を有している。また、保持部 8 7 は、回転軸 9 3 を介して前輪 9 1 を回転可能に保持している。回転軸 9 3 は、ベビーカー 1 0 の前後方向に沿ってシャフト 8 6 の軸線からはずれた位置において横方向に延びている。

[0038] 図 9 に示すように、基部 8 3 には、ロック手段として機能するロック部材 9 5 が設けられている。ロック部材 9 5 は、ピン 9 6 を介し、その一方の端部 9 5 a を基部 8 3 に連結されている。ロック部材 9 5 は、ピン 9 6 を中心

として、基部 8 3 に対して揺動可能となっており、図 9 に示すように、保持部 8 7 と係合するロック位置 P 1 1 と保持部 8 7 に係合していないロック解除位置 P 1 2 との間を移動する。

[0039] 前脚用のキャスター機構 6 0 と同様に、保持部 8 7 のロック部材 9 5 と係合する部分は略円筒状に形成されている。そして、円筒状外周面 8 9 a の一部分に、ロック部材 9 5 が嵌り込む凹部 8 9 b が形成されている。上述したロック部材 9 5 のロック位置 P 1 1 とは、ロック部材 9 5 がこの凹部 8 9 b 内に入り込み、シャフト 8 6 に対する保持部 8 7 の回転が規制される位置のことである。なお、ロック部材 9 5 は、図示しないトーションバネにより、ロック解除位置 P 1 2 からロック位置 P 1 1 に向けて付勢されている。

[0040] 次に、スイッチ機構 1 0 0 について説明する。上述したように、スイッチ機構 1 0 0 は、キャスター機構 6 0, 8 0 の車輪 6 1, 8 1 の旋回を規制または規制解除するために、ハンドル 5 0 の回動運動を異なる運動に変換する機構である。本実施の形態において、スイッチ機構 1 0 0 は、ハンドル 5 0 の直線部 5 1 a に摺動可能に設けられた切り換え部材 1 0 5 を有している。

[0041] 図 1 0 に示すように、切り換え部材 1 0 5 は、アームレスト 2 8 の前方側に設けられた第 1 係合部材 3 0 a と係合してハンドル 5 0 の直線部 5 1 a 上の第 1 保持位置 P 2 1 に保持され、アームレスト 2 8 の後方側に設けられた第 2 係合部材 3 0 b と係合してハンドル 5 0 の直線部 5 1 a 上の第 2 保持位置 P 2 2 に保持される。上述したように、切り換え部材 1 0 5 が第 1 突出部材 3 0 a と係合して第 1 保持位置 P 2 1 に保持される場合、ハンドル 5 0 は第 1 位置 P 1 に位置するとともに第 1 位置 P 1 からの揺動を規制されるようになる。同様に、切り換え部材 1 0 5 が第 2 突出部材 3 0 b と係合して第 2 保持位置 P 2 2 に保持される場合、ハンドル 5 0 は第 2 位置 P 2 に位置するとともに第 2 位置 P 2 からの揺動を規制されるようになる。

[0042] 図 1 0 に示すように、ハンドル 5 0 上において、第 1 保持位置 P 2 1 および第 2 保持位置 P 2 2 は、互いに異なる位置となっている。本実施の形態において、切り換え部材 1 0 5 は、ハンドル 5 0 の直線部 5 1 a の長手方向に

直線部 51a 上を摺動可能となっている。そして、図 10 に示すように、切り換え部材 105 からハンドル 50 の揺動中心 O1 までのハンドル 50 の直線部 51a における長手方向に沿った長さ L1, L2 が、切り換え部材 105 が第 1 保持位置 P21 に位置している場合（図 10 中の二点鎖線）と切り換え部材 105 が第 2 保持位置 P22 に位置している場合（図 10 中の実線）とで異なっている。

[0043] さらに、詳細には、第 1 保持位置 P21 に保持されている場合における、切り換え部材 105 からハンドル 50 のフレーム部 20 に対する揺動中心 O1 までのハンドル 50 の直線部 51a における長手方向に沿った長さ L1 は、第 2 保持位置 P22 に保持されている場合における、切り換え部材 105 からハンドル 50 のフレーム部 20 に対する揺動中心 O1 までのハンドル 50 の直線部 51a における長手方向に沿った長さ L2 よりも、長くなっている。すなわち、ハンドル 50 が第 1 位置 P1 に配置されている場合には、ハンドル 50 が第 2 位置 P2 に配置されている場合と比較して、切り換え部材 105 は、ハンドル 50 の揺動中心 O1 からより離間したより上方の位置に保持されるようになる。

[0044] なお、ハンドル 50 の直線部 51a 内には、図示しないばねが設けられており、このばねによって、切り換え部材 105 は、ハンドル 50 の揺動中心 O1 に接近する方向にハンドル 50 の直線部 51a 上を摺動するように付勢されている。したがって、ハンドル 50 の中間部 51b に設けられた遠隔操作装置 53 を操作する場合には、ハンドル 50 に内蔵されたばねからの付勢力に抗して、切り換え部材 105 を作動させることになる。

[0045] 次に、伝達機構 120, 130 について説明する。スイッチ機構 100 とキャスター機構 60, 80 との間には、スイッチ機構 100 の作動をキャスター機構に伝達する伝達機構（伝達手段）が設けられている。本実施の形態においては、二つの第 1 の伝達機構 120 が、左側および右側の前脚用のキャスター機構 60 およびスイッチ機構 100 との間に、それぞれ、設けられている。この二つの第 1 の伝達機構 120 は同一に構成されている。また、

二つの第2の伝達機構130が、左側および右側の後脚用のキャスター機構80およびスイッチ機構100との間に、それぞれ、設けられている。この二つの第2の伝達機構130も同一に構成されている。

[0046] 各伝達機構120, 130は、第1保持位置P21と第2保持位置P22との間での切り換え部材105の移動をロック部材75, 95に伝達して、ロック部材75, 95をロック解除位置P12からロック位置P11へ、並びに、ロック位置P11からロック解除位置P12へ移動させるようになっている。本実施の形態において、第1伝達機構120および第2伝達機構130は、配置位置が異なるが、同一の構成を有している。

[0047] 伝達機構120, 130は、スイッチ機構100の切り換え部材105およびキャスター機構60, 80のロック部材75, 95に両端にそれぞれ取り付けられたリードワイヤ122, 132と、リードワイヤ122, 132が内部を通過するチューブ状部材124, 134と、を有している。図5, 6, 9, 10に示すように、チューブ部材124, 134の両端は、ハンドル50の直線部51aおよびキャスター機構60, 80の基部63, 83に対して固定されている。このような構成においては、リードワイヤ122, 132のチューブ部材124, 134に対する移動は、ハンドル50に対する切り換え部材105の摺動と連動するとともに、キャスター機構60, 80におけるロック部材75, 95の基部63, 83に対する揺動とも連動するようになる。

[0048] 具体的には、第1の伝達機構120のチューブ部材124の一端が固定されているハンドル50上の位置は、図10に示すように、第1保持位置P21に保持された切り換え部材105が配置された位置よりも上方である。すなわち、第1伝達機構120のチューブ部材124の一端からハンドル50の揺動中心O1までの長さは、当該チューブ部材124の一端から伸びたリードワイヤ122の端部が固定された切り換え部材105からハンドル50の揺動中心O1までの長さよりも長い。

[0049] このため、切り換え部材105がハンドル50の直線部51a上を下方に

摺動してハンドル50の揺動中心O1に接近する場合、すなわち、第1保持位置P21から第2保持位置P22へ向けて移動する場合、第1伝達機構120のリードワイヤ122は、切り換え部材105の移動にともなって、第1伝達機構120のチューブ状部材124のスイッチ機構100側の端部からチューブ状部材124外へ引き出されるとともに、第1伝達機構120のチューブ状部材124の前輪用キャスター機構60側の端部からチューブ状部材124内へ引き込まれる。この結果、リードワイヤ122の前輪用キャスター機構60の側の端部が連結された前輪用キャスター機構60のロック部材75は、ロック位置P11からロック解除位置P12へ移動する（図5参照）。

[0050] 逆に、切り換え部材105がハンドル50の直線部51a上を上方に摺動してハンドル50の揺動中心O1から離間する場合、すなわち、第2保持位置P22から第1保持位置P21へ向けて移動する場合、第1伝達機構120のリードワイヤ122は、切り換え部材105の移動にともなって、第1伝達機構120のチューブ状部材124のスイッチ機構100側の端部からチューブ状部材124内に押し込まれるとともに、第1伝達機構120のチューブ状部材124の前輪用キャスター機構60側の端部からチューブ状部材124外へ押し出される。この結果、リードワイヤ122の前輪用キャスター機構60の側の端部が連結された前輪用キャスター機構60のロック部材75は、ロック解除位置P12からロック位置P11へ移動可能となる。

[0051] 一方、第2の伝達機構130のチューブ部材134の一端が固定されているハンドル上の位置は、図10に示すように、第2保持位置P22に保持された切り換え部材105が配置された位置よりも下方である。すなわち、第2伝達機構130のチューブ部材134の一端からハンドル50の揺動中心O1までの長さは、当該チューブ部材134の一端から伸びたリードワイヤ132の端部が固定された切り換え部材105からハンドル50の揺動中心O1までの長さよりも短い。

[0052] このため、切り換え部材105がハンドル50の直線部51a上を下方に

摺動してハンドル50の揺動中心O1に接近する場合、すなわち、第1保持位置P21から第2保持位置P22へ向けて移動する場合、第2伝達機構130のリードワイヤ132は、切り換え部材105の移動にともなって、第2伝達機構130のチューブ状部材134のスイッチ機構100側の端部からチューブ状部材134内に押し込まれるとともに、第2伝達機構130のチューブ状部材134の後輪用キャスター機構80側の端部からチューブ状部材134外へ押し出される。この結果、リードワイヤ132の後輪用キャスター機構80側の端部が連結された後輪用キャスター機構80のロック部材95は、ロック解除位置P12からロック位置P11へ移動可能となる。

[0053] 逆に、切り換え部材105がハンドル50の直線部51a上を上方に摺動してハンドル50の揺動中心O1から離間する場合、すなわち、第2保持位置P22から第1保持位置P21へ向けて移動する場合、第2伝達機構130のリードワイヤ132は、切り換え部材105の移動にともなって、第2伝達機構130のチューブ状部材134のスイッチ機構100側の端部からチューブ状部材134外へ引き出されるとともに、第2伝達機構130のチューブ状部材134の後輪用キャスター機構80側の端部からチューブ状部材134内へ引き込まれる。この結果、リードワイヤ122の後輪用キャスター機構80の側の端部が連結された後輪用キャスター機構80のロック部材95は、ロック位置P11からロック解除位置P12へ移動する。

[0054] なお、ハンドル50に設けられたばね（図示せず）が切り換え部材105をハンドル50の揺動中心O1に向けて付勢する力は、キャスター機構60, 80に設けられたトーションバネ（図示せず）が各ロック部材75, 95を揺動させてリードワイヤ122, 132をキャスター機構60, 80の側に引き出そうとする力よりも強くなっている。そして、スイッチ機構100に外力が加えられていない場合、前輪用キャスター機構60のロック部材75がロック解除位置P12に配置されるとともに後輪用キャスター機構80のロック部材95がロック位置P11に配置されるようになる。

[0055] なお、図示する例において、第1伝達機構120をなすリードワイヤ12

2 およびチューブ状部材 124 は、ハンドル 50 の内部を通過し、その後、側方連結部材 32 の外面に支持され、さらに、前脚 22 の内部を通過して前輪用キャスター機構 60 まで延びている。一方、第 2 伝達機構 130 をなすリードワイヤ 132 およびチューブ状部材 134 は、ハンドル 50 の内部を通過し、その後、後脚 24 の内部を通過して後輪用キャスター機構 80 まで延びている。ただし、第 1 伝達機構 120 および第 2 伝達機構 130 のこのような経路は単なる例示であって、スイッチ機構 100 とキャスター機構 60、80 との間を種々の経路で結ぶようにしてもよい。例えば、ハンドル 50 や前脚 22、後脚 24 の内部ではなく、ハンドル 50 や前脚 22、後脚 24 の外面に支持されるようにしてもよい。また、第 1 伝達機構 120 が、ハンドル 50、後脚 24、アームレスト 28 および前脚 22 をこの順番で経由して、スイッチ機構 100 から前輪用キャスター機構 60 まで延びるようにしてもよい。

[0056] 次に、以上のような構成からなるベビーカー 10 のハンドル 50 を揺動させた場合の作用について説明する。

[0057] 上述したように、ハンドル 50 に設けられた切り換え部材 105 をアームレスト 28 に設けられた前方側の第 1 係合部材 30a と係合させることにより、ハンドル 50 を前脚側に傾斜した第 1 位置 P1 (図 3 参照) に固定することができる。このとき、保護者はベビーカー 10 の前脚側から第 1 位置 P1 に配置されたハンドル 50 を把持し、ベビーカー 10 の後脚側が進行方向前方となるようにしてベビーカー 10 を走行させることができる。また、ハンドル 50 に設けられた切り換え部材 105 をアームレスト 28 に設けられた後方側の第 2 係合部材 30b と係合させることにより、ハンドル 50 を後脚側に傾斜した第 2 位置 P2 (図 2 参照) に固定することができる。このとき、保護者はベビーカー 10 の後脚側から第 2 位置 P2 に配置されたハンドル 50 を把持し、ベビーカー 10 の前脚側が進行方向前方となるようにしてベビーカー 10 を走行させることができる。

[0058] 本実施の形態においては、ハンドル 50 に設けられたスイッチ機構 100

の切り換え部材 105 は、ハンドル 50 が第 1 位置 P1 にある場合に第 1 保持位置 P21 に保持され、ハンドル 50 が第 2 位置にある場合に第 2 保持位置 P22 に保持される。

[0059] そして、上述したように、ハンドル 50 が前方に傾倒して切り換え部材 105 が第 1 保持位置 P21 に保持されている場合、第 1 伝達機構 120 のリードワイヤ 122 は、スイッチ機構 100 の側から前輪用キャスター機構 60 の側へ移動し、第 2 伝達機構 130 のリードワイヤ 132 は、後輪用キャスター機構 80 の側からスイッチ機構 100 の側へ移動する。この結果、前輪用キャスター機構 60 のロック部材 75 はロック位置 P11 に配置され、前輪 61 は前後方向に対して旋回不可能な状態に保たれる。逆に、後輪用キャスター機構 80 のロック部材 95 はロック解除位置 P12 に配置され、後輪 81 は前後方向に対して旋回可能な状態に保たれる。

[0060] 一方、ハンドル 50 が後方に傾倒して切り換え部材 105 が第 2 保持位置 P22 に保持されている場合、第 1 伝達機構 120 のリードワイヤ 122 は、前輪用キャスター機構 60 の側からスイッチ機構 100 の側へ移動し、第 2 伝達機構 130 のリードワイヤ 132 は、スイッチ機構 100 の側から後輪用キャスター機構 80 の側へ移動する。この結果、前輪用キャスター機構 60 のロック部材 75 はロック解除位置 P12 に配置され、前輪 61 は前後方向に対して旋回可能な状態に保たれる。逆に、後輪用キャスター機構 80 のロック部材 95 はロック位置 P11 に配置され、後輪 81 は前後方向に対して旋回不可能な状態に保たれる。

[0061] ベビーカー 10 をいずれの方向に押す場合であっても、進行方向前に配置された車輪が前後方向に対して旋回可能であり、進行方向後方に配置された車輪が前後方向に対する旋回を規制されていることが、操縦性や走行安定性の観点において好ましい。そして、本実施の形態によるベビーカー 10 によれば、上述したように、ハンドル 50 の位置に応じて自動的に、前脚用キャスター 60 および後脚用キャスター 80 の車輪 61, 81 を旋回可能な状態または旋回不可能な状態に安定して確実に切り換えることができる。

[0062] 以上のような本実施の形態によれば、ハンドル50が第1位置P1にある場合と第2位置P2にある場合とで、スイッチ機構100の切り換え部材105が異なる位置に保持されるようになる。そして、この切り換え部材105の位置の変化を利用して、各キャスター機構60, 80の車輪61, 81の旋回を自動的に制御するようになっている。とりわけ、切り換え部材105は線状（とりわけ、直線状）に動作する。このような切り換え部材105の作動を、伝達機構を介し、前脚用キャスター60および後脚用キャスター80に伝達することにより、車輪61, 81を旋回可能な状態または旋回不可能な状態に安定して確実に切り換えることができる。

[0063] また、切り換え部材105は、フレーム部20に設けられた第1突出部材30aまたは第2突出部材30bと係合することにより、ハンドル50が第1位置P1にある場合および第2位置にある場合に、必ず所定の位置に配置されるようになる。このような切り換え部材105の配置位置によって前脚用キャスター60および後脚用キャスター80のロック部材75, 95を操作することにより、車輪61, 81を旋回可能な状態または旋回不可能な状態に安定して確実に切り換えることができる。

[0064] さらに、スイッチ機構100の切り換え部材105は、ハンドル50を第1位置P1または第2位置P2に固定するための部材を兼ねている。したがって、別途の切り換え部材をスイッチ機構として設けることと比較して、部品点数を低減することができる。また、部品点数の低減にともなってベビーカー10の構成も簡素化されるため、前脚用キャスター60および後脚用キャスター80の車輪61, 81を旋回可能な状態または旋回不可能な状態に安定して確実に切り換えることができる。

[0065] なお、上述した実施の形態に関し、本発明の要旨の範囲内で種々の変更が可能である。

以下、変更の一例について説明する。

[0066] 上述した実施の形態において、第2保持位置P22に位置する場合と比較して第1保持位置P21に位置する場合に、切り換え部材105がハンドル

50の揺動中心O1から離間する例を示したが、これに限られない。第2保持位置P2に位置する場合と比較して第1保持位置P1に位置する場合に、切り換え部材105がハンドル50の揺動中心O1に接近するようにしてもよい。また、第1伝達機構120のスイッチ機構100側の端部が切り換え部材105の上方側に位置し、第2伝達機構130のスイッチ機構100側の端部が切り換え部材105の下方側に位置する例を示したが、これに限られず、種々の態様に変更することができる。このような変形例においても、ハンドル50の揺動にともなって、自動的に、進行方向後方側に位置するキャスター機構の車輪の旋回が規制されるとともに進行方向前方側に位置するキャスター機構の車輪の旋回が可能となるようにすることができる。

[0067] また、上述した実施の形態において、ハンドル50を第1位置P1または第2位置P2に固定するための部材が、スイッチ機構100の切り換え部材105としても機能するように構成した例を示したが、これに限られない。一例として、図11～図13に示すように、ハンドル50を第1位置P1または第2位置P2に固定するための摺動部材55とは別に、スイッチ機構10の切り換え部材105を設けるようにしてもよい。なお、図11～図13に示す例において、摺動部材55は、伝達手段が連結されていないことを除き、上述した実施の形態で説明した切り換え部材105と同様に構成されている。また、図11～図13において、上述した実施の形態の構成等と対応する構成等に対しては同一の符号を付している。

[0068] 図11～図13に示す例において、切り換え部材106は、フレーム部50に回動可能に支持されている。切り換え部材106は、ハンドル50の揺動時における軌道範囲（通過する範囲）Z内に突出可能な突出部106a, 106bを有しており、突出部106a, 106bは、揺動中のハンドル50と接触し得るように構成されている。とりわけ、図示する例においては、切り換え部材106は、アームレスト28内に回動可能に支持され、突出部106a, 106bはアームレスト28から突出可能となっている。図12および図13に示すように、切り換え部材106は、対称的な形状を有して

おり、第1突出部106aおよび第2突出部106bの二つの突出部を有している。

[0069] 切り換え部材106の回動軸RAは、突出部106a, 106bに接触可能なハンドル50の部分の、ハンドル50の揺動にともなった移動軌跡を含む仮想平面と、略平行に延びている。これにより、第1位置P1から第2位置P2へ又は第2位置P2から第1位置P1へ移動中のハンドル50が切り換え部材106の突出部106a, 106bを押圧することによって、切り換え部材106が第1保持位置P21と第2保持位置P22との間で揺動し得るようになっている。

[0070] 図12に実線で示すように、切り換え部材106が第2保持位置P22に保持されている場合、第1突出部106aは、アームレスト28から突出して、ハンドル50の揺動時における軌道範囲Z内に入り込んでいる。一方、第2突出部106bは、アームレスト28の外面と概ね同一面上を延びており、ハンドル50の揺動時における軌道範囲Z内まで突出していない。このため、ハンドル50が第2位置P2（実線）から第1位置P1（二点鎖線）へ移動する際には、ハンドル50は、第1突出部106aよりもその移動経路における前方側に位置している第2突出部106bには接触せず、回動軸RAに对面する位置を通過した後に第1突出部106aに衝突して第1突出部106aを押圧するようになる（図13参照）。そして、ハンドル50が第1突出部106aを押圧することにより、切り換え部材106は第2保持位置P22（実線）から第1保持位置P21（二点鎖線）へ移動する。

[0071] 逆に、図12に二点鎖線で示すように、切り換え部材106が第1保持位置P21に保持されている場合、第1突出部106aは、アームレスト28の外面と概ね同一面上を延びており、ハンドル50の揺動時における軌道範囲Z内まで突出していない。一方、第2突出部106bは、アームレスト28から突出して、ハンドル50の揺動時における軌道範囲Z内に入り込んでいる。このため、ハンドル50が第1位置P1（二点鎖線）から第2位置P2（実線）へ移動する際には、ハンドル50は、第2突出部106bよりも

その移動経路における前方側に位置している第1突出部106aには接触せず、回動軸RAに対面する位置を通過した後に第2突出部106bに衝突して第2突出部106bを押圧するようになる。そして、ハンドル50が第2突出部106bを押圧することにより、切り換え部材106は第1保持位置P21から第2保持位置P22へ移動する。

[0072] ところで、本変形例におけるスイッチ機構100は、一对の支持片28bによって両端を支持されアームレスト28内に配置された板状部材28aをさらに有している。また、切り換え部材106は、アームレスト28の内方に突出する押圧突出部106cを有している。この押圧突出部106cは、アームレスト28内において、押圧突出部106cに対向する位置に位置している。そして、図12および図13に示すように、切り換え部材106が第1保持位置P21と第2保持位置P22との間に位置している間、切り換え部材106の押圧突出部106cは、板状部材28aに当接して板状部材28aを弾性変形させる。すなわち、切り換え部材106の揺動可能な範囲の第1保持位置P21と第2保持位置P22との間には付勢領域が含まれており、切り換え部材106が付勢領域内に位置する場合には、切り換え部材106が第1保持位置P21または第2保持位置P22に向けて付勢されるようになる。

[0073] 図示する態様においては、切り換え部材106が第1保持位置P21と第2保持位置P22との中間位置にある場合に、板状部材28aが最も変形するようになる。すなわち、第1保持位置P21と第2保持位置P22との中間位置に死点が存在し、切り換え部材106がこの死点よりも第1保持位置P21側に位置している場合には、板状部材28aの復元力によって切り換え部材106は第1保持位置P21に向けて付勢されるようになり、切り換え部材106がこの死点よりも第2保持位置P22側に位置している場合には、板状部材28aの復元力によって切り換え部材106は第2保持位置P22に向けて付勢されるようになる。

[0074] 以上のようにして、ハンドル50の揺動にともなってスイッチ機構100

の切り換え部材 106 が回動する。そして、ハンドル 50 が第 1 位置 P1 にある場合に、切り換え部材 106 が第 1 保持位置 P21 に保持され、ハンドル 50 が第 2 位置 P2 にある場合に、切り換え部材 106 が第 2 保持位置 P22 に保持されるようになる。

[0075] 図 11～図 13 に示す例において、第 1 伝達機構 120 のリードワイヤ 122 のスイッチ機構 100 側の端部は、アームレスト 28 内に設けられた回転可能なプーリー 29a を介し、第 1 突出部 106a の近傍において切り換え部材 106 に固定されている。そして、第 1 伝達機構 120 のチューブ状部材 124 のスイッチ機構 100 側の端部がアームレスト 28 内で固定される位置は、切り換え部材 106 が第 2 保持位置 P22 にある場合にリードワイヤ 122 がチューブ状部材 124 からスイッチ機構 100 側に引き出され、切り換え部材 106 が第 1 保持位置 P21 にある場合にリードワイヤ 122 がチューブ状部材 124 内にスイッチ機構 100 側から押し込まれるようになる位置に、決定されている。

[0076] 同様に、第 2 伝達機構 130 のリードワイヤ 132 のスイッチ機構 100 側の端部は、アームレスト 28 内に設けられた回転可能なプーリー 29b を介し、第 2 突出部 106b の近傍において切り換え部材 106 に固定されている。そして、第 2 伝達機構 130 のチューブ状部材 132 のスイッチ機構 100 側の端部がアームレスト 28 内で固定される位置は、切り換え部材 106 が第 2 保持位置 P22 にある場合にリードワイヤ 132 がチューブ状部材 134 内にスイッチ機構 100 側から押し込まれ、切り換え部材 106 が第 1 保持位置 P21 にある場合にリードワイヤ 132 がチューブ状部材 134 からスイッチ機構 100 の側に引き出されるようになる位置に、決定されている。

[0077] 第 1 伝達機構 120 および第 2 伝達機構 130 のその他の構成は、上述した実施の形態と同一にすることができます。また、図 11～図 13 に示された変形例のベビーカー 10 は、ここで説明した点を除き、上述した実施の形態と同様に構成することができる。このような構成によれば、上述した実施の

形態と同様に、切り換え部材 106 が第 1 保持位置 P21 にある場合に、自動的に、前輪 61 の旋回が規制されるとともに後輪 81 の旋回が可能となり、切り換え部材 106 が第 2 保持位置 P22 にある場合に、自動的に、前輪 61 の旋回が可能になるとともに後輪 81 の旋回が規制されるようになる。このような変形例によっても、ハンドル 50 の位置に応じた車輪 61, 81 の状態の切り換え操作をより安定して確実に行うことができる。

[0078] なお、図 11～図 13 に示す例においては、揺動中のハンドル 50 によって、スイッチ機構 100 の切り換え部材 106 が押圧され、切り換え部材 106 の位置が第 1 保持位置 P21 と第 2 保持位置 P22 との間で変化する例を示したが、これに限られない。突出部 106a, 106b が、ハンドル 50 に取り付けられた部材（例えば、上述した摺動部材 55）のハンドル 50 の揺動にともなった軌道範囲内に突出可能であり、当該ハンドル 50 に取り付けられた部材が突出部 106a, 106b を押圧することにより、切り換え部材 106 が第 1 保持位置 P21 と第 2 保持位置 P22 との間を移動するようにしてもよい。

[0079] また、上述した実施の形態に対する他の変形例として、以下のような変形も可能である。

[0080] 上述した実施の形態において、前脚用キャスター機構 60 および後脚用キャスター機構 80 の両方にロック部材 75, 95 が設けられている例を示したが、これに限られず、いずれか一方のみにロック部材が設けられるようにしてもよい。この際、ロック部材が設けられていないキャスター機構の車輪は、ベビーカー 10 の前後方向に対して旋回可能であるようにしてもよいし、ベビーカー 10 の前後方向に沿うとともに旋回不可能であるようにしてもよい。

[0081] また、上述した実施の形態において説明したベビーカー 10 の全体構成は、単なる例に過ぎない。例えば、折り畳み不可能にフレーム部 20 を構成するようにしてもよい。

[0082] さらに、上述した実施の形態において説明したキャスター機構の構成は、

单なる例に過ぎない。例えば、日本国特許公開公報特開2002-284015号に開示されたキャスター機構の構成を採用してもよい。

[0083] なお、以上において上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。

請求の範囲

[請求項1] 前脚および後脚を有するフレーム部と、
第1位置と第2位置との間を摺動可能にフレーム部に連結されたハンドルと、
前記前脚および前記後脚のうちの少なくとも一方に設けられたキャスター機構であって、車輪と、前記車輪を回転可能かつ旋回可能に保持する車輪ホルダと、前記車輪の旋回を規制するロック位置と前記車輪の旋回を可能にするロック解除位置との間を移動可能なロック部材と、を有するキャスター機構と、
前記ハンドルが前記第1位置にある場合に第1保持位置に保持されるとともに前記ハンドルが前記第2位置にある場合に第2保持位置に保持されるように構成された切り換え部材を有するスイッチ機構と、
前記スイッチ機構と前記キャスター機構との間に設けられ、前記切り換え部材の前記第1保持位置と前記第2保持位置との間での移動を前記ロック部材に伝達して、前記ロック部材を前記ロック解除位置から前記ロック位置へ或いは前記ロック位置から前記ロック解除位置へ移動させる伝達機構と、を備え、
前記切り換え部材は、前記ハンドルに摺動可能に設けられており、
前記切り換え部材は、前記ハンドルが前記第1位置にある場合に前記ハンドル上の前記第1保持位置に配置され、前記ハンドルが前記第2位置にある場合に前記第1保持位置とは異なる前記ハンドル上の前記第2保持位置に配置される
ことを特徴とするベビーカー。

[請求項2] 前記フレームは、前記ハンドルが前記第1位置にある場合に前記切り換え部材と係合して前記切り換え部材を前記第1保持位置に保持するようになる第1係合部材と、前記ハンドルが前記第2位置にある場合に前記切り換え部材と係合して前記切り換え部材を前記第2保持位置に保持するようになる第2係合部材と、をさらに有する

ことを特徴とする請求項 1 に記載のベビーカー。

[請求項3]

前記フレーム部は、前記前脚および前記後脚に連結されたアームレストをさらに有し、

前記第 1 係合部材および前記第 2 係合部材は、前記アームレストに設けられている

ことを特徴とする請求項 2 に記載のベビーカー。

[請求項4]

前記切り換え部材が前記第 1 係合部材と係合することにより、前記ハンドルの前記第 1 位置からの揺動が規制されるとともに、前記切り換え部材が前記第 2 係合部材と係合することにより、前記ハンドルの前記第 2 位置からの揺動が規制されるように、前記切り換え部材ならばに前記フレーム部が構成されている

ことを特徴とする請求項 2 に記載のベビーカー。

[請求項5]

前記切り換え部材は、前記ハンドルの長手方向に前記ハンドル上を移動可能であり、

前記切り換え部材から前記ハンドルの揺動中心までの前記ハンドルの長手方向に沿った長さは、前記切り換え部材が前記第 1 保持位置に位置している場合と前記切り換え部材が前記第 2 保持位置に位置している場合とで異なる

ことを特徴とする請求項 1 に記載のベビーカー。

[請求項6]

前脚および後脚を有するフレーム部と、

第 1 位置と第 2 位置との間を揺動可能にフレーム部に連結されたハンドルと、

前記前脚および前記後脚のうちの少なくとも一方に設けられたキャスター機構であって、車輪と、前記車輪を回転可能かつ旋回可能に保持する車輪ホルダと、前記車輪の旋回を規制するロック位置と前記車輪の旋回を可能にするロック解除位置との間を移動可能なロック部材と、を有するキャスター機構と、

前記ハンドルが前記第 1 位置にある場合に第 1 保持位置に保持され

るとともに前記ハンドルが前記第2位置にある場合に第2保持位置に保持されるように構成された切り換え部材を有するスイッチ機構と、

前記スイッチ機構と前記キャスター機構との間に設けられ、前記切り換え部材の前記第1保持位置と前記第2保持位置との間での移動を前記ロック部材に伝達して、前記ロック部材を前記ロック解除位置から前記ロック位置へ或いは前記ロック位置から前記ロック解除位置へ移動させる伝達機構と、を備え、

前記切り換え部材は、前記フレーム部に回動可能に支持され、

前記切り換え部材は、前記ハンドルの搖動時における軌道範囲内に、あるいは、前記ハンドルに取り付けられた部材の前記ハンドルの搖動時における軌道範囲内に突出可能な突出部を有し、

前記第1位置から前記第2位置へ又は前記第2位置から前記第1位置へ移動中の前記ハンドルあるいは当該ハンドルに取り付けられた部材が前記突出部を押圧することによって、前記切り換え部材が前記第1保持位置と前記第2保持位置との間を回動するように、前記切り換え部材は構成されている

ことを特徴とするベビーカー。

[請求項7]

前記フレーム部は、前記前脚および前記後脚に連結されたアームレストをさらに有し、前記切り換え部材は、前記アームレストに回動可能に支持されている

ことを特徴とする請求項6に記載のベビーカー。

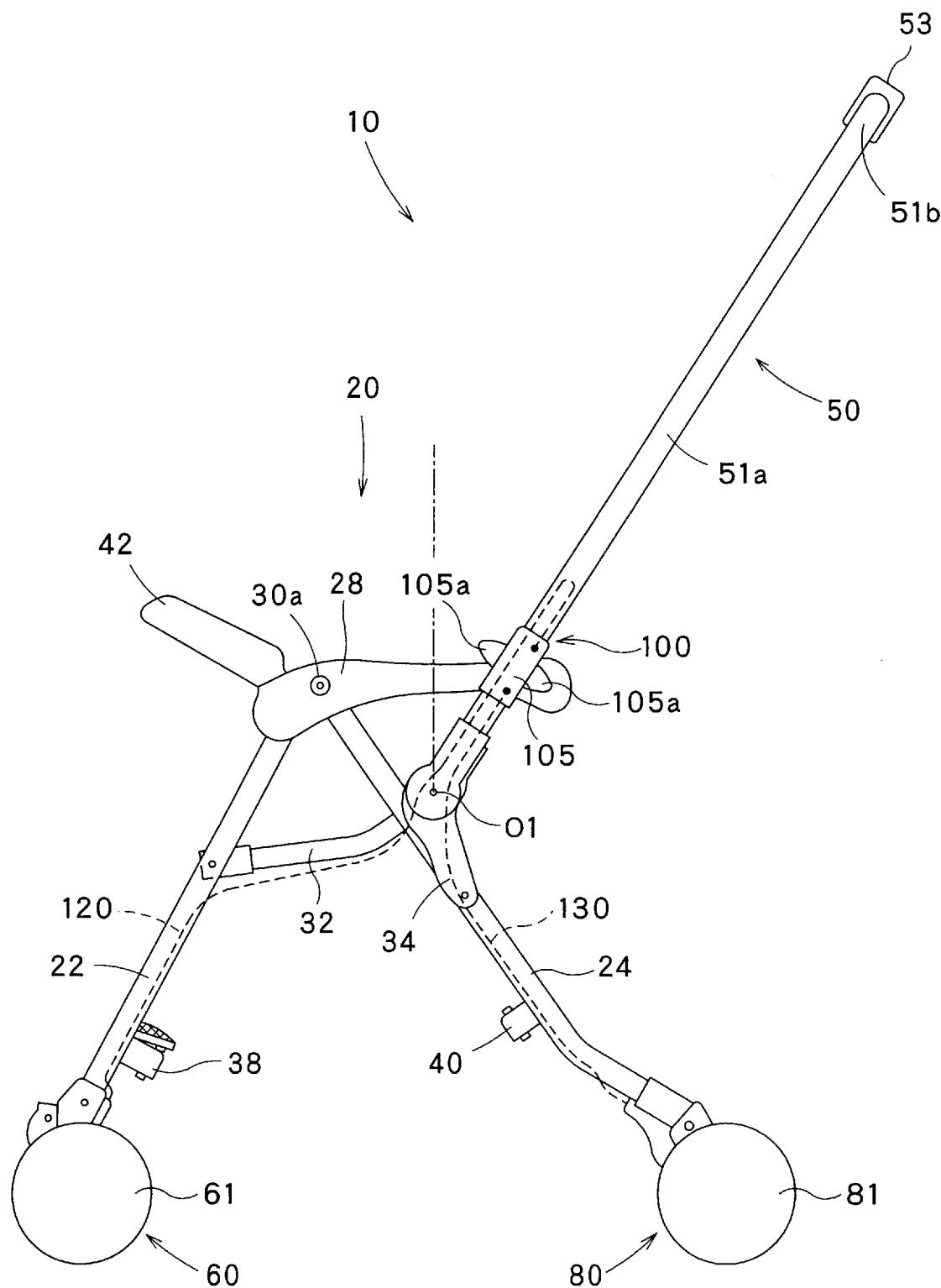
[請求項8]

前記切り換え部材は、

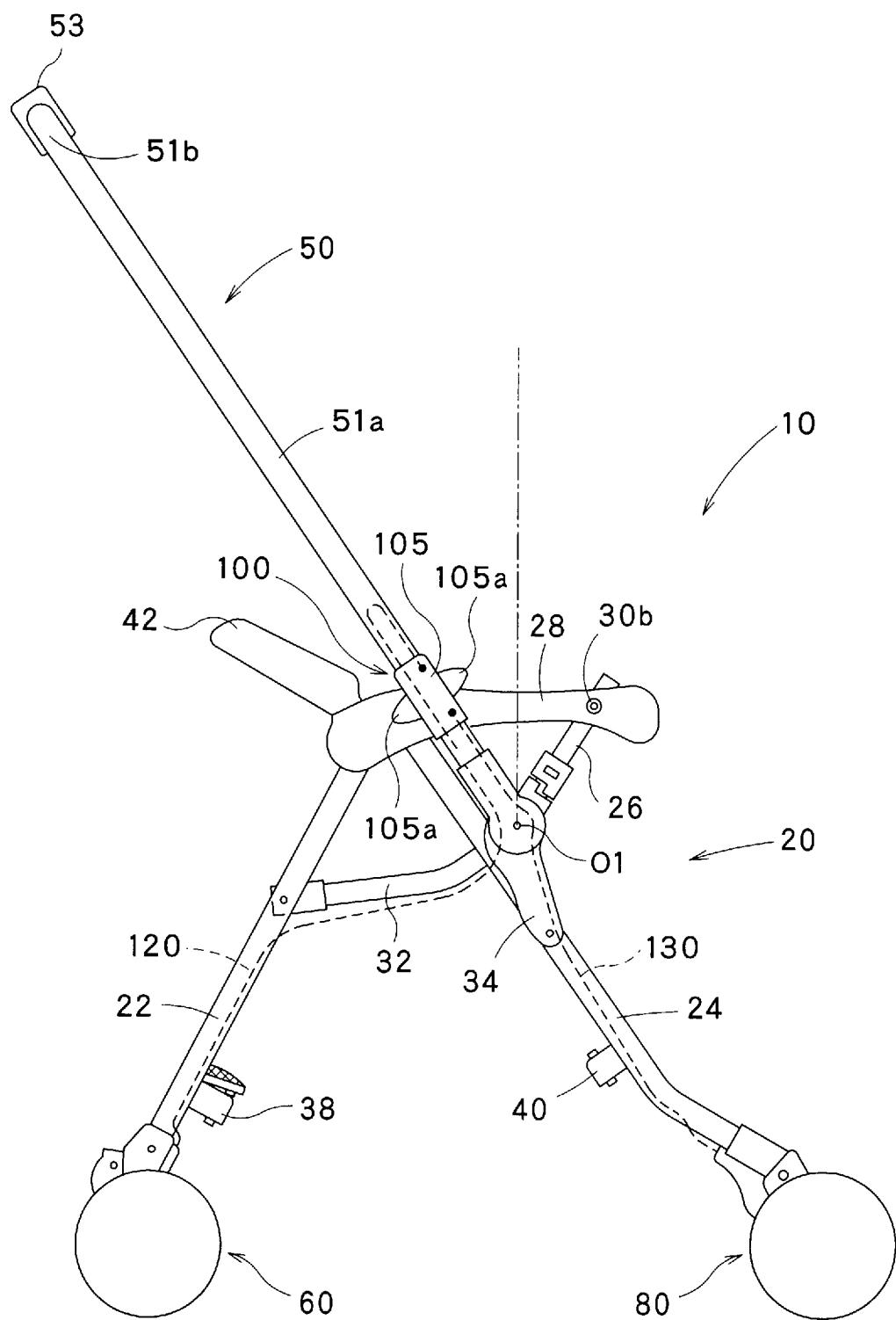
前記第2保持位置に位置している場合に、前記ハンドルの前記軌道範囲内または前記ハンドルに取り付けられた部材の前記軌道範囲内へ突出し、前記第2位置から前記第1位置に向けて搖動する前記ハンドルまたは前記ハンドルに取り付けられた部材に押圧されるように構成された第1突出部と、

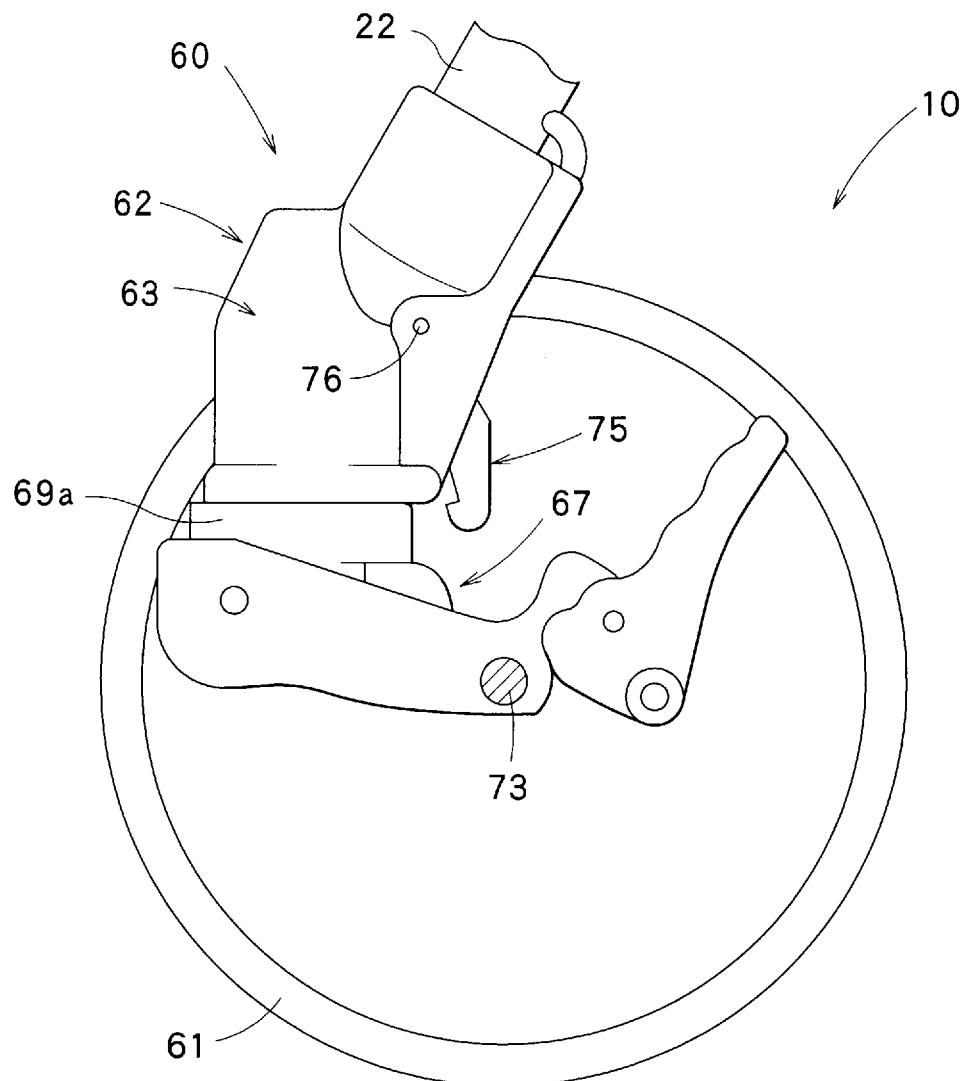

前記第1保持位置に位置している場合に、前記ハンドルの前記軌道

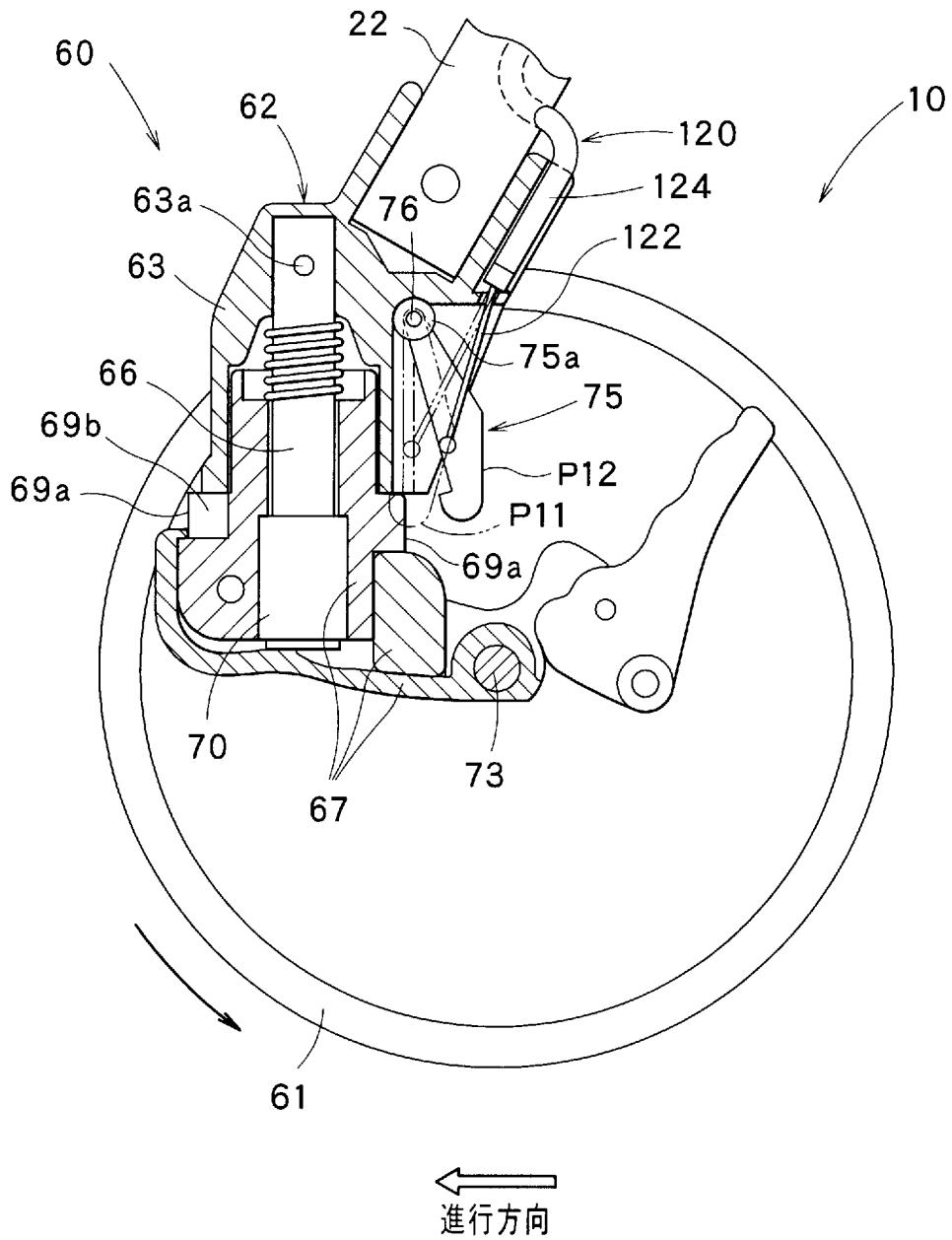
範囲内または前記ハンドルに取り付けられた部材の前記軌道範囲内へ突出し、前記第1位置から前記第2位置に向けて揺動する前記ハンドルまたは前記ハンドルに取り付けられた部材に押圧されるように構成された第2突出部と、を有する
ことを特徴とする請求項6に記載のベビーカー。

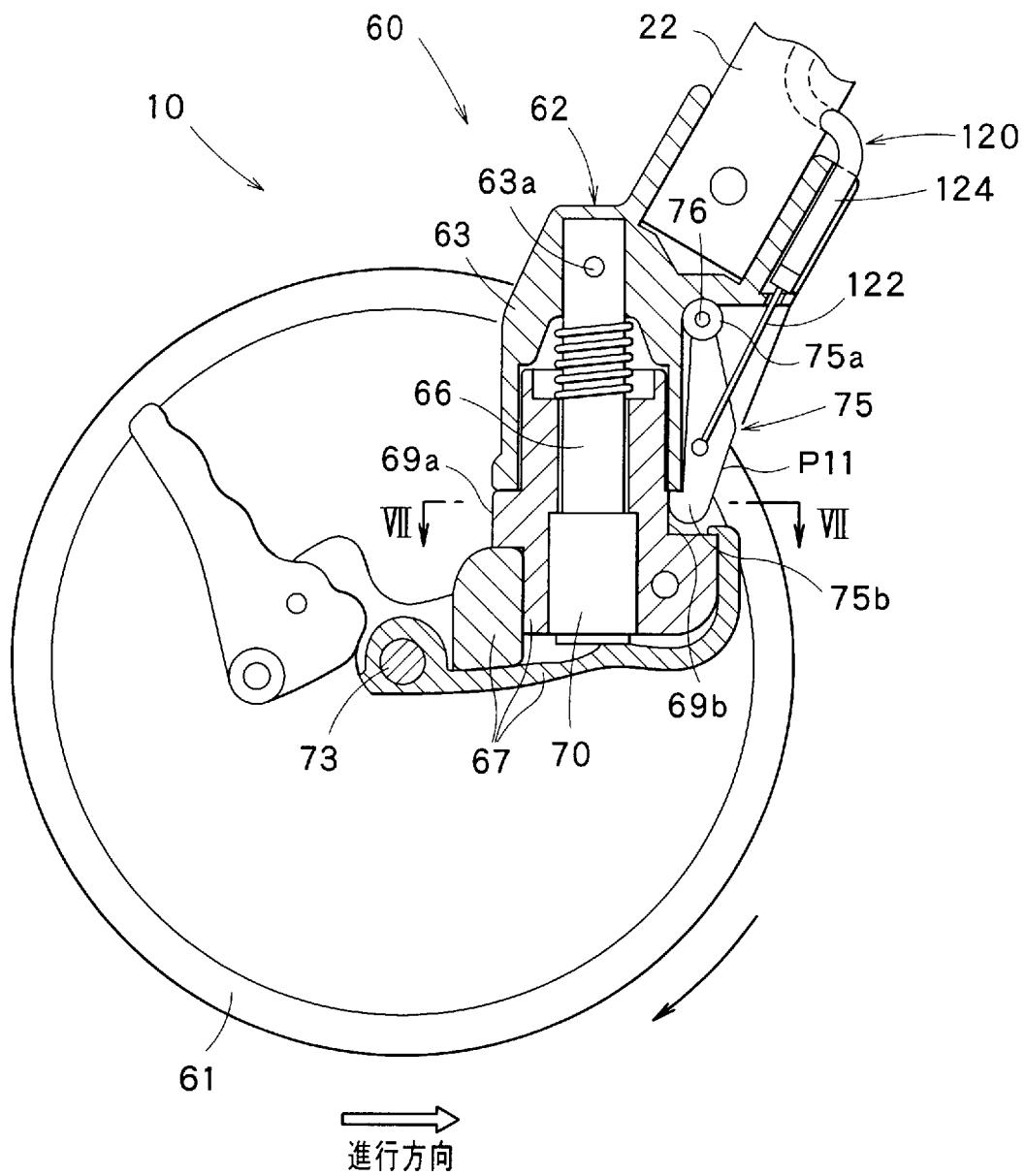

[請求項9]

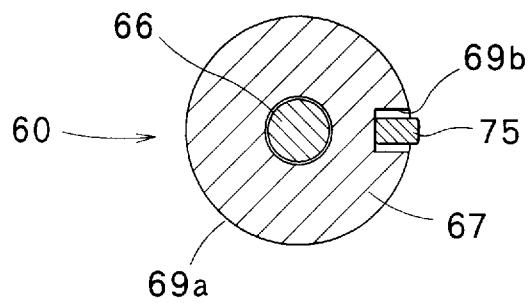
前記切り換え部材が前記第1保持位置と前記第2保持位置との間に位置する場合に、前記切り換え部材が前記第1保持位置または前記第2保持位置に向けて付勢されるように、前記スイッチ機構は構成されている
ことを特徴とする請求項6に記載のベビーカー。

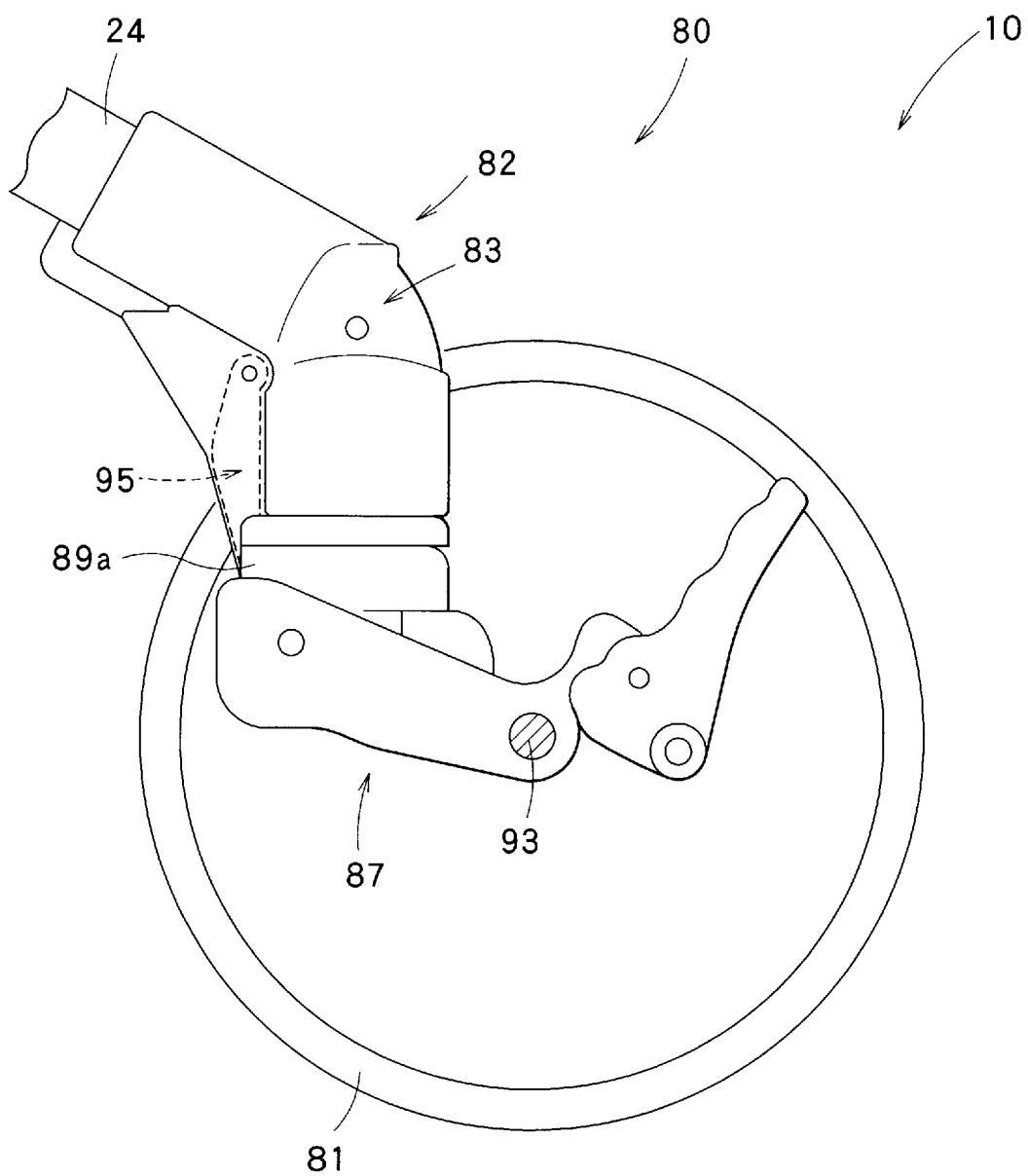

[図1]

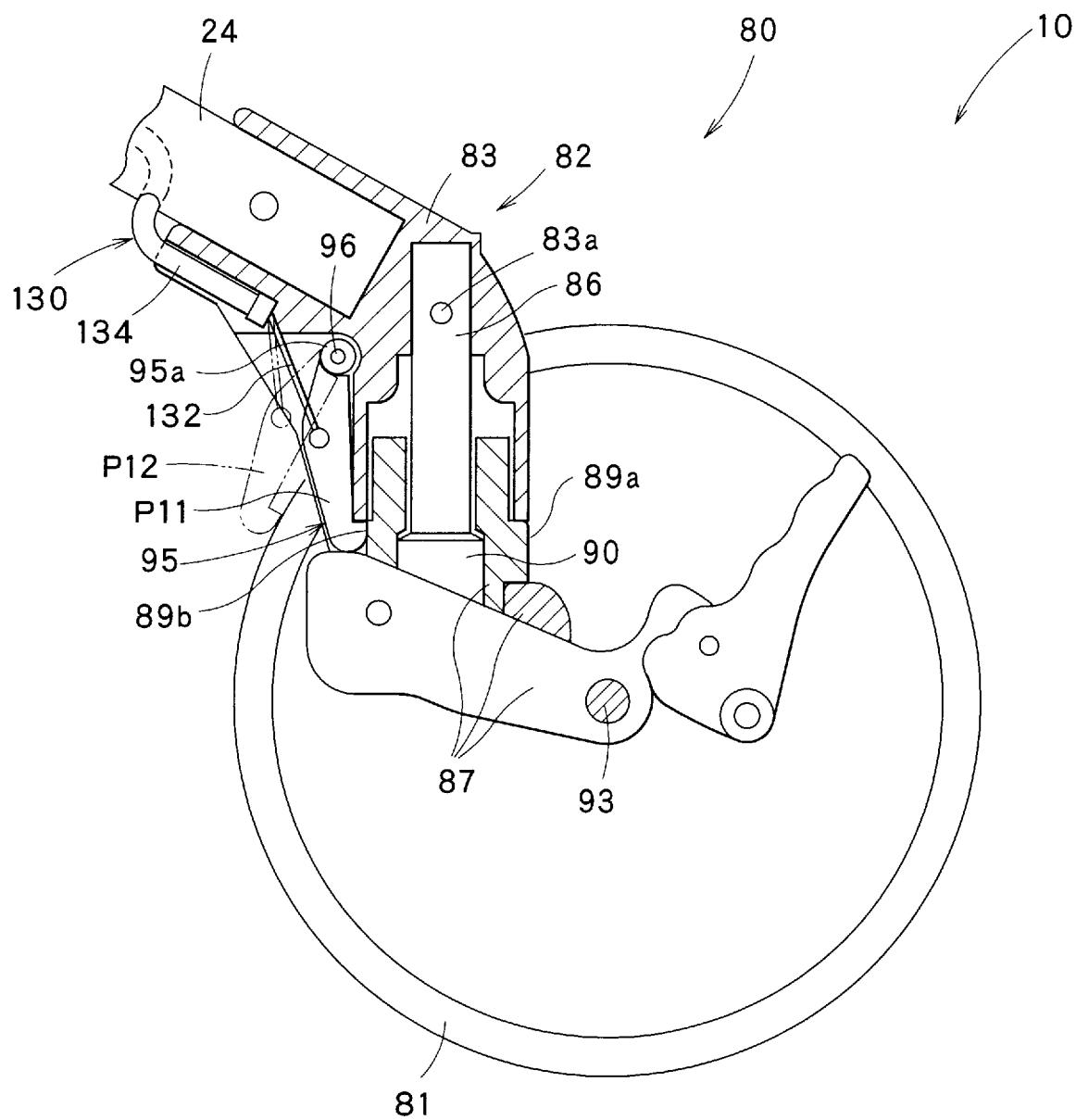

[図2]

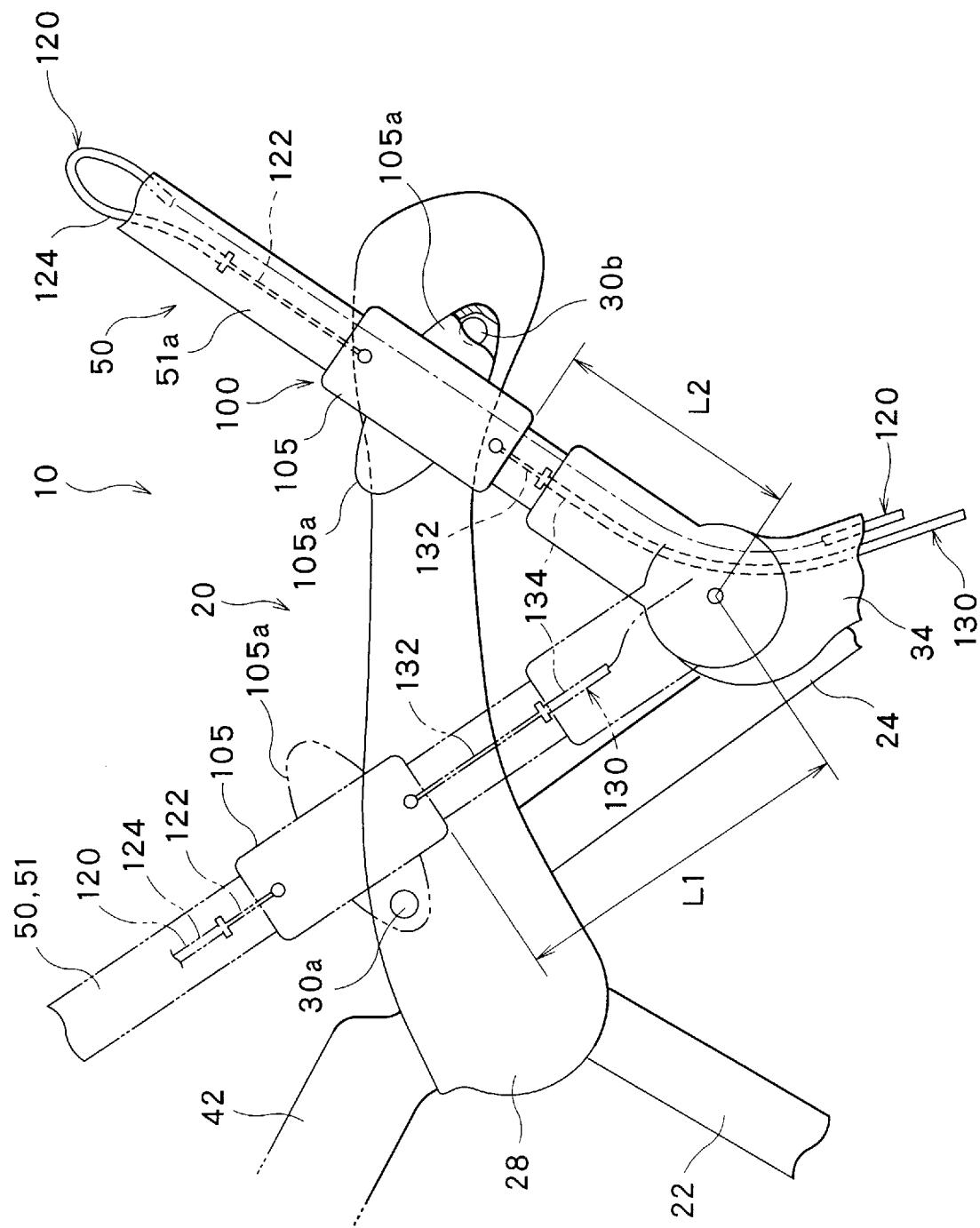

[図3]

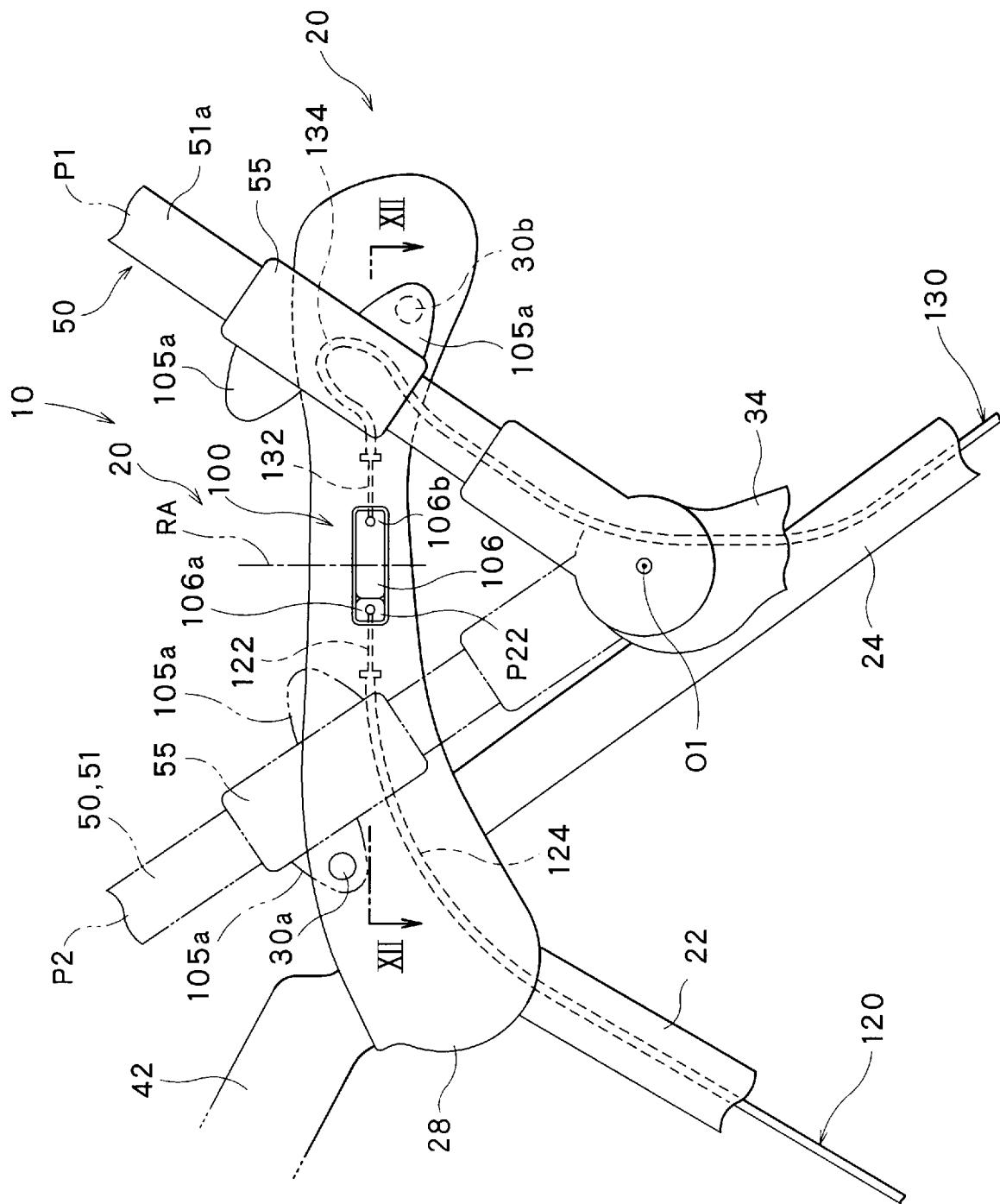

[図4]

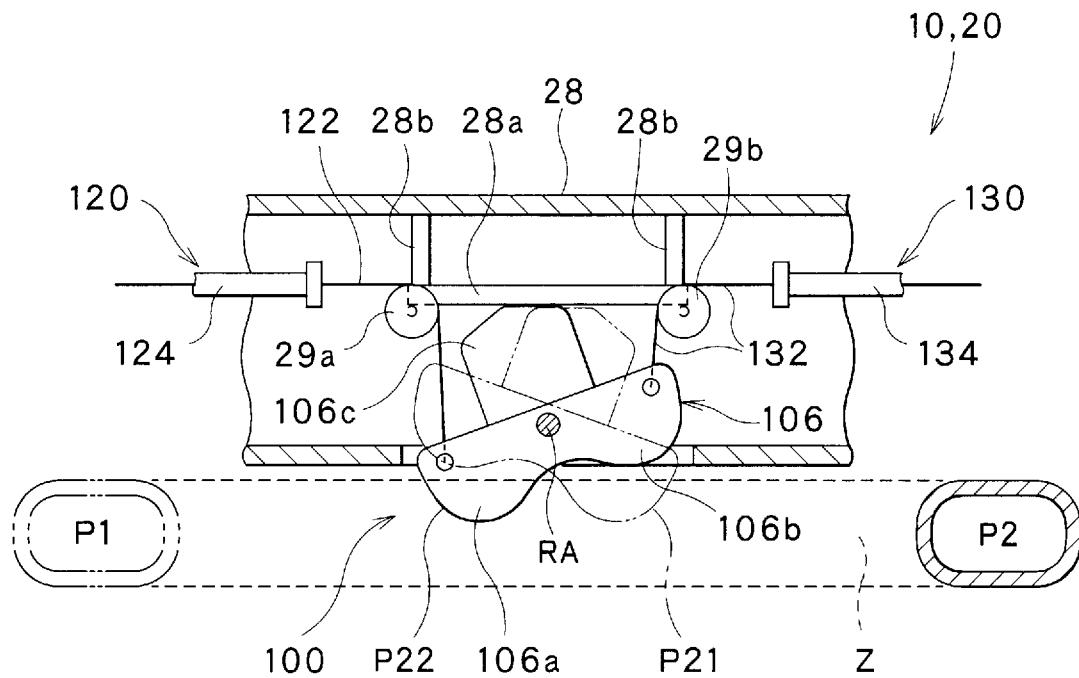

[図5]

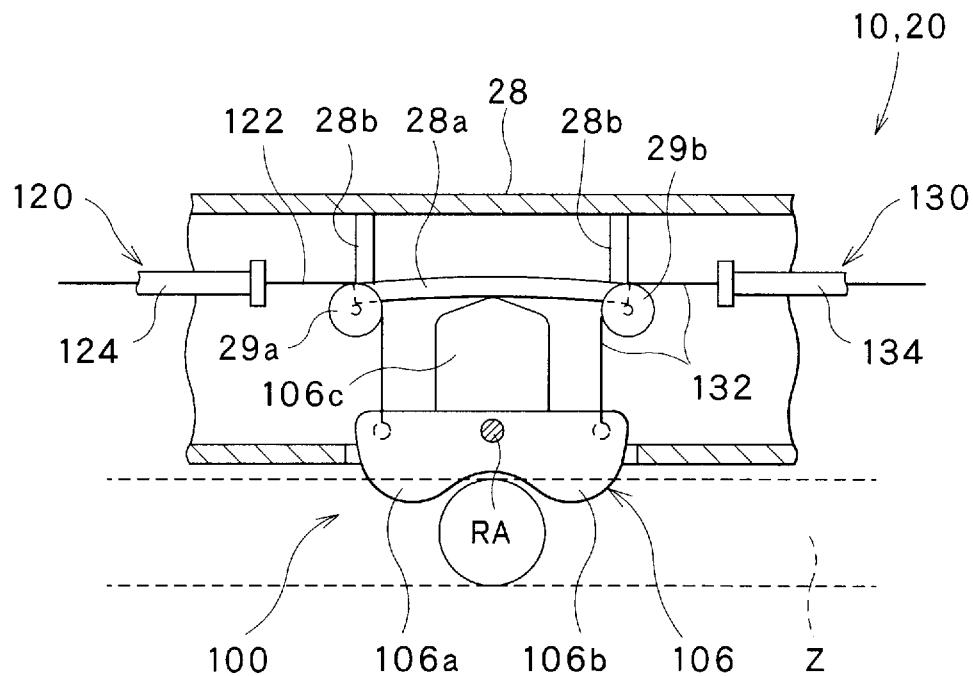

[図6]


[図7]


[図8]


[図9]


[図10]


[图11]

[图12]

[図13]

D E C L A R A T I O N

In the matter of the
Application for Patent
in Hong Kong in the name
of COMBI CORPORATION

I, the undersigned, Yukihiro HOTTA, of Kyowa Patent and Law Office located at 2-3, Marunouchi 3-Chome, Chiyoda-Ku, Tokyo-To, Japan, do solemnly and sincerely declare as follows:

1. That I am well acquainted with the English and Japanese languages and am competent to translate from Japanese into English.
2. That I have executed, with the best of my ability, a true and correct translation into English of the complete specification and claim(s) originally filed as PCT/JP2010/055051 filed on March 24, 2010.

Dated this 23th day of March, 2012

Yukihiro HOTTA
Patent Attorney

2009-086084

Name of Document: Patent Application

Reference Number: 17737401

Application Date: March 31, 2009

To: The Commissioner of the Patent Office

International Patent Classification: B62B 7/04

Inventor:

Address: c/o COMBI CORPORATION, 6-7, Moto-Asakusa 2-Chome,
Taito-Ku, Tokyo-To

Name: Kenji FUNAKURA

Applicant:

Identification Number: 391003912

Name: COMBI CORPORATION

Agent:

Identification Number: 100075812

Patent Attorney

Name: Kenji YOSHITAKE

Agent:

Identification Number: 100091982

Patent Attorney

Name: Hiroshi NAGAI

Agent:

Identification Number: 100096895

Patent Attorney

Name: Junpei OKADA

Agent:

Identification Number: 100117787

Patent Attorney

Name: Hirohito KATSUNUMA

Agent:

Identification Number: 100127465
Patent Attorney
Name: Yukihiko HOTTA
Tel: 03-3211-2320

Indication of the FEE:

Deposit Account Number: 087654
Fee: 15,000Yen

List of Documents filed:

Specification	1
Claim	1
Abstract	1
Drawing	1

Name of Invention: STROLLER

DESCRIPTION

STROLLER

5

TECHNICAL FIELD

[0001]

The present invention relates to a stroller including a handle that is swingable between a forward inclined position and a rearward inclined position. In particular, the present 10 invention pertains to a stroller in which wheels disposed on front legs or rear legs can be automatically switched, in accordance with a position of the handle, into a turnable condition or an unturnable condition with respect to the back and forth direction of the stroller.

15

BACKGROUND ART

[0002]

There have been conventionally known strollers for carrying a baby facing forward in the traveling direction. In 20 addition, widely used in recent years are strollers including a handle that is swingable between a first position (front pushing position) at which the handle is inclined forward of a vertical axis when viewed from the lateral side, and a second position (back pushing position) at which the handle is inclined rearward 25 of the vertical axis. In such a stroller, when the handle is located on the second position, an operator (parent) can push forward the stroller with the baby facing forward in the traveling direction, grasping the handle from a back side of the baby. On the other hand, when the handle is located on the first position, 30 the operator can push forward the stroller with the rear legs facing forward in the traveling direction, grasping the handle from a side of the front legs on which the operator faces the baby.

[0003]

35 In consideration of manipulability of the stroller, it is preferable that wheels disposed on the legs facing forward in

the traveling direction are turnable with respect to the back and forth direction, while wheels on the legs facing rearward in the traveling direction are unturnable with respect to the back and forth direction. JP2002-284015A discloses a stroller in which

5 the wheels disposed on the front legs and the rear legs can be automatically switched, in accordance with a position of the handle, into the turnable condition or the unturnable condition with respect to the back and forth direction.

[0004]

10 In the stroller disclosed in JP2002-284015A, sliding members (lock switching members) are slidably provided on the front legs. The sliding members are pushed to be slid by the handle which is being swung toward the first position (front pushing position), whereby the wheels can be switched into the

15 turnable condition or the unturnable condition.

[0005]

However, inclined angles of the front legs and a swinging range of the handle are set in relation to other structures of the stroller, in terms of comfortableness and manipulability. Thus,

20 it is impossible in all the strollers to align a direction in which the handle pushes the lock switching member, with a direction in which the lock switching member is slid, i.e., with a direction in which the front leg is extended. In this case, there is a possibility that the lock switching members cannot be

25 smoothly slid by the swinging of the handle. In other words, an operation of the lock switching member by the handle cannot be always performed in a stable and reliable manner. In the first place, depending on the overall structure of the stroller, it may be inappropriate to swing the handle up to a position on

30 which the handle is located on the lateral sides of the front legs, with a view to facilitating grasping and operating of the handle. In this case, it becomes impossible to push the lock switching member by swinging the handle.

The present invention has been made in view of these respects. The object of the present invention is to provide a stroller allowing an operation for switching the conditions of the wheels in accordance with a position of the handle to be 5 performed in a more stable and reliable manner.

[0007]

A stroller according to the present invention comprises: a frame part including a front leg and a rear leg; a handle connected to the frame part so as to be swingable between a 10 first position and a second position; a caster mechanism disposed at least on one of the front leg and the rear leg, the caster mechanism including a wheel, a wheel holder configured to rotatably and turnably hold the wheel, and a locking member capable of being moved between a locking position for 15 regulating a turning of the wheel and an unlocking position for enabling the turning of the wheel; a switching mechanism including a switching member which is configured to be held on a first holding position when the handle is located on the first position, and to be held on a second holding position when the 20 handle is located on the second position; and a transmission mechanism disposed between the switching mechanism and the caster mechanism, and configured to transmit, to the locking member, a movement of the switching member between the first holding position and the second holding position, so as to 25 move the locking member from the unlocking position to the locking position or from the locking position to the unlocking position.

[0008]

In the stroller according to the present invention, the 30 switching member may be slidably disposed on the handle. The switching member may be arranged on the first holding position on the handle when the handle is located on the first position, and may be arranged on the second holding position on the handle, which is different from the first holding position, when 35 the handle is located on the second position.

[0009]

In such a stroller according to the present invention, the frame part may further includes: a first engagement member that is engaged with the switching member, when the handle is located on the first position, so as to hold the switching member on the first holding position; and a second engagement member that is engaged with the switching member, when the handle is located on the second position, so as to hold the switching member on the second holding position. In the stroller, the frame part may further include an armrest connected with the front leg and the rear leg, and the first engagement member and the second engagement member may be disposed on the armrest. In addition, in this stroller, the switching member and the frame part may be structured such that, when the switching member is engaged with the first engagement member, the swinging movement of the handle from the first position is regulated, and that, when the switching member is engaged with the second engagement member, the swinging movement of the handle from the second position is regulated.

[0010]

In addition, in such a stroller according to the present invention, the switching member may be movable on the handle in a longitudinal direction of the handle, and a distance between the switching member and a swing center of the handle along the longitudinal direction of the handle may differ depending on whether the switching member is located on the first holding position, or the switching member is located on the second holding position.

[0011]

Alternatively, in the stroller according to the present invention, the switching member may be pivotably supported on the frame part, the switching member may include a projecting part that is projectable in a trajectory zone of the handle, which is defined when the handle is swung, or a trajectory zone of a member disposed on the handle, which is defined when the handle is swung, and the switching member may be structured such that, when the handle or the member disposed on the

handle presses the projecting part during a movement of the handle from the first position to the second position or from the second position to the first position, the switching member is turned between the first holding position and the second holding 5 position.

[0012]

In such a stroller according to the present invention, the frame part may further include an armrest connected with the front leg and the rear leg, and the switching member may be 10 pivotably supported on the armrest.

[0013]

In addition, in such a stroller according to the present invention, the switching member may include: a first projecting part structured such that, when the switching member is located 15 on the second holding position, the first projecting part projects in the trajectory zone of the handle or in the trajectory zone of the member disposed on the handle, so as to be pressed by the handle or the member disposed on the handle during the swinging movement of the handle from the second position 20 toward the first position; and a second projecting part structured such that, when the switching member is located on the first holding position, the second projecting part projects in the trajectory zone of the handle or in the trajectory zone of the member disposed on the handle, so as to be pressed by the 25 handle or the member disposed on the handle during the swinging movement of the handle from the first position toward the second position.

[0014]

Further, in such a stroller according to the present 30 invention, the switching mechanism may be structured such that, when the switching member is located on an intermediate position between the first holding position and the second holding position, the switching member is urged toward the first holding position or the second holding position.

35 [0015]

In addition, in the stroller according to the present

invention, a caster mechanism for front leg may be disposed on a lower end of the front leg, a caster mechanism for rear leg may be disposed on a lower end of the rear leg, the transmission mechanism (first transmission mechanism) may be disposed between one of the caster mechanism for front leg and the caster mechanism for rear leg and the switching mechanism, and the transmission mechanism (second transmission mechanism) may be disposed between the other of the caster mechanism for front leg and the caster mechanism for rear leg. In such a stroller according to the present invention, the handle may be inclined forward on the first position, and may be inclined rearward on the second position. When the handle is located on the first position, the turning of the wheel of the caster mechanism for front leg may be regulated. When the handle is located on the second position, the turning of the wheel of the caster mechanism for rear leg may be regulated.

BRIEF DESCRIPTION OF THE DRAWINGS

20 [0016]

Fig. 1 is a perspective view for explaining an overall structure of a stroller in one embodiment of the present invention.

Fig. 2 is a side view of the stroller, with a handle thereof being located on a second position (backside pushing position).

Fig. 3 is a side view of the stroller, with the handle being located on a first position (face-to-face pushing position).

Fig. 4 is a side view showing a caster mechanism for front leg.

Fig. 5 is a longitudinal sectional view of the caster mechanism for front leg shown in Fig. 4, with a locking member being arranged on an unlocking position.

Fig. 6 is a longitudinal sectional view corresponding to Fig. 5, with the locking member being located on a locking position.

Fig. 7 is a sectional view taken along the line VII-VII in Fig. 6.

Fig. 8 is a side view of a caster mechanism for rear leg.

Fig. 9 is a longitudinal sectional view of the caster mechanism for rear leg shown in Fig. 8, with a locking member being arranged on a locking position.

5 Fig. 10 is a partial side view of the stroller for explaining a switching mechanism.

Fig. 11 is a view corresponding to Fig. 10, for explaining a modification of the switching mechanism.

10 Fig. 12 is a sectional view taken along the line XII-XII in Fig. 11.

Fig. 13 is a view corresponding to Fig. 12, showing a switching member located on a position different from the position shown in Fig. 12.

15 MODE FOR CARRYING OUT THE INVENTION

[0017]

One embodiment of the present invention will be described below with reference to the drawings.

[0018]

20 Figs. 1 to 10 are views for explaining a stroller in one embodiment of the present invention. Figs. 1 to 3 show an overall structure of the stroller. As shown in Figs. 1 to 3, the stroller 10 in this embodiment includes a frame part 20 having front legs 22 and rear legs 24, and a handle 50 swingably connected to the frame part 20. Disposed on a lower end of the front leg 22 of the frame part 20 is a caster mechanism for front leg 60 having a front wheel 61. Disposed on a lower end of the rear leg 24 of the frame part 20 is a caster mechanism for rear leg 80 having a rear wheel 81.

25 30 [0019]

In this embodiment, similarly to prevalent strollers (see JP2006-117012A, for example), the stroller 10 is configured to be foldable. In the stroller 10 in this embodiment, it is both possible, by swinging the handle 50 with respect to the frame part 20, to steer the stroller 10 with the baby facing forward in the traveling direction, while an operator (parent) grasps the

handle 50 from a back side of the baby, and to steer the stroller 10 with the rear legs of the stroller 10 facing forward in the traveling direction, while the operator grasps the handle from side of the front legs on which the operator faces the baby.

5 [0020]

In this specification, the terms "front", "rear", "up", "down", "back and forth direction", and "up and down direction" with respect to the stroller mean, unless otherwise specified, "front", "rear", "up", "down", "back and forth direction", and "up 10 and down direction", with respect to a baby in the unfolded stroller 10. More specifically, the "back and forth direction" of the stroller 10 corresponds to a direction connecting a lower left part and an upper right part in a plane of Fig. 1, and a right and left direction in a plane of each of Figs. 2 and 3. Unless 15 otherwise specified, the "front" is a side to which the baby in the stroller faces. The lower left side in the plane of Fig. 1 and the left side of the plane of each of Figs. 2 and 3 correspond to the front side of the stroller 10. The "up and down direction" of the stroller 10 is a direction perpendicular to the back and forth 20 direction, and is a direction perpendicular to the ground on which the stroller 10 rests. Thus, when the ground surface is a horizontal surface, the "up and down direction" represents a vertical direction. The "lateral direction" is a width direction, and is a direction perpendicular both to the "back and forth 25 direction" and the "up and down direction".

[0021]

At first, as the overall structure of the stroller, the frame part 20 and the handle 50 are described. As shown in Fig. 1, the stroller 10 in this embodiment has substantially a 30 symmetrical structure as a whole, with respect to a lateral center plane along the back and forth direction. As shown in Figs. 1 to 3, the frame part 20 in this embodiment includes a pair of front legs 22 respectively arranged on the right side and the left side, a pair of rear legs 24 respectively arranged on the 35 right side and the left side, a pair of armrests 28 respectively arranged on the right side and the left side, and a pair of

connecting rods (connecting members) 26 respectively arranged on the right side and the left side.

[0022]

The front legs 22, the rear legs 24, and the connecting rods 26 may be formed of tubular members, for example, pipes made of an aluminum alloy. Meanwhile, the armrests 28 may be formed of a resin, for example. An upper end of each of the front legs 22 is pivotably (swingably) connected to a front portion of the corresponding (right or left) armrest 28.

Similarly, an upper end of each of the rear legs 24 is pivotably (swingably) connected to the front portion of the corresponding (right or left) armrest 28. An upper portion of each of the connecting rods 26 is pivotably (swingably) connected to a rear portion of the corresponding (right or left) armrest 28.

15 [0023]

The frame part 20 further includes a left lateral side connecting member 32 that connects the left front leg 22 and the left connecting rod 26, and a right lateral side connecting member 32 that connects the right front leg 22 and the right connecting rod 26. A front portion of each of the lateral side connecting members 32 is pivotably connected to an intermediate portion of the front leg 22. A rear portion of each of the lateral side connecting members 32 is pivotably connected to a lower portion of the connecting rod 26. The lateral side connecting member 32 may be formed of a plate member made of an aluminum alloy, for example. The frame part 20 further includes a left bracket 34 that connects the left rear leg 24 and the left connecting rod 26, and a right bracket 26 that connects the right rear leg 24 and the right connecting rod 26. Each of the brackets 34 is pivotably (swingably) connected, at one portion thereof, to an intermediate portion of the rear leg 24, and is pivotably connected, at the other portion thereof, to a lower portion of the connecting rod 26.

[0024]

35 As laterally extending constituent elements, the stroller 10 in this embodiment includes a front upper connecting stay 36

and a footrest 38 that connect the pair of front legs 22, and a rear connecting stay 40 that connects the pair of rear legs 24. A bendable guard member 42 connecting the pair of armrests 28 is detachably mounted on the respective armrests 28.

5 [0025]

The handle 50 is swingably connected to the frame part 20 as structured above. As shown in Fig. 1, in this embodiment, the handle 50 includes a pair of linear portions 51a extending substantially linearly in parallel with each other, 10 and an intermediate portion 51b that connects the pair of linear portions 51a. The handle 50 generally has a substantially U-shape. Opposed ends of the U-shaped handle 50 are pivotably (swingably) connected to the corresponding brackets 34. A pivot axis line (swing center) of the handle 50 with 15 respect to the brackets 34 corresponds to a pivot axis line of the connecting rod 26 with respect to the bracket 34, and a pivot axis line of the connecting rod 26 with respect to the lateral side connecting member 32. Due to this structure, as shown in Figs. 2 and 3, the handle 50 can be swung with respect to the frame 20 part 20, and the linear portions 51a of the handle 50 can be moved on the lateral sides of the armrests 28 along the armrests 28.

[0026]

Switching members 105 are respectively disposed on the 25 pair of linear portions 51a of the handle 50 capable of being moved on the lateral sides of the armrests 28. Each of the switching members 105 is configured to be slidable along the corresponding linear portion 51a. Further, disposed on the intermediate portion 51b of the handle 50 is a remote operation 30 device 53 for remotely operating a sliding movement of the switching members 105.

[0027]

On the other hand, as shown in Figs. 2 and 3, each of the 35 armrests 28 is provided with a pair of a first engagement member (first engagement protrusion) 30a and a second engagement member (second engagement protrusion) 30b to

be engaged with the switching members 105 for regulating a swinging of the handle 50. Each of the switching members 105 has container parts 105a disposed on a front portion and a rear portion thereof. As shown in the partial sectional view of Fig. 5, a lower end of the container part 105a is opened. Thus, by operating the remote operation device 53 so as to slide the switching members 105 upward while the handle 50 is located on a predetermined position, the engagement between the switching members 105 and the engagement members 30a or 10 the engagement between the switching members 105 and the engagement members 30b can be released. On the other hand, by sliding downward the switching members 105 so that the engagement members 30a or 30b are covered by the container parts 105a from above, the switching members 105 and the 15 engagement members 30a or 30b can be engaged with each other.

[0028]

As shown in Fig. 3, by engaging the first engagement protrusions 30a on the front side and the switching members 20 105 to be locked on with each other, the handle 50 is fixed on a first position (face-to-face pushing position) P1. When the handle 50 is fixed on the first position P1, the handle 50 adopts a posture where the handle 50 is inclined forward of the stroller 10 (inclined toward the front leg) from a position (position 25 indicated by the one-dot chain line in Fig. 3) in which the handle 50 is inverted on the pivot axis line (swing center) O1 along the vertical axis when viewed from the lateral side, and the handle 50 is extended substantially in parallel with the rear legs 24. The operator can push and advance the stroller 10, grasping the 30 handle 50 from a position on a side of the front legs 22 of the stroller 10 on which the operator faces the baby. At this time, the rear legs 24 of the stroller 10 face the forward side in the traveling direction.

[0029]

35 On the other hand, as shown in Fig. 2, by engaging the second engagement protrusions 30b on the rear side and the

switching members 105 to be locked on with each other, the handle 50 is fixed on a second position (backside pushing position) P2. When the handle 50 is fixed on the second position P2, the handle 50 adopts a posture where the handle 5 50 is inclined rearward of the stroller 10 (inclined toward the rear legs) from a position (position indicated by the one-dot chain line in Fig. 2) in which the handle 50 is inverted on the pivot axis line (swing center) O1 along the vertical axis when viewed from the lateral side, and the handle 50 is extended 10 substantially in parallel with the connecting rod 26. The operator can push and advance the stroller 10 with the baby facing forward in the traveling direction, grasping the handle 50 from a position on a side of the rear legs 24 of the stroller 10, i.e., from a back side of the baby. At this time, the front legs 15 22 of the stroller 10 face the forward side in the traveling direction.

[0030]

As described below, in this embodiment, the switching member 105 to be engageable with the first engagement member 30a and the second engagement member 30b functions 20 as a switching mechanism 100 that converts a swinging motion of the handle 50 into a different motion, in order to regulate or deregulate turning of the wheels 61 and 81 of the caster mechanisms 60 and 80.

25 [0031]

The stroller 10 having the overall structure as described above can be folded by rotating the respective constituent members. To be specific, by pulling upward the handle 50 positioned on the second position P2 at first, and then by 30 pushing downward the handle 50, the bracket 34 is rotated clockwise in Fig. 2 relative to the rear leg 24. In accordance with this operation, the armrest 28 and the lateral side connecting member 32 are rotated clockwise in Fig. 2 relative to the connecting rod 26. By means of these operations, the 35 handle 50 and the front leg 22 become substantially in parallel with each other when viewed from the lateral side, and the

position of the handle 50 can be lowered. In this manner, the stroller 10 can be folded, so that the dimensions of the stroller can be reduced in the back and forth direction and in the up and down direction. On the other hand, in order to unfold the 5 folded stroller 10, the above folding steps are reversely performed.

[0032]

Next, the caster mechanism for front leg 60 is described with reference to Figs. 4 to 7. As described above, the caster 10 mechanisms for front leg 60 are disposed on the respective lower ends of the pair of front legs 22. The two caster mechanisms for front leg 60 have the same structure. As shown in Figs. 4 to 6, the caster mechanism 60 includes: a front wheel (wheel) 61; a wheel holder 62 that holds the front wheel 15 61 rotatably and turnably with respect to the back and forth direction of the stroller 10; and a locking member 75 disposed on the wheel holder 62, and capable of being moved between a locking position P11 for regulating the turning of the wheel 61, and an unlocking position P12 for enabling the turning of the 20 wheel 61.

[0033]

As shown in Figs. 5 and 6, the wheel holder 62 includes: a base part 63 fixed on the front leg 22; a shaft member 66 fixed on the base part 63 through a pin 63a; and a holding part 25 67 connected to the shaft member 66. The shaft member 66 is extended substantially perpendicularly to the ground on which the unfolded stroller 10 rests. The holding part 67 is rotatably supported on the shaft member 66 through a bearing 70 (see Fig. 5). In addition, the holding part 67 rotatably holds the 30 front wheel 61 through a rotary shaft 73. In this caster mechanism 60, when the holding part 67 is rotated with respect to the shaft member 66, the wheel 61 can be turned with respect to the back and forth direction of the stroller 10.

[0034]

35 The rotary shaft 73 is laterally extended at a position displaced from the axis line of the shaft member 66 along the

back and forth direction of the stroller 10. Thus, when the stroller 10 is steered, the front wheels 61 can be turned with respect to the back and forth direction of the stroller 10, such that the axis line of the shaft member 66 is positioned forward 5 of the rotary shaft 73 in the traveling direction. Fig. 5 shows the caster mechanism 60 when the stroller 10 is steered with the front leg 22 facing forward in the traveling direction, and Fig. 6 shows the caster mechanism 60 when the stroller 10 is steered with the rear leg 24 facing forward in the traveling 10 direction. In Figs 4 to 6, illustration of one of the front wheels 61 is omitted.

[0035]

As shown in Figs. 5 and 6, the base part 63 is provided with the locking member 75 serving as locking means. One 15 end 75a of the locking member 75 is connected to the base part 63 through a pin 76. The locking member 75 is swingable relative to the base part 63 about the pin 76. As shown in Figs. 5 and 6, the locking member 75 can be moved between the locking position P11 at which the locking member 75 is engaged 20 with the holding part 67, and the unlocking position P12 at which the locking member 75 is not engaged with the holding part 67.

[0036]

As clearly shown in Figs. 6 and 7, a part of the holding 25 part 67 to be engaged with the locking member 75 is formed to have a substantially cylindrical shape. As shown in Fig. 7, a recess 69b for receiving the locking member 75 is formed in a part of a cylindrical outer circumferential surface 69a. The locking position P11 of the locking member 75 is a position 30 where the locking member 75 is fitted in the recess 69b so as to regulate the rotation of the holding part 67 relative to the locking member 75 and the shaft member 66. In this structure, when the locking member 75 is located on the locking position 35 P11, the turning motion of the front wheel 61 with respect to the back and forth direction of the stroller 10 is regulated. Hereafter, the state in which the turning motion of the wheel is

regulated is also referred to simply as "locking condition". The locking member 75 is urged by a torsion spring, not shown, from the unlocking position P12 toward the locking position P11.

5 [0037]

Next, with reference to Figs. 8 and 9, there are described the caster mechanisms for rear leg 80 disposed on the respective lower ends of the pair of rear legs 24. The two caster mechanisms for rear leg 80 have the same structure. In 10 addition, the caster mechanism for rear leg 80 has substantially the same structure as that of the caster mechanism for front leg 60. Namely, as shown in Fig. 8 and 9, the caster mechanism 80 includes: a rear wheel (wheel) 81; a wheel holder 82 that holds the rear wheel 81 rotatably and turnably with respect to 15 the back and forth direction of the stroller 10; and a locking member 95 disposed on the wheel holder 82, and capable of being moved between a locking position P11 for regulating the turning of the wheel 81, and an unlocking position P12 for enabling the turning of the wheel 81. As shown in Fig. 9, the 20 wheel holder 82 includes: a base part 83 fixed on the rear leg 24; a shaft member 86 fixed on the base part 83 through a pin 83a, the shaft member 86 being extended substantially perpendicularly to the ground on which the unfolded stroller 10 rests; and a holding part 87 rotatably supported on the shaft 25 member 86 through a bearing 90. In addition, the holding part 87 rotatably holds the rear wheel 81 through a rotary shaft 93. The shaft 93 is laterally extended at a position displaced from the axis line of the shaft member 86 along the back and forth direction of the stroller 10.

30 [0038]

As shown in Fig. 9, the base part 83 is provided with the locking member 95 serving as locking means. One end 95a of the locking member 95 is connected to the base part 83 through a pin 96. The locking member 95 is swingable relative to the 35 base part 83 about the pin 96. As shown in Fig. 9, the locking member 95 can be moved between the locking position P11 at

which the locking member 95 is engaged with the holding part 87, and the unlocking position P12 at which the locking member 95 is not engaged with the holding part 87.

[0039]

5 Similarly to the caster mechanism for front leg 60, a part of the holding part 87 to be engaged with the locking member 95 is formed to have a substantially cylindrical shape. A recess 89b for receiving the locking member 95 is formed in a part of a cylindrical outer circumferential surface 89a. The locking 10 position P11 of the locking member 95 is a position where the locking member 95 is fitted in the recess 89b so as to regulate the rotation of the holding part 87 relative to the shaft member 86. The locking member 95 is urged by a torsion spring, not shown, from the unlocking position P12 toward the locking 15 position P11.

[0040]

Next, the switching mechanism 100 is described. As described above, the switching mechanism 100 is a mechanism that converts a swinging motion of the handle 50 into a different 20 motion, in order to regulate or deregulate turning of the wheels 61 and 81 of the caster mechanisms 60 and 80. In this embodiment, the switching mechanism 100 includes switching members 105 slidably disposed on the linear portions 51a of the handle 50.

25 [0041]

As shown in Fig. 10, when the switching member 105 is engaged with the first engagement member 30a disposed on the front side of the armrest 28, the switching member 105 is held on a first holding position P21 on the linear portion 51a of the handle 50. Meanwhile, when the switching member 105 is engaged with the second engagement member 30b disposed on the rear side of the armrest 28, the switching member 105 is held on a second holding position P22 on the linear portion 51a of the handle 50. As described above, when the switching 30 member 105 is engaged with the first engagement protrusion 30a so as to be held on the first holding position P21, the 35

handle 50 is located on the first position P1 with its swinging movement from the first position P1 being regulated. Similarly, when the switching member 105 is engaged with the second engagement protrusion 30b so as to be held on the second holding position P22, the handle 50 is located on the second position P2 with its swinging movement from the second position P2 being regulated.

5

[0042]

As shown in Fig. 10, the first holding position P21 and the second holding position P22 are positions different from each other on the handle 50. In this embodiment, the switching member 105 is slidable on the linear portion 51a of the handle 50 in a longitudinal direction of the linear portion 51a. In addition, as shown in Fig. 10, a distance between the switching member 105 and the swing center O1 of the handle 50 along the longitudinal direction of the linear portion 51a of the handle 50 differs depending on whether the switching member 105 is located on the first holding position P21 (two-dot chain line in Fig. 10), or the switching member 105 is located on the second holding position (solid line in Fig. 10). Namely, in Fig. 10, the distance in the former case is shown as L1, and the distance in the latter case is shown as L2.

10

15

20

[0043]

In more detail, the distance L1 which is a distance between the switching member 105 and the swing center O1 of the handle 50 relative to the frame part 20, along the longitudinal direction of the linear portion 51a of the handle 50, when the switching member 105 is held on the first position P21, is longer than the distance L2 which is a distance between the switching member 105 and the swing center O1 of the handle 50 relative to the frame part 20, along the longitudinal direction of the linear portion 51a of the handle 50, when the switching member 105 is held on the second position P22. That is to say, when the handle 50 is located on the first position P1, the switching member 105 is held on a position that is more distant from the swing center O1, i.e., on a higher position, as

25

30

35

compared with the case in which the handle 50 is located on the second position P2.

[0044]

5 A spring, not shown, is disposed in the linear portion 51a of the handle 50. The switching member 105 is urged by the spring such that the switching member 105 is slid on the linear portion 51a of the handle 50 in a direction close to the swing center O1 of the handle 50. Thus, when the remote operation device 53 disposed on the intermediate portion 51b of the handle 50 is operated, the switching member 105 is actuated 10 against the urging force from the spring in the handle 50.

[0045]

15 Next, transmission mechanisms 120 and 130 are described. Between the switching mechanisms 100 and the 20 caster mechanisms 60 and 80, there are disposed transmission mechanisms (transmission means) configured to transmit an actuation of the switching mechanism 100 to the caster mechanisms. In this embodiment, two first transmission mechanisms 120 are respectively disposed between the left 25 caster mechanism for front leg 60 and the switching mechanism 100, and between the right caster mechanism for front leg 60 and the switching mechanism 100. The two first transmission mechanisms 120 have the same structure. In addition, two second transmission mechanisms 130 are respectively disposed 30 between the left caster mechanism for rear leg 80 and the switching mechanism 100, and between the right caster mechanism for rear leg 80 and the switching mechanism 100. The two second transmission mechanisms 130 have the same structure.

30 [0046]

35 The transmission mechanism 120 is configured to transmit, to the locking member 75, the movement of the switching member 105 between the first holding position P21 and the second holding position P22, so that the locking member 75 is moved from the unlocking position P12 to the locking position P11, or from the locking position P11 to the

unlocking position P12. Similarly, the transmission mechanism 130 is configured to transmit, to the locking member 95, the movement of the switching member 105 between the first holding position P21 and the second holding position P22, so

5 that the locking member 95 are moved from the unlocking position P12 to the locking position P11, or from the locking position P11 to the unlocking position P12. In this embodiment, the first transmission mechanism 120 and the second transmission mechanism 130 have the same structure, although

10 the location thereof are different from each other.

[0047]

The first transmission mechanism 120 includes a lead wire 122 whose opposed ends are respectively fixed to the switching member 105 of the switching mechanism 100 and the locking member 75 of the caster mechanism 60, and a tubular member 124 through which the lead wire 122 passes. Similarly, the second transmission mechanism 130 includes a lead wire 132 whose opposed ends are respectively fixed to the switching member 105 of the switching mechanism 100 and the locking member 95 of the caster mechanism 80, and a tubular member 134 through which the lead wire 132 passes. As shown in Figs. 5, 6, 9 and 10, opposed ends of the tubular member 124 are fixed on the linear portion 51a of the handle 50 and the base part 63 of the caster mechanism 60, and opposed ends of the tubular member 134 are fixed on the linear portion 51a of the handle 50 and the base part 83 of the caster mechanism 80. In such a structure, the lead wires 122 and 132 are moved relative to the tubular members 124 and 134, in conjunction with the sliding movements of the switching members 105 relative to the handle 50, as well as the swinging movements of the locking members 75 and 95 relative to the base parts 63 and 83 in the caster mechanisms 60 and 80.

[0048]

To be specific, as shown in Fig. 10, a position on the handle 50, to which the one end of the tubular member 124 of the first transmission mechanism 120 is fixed, is higher than the

position at which the switching member 105 held on the first holding position P21 is located. Namely, a distance between the one end of the tubular member 124 of the first transmission mechanism 120 and the swing center O1 of the handle 50 is

5 longer than a distance between the switching member 105, to which the end of the lead wire 122 extending from the one end of the tubular member 124 is fixed, and the swing center O1 of the handle 50.

[0049]

10 Thus, when the switching member 105 is slid downward on the linear portion 51a of the handle 50 so as to come close to the swing center O1 of the handle 50, i.e., when the switching member 105 is moved from the first holding position 21 toward the second holding position P22, the lead wire 122 of

15 the first transmission mechanism 120 is, in accordance with the movement of the switching member 105, drawn outside the tubular member 124 of the first transmission mechanism 120 from the end of the tubular member 124 on the side of the switching mechanism 100, and is drawn into the tubular

20 member 124 of the first transmission mechanism 120 from the end of the tubular member 124 on the side of the caster mechanism for front leg 60. As a result, the locking member 75 of the caster mechanism for front leg 60, to which the end of the lead wire 122 on the side of the caster mechanism for front

25 leg 60 is connected, is moved from the locking position P11 toward the unlocking position P12 (see Fig. 5).

[0050]

Reversely, when the switching member 105 is slid upward on the linear portion 51a of the handle 50 so as to come away from the swing center O1 of the handle 50, i.e., when the switching member 105 is moved from the second holding position P22 toward the first holding position P21, the lead wire 122 of the first transmission mechanism 120 is, in accordance with the movement of the switching member 105, pushed into

30 the tubular member 124 of the first transmission mechanism 120 from the end of the tubular member 124 on the side of the

35

switching mechanism 100, and is pushed outside the tubular member 124 of the first transmission mechanism 120 from the end of the tubular member 124 on the side of the caster mechanism for front leg 60. As a result, the locking member 75 of the caster mechanism for front leg 60, to which the end of the lead wire 122 on the side of the caster mechanism for front leg 60, can be moved from the unlocking position P12 toward the locking position P11.

[0051]

10 On the other hand, as shown in Fig. 10, a position on the handle 50, to which the one end of the tubular member 134 of the second transmission mechanism 130 is fixed, is lower than the position at which the switching member 105 held on the second holding position P22 is located. Namely, a distance 15 between the one end of the tubular member 134 of the second transmission mechanism 130 and the swing center O1 of the handle 50 is shorter than a distance between the switching member 105, to which the end of the lead wire 132 extending from the tubular member 134 is fixed, and the swing center O1 20 of the handle 50.

[0052]

Thus, when the switching member 105 is slid downward on the linear portion 51a of the handle 50 to come close to the swing center O1 of the handle 50, i.e., when the switching member 105 is moved from the first holding position P21 toward the second holding position P22, the lead wire 132 of the second transmission mechanism 130 is, in accordance with the movement of the switching member 105, pushed into the tubular member 134 of the second transmission mechanism 130 25 from the end of the tubular member 134 on the side of the switching mechanism 100, and is pushed outside the tubular member 134 of the second transmission mechanism 130 from the end of the tubular member 134 on the side of the caster mechanism for rear leg 80. As a result, the locking member 95 30 of the caster mechanism for rear leg 80, to which the end of the lead wire 132 on the side of the caster mechanism for rear leg 35

80 is connected, can be moved from the unlocking position P12 toward the locking position P11.

[0053]

Reversely, when the switching member 105 is slid upward 5 on the linear portion 51a of the handle 50 so as to come away from the swing center O1 of the handle 50, i.e., when the switching member 105 is moved from the second holding position P22 toward the first holding position P21, the lead wire 132 of the second transmission mechanism 130 is, in 10 accordance with the movement of the switching member 105, drawn outside the tubular member 134 of the second transmission mechanism 130 from the end of the tubular member 134 on the side of the switching mechanism 100, and is drawn into the tubular member 134 of the second 15 transmission mechanism 130 from the end of the tubular member 134 on the side of the caster mechanism for rear leg 80. As a result, the locking member 95 of the caster mechanism for rear leg 80, to which the end of the lead wire 132 on the side of the caster mechanism for rear leg 80 is 20 connected, can be moved from the locking position P11 toward the unlocking position P12.

[0054]

The force of the spring (not shown), which is disposed in the handle 50, urging the switching member 105 toward the 25 swing center O1 of the handle 50 is greater than the forces of the torsion springs (not shown), which are disposed on the caster mechanisms 60 and 80, for swinging the respective locking members 75 and 95 so as to draw out the lead wires 122 and 132 toward the caster mechanisms 60 and 80. When 30 no external force is applied to the switching mechanism 100, the locking member 75 of the caster mechanisms for front wheel 60 is adapted to be located on the unlocking position P12, and the locking member 95 of the caster mechanism for rear leg 80 is adapted to be located on the locking position P11.

35 [0055]

In the illustrated example, the lead wire 122 and the

tubular member 124, which constitute the first transmission mechanism 120, are passed through the inside of the handle 50, then supported on an outer surface of the lateral side connecting member 32, and are extended up to the caster mechanism for front leg 60 through inside of the front leg 22. On the other hand, the lead wire 132 and the tubular member 134, which constitute the second transmission mechanism 130, are passed through the inside of the handle 50 and then extended up to the caster mechanism for rear leg 80 through the inside of the rear leg 24. However, these routes of the first transmission mechanism 120 and the second transmission mechanism 130 are mere examples. The switching mechanism 100 and the caster mechanism 60, and the switching mechanism 100 and the caster mechanism 80 may be connected to each other through various other routes. For example, the first transmission mechanisms 120 and 130 may not be passed through the inside of the handle 50 and the insides of the front leg 22 and the rear leg 24, but may be supported on an outer surface of the handle 50 and outer surfaces of the front leg 22 and the rear leg 24. Alternatively, the first transmission mechanism 120 may be extended from the switching mechanism 100 up to the caster mechanism for front leg 60, via the handle 50, the rear leg 24, the arm rest 28 and the front leg 22, in this order.

25 [0056]

Next, there is described an operation of the stroller 10 as structured above, when the handle 50 is swung.

[0057]

As described above, by engaging the switching members 105 with the first engagement members 30a disposed on the front sides of the armrests 28, the handle 50 can be fixed on the first position P1 (see Fig. 3) in which the handle 50 is inclined toward the front legs. In this state, a parent can steer the stroller 10 with the rear legs 24 of the stroller 10 facing the forward side in the traveling direction, grasping the handle 50 located on the first position P1 from the side of the front legs 22

of the stroller 10. Alternatively, by engaging the switching members 105 with the second engagement members 30b disposed on the rear sides of the armrests 28, the handle 50 can be fixed on the second position (see Fig. 2) in which the 5 handle 50 is inclined toward the rear legs. In this state, the parent can steer the stroller 10 with the front legs 22 of the stroller 10 facing the forward side in the traveling direction, grasping the handle 50 located on the second position P2 from the side of the rear legs 24 of the stroller 10.

10 [0058]

In this embodiment, each switching member 105 of the switching mechanism 100 disposed on the handle 50 is held on the first holding position P21 when the handle 50 is located on the first position P1, and is held on the second holding position 15 P22 when the handle 50 is located on the second position P2.

[0059]

As described above, when the handle 50 is inclined forward so that the switching member 105 is held on the first holding position P21, the lead wire 122 of the first transmission mechanism 120 is moved from the side of the switching mechanism 100 to the side of the caster mechanism for front leg 60, while the lead wire 132 of the second transmission mechanism 130 is moved from the side of the caster mechanism for rear leg 80 to the side of the switching mechanism 100. As 20 a result, the locking member 75 of the caster mechanism for front leg 60 is located on the locking position P11, whereby the front wheel 61 is maintained in the unturnable condition with respect to the back and forth direction. Reversely, the locking member 95 of the caster mechanism for rear leg 80 is located 25 on the unlocking position P12, whereby the rear wheel 81 is maintained in the turnable condition with respect to the back and forth direction.

[0060]

On the other hand, when the handle 50 is inclined 35 rearward so that the switching member 105 is held on the second holding position P22, the lead wire 122 of the first

transmission mechanism 120 is moved from the side of the caster mechanism for front leg 60 to the side of the switching mechanism 100, while the lead wire 132 of the second transmission mechanism 130 is moved from the side of the switching mechanism 100 to the side of the caster mechanism for rear leg 80. As a result, the locking member 75 of the caster mechanism for front leg 60 is located on the unlocking position P12, whereby the front wheel 61 is maintained in the turnable condition with respect to the back and forth direction.

10 Reversely, the locking member 95 of the caster mechanism for rear leg 80 is located on the locking position P11, whereby the rear wheel 81 is maintained in the unturnable condition with respect to the back and forth direction.

[0061]

15 In both cases where the stroller 10 is moved with the front legs 22 or the rear legs 24 facing forward in the traveling direction, it is preferable that, from the view point of manipulability and traveling stability, the wheels facing the forward side in the traveling direction are turnable with respect to the back and forth direction, and that the wheels facing the rearward side in the traveling direction are regulated from turning with respect to the back and forth direction. According to the stroller 10 in this embodiment, in accordance with the position of the handle 50, the wheels 61 and 81 of the caster mechanisms for front leg 60 and the caster mechanisms for rear leg 80 can be automatically switched into the turnable condition or the unturnable condition, in a stable and reliable manner.

[0062]

According to the above embodiment, depending on whether the handle 50 is located on the first position P1 or the handle 50 is located on the second position P2, each switching member 105 of the switching mechanism 100 is held on the different positions. By utilizing the change in position of the switching member 105, the turnings of the wheels 61 and 81 of the respective caster mechanisms 60 and 80 are automatically controlled. In particular, the switching member 105 is linearly

moved (in particular, along a straight line). By transmitting such a movement of the switching member 105 to the caster mechanism for front leg 60 and the caster mechanism for rear leg 80 through the transmission mechanisms, the wheels 61 and 81 can be switched into the turnable condition or the unturnable condition, in a stable and reliable manner.

5 81 can be switched into the turnable condition or the unturnable condition, in a stable and reliable manner.

[0063]

In addition, since the switching member 105 is engaged with the first engagement protrusion 30a or the second engagement protrusion 30b, which are provided on the frame part 20, the switching member 105 is necessarily located on the predetermined position, when the handle 50 is located on the first position P1 or the second position P2. Since the locking members 75 and 95 of the caster mechanism for front leg 60 and the caster mechanism for rear leg 80 are operated in accordance with the locations of the switching member 105, the wheels 61 and 81 can be switched into the turnable condition or the unturnable condition, in a stable and reliable manner.

10 15

[0064]

20 Further, the switching member 105 of the switching mechanism 100 is a member also serving to fix the handle 50 on the first position P1 or on the second position P2. Thus, the number of components can be reduced, as compared with a case in which an additional switching member is provided as the 25 switching mechanism. In addition, since the configuration of the stroller 10 can be simplified with the lesser number of components, the wheels 61 and 81 of the caster mechanisms for front leg 60 and the caster mechanisms for rear leg 80 can be switched into the turnable condition or the unturnable 30 condition, in a stable and reliable manner.

[0065]

The aforementioned embodiment can be variously modified, within the scope of the present invention.

Hereafter, an example of modification will be described.

35 [0066]

In the above embodiment, when the switching member

105 is located on the first holding position P21, the switching member 105 is located on the position that is more distant from the swing center O1 of the handle 50, as compared with the case in which the switching member 105 is located on the 5 second holding position P22. However, not limited thereto, when the switching member 105 is located on the first holding position P21, the switching member 105 may be located on a position that is closer to the swing center O1 of the handle 50, as compared with the case in which the switching member 105 10 is located on the second holding position P22. In addition, in the above embodiment, the end of the first transmission mechanism 120 on the side of the switching mechanism 100 is positioned above the switching member 105, and the end of the second transmission mechanism 130 on the side of the switching mechanism 100 is positioned below the switching member 100. However, not limited thereto, the present invention can be variously modified. Also in these modified examples, in accordance with the swinging movement of the handle 50, the turning of the wheel of the caster mechanism 20 facing rearward in the traveling direction can be automatically regulated, and the turning of the wheel of the caster mechanism facing forward in the traveling direction can be automatically enabled.

[0067]

25 In the above embodiment, although the member for fixing the handle 50 on the first position P1 or on the second position P2 also serves as the switching member 105 of the switching mechanism 100, the present invention is not limited thereto. For example, as shown in Figs. 11 to 13, in addition to 30 a sliding member 55 for fixing the handle 50 on the first position P1 or on the second position P2, a switching member of a switching mechanism 100 may be provided. In the example shown in Figs. 11 to 13, the sliding member 55 has the same structure as that of the switching member 105 described in the 35 aforementioned embodiment, except that the transmission means is not connected to the sliding member. In Figs. 11 to

13, the structures corresponding to the structures in the above-described embodiment are shown by the same reference numbers.

[0068]

5 In the example shown in Figs. 11 to 13, a switching member 106 is pivotably supported on a frame part 50. The switching member 106 has projecting parts 106a and 106b that are projectable in a trajectory zone Z of the handle 50, which is defined when the handle 50 is swung (i.e., a range through 10 which the handle 50 is passed). The projecting parts 106a and 106b are configured to come into contact with the handle 50 during its swinging movement. In particular, in the illustrated example, the switching member 106 is pivotably supported in the armrest 28, such that the projecting parts 106a and 106b 15 can project from the armrest 28. As shown in Figs. 12 and 13, the switching member 106 has a symmetrical shape, and has the two projecting parts, i.e., the first projecting part 106a and the second projecting part 106b.

[0069]

20 A pivot axis RA of the switching member 106 is extended substantially in parallel with an imaginary plane including a movement trajectory of a part of the handle 50, which is capable of coming into contact with the projecting parts 106a and 106b, when the handle 50 is swung. Thus, during the 25 movement of the handle 50 from the first position P1 toward the second position P2 or from the second position P2 to the first position P1, the handle 50 presses the projecting part 106a or 106b of the switching member 106, so that the switching member 106 can be swung between a first holding position P21 30 and a second holding position P22.

[0070]

As shown by the solid line in Fig. 12, when the switching member 106 is held on the second holding position P22, the first projecting part 106a projects from the armrest 28 so as to 35 be located within the trajectory zone Z of the handle 50, which is defined when the handle 50 is swung. On the other hand,

the second projecting part 106b is extended substantially on the same plane with the outer surface of the armrest 28, and thus does not project in the trajectory zone Z of the handle 50, which is defined when the handle 50 is swung. Thus, when the 5 handle 50 is moved from the second position P2 (solid line) toward the first position P1 (two-dot chain line), the handle 50 passes through a position facing the pivot axis RA and then collides with the first projecting part 106a so as to press the first projecting part 106a (see, Fig. 13), without coming into 10 contact with the second projecting part 106b that is located on upstream side of the first projecting part 106a along the movement path of the handle 50. Since the handle 50 presses the first projecting part 106a, the switching member 106 is moved from the second holding position P22 (solid line) toward 15 the first holding position P21 (two-dot chain line).

[0071]

Reversely, as shown by the two-dot chain line in Fig. 12, when the switching member 106 is held on the first holding position P21, the first projecting part 106a is extended 20 substantially on the same plane with the outer surface of the armrest 28, and thus does not project in the trajectory zone Z of the handle 50, which is defined when the handle 50 is swung. On the other hand, the second projecting part 106b projects from the armrest 28 so as to be located within the trajectory 25 zone Z of the handle 50, which is defined when the handle 50 is swung. Thus, when the handle 50 is moved from the first position P1 (two-dot chain line) to the second position P2 (solid line), the handle 50 passes through a position facing the pivot axis RA and then collides with the second projecting part 106b 30 so as to press the second projecting part 106b, without coming into contact with the first projecting part 106a that is located on the upstream side of the second projecting part 106b along the movement path of the handle 50. Since the handle 50 presses the second projecting part 106b, the switching member 106 is 35 moved from the first holding position P21 toward the second holding position P22.

[0072]

A switching mechanism 100 in this modification example further includes a plate-like member 28a disposed in the armrest 28. Opposed ends of the plate-like member 28a are supported by a pair of support pieces 28b. In addition, the switching member 106 includes a pressing and projecting part 106c projecting inward the armrest 28. In the armrest 28, the pressing and projecting part 106c is located on a position opposed to the plate-like member 28a. As shown in Figs. 12 and 13, when the switching member 106 is located between the first holding position P21 and the second holding position P22, the pressing and projecting part 106c of the switching member 106 is in contact with the plate-like member 28a so as to resiliently deform the plate-like member 28a. Namely, a range in which the switching member 106 is swingable, i.e., a range between the first holding position P21 and the second holding position P22, includes an urging area. When the switching member 106 is positioned in the urging area, the switching member 106 is urged toward the first holding position P21 or toward the second holding position P22.

[0073]

In the illustrated example, when the switching member 106 is located on an intermediate position between the first holding position P21 and the second holding position P22, the plate-like member 28a is most deformed. That is to say, there exists a dead center on the intermediate position between the first holding position P21 and the second holding position P22. When the switching member 106 is located on a side of the first holding position P21 relative to the dead center, the switching member 106 is urged toward the first holding position P21 by a restoring force of the plate-like member 28a. On the other hand, when the switching member 106 is located on a side of the second holding position P22 relative to the dead center, the switching member 106 is urged toward the second holding position P22 by the restoring force of the plate-like member 28a.

[0074]

In the above manner, the switching member 106 of the switching mechanism 100 is turned in accordance with the swinging movement of the handle 50. When the handle 50 is 5 located on the first position P1, the switching member 106 is held on the first holding position P21. When the handle 50 is located on the second position P2, the switching member 106 is held on the second holding position P22.

[0075]

10 In the example shown in Figs. 11 to 13, an end of the lead wire 122 of the first transmission mechanism 120 on the side of the switching mechanism 100 is fixed on the switching member 106 at a position near to the first projecting part 106a via a rotatable pulley 29a disposed in the armrest 28. The 15 position where the end of the tubular member 124 of the first transmission mechanism 120 on the side of the switching mechanism 100 is fixed in the armrest 28, is determined such that the lead wire 122 is drawn out from the tubular member 124 to the side of the switching mechanism 100 when the 20 switching member 106 is located on the second holding position P22, and that the lead wire 122 is pushed into the tubular member 124 from the side of the switching mechanism 100 when the switching member 106 is located on the first holding position P21.

25 [0076]

Similarly, an end of the lead wire 132 of the second transmission mechanism 130 on the side of the switching mechanism 100 is fixed on the switching member 106 at a position near to the second projecting part 106b via a rotatable 30 pulley 29b disposed in the armrest 28. The position where the end of the tubular member 132 of the second transmission mechanism 130 on the side of the switching mechanism 100 is fixed in the armrest 28, is determined such that the lead wire 132 is pushed into the tubular member 134 from the side of the 35 switching mechanism 100 when the switching member 106 is located on the second holding position P22, and that the lead

wire 132 is drawn out from the tubular member 134 to the side of the switching mechanism 100 when the switching member 106 is located on the first holding position P21.

[0077]

5 Other structures of the first transmission mechanism 120 and the second transmission mechanism 130 may be the same as those of the above embodiment. Excluding the points as described herein, a stroller 10 in the modification example shown in Figs. 11 to 13 can be structured similarly to the above 10 embodiment. According to such a structure, similarly to the above embodiment, when the first switching member 106 is located on the first holding position P21, turning of the front wheel 61 is automatically regulated, while turning of the rear wheel 81 is automatically enabled. On the other hand, when 15 the first switching member 106 is located on the second holding position P22, the turning of the front wheel 61 is automatically enabled, while the turning of the rear wheel 81 is automatically regulated. According also to this modification example, an operation for switching the conditions of the wheels 61 and 81 20 linked to a position of the handle 50 can be performed in a more stable and reliable manner.

[0078]

 In the example shown in Figs. 11 to 13, although the switching member 106 of the switching mechanism 100 is 25 pressed by the handle 50 while it is being swung, so that the position of the switching member 106 is changed between the first holding position P21 and the second holding position P22, the present invention is not limited thereto. The projecting parts 106a and 106b may be projectable in the trajectory zone 30 of a certain member (e.g., the aforementioned sliding member 55) disposed on the handle 50, the trajectory zone being defined when the handle 50 is swung. In this case, the projecting part 106a or 106b is pressed by the member disposed on the handle 50, so that the switching member 106 is 35 moved between the first holding position P21 and the second holding position P22.

[0079]

In addition, the following modifications are possible as other modification examples of the above embodiment.

[0080]

5 In the above embodiment, both the caster mechanism for front leg 60 and the caster mechanism for rear leg 80 are provided with the locking members 75 and 95. However, not limited thereto, only one of the caster mechanisms may be provided with the locking member. In this case, the wheel of
10 the caster mechanism on which the locking member is not provided may be turnable with respect to the back and forth direction of the stroller 10, or may be unturnably rotatable and positioned along the back and forth direction of the stroller 10.

[0081]

15 The overall structure of the stroller 10 explained in the above embodiment is nothing more than a mere example. For example, the frame part 20 may be configured to be unfoldable.

[0082]

20 Further, the structure of the caster mechanism explained in the above embodiment is nothing more than a mere example. For example, the structure of a caster mechanism disclosed in JP2002-284015A may be employed.

[0083]

25 Some modification examples of the aforementioned embodiment are explained above. It goes without saying that these modification examples may be suitably combined with each other.

CLAIMS

1. A stroller comprising:
 - a frame part including a front leg and a rear leg;
 - a handle connected to the frame part so as to be swingable between a first position and a second position;
 - a caster mechanism disposed at least on one of the front leg and the rear leg, the caster mechanism including a wheel, a wheel holder configured to rotatably and turnably hold the wheel, and a locking member capable of being moved between a locking position for regulating a turning of the wheel and an unlocking position for enabling the turning of the wheel;
 - a switching mechanism including a switching member which is configured to be held on a first holding position when the handle is located on the first position, and to be held on a second holding position when the handle is located on the second position; and
 - a transmission mechanism disposed between the switching mechanism and the caster mechanism, and configured to transmit, to the locking member, a movement of the switching member between the first holding position and the second holding position, so as to move the locking member from the unlocking position to the locking position or from the locking position to the unlocking position;
- wherein:
 - the switching member is slidably disposed on the handle; and
 - the switching member is arranged on the first holding position on the handle when the handle is located on the first position, and is arranged on the second holding position on the handle, which is different from the first holding position, when the handle is located on the second position.
2. The stroller according to claim 1, wherein
 - the frame part further includes: a first engagement member that is engaged with the switching member, when the

handle is located on the first position, so as to hold the switching member on the first holding position; and a second engagement member that is engaged with the switching member, when the handle is located on the second position, so as to hold the switching member on the second holding position.

3. The stroller according to claim 2, wherein:

the frame part further includes an armrest connected with the front leg and the rear leg; and

the first engagement member and the second engagement member are disposed on the armrest.

4. The stroller according to claim 2, wherein

the switching member and the frame part are structured such that, when the switching member is engaged with the first engagement member, the swinging movement of the handle from the first position is regulated, and that, when the switching member is engaged with the second engagement member, the swinging movement of the handle from the second position is regulated.

5. The stroller according to claim 1, wherein:

the switching member is movable on the handle in a longitudinal direction of the handle; and

a distance between the switching member and a swing center of the handle along the longitudinal direction of the handle differs depending on whether the switching member is located on the first holding position or the switching member is located on the second holding position.

6. A stroller comprising:

a frame part including a front leg and a rear leg,

a handle connected to the frame part so as to be swingable between a first position and a second position;

a caster mechanism disposed at least on one of the front leg and the rear leg, the caster mechanism including a wheel, a

wheel holder configured to rotatably and turnably hold the wheel, and a locking member capable of being moved between a locking position for regulating a turning of the wheel and an unlocking position for enabling the turning of the wheel;

a switching mechanism including a switching member which is configured to be held on a first holding position when the handle is located on the first position, and to be held on a second holding position when the handle is located on the second position; and

a transmission mechanism disposed between the switching mechanism and the caster mechanism, and configured to transmit, to the locking member, a movement of the switching member between the first holding position and the second holding position, so as to move locking member from the unlocking position to the locking position or from the locking position to the unlocking position;

wherein:

the switching member is pivotably supported on the frame part;

the switching member includes a projecting part that is projectable in a trajectory zone of the handle, which is defined when the handle is swung, or a trajectory zone of a member disposed on the handle, which is defined when the handle is swung; and

the switching member is structured such that, when the handle or the member disposed on the handle presses the projecting part during a movement of the handle from the first position to the second position or from the second position to the first position, the switching member is turned between the first holding position and the second holding position.

7. The stroller according to claim 6, wherein

the frame part further includes an armrest connected with the front leg and the rear leg, and the switching member is pivotably supported on the armrest.

8. The stroller according to claim 6, wherein
the switching member includes:

a first projecting part structured such that, when the switching member is located on the second holding position, the first projecting part projects in the trajectory zone of the handle or in the trajectory zone of the member disposed on the handle, so as to be pressed by the handle or the member disposed on the handle during the swinging movement of the handle from the second position toward the first position; and

a second projecting part structured such that, when the switching member is located on the first holding position, the second projecting part projects in the trajectory zone of the handle or in the trajectory zone of the member disposed on the handle, so as to be pressed by the handle or the member disposed on the handle during the swinging movement of the handle from the first position toward the second position.

9. The stroller according to claim 6, wherein

the switching mechanism is structured such that, when the switching member is located on an intermediate position between the first holding position and the second holding position, the switching member is urged toward the first holding position or the second holding position.

ABSTRACT

A stroller (10) includes: a frame part (20); a handle (50) connected to the frame part (20) so as to be swingable; caster mechanisms (60, 80) turnably holding wheels; and a switching mechanism (100) including a switching member (105) which is configured to be held on predetermined positions in accordance with the position of the handle (50). The caster mechanisms are provided with locking members (75, 95) configured to regulate turning of the wheels. In addition, there are provided transmission mechanism (120, 130) configured to operate the locking members in conjunction with a movement of the switching member.

Fig 1

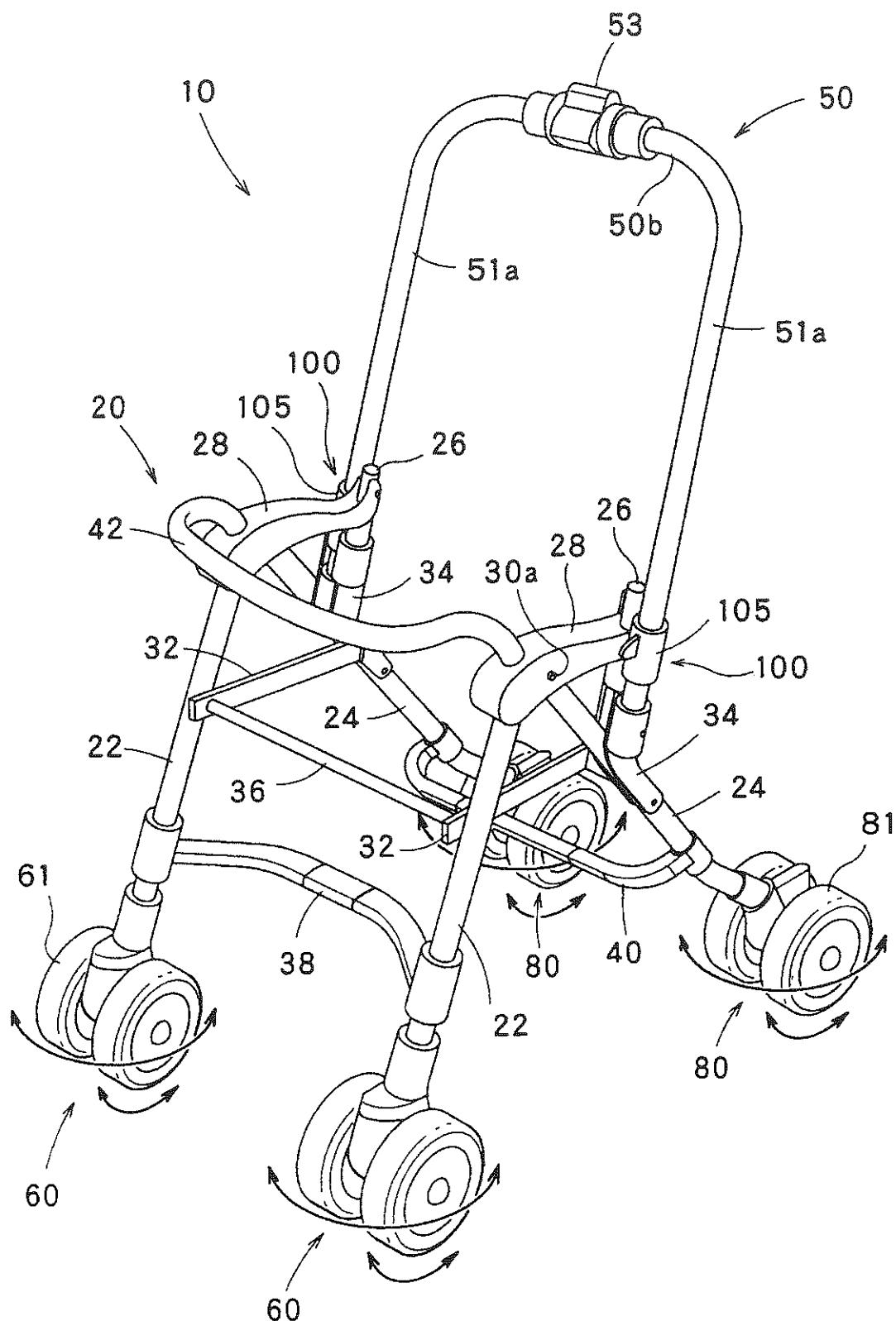


Fig 2

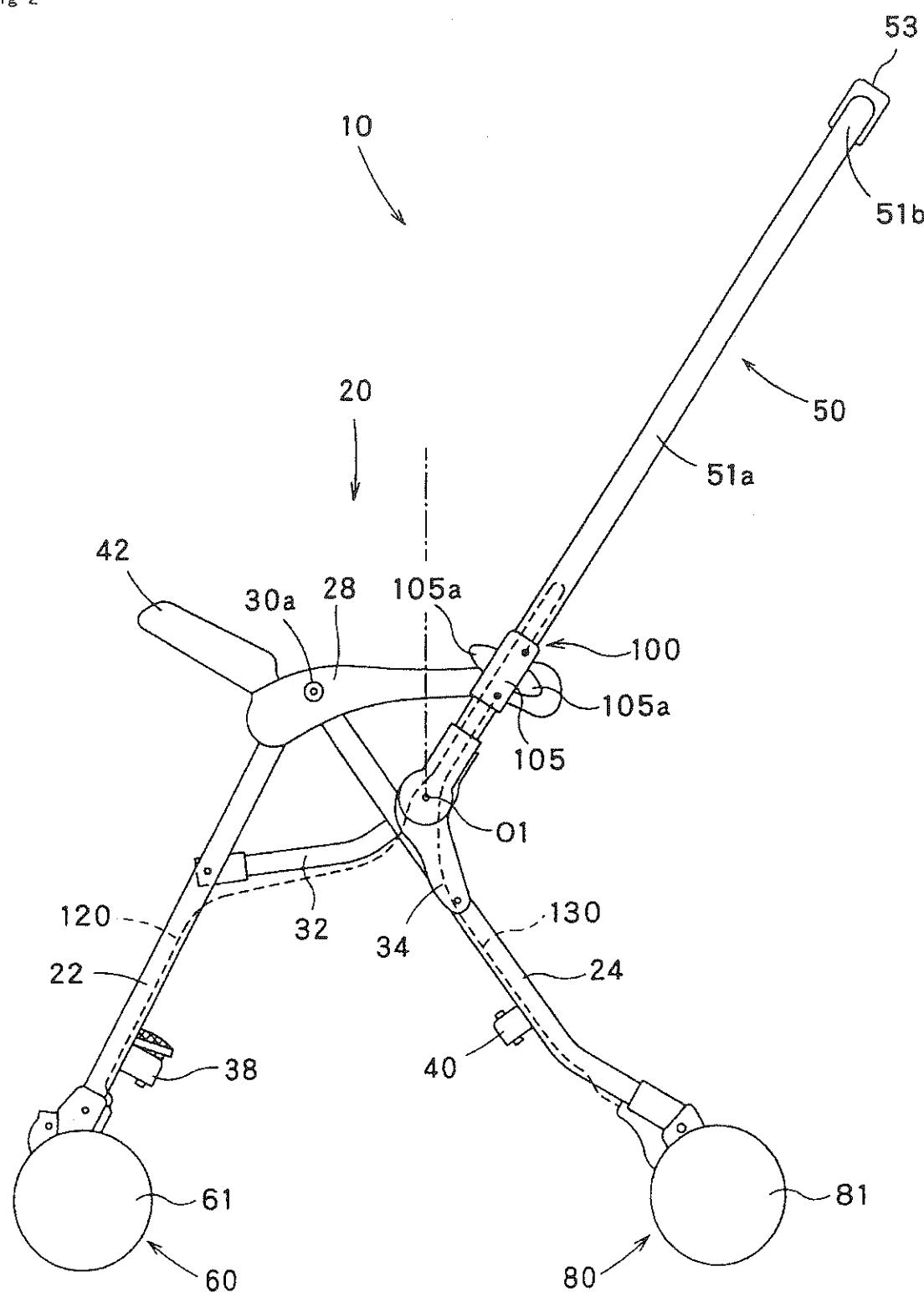


Fig 3

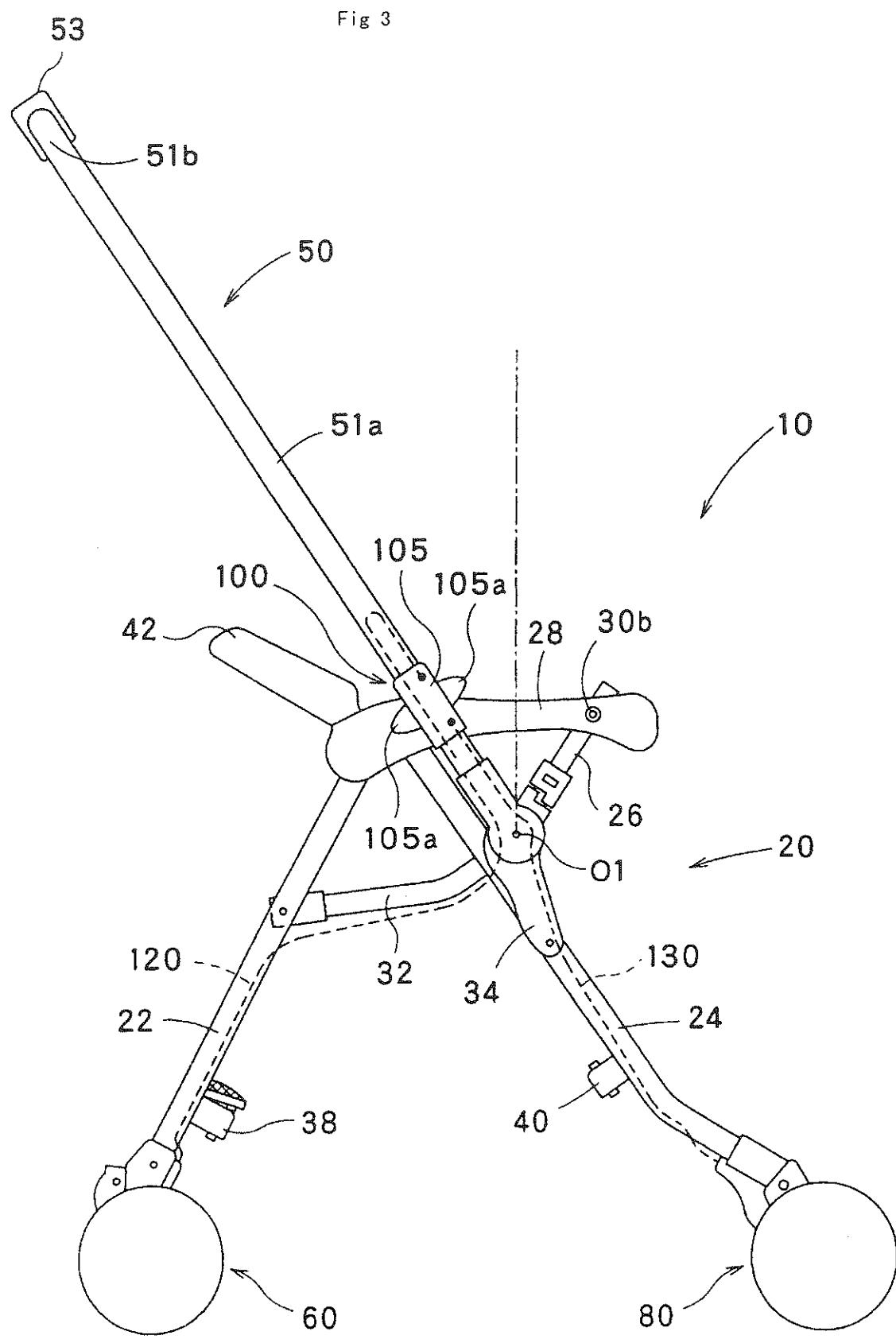


Fig 4

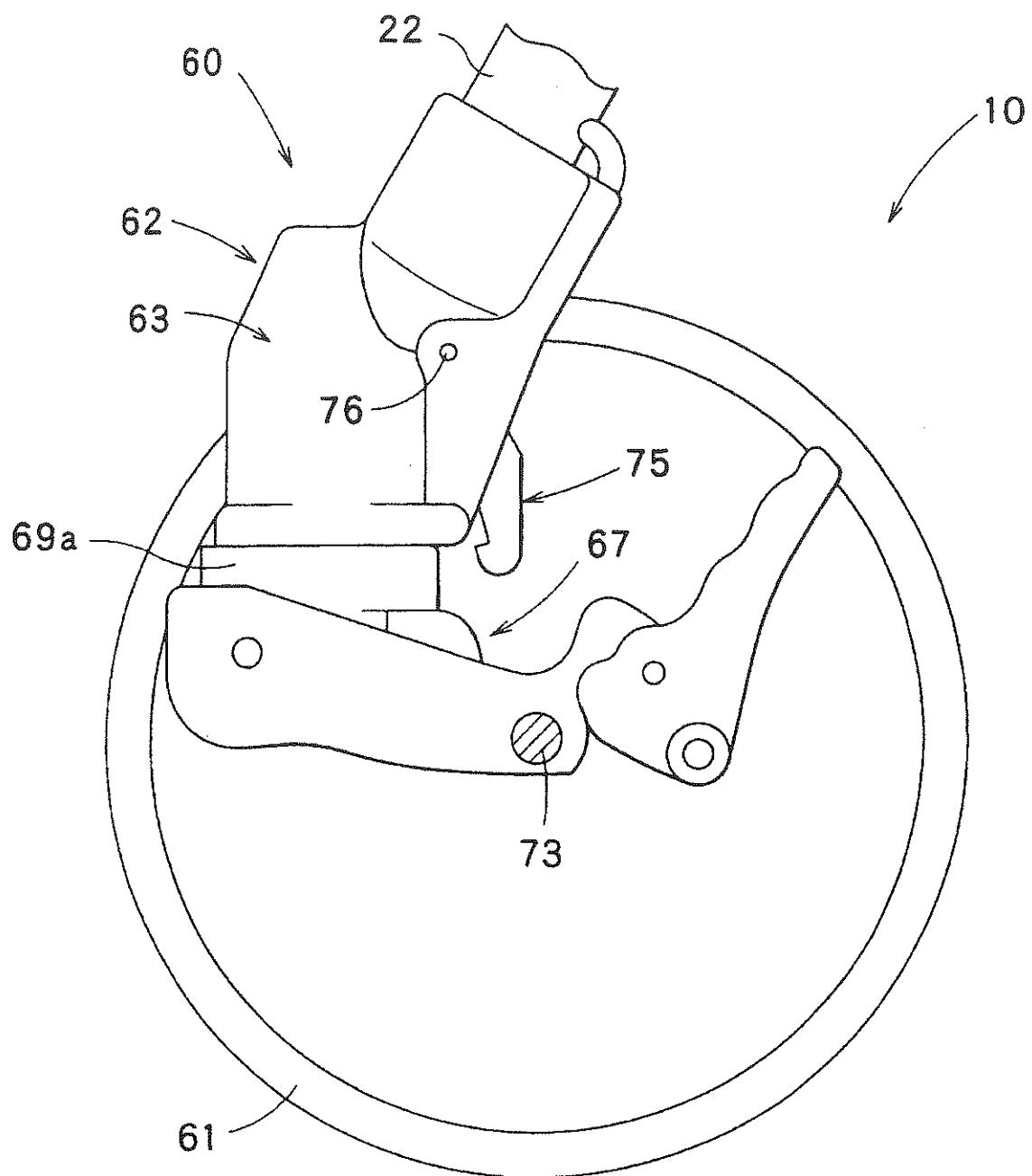


Fig 5

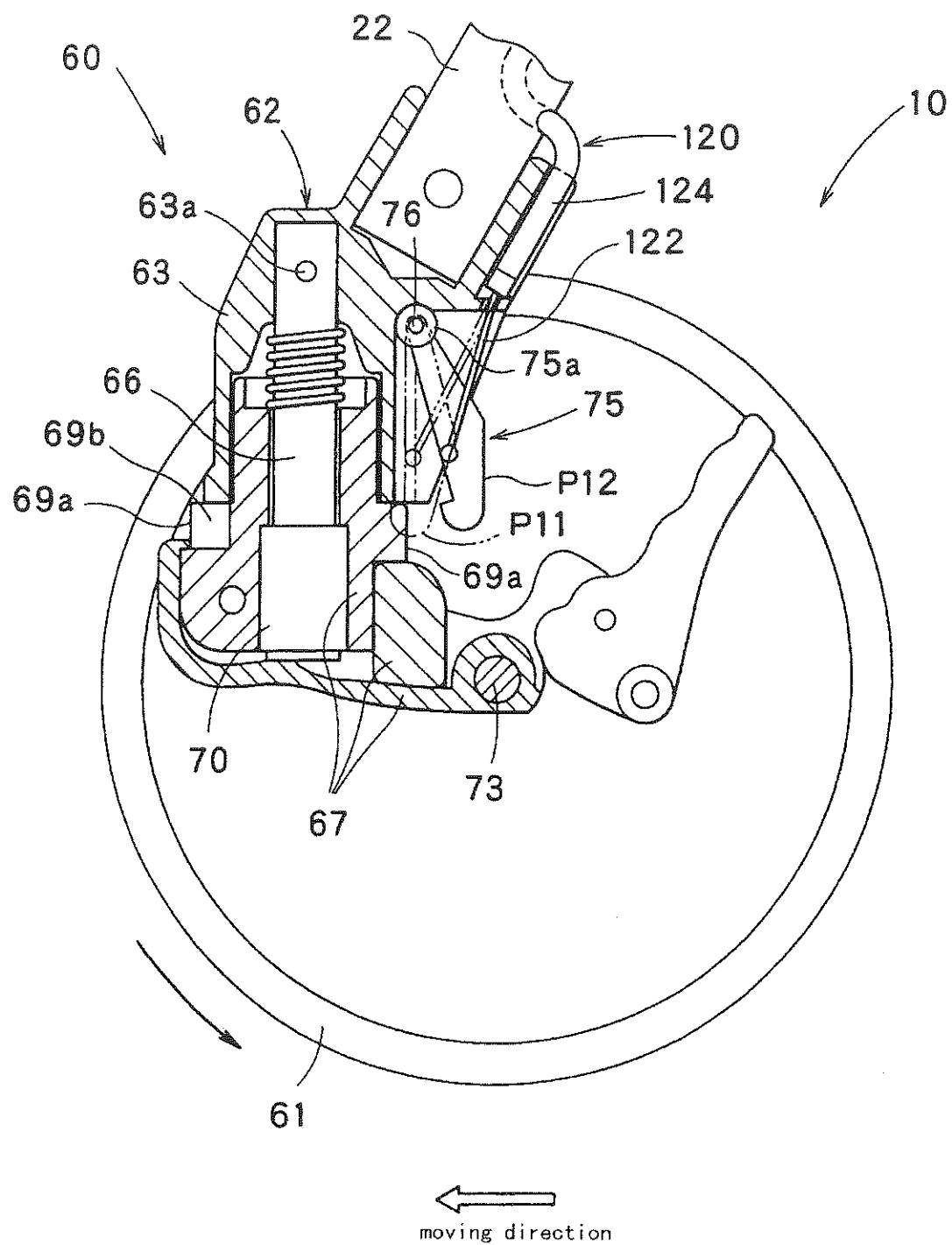


Fig 6

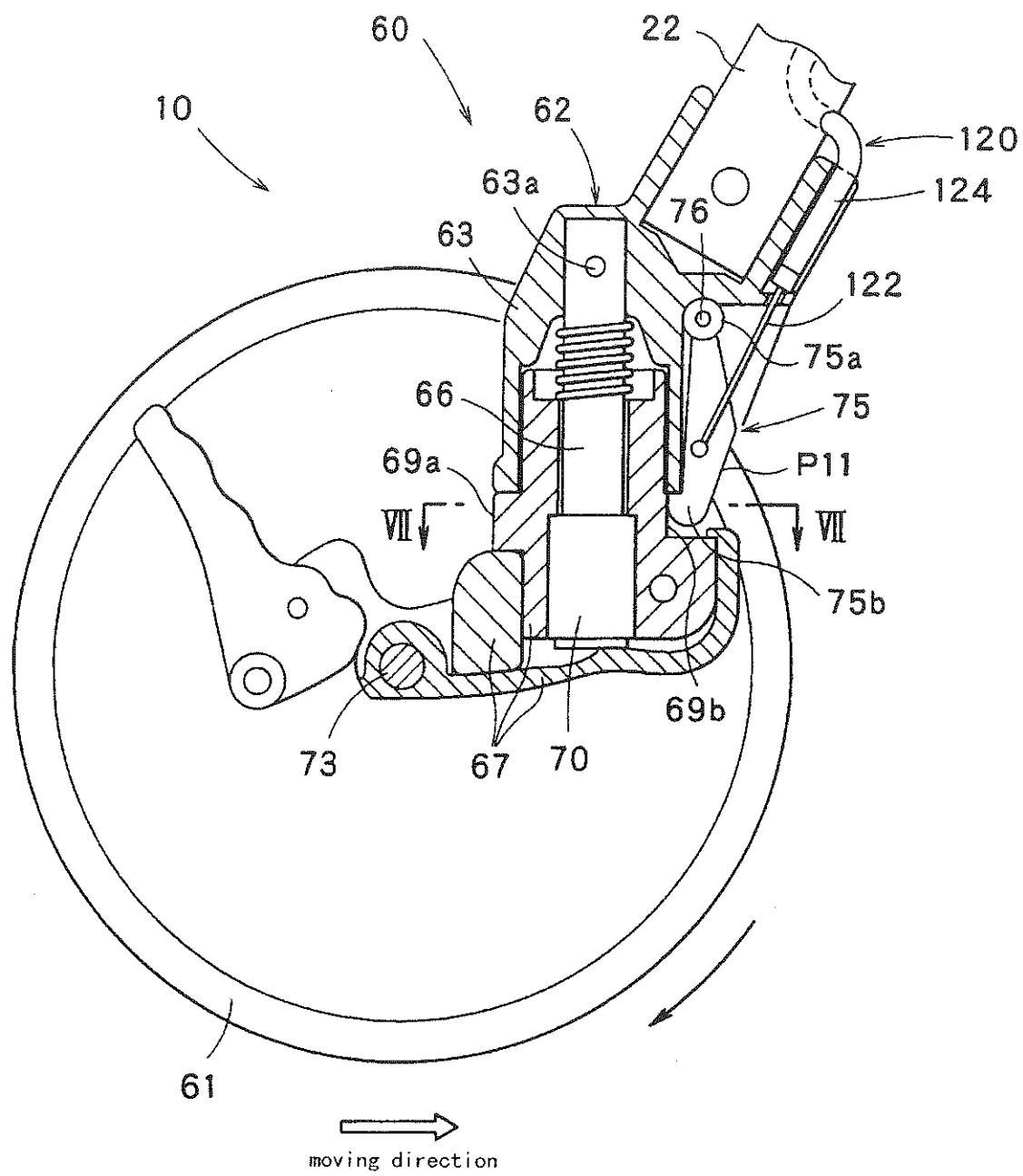


Fig 7

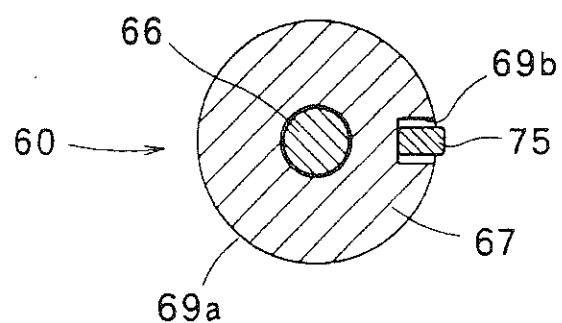


Fig 8

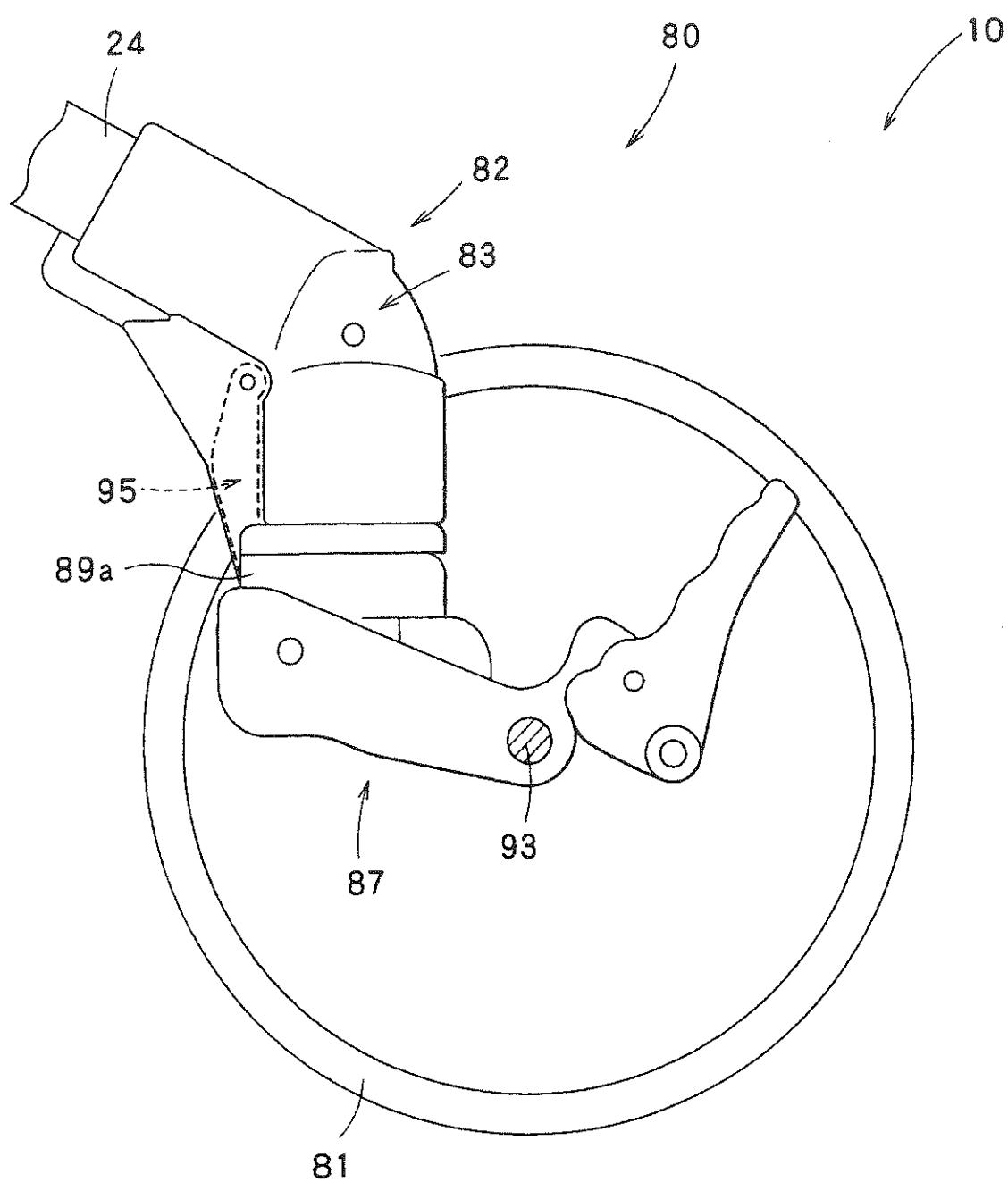


Fig 9

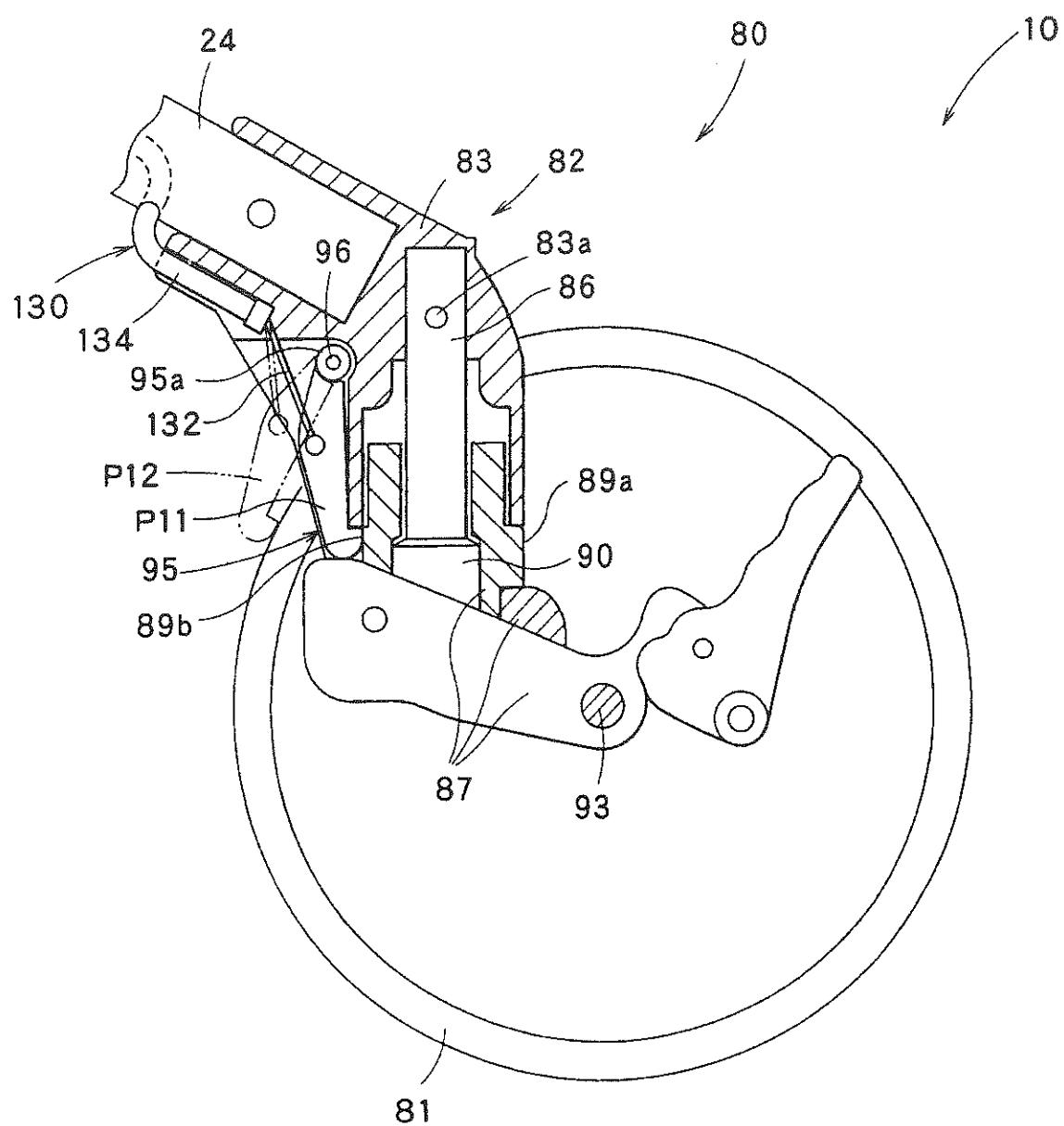


Fig 10

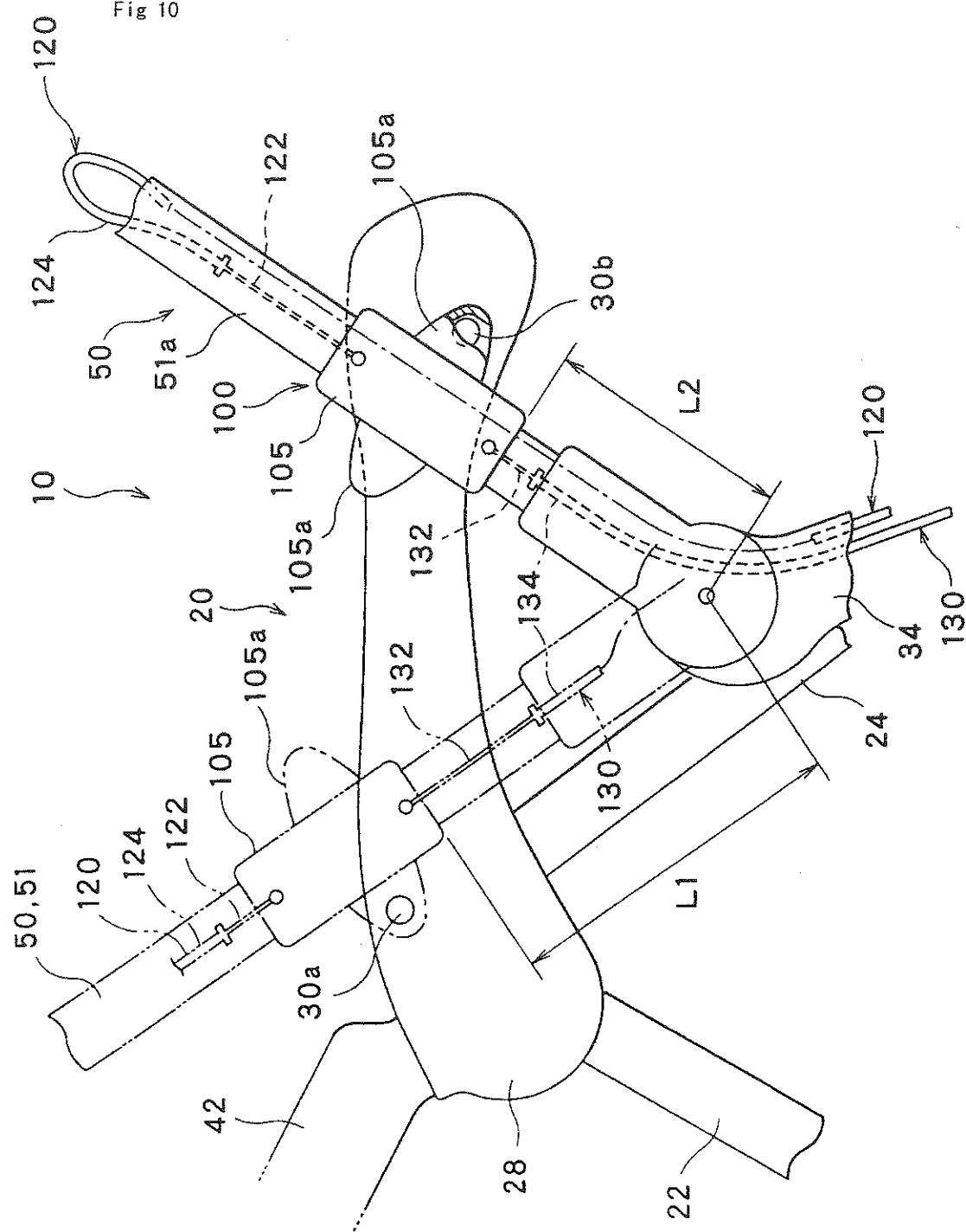


Fig 11

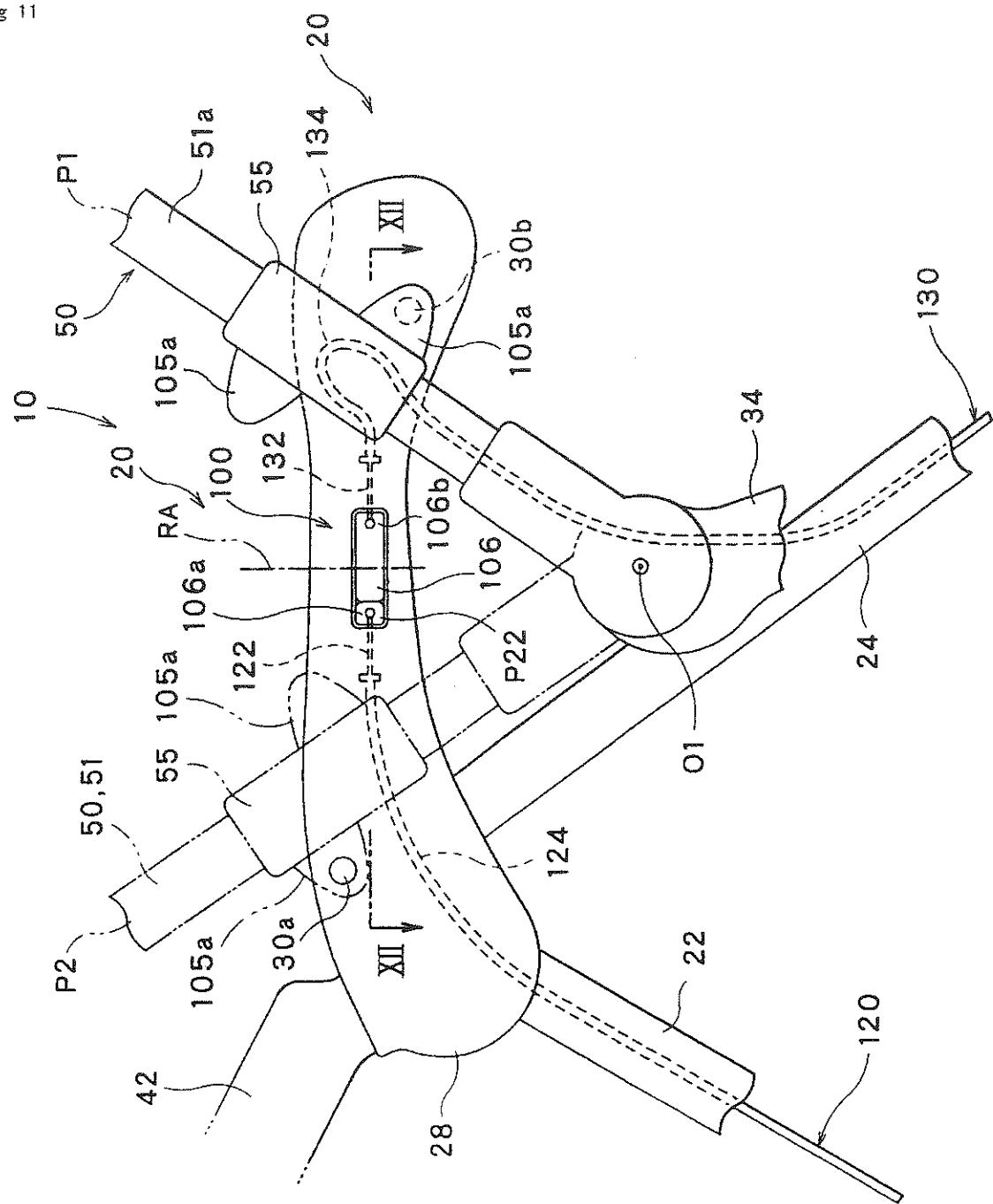


Fig 12

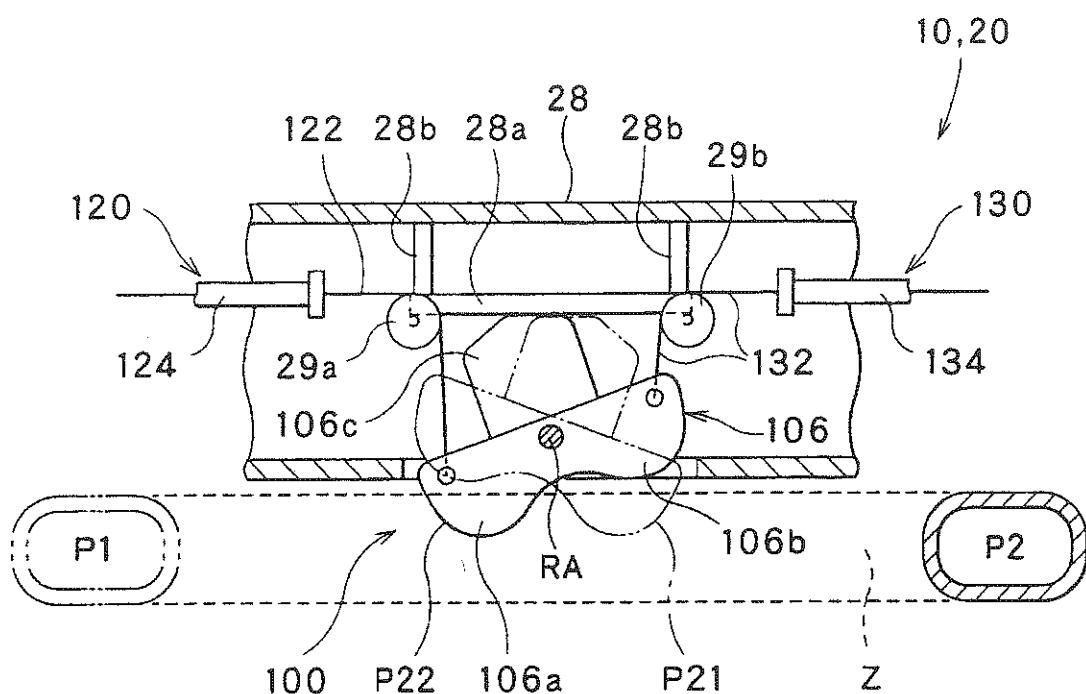
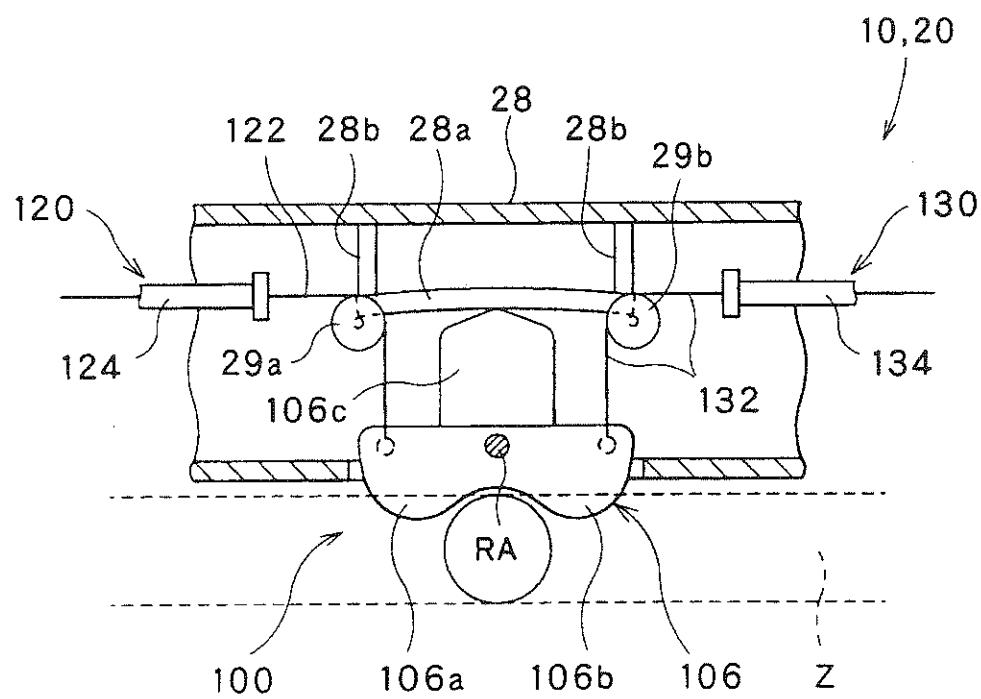



Fig 13

(19) 中华人民共和国国家知识产权局

(12) 实用新型专利

(10) 授权公告号 CN 202624303 U

(45) 授权公告日 2012. 12. 26

(21) 申请号 201090000805. 1

(51) Int. Cl.

(22) 申请日 2010. 03. 24

B62B 7/04 (2006. 01)

(30) 优先权数据

B62B 9/20 (2006. 01)

2009-086084 2009. 03. 31 JP

(85) PCT申请进入国家阶段日

2011. 09. 29

(86) PCT申请的申请数据

PCT/JP2010/055051 2010. 03. 24

(87) PCT申请的公布数据

W02010/113718 JA 2010. 10. 07

(73) 专利权人 康贝株式会社

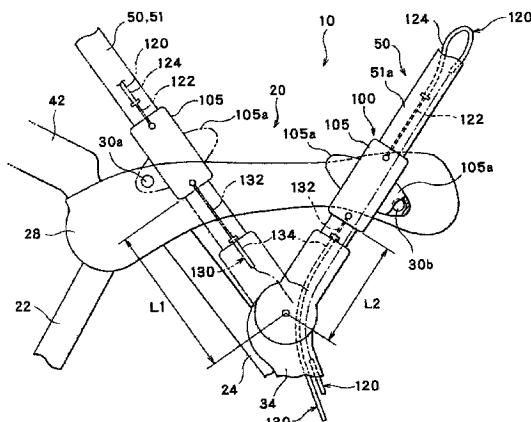
地址 日本国东京都台东区元浅草二丁目 6
番 7 号

(72) 发明人 舟仓健二

(74) 专利代理机构 上海市华诚律师事务所

31210

代理人 梅高强 刘煜


权利要求书 4 页 说明书 14 页 附图 11 页

(54) 实用新型名称

婴儿车

(57) 摘要

本实用新型提供一种婴儿车。该婴儿车(10)包括：框架部(20)、可摆动地与框架部(20)连结的手柄(50)、可回旋地保持车轮的脚轮机构(60、80)、以及具有根据手柄(50)的位置而保持在规定位置的切换部件(105)的切换机构(100)。在脚轮机构上设有限制车轮的回旋的锁定部件(75、95)。设有与切换部件的移动连动地操作锁定部件的传递机构(120、130)。

1. 一种婴儿车,其特征在于,包括:

具有前脚和后脚的框架部;

可在第一位置与第二位置之间摆动地与框架部连结的手柄;

设置在所述前脚和所述后脚中的至少一方上的脚轮机构,该脚轮机构具有:车轮、将所述车轮保持成可旋转且可回旋的车轮保持件、以及可在限制所述车轮的回旋的锁定位置与使所述车轮可以回旋的锁定解除位置之间移动的锁定部件;

切换机构,该切换机构具有当所述手柄位于所述第一位置时被保持在第一保持位置、当所述手柄位于所述第二位置时被保持在第二保持位置的切换部件;以及

设置在所述切换机构与所述脚轮机构之间的传递机构,该传递机构将所述切换部件在所述第一保持位置与所述第二保持位置之间的移动传递给所述锁定部件,使所述锁定部件从所述锁定解除位置向所述锁定位置、或从所述锁定位置向所述锁定解除位置移动,

所述切换部件可滑动地设置在所述手柄上,

当所述手柄位于所述第一位置时,所述切换部件配置在所述手柄上的所述第一保持位置,当所述手柄位于所述第二位置时,所述切换部件配置在所述手柄上的与所述第一保持位置不同的所述第二保持位置。

2. 如权利要求1所述的婴儿车,其特征在于,

所述框架部具有第一卡合部件和第二卡合部件,当所述手柄位于所述第一位置时,所述第一卡合部件与所述切换部件卡合而将所述切换部件保持在所述第一保持位置,当所述手柄位于所述第二位置时,所述第二卡合部件与所述切换部件卡合而将所述切换部件保持在所述第二保持位置。

3. 如权利要求2所述的婴儿车,其特征在于,

所述框架部还具有与所述前脚和后脚连结的扶手,

所述第一卡合部件和所述第二卡合部件设置在所述扶手上。

4. 如权利要求2所述的婴儿车,其特征在于,

所述切换部件和所述框架部构成为,通过所述切换部件与所述第一卡合部件卡合,所述手柄的离开所述第一位置的摆动被限制,并且通过所述切换部件与所述第二卡合部件卡合,所述手柄的离开所述第二位置的摆动被限制。

5. 如权利要求1所述的婴儿车,其特征在于,

所述切换部件可以沿着所述手柄的长度方向在所述手柄上移动,

从所述切换部件到所述手柄的摆动中心的、沿着所述手柄的长度方向的长度,在所述切换部件位于所述第一保持位置时和所述切换部件位于所述第二保持位置时不同。

6. 一种婴儿车,其特征在于,包括:

具有前脚和后脚的框架部;

可在第一位置与第二位置之间摆动地与框架部连结的手柄;

设置在所述前脚和所述后脚中的至少一方上的脚轮机构,该脚轮机构具有:车轮、将所述车轮保持成可旋转且可回旋的车轮保持件、以及可在限制所述车轮的回旋的锁定位置与使所述车轮可以回旋的锁定解除位置之间移动的锁定部件;

切换机构,该切换机构具有当所述手柄位于所述第一位置时被保持在第一保持位置、当所述手柄位于所述第二位置时被保持在第二保持位置的切换部件;以及

设置在所述切换机构与所述脚轮机构之间的传递机构,该传递机构将所述切换部件在所述第一保持位置与所述第二保持位置之间的移动传递给所述锁定部件,使所述锁定部件从所述锁定解除位置向所述锁定位置、或从所述锁定位置向所述锁定解除位置移动,

所述切换部件可转动地支撑于所述框架部,

所述切换部件具有突出部,该突出部可以突出到所述手柄摆动时的轨道范围内、或者安装在所述手柄上的部件的所述手柄摆动时的轨道范围内,

所述切换部件构成为,通过从所述第一位置向所述第二位置、或从所述第二位置向所述第一位置移动过程中的所述手柄或安装在该手柄上的部件推压所述突出部,从而使所述切换部件在所述第一保持位置与所述第二保持位置之间转动。

7. 如权利要求 6 所述的婴儿车,其特征在于,

在所述前脚的下端设有前脚用脚轮机构,并且在所述后脚的下端设有后脚用脚轮机构,

在所述前脚用脚轮机构和所述后脚用脚轮机构中的一方与所述切换机构之间设有第一所述传递机构,在所述前脚用脚轮机构和所述后脚用脚轮机构中的另一方与所述切换机构之间设有第二所述传递机构。

8. 如权利要求 7 所述的婴儿车,其特征在于,

第一所述传递机构具有:两端分别安装在所述切换部件和所述前脚用脚轮机构的所述锁定部件上的引线,以及所述引线从其内部通过的管状部件,

第二所述传递机构具有:两端分别安装在所述切换部件和所述后脚用脚轮机构的所述锁定部件上的引线,以及所述引线从其内部通过的管状部件,

当所述切换部件从第一保持位置向第二保持位置移动时,第一所述传递机构的引线随着所述切换部件的移动被从第一所述传递机构的管状部件的切换机构侧端部向管状部件外拉出,并且被从第一所述传递机构的管状部件的前脚用脚轮机构侧端部向管状部件内拉入,第二所述传递机构的引线随着所述切换部件的移动被从第二所述传递机构的管状部件的切换机构侧端部向管状部件内推入,并且被从第二所述传递机构的管状部件的后脚用脚轮机构侧端部向管状部件外推出,

当所述切换部件从第二保持位置向第一保持位置移动时,第一所述传递机构的引线随着切换部件的移动被从第一所述传递机构的管状部件的切换机构侧端部向管状部件内推入,并且被从第一所述传递机构的管状部件的前脚用脚轮机构侧端部向管状部件外推出,第二所述传递机构的引线随着切换部件的移动被从第二所述传递机构的管状部件的切换机构侧端部向管状部件外拉出,并且被从第二所述传递机构的管状部件的后脚用脚轮机构侧端部向管状部件内拉入。

9. 如权利要求 6 所述的婴儿车,其特征在于,

所述传递机构具有:两端分别安装在所述切换部件和所述脚轮机构的锁定部件上的引线、以及所述引线从其内部通过的管状部件,

当所述切换部件从第一保持位置向第二保持位置移动时,所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件外拉出,并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件内拉入,

当所述切换部件从第二保持位置向第一保持位置移动时,所述传递机构的引线随着所

述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件内推入，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件外推出。

10. 如权利要求 6 所述的婴儿车，其特征在于，

所述脚轮机构至少设置在所述前脚的下端。

11. 如权利要求 10 所述的婴儿车，其特征在于，

所述传递机构具有：两端分别安装在所述切换部件和所述脚轮机构的锁定部件上的引线、以及所述引线从其内部通过的管状部件，所述脚轮机构设置在所述前脚的下端，

当所述切换部件从第一保持位置向第二保持位置移动时，所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件外拉出，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件内拉入，

当所述切换部件从第二保持位置向第一保持位置移动时，所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件内推入，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件外推出。

12. 如权利要求 6 所述的婴儿车，其特征在于，

所述框架部还具有与所述前脚和所述后脚连结的扶手，

所述切换部件可转动地支撑在所述扶手上。

13. 如权利要求 12 所述的婴儿车，其特征在于，

所述切换部件支撑在所述扶手内，

所述突出部可从所述扶手突出。

14. 如权利要求 12 所述的婴儿车，其特征在于，

所述切换部件的一部分配置在所述扶手内，

所述突出部可从所述扶手突出。

15. 如权利要求 6～14 的任一项所述的婴儿车，其特征在于，

所述切换部件的转动轴线与一假想平面平行地延伸，该假想平面包含手柄或安装在手柄上的部件的可与突出部接触的部分的、与手柄摆动相伴的移动轨迹。

16. 如权利要求 6～14 的任一项所述的婴儿车，其特征在于，

所述切换部件的转动轴线与手柄或安装在手柄上的部件的可与突出部接触的部分的、与手柄摆动相伴的移动轨迹垂直。

17. 如权利要求 6 所述的婴儿车，其特征在于，

所述切换部件的所述突出部构成为，当位于所述第二保持位置时，进入所述手柄的所述轨道范围内或安装在所述手柄上的部件的所述轨道范围内，被从所述第二位置向所述第一位置摆动的所述手柄或安装在所述手柄上的部件推压。

18. 如权利要求 17 所述的婴儿车，其特征在于，

所述切换部件的所述突出部被从所述第二位置移动到所述第一位置的手柄或安装在所述手柄上的部件推压到所述手柄的所述轨道范围外或安装在所述手柄上的部件的所述轨道范围外。

19. 如权利要求 17 所述的婴儿车，其特征在于，

当所述切换部件位于所述第一保持位置时，所述切换部件的所述突出部位于所述手柄的所述轨道范围外或安装在所述手柄上的部件的所述轨道范围外。

20. 如权利要求 6 所述的婴儿车,其特征在于,

所述传递机构具有两端分别安装在所述切换部件和所述锁定部件上的引线、以及引线从其内部通过的管状部件,

所述引线的切换机构侧端部在所述突出部附近固定于所述切换部件。

21. 如权利要求 6 所述的婴儿车,其特征在于,

所述切换部件具有 :

第一突出部,当所述切换部件位于所述第二保持位置时,该第一突出部突出到所述手柄的所述轨道范围内或安装在所述手柄上的部件的所述轨道范围内,被从所述第二位置向所述第一位置摆动的所述手柄或安装在所述手柄上的部件推压;以及

第二突出部,当所述切换部件位于所述第一保持位置时,该第二突出部突出到所述手柄的所述轨道范围内或安装在所述手柄上的部件的所述轨道范围内,被从所述第一位置向所述第二位置摆动的所述手柄或安装在所述手柄上的部件推压。

22. 如权利要求 6 所述的婴儿车,其特征在于,

所述切换机构构成为,当所述切换部件位于所述第一保持位置与所述第二保持位置之间时,所述切换部件被向所述第一保持位置或所述第二保持位置施力。

23. 如权利要求 6 所述的婴儿车,其特征在于,

所述手柄在所述第一位置向前方倾斜,在所述第二位置向后方倾斜。

婴儿车

技术领域

[0001] 本实用新型涉及一种婴儿车，手柄可以在向前方倾斜的位置和向后方倾斜的位置之间摆动，尤其涉及一种婴儿车，设置在前脚或者后脚的车轮可以根据手柄的位置自动地切换成相对婴儿车的前后方向可以回旋或者不可回旋的状态。

背景技术

[0002] 以往，已知有使婴幼儿朝向行进方向的前方而乘坐的婴儿车。并且，最近，具有侧视时可以在向垂直轴的前方倾斜的第一位置（面对推位置）和向垂直轴的后方倾斜的第二位置（背面推位置）之间摆动的手柄的婴儿车也广泛普及。在这种婴儿车中，当手柄位于第二位置时，操作者（保护者）可以从婴幼儿的背面侧握住手柄，使婴幼儿朝向行进方向的前方并推婴儿车使其前进。另一方面，当手柄位于第一位置时，操作者可以从与婴幼儿面对的前脚侧的位置握住手柄，使后脚侧成为行进方向的前方并推婴儿车使其前进。

[0003] 然而，考虑到婴儿车的操作性，较为理想的是安装在行进方向的前方侧脚的车轮可以相对前后方向回旋，而安装在行进方向的后方侧脚的车轮不可相对前后方向回旋。而且，在日本专利公开公报 2002-284015A 中，公开了一种婴儿车，该婴儿车的设置在前脚及后脚的车轮可以根据手柄的位置自动切换成相对前后方向可以回旋或者不可回旋的状态。

[0004] 在日本专利公开公报 2002-284015A 所公开的婴儿车中，锁定切换部件可滑动地设置在前脚上。并且，锁定切换部件被向第一位置（面对推位置）摆动的手柄推压而滑动，由此，可以将车轮切换为可以回旋的状态或者不可回旋的状态。

[0005] 然而，一般而言，考虑到乘坐的舒适度和操作性等方面，前脚的倾斜角度和手柄的摆动范围需要与婴儿车的其他结构相关联地进行设定。因此，在所有的婴儿车中，手柄推压锁定切换部件的方向不可能与锁定切换部件的可滑动的方向、即前脚延伸的方向一致。因此，无法通过手柄的摆动使锁定切换部件平滑地滑动，换言之，无法用手柄稳定、可靠地对锁定切换部件进行操作。本来，从易于握住手柄或者易于操作手柄的观点出发，由于婴儿车整体的结构，有时会发生使手柄摆动到前脚的侧方位置是不适当的情况。此时，也无法摆动手柄来推压锁定切换部件。

实用新型内容

[0006] 本实用新型考虑到这些问题而做成，其目的在于，提供一种能够根据手柄的位置、更加稳定且可靠地对车轮的状态进行切换操作的婴儿车。

[0007] 用于解决课题的手段

[0008] 本实用新型的婴儿车，包括：具有前脚和后脚的框架部；可在第一位置与第二位置之间摆动地与框架部连结的手柄；设置在所述前脚和所述后脚中的至少一方上的脚轮机构，该脚轮机构具有：车轮、将所述车轮保持成可旋转且可回旋的车轮保持件、以及可在限制所述车轮的回旋的锁定位置与使所述车轮可以回旋的锁定解除位置之间移动的锁定部件；切换机构，该切换机构具有当所述手柄位于所述第一位置时被保持在第一保持位置、当

所述手柄位于所述第二位置时被保持在第二保持位置的切换部件；以及设置在所述切换机构与所述脚轮机构之间的传递机构，该传递机构将所述切换部件在所述第一保持位置与所述第二保持位置之间的移动传递给所述锁定部件，使所述锁定部件从所述锁定解除位置向所述锁定位置、或从所述锁定位置向所述锁定解除位置移动。

[0009] 在本实用新型的婴儿车中，也可以做成，所述切换部件可滑动地设置在所述手柄上，当所述手柄位于所述第一位置时，所述切换部件配置在所述手柄上的所述第一保持位置，当所述手柄位于所述第二位置时，所述切换部件配置在所述手柄上的与所述第一保持位置不同的所述第二保持位置。

[0010] 在本实用新型的婴儿车中，也可以做成，所述框架部具有第一卡合部件和第二卡合部件，当所述手柄位于所述第一位置时，所述第一卡合部件与所述切换部件卡合而将所述切换部件保持在所述第一保持位置，当所述手柄位于所述第二位置时，所述第二卡合部件与所述切换部件卡合而将所述切换部件保持在所述第二保持位置。在该婴儿车中，也可以做成，所述框架部还具有与所述前脚和后脚连结的扶手，所述第一卡合部件和所述第二卡合部件设置在所述扶手上。另外，在该婴儿车中，也可以做成，所述切换部件和所述框架部构成为，通过所述切换部件与所述第一卡合部件卡合，所述手柄的离开所述第一位置的摆动被限制，并且通过所述切换部件与所述第二卡合部件卡合，所述手柄的离开所述第二位置的摆动被限制。

[0011] 并且，在这样的本实用新型的婴儿车中，也可以做成，所述切换部件可以沿着所述手柄的长度方向在所述手柄上移动，从所述切换部件到所述手柄的摆动中心的、沿着所述手柄的长度方向的长度，在所述切换部件位于所述第一保持位置时和所述切换部件位于所述第二保持位置时不同。

[0012] 或者，在本实用新型的婴儿车中，也可以做成，所述切换部件可转动地支撑于所述框架部，所述切换部件具有突出部，该突出部可以突出到所述手柄摆动时的轨道范围内、或者安装在所述手柄上的部件的所述手柄摆动时的轨道范围内，所述切换部件构成为，通过从所述第一位置向所述第二位置、或从所述第二位置向所述第一位置移动过程中的所述手柄或安装在该手柄上的部件推压所述突出部，从而使所述切换部件在所述第一保持位置与所述第二保持位置之间转动。

[0013] 在本实用新型的婴儿车中，也可以做成，在所述前脚的下端设有前脚用脚轮机构，并且在所述后脚的下端设有后脚用脚轮机构，在所述前脚用脚轮机构和所述后脚用脚轮机构中的一方与所述切换机构之间设有第一所述传递机构，在所述前脚用脚轮机构和所述后脚用脚轮机构中的另一方与所述切换机构之间设有第二所述传递机构。

[0014] 在这样的本实用新型的婴儿车中，也可以做成，第一所述传递机构具有：两端分别安装在所述切换部件和所述前脚用脚轮机构的所述锁定部件上的引线，以及所述引线从其内部通过的管状部件，第二所述传递机构具有：两端分别安装在所述切换部件和所述后脚用脚轮机构的所述锁定部件上的引线，以及所述引线从其内部通过的管状部件，当所述切换部件从第一保持位置向第二保持位置移动时，第一所述传递机构的引线随着所述切换部件的移动从第一所述传递机构的管状部件的切换机构侧端部向管状部件外拉出，并且被从第一所述传递机构的管状部件的前脚用脚轮机构侧端部向管状部件内拉入，第二所述传递机构的引线随着所述切换部件的移动被从第二所述传递机构的管状部件的切换机构侧端

部向管状部件内推入，并且被从第二所述传递机构的管状部件的后脚用脚轮机构侧端部向管状部件外推出，当所述切换部件从第二保持位置向第一保持位置移动时，第一所述传递机构的引线随着切换部件的移动被从第一所述传递机构的管状部件的切换机构侧端部向管状部件内推入，并且被从第一所述传递机构的管状部件的前脚用脚轮机构侧端部向管状部件外推出，第二所述传递机构的引线随着切换部件的移动被从第二所述传递机构的管状部件的切换机构侧端部向管状部件外拉出，并且被从第二所述传递机构的管状部件的后脚用脚轮机构侧端部向管状部件内拉入。

[0015] 在本实用新型的婴儿车中，也可以做成，所述传递机构具有：两端分别安装在所述切换部件和所述脚轮机构的锁定部件上的引线、以及所述引线从其内部通过的管状部件，所述脚轮机构设置在所述前脚的下端当所述切换部件从第一保持位置向第二保持位置移动时，所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件外拉出，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件内拉入，当所述切换部件被从第二保持位置向第一保持位置移动时，所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件内推入，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件外推出。

[0016] 在本实用新型的婴儿车中，也可以做成，所述脚轮机构至少设置在所述前脚的下端。

[0017] 在这样的本实用新型的婴儿车中，也可以做成，所述传递机构具有：两端分别安装在所述切换部件和所述脚轮机构的锁定部件上的引线、以及所述引线从其内部通过的管状部件，当所述切换部件从第一保持位置向第二保持位置移动时，所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件外拉出，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件内拉入，当所述切换部件从第二保持位置向第一保持位置移动时，所述传递机构的引线随着所述切换部件的移动被从所述传递机构的管状部件的切换机构侧端部向管状部件内推入，并且被从所述传递机构的管状部件的脚轮机构侧端部向管状部件外推出。

[0018] 在这样的本实用新型的婴儿车中，也可以做成，所述框架部还具有与所述前脚和后脚连结的扶手，所述切换部件可转动地支撑在所述扶手上。

[0019] 在这样的本实用新型的婴儿车中，也可以做成，所述切换部件支撑在所述扶手内，所述突出部可从所述扶手突出；或者所述切换部件的一部分配置在所述扶手内，所述突出部可从所述扶手突出。

[0020] 在这样的本实用新型的婴儿车中，也可以做成，所述切换部件的转动轴线与一假想平面平行地延伸，该假想平面包含手柄或安装在手柄上的部件的可与突出部接触的部分的、与手柄摆动相伴的移动轨迹；或者所述切换部件的转动轴线与手柄或安装在手柄上的部件的可与突出部接触的部分的、与手柄摆动相伴的移动轨迹垂直。

[0021] 在这样的本实用新型的婴儿车中，也可以做成，所述切换部件的所述突出部构成为，当位于所述第二保持位置时，进入所述手柄的所述轨道范围内或安装在所述手柄上的部件的所述轨道范围内，被从所述第二位置向所述第一位置摆动的所述手柄或安装在所述手柄上的部件推压。

[0022] 在这样的本实用新型的婴儿车中，也可以做成，所述切换部件的所述突出部被从

所述第二位置移动到所述第一位置的手柄或安装在所述手柄上的部件推压到所述手柄的所述轨道范围外或安装在所述手柄上的部件的所述轨道范围外。

[0023] 在这样的本实用新型的婴儿车中,也可以做成,当所述切换部件位于所述第一保持位置时,所述切换部件的所述突出部位于所述手柄的所述轨道范围外或安装在所述手柄上的部件的所述轨道范围外。

[0024] 在这样的本实用新型的婴儿车中,也可以做成,所述传递机构具有两端分别安装在所述切换部件和所述锁定部件上的引线、以及引线从其内部通过的管状部件,所述引线的切换机构侧端部在所述突出部附近固定于所述切换部件。

[0025] 并且,在这样的本实用新型的婴儿车中,也可以做成,所述切换部件具有:第一突出部,当所述切换部件位于所述第二保持位置时,该第一突出部突出到所述手柄的所述轨道范围内或安装在所述手柄上的部件的所述轨道范围内,被从所述第二位置向所述第一位置摆动的所述手柄或安装在所述手柄上的部件推压;以及第二突出部,当所述切换部件位于所述第一保持位置时,该第二突出部突出到所述手柄的所述轨道范围内或安装在所述手柄上的部件的所述轨道范围内,被从所述第一位置向所述第二位置摆动的所述手柄或安装在所述手柄上的部件推压。

[0026] 另外,在这样的本实用新型的婴儿车中,所述切换机构也可以构成为,当所述切换部件位于所述第一保持位置与所述第二保持位置之间时,所述切换部件被向所述第一保持位置或所述第二保持位置施力。

[0027] 又,在本发明的婴儿车中,也可以做成,在所述前脚的下端设有前脚用脚轮机构,并且在所述后脚的下端设有后脚用脚轮机构,在所述前脚用脚轮机构和所述后脚用脚轮机构中的一方与所述切换机构之间设有第一所述传递机构,在所述前脚用脚轮机构和所述后脚用脚轮机构中的另一方与所述切换机构之间设有第二所述传递机构。在这样的本实用新型的婴儿车中,也可以做成,所述手柄在所述第一位置向前方倾斜,在所述第二位置向后方倾斜,当所述手柄位于所述第一位置时,所述前脚用脚轮机构的所述前轮的回旋被限制,所述手柄位于所述第二位置时,所述后脚用脚轮机构的所述后轮的回旋被限制。

附图说明

[0028] 图 1 是用于说明本实用新型的一个实施方式的婴儿车的整体结构的立体图。

[0029] 图 2 是表示手柄配置在第二位置(背面推位置)的状态下的婴儿车的侧视图。

[0030] 图 3 是表示手柄配置在第一位置(面对推位置)的状态下的婴儿车的侧视图。

[0031] 图 4 是表示前脚用脚轮机构的侧视图。

[0032] 图 5 是图 4 所示的前脚用脚轮机构的纵向剖视图,表示锁定部件配置在锁定解除位置的状态。

[0033] 图 6 是与图 5 对应的剖视图,表示锁定部件配置在锁定位置的状态。

[0034] 图 7 是沿着图 6 的 VII-VII 线的剖视图。

[0035] 图 8 是表示后脚用脚轮机构的侧视图。

[0036] 图 9 是图 8 所示的后脚用脚轮机构的纵向剖视图,表示锁定部件配置在锁定位置的状态。

[0037] 图 10 是用于说明切换机构的图,是表示婴儿车的局部侧视图。

[0038] 图 11 是与图 10 对应的图,是用于说明切换机构的一变形例的图。

[0039] 图 12 是沿着图 11 的 XII-XII 线的剖视图。

[0040] 图 13 是与图 12 对应的图,表示配置在与图 12 所示的位置不同的位置上的切换部件。

具体实施方式

[0041] 下面,参照附图对本实用新型的一个实施方式进行说明。

[0042] 图 1 ~ 图 10 是用于说明本实用新型所涉及的婴儿车的一个实施方式的图。其中,图 1 ~ 图 3 中示出了婴儿车的整体结构。如图 1 ~ 图 3 所示,本实施方式的婴儿车 10 包括具有前脚 22 和后脚 24 的框架部 20、以及可摆动地与框架部 20 连结的手柄 50。另外,在框架部 20 的前脚 22 的下端设有具有前轮 61 的前脚用的脚轮机构 60,并且在框架部 20 的后脚 24 的下端设有具有后轮 81 的后脚用的脚轮机构 80。

[0043] 另外,在本实施方式中,婴儿车 10 如广泛普及(例如日本专利公开公报 2006-117012A)的那样,是可折叠的。另外,在本实施方式的婴儿车 10 中,通过使手柄 50 相对框架部 20 摆动,操作者(保护者)可以从婴幼儿的背面侧握住手柄 50 来操纵婴儿车 10,使婴幼儿朝向行进方向的前方而使婴儿车 10 行驶,并且,操作者也可以从与婴幼儿面对的前脚侧的位置握住手柄 50 来操纵婴儿车 10,使婴儿车 10 的后脚侧成为行进方向的前方而使婴儿车 10 行驶,这两种方式都是可行的。

[0044] 此处,在本说明书中,对于婴儿车的“前”、“后”、“上”、“下”、“前后方向”以及“上下方向”这样的用语在没有特别指出时,其意思是以乘坐在处于展开状态的婴儿车 10 的婴幼儿为基准的“前”、“后”、“上”、“下”、“前后方向”以及“上下方向”。更详细地说,婴儿车 10 的“前后方向”是连接图 1 的纸面的左下与右上的方向,相当于图 2 及图 3 的纸面的左右的方向。而且,只要没有特别指出,“前”是乘车的婴幼儿所朝向的一侧,图 1 的纸面的左下侧以及图 2 和图 3 的纸面的左侧为婴儿车 10 的前侧。另一方面,婴儿车 10 的“上下方向”是与前后方向垂直并且与接地面垂直的方向。因此,在接地面是水平面时,“上下方向”指垂直方向。另外,“横向”是宽度方向,是与“前后方向”及“上下方向”中的任意一个都垂直的方向。

[0045] 首先,作为婴儿车的整体结构,对框架部 20 及手柄 50 进行说明。如图 1 所示,本实施方式的婴儿车 10,整体为以沿前后方向的横向中心面为中心的大致对称的结构。如图 1 ~ 图 3 所示,本实施方式的框架部 20 具有:分别配置在左右的一对前脚 22、分别配置在左右的一对后脚 24、分别配置在左右的一对扶手 28、以及分别配置在左右的一对连结杆 26。

[0046] 前脚 22、后脚 24 及连结杆 26 是由筒状部件、例如铝合金制的管形成而得到的。另一方面,扶手 28 是由例如树脂形成而得到的。前脚 22 的上方端部可转动(可摆动)地与配置在对应一侧(左侧或者右侧)的扶手 28 的前方部分连结。同样地,后脚 24 的上方端部可转动(可摆动)地与配置在对应一侧(左侧或者右侧)的扶手 28 的前方部分连结。另外,连结杆 26 的上方部分可转动(可摆动)地与配置在对应一侧(左侧或者右侧)的扶手 28 的后方部分连结。

[0047] 框架部 20 还具有连结左前脚 22 与左连结杆 26 的左侧方连结部件 32、以及连结右前脚 22 与右连结杆 26 的右侧方连结部件 32。各侧方连结部件 32 的前方部分可转动地

与前脚 22 的中间部分连结,各侧方连结部件 32 的后方部分可转动地与连结杆 26 的下方部分连结。侧方连结部件 32 是由例如铝合金制的板材形成而得到的。另外,框架部 20 还具有连结左后脚 24 与左连结杆 26 的左支架 34、以及连结右后脚 24 与右连结杆 26 的右支架 34。各支架 34 的一部分可转动(可摆动)地与后脚 24 的中间部分连结,其他部分可转动地与连结杆 26 的下方部分连结。

[0048] 并且,作为横向延伸的构成要素,本实施方式的婴儿车 10 具有连结在一对前脚 22 之间的前侧上部连结撑条 36、脚板 38 及连结在一对后脚 24 之间的后侧上部连结撑条 40。另外,在一对扶手 28 之间可拆下地设置有可弯曲的保护部件 42。

[0049] 手柄 50 可摆动地与由这样的结构构成的框架部 20 连结。如图 1 所示,在本实施方式中,手柄 50 包含互相大致平行地延伸的大致直线状的一对直线部 51a、以及连结在一对直线部 51a 之间的中间部 51b,整体具有大致 U 字形的形状。手柄 50 的 U 字形的两端部可转动(可摆动)地与对应侧的支架 34 连结。另外,手柄 50 相对于支架 34 的转动轴线(摆动中心)与支架 34 和连结杆 26 的转动轴线、以及连结杆 26 和侧方连结部件 32 的转动轴线一致。利用这样的结构,如图 2 及图 3 所示,手柄 50 相对框架部 20 摆动,手柄 50 的直线部 51a 在扶手 28 的侧方沿着扶手 28 移动。

[0050] 在手柄 50 的能够在扶手 28 的侧方移动的一对直线部 51a 上,分别设有切换部件 105。各切换部件 105 可以沿着直线部 51a 相对直线部 51a 滑动。并且,在手柄 50 的中间部 51b 设有对切换部件 105 的滑动进行远距离操作的远距离操作装置 53。

[0051] 另一方面,如图 2 及图 3 所示,在各扶手 28 上设有一对第一卡合部件(第一卡合突起)30a 和第二卡合部件(第二卡合突起)30b,其与切换部件 105 卡合、限制手柄 50 的转动。各切换部件 105 具有设置在前方侧和后方侧的收容部 105a。如图 10 中的局部剖面所示,收容部 105a 的下方开放。因此通过在手柄 50 配置在规定位置的状态下,操作远距离操作装置 53,使切换部件 105 向上方滑动,从而可以解除切换部件 105 与卡合部件 30a、30b 的卡合。反之,通过使切换部件 105 向下方滑动,利用收容部 105a 从上方覆盖卡合部件 30a、30b,能够使切换部件 105 与卡合部件 30a、30b 卡合。

[0052] 如图 3 所示,通过使设置在前方的第一卡合突起 30a 与切换部件 105 卡合而互相卡止,从而使手柄 50 固定在第一位置(面对推位置)P1。当手柄 50 固定在第一位置 P1 时,手柄 50 成为在侧视图中从沿着垂直轴在转动轴线(摆动中心)01 上倒立的位置(图 3 的单点划线的位置)向婴儿车 10 的前方倾斜的状态(向前脚侧倾斜的状态),与后脚 24 大致平行地延伸。然后,操作者可以从与婴幼儿面对的婴儿车 10 的前脚侧的位置握住手柄 50,推婴儿车 10 使其前进。此时,婴儿车 10 的后脚侧成为行进方向的前方。

[0053] 另一方面,如图 2 所示,通过使设置在后方的卡合突起 30b 与切换部件 105 卡合而互相卡止,从而使手柄 50 固定在第二位置(背面推位置)P2。当手柄 50 固定在第二位置 P2 时,手柄 50 成为在侧视图中从沿着垂直轴在转动轴线(摆动中心)01 上倒立的位置(图 2 的单点划线的位置)向婴儿车 10 的后方倾斜的状态(向后脚侧倾斜的状态),与连结杆 26 大致平行地延伸。然后,操作者可以从成为婴幼儿的背面侧的婴儿车 10 的后脚侧的位置握住手柄 50,使婴幼儿朝向行进方向的前方并推婴儿车 10 使其前进。此时,婴儿车 10 的前脚侧成为行进方向的前方。

[0054] 另外,如后所述,在本实施方式中,可与第一卡合部件 30a 和第二卡合部件 30b 卡

合的切换部件 105 起到切换机构 100 的作用,该切换机构 100 将手柄 50 的摆动运动变换为不同的运动,以对脚轮机构 60、80 的车轮 61、81 的回旋进行限制或解除限制。

[0055] 具有以上这样的整体结构的婴儿车 10 可以通过使各构成部件互相转动而进行折叠。具体而言,通过将配置在第二位置 P2 的手柄 50 先向后上方提起之后再向下方按下,使支架 34 相对于后脚 24 在图 2 中沿顺时针方向转动。随着该操作,扶手 28 及侧方连结部件 32 相对于连结杆 26 在图 2 中沿顺时针方向转动。通过这样的操作,在侧视图中手柄 50 与前脚 22 大致平行地配置,并且,手柄 50 的配置位置下降。如上所述,可以折叠婴儿车 10,使婴儿车沿前后方向及上下方向的尺寸变小。另一方面,为了将婴儿车 10 从折叠状态展开,只需进行与上述的折叠操作相反的步骤即可。

[0056] 接下来,主要参照图 4 至图 7 对前脚用的脚轮机构 60 进行说明。如上所述,在一对前脚 22 的下端分别设有前脚用脚轮机构 60。两个前脚用脚轮机构 60 的结构彼此相同。如图 4 至图 6 所示,脚轮机构 60 具有:前轮(车轮)61;车轮保持件 62,该车轮保持件 62 将前轮 61 保持成可旋转且可以相对婴儿车 10 的前后方向回旋;以及锁定部件 75,该锁定部件 75 设置在车轮保持件 62 上,并可以在限制车轮 61 回旋的锁定位置 P11 与使车轮 61 可以回旋的锁定解除位置 P12 之间移动。

[0057] 如图 5 及图 6 所示,车轮保持件 62 具有固定在前脚 22 上的基部 63、通过销 63a 固定在基部 63 上的轴 66、以及与轴 66 连结的保持部 67。轴 66 与处于展开状态的婴儿车 10 的接地面大致垂直地延伸。保持部 67 通过轴承 70 可旋转地支撑于轴 66(参照图 5)。并且,保持部 67 通过旋转轴 73 将前轮 61 保持成可旋转。在这种脚轮机构 60 中,保持部 67 相对于轴 66 进行旋转,从而车轮 61 可以相对于婴儿车 10 的前后方向进行回旋。

[0058] 另外,旋转轴 73 位于从轴 66 的轴线沿婴儿车 10 的前后方向错开的位置,并沿横向延伸。因此,当使婴儿车行驶时,前轮 61 相对于婴儿车 10 的前后方向回旋,并使轴 66 的轴线配置在旋转轴 73 的行进方向的前方。此处,图 5 表示婴儿车 10 以前脚侧作为行进方向的前方而走行时的脚轮机构 60,图 6 表示婴儿车 10 以后脚侧作为行进方向的前方而走行时的脚轮机构 60。另外,在图 4~图 6 中,省略了一侧的前轮 61。

[0059] 如图 5 及图 6 所示,在基部 63 上设有起到锁定单元的作用的锁定部件 75。通过销 76 将锁定部件 75 的一个端部 75a 与基部 63 连结。锁定部件 75 能够以销 76 为中心相对于基部 63 摆动,如图 5 及图 6 所示,在与保持部 67 卡合的锁定位置 P11 以及不与保持部 67 卡合的锁定解除位置 P12 之间移动。

[0060] 如图 6 及图 7 所清楚地显示的那样,保持部 62 的与锁定部件 75 卡合的部分形成大致圆筒状。而且,如图 7 所示,在圆筒状外周面 69a 的一部分上形成有锁定部件 75 所嵌入的凹部 69b。上述锁定部件 75 的锁定位置 P11 是指锁定部件 75 进入该凹部 69b 内、保持部 67 相对于锁定部件 75 和轴 66 的旋转被限制的位置。在这样的结构中,若锁定部件 75 配置在锁定位置 P11,则可以限制前轮 61 相对于婴儿车 10 的前后方向的回旋运动。下面,将这样车轮的回旋运动被限制的状态简称为锁定状态。另外,锁定部件 75 被未图示的扭簧从锁定解除位置 P12 向锁定位置 P11 施力。

[0061] 接下来,主要参照图 8 及图 9,对分别设置在一对后脚 24 下端的后脚用的脚轮机构 80 进行说明。两个后脚用脚轮机构 80 的结构彼此相同。另外,后脚用的脚轮机构 80 与前脚用的脚轮机构 60 的结构大致相同。即,如图 8 及图 9 所示,脚轮机构 80 具有:后轮(车

轮)81;车轮保持件82,该车轮保持件82将后轮81保持成可旋转且可以相对前后方向回旋,锁定部件95,该锁定部件95设置在车轮保持件82上,且可以在限制车轮81回旋的锁定位置P11与使车轮81可以回旋的锁定解除位置P12之间移动。如图9所示,车轮保持件82具有:固定在后脚24上的基部83;轴86,该轴86通过销83a固定在基部83上,且与处于展开状态的婴儿车10的接地面大致垂直地延伸;以及保持部87,该保持部87通过轴承90可旋转地支撑于轴86。并且,保持部87通过旋转轴93可旋转地保持后轮81。旋转轴93位于从轴86的轴线沿婴儿车10的前后方向错开的位置,并沿横向延伸。

[0062] 如图9所示,在基部83上设有起到锁定单元的作用的锁定部件95。通过销96使锁定部件95的一个端部95a与基部83连结。锁定部件95以销96为中心可相对于基部83摆动,如图9所示,在与保持部87卡合的锁定位置P11以及不与保持部87卡合的锁定解除位置P12之间移动。

[0063] 与前脚用的脚轮机构60一样,保持部87的与锁定部件95卡合的部分形成为大致圆筒状。而且,在圆筒状外周面89a的一部分上形成有锁定部件95所嵌入的凹部89b。上述锁定部件95的锁定位置P11是指锁定部件95进入该凹部89b内、保持部87相对于轴86的旋转被限制的位置。另外,锁定部件95被未图示的扭簧从锁定解除位置P12向锁定位置P11施力。

[0064] 接下来,对切换机构100进行说明。如上所述,切换机构100是为了对脚轮机构60、80的车轮61、81的回旋进行限制或解除限制而将手柄50的转动运动变换为不同的运动的机构。在本实施方式中,切换机构100具有可滑动地设置在手柄50的直线部51a上的切换部件105。

[0065] 如图10所示,切换部件105与设在扶手28的前方侧的第一卡合部件30a卡合而保持在手柄50的直线部51a上的第一保持位置P21,切换部件105与设在扶手28的后方侧的第二卡合部件30b卡合而保持在手柄50的直线部51a上的第二保持位置P22。如上所述,当切换部件105与第一卡合部件30a卡合而保持在第一保持位置P21上时,手柄50位于第一位置P1,并且从第一位置P1的摆动被限制。同样地,当切换部件105与第二卡合部件30b卡合而保持在第一保持位置P22上时,手柄50位于第二位置P2,并且从第二位置P2的摆动被限制。

[0066] 如图10所示,手柄50上的第一保持位置P21与第二保持位置P22是互不相同的位置。在本实施方式中,切换部件105可以沿着手柄50的直线部51a的长度方向在直线部51a上滑动。并且,如图10所示,切换部件105位于第一保持位置P21(图10中的双点划线)时、沿着手柄50的直线部51a的长度方向从切换部件105到手柄50的摆动中心01的长度L1,与切换部件105位于第二保持位置P22(图10中的实线)时、沿着手柄50的直线部51a的长度方向从切换部件105到手柄50的摆动中心01的长度L2是不同的。

[0067] 此外,更详细地说,手柄50保持在第一保持位置P21时的、沿着手柄50的直线部51a的长度方向从切换部件105到手柄50的相对于框架部20的摆动中心01的长度L1,比手柄50保持在第二保持位置P22时的、沿着手柄50的直线部51a的长度方向从切换部件105到手柄50的相对于框架部20的摆动中心01的长度L2长。即,与手柄50配置于第二位置P2的情况相比,当手柄50配置于第一位置P1时,切换部件105从手柄50的摆动中心01进一步离开,保持在更上方的位置。

[0068] 另外,在手柄 50 的直线部 51a 内,设有未图示的弹簧,通过该弹簧,向切换部件 105 施加使其向接近手柄 50 的摆动中心 01 的方向在手柄 50 的直线部 51a 上滑动的力。因此,当操作设置在手柄 50 的中间部 51b 上的远距离操作装置 53 时,克服来自内装于手柄 50 的弹簧的施力,使切换部件 105 动作。

[0069] 接下来,说明传递机构 120、130。在切换机构 100 与脚轮机构 60、80 之间设有将切换机构 100 的动作传递给脚轮机构的传递机构(传递装置)。在本实施方式中,两个第一传递机构 120 分别设置在左侧和右侧的前脚用脚轮机构 60 与切换机构 100 之间。这两个第一传递机构 120 的结构相同。并且两个第二传递机构 130 分别设置在左侧和右侧的后脚用脚轮机构 80 与切换机构 100 之间。这两个第二传递机构 130 的结构也相同。

[0070] 各传递机构 120、130 将切换部件 105 在第一保持位置 21 与第二保持位置 22 之间的移动传递给锁定部件 75、95,使锁定部件 75、95 从锁定解除位置 P12 向锁定位置 P11、或从锁定位置 P11 向锁定解除位置 P12 移动。在本实施方式中,第一传递机构 120 和第二传递机构 130 的配置位置不同,但具有相同的结构。

[0071] 传递机构 120、130 具有:两端分别安装在切换机构 100 的切换部件 105 及脚轮机构 60、80 的锁定部件 75、95 上的引线 122、132,以及引线 122、132 通过其内部的管状部件 124、134。如图 5、图 6、图 9 及图 10 所示,管状部件 124、134 的两端相对于手柄 50 的直线部 51a 及脚轮机构 60、80 的基部 63、83 固定。在这种结构中,引线 122、132 相对于管状部件 124、134 的移动与切换部件 105 相对于手柄 50 的滑动连动,并且也与脚轮机构 60、80 的锁定部件 75、95 相对于基部 63、83 的摆动连动。

[0072] 具体地说,如图 10 所示,第一传递机构 120 的管状部件 124 的一端在手柄 50 上的固定位置位于保持在第一保持位置 P21 的切换部件 105 所配置的位置的上方。即,从第一传递机构 120 的管状部件 124 的一端到手柄 50 的摆动中心 01 的长度,比从切换部件 105 到手柄 50 的摆动中心 01 的长度长,所述切换部件 105 固定有从所述管状部件 124 的一端伸出的引线 122 的端部。

[0073] 因此,当切换部件 105 在手柄 50 的直线部 51a 上向下方滑动而接近手柄 50 的摆动中心 01 时、即从第一保持位置 P21 向第二保持位置 P22 移动时,第一传递机构 120 的引线 122 随着切换部件 105 的移动被从第一传递机构 120 的管状部件 124 的切换机构 100 侧端部向管状部件 124 外拉出,并且被从第一传递机构 120 的管状部件 124 的前轮用脚轮机构 60 侧端部向管状部件 124 内拉入。其结果,连结有引线 122 的前轮用脚轮机构 60 侧端部的前轮用脚轮机构 60 的锁定部件 75 从锁定位置 P11 向锁定解除位置 P12 移动(参考图 5)。

[0074] 相反,当切换部件 105 在手柄 50 的直线部 51a 上向上方滑动而远离手柄 50 的摆动中心 01 时、即从第二保持位置 P22 向第一保持位置 P21 移动时,第一传递机构 120 的引线 122 随着切换部件 105 的移动被从第一传递机构 120 的管状部件 124 的切换机构 100 侧端部向管状部件 124 内推入,并且被从第一传递机构 120 的管状部件 124 的前轮用脚轮机构 60 侧端部向管状部件 124 外推出。其结果,连结有引线 122 的前轮用脚轮机构 60 侧端部的前轮用脚轮机构 60 的锁定部件 75 可以从锁定解除位置 P12 向锁定位置 P11 移动。

[0075] 另一方面,如图 10 所示,第二传递机构 130 的管状部件 134 的一端在手柄上的固定位置位于保持在第二保持位置 P22 的切换部件 105 所配置的位置的下方。即,从第二传

递机构 130 的管状部件 134 的一端到手柄 50 的摆动中心 01 的长度,比从切换部件 105 到手柄 50 的摆动中心 01 的长度短,所述切换部件 105 固定有从所述管状部件 134 的一端伸出的引线 132 的端部。

[0076] 因此,当切换部件 105 在手柄 50 的直线部 51a 上向下方滑动而接近手柄 50 的摆动中心 01 时、即从第一保持位置 P21 向第二保持位置 P22 移动时,第二传递机构 130 的引线 132 随着切换部件 105 的移动被从第二传递机构 130 的管状部件 134 的切换机构 100 侧端部向管状部件 134 内推入,并且被从第二传递机构 130 的管状部件 134 的后轮用脚轮机构 80 侧端部向管状部件 134 外推出。其结果,连结有引线 132 的后轮用脚轮机构 80 侧端部的后轮用脚轮机构 80 的锁定部件 95 可以从锁定解除位置 P12 向锁定位置 P11 移动。

[0077] 相反,当切换部件 105 在手柄 50 的直线部 51a 上向上方滑动而远离手柄 50 的摆动中心 01 时、即从第二保持位置 P22 向第一保持位置 P21 移动时,第二传递机构 130 的引线 132 随着切换部件 105 的移动被从第二传递机构 130 的管状部件 134 的切换机构 100 侧端部向管状部件 134 外拉出,并且被从第二传递机构 130 的管状部件 134 的后轮用脚轮机构 80 侧端部向管状部件 134 内拉入。其结果,连结有引线 122 的后轮用脚轮机构 80 侧端部的后轮用脚轮机构 80 的锁定部件 95 可以从锁定位置 P11 向锁定解除位置 P12 移动。

[0078] 另外,设置在手柄 50 上的弹簧(未图示)朝向手柄 50 的摆动中心 01 施加在切换部件 105 上的力,比设置在脚轮机构 60、80 上的扭簧(未图示)使各锁定部件 75、95 摆动而将引线 122、132 向脚轮机构 60、80 侧拉出的力强。并且,当没有外力施加在切换机构 100 上时,前轮用脚轮机构 60 的锁定部件 75 配置在锁定解除位置 P12,并且后轮用脚轮机构 80 的锁定部件 95 配置在锁定位置 P11。

[0079] 另外,在图示的例子中,构成第一传递机构 120 的引线 122 和管状部件 124 从手柄 50 的内部通过,然后支撑于侧方连结部件 32 的外表面,接着从前脚 22 的内部通过并延伸至前轮用脚轮机构 60。另一方面,构成第一传递机构 130 的引线 132 和管状部件 134 从手柄 50 的内部通过,然后从后脚 24 的内部通过并延伸至后轮用脚轮机构 80。但是,第一传递机构 120 和第二传递机构 130 的这种路径只是示例,也可以通过各种路径连结在切换机构 100 与脚轮机构 60、80 之间。例如也可以不是从手柄 50、前脚 22、后脚 24 的内部通过,而是支撑在手柄 50、前脚 22、后脚 24 的外表面上。并且,第一传递机构 120 也可以以手柄 50、后脚 24、扶手 28 和前脚 22 的顺序经过这些部件,而从切换机构 100 延伸至前轮用脚轮机构 60。

[0080] 接下来,对摆动这样构成的婴儿车 10 的手柄 50 时的作用进行说明。

[0081] 如上所述,通过使设置在手柄 50 上的切换部件 105 与设置在扶手 28 上的前方侧的第一卡合部件 30a 卡合,从而能够将手柄 50 固定于向前脚侧倾斜的第一位置 P1(参考图 3)。此时,保护者能够从婴儿车 10 的前脚侧握住配置于第一位置 P1 的手柄 50,使婴儿车 10 的后脚侧成为行进方向前方而使婴儿车 10 行驶。另外,通过使设置在手柄 50 上的切换部件 105 与设置在扶手 28 上的后方侧的第二卡合部件 30b 卡合,从而能够将手柄 50 固定于向后脚侧倾斜的第二位置 P2(参考图 2)。此时,保护者能够从婴儿车 10 的后脚侧握住配置于第二位置 P2 的手柄 50,使婴儿车 10 的前脚侧成为行进方向前方而使婴儿车 10 行驶。

[0082] 在本实施方式中,设置于手柄 50 的切换机构 100 的切换部件 105,当手柄 50 位于第一位置 P1 时保持于第一保持位置 P21,当手柄 50 位于第二位置 P2 时保持于第二保持位

置 P22。

[0083] 而且,如上所述,当手柄 50 向前方倾倒而使切换部件 105 保持在第一保持位置 P21 时,第一传递机构 120 的引线 122 从切换机构 100 侧向前轮用脚轮机构 60 侧移动,第二传递机构 130 的引线 132 从后轮用脚轮机构 80 侧向切换机构 100 侧移动。其结果,前轮用脚轮机构 60 的锁定部件 75 被配置于锁定位置 P11,前轮 61 被保持为相对前后方向不可回旋的状态。相反,后轮用脚轮机构 80 的锁定部件 95 被配置于锁定解除位置 P12,后轮 81 被保持为相对前后方向可以回旋的状态。

[0084] 另一方面,当手柄 50 向后方倾倒而使切换部件 105 保持在第二保持位置 P22 时,第一传递机构 120 的引线 122 从前轮用脚轮机构 60 侧向切换机构 100 侧移动,第二传递机构 130 的引线 132 从切换机构 100 侧向后轮用脚轮机构 80 侧移动。其结果,前轮用脚轮机构 60 的锁定部件 75 被配置于锁定解除位置 P12,前轮 61 被保持为相对前后方向可以回旋的状态。相反,后轮用脚轮机构 80 的锁定部件 95 被配置于锁定位置 P11,后轮 81 被保持为相对前后方向不可回旋的状态。

[0085] 无论将婴儿车 10 向哪个方向推,配置在行进方向前方的车轮都可以相对前后方向回旋,配置在行进方向后方的车轮相对前后方向的回旋都被限制,从操纵性或行驶稳定性的观点来看较为理想。而且,采用本实施方式的婴儿车 10,如上述所述,可以根据手柄 50 的位置自动且稳定、可靠地将前脚用脚轮 60 及后脚用脚轮 80 的车轮 61、81 切换成可以回旋的状态或者不可回旋的状态。

[0086] 采用如上所述的本实施方式,当手柄 50 处于第一位置 P1 和第二位置 P2 时,切换机构 100 的切换部件 105 被保持在不同的位置。并且,利用该切换部件 105 的位置变化,可以自动地控制各脚轮机构 60、80 的车轮 61、81 的回旋。尤其是,切换部件 105 进行线状(尤其是直线状)动作。通过传递机构,将这种切换部件 105 的动作传递给前脚用脚轮机构 60 以及后脚用脚轮机构 80,从而能够稳定、可靠地将车轮 61、81 切换成可以回旋的状态或者不可回旋的状态。

[0087] 并且,通过切换部件 105 与设置于框架部 20 的第一卡合部件 30a 或第二卡合部件 30b 卡合,从而当手柄 50 位于第一位置 P1 或第二位置时,切换部件 105 一定能够被配置在规定的位置。通过这种切换部件 105 的配置位置来操作前脚用脚轮机构 60 和后脚用脚轮机构 80 的锁定部件 75、95,从而能够稳定、可靠地将车轮 61、81 切换成可以回旋的状态或者不可回旋的状态。

[0088] 此外,切换机构 100 的切换部件 105 兼作将手柄 50 固定在第一位置 P1 或第二位置 P2 用的部件。因此,与另外设置切换部件作为切换机构的情况相比,能够减少零件件数。并且,由于零件件数的减少,婴儿车 10 的结构也简单化,所以能够稳定、可靠地将前脚用脚轮机构 60 和后脚用脚轮机构 80 的车轮 61、81 切换成可以回旋的状态或者不可回旋的状态。

[0089] 另外,关于上述实施方式,可以在本实用新型要点的范围内进行各种变更。

[0090] 下面,说明变更的一个例子。

[0091] 在上述实施方式中,对与位于第二保持位置 P22 时相比、位于第一保持位置 P21 时切换部件 105 从手柄 50 的摆动中心 01 远离的例子进行了表示,但不限于此,也可以是与位于第二保持位置 P22 时相比、位于第一保持位置 P21 时切换部件 105 向手柄 50 的摆动中心

01 靠近。另外,对第一传递机构 120 的切换机构 100 侧端部位于切换部件 105 的上方侧、第二传递机构 130 的切换机构 100 侧端部位于切换部件 105 的下方侧的例子进行了表示,但不限于此,可以变更成各种形态。在这种变形例中,随着手柄 50 的摆动,也可以自动地使位于行进方向后方侧的脚轮机构的车轮的回旋受到限制,并且使位于行进方向前方侧的脚轮机构的车轮可以回旋。

[0092] 另外,在上述实施方式中,对构成为将手柄 50 固定在第一位置 P1 或第二位置 P2 用的部件也起到切换机构 100 的切换部件 105 的作用的例子进行了表示,但不限于此,作为一例,也可以如图 11 ~ 图 13 所示,不同于将手柄 50 固定在第一位置 P1 或第二位置 P2 用的滑动部件 55,另外设置切换机构 100 的切换部件 105。并且,在图 11 ~ 图 13 所示的例子中,滑动部件 55 除了未与传递单元连结以外,其余结构与上述实施方式中所说明的切换部件 105 相同。另外,在图 11 ~ 图 13 中,对与上述实施方式的结构等对应的结构等标记相同的符号。

[0093] 在图 11 ~ 图 13 所示的例子中,切换部件 106 可转动地支撑于框架部 50。切换部件 106 具有可突出到手柄 50 摆动时的轨道范围(所通过的范围)Z 内的突出部 106a、106b,突出部 106a、106b 构成为能够与摆动过程中的手柄 50 接触。尤其是,在图示的例子中,切换部件 106 可转动地支撑在扶手 28 内,突出部 106a、106b 可从扶手 28 突出。如图 12 和图 13 所示,切换部件 106 具有对称形状,具有第一突出部 106a 和第二突出部 106b 这两个突出部。

[0094] 切换部件 106 的转动轴 RA 与包含移动轨迹的假想平面大致平行地延伸,该移动轨迹为手柄 50 的可与突出部 106a、106b 接触的部分的、与手柄 50 的摆动相伴的轨迹。由此,通过从第一位置 P1 向第二位置 P2、或从第二位置 P2 向第一位置 P1 移动过程中的手柄 50 推压切换部件 106 的突出部 106a、106b,从而使切换部件 106 能够在第一保持位置 P21 与第二保持位置 P22 之间摆动。

[0095] 如图 12 的实线所示,当切换部件 106 被保持在第二保持位置 P22 时,第一突出部 106a 从扶手 28 突出,进入手柄 50 摆动时的轨道范围 Z 内。另一方面,第二突出部 106b 与扶手 28 的外表面在大致相同的平面上延伸,没有突出到手柄 50 摆动时的轨道范围 Z 内。因此,当手柄 50 从第二位置 P2(实线)向第一位置 P1(双点划线)移动时,手柄 50 不与相对于第一突出部 106a 位于手柄 50 的移动路径前方侧的第二突出部 106b 接触,在通过面对转动轴 RA 的位置后,与第一突出部 106a 冲撞而推压第一突出部 106a(参考图 13)。然后,通过手柄 50 推压第一突出部 106a,从而切换部件 106 从第二保持位置 P22(实线)向第一保持位置 P21(双点划线)移动。

[0096] 相反,如图 12 的双点划线所示,当切换部件 106 被保持在第一保持位置 P21 时,第一突出部 106a 与扶手 28 的外表面在大致相同的平面上延伸,没有突出到手柄 50 摆动时的轨道范围 Z 内。另一方面,第二突出部 106b 从扶手 28 突出,进入手柄 50 摆动时的轨道范围 Z 内。因此,当手柄 50 从第一位置 P1(双点划线)向第二位置 P2(实线)移动时,手柄 50 不与相对于第二突出部 106b 位于手柄 50 的移动路径前方侧的第一突出部 106a 接触,在通过面对转动轴 RA 的位置后,与第二突出部 106b 冲撞而推压第二突出部 106b。然后,通过手柄 50 推压第二突出部 106b,从而切换部件 106 从第一保持位置 P21 向第二保持位置 P22 移动。

[0097] 另外,本变形例的切换机构 100 还具有两端支撑于一对支撑片 28b 且配置在扶手 28 内的板状部件 28a。并且,切换部件 106 具有向扶手 28 的内方突出的推压突出部 106c。该推压突出部 106c 在扶手 28 内位于与板状部件 28a 相对的位置。如图 12 和图 13 所示,当切换部件 106 位于第一保持位置 P21 与第二保持位置 P22 之间时,切换部件 106 的推压突出部 106c 与板状部件 28a 抵接而使板状部件 28a 弹性变形。即,在切换部件 106 的可摆动范围的第一保持位置 P21 与第二保持位置 P22 之间,包含施力区域,当切换部件 106 位于施力区域内时,切换部件 106 被向第一保持位置 P21 或第二保持位置 P22 施力。

[0098] 在图示形态中,当切换部件 106 位于第一保持位置 P21 与第二保持位置 P22 的中间位置时,板状部件 28a 的变形最大。即,第一保持位置 P21 与第二保持位置 P22 的中间位置存在死点,当切换部件 106 位于该死点的第一保持位置 P21 侧时,切换部件 106 通过板状部件 28a 的恢复力被向第一保持位置 P21 施力,当切换部件 106 位于该死点的第二保持位置 P22 侧时,切换部件 106 通过板状部件 28a 的恢复力被向第二保持位置 P22 施力。

[0099] 像以上那样,切换机构 100 的切换部件 106 随着手柄 50 的摆动而转动。当手柄 50 位于第一位置 P1 时,切换部件 106 被保持在第一保持位置 P21,当手柄 50 位于第二位置 P2 时,切换部件 106 被保持在第二保持位置 P22。

[0100] 在图 11 ~ 图 13 所示的例子中,第一传递机构 120 的引线 122 的切换机构 100 侧端部通过设置在扶手 28 内的可旋转的滑轮 29a 在第一突出部 106a 附近固定于切换部件 106。第一传递机构 120 的管状部件 124 的切换机构 100 侧端部在扶手 28 内的固定位置被确定成如下的位置:当切换部件 106 位于第二保持位置 P22 时,引线 122 能够从管状部件 124 向切换机构 100 侧拉出,当切换部件 106 位于第一保持位置 P21 时,引线 122 能够从切换机构 100 侧推入管状部件 124 内。

[0101] 同样地,第二传递机构 130 的引线 132 的切换机构 100 侧端部通过设置在扶手 28 内的可旋转的滑轮 29b 在第二突出部 106b 附近固定于切换部件 106。第二传递机构 130 的管状部件 132 的切换机构 100 侧端部在扶手 28 内的固定位置被确定成如下的位置:当切换部件 106 位于第二保持位置 P22 时,引线 132 能够从切换机构 100 侧推入管状部件 134 内,当切换部件 106 位于第一保持位置 P21 时,引线 132 能够从管状部件 134 向切换机构 100 侧拉出。

[0102] 第一传递机构 120 和第二传递机构 130 的其他结构可以与上述实施方式相同。另外,图 11 ~ 图 13 所示的变形例的婴儿车 10,除了此处所说明的方面之外,其他方面可以与上述实施方式的结构相同。采用这样的结构,与上述实施方式相同,当切换部件 106 位于第一保持位置 P21 时,能够自动地使前轮 61 的回旋受到限制且使后轮 81 可以回旋,当切换部件 106 位于第二保持位置 P22 时,能够自动地使前轮 61 可以回旋且使后轮 81 的回旋受到限制。采用这种变形例,也可以稳定、可靠地根据手柄 50 的位置进行车轮 61、81 的状态切换操作。

[0103] 另外,在图 11 ~ 图 13 所示的例子中,对切换机构 100 的切换部件 106 被摆动过程中的手柄 50 推压、切换部件 106 的位置在第一保持位置 P21 与第二保持位置 P22 之间变化的例子进行了表示,但不限于此。也可以做成,突出部 106a、106b 可突出到安装在手柄 50 上的部件(例如上述滑动部件 55)的、与手柄 50 的摆动相伴的轨道范围内,通过该安装在手柄 50 上的部件推压突出部 106a、106b,从而使切换部件 106 在第一保持位置 P21 与第二

保持位置 P22 之间移动。

[0104] 另外,作为上述实施方式相对应的其他变形例,可以进行以下的变形。

[0105] 在上述实施方式中,表示了在前脚用脚轮机构 60 和后脚用脚轮机构 80 双方都设置锁定部件 75、95 的例子,但不限于此,也可以仅在某一方上设置锁定部件。此时,未设置锁定部件的脚轮机构的车轮可以做成相对于婴儿车 10 的前后方向可以回旋,也可以做成沿着婴儿车 10 的前后方向且不可回旋。

[0106] 并且,在上述实施方式中所说明的婴儿车 10 的整体结构只不过是个例子。例如也可以构成为不可折叠的框架部 20。

[0107] 另外,在上述实施方式中所说明的脚轮机构的结构只不过是个例子。例如,也可以采用日本专利公开公报特开 2002-284015 号所公开的脚轮机构的结构。

[0108] 另外,上面对与上述实施方式相对应的几个变形例进行了说明,但是,当然也可以适当组合多个变形例来应用。

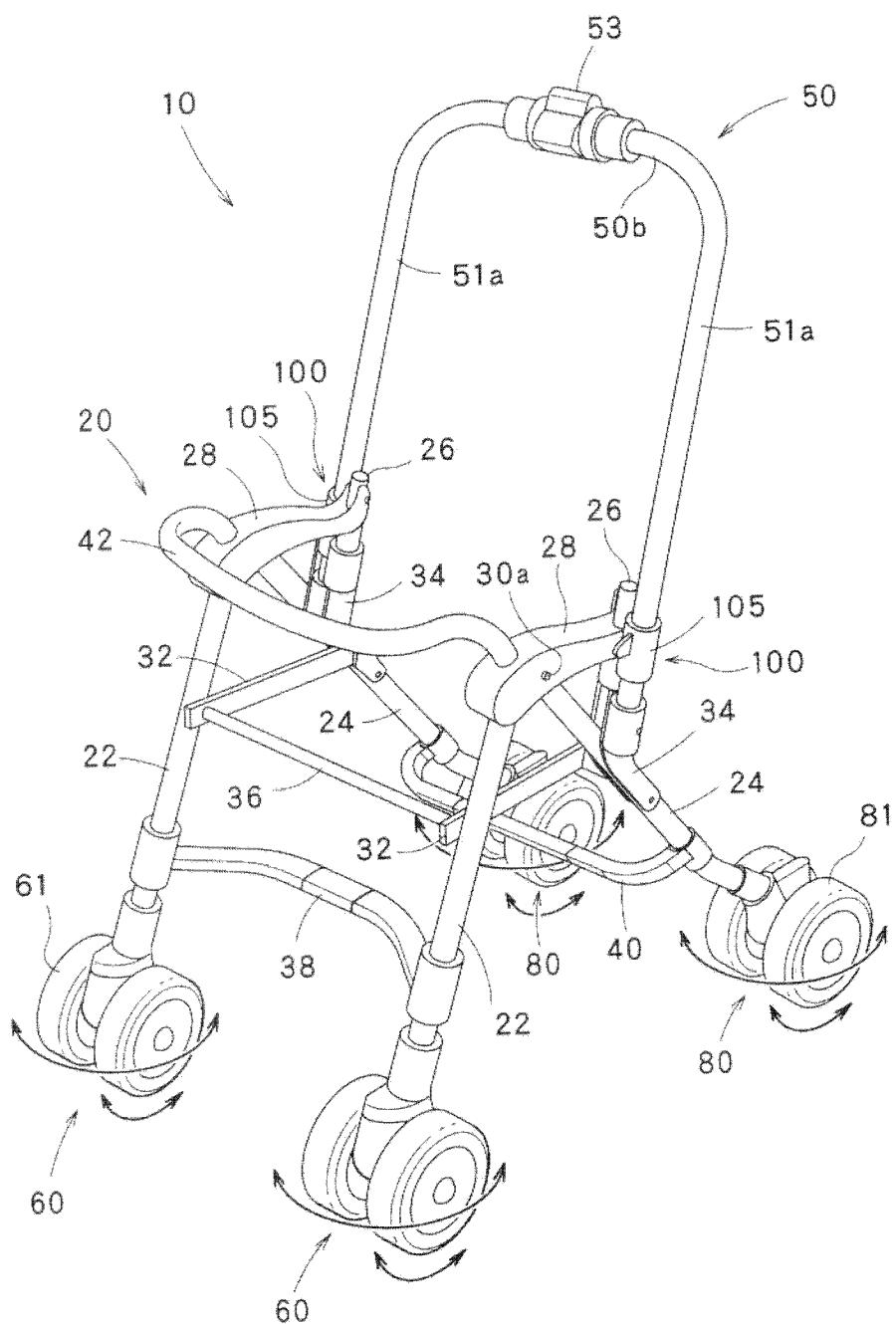


图 1

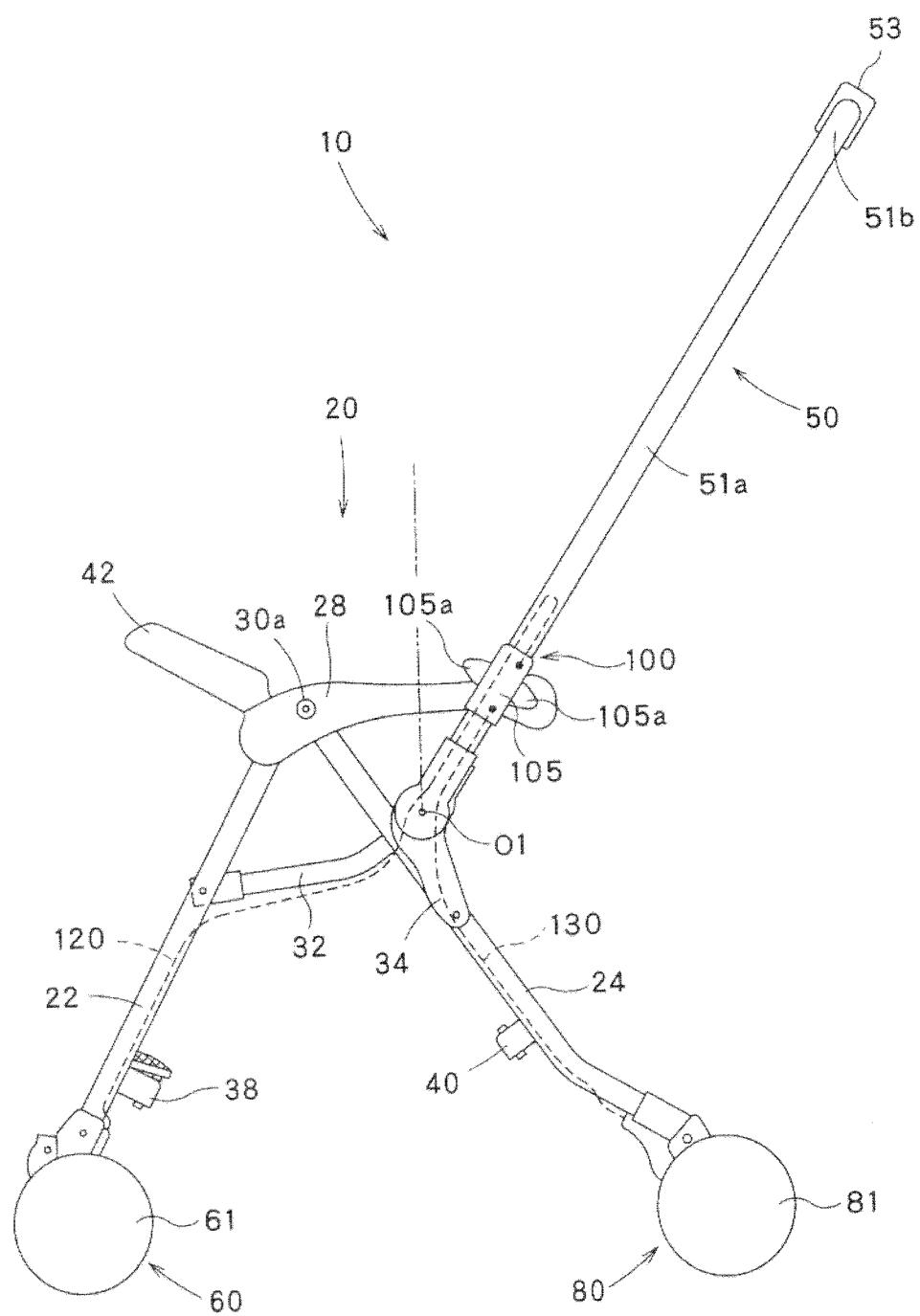


图 2

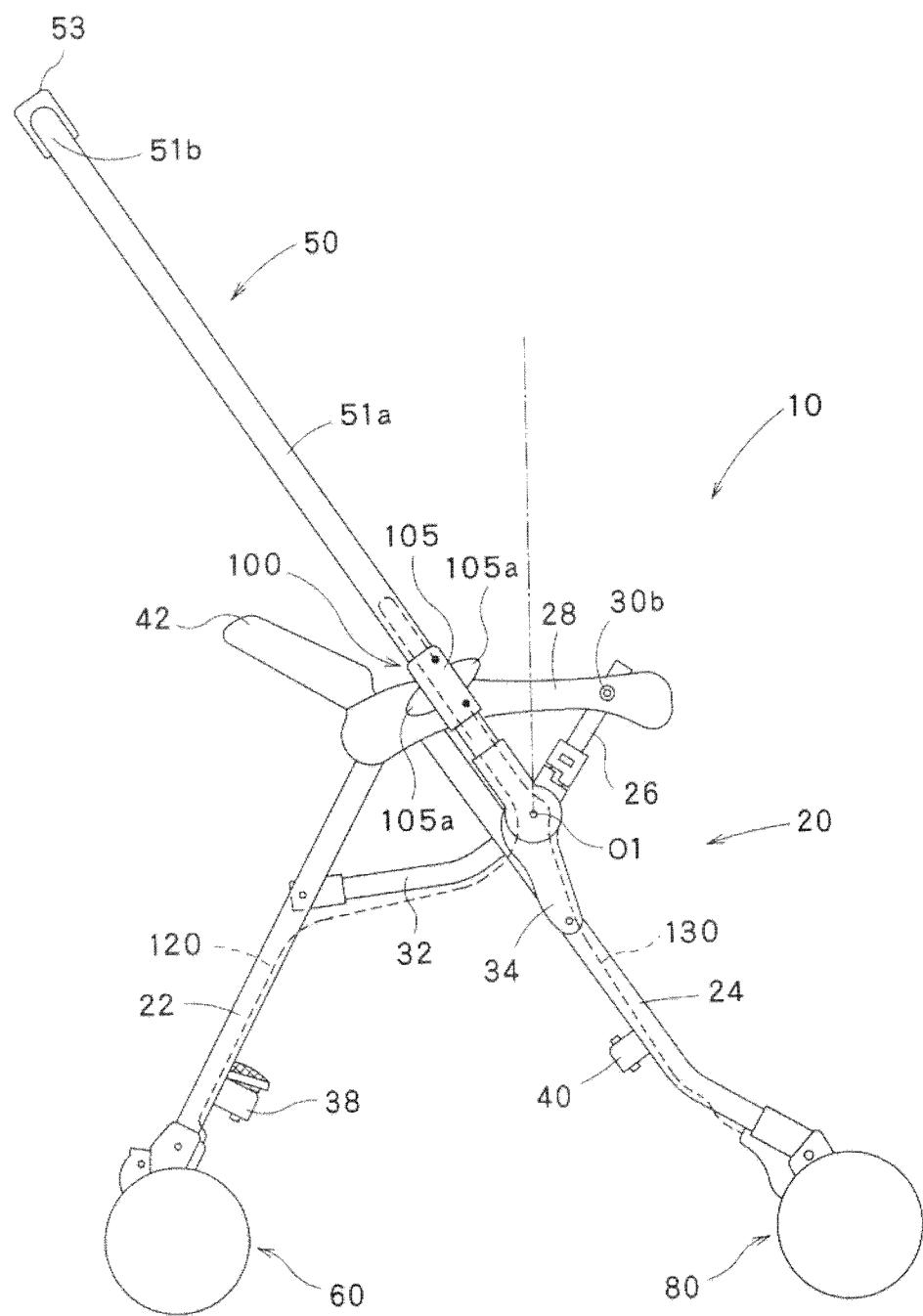


图 3

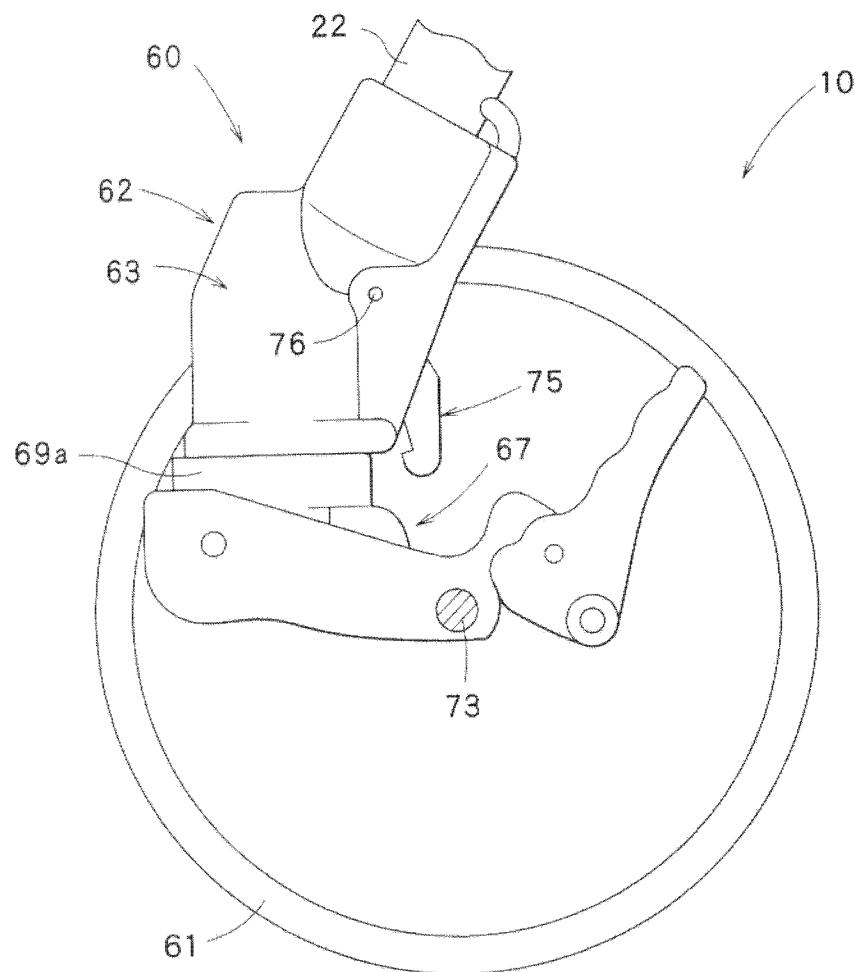


图 4

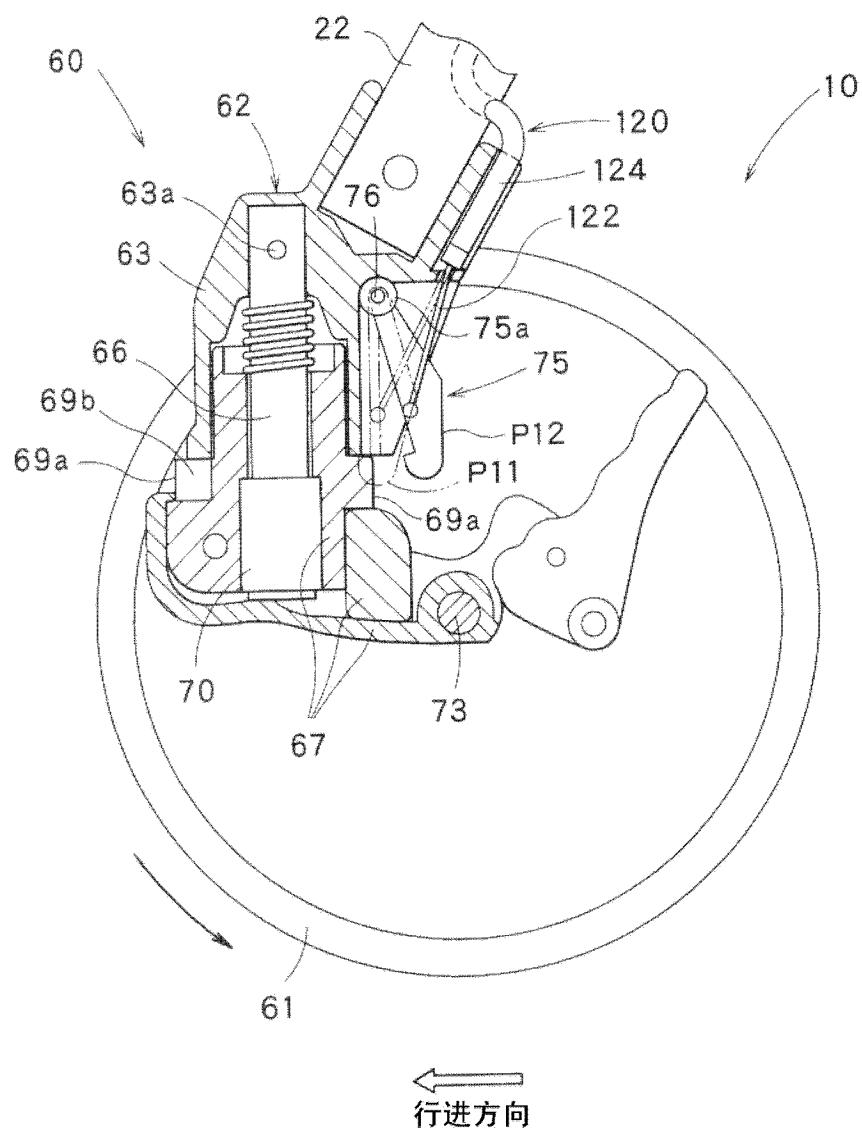


图 5

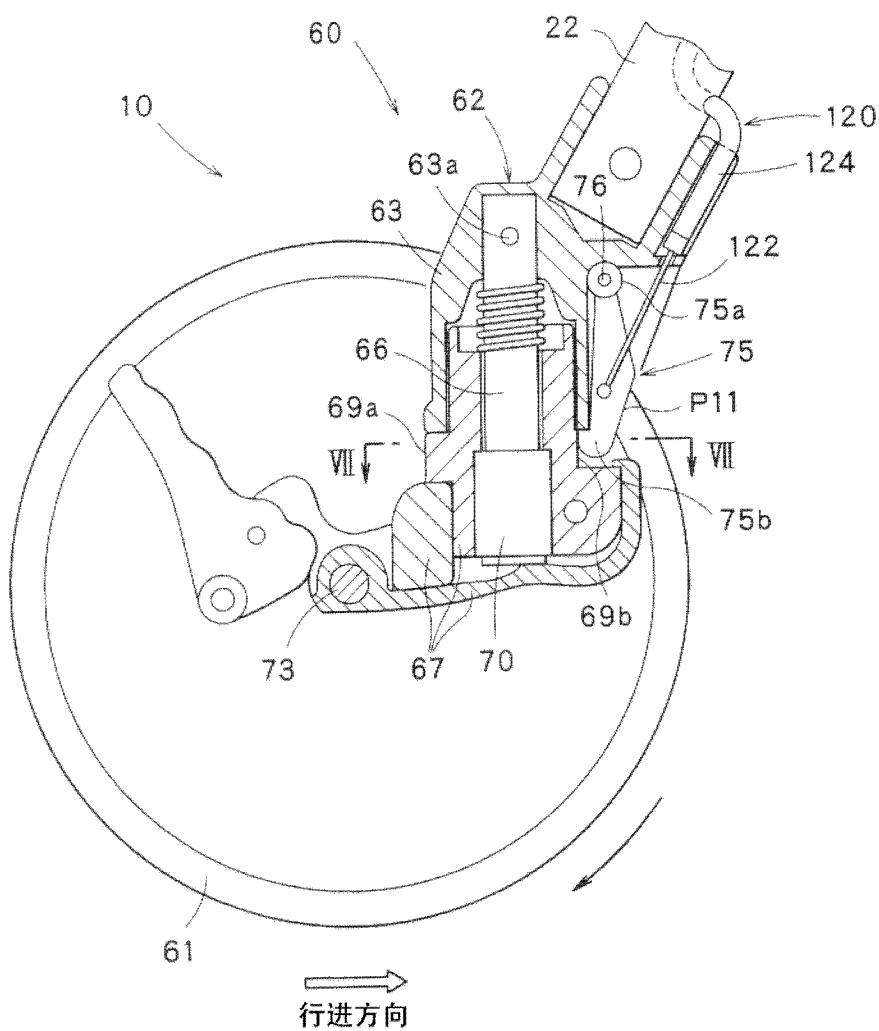


图 6

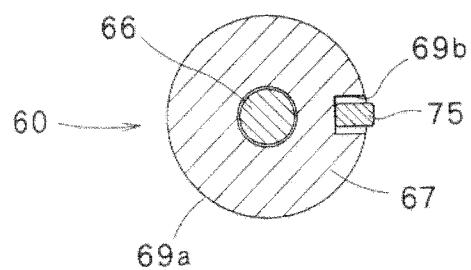


图 7

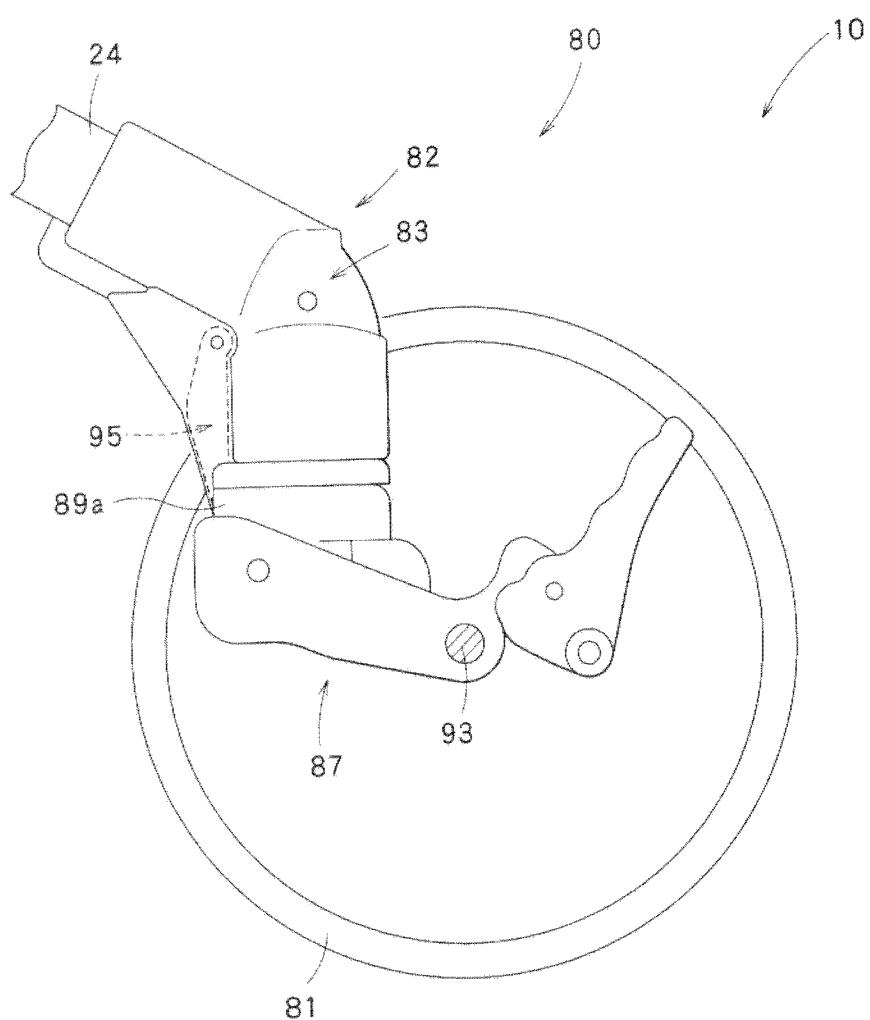


图 8

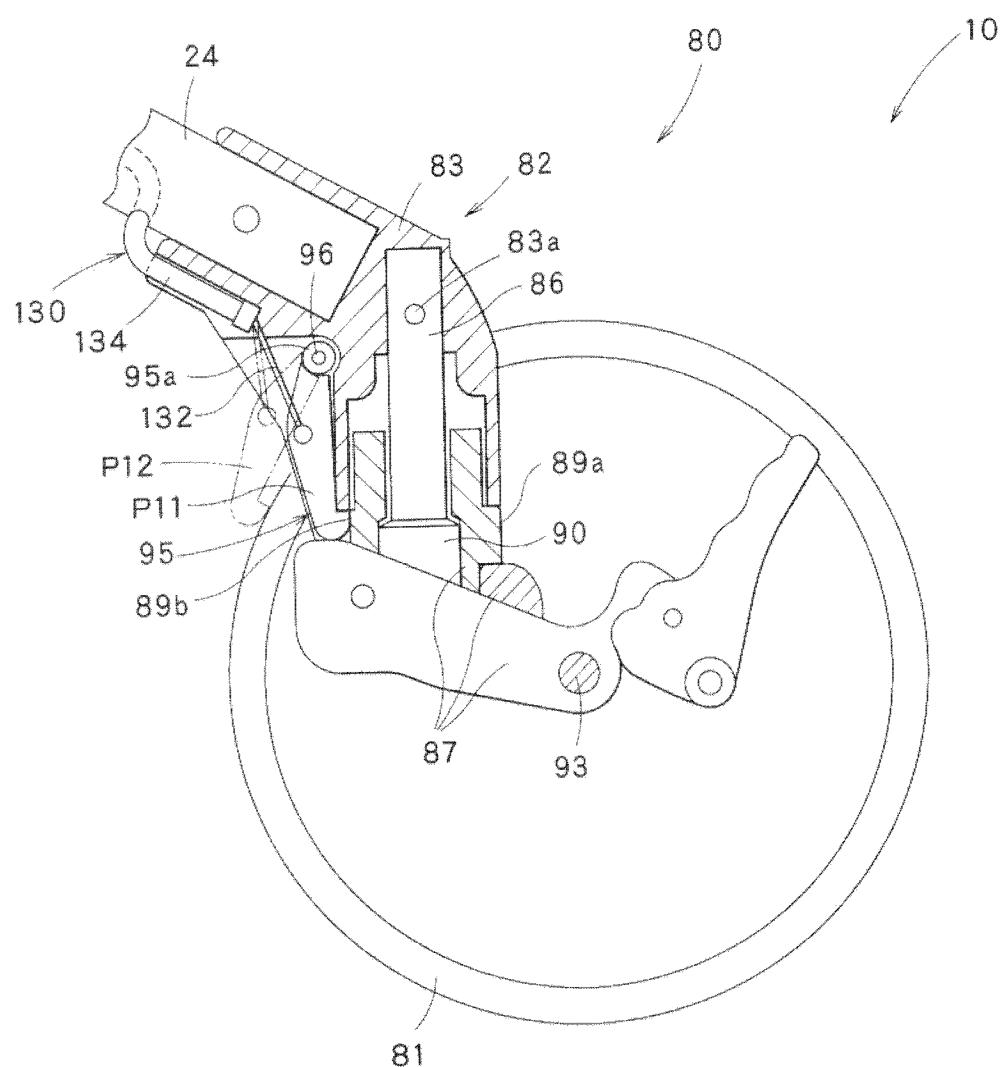


图 9

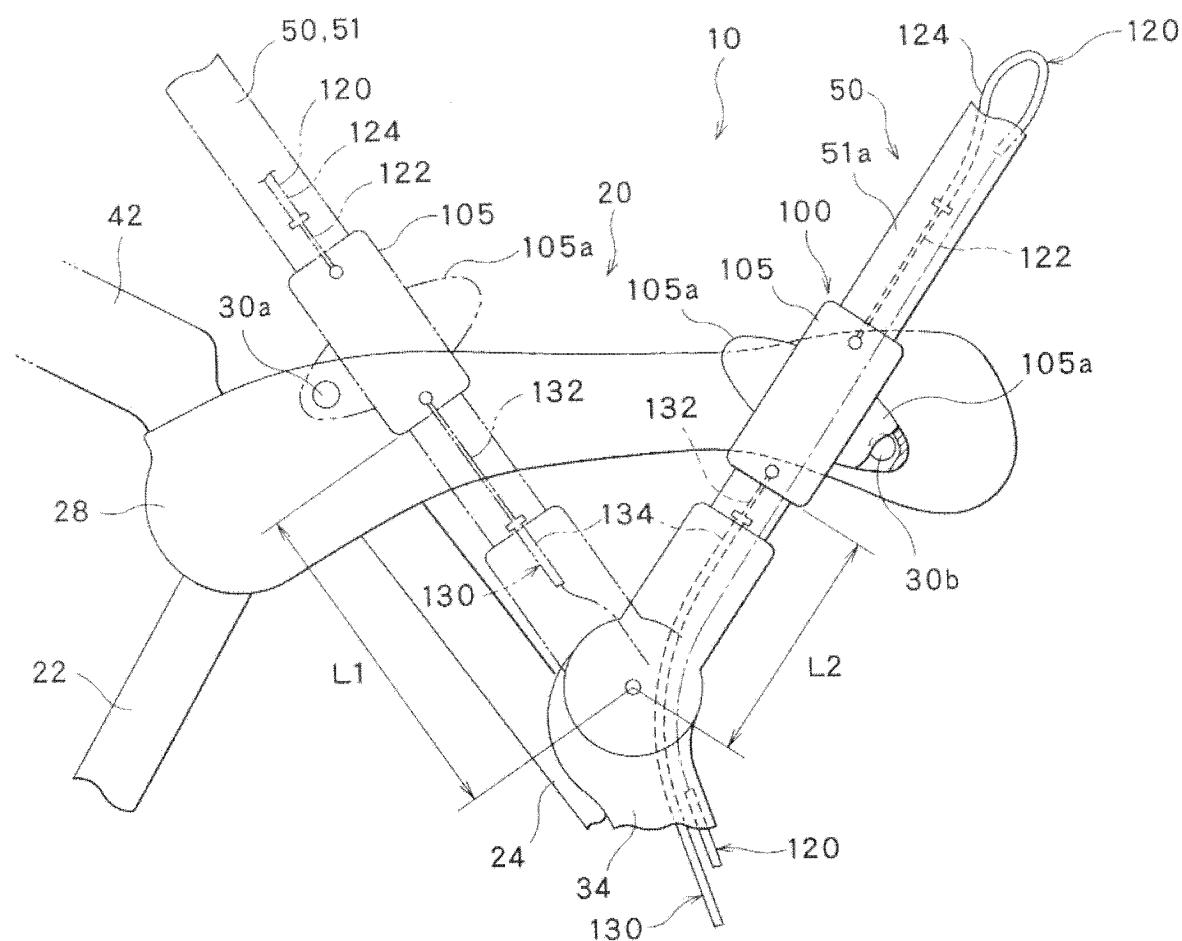


图 10

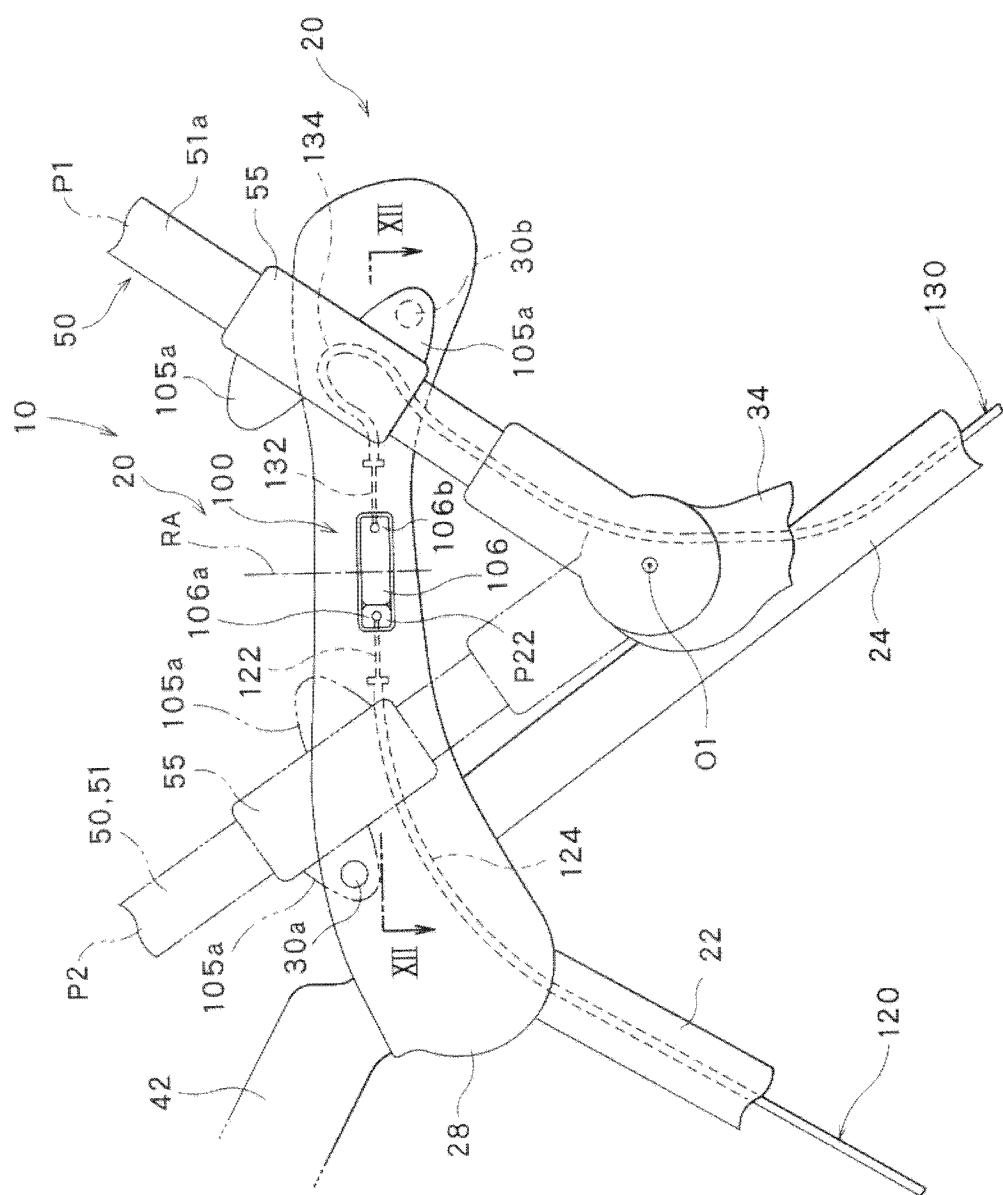


图 11

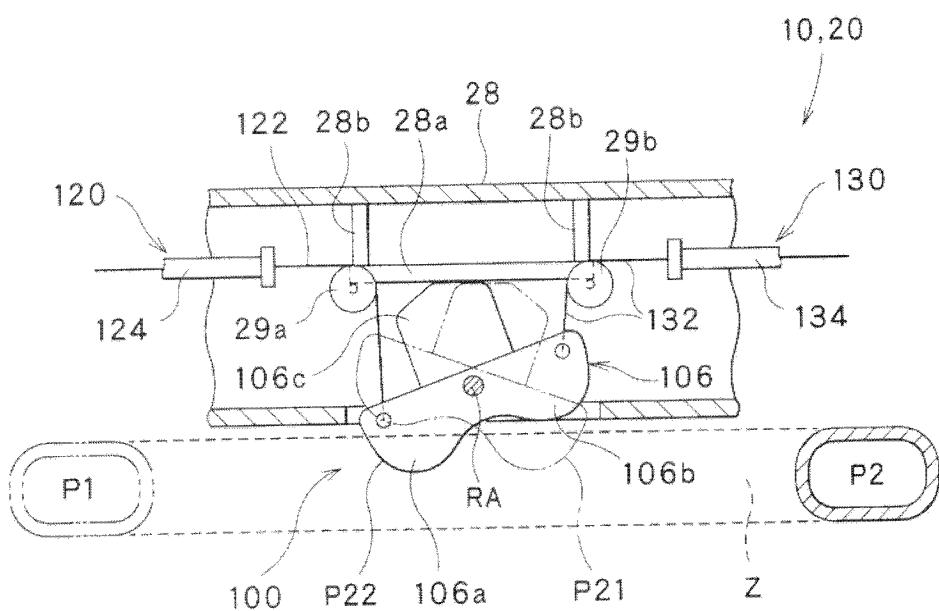


图 12

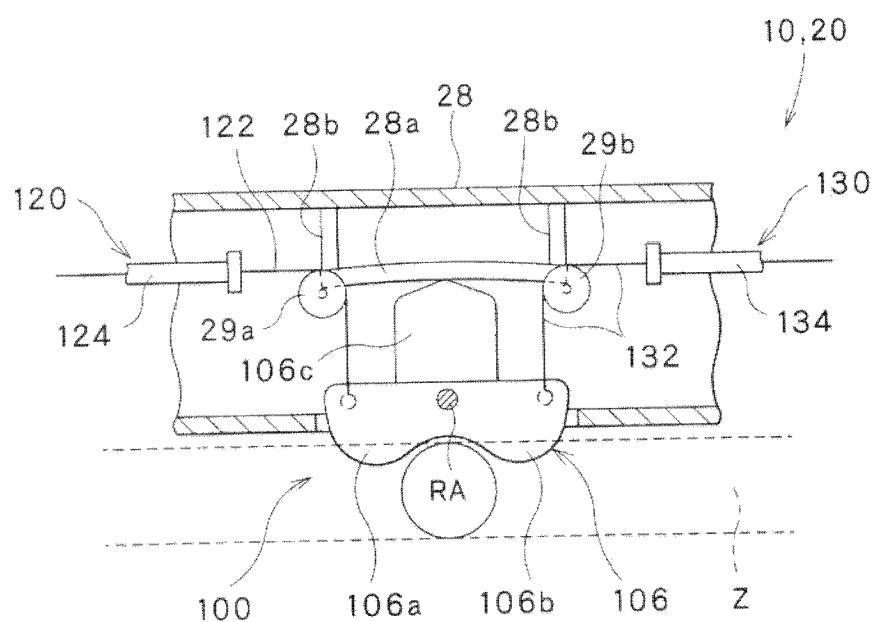


图 13