
(19) RU (11) 2 746 981(13) C2РОССИЙСКАЯ ФЕДЕРАЦИЯ

(51) МПК
H04N 19/61 (2014.01)
H04N 19/44 (2014.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) СПК
H04N 19/61 (2021.02); H04N 19/44 (2021.02)

(72) Автор(ы):
ЛУ, Таожань (US),

(21)(22) Заявка: 2020122372, 29.06.2018

(24) Дата начала отсчета срока действия патента:
29.06.2018

ПУ, Фанцзюнь (US),
ИНЬ, Пэн (US),

Дата регистрации:
22.04.2021

ЧЭНЬ, Тао (US),
ХЬЮСЭК, Уолтер Дж. (US)

(73) Патентообладатель(и):
ДОЛБИЛЭБОРЕТЕРИЗЛАЙСЕНСИНГ
КОРПОРЕЙШН (US)

Приоритет(ы):
(30) Конвенционный приоритет:

29.06.2017 US 62/526,577;

(56) Список документов, цитированных в отчете
о поиске: WO 2016/164235 A1, 13.10.2016. WO

21.09.2017 US 62/561,561;
12.02.2018 US 62/629,313;
05.06.2018 US 62/680,710;

2012/122425 A1, 13.09.2012. US 2006/0268991 A1,19.06.2018 US 62/686,738 30.11.2006. US 2013/0208998 A1, 15.08.2013. RU
2370908 C2, 20.10.2009.Номер и дата приоритета первоначальной заявки,

из которой данная заявка выделена:
2019125713 29.06.2017

(43) Дата публикации заявки: 24.09.2020 Бюл. № 27

(45) Опубликовано: 22.04.2021 Бюл. № 12

Адрес для переписки:
129090,Москва, ул. Б. Спасская, 25, стр. 3, ООО
"Юридическая фирма Городисский и
Партнеры"

(54) СОВМЕСТНОЕПЕРЕСТРАИВАНИЕИЗОБРАЖЕНИЯИКОДИРОВАНИЕВИДЕОСИГНАЛА
(57) Реферат:

Изобретение относится к вычислительной
технике. Технический результат заключается в
повышении эффективности кодирования при
перестраивании. Способ декодирования
кодированного битового потока для
формирования выходного изображения, в
котором принимают кодированный битовый
поток, содержащий параметры отображения для
отображения кодированных пикселей из
перестроенного представления кодовой
комбинацией в выходное представление кодовой
комбинацией; осуществляют доступ к
кодированному изображению в кодированном

битовом потоке посредством пикселей в
перестроенном представлении кодовой
комбинацией; извлекают упомянутые параметры
отображения, чтобы сформировать функцию
прямого перестраивания, причем функция
прямого перестраивания отображает пиксели из
выходного представления кодовой комбинацией
в перестроенное представление кодовой
комбинацией, и функцию обратного
перестраивания, причем функция обратного
перестраивания отображает пиксели из
перестроенного представления кодовой
комбинацией в выходное представление кодовой

Стр.: 1

R
U

2
7
4
6
9
8
1

C
2

R
U

2
7
4
6
9
8
1

C
2

http://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=2746981

комбинацией; и декодируют кодированное
изображение, чтобы сформировать выходное

изображение в выходномпредставлении кодовой
комбинацией. 3 н. и 7 з.п. ф-лы, 23 ил., 21 табл.

Стр.: 2

R
U

2
7
4
6
9
8
1

C
2

R
U

2
7
4
6
9
8
1

C
2

(19) RU (11) 2 746 981(13) C2RUSSIAN FEDERATION

(51) Int. Cl.
H04N 19/61 (2014.01)
H04N 19/44 (2014.01)

FEDERAL SERVICE
FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC
H04N 19/61 (2021.02); H04N 19/44 (2021.02)

(72) Inventor(s):
LU, Taoran (US),

(21)(22) Application: 2020122372, 29.06.2018

(24) Effective date for property rights:
29.06.2018

PU, Fangjun (US),
YIN, Peng (US),

Registration date:
22.04.2021

CHEN, Tao (US),
HUSAK, Walter J. (US)

(73) Proprietor(s):
DOLBY LABORATORIES LICENSING
CORPORATION (US)

Priority:
(30) Convention priority:

29.06.2017 US 62/526,577;
21.09.2017 US 62/561,561;
12.02.2018 US 62/629,313;
05.06.2018 US 62/680,710;
19.06.2018 US 62/686,738

Number and date of priority of the initial application,
from which the given application is allocated:

2019125713 29.06.2017

(43) Application published: 24.09.2020 Bull. № 27

(45) Date of publication: 22.04.2021 Bull. № 12

Mail address:
129090, Moskva, ul. B. Spasskaya, 25, str. 3, OOO
"Yuridicheskaya firma Gorodisskij i Partnery"

(54) JOINT IMAGE REARRANGEMENT AND VIDEO ENCODING
(57) Abstract:

FIELD: computing.
SUBSTANCE: invention relates to computing.

Disclosed is a method for decoding an encoded
bitstream to generate an output image. An encoded
bitstream is received. It contains display parameters
displaying the encoded pixels from the rearranged code
combination representation in the output code
combination representation. After that one should gain
access to the encoded image in the bitstream encoded
by means of pixels in the rearranged code combination
representation. It’s necessary to extract the display
parameters to generate a forward rearranging function.

The forward rearranging function displays pixels from
the output code combination representation to the
rearranged code combination representation and an
inverse rearranging function. The inverse rearranging
function displays pixels from the rearranged code
combination representation to the output code
combination representation. After that the encoded
picture is decoded to generate an output picture in the
output code combination representation.

EFFECT: improving coding efficiency in the process
of rearrangement.

10 cl, 23 dwg, 21 tbl

Стр.: 3

R
U

2
7
4
6
9
8
1

C
2

R
U

2
7
4
6
9
8
1

C
2

http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2746981

Стр.: 4

R
U

2
7
4
6
9
8
1

C
2

R
U

2
7
4
6
9
8
1

C
2

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Данная заявка испрашивает приоритет по предварительной заявке на выдачу

патента США под порядковым номером 62/686,738, поданной 19 июня 2018 года; под
порядковымномером 62/680,710, поданной 5 июня 2018 года; под порядковымномером
62/629,313, поданной 12 февраля 2018 года; под порядковым номером 62/561,561,
поданной 21 сентября 2017 года; под порядковым номером 62/526,577, поданной 29
июня 2017 года, каждая из которых включена в материалы настоящей заявки
посредством ссылки во всей своей полноте.

ТЕХНОЛОГИЯ
[0002] Настоящее изобретение в целом относится к кодированию изображений и

видеосигнала. Конкретнее, вариант осуществления настоящей заявки относится к
совместному перестраиванию изображения и кодированию видеосигнала.

УРОВЕНЬ ТЕХНИКИ
[0003] В 2013, группаMPEG вМеждународной организации по стандартизации (ISO),

совместно с Международным союзом телекоммуникаций (ITU), выпустили первый
проект документа стандарта кодирования видеосигнала HEVC (также известного как
H.265, высокоэффективное кодирование видеосигналов). Позже та же самая группа
выпустила требование данных для поддержки развития стандарта кодирования
следующего поколения, который дает улучшенные эксплуатационные качества
кодирования над существующими технологиями кодирования видеосигнала.

[0004] В качестве используемого в материалах настоящей заявки, термин 'битовая
глубина' обозначает количество пикселей, используемых для представления одной из
цветовых компонент изображения. Традиционно изображения кодировались в 8 битах,
на цветовую компоненту, для каждого пикселя (например, 24 бита на каждый пиксель);
однако, современные архитектуры сейчас могут поддерживать большие битовые
глубины, такие как 10 битов, 12 битов или более.

[0005]В традиционномконвейере изображений, захваченныеизображения квантуются
с использованием линейной оптоэлектронной функции (OETF), которая преобразует
линейное освещениеместа действия внелинейныйвидеосигнал (например, кодированный
степенью контрастности RGB или YCbCr). Затем, на приемнике, перед отображением
на устройстве отображения, сигнал обрабатывается функцией электрооптической
передачи (EOTF), которая преобразует значения видеосигнала в интенсивности цвета
экрана вывода. Такие нелинейные функции включают в себя традиционную кривую
«степени контрастности», документированную в протоколах BT.709 и BT.2020 ITU-R,
и кривую«PQ» (перцепционного квантования), описаннуювST 2084 SMPTEипротоколе
BT.2100 ITU-R.

[0006] В качестве используемого в материалах настоящей заявки, термин «прямое
перестраивание» обозначает процесс отображения из отсчета в отсчет или из кодовой
комбинации в кодовую комбинацию цифрового изображения из его исходной битовой
глубины и исходных классификации или представления (например, степени
контрастности или PQ, и тому подобного) кодовых комбинаций в изображение с той
же самой или другой битовой глубиной и другими классификацией или представлением
кодовыми комбинациями.Перестраивание предусматривает улучшенную возможность
сжатия или улучшенное качество изображения при постоянной битовой скорости
(битрейте). Например, без ограничения, перестраивание может применяться к
кодированному 10-битным или 12-битным PQ видеосигналу HDR для улучшения
эффективности кодирования в архитектуре кодирования 10-битного видеосигнала. В
приемнике, после восстановления от сжатия перестроенного сигнала, приемник может

Стр.: 5

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

применять «функцию обратного перестраивания» для восстановления сигнала в его
исходную классификацию кодовой комбинацией. Как в данном документе принимается
во внимание изобретателями, в то время как начинается развертывание для следующего
поколения стандарта кодирования видеосигнала, требуются улучшенные технологии
для совместного перестраивания и кодирования изображений. Способы по данному
изобретению могут быть применимы к многообразию видеоконтента, в том числе, но
не в качестве ограничения, к контенту в стандартном динамическом диапазоне (SDR)
и/или расширенном динамическом диапазоне (HDR).

[0007] Подходы, описанные в данном разделе, являются подходами, которые могли
бы быть осуществлены, но не обязательно подходами, которые были задуманы или
осуществлены ранее. Поэтому, если не указано иное, не должно предполагаться, что
какой бы то ни было из подходов, описанных в данном разделе, квалифицируется в
качестве прототипа всего лишьна основе своего включения в данныйраздел.Подобным
образом, обсуждаемые темы в отношении одного или более подходов не должны
восприниматься распознанными в каком бы то ни было прототипе на основе этого
раздела, если не указано иное.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0008] Вариант осуществления настоящего изобретения проиллюстрирован в качестве

примера, а не в качестве ограничения, на фигурах прилагаемых чертежей, и на которых
одинаковые номера позиций указывают ссылкой на сходные элементы, и на которых:

[0009]Фиг. 1A изображает примерный процесс для конвейера поставки видеоданных;
[0010] фиг. 1B изображает примерный процесс для сжатия данных с использованием

перестраивания сигнала согласно предшествующему уровню техники;
[0011]Фиг. 2Aизображает примернуюархитектуру для кодировщика, использующего

нормативное внеконтурное перестраивание согласно варианту осуществления данного
изобретения;

[0012] фиг. 2B изображает примерную архитектуру для декодера, использующего
нормативное внеконтурное перестраивание, согласно варианту осуществления данного
изобретения;

[0013] фиг. 2C изображает примернуюархитектуру для кодировщика, использующего
нормативное внутриконтурноеперестраивание только с внутрикадровымпредсказанием,
согласно варианту осуществления данного изобретения;

[0014] фиг. 2D изображает примерную архитектуру для декодера, использующего
нормативное внутриконтурноеперестраивание только с внутрикадровымпредсказанием,
согласно варианту осуществления данного изобретения;

[0015] фиг. 2E изображает примернуюархитектуру для кодировщика, использующего
внутриконтурное перестраивание для остаточных значений предсказания, согласно
варианту осуществления данного изобретения;

[0016] фиг. 2F изображает примерную архитектуру для декодера, использующего
внутриконтурное перестраивание для остаточных значений предсказания, согласно
варианту осуществления данного изобретения;

[0017] фиг. 2G изображает примернуюархитектуру для кодировщика, использующего
гибридное внутриконтурное перестраивание, согласно варианту осуществления данного
изобретения;

[0018] фиг. 2H изображает примерную архитектуру для декодера, использующего
гибридное внутриконтурное перестраивание, согласно варианту осуществления данного
изобретения;

[0019] фиг. 3A изображает примерный процесс для кодирования видеосигнала с

Стр.: 6

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

использованием архитектуры внеконтурного перестраивания согласно варианту
осуществления данного изобретения;

[0020] фиг. 3B изображает примерный процесс для декодирования видеосигнала с
использованием архитектуры внеконтурного перестраивания согласно варианту
осуществления данного изобретения;

[0021] фиг. 3C изображает примерный процесс для кодирования видеосигнала с
использованием архитектуры внутриконтурного перестраивания только с
внутрикадровымпредсказанием согласно вариантуосуществления данногоизобретения;

[0022] фиг. 3D изображает примерный процесс для декодирования видеосигнала с
использованием архитектуры внутриконтурного перестраивания только с
внутрикадровымпредсказанием согласно вариантуосуществления данногоизобретения;

[0023] фиг. 3E изображает примерный процесс для кодирования видеосигнала с
использованием архитектуры внутриконтурного перестраивания для остаточных
значений предсказания согласно варианту осуществления данного изобретения;

[0024] фиг. 3F изображает примерный процесс для декодирования видеосигнала с
использованием архитектуры внутриконтурного перестраивания для предсказания
остаточных значений согласно варианту осуществления данного изобретения;

[0025] фиг. 4A изображает примерный процесс для кодирования видеосигнала с
использованиемкомбинации из трех основанныхнаперестраивании архитектур согласно
варианту осуществления данного изобретения;

[0026] фиг. 4B изображает примерный процесс для декодирования видеосигнала с
использованиемкомбинации из трех основанныхнаперестраивании архитектур согласно
варианту осуществления данного изобретения;

[0027] фиг. 5A ифиг. 5B изображают процесс реконструкциифункции перестраивания
в видеодекодере согласно варианту осуществления данного изобретения;

[0028] фиг. 6A и фиг. 6B изображают примеры того, каким образом значения сдвига
QP цветности изменяются согласно параметру квантования (QP) яркости для
кодированных с помощью PQ и HLG сигналов согласно варианту осуществления
данного изобретения; и

[0029] фиг. 7 изображает пример основанного на повороте представления функции
перестраивания согласно варианту осуществления данного изобретения.

ОПИСАНИЕ ПРИМЕРНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0030] В материалах настоящей заявки описаны нормативные технологии

внеконтурного и внутриконтурного совмещенного перестраивания и кодирования
сигнала для сжатия изображений. В нижеследующем описании, в целях пояснения,
многие конкретные детали изложены для того, чтобы обеспечить исчерпывающее
понимание настоящего изобретения.Однако, будет очевидно, чтонастоящее изобретение
может быть осуществлено на практике без этих конкретных деталей. В других случаях,
широко известные конструкции и устройства не описаны с исчерпывающей
подробностью, для того чтобы избежать ненужного закрывания, затенения или
запутывания настоящего изобретения.

Обзор
[0031] Примерные варианты осуществления, описанные в материалах настоящей

заявки, относятся к совместному перестраиванию и кодированию сигнала для
видеосигнала. В кодировщике, процессор принимает входное изображение в первом
представлении кодовой комбинацией, представленном входной битовой глубиной N и
входнымотображением кодовой комбинации (например, степеньюконтрастности, PQ,
и тому подобным).Процессор выбирает архитектуру кодировщика (с перестройщиком,

Стр.: 7

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

являющимся неотъемлемой частью кодировщика) из двух или более потенциально
подходящих архитектур кодировщика для сжатия входного изображения с
использованием второго представления кодовой комбинацией, предусматривающего
более эффективное сжатие, чем первое представление кодовой комбинацией, при этом,
две илиболее потенциальноподходящих архитектур кодировщика содержат архитектуру
внеконтурного перестраивания, архитектуру внутриконтурного перестраивания только
для кадров с внутрикадровым предсказанием или внутриконтурную архитектуру для
остаточных значений предсказания, и процессор сжимает входное изображение согласно
выбранной архитектуре кодировщика.

[0032] В еще одном варианте осуществления, декодер для формирования выходных
изображений в первом представлении кодовой комбинацией принимает кодированный
битовый поток с по меньшей мере частью кодированных изображений, являющихся
сжатыми во втором представлении кодовой комбинацией. Он также принимает
связанную информацию о перестраивании. Процессор принимает сигнализацию,
указывающую архитектуру декодера из двух или более потенциально подходящих
архитектур декодера для восстановления от сжатия входного кодированного битового
потока, при этом две или более потенциально подходящих архитектуры декодера
содержат архитектуру внеконтурного перестраивания, архитектуру внутриконтурного
перестраивания только для кадров с внутрикадровым предсказанием или
внутриконтурную архитектуру для остаточных значений предсказания, и он
восстанавливает от сжатия кодированное изображение для формирования выходного
изображения согласно принятой архитектуре перестраивания.

[0033] В еще одном варианте осуществления, в кодировщике для сжатия изображений
согласно внутриконтурной архитектуре для остаточных значений предсказания,
процессор осуществляет доступ к входному изображению в первом представлении
кодовой комбинацией иформирует функциюпрямого перестраивания, отображающую
пиксели входного изображения из первого представления кодовой комбинацией во
второе представление кодовой комбинацией. Он формирует функцию обратного
перестраивания на основе функции прямого перестраивания, отображающую пиксели
из второго представления кодовой комбинацией в пиксели в первом представлении
кодовой комбинацией. Затем, применительно к области входных пикселей во входном
изображении: он

вычисляет по меньшей мере одну предсказанную область на основе пиксельных
данных в буфере опорного кадра или кодированных ранее пространственно соседних
элементов;

формирует перестроеннуюобласть остаточных значений на основе области входных
пикселей, предсказанной области и функции прямого перестраивания;

формирует кодированную (преобразованную и квантованную) область остаточных
значений на основе перестроенной области остаточных значений;

формирует декодированную (обратно квантованную и обратно преобразованную)
область остаточных значений на основе кодированной области остаточных значений;

формирует область восстановленных пикселей на основе декодированной области
остаточных значений, предсказанной области, функции прямого перестраивания и
функции обратного перестраивания; и

формирует область опорных пикселей, подлежащую сохранению в буфере опорного
кадра, на основе области восстановленных пикселей.

[0034] В еще одном варианте осуществления, в декодере дляформирования выходных
изображений в первомпредставлении кодовой комбинацией согласно внутриконтурной

Стр.: 8

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

архитектуре для остаточных значений предсказания, процессор принимает
кодированный битовый поток, частично кодированный во втором представлении
кодовой комбинацией.Он также принимает связаннуюинформациюоперестраивании.
Процессор формирует, на основе информации о перестраивании, функцию прямого
перестраивания, которая отображает пиксели из первого представления кодовой
комбинацией во второе представление кодовой комбинацией, и функцию обратного
перестраивания, при этом функция обратного перестраивания отображает пиксели из
второго представления кодовой комбинацией в первое представление кодовой
комбинацией. Применительно к области кодированного изображения, процессор:

формирует декодированнуюобласть остаточных значений на основе кодированного
изображения;

формирует предсказанную область на основе пикселей в буфере опорных пикселей
или декодированных ранее пространственно соседних элементов;

формирует область восстановленных пикселей на основе декодированной
перестроенной области остаточных значений, предсказанной области, функции прямого
перестраивания и функции обратного перестраивания;

формирует область выходныхпикселей на основе области восстановленныхпикселей;
и сохраняет область выходных пикселей в буфере опорных пикселей.

Примерный конвейер обработки для поставки видеосигнала
[0035] Фиг. 1A изображает примерный процесс традиционного конвейера (100)

поставки видеоданных, показывающий различные стадии от захвата видеоданных до
отображения видеоконтента. Последовательность видеокадров (102) захватывается
илиформируется с использованиемблока (105)формирования изображений.Видеокадры
(102) могут захватываться в цифровом виде (например, цифровой камерой) или
формироваться компьютером (например, с использованием компьютерной анимации)
для выдачи видеоданных (107). В качестве альтернативы (видеокадры (102) могут
сниматься на пленку пленочной камерой. Пленка преобразуется в цифровой формат
для выдачи видеоданных (107). На фазе (110) производства, видеоданные (107)
монтируются для выдачи потока (112) видеопродукции.

[0036] Видеоданные потока (112) продукции затем выдаются в процессор на блок
(115) для редакционного окончательного монтажа. Блок (115) редакционного
окончательного монтажа может включать в себя коррекцию или модификацию цветов
или яркости в конкретных зонах изображения для улучшения качества изображения
или достижения конкретного внешнего вида для изображения в соответствии творческим
намерением автора видеоматериала. Это иногда называется «синхронизацией цветовой
поднесущей» или «цветокоррекцией». Другоймонтаж (например, выбор и упорядочение
сцены, обрезка изображения, добавление сформированных компьютером специальных
визуальных эффектов, и т. д.) может выполняться в блоке (115), чтобы давать
окончательный вариант (117) продукции для классификации. Во время редакционного
окончательногомонтажа, видеоизображенияпросматриваютсяна эталонномустройстве
(115) отображения.

[0037] Вслед за окончательным монтажом (115), видеоданные конечной продукции
могут доставляться в кодирующийблок (120) для поставки битовогопотока в устройства
декодирования и воспроизведения, такие как телевизоры, телевизионные абонентские
приставки, кинотеатры, и тому подобное. В некоторых вариантах осуществления,
кодирующий блок (120) может включать в себя кодировщики звукового сигнала и
видеосигнала, такие как определенные форматами ATSC, DVB, DVD, Blu-Ray и другими
форматами поставки, для формирования кодированного битового потока (122). В

Стр.: 9

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

приемнике, кодированный битовый поток (122) декодируется декодирующим блоком
(130) для формирования декодированного сигнала (132), представляющего собой
идентичный или приемлемое приближение сигнала (117). Приемник может быть
прикреплен к целевому устройству (140) отображения, котороеможет иметь совершенно
другие характеристики, нежели эталонное устройство (125) отображения. В таком
случае, блок (135) управления отображением может использоваться для приведения
динамического диапазона декодированного сигнала (132) в соответствие
характеристикам целевого устройства (140) отображения посредством формирования
приведенного в соответствие устройству отображения сигнала (137).

Перестраивание сигнала
[0038]Фиг. 1B изображает примерный процесс для перестраивания сигнала согласно

справочному материалу [1] предшествующего уровня техники. При данных входных
кадрах (117), блок (150) прямого перестраивания анализирует ограничения ввода и
кодирования и формирует функции отображения кодовых комбинаций, которые
отображаютвходные кадры (117) в переквантованные выходные кадры (152).Например,
входные кадры (117) могут быть закодированы согласно определенной функции
электрооптической передачи (EOTF) (например, степени контрастности). В некоторых
вариантах осуществления, информация о процессе перестраивания может передаваться
на находящиеся ниже по потоку устройства (такие как декодеры) с использованием
метаданных. В качестве используемого в материалах настоящей заявки, термин
«метаданные» относится к любой вспомогательной информации, которая передается
в качестве части кодированного битового потока и помогает декодеру воспроизводить
декодированное изображение. Такиеметаданныемогут включать в себя, но не в качестве
ограничения, информацию о цветовом пространстве или гамме, параметры эталонного
устройства отображения и вспомогательные параметры сигнала, как описанные в
материалах настоящей заявки.

[0039] Вслед за кодированием (120) и декодированием (130), декодированные кадры
(132) могут обрабатываться функцией (160) обращенного (или обратного)
перестраивания, которая преобразует переквантованные кадры (132) обратно в
исходную область (например, степень контрастности) EOTF, для дальнейшей низовой
обработки, такой как процесс (135) управления отображением, обсужденный раньше.
В некоторых вариантах осуществления, функция (160) обращенного перестраивания
может быть объединена с деквантователем в декодере (130), например, в качестве части
деквантователя в декодере видеосигнала AVC или HEVC.

[0040] В качестве используемого в материалах настоящей заявки, термин
«перестройщик» может обозначать функцию прямого или обратного перестраивания,
подлежащую использованию при кодировании и/или декодировании цифровых
изображений. Примерыфункций перестраивания обсуждены в справочныхматериалах
[1] и [2]. В целях данного изобретения, предполагается, что специалист в данной области
техники может получить пригодные функции прямого и обратного перестраивания
согласно характеристикамвходного видеосигнала и имеющейся в распоряжениибитовой
глубины архитектур кодирования и декодирования.

[0041] В справочном материале [1], был предложен способ внутриконтурного
основанного на блоках перестраивания изображения для кодирования видеосигнала
с расширенным динамическим диапазоном. Такое исполнение предоставляет
возможность основанного на блоках перестраивания в пределах контура кодирования,
но за счет повышенной сложности. Чтобы быть более точным, исполнение требует
поддержки двух наборов буферов декодированного изображения: одного набора для

Стр.: 10

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

подвергнутых обратному перестраиванию (или неперестроенных) декодированных
кадров, которые могут использоваться как для предсказания без перестраивания, так
и для вывода на устройство отображения, и другого набора для подвергнутых прямому
перестраиванию декодированных кадров, которые используются только для
предсказания с перестраиванием. Хотя подвергнутые прямому перестраиванию
декодированные кадрымогут вычисляться на лету, стоимость сложности очень высока,
особенно для межкадрового предсказания (компенсации движения с интерполяцией
подпикселями). Вообще, управление буфером кадров отображения (DPB) усложняется
и требует очень пристального внимания, таким образом, как понимается
изобретателями, требуются упрощенные способы для кодирования видеосигнала.

[0042] Варианты осуществления архитектур основанного на перестраивании кодека,
представленные в материалах настоящей заявки, могут быть разделены, как изложено
ниже: архитектура с внешним внеконтурным перестройщиком, архитектура с
внутриконтурным перестройщиком только с внутрикадровым предсказанием и
архитектура с внутриконтурным перестройщиком для остаточных значений
предсказания, также подлежащая указанию ссылкой, ради краткости, как
'внутриконтурный перестройщик для остаточных значений'. Кодировщик или декодер
видеосигнала могут поддерживать любую одну из этих архитектур или их комбинацию.
Каждая из этих архитектур также может применяться сама по себе или в комбинации
с любой одной из остальных. Каждая архитектура может применяться к компоненте
яркости, компоненте цветности или комбинации компоненты яркости и одной или более
компонент цветности.

[0043] В дополнение к этим трем архитектурам, дополнительные варианты
осуществления описывают эффективные способы сигнализации для метаданных,
связанных с перестраиванием, и несколько основанных на кодировщике средств
оптимизации для улучшения эффективности кодирования, когда применяется
перестраивание.

Нормативный внеконтурный перестройщик
[0044] Фиг. 2A и фиг. 2B изображают архитектуры для кодировщика (200A_E)

видеосигнала и соответствующего декодера (200A_D) видеосигнала с «нормативным»
внеконтурным перестройщиком. Термин «нормативный» обозначает, что, в отличие
от предыдущих исполнений, где перестраивание считалось этапом предварительной
обработки, такимобразомнаходясь вне нормативногоописания стандарта кодирования,
такого как AVC, HEVC, и тому подобное, в данном варианте осуществления, прямое
и обратное перестраивание являются часть нормативных требований. В отличие от
архитектуры по фиг. 1B, где соответствие битового потока требованиям согласно
стандарту, испытывается после декодирования (130), на фиг. 2B, соответствие
требованиям проверяется после блока (265) обратного перестраивания (например, на
выходе 162 на фиг. 1B).

[0045] В кодировщике (200A_E), два новых блока добавлены в традиционный
основанный на блоках кодировщик (например, HEVC): блок (205) для оценки функции
прямогоперестраивания иблок (210) прямогоперестраивания кадра, которыйприменяет
прямоеперестраивание к однойилиболее из цветовыхкомпонент входного видеосигнала
(117). В некоторых вариантах осуществления, эти две операции могут выполняться в
качестве части единого блока перестраивания изображений.Параметры (207), связанные
с определением функции обратного перестраивания в декодере, могут пересылаться в
блок кодировщика без потерь кодировщика видеосигнала (например, CABAC 220), так
что они могут быть встроены в кодированный битовый поток (122). Все операции,

Стр.: 11

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

связанные с внутрикадровым илимежкадровымпредсказанием (225), преобразованием
и квантованием (T & Q), обратным преобразованием и деквантованием (Q-1 & T-1), а
также контурной фильтрацией, выполняются с использованием перестроенных кадров,
хранимых в DPB (215).

[0046] В декодере (200A_D), два новых нормативных блока добавлены в
традиционный основанный на блоках декодер: блок (250) для реконструкции функции
обратного перестраивания на основе кодированных параметров (207) функции
перестраивания, и блок (265) для применения функции обратного перестраивания к
декодированным данным (262), чтобы формировать декодированный видеосигнал
(162). В некоторых вариантах осуществления, операции, связанные с блоками 250 и 265
могут быть объединены в единый обрабатывающий блок.

[0047] Фиг. 3A изображает примерный процесс (300A_E) для кодирования
видеосигнала с использованием архитектуры (200A_E) внеконтурного перестраивания
согласно варианту осуществления данного изобретения. Если перестраивание не
активировано (ветвь 305), то кодирование продолжает движение, как известно в
кодировщиках предшествующего уровня техники (например, HEVC). Если
перестраивание активировано (ветвь 310), то кодировщикможет иметь вариантывыбора
применить предварительно заданную (установленную по умолчанию) функцию (315)
перестраивания или адаптивно определять новую функцию (325) перестраивания на
основе анализа (320) кадра (например, как описано в справочных материалах [1]-[3]).
Вслед за прямымперестраиванием (330), оставшаяся часть кодирования придерживается
традиционного конвейера (335) кодирования. Если применяется адаптивное
перестраивание (312), метаданные, связанные с функцией обратного перестраивания,
формируются в качестве части этапа (327) «Кодировать перестройщик».

[0048] Фиг. 3B изображает примерный процесс (300A_D) для декодирования
видеосигнала с использованием архитектуры (200A_D) внеконтурного перестраивания
согласно варианту осуществления данного изобретения. Если перестраивание не
активировано (ветвь 355), то, после декодирования кадра (350), выходные кадры
формируются (390), как в традиционномконвейере декодирования. Если перестраивание
активировано (ветвь 360), то, на этапе (370), декодер определяет, применять ли
предварительно заданную (установленнуюпоумолчаниюфункцию (375) перестраивания
или дополнительно определить функцию (380) обратного перестраивания на основе
принятых параметров (например, 207). Вслед за обратным перестраиванием (385),
оставшаяся часть декодирования придерживается традиционного конвейера
декодирования.

Нормативный внутриконтурный перестройщик только с внутрикадровым
предсказанием

[0049] Фиг. 2C изображает примерную архитектуру для кодировщика (200B_E),
использующего нормативное внутриконтурное перестраивание только с
внутрикадровымпредсказанием, согласновариантуосуществленияданногоизобретения.
Исполнение полностью аналогично исполнению, предложенному в справочном
материале [1]; однако, для снижения сложности, особенно в том, что относится к
использованиюпамятиDPB (215 и 260), только кадры с внутрикадровымпредсказанием
кодируются с использованием данной архитектуры.

[0050] По сравнению с внеконтурным перестраиванием (200A_E), основное отличие
кодировщика 200B_E состоит в том, что DPB (215) хранит обратно перестроенные
кадры вместо перестроенных кадров. Другими словами, необходимо, чтобы
декодированные кадры с внутрикадровым предсказанием подвергались обратному

Стр.: 12

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

перестраиванию (блоком 265 обратного перестраивания) перед сохранением в DPB.
Аргументация за этим подходом состоит в том, что, если кадры с внутрикадровым
предсказанием кодируются с помощьюперестраивания, улучшенные эксплуатационные
качества кодирования кадров с внутрикадровым предсказанием будут
репродуцироваться, чтобы также (косвенным образом) улучшать кодирование кадров
с межкадровым предсказанием, даже если кадры с межкадровым предсказанием
кодируются без перестраивания. Такимобразом, можно использовать в своих интересах
перестраивание, не имея дела со сложностью внуктриконтурного перестраивания для
кадров с межкадровым предсказанием. Поскольку обратное перестраивание (265)
является частью внутреннего контура, ономожет осуществляться до внутриконтурного
фильтра (270). Преимущество добавления обратного перестраивания до
внутриконтурного фильтра состоит в том, что, в этом случае, исполнение
внутриконтурного фильтра может быть оптимизировано на основе характеристик
исходных кадров вместо подвергнутых прямому перестраиванию кадров.

[0051] Фиг. 2D изображает примерную архитектуру для декодера (200B_D),
использующего нормативное внутриконтурное перестраивание только с
внутрикадровымпредсказанием, согласновариантуосуществленияданногоизобретения.
Как изображено на фиг. 2D, определение функции (250) обратного перестраивания и
применение обратного перестраивания (265) теперь выполняются раньше
внутриконтурной фильтрации (270).

[0052] Фиг. 3C изображает примерный процесс (300B_E) для кодирования
видеосигнала с использованием архитектуры внутриконтурного перестраивания только
с внутрикадровым предсказанием согласно варианту осуществления данного
изобретения. Как изображено, поток операций на фиг. 3C совместно использует многие
элементы с потоком операций на фиг. 3A. Далее, по умолчанию, перестраивание не
применяется для кодирования с межкадровым предсказанием. Что касается
кодированных с внутрикадровым предсказанием кадров, если перестраивание
активировано, кодировщик вновь имеет вариант выбора использовать установленную
по умолчаниюкривуюперестраивания ли применять адаптивное перестраивание (312).
Если кадр перестроен, обратное перестраивание (385) является частью процесса, и
связанные параметры кодируются на этапе (327). Соответствующий процесс (300B_D)
декодирования изображен на фиг. 3D.

[0053] Как изображено на фиг. 3D, связанные с перестраиванием операции
задействуются только для принятых кадров с внутрикадровымпредсказанием, и только
если перестраивание с внутрикадровым предсказанием применялось в кодировщике.

Внутриконтурный перестройщик для остаточных значений предсказания
[0054] При кодировании, термин 'остаточные значения' обозначает несовпадение

междупредсказаниемотсчета или элемента данныхи его исходнымили декодированным
значением. Например, при заданном исходном отсчете из входного видеосигнала (117),
обозначенном как Orig_sample, внутрикадровое или межкадровое предсказание (225)
может формировать соответствующий предсказанный отсчет (227), обозначенный как
Pred_sample. Если перестраивания нет, неперестроенное остаточное значение (Res_u)
может быть определено в виде

Res_u=Orig_sample - Pred_sample. (1)
[0055] В некоторых вариантах осуществления, может быть полезно применять

перестраивание к области остаточных значений. Фиг. 2E изображает примерную
архитектуру для кодировщика (200C_E), использующего внутриконтурное
перестраивание для предсказанных остаточных значений, согласно варианту

Стр.: 13

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

осуществления данного изобретения. Пусть Fwd() обозначает функцию прямого
перестраивания, и пусть Inv() обозначает соответствующую функцию обратного
перестраивания. В варианте осуществления, перестроенное остаточное значение (232)
может быть определено как

Res_r=Fwd(Orig_sample) -Fwd(Pred_sample). (2)
[0056] Соответственно, на выходе (267) обращенного перестройщика (265),

восстановленный отсчет, обозначенный как Reco_sample (267), может быть выражен в
виде

Reco_sample= Inv(Res_d+Fwd(Pred_sample)), (3)
где Res_d представляет собой остаточное значение (234), приемлемое приближение

Res_r, после внутриконтурного кодирования и декодирования в 200C_E.
[0057] Отметим, что, хотя перестраивание применяется к остаточным значениям,

фактические входные пиксели видеоданных не перестроены. Фиг. 2F изображает
соответствующий декодер (200C_D). Отметим, что, как изображено на фиг. 2F, и на
основе уравнения (3), декодеру требуется доступ к обеимфункциям, прямого и обратного
перестраивания, которые могут извлекаться с использованием принятых метаданных
(207) и блока (250) «Декодирование перестройщика».

[0058] В варианте осуществления, для снижения сложности, уравнения (2) и (3) могут
быть упрощены. Например, при условии, что функция прямого перестраивания может
быть аппроксимирована кусочно-линейнойфункцией, и что абсолютная разностьмежду
Pred_sample и Orig_sample относительно мала, в таком случае, уравнение (2) могло бы
быть приближенно выражено в виде

Res_r=a(Pred_sample)*(Orig_sample -Pred_sample), (4)
где a(Pred_sample) обозначает масштабный коэффициент, основанный на значении

Pred_sample.Из уравнений (3) и (4), уравнение (3) может быть приближенно выражено
в виде

Reco_sample= Pred_sample+(1/a(Pred_sample))*Res_r, (5)
Таким образом, в варианте осуществления, нужно передавать в декодер только

масштабные коэффициенты a(Pred_sample) для кусочно-линейной модели.
[0059] Фиг. 3E и фиг. 3F изображают примерные потоки операций процесса для

кодирования (300C_E) и декодирования (300C_D) видеосигнала с использованием
внутриконтурного перестраивания остаточных значений предсказания. Процессы
полностью аналогичны описанным на фиг. 3A и 3B и, таким образом, не требуют
пояснений.

[0060] Таблица обобщает ключевые признаки трех предложенных архитектур.
Таблица 1: Ключевые признаки для рассматриваемых архитектур перестраивания

Внутриконтурное для остаточных
значений

Внутриконтурное только с вну-
трикадровым предсказаниемВнеконтурноеАрхитектура

неперестроенные кадры

режимвнутрикадровогопредска-
зания: обратно перестроенные

перестроенные кадрыХранение DPB кадры
режиммежкадровогопредсказа-

ния: нет перестраивания

неперестроенные кадрыперестроенные кадрыперестроенные кадрыВнутрикадровое предсказание,
выполняемое над

неперестроенные кадрынеперестроенные кадрыперестроенные кадры
Межкадровое предсказание

(оценка движения) выполняемое
над

нет (замена отсчетов остаточных
значений на лету)

нет (замена отсчетов кадра на
лету)

да (необходимбуфер для хране-
ния перестроенных кадров вНеобходим дополнительный

буфер кадров DPBи неперестроенных кадров
для вывода)

Стр.: 14

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

не ограничены (могут быть
только с внутрикадровым пред-только над кадрами с внутрика-

дровым предсказанием

не ограничены (могут быть
только с внутрикадровымМесто/частота адаптивной

оценки перестраивания сказанием, основаннымина сценепредсказанием, основанными
или конфигурируемыми)на сцене или конфигурируемы-

ми)
обрабатывать остаточные значе-
ния, внутрикадровое или межка-

обрабатывать только кадры с
внутрикадровымпредсказаниемобрабатывать все кадрыСложность для модификации

(перестраивания) отсчетов дровоепредсказаниебезразлично(низшая сложность)
оптимизация с использованием
исходного кадра в качестве

оптимизация с использованием
исходного кадра в качестве

оптимизация с использованием
перестроенного кадра в каче-Взаимодействие с контурным

фильтром опорногоопорногостве опорного

данетнетВозможно адаптивное перестра-
ивание на уровне блока/области

межкадровое предсказание мо-
жет пользоваться перестройщи-эксплуатационные качества

внутрикадрового предсказания

Другие аспекты

комдля текущегокадрадляобра-
могут страдать, если опорные ботки остаточных значений по
кадры имеют разные функции отношению к опорным кадрам

перестраивания (сами которые могут иметь раз-
ные перестройщики)

декодеру нужны обе функции,
прямого и обратного перестраи-

стороне декодера нужна только
функцияобратногоперестраива-

стороне декодера необходимо
всего лишь обратить функцию

ваниянияперестраивания

[0061] Фиг. 4A и фиг. 4B изображают примерные потоки обработки кодирования и
декодирования для кодирования и декодирования с использованием комбинации трех
предложенных архитектур. Как изображено на фиг. 4A, если перестраивание не
активировано, входной видеосигнал кодируются согласно известным технологиям
кодирования видеосигнала (например, HEVC, и тому подобному) без использования
какого бы то ни было перестраивания. Иначе, кодировщик может выбирать любой
один из трех основныхпредложенных способов в зависимости от возможностей целевого
приемника и/или входных характеристик. Например, в варианте осуществления,
кодировщикмог бы переключаться между этими способами на уровне сцены, где 'сцена'
обозначена в виде последовательности непрерывных кадров с аналогичными
характеристиками яркости. В еще одном варианте осуществления, высокоуровневые
параметры определены на уровне набора параметров последовательности (SPS).

[0062] Как изображено на фиг. 4B, декодер, в зависимости от принимаемой
сигнализации информации о перестраивании, может активизировать один из
соответствующих процессов декодирования для декодирования входящего
кодированного битового потока.

Гибридное внутриконтурное перестраивание
[0063] Фиг. 2G изображает примерную архитектуру (200D_E) для кодировщика,

использующего архитектуру гибридного внутриконтурного перестраивания. Эта
архитектура комбинирует элементы обеих архитектур, внутриконтурного
перестраивания (200B_E) только с внутрикадровым предсказанием и внутриконтурной
для остаточных значений (200C_E), обсужденных ранее. При данной архитектуре,
секции с внутрикадровымпредсказаниемкодируются согласно архитектуре кодирования
с внутриконтурным перестраиванием и внутрикадровым предсказанием (например,
200B_E на фиг. 2C), за исключением одного отличия: что касается секций, обратное
перестраивание (265-1) кадров выполняется после контурной фильтрации (270-1). В
еще одном варианте осуществления, внутриконтурная фильтрация для секций с
внутрикадровым предсказаниемможет выполняться после обратного перестраивания;
однако, экспериментальные результаты показали, что такое устройство может давать
худшую эффективность кодирования, чем когда обратное перестраивание выполняется
после контурной фильтрации. Остальные операции остаются такими же, как
обсужденные ранее.

[0064] Секции (слайсы) с межкадровым предсказанием кодируются согласно

Стр.: 15

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

архитектуре внутриконтурного кодирования остаточных значений (например, 200C_E
на фиг. 2E), как обсуждено раньше. Как изображено на фиг. 2G, переключатель секций
с внутрикадровым/межкадровым предсказанием предоставляет возможность
переключения между двумя архитектурами в зависимости от типа секции, подлежащего
кодированию.

[0065] Фиг. 2H изображает примерную архитектуру (200D_D) для декодера,
использующего гибридное внутрикадровое перестраивание. Вновь, секции с
внутрикадровым предсказанием согласно архитектуре декодера с внуриконтурным
перестраиванием и внутрикадровым предсказанием (например, 200B_D на фиг. 2D),
где вновь, что касается секций с внутрикадровымпредсказанием, контурнаяфильтрация
(270-1) предшествует обратному перестраиванию (265-1) кадров. Секции смежкадровым
предсказанием декодируются согласно архитектуре внутриконтурного декодирования
для остаточных значений (например, 200C_D на фиг. 2F). Как изображено на фиг. 2H,
переключатель секций с внутрикадровым/межкадровымпредсказанием предоставляет
возможность переключения между двумя архитектурами в зависимости от типов секций
в кодированных кадрах видеоданных.

[0066]Фиг. 4Aможет быть без труда расширена, чтобы также включать в себя способ
кодирования с гибриднымвнутриконтурнымперестраиванием, посредствомактивизации
процесса 300D-E кодирования, изображенного на фиг. 2G. Подобным образом, фиг.
4B может быть без труда расширена, чтобы также включать в себя способ
декодирования с гибридным внутриконтурным перестраиванием, посредством
активизации процесса 300D-D декодирования, изображенного на фиг. 2H.

Перестраивание на уровне секции
[0067] Варианты осуществления настоящего изобретения предусматривают

многообразия адаптаций уровня секции. Например, для сокращения вычислений,
перестраивание может быть активировано только для секций с внутрикадровым
предсказанием или только для секций только с межкадровым предсказанием. В еще
одном варианте осуществления, перестраивание может разрешаться на основе значения
временного идентификатора (например, переменной TemporalId из HEVC (справочный
материал [11]), где TemporalId=nuh_temporal_id_plus1-1). Например, если TemporalId для
текущей секции является меньшим, чем или равным предварительно заданному
значению, то slice_reshaper_enable_flag для текущей секции может быть установлен в 1,
иначе, slice_reshaper_enable_flag будет иметь значение 0. Чтобы избегать отправки
параметра slice_reshaper_enable_flag для каждой секции, можно задавать параметр
sps_reshaper_temporal_id на уровне SPS, таким образом, его значение может
подразумеваться.

[0068] Что касается секций, где активировано перестраивание, необходимо, чтобы
декодер знал какая модель перестраивания подлежит использованию. В одном из
вариантов осуществления, он может всегда пользоваться моделью перестраивания,
определенной на уровне SPS. В еще одном варианте осуществления, он может всегда
пользоваться модельюперестраивания, определенной в заголовке секции. Еслимодель
перестраивания не определена в текущей секции, то он может применять модель
перестраивания, используемую в самой последней декодированной секции, которая
использовала перестраивание. В еще одном варианте осуществления, модель
перестраивания может всегда задаваться в секциях с внутрикадровым предсказанием
безотносительно того, используется или нет перестаривание для секции с
внутрикадровым предсказанием. В такой реализации, необходимо, чтобы параметры
slice_reshaper_enable_flag и slice_reshaper_model_present_flag были разъединены.Пример

Стр.: 16

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

такого синтаксиса секции изображен в таблице 5.
Сигнализация информации о перестраивании
[0069]Информация, имеющаяотношение кпрямомуи/илиобратномуперестраиванию

может присутствовать на разных информационных уровнях, например, в наборе
параметров видеосигнала (VPS), наборе параметров последовательности (SPS), наборе
параметров кадра (PPS), заголовке секции (SEI) или любом другом высокоуровневом
синтаксисе. В качестве примера и без ограничения, таблица 2 предоставляет пример
высокоуровневого синтаксиса в SPS для сигнализации того, активировано ли
перестраивание, является или нет перестраивание адаптивным, и какая из трех
архитектур используется.

Таблица 2: Пример информации о перестраивании в SPS

DescriptorSPS()
……

u(1)sps_reshaper_enable_flag /*1: перестраивание включено, иначе отключено */
if (sps_reshaper_enable_flag) {

u(1)sps_reshaper_adaptive_flag /* 1: адаптивное перестраивание включено, иначе выключено */

ue(v)sps_reshaper_architecture /*например: 0: внеконтурная, 1: внутриконтурная с внутрикадровым предска-
занием, 2: внеконтурная для остаточных значений*/

}
……

[0070]Дополнительная информация такжеможет переноситься на некотором другом
уровне, скажем, в заголовке секции. Функции перестраивания могут описываться
справочными таблицами (LUT), сплайнами или другими видами параметрических
моделей. Тип модели перестраивания, используемой для сообщения функций
перестраивания, может сигнализироваться дополнительными синтаксическими
элементами например, флагом reshaping_model_type. Например, рассмотрим системы,
которая использует два отдельных представления: model_A (например,
reshaping_model_type=0) представляет собой функцию перестраивания в виде заданной
сплайнами (например, смотрите справочныйматериал [4]), тогда как вмоделиmodel_B
(например, reshaping_model_type=1) функция перестраивания выводится адаптивно
посредством назначения кодовых комбинаций на разные полосы яркости на основе
характеристик яркости кадра и зрительной важности (например, смотрите справочный
материал [3]). Таблица 3 приводит примерные синтаксические элементы в заголовке
секции кадра для помощи декодеру определять надлежащую используемую модель
перестраивания.

Таблица 3: Примерный синтаксис для сигнализации перестраивания в заголовке секции

Descriptorslice_segment_header()
……

if (sps_reshaper_adaptive_flag) {
ue(v)reshaping_model_type

if (reshaping_model_type == model_A) {
reshaping_sliceheader_table_model_A()

}
else if (reshaping_model_type == model_B) {

reshaping_sliceheader_table_model_B()
}

else …
}

……

Стр.: 17

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

[0071]Нижеследующие три таблицыописывают альтернативные примеры синтаксиса
битового потока для перестраивания сигнала на уровнях последовательности, секции
или узла кодового дерева (CTU).

Таблица 4: Пример информации о перестраивании в SPS

DescriptorSPS()
……

u(1)sps_reshaper_enable_flag /*1: перестраивание включено, иначе отключено */
if (sps_reshaper_enable_flag) {

u(2)sps_reshaper_signal_type /* 0:SDR, 1:PQ, 2:HLG */

u(2)sps_reshaper_ILF_opt /* контурный фильтр в котором область: 2 бита с внешним/внутренним кодиро-
ванием */

u(2)sps_reshaper_chromaAdj /* 1: chromaDQP; 2: масштабирование цветности/
u(1)sps_reshaper_model_present_flag /*1: присутствует*/

if (sps_reshaper_model_present_flag)
sps_reshaper_model ()

}

Таблица 5: Примерный синтаксис для сигнализации перестраивания в заголовке секции

Descriptorslice_header()
……

u(1)slice_reshaper_model_present_flag
if (slice_reshaper_model_present_flag)

slice_reshaper_model ()
u(1)slice_reshaper_enable_flag

if (slice_reshaper_enable_flag) {
u(1)reshaper_CTU_control_flag /*1: включено, флаг включения/выключения на уровне CTU*/_

}
……

Таблица 6: Примерная сигнализация для сигнализации перестраивания в CTU

Descriptorcoding_tree_unit()
……

if (reshape_CTU_control_flag) {
ae(v)reshaper_CTU_flag

}
……

[0072]Применительно к таблицам 4-6, примерная семантика может быть обозначена
в виде:

sps_reshaper_enable_flag, равный 1, задает, что перестройщик используется в
кодированной видеопоследовательности (CVS). sps_reshaper_enabled_flag, равный 0,
задает, что перестройщик не используется в CVS.

slice_reshaper_enable_flag, равный 1, задает, что перестройщик активирован для
текущей секции. slice_reshaper_enable_flag, равный 0, задает, что перестройщик не
активирован для текущей секции.

sps_reshaper_signal_type указывает исходные классификацию или представление
кодовымикомбинациями. В качестве примера и без ограничения, sps_reshaper_signal_type,
равный 0, задает SDR (степень контрастности); sps_reshaper_signal_type, равный 1, задает
PQ; а sps_reshaper_signal_type, равный 2 задает HLG.

reshaper_CTU_control_flag, равный 1, указывает, что перестройщику предоставлена
возможность адаптироваться для каждого CTU. reshaper_CTU_control_flag, равный 0,

Стр.: 18

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

указывает, что перестройщику не разрешено адаптироваться для каждого CTU. Когда
reshaper_CUT_control_flag отсутствует, значение будет подразумеваться 0.

reshaper_CTU_flag, равный 1, задает, что перестройщик используется для текущего
CTU. reshaper_CUT_flag, равный 0, задает, что перестройщик не используется для
текущего CTU. Когда reshaper_CTU_flag отсутствует, значение будет подразумеваться
равным slice_reshaper_enabled_flag.

sps_reshaper_model_present_flag, равный 1, указывает, что sps_reshaper_model()
присутствует в SPS. sps_reshaper_model_present_flag, равный 0, указывает, что
sps_reshaper_model() отсутствует в SPS.

slice_reshaper_model_present_flag, равный 1, указывает, что slice_reshaper_model()
присутствует в заголовке секции. slice_reshaper_model_present_flag, равный 0, указывает,
что slice_reshaper_model() отсутствует в SPS.

sps_reshaper_chromaAdj, равный1, указывает, что коррекцияQPцветности выполняется
с использованием chromaDQP. sps_reshaper_chromaAdj, равный 2, указывает, что
коррекция QP цветности выполняется с использованием масштабирования цветности.

sps_reshaper_ILF_opt указывает, должен ли внутриконтурный фильтр применяться в
исходной области или перестроенной области для секций с внутрикадровым или
межкадровым предсказанием. Например, с использованием двухбитного синтаксиса,
где младший бит указывает ссылкой на секции с внутрикадровым предсказанием:

Операции входного контурного фильтраsps_reshaper_ILF_opt
В исходной области как для внутрикадрового, так и для межкадрового предсказания0 0

В исходной области для внутрикадрового предсказания, в перестроенной области для внутрикадро-
вого предсказания0 1

В перестроенной области для внутрикадрового предсказания, в исходной области для внутрикадро-
вого предсказания1 0

В перестроенной области как для внутрикадрового, так и для межкадрового предсказания1 1

[0073] В некоторых вариантах осуществления, данныйпараметрможет настраиваться
на уровне секции Например, в варианте осуществления, секция может включать в себя
slice_reshape_ILFOPT_flag, когда slice_reshaper_enable_flag установлен в 1. В еще одном
варианте осуществления, в SPS, можно включать в состав параметр sps_reshaper_ILF_Tid,
если активирован sps_reshaper_ILF_opt. Если TemporalID для текущей секции <=
sps_reshaper_ILF_Tid, и slice_reshaper_enable_flag установлен в 1, то внутриконтурный
фильтр применяется в области перестраивания. Иначе, он применяется в
неперестроенной области.

[0074] В таблице 4, коррекция QP цветности управляется на уровне SPS. В варианте
осуществления, коррекция QP цветности также может управляться на уровне секции.
Например, в каждой секции можно добавлять синтаксический элемент
slice_reshape_chromaAdj_flag, когда slice_reshaper_enable_flag установлен в 1. В еще одном
варианте осуществления, в SPS можно добавлять синтаксический элемент
sps_reshaper_ChromaAdj_Tid, если активирован sps_reshaper_chromaAdj. Если TemporalID
для текущей секции <= sps_reshaper_ChromaAdj_Tid, и slice_reshaper_enable_flag установлен
в 1, то применяется коррекция цветности. Иначе, коррекция цветности не применяется.
Таблица 4B изображает примерный вариант таблицы 4 с использованием синтаксиса,
описанного ранее.

Таблица 4B: Примерный синтаксис для сигнализации перестраивания в SPS с
использованием временных идентификаторов

DescriptorSPS()
……

Стр.: 19

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

u(1)sps_reshaper_enable_flag /*1: перестраивание включено, иначе отключено */
if (sps_reshaper_enable_flag) {

u(2)sps_reshaper_signal_type /* 0:HDR, 1:PQ, 2:HLG */

u(2)sps_reshaper_ILF_opt /* контурный фильтр в котором область: 2 бита с внешним/внутренним кодиро-
ванием */

if (sps_reshaper_ILF_opt == 3)
u(3)sps_reshaper_ILF_Tid
u(2)sps_reshaper_chromaAdj /* 1: chromaDQP; 2: chromaScaling/

if (sps_reshaper_chromaAdj)
u(3)sps_reshaper_chromaAdj_Tid
u(1)sps_reshaper_model_present_flag /*1: присутствует*/

if (sps_reshaper_model_present_flag)
sps_reshaper_model ()

}

sps_reshaper_ILF_Tid задает наивысший TemporalID там, где внутриконтурныйфильтр
применяется для перестроенной секции в перестроенной области.

sps_reshaper_chromaAdj_Tid задает наивысшийTemporalID, применительно к которому
коррекция цветности применяется для перестроенной секции.

[0075] В еще одном варианте осуществления, модель перестраивания может быть
определена с использованием идентификатора модели перестраивания, например,
reshape_model_id, в качестве частифункции slice_reshape_model().Модель перестраивания
может сигнализироваться на уровнях SPS, PPS или заголовка секции. Если
сигнализируется в SPS или PPS, значение reshape_model_id такжеможет подразумеваться
из sps_seq_parameter_set_id или pps_pic_parameter_set_id. Пример того, каким образом
использовать reshape_model_id для секций, которые не несут slice_reshape_model()
(например, slice_reshaper_model_present_flag, равный 0) показан ниже в таблице 5B,
варианте таблицы 5.

Таблица 5B:Примерный синтаксис для сигнализации перестраивания в заголовке секции
с использованием reshape_model_id

Descriptorslice_header()
……

u(1)slice_reshaper_model_present_flag
if (slice_reshaper_model_present_flag)

slice_reshaper_model ()
else

ue(v)reshape_model_id
u(1)slice_reshaper_enable_flag

if (slice_reshaper_enable_flag) {
u(1)reshaper_CTU_control_flag /*1: включено, флаг включения/выключение на уровне CTU*/

}
……

Впримерном синтаксисе, параметр reshape_model_id задает значение для используемой
reshape_model. Значение reshape_model_id будет находиться в диапазоне от 0 до 15.

[0076] В качестве примера использования предложенного синтаксиса, рассмотрим
сигнал HDR, закодированный с использованием EOTF PQ, где перестраивание
используется на уровне SPS, специальное перестраивание не используется на уровне
секции (перестраивание используется для всех секций), и адаптация CTU разрешена
только для секций с внутрикадровым предсказанием. В таком случае:

sps_reshaper_signal_type=1 (PQ);

Стр.: 20

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

sps_reshaper_model_present_flag=1;
// Примечание: Можно манипулировать slice_reshaper_enable_flag для активации и

деактивации перестройщика.
slice_reshaper_enable_flag=1;
if (CTUAdp)
{
if (I_slice)
slice_reshaper_model_present_flag=0;
reshaper_CTU_control_flag=0;
else
slice_reshaper_model_present_flag=0;
reshaper_CTU_control_flag=1;
}
else
{
slice_reshaper_model_present_flag=0;
reshaper_CTU_control_flag=0;
}
[0077] В еще одномпримере, рассмотрим сигнал SDR, где перестраивание применяется

только на уровне секции и только для секций с внутрикадровым предсказанием.
Адаптация перестраивания CTU предусмотрена только для секций с внутрикадровым
предсказанием. В таком случае:

sps_reshaper_signal_type=0 (SDR);
sps_reshaper_model_present_flag=0;
slice_reshaper_enable_flag=1;
if (I_slice)
{
slice_reshaper_model_present_flag=1;
reshaper_CTU_control_flag=0;
}
else
{
slice_reshaper_model_present_flag=0;
if (CTUAdp)
reshape_CTU_control_flag=1;
else
reshaper_CTU_control_flag=0;
}
[0078] На уровне CTU, в варианте осуществления, перестраивание на уровне CTU

может активироваться на основе характеристик яркостиCTU.Например, применительно
к каждому CTU, можно вычислять среднюю яркость (например, CTU_avg_lum_value),
сравнивать ее с однимили более пороговых значений и решать, следует или нет включить
или отключить перестраивание, на основе результатов таких сравнений. Например,

если CTU_avg_lum_value < THR1, или
если CTU_avg_lum_value > THR2, или
если THR3<CTU_avg_lum_value<THR4,
то reshaper_CTU_Flag=1 для этого CTU.
В варианте осуществления, вместо использования средней яркости, можно

Стр.: 21

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

пользоваться некоторой другой характеристикой яркостиCTU, такой какминимальная,
максимальная или средняя яркость, изменчивость, и тому подобное. Также можно
применять основанные на цветности характеристики CTU, или можно комбинировать
характеристики яркости и цветности и пороговые значения.

[0079] Как описано раньше (например, в отношении этапов по фиг. 3A, 3B и 3C),
варианты осуществления могут поддерживать как установленную по умолчанию или
статическую функцию перестраивания, так и адаптивное перестраивание.
«Установленный по умолчаниюперестройщик»может использоваться для выполнения
предварительно заданнойфункции перестраивания, по этой причине понижая сложность
для анализа каждого кадра или сцены при получении кривой перестраивания. В этом
случае, нет необходимости в сигнализации функции обратного перестраивания на
уровне сцены, кадра или секции. Установленный по умолчанию перестройщик может
быть реализован посредством использования постоянной кривой отображения,
хранимой в декодере, для избегания какой бы то ни было сигнализации, или он может
сигнализироваться одинраз в виде части наборапараметров уровняпоследовательности.
В еще одном варианте осуществления, декодированная ранее функция адаптивного
перестраиваниямогла быиспользоваться повторно для более поздних кадров в порядке
кодирования. В еще одном варианте осуществления, кривые перестраивания могут
сигнализироваться разностным методом по отношению к декодированным ранее. В
других вариантах осуществления (например, применительно к внутриконтурному
перестраиванию остаточных значений, где обе функции Inv() и Fwd() нужны для
выполнения обратного перестраивания) можно было бы сигнализировать в битовом
потоке только об одной из функций Inv() или Fwd(), либо, в качестве альтернативы, об
обеих, для уменьшения сложности декодера. Таблицы 7 и 8 приводят два примера для
сигнализации информации о перестраивании.

[0080] В таблице 7, функция перестраивания сообщается в виде набора полиномов
второго порядка. Это упрощенный синтаксис пробной опытной модели (ETM)
(справочный материал [5]). Более ранний вариант также может быть найден в
справочном материале [4].

Таблица 7: Примерный синтаксис для пофрагментного представления функции
перестраивания (модели A)

Descriptorreshaping_sliceheader_table_model_A() {
ue(v)reshape_input_luma_bit_depth_minus8
ue(v)coeff_log2_offset_minus2
ue(v)reshape_num_ranges_minus1
u(1)reshape_equal_ranges_flag
u(v)reshape_global_offset_val

if(!reshape_equal_ranges_flag)
for (i=0; i < reshape_num_ranges_minus1+ 1; i++)

u(v)reshape_range_val[i]
u(1)reshape_continuity_flag

for(i=0; i < reshape_num_ranges_minus1+2; i++) {
ue(v)reshape_poly_coeff_order0_int[i]
u(v)reshape_poly_coeff_order0_frac[i]

}
if(reshape_continuity_flag== 1) {

se(v)reshape_poly_coeff_order1_int
u(v)reshape_poly_coeff_order1_frac

}
}

Стр.: 22

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

reshape_input_luma_bit_depth_minus8 задает битовую глубину отсчета входной
компоненты яркости процесса перестраивания.

coeff_log2_offset_minus2 задает количество дробных битов для связанных с
перестраиванием расчетов коэффициентов применительно к компоненте яркости.
Значение coeff_log2_offset_minus2 будет находиться в диапазоне от 0 до 3 включительно.

reshape_num_ranges_minus1 плюс 1 задает количество диапазонов в кусочнойфункции
перестраивания.Когдаотсутствует, значение reshape_num_ranges_minus1 подразумевается
0. reshape_num_ranges_minus1 будет находиться в диапазоне от 0 до 7 включительно
применительно к компоненте яркости.

reshape_equal_ranges_flag, равный 1, задает, что кусочная функция перестраивания
подразделена на NumberRanges фрагментов с приблизительно равной длиной, и длина
каждого диапазона не сигнализируется в явном виде. reshape_equal_ranges_flag, равный
0, задает, что длина каждого диапазона сигнализируется в явном виде.

reshape_global_offset_val используется для вывода значения сдвига, которое
используется, чтобы задавать начальную точку 0-ого диапазона.

reshape_range_val[i] используется для вывода длины i-ого диапазона компоненты
яркости.

reshape_continuity_flag задает свойства непрерывности функции перестраивания для
компоненты яркости. Если reshape_continuity_flag равен 0, непрерывность нулевого
порядка применяется к кусочно-линейнымфункциям обратного перестраивания между
следующими друг за другом точками поворота. Если reshape_continuity_flag равен 1,
гладкость первого порядка используется для получения полиномиальных функций
обратного перестраивания полного второго порядкамежду следующимидруг за другом
точками поворота.

reshape_poly_coeff_order0_int [i] задает целочисленное значение коэффициента
полинома нулевого порядка i-ого фрагмента для компоненты яркости.

reshape_poly_coeff_order0_frac [i] задает дробное значение коэффициента полинома
нулевого порядка i-ого фрагмента для компоненты яркости.

reshape_poly_coeff_order1_int задает целочисленное значение коэффициента полинома
первого порядка для компоненты яркости.

reshape_poly_coeff_order1_frac задает дробное значение коэффициента полинома
первого порядка для компоненты яркости.

[0081] Таблица 8 описывает примерный вариант осуществления альтернативного
параметрического представления согласно модели B, описанной ранее (справочный
материал [3]).

Таблица 8: Примерный синтаксис для параметрического представления функции
перестраивания (модели B)

Descriptorreshaping_sliceheader_table_model_B() {
ue(v)reshape_model_profile_type
u(2)reshape_model_scale_idx
u(5)reshape_model_min_bin_idx
u(5)reshape_model_max_bin_idx
u(4)reshape_model_num_band

for (i=0; i < reshape_model_num_band; i++) {
u(1)reshape_model_band_profile_delta [i]

}
}

[0082] В таблице 8, в варианте осуществления, синтаксические параметрымогут быть

Стр.: 23

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

определены в виде:
reshape_model_profile_type задает типпрофиля, подлежащийиспользованиювпроцессе

построения перестройщика.
reshape_model_scale_idx задает значение индекса масштабного коэффициента

(обозначенного как ScaleFactor), подлежащего использованию в процессе построения
перестройщика. Значение ScaleFactor предусматривает улучшенное управлениефункцией
перестраивания для улучшенной общей эффективности кодирования. Дополнительные
подробности об использовании этого ScaleFactor приведены в отношении обсуждения
касательнопроцесса реконструкциифункцииперестраивания (например, как изображено
на фиг. 5A и фиг. 5B). В качестве примера и без ограничения, значение
reshape_model_scale_idx будет находиться в диапазоне от 0 до 3 включительно. В варианте
осуществления, отношение соответствия между scale_idx и ScaleFactor, как показано в
таблице, приведенной ниже, заданы посредством:

ScaleFactor=1.0-0.05* reshape_model_scale_idx.

ScaleFactorreshape_model_scale_idx
1,00
0,951
0,92
0,853

В еще одномпримере, ради более эффективной реализации с фиксированной точкой,
ScaleFactor=1-1/16* reshape_model_scale_idx.

ScaleFactorreshape_model_scale_idx
1,00

0,93751
0,8752
0,81253

reshape_model_min_bin_idx задает минимальный индекс элемента разрешения,
подлежащий использованию в процессе построения перестройщика. Значение
reshape_model_min_bin_idx будет находиться в диапазоне от 0 до 31 включительно.

reshape_model_max_bin_idx задает максимальный индекс элемента разрешения,
подлежащий использованию в процессе построения перестройщика. Значение
reshape_model_max_bin_idx будет находиться в диапазоне от 0 до 31 включительно.

reshape_model_num_band задает количество полос, подлежащих использованию в
процессе построенияперестройщика. Значение reshape_model_num_band будет находиться
в диапазоне от 0 до 15 включительно.

reshape_model_band_profile_delta [i] задает значение приращения, подлежащее
использованию для коррекции профиля i-ой полосы в процессе построения
перестройщика. Значение reshape_model_band_profile_delta [i] будет находиться в
диапазоне от 0 до 1 включительно.

[0083] По сравнению со справочным материалом [3], синтаксис в таблице 8 гораздо
более эффективен посредством определения набора «установленных по умолчанию
типов профиля», скажем, наиболее ярких участков изображения, средних тонов и темных
участков. В варианте осуществления, каждый тип имеет предварительно заданный
профиль зрительной важности полосы. Предварительно заданные полосы и
соответствующие профили могут быть реализованы в виде постоянных значений в
декодере, или они также могут сигнализироваться с использованием высокоуровневого
синтаксиса (такого как набор параметров последовательности). В кодировщике, каждое

Стр.: 24

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

изображение сначала анализируется и категоризируется одним из типов профиля. Тип
профиля сигнализируется синтаксическим элементом «reshape_model_profile_type».При
адаптивном перестраивании, для того чтобы захватывать полный диапазон динамики
изображений, профилирование по умолчанию дополнительно корректируется
приращениемдля каждогоилиподмножества диапазонов яркости. Значенияприращения
выводятся на основе зрительной важности полос яркости и сигнализируются
синтаксическими элементами «reshape_model_band_profile_delta»

[0084] В одном из вариантов осуществления, значение приращения может принимать
значения только 0 или 1. В кодировщике, зрительная важность определяется посредством
сравнения процента пикселей полосыво всем изображении с процентомпикселей полосы
в пределах «преобладающих полос», где преобладающие полосы могут выявляться с
использованием локальной гистограммы. Если пиксели в пределах полосы
сосредотачиваются в небольшом локальном блоке, полоса наиболее вероятно является
зрительно важной в блоке. Итоговые суммы для преобладающих полос суммируются
и нормируются для формирования значимого сравнения, чтобы получить значения
приращения для каждой полосы.

[0085]Вдекодере, процесс реконструкциифункцииперестройщика должен вызываться
для получения LUT перестраивания на основе способов, описанных в справочном
материале [3]. Поэтому, сложность является более высокой по сравнению с более
простой моделью кусочной аппроксимации, которой необходимо оценивать только
сплайны для вычисления LUT. Преимущество использования синтаксиса
параметрическоймодели состоит в том, что оно значительно снижает битовую скорость
использования перестройщика. Например, на основе типичного испытательного
контента, модели, изображенной в таблице 7, необходимо 200-300 битов для
сигнализации перестройщика, тогда как параметрическая модель (как в таблице 8)
использует всего лишь около 40 бит.

[0086] В еще одном варианте осуществления, как изображено в таблице 9, справочная
таблица прямого перестраивания может выводиться согласно параметрическоймодели
для значений dQP. Например, в варианте осуществления,

dQP=clip3(min, max, scale*X+offset),
при этом min и max обозначают границы dQP, scale и offset - два параметра модели,

аX обозначает параметр, выведенный на основе яркости сигнала (например, значения
яркости пикселя или, применительно к блокам, показателя яркости блока, например,
ее минимума, максимума, среднего значения, изменчивости, среднеквадратического
отклонения, и тому подобного). Например, без ограничения,

dQP=clip3(-3, 6, 0.015*X - 7.5).
Таблица 9: Примерный синтаксис для параметрического представления функции

перестраивания (модели C)

descriptorsps_reshaper_model_C() {
u(1)full_range_input_flag
ue(v)dQP_model_scale_int_prec

if (dQP_model_scale_int_prec > 0) {
u(v)dQP_model_scale_int

}
ue(v)dQP_model_scale_frac_prec_minus16
u(v)dQP_model_scale_frac

if (dQPModelScaleAbs) {
u(1)dQP_model_scale_sign

}

Стр.: 25

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

ue(v)dQP_model_offset_int_prec_minus3
u(v)dQP_model_offset_int
ue(v)dQP_model_offset_frac_prec_minus1
u(v)dQP_model_offset_frac

if (dQPModelOffsetAbs) {
u(1)dQP_model_offset_sign

}
ue(v)dQP_model_abs_prec_minus3
u(v)dQP_model_max_abs

if (dQP_model_max_abs) {
u(1)dQP_model_max_sign

}
u(v)dQP_model_min_abs

if (dQP_model_min_abs) {
u(1)dQP_model_min_sign

}
}

[0087] В варианте осуществления, параметры в таблице 9 могут быть определены,
как изложено ниже:

full_range_input_flag задает диапазон входного видеосигнала. full_range_input_flag со
значением 0 соответствует входному видеосигналу со стандартным динамическим
диапазоном. full_range_input_flag со значением 1 соответствует входному видеосигналу
с полнымдиапазоном.Когдаотсутствует, full_range_input_flag подразумевается имеющим
значение 0.

Примечание: В качестве используемого в материалах настоящей заявки, термин
«видео с полным диапазоном» обозначает, что действительные кодовые комбинации
в видеосигнале «не ограничены».Например, применительно к 10-битному видеосигналу
с полным диапазоном, действительные кодовые комбинации находятся между 0 и 1023,
где 0 отображается в наименьший уровень яркости. В противоположность,
применительно к 10-битному «видеосигналу со стандартным диапазоном»,
действительные кодовые комбинации находятся между 64 и 940, и 64 отображается в
наименьший уровень яркости.

Например, расчет «полного диапазона» и «стандартного диапазона» может
вычисляться, как изложено ниже:

для нормирования значений Ey' яркости в пределах [0 1], чтобы кодировать в битах
BD (например, BD=10, 12, и тому подобному):

полный диапазон: Y=clip3(0, (1<<BD) -1, Ey'* ((1<<BD) -1)))
стандартный диапазон: Y=clip3(0, (1<<BD) -1, round(1<<(BD-8)*(219*Ey'+16)))
Этот синтаксис аналогичен синтаксису «video_full_range_flag» в параметрах VUI

HEVC, как описано в разделе E.2.1 технических условий HEVC (H.265) (справочный
материал [11]).

dQP_model_scale_int_prec задает количество битов, используемых для представления
dQP_model_scale_int. dQP_model_scale_int_prec, равный 0, указывает, что
dQP_model_scale_int не сигнализируется и подразумевается имеющим значение 0.

dQP_model_scale_int задает целочисленное значение шкалы модели dQP.
dQP_model_scale_frac_prec_minus16 плюс 16 задает количество битов, используемых

для представления dQP_model_scale_frac.
dQP_model_scale_frac задает дробное значение шкалы модели dQP.
Переменная dQPModelScaleAbs выводится в виде:
dQPModelScaleAbs=dQP_model_scale_int << (dQP_model_scale_frac_prec_minus16+16)+

Стр.: 26

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

dQP_model_scale_frac
dQP_model_scale_sign задает знакшкалымодели dQP.Когда dQPModelScaleAbs равно

0, dQP_model_scale_sign не сигнализируется, и он подразумевается имеющим значение
0.

dQP_model_offset_int_prec_minus3 плюс 3 задает количество битов, используемых для
представления dQP_model_offset_int.

dQP_model_offset_int задает целочисленное значение сдвига модели dQP.
dQP_model_ offset _frac_prec_minus1 плюс 1 задает количество битов, используемых

для представления dQP_model_offset_frac.
dQP_model_ offset_frac задает дробное значение сдвига модели dQP.
Переменная dQPModelOffsetAbs выводится в виде:
dQPModelOffsetAbs=dQP_model_offset_int << (dQP_model_offset_frac_prec_minus1+1)+

dQP_model_offset_frac
dQP_model_offset_sign задает знак сдвига модели dQP. Когда dQPModelOffsetAbs

равен 0, dQP_model_offset_sign не сигнализируется и подразумевается имеющим значение
0.

dQP_model_abs_prec_minus3 плюс 3 задает количество битов, используемых для
представления dQP_model_max_abs и dQP_model_min_abs.

dQP_model_max_abs задает целочисленное значение максимума модели dQP.
dQP_model_max_sign задает знак максимума модели dQP model max. Когда

dQP_model_max_abs равен 0, dQP_model_max_sign не сигнализируется и подразумевается
имеющим значение 0.

dQP_model_min_abs задает целочисленное значение минимума модели dQP.
dQP_model_min_sign задает знак минимума модели dQP. Когда dQP_model_min_abs

равен 0, dQP_model_min_sign не сигнализируется и подразумевается имеющим значение
0.

Процесс декодирования для модели C
[0088]При данных синтаксических элементах таблицы 9, LUT перестраивания может

быть выведена, как изложено ниже.
Переменная dQPModelScaleFP выводится в виде:
dQPModelScaleFP=((1- 2*dQP_model_scale_sign) * dQPModelScaleAbs) <<

(dQP_model_offset_frac_prec_minus1+1).
Переменная dQPModelOffsetFP выводится в виде:
dQPModelOffsetFP=((1-2* dQP_model_offset_sign) * dQPModelOffsetAbs) <<

(dQP_model_scale_frac_prec_minus16+16).
Переменная dQPModelShift выводится в виде:
dQPModelShift=(dQP_model_offset_frac_prec_minus1+1)+

(dQP_model_scale_frac_prec_minus16+16).
Переменная dQPModelMaxFP выводится в виде:
dQPModelMaxFP=((1- 2*dQP_model_max_sign) * dQP_model_max_abs) << dQPModelShift.
Переменная dQPModelMinFP выводится в виде:
dQPModelMinFP=((1- 2*dQP_model_min_sign) * dQP_model_min_abs) << dQPModelShift.
for Y =0: maxY // Например, применительно к 10-битным видеоданным, maxY=1023
{
dQP[Y]=clip3(dQPModelMinFP, dQPModelMaxFP, dQPModelScaleFP*Y+

dQPModelOffsetFP);
slope[Y]=exp2((dQP[Y]+3)/6); // реализация exp2 с фиксированной точкой, где exp2(x)

=2^(x);

Стр.: 27

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

}
If (full_range_input_flag == 0) // если входным сигналом является видеосигнал со

стандартным диапазоном
Применительно к Y вне стандартного диапазона (то есть, Y=[0:63] и [940:1023]),

устанавливаем slope[Y]=0;
CDF[0]=slope[0];
for Y =0: maxY-1
{
CDF[Y+1]=CDF[Y]+slope[Y]; // CDF[Y] - интеграл углового коэффициента [Y]
}
for Y=0: maxY
{
FwdLUT[Y]=round(CDF[Y]*maxY/CDF[maxY]); // округление и нормирование для

получения FwdLUT
}
[0089] В еще одном варианте осуществления, как изображено в таблице 10, функция

прямого перестраивания может быть представлена в виде совокупности точек (In_Y)
поворота яркости и их соответствующих кодовых комбинаций (Out_Y). Для упрощения
кодирования, диапазон яркости входного сигнала описан в показателях начального
поворота и последовательности равноразнесенных последующих поворотов с
использованием кусочно-линейного представления. Пример представления функции
прямого перестраивания для 10-битных входных данных изображен на фиг. 7.

Таблица 10: Примерный синтаксис для основанном на повороте представлении функции
перестраивания (модели D)

descriptorsps_reshaper_model_D() {
u(1)full_range_input_flag
u(v)bin_pivot_start
u(v)bin_cw_start
ue(v)log2_num_equal_bins_minus3
u(v)equal_bin_pivot_delta
u(v)bin_cw_in_first_equal_bin
ue(v)bin_cw_delta_abs_prec_minus4

for(i=0 ; i < NumEqualBins - 1 ; i++) {
u(v)bin_cw_delta_abs[i]

if (bin_cw_delta_abs[i]) {
u(1)bin_cw_delta_sign[i]

}
}
}

[0090] В варианте осуществления, параметры в таблице 10 могут быть определены,
как изложено ниже:

full_range_input_flag задает диапазон входного видеосигнала. full_range_input_flag со
значением 0 соответствует входному видеосигналу со стандартным диапазоном.
full_range_input_flag со значением 1 соответствует входному видеосигналу с полным
диапазоном.Когда отсутствует, full_range_input_flag подразумевается имеющим значение
0.

bin_pivot_start задает значение поворота первого элемента (710) разрешения равной
длины.Когда full_range_input_flag равен 0, bin_pivot_start будет большим, чем или равным
наименьшему входному сигналу со стандартным диапазоном и будет меньшим, чем

Стр.: 28

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

наибольший входной сигнал со стандартным диапазоном. (Например, применительно
к 10-битному входному сигналу SDR, bin_pivot_start (710) будет находиться между 64 и
940).

bin_cw_start задает приведенное в соответствие значение (715) bin_pivot_start (710)
(например, bin_cw_start=FwdLUT[bin_pivot_start]).

log2_num_equal_bins_minus3 плюс 3 задает количество элементов разрешения равной
длины, следующих за начальным поворотом (710). Переменные NumEqualBins и
NumTotalBins определены согласно:

NumEqualBins=1<<(log2_num_equal_bins_minus3+3)
if full_range_input_flag == 0
NumTotalBins=NumEqualBins+4
else
NumTotalBins=NumEqualBins+2
Примечание:Экспериментальные результатыпоказывают, что большинствофункций

прямого перестраивания могут быть представлены с использованием восьми отрезков
равной длины; однако, сложные функции перестраивания могут требовать большего
количества отрезков (например, 16 или более).

equal_bin_pivot_delta задает длину элементов разрешения равной длины (например,
720-1, 720-N). NumEqualBins *, равный bin_pivot_delta будет меньшим, чем или равным
действительному входному диапазону. (Например, если full_range_input_flag имеет
значение 0, действительный входной диапазон должен иметь значение 940-64=876 для
10-битных входных сигналов; если full_range_input_flag имеет значение 1, действительный
входной диапазон должен находиться от 0 до 1023 для 10-битных входных сигналов).

bin_cw_in_first_equal_bin задает количество приведенных в соответствие кодовых
комбинаций (725) в первом элементе разрешения равной длины (720-1).

bin_cw_delta_abs_prec_minus4 плюс 4 задает количество битов, используемых для
представления bin_cw_delta_abs[i] применительно к каждому последующему равному
элементу разрешения.

bin_cw_delta_abs[i] задает значение bin_cw_delta_abs[i] для каждого последующего
элемента разрешения равной длины. bin_cw_delta[i] (например, 735) является разностью
кодовых комбинаций (например, 740) в текущем элементе i разрешения равной длины
(например, 720-N) по сравнению с кодовыми комбинациями (например, 730) в
предыдущем элементе i-1 разрешения равной длины.

bin_cw_delta_sign[i] задает знак bin_cw_delta_abs[i]. Когда bin_cw_delta_abs[i] равен
0, bin_cw_delta_sign[i] не сигнализируется и подразумевается имеющим значение 0.

Переменная bin_cw_delta[i]=(1- 2*bin_cw_delta_sign[i])* bin_cw_delta_abs[i]
Процесс декодирования для модели D
[0091]При данных синтаксических элементах таблицы 10, LUTперестраиванияможет

быть выведена, как изложено ниже, для 10-битного входного сигнала:
Определим ограничения:
minIN=minOUT=0;
maxIN=maxOUT=2^BD - 1=1023 for 10-bit //BD=битовая глубина
minStdIN=64 для 10 бит
minStdIN=940 для 10 бит
Этап 1: вывести значение поворота In_Y [j] для j=0: NumTotalBins
In_Y [0]=0;
In_Y [NumTotalBins]=maxIN;
if (full_range_input_flag == 0)

Стр.: 29

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

{
In_Y [1]=minStdIN;
In_Y [2]=bin_pivot_start;
for (j=3: NumTotalBins - 2)
In_Y [j]=In_Y [j - 1]+equal_bin_pivot_delta;
In_Y [NumTotalBins - 1]=maxStdIN;
}
else
{
In_Y [1]=bin_pivot_start;
for j=2: NumTotalBins - 1
In_Y [j]=In_Y [j - 1]+equal_bin_pivot_delta;
}
Этап 2: вывести отображаемое значение Out_Y [j] для j=0: NumTotalBins
Out_Y [0]=0;
Out_Y [NumTotalBins]=maxOUT;
if (full_range_input_flag == 0)
{
Out_Y [1]=0;
Out_Y [2]=bin_cw_start;
Out_Y [3]=bin_cw_start+bin_cw_in_first_equal_bin;
bin_cw [3]=bin_cw_in_first_equal_bin;
for j=(4: NumTotalBins - 2)
bin_cw [j]=bin_cw [j - 1]+bin_cw_delta [j - 4]; // bin_cw_delta[i] start from idx 0
for j=(4: NumTotalBins - 2)
Out_Y [j]=Out_Y [j - 1]+bin_cw [j];
Out_Y [NumTotalBins - 1]=maxOUT;
}
else
{
Out_Y [1]=bin_cw_start;
Out_Y [2]=bin_cw_start+bin_cw_in_first_equal_bin;
bin_cw [2]=bin_cw_in_first_equal_bin;
for j=(3: NumTotalBins - 1)
bin_cw [j]=bin_cw [j - 1]+bin_cw_delta [j - 3]; // bin_cw_delta[i] start from idx 0
for j=3: NumTotalBins - 1
Out_Y [j]=Out_Y [j - 1]+bin_cw [j];
}
Этап 3: Линейная интерполяция для получения всей записи LUT
Init: FwdLUT[]
for (j=0: NumTotalBins - 1)
{
InS=In_Y [j];
InE=In_Y [j+1];
OutS=Out_Y [j];
OutE=Out_Y [j+1];
for i=In_Y[j]: In_Y[j+1] - 1
{

Стр.: 30

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

FwdLUT [i]=OutS+round ((OutE - OutS) * (i - InS)/(InE - InS));
}
}
FwdLUT [In_Y [NumTotalBins]]=Out_Y [NumTotalBins];
[0092] Вообще, перестраивание может включаться или отключаться для каждой

секции. Например, можно активировать перестраивание только для секций с
внутрикадровым предсказанием и деактивировать для секций с межкадровым
предсказанием. В еще одном примере, можно деактивировать перестраивание для
секций с межкадровымпредсказанием, которые имеют наивысший временный уровень.
(Примечание: в качестве примера, в качестве используемого в материалах настоящей
заявки, временные подуровни могут соответствовать определению временных
подуровней в HEVC.) При определении модели перестройщика, в одном из примеров,
можно сигнализировать о модели перестройщика только в SPS, но, в другом примере,
можно сигнализировать о модели перестройщика секции в секциях с внутрикадровым
предсказанием. В качестве альтернативы, можно сигнализировать о модели
перестройщика в SPS и предоставлять модели перестройщика секции возможность
обновлять модель перестройщика SPS применительно ко всем секциям, или можно
предоставлять модели перестройщика секции возможность обновлять модель
перестройщика SPS только применительно к секциям с внутрикадровымпредсказанием.
Что касается секций с межкадровым предсказанием, которые поддерживают секцию с
внутрикадровым предсказанием, можно применять модель перестройщика SPS или
модель перестройщика секции с внутрикадровым предсказанием.

[0093] В качестве еще одного примера, фиг. 5A и 5B изображают процесс
реконструкции функции перестраивания в декодере согласно варианту осуществления.
Процесс использует способы, описанные вматериалах настоящей заявки и в справочном
материале [3], с диапазоном видимости в пределах [0 5].

[0094] Как изображено на фиг. 5A, прежде всего (этап 510), декодер извлекает
переменную reshape_model_profile_type и устанавливает (этапы 515, 520 и 525), для
каждого элемента разрешения, надлежащий начальный профиль полосы. Например,
в псевдокоде:

if (reshape_model_profile_type == 0) R[bi]=Rbright[bi];
elseif (reshape_model_profile_type == 1) R[bi]=Rdark[bi];
else R[bi]=Rmid[bi].
[0095]На этапе 530, декодер корректирует каждыйпрофиль полосы с использованием

принятых значений reshape_model_band_profile_delta[bi], как в
for (i=0: reshape_model_num_band-1)
{R[bi]=R[bi]+reshape_model_band_profile_delta [bi]}.
[0096]На этапе 535, декодер распространяет скорректированные значения на каждый

профиль элемента разрешения, как в
если bin[j] принадлежит полосе bi, R_bin[j]=R[bi].
[0097] На этапе 540, профили элементов разрешения модифицируются, как в
if (j > reshape_model_max_bin_idx) or (j < reshape_model_min_bin_idx)
{R_bin[j]=0}.
[0098] Параллельно, на этапах 545 и 550, декодер может извлекать параметры для

вычисления значениямасштабного коэффициента и потенциально подходящих кодовых
комбинаций для каждого bin[j], как в

ScaleFactor=1.0-0.05* reshape_model_scale_idx

Стр.: 31

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

CW_dft[j]=кодовые комбинации в элементе разрешения, когда используется
перестраивание по умолчанию

CW_PQ[j]=TotalCW/TotalNumBins.
[0099]При вычислении значения ScaleFactor для реализации с фиксированной точкой,

вместо использования пересчетного коэффициента 0,05, взамен можно использовать
1/16=0,0625.

[0100] Продолжая по фиг. 5B, на этапе 560, декодер начинает предварительное
назначение кодовых комбинаций (CW) для каждого элемента разрешения на основе
профиля элемента разрешения, как в

If R_bin[j] == 0, CW[j]=0
If R_bin[j] == 1, CW[j]=CW_dft[j]/2;
If R_bin[j] == 2, CW[j]=min(CW_PQ[j], CW_dft[j]);
If R_bin[j] == 3, CW[j]=(CW_PQ[j]+CW_dft[j])/2;
If R_bin[j] >=4, CW[j]=max(CW_PQ[j], CW_dft[j]);
[0101]На этапе 565, он вычисляет все используемые кодовые комбинации и уточняет/

завершает назначения кодовых комбинаций (CW), как в
CWused=Sum(CW[j]):
if CWused > TotalCW, rebalance CW[j]=CW[j]/(CWused/TotalCW);
else
{
CW_remain=TotalCW - CWused ;
CW_remain назначается элементам разрешения с наибольшим R_bin[j]);
}
[0102] В заключение, на этапе 565, декодер a) формирует функцию прямого

перестраивания (например, FwdLUT), накапливая значения CW[j], b) перемножает
значение ScaleFactor со значениями FwdLUT, чтобы сформировать окончательное
FwdLUT (FFwdLUT), и c) он формирует функцию InvLUT обратного перестраивания на
основе FFwdLUT.

[0103] В реализации с фиксированной точкой, вычисление ScaleFactor и FFwdLUT
может быть выражено в виде:

ScaleFactor=(1<< SF_PREC) - reshape_model_scale_idx
FFwdLUT=(FwdLUT * ScaleFactor+(1 << (FP_PREC+SF_PREC - 1))) >> (FP_PREC+

SF_PREC),
где SF_PREC и FP_PREC - предварительно заданные связанные с точностью

переменные (например, SF_PREC=4, а FP_PREC=14), «c=a << n» операцию двоичного
сдвига влево a на n бит (или c=a*(2n)), а «c=a >> n» обозначает операцию двоичного
сдвига вправо a на n бит (или c=a/(2n)).

Производные QP цветности
[0104] Эксплуатационные качества кодирования цветности тесно связаны с

эксплуатационными качествами кодирования яркости. Например, в AVC и HEVC,
определена таблица для задания зависимости между параметрами квантования (QP)
для компонент яркости и цветности или между яркостью и цветностью. Технические
условия также предоставляют возможность использовать один или более сдвигов QP
цветности для дополнительной гибкости при определении зависимости QP между
яркостью и цветностью. Когда используется перестраивание, значение яркости
модифицируется, отсюда, зависимость между яркостью и цветностью также могла бы
быть модифицирована. Для сохранения и дополнительного улучшения эффективности

Стр.: 32

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

кодирования при перестраивании, в варианте осуществления, на уровне элемента
кодирования (CU), сдвиг QP цветности выводится на основе кривой перестраивания.
Необходимо, чтобы эта операция выполнялась как в декодере, так и в кодировщике.

[0105] В качестве используемого в материалах настоящей заявки, термин «элемент
кодирования» (CU) обозначает кодированный блок (например, макроблок, и тому
подобное). Например, без ограничения, в HEVC, CU определен как «блок кодирования
отсчетов яркости, два соответствующих блока кодирования отсчетов цветности кадра,
который имеет три массива отсчетов, или блок кодирования отсчетов монохромного
кадра или кадра, который кодирован с использованием трех отдельных цветовых
плоскостей и синтаксических структур, используемых для кодирования отсчетов».

[0106] В варианте осуществления, значение параметра квантования (QP) цветности
(chromaQP) может быть получено, как изложено ниже:

1) На основе кривой перестраивания, получаем эквивалентное отображение dQP
яркости, dQPLUT:

для CW=0: MAX_CW_VALUE-1
dQPLUT [CW]= -6*log2(slope[CW]);
где slope[CW] обозначает угловой коэффициент кривой прямого перестраивания в

каждой точке CW (кодовой комбинации), аMAX_CW_VALUE - максимальное значение
кодовой комбинации для данной битовой глубины, например, для 10-битного сигнала,
MAX_CW_VALUE=1024 (210).

Затем, для каждого элемента кодирования (CU):
2) вычисляем среднюю яркость элемента кодирования, обозначенную как AvgY:
3) вычисляем значение chromaDQP на основе dQPLUT[], AvgY, архитектуры

перестраивания, функции Inv() обратного перестраивания и типа секции, как показано
в таблице 11, приведенной ниже:

Таблица 11: Примерные значения согласно архитектуре перестраивания

Секция с межкадровым предсказаниемСекция с внутрикадровымпредсказани-
емАрхитектура перестраивания

dQPLUT[Inv(AvgY)]dQPLUT[Inv(AvgY)]Внеконтурный

0dQPLUT[Inv(AvgY)]Внутриконтурный перестройщик только
с внутрикадровым предсказанием

dQPLUT[AvgY]dQPLUT[AvgY]Внутриконтурный перестройщик для
остаточных значений

dQPLUT[AvgY]dQPLUT[Inv(AvgY)]Гибридное внутриконтурное перестраива-
ние

4) вычисляем chromaQP в виде:
chromaQP=QP_luma+chromaQPOffset+chromaDQP;
где chromaQPOffset обозначает сдвиг QP цветности, а QP_luma обозначает QP яркости

для элемента кодирования. Отметим, что значение сдвига QP цветности может быть
разным для каждой цветовой компоненты (скажем, Cb и Cr) и значения сдвига QP
цветности передаются в декодер в виде части кодированного битового потока.

[0107] В варианте осуществления, dQPLUT[] может быть реализован в качестве
предварительно заданной LUT. Допустим, все кодовые комбинации разделяются на N
элементов разрешения (например, N=32) и каждый элемент разрешения содержит M=
MAX_CW_VALUE/N кодовых комбинаций (например, M=1024/32=32). Когда
назначаются новые кодовые комбинации на каждый элемент разрешения, они могут
ограничивать количество кодовых комбинаций, чтобы находилось от 1 до 2*M, так
что они могут предварительно вычислять dQPLUT[1 …2*M] и сохранять его в виде
LUT. Этот подходможет избегать каких бы то ни было вычислений с плавающей точкой

Стр.: 33

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

или аппроксимации вычислений с фиксированной точкой. Он также может экономить
время кодирования/декодирования. Применительно к каждому элементу разрешения,
один неизменный chromaQPOffset используется для всех кодовых комбинаций в этом
элементе разрешения. Значение DQP устанавливается равным dQPLUT[L], где L -
количество кодовых комбинаций для этого элемента разрешения, где 1 L 2*M.

Значения dQPLUT могут предварительно вычисляться, как изложено ниже:
for i=1:2*M
slope[i]=i/M;
dQPLUT[i]=-6*log2(slope[i]);
end
Разные схемы квантования могут использоваться для получения целочисленного

значения QP при вычислении dQPLUT[x], такие как: round(), ceil(), f loor() или их
комбинация. Например, можно устанавливать пороговое значение TH, и, если Y<TH,
использовать floor() для квантования значения dQP, иначе, когдаY TH, использовать
ceil() для квантования значения dQP. Использование таких схем квантования и
соответствующих параметров может быть предварительно задано в кодеке или может
сигнализироваться в битовом потоке для адаптации. Примерный синтаксис, который
предоставляет возможность комбинирования схем квантования с одним пороговым
значением, как обсуждено ранее, показан, как изложено ниже:

Descriptorquant_scheme_signal_table() {
if (sps_reshaper_chromaAdj > 0) {

u(2)quant_scheme_idc // 0: round(), 1: ceil(), 2: floor(), 3: mix
if (quant_scheme_idc == 3) { //mix

u(v)quant_change_threshold
u(2)first_quant_scheme_idc
u(2)second_quant_scheme_idc

}
}
}

Функция quant_scheme_signal_table() может быть определена на разных уровнях
синтаксиса перестраивания (например, уровне последовательности, уровне секции, и
тому подобном) в зависимости от необходимости адаптации.

[0108] В еще одном варианте осуществления, значения chromaDQPмогут вычисляться
посредством применения масштабного коэффициента к остаточному сигналу в каждом
элементе кодирования (или элементе преобразования, чтобы быть более точным). Этот
масштабный коэффициент может быть зависящим от яркости значением и может
вычисляться: a) численно, например, в виде производной первого порядка (углового
коэффициента) LUT прямого перестраивания (например, смотрите уравнение (6) в
следующем разделе), или b) в виде:

Slope(x)= .

При вычислении Slope(x) с использованием dQP (x), dQP может поддерживаться на
точности с плавающей точкой без целочисленного квантования. В качестве
альтернативы, можно вычислять квантованные целочисленные значения dQP с
использованием многообразия разных схем квантования. В некоторых вариантах
осуществления, такое масштабирование может выполняться на уровне пикселей вместо
уровня блока, где каждое остаточное значение цветности может масштабироваться
разныммасштабным коэффициентом, выведенным с использованием так называемого

Стр.: 34

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

яркостного значения предсказания такого отсчета цветности. Таким образом,
Таблица 12: Примерные значения dQP цветности, использующие масштабирование для

архитектуры гибридного внутриконтурного перестраивания

Секция с межкадровым предсказаниемСекция с внутрикадровым предсказа-
ниемОбновление

Scu=SlopeLUT[AvgY]
C_Res_scaled=C_Res * S_cu

Scu=SlopeLUT[Inv(AvgY)]
C_Res_scaled=C_Res * S_cu

Основанное на CU масштабирование цветности
(один и тот же перестройщик S_cu совместно ис-

пользуется всеми отсчетами в CU)

Spx=SlopeLUT[ColPredY]
C_Res_scaled=C_Res * S_px

Spx=SlopeLUT[Inv(ColPredY)]
C_Res_scaled =C_Res* S_px

Основанное на пикселяхмасштабирование цветно-
сти (разный преобразователь масштаба S_px в

каждом отсчете)

Например, если, if CSCALE_FP_PREC=16
Упреждающеемасштабирование: после того, как сформированоостаточное значение,

перед преобразованием и квантованием:
C_Res=C_orig - C_pred
C_Res_scaled=C_Res * S+(1 << (CSCALE_FP_PREC - 1))) >> CSCALE_FP_PREC
Обратное масштабирование: после обратного квантования цветности и обратного

преобразования, но до восстановления:
C_Res_inv=(C_Res_scaled << CSCALE_FP_PREC)/S
C_Reco=C_Pred+C_Res_inv;
где S не является ни S_cu. ни S_px.
Примечание: В таблице 12, при вычислении Scu, средняя яркость блока (AvgY)

рассчитывается передприменениемобратногоперестраивания.Вкачестве альтернативы,
можно применять обратное перестраивание перед вычислением средней яркости,
например, Scu=SlopeLUT[Avg(Inv[Y])]. Этот альтернативный порядок вычислений также
применяется к вычислительным значениям в таблице 11; то есть, вычисление Inv(AvgY)
могло бы быть заменено вычислением значений Avg(Inv[Y]). Последний подход может
считаться более точным, но имеет повышенную вычислительную сложность.

Оптимизации кодировщика в отношении перестраивания
[0109] Этот раздел обсуждает некоторое количество технологий для улучшения

эффективности кодирования в кодировщике посредством совместной оптимизации и
перестраивания, и параметры кодировщика при перестраивании являются частью
нормативного процесса декодирования (как описано в одной из трех потенциально
подходящих архитектур). Вообще, оптимизация и перестраивание кодировщика
пытаются решать задачи кодирования в разных местах со своими собственными
ограничениями. В традиционной системе формирования изображений и кодирования,
есть два типа квантования: a) квантование отсчетов (например, кодирование степени
контрастности или PQ) в сигнале основной полосы и b) связанное с преобразование
квантование (часть сжатия). Перестраивание расположено между нимиОснованное на
кадре перестраивание вообще обновляется на основе кадра и предоставляет
возможность отображения значений отсчетов только на основе их уровня яркости, не
учитывая никакой пространственной информации. В основанном на блоках кодеке
(таком как HEVC), квантование преобразования (например, для яркости) применяется
в пределах пространственного блока иможет пространственно настраиваться, поэтому,
способыоптимизации кодировщика должныприменять один и тотже наборпараметров
для всего блока, содержащего в себе отсчеты с разными значениями яркости. Как
понимается изобретателями и описано в материалах настоящей заявки, совместные
перестраивание и оптимизация кодировщика могут дополнительно улучшать
эффективность кодирования.

Выбор режима внутрикадрового/межкадрового предсказания

Стр.: 35

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

[0110] В традиционном кодировании, решения с межкадровым/внутрикадровым
предсказанием основанына вычислениифункции искажения (dfunc()) между исходными
отсчетами и предсказанными отсчетами. Примеры таких функций включают в себя
сумму квадратичных ошибок (SSE) и сумму абсолютных разностей (SAD), а также
другие. В варианте осуществления, такие показатели искажения могут применяться с
использованием перестроенных значений пикселей. Например, если исходная dfunct()
использует Orig_sample(i) и Pred_sample(i), когда применяется перестраивание, dfunct()
может пользоваться своими соответствующими перестроенными значениями,
Fwd(Orig_sample(i)) и Fwd(Pred_sample(i)). Этот подход предусматривает более точный
выбор режимамежкадрового/внутрикадрового предсказания, таким образом, улучшая
эффективность кодирования.

LumaDQP с перестраиванием
[0111] В документе по обычнымусловиям испытания (CTC)HDR JCTVC (справочный

материал [6]), lumaDQP и chromaQPoffsets являются двумя настройками кодировщика,
используемыми для модификации параметров квантования (QP) применительно к
компонентам яркости и цветности, чтобы улучшать эффективность кодирования HDR.
В этом изобретении, предложено несколько новых алгоритмов кодировщика, чтобы
дополнительно улучшить первоначальное предложение.Что касается каждого элемента
адаптации lumaDQP (например, CTU 64×64), значение dQP вычисляется на основе
среднего входного значения яркости элемента (как в таблице 3 из справочногоматериала
[6]). Окончательный параметр QP квантования, используемый для каждого элемента
кодирования в пределах этого элемента адаптации lumaDQP, должен корректироваться
вычитанием этого dQP. Таблица отображения dQP является конфигурируемой во
входной конфигурации кодировщика. Эта входная конфигурация обозначена как dQPinp.

[0112] Как обсуждено в справочном материале [6] и [7], в существующих схемах
кодирования, одна и та же dQPinpLUT lumaDQP и используется для обоих кадров, с
внутрикадровымпредсказаниемимежкадровымпредсказанием.Кадр с внутрикадровым
предсказанием и кадр с межкадровым предсказанием может иметь разные свойства и
качественные характеристики. В данном изобретении предлагается адаптировать
настройки lumaDQP на основе типа кодирования кадра. Поэтому, две таблицы
отображения dQP являются конфигурируемыми во входной конфигурации кодировщика
и обозначены как dQPinpIntraи dQPinpInter.

[0113] Как обсуждено раньше, при использовании способа внутриконтурного
перестраивания с внутрикадровым предсказанием, так как перестраивание не
выполняется над кадрами с межкадровым предсказанием, важно, чтобы некоторая
настройка lumaDQP применялась к кадрам с межкадровым предсказанием для
достижения аналогичного качества, как если бы кадры с межкадровым предсказанием
перестраивались тем же самым перестройщиком, используемым для кадра с
внутрикадровым предсказанием. В одном из вариантов осуществления, настройка
lumaDQP для кадров с межкадровым предсказанием должна соответствовать
характеристикам кривой перестраивания, используемой в кадрах с внутрикадровым
предсказанием. Пусть

Slope(x)=Fwd'(x)=(Fwd(x+dx)- Fwd(x-dx))/(2dx), (6)
обозначает первуюпроизводнуюфункции прямого перестраивания, тогда, в варианте

осуществления, обозначает автоматически выводимые значения dQPauto(x), которые
могут вычисляться, как изложено ниже:

Если Slope(x)=0, то dQPauto(x)=0, иначе

Стр.: 36

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

dQPauto(x)=6log2(Slope(x)), (7)
где dQPauto(x) может быть усечен приемлемым диапазоном, например, [-6 6].
[0114] Если lumaDQP активирован для кадров с внутрикадровым предсказанием с

перестраиванием (то есть, установлен внешний dQPinpIntra), lumaDQP для кадров с
межкадровым предсказанием должен это учитывать. В варианте осуществления,
окончательный dQPfinalс межкадровымпредсказаниемможет вычисляться посредством
сложения dQPauto, выведенного из перестройщика (уравнения (7)), и настройки
dQPinpIntraдля кадров с межкадровым предсказанием. В еще одном варианте
осуществления, для использования в своих интересах классификации качества
внутрикадрового предсказания, dQPfinalдля кадров с межкадровым предсказанием
может быть установлен в dQPautoили просто с небольшим приращением (посредством
настройки dQPinpInter) и прибавлен dQPauto.

[0115] В варианте осуществления, когда перестраивание активировано, могут
применяться нижеследующие общие правила для настройки значений dQP яркости:

1) Таблицы отображения dQP яркости могут устанавливаться независимо для кадров
с внутрикадровым предсказанием и межкадровым предсказанием (на основе типа
кодирования кадра);

2) Если кадра внутри контура кодирования находится в перестроенной области
(например, кадры с внутрикадровым кодированием в архитектуре внутриконтурного
перестраивания с внутрикадровым предсказанием или все кадры в архитектуре
внеконтурного перестраивания), необходимо, чтобы отображение входной яркости в
приращение QP, dQPinp, также было преобразовано в dQPrspперестроенной области. То
есть,

dQPrsp(x)=dQPinp[Inv(x)]. (8)
3) Если кадр внутри контура кодирования находится в неперестроенной области

(например, подвергнутой обратному перестраиванию или неперестроенной, например,
кадры смежкадровымпредсказанием в архитектуре внутриконтурного перестраивания
с внутрикадровым предсказанием или все кадры в архитектуре внутриконтурного
перестраивания остаточных значений), отображение входной яркости в приращение
QP не должно преобразовываться и может использоваться непосредственно.

4)Автоматический вывод deltaQP смежкадровымпредсказаниемдействителен только
применительно к архитектуре внутриконтурного перестраивания с внутрикадровым
предсказанием.Фактическое приращение QP, используемое для кадров с межкадровым
предсказанием, в таком случае является суммой автоматически выведенного и входного
значений:

dQPfinal[x]=dQPinp[x]+dQPauto[x], (9)
и dQPfinal[x] может быть усечен приемлемым диапазоном, например [-12 12];
5) Таблица отображения яркости в dQP может обновляться в каждом кадре, или

когда есть изменение LUT перестраивания. Фактическая адаптация dQP (из среднего
значения яркости блока получаем соответствующий dQP для квантования этого блока)
может происходить на уровне CU (конфигурируемом кодировщиком).

[0116] Таблица 13 обобщает настройки dQP для каждой одной из трех предложенных
архитектур.

Таблица 13: настройка dQP

Стр.: 37

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

Внутриконтурное для остаточных
значений

Внутриконтурное только с вну-
трикадровым предсказаниемВнеконтурноеАрхитектура

dQPfinal(x)=dQPinpIntra(x)
dQPfinal(x)=dQPrspdQPfinal(x)=dQPrspКадр с внутрикадровым пред-

сказанием
dQP (x)=dQPinpIntra[Inv(x)](x)=dQPinpIntra[Inv(x)]

dQPfinal(x)=dQPinpInter(x)
dQPfinal(x)=dQPauto(x)+dQPfinal(x)=dQPrspКадр с межкадровым предска-

занием
dQP dQPinpInter(x)(x)=dQPinpInter[Inv(x)]

Rate Distortion Optimization (RDO)
[0117] В программном обеспечении JEM6.0 (справочный материал [8]), основанное

на пикселях взвешенное искажение RDO (оптимизации скорости к искажениям)
используется, когда активирован lumaDQP. Таблица весов фиксируется на основе
значений яркости. В варианте осуществления, таблица весов будет адаптивно
настраиваться на основе настройки lumaDQP, вычисляемой, как предложено в
предыдущем разделе. Два веса, для суммы квадратичных ошибок (SSE) и суммы
абсолютных разностей (SAD), предложены, как изложено ниже:

weight_SSE[x]= , (10a)

weight_SAD[x]= . (10b)

[0118] Весом, вычисленнымпосредствомуравнения (10a) или уравнения (10b), является
общий вес, основанныйна окончательном dQP, который содержит как входной lumaDQP,
так и dQP, выведенный из функции прямого перестраивания. Например, на основе
уравнения (9), уравнение (10a) может быть записано в виде

.

Общий вес может быть разделен на вес, вычисленный по входному lumaDQP:

,

и вес от перестраивания:

.

Когдаобщийвес вычисляется с использованиемполного dQPпосредствомвычисления
первым веса от перестраивания, он теряет точность из-за операции усечения для
получения целочисленного dQPauto. Взамен, непосредственное использование функции
углового коэффициента для расчета веса из перестраивания, может сохранять более
высокую точность веса, а потому, является более благоприятным.

[0119]Обозначим в качествеWdQPвес, выведенный из входного lumaDQP.Пусть
обозначает первую производную (или угловой коэффициент) кривой прямого
перестраивания. В варианте осуществления, общий вес учитывает как значения dQP,
так и форму кривой перестраивания, таким образом, значение общего веса может быть
выражено в виде:

. (11)
[0120] Аналогичный подход также может быть применен к компонентам цветности.

Например, в варианте осуществления, применительно к цветности, dQP[x] может быть
определен согласно таблице 13.

Стр.: 38

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

Взаимодействие с другими средствами кодирования
[0121]Когда активированоперестраивание, этот разделприводитнесколькопримеров

предложенных изменений, необходимых в других средствах кодирования.
Взаимодействия могли бы существовать для любых возможных существующих или
будущих средств кодирования, подлежащих включению в стандарт кодирования
видеосигнала следующего поколения. Примеры, приведенные ниже, не являются
ограничивающими. Вообще, необходимо идентифицировать область видеосигнала
(перестроенную, неперестроенную, подвергнутуюобратномуперестраиванию) во время
этапов кодирования, и необходимо учитывать операции, имеющие дело с видеосигналом
на каждом этапе.

Межкомпонентное предсказание по линейной модели
[0122] В CCLM (межкомпонентном предсказании по линейной модели) (справочный

материал [8]) предсказанные отсчеты цветности могут выводиться с
использованием сигнала реконструкции яркости:

. (12)
[0123] Когда перестраивание активировано, в варианте осуществления, может быть

необходимо различать, находится ли восстановленный сигнал яркости в перестроенной
области (например, внеконтурномперестройщике или внутриконтурномперестройщике
с внутрикадровым предсказанием) или в неперестроенной области (например.
внутриконтурном перестройщике остаточных значений). В одном из вариантов
осуществления, можно в явном виде использовать сигнал яркости реконструкции как
есть без каких бы то ни было дополнительных сигнализации или операций. В других
вариантах осуществления, если восстановленный сигнал находится в неперестроенной
области, можнопреобразовывать сигнал яркостиреконструкции, чтобытакженаходился
в неперестроенной области, как в:

. (13)
[0124] В других вариантах осуществления, можно добавлять синтаксические элементы

битового потока для сигнализации, какая область требуется (перестроенная или
неперестроенная), что может решаться процессом RDO, или можно получать решение
на основе декодированной информации, таким образом, экономя накладные расходы,
необходимые при явной сигнализации. Можно выполнять соответствующие операции
над восстановленным сигналом на основе решения.

Перестройщик со средством предсказания остаточных значений
[0125] В профиль расширения диапазона HEVC включено средство предсказания

остаточных значений. Остаточный сигнал цветности предсказывается по остаточному
сигналу яркости на стороне кодировщика в виде:

, (14)
и он компенсируется на стороне декодера в виде:

, (15)

где обозначает остаточный отсчет цветности в положении , обозначает

восстановленный остаточный отсчет компоненты яркости, обозначает

предсказанный сигнал, использующий межцветное предсказание, обозначает

восстановленный сигнал после кодирования и декодирования , а обозначает
восстановленный остаточный сигнал цветности.

Стр.: 39

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

[0126] Когда перестраивание активировано, может быть необходимо учитывать,
какойостаточное значение яркости использовать дляпредсказания остаточных значений
цветности. В одном из вариантов осуществления, можно использовать «остаточное
значение» как есть (которое может быть перестроенным или неперестроенным на
основе архитектуры перестройщика). В еще одном варианте осуществления, можно
вынуждать остаточное значение яркости находиться в одной области (такой как
неперестроенная область) и выполнять надлежащие отображения. В ещеодномварианте
осуществления, надлежащая обработка может выводиться декодером, может
сигнализироваться в явном виде, как описано ранее.

Перестройщик с адаптивным усечением
[0127] Адаптивное усечение (справочный материал [8]) является новым средством,

введенным для сигнализации исходного диапазона данных в отношении динамических
характеристик контента и для выполнения адаптивного усечения вместо неизменного
усечения (на основе внутренней информации о битовой глубине) на каждом этапе в
рабочемпроцессе (например, при преобразовании/квантовании, контурнойфильтрации,
выводе), где происходит усечение. Пусть

, (16)
где x=Clip3(min, max, c) обозначает:

,

и
является идентификатором компоненты (типично Y, Cb или Cr)

- нижняя граница усечения, используемая в текущей секции, для идентификатора
компоненты.

- верхняя граница усечения, используемая в текущей секции для идентификатора
компоненты.

[0128] Когда перестраивание активировано, в варианте осуществления, может быть
необходимо понимать, область, в которой на данныймомент находится поток данных,
и правильно выполнять усечение. Например, если имеем дело с усечением данных в
перестроенной области, необходимо, чтобы исходные границы усечения были
преобразованы в перестроенную область:

= . (17)
Вообще, необходимо обрабатывать каждый этап усечения надлежащим образом в

отношении архитектуры перестраивания.
Перестройщик и контурная фильтрация
[0129] В программном обеспечении HEVC и JEM 6.0, необходимо, чтобы контурные

фильтры, такие как ALF и SAO оценивали оптимальные параметры фильтра с
использованием восстановленных отсчетов яркости и несжатых «исходных» отсчетов
яркости. Когда перестраивание активировано, в варианте осуществления, можно
задавать (явно или неявно) область, где желательно выполнять оптимизацию фильтра.
В одном из вариантов осуществления, можно оценивать параметры фильтра в
перестроенной области (когда реконструкция происходит в перестроенной области по
отношению к перестроенному оригиналу). В других вариантах осуществления, можно
оценивать параметры фильтра в неперестроенной области (когда реконструкция

Стр.: 40

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

происходит в неперестроенной области или подвергнутой обратному перестраиванию
по отношению к оригиналу).

Например, в зависимости от архитектуры внутриконтурного перестраивания,
варианты выбора и операции оптимизации внутриконтурного фильтра (ILFOPT) могут
быть описаны таблицами 14 и 15.

Таблица 14.Оптимизация внутриконтурнойфильтрации в архитектуре внутриконтурного
перестраивания только с внутрикадровым предсказанием и при внутриконтурном
гибридном перестраивании

Внутри кадраВнутри кадра

Сторона кодировщика:
Осуществляет прямое перестраивание исход-

Сторона кодировщика:
Использует уже перестроенное исходное изоб-

Вариант 1 выбора: оценивать и
выполнять контурнуюфильтрацию

ного изображения с внутрикадровымпредска-

ражение с внутрикадровым предсказанием в

(LF) в перестроенной области;

занием в качестве опорного сигнала LF
Осуществляет прямое перестраивание восста-

качестве опорного сигнала LF
Использует восстановленное изображение с

новленного изображения с межкадровым

внутрикадровым кодированием (в перестроен-

предсказанием
Оценивает параметры LF

Применяет LF к восстановленному изображе-

ной области) и опорный сигнал LF для оценки
параметров LF; два случая в зависимости от
положениямодуля LF по отношениюкмодулю

ниюсмежкадровымпредсказаниемвперестро-

обратного перестраивания (блока 265 и 270 на

енной области
Осуществляет обратное перестраивание всего

фиг. 2C):
если обратное перестраивание выполняется

восстановленного изображения с межкадро-

раньше LF, необходимо применять прямое пе-

вым предсказанием
Сохраняет в DPB
Сторона декодера:

Осуществляет прямое перестраивание восста-

рестраивание к восстановленному изображе-
нию с внутрикадровым предсказанием

если обратное перестраивание должно выпол-
няться после LF, использует непосредственно

новленного изображения с межкадровым

восстановленное изображение с внутрикадро-

предсказанием
Применяет LF к восстановленному изображе-

вым предсказанием
Применяет LF к восстановленному изображе-

ниюсмежкадровымпредсказаниемвперестро-

нию с внутрикадровым предсказанием в пере-

енной области
Осуществляет обратное перестраивание всего

строенной области
Осуществляет обратное перестраивание всего

восстановленного изображения с межкадро-

восстановленного изображения с внутрикадро-

вым предсказанием
Сохраняет в DPB

вым предсказанием
Сохраняет в DPB
Сторона декодера:

Применяет LF к восстановленному изображе-
нию с внутрикадровым предсказанием в пере-
строенной области; два случая в зависимости
от положения модуля LF по отношению к мо-
дулю обратного перестраивания (блока 265 и

270 на фиг. 2D):
если обратное перестраивание выполняется
раньше LF, необходимо осуществлять прямое
перестраивание восстановленногоизображения
с внутрикадровымпредсказанием до примене-

ния LF
если обратное перестраивание должно выпол-
няться после LF, применяет LFнепосредственно
к восстановленному изображению с внутрика-

дровым предсказанием
Осуществляет обратное перестраивание всего
восстановленного изображения с внутрикадро-

вым предсказанием
Сохраняет в DPB

(В точности традиционный рабочий процесс LF)
Сторона кодировщика:

Использует восстановленное изображение с

Сторона кодировщика:
Осуществляет обратное перестраивание исход-
ного изображения в качестве опорного сигнала

Вариант 2 выбора: оценивает или
выполняет LF в неперестроенной

области

межкадровым предсказанием и исходное

LF, если перестраивание на месте было выпол-

изображение в качестве опорного значения

нено над буфером исходного изображения; или

LF для оценки параметров LF
Применяет LF к восстановленному изображе-

выбирает неперестроенное исходное изображе-
ние в качестве опорного сигнала LF

Осуществляет обратное перестраивание восста-

нию с межкадровым предсказанием
Сохраняет в DPB
Сторона декодера:

Применяет LF к восстановленному изображе-

новленного изображения с внутрикадровым
предсказанием

Оценивает параметры LF
Осуществляет обратное перестраивание всего

нию с межкадровым предсказанием
Сохраняет в DPB

восстановленного изображения
Применяет LF к восстановленному изображе-

нию с внутрикадровым предсказанием
Сохраняет в DPB
Сторона декодера:

Осуществляет обратное перестраивание всего
восстановленного изображения

Применяет LF к восстановленному изображе-

Стр.: 41

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

нию с внутрикадровым предсказанием
Сохраняет в DPB

Таблица 15.Оптимизация внутриконтурнойфильтрации в архитектуре внутриконтурного
перестраивания для остаточных значений

С внутрикадровым предсказанием и межкадровым предсказанием
(такое же как операции с межкадровым предсказанием в таблице 14)

Внутриконтурное перестра-
ивание для остаточных зна-

чений

[0130] Несмотря на то, что большинство подробных обсуждений в материалах
настоящей заявки обращаются к способам, выполняемым над компонентой яркости,
специалист в данной области техники будет принимать во внимание, что аналогичные
способы могут выполняться в пределах цветовых компонентов цветности и связанных
с цветностью параметрах, таких как chromaQPOffset (например, смотрите справочный
материал [9]).

Внутриконтурное перестраивание и интересующие области (ROI)
[0131] При данном изображении, в качестве используемого в материалах настоящей

заявки, термин 'интересующая область' (ROI) обозначает область изображения, которая
считается особенно интересной. В этом разделе, представлены новейшие варианты
осуществления, которые поддерживают внутриконтурное перестраивание только для
интересующей области. То есть, в варианте осуществления, перестраивание может
применяться только внутри ROI и не применяться вне. В еще одном варианте
осуществления, можно применять разные кривые перестраивания в интересующей
области и вне интересующей области.

[0132] Использование ROI мотивировано необходимостью сохранять равновесие
битовой скорости и качества изображения. Например, рассмотрим
видеопоследовательность захода солнца. В верхней половине изображений, можно
получать солнце на небе относительно ровного цвета (так, пиксели на небесном фоне
могут иметь очень низкую изменчивость). В противоположность, нижняя половина
изображения может изображать движущиеся волны. С ракурса наблюдателя, верхняя
часть может считаться гораздо более важной, чем нижняя. С другой стороны,
движущиеся волны, вследствие высокой изменчивости их пикселей, труднее сжимать,
требуется большее количество битов на каждый пиксель; однако, можно пожелать
выделить большее количество битов на часть с солнцем, чем на часть с волнами. В этом
случае, верхняя половина могла бы быть обозначена как интересующая область.

Описание ROI
[0133] В наши дни, большинство кодеков (например, AVC, HEVC, и тому подобные)

основаны на блоках. Для упрощения реализации, можно задавать область в элементах
или блоках. Без ограничения, с использованием HEVC в качестве примера, область
может быть определена в виде множества элементов кодирования (CU) или узлов
кодового дерева (CTU). Можно задавать один ROI или многочисленные ROI.
Многочисленные ROI могут быть раздельными или перекрываться. ROI не обязательно
должныбыть прямоугольными.Синтаксис дляROIможет быть предусмотрен на любом
интересующем уровне, таком как уровень секции, уровень кадра, уровень видеопотока,
и тому подобного. В варианте осуществления, ROI задана первой в наборе параметров
последовательности (SPS). В таком случае, в заголовке секции можно предоставить
возможность небольших изменений ROI. Таблица 16 изображает пример синтаксиса,
где однаROI задана в качестве многочисленныхCTUвпрямоугольной области. Таблица
17 описывает синтаксис модифицированного ROI на уровне секции.

Таблица 16: Синтаксис SPS для ROI

Стр.: 42

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

DescriptorSPS() {
...

u(1)sps_reshaper_enable_flag
if (sps_reshaper_enable_flag) {

…..
u(1)sps_reshaper_active_ROI_flag

if (sps_reshaper_active_ROI_flag) {
ue(v)reshaper_active_ROI_in_CTUsize_left
ue(v)reshaper_active_ROI_in_CTUsize_right
ue(v)reshaper_active_ROI_in_CTUsize_top
ue(v)reshaper_active_ROI_in_CTUsize_bottom

}
}
….
}

Таблица 17: Синтаксис секции для ROI

Descriptorreshaping_sliceheader_table() {
...

if (sps_reshaper_active_ROI_flag) {
u(1)reshape_model_ROI_modification_flag

if (reshape_model_ROI_modification_flag) {
se(v)reshaper_ROI_mod_offset_left
se(v)reshaper_ROI_mod_offset_right
se(v)reshaper_ROI_mod_offset_top
se(v)reshaper_ROI_mod_offset_bottom

}
}
….
}

sps_reshaper_active_ROI_flag, равный 1, задает, что ROI существует в кодированной
видеопоследовательности (CVS). sps_reshaper_active_ROI_flag, равный 0, задает, что ROI
не существует в CVS.

Каждый из reshaper_active_ROI_in_CTUsize_left, reshaper_active_ROI_in_CTUsize_righ
t, reshaper_active_ROI_in_CTUsize_top и reshaper_active_ROI_in_CTUsize_bottom задает
отсчет кадров в ROI в показателях прямоугольной области, заданной в координатах
кадра. Координаты равны offset*CTUsize для левого верхнего угла и offset*CTUsize-1
для правого нижнего угла.

reshape_model_ROI_modification_flag, равный 1, задает, что ROI модифицируется в
текущей секции. reshape_model_ROI_modification_flag, равный 0, задает, что ROI не
модифицируется в текущей секции.

Каждый из reshaper_ROI_mod_offset_left, reshaper_ROI_mod_offset_right,
reshaper_ROI_mod_offset_top и reshaper_ROI_mod_offset_bottom задает значение сдвига
влево/вправо/вверх/вниз от reshaper_active_ROI_in_CTUsize_left, reshaper_active_ROI_in
_CTUsize_right, reshaper_active_ROI_in_CTUsize_top и reshaper_active_ROI_in_CTUsize_b
ottom.

Что касается многочисленных ROI, примерный синтаксис по таблицам 16 и 17 для
одиночной ROI мог бы быть расширен с использованием индекса (или идентификатора)
для каждой ROI, аналогично схеме, используемой в HEVC для определения, с
использованием сообщений SEI, многочисленных прямоугольников панорамирования
и сканирования (смотрите технические условияHEVC, справочныйматериал [11], раздел
D.2.4).

Стр.: 43

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

Обработка ROI при внутриконтурном перестраивании только с внутрикадровым
предсказанием

Что касается перестраивания только с внутрикадровым предсказанием, сначала
перестраивается часть ROI кадра, затем применяется кодирование. Так как
перестраивание применяется только кROI, могла быбыть видна границамежду частями
кадра с ROI и без ROI. Поскольку контурный фильтр (например, 270 на фиг. 2C или
фиг. 2D) может проходить по границам, особое внимание должно быть уделено для
ROI применительно к оптимизации контурного фильтра (ILFOPT). В варианте
осуществления, предполагается, что контурный фильтр применяется только там, где
весь декодированный кадр находится в одной и той же области. То есть, весь кадр
полностью находится в перестроенной области, либо полностью находится в
неперестроенной области. В одном из вариантов осуществления, на стороне декодера,
если контурная фильтрация применяется в неперестроенной области, сначала будет
применяться обратное перестраивание к секции ROI декодированного кадра, а затем
применяться контурный фильтр. Затем, декодированный кадр сохраняется в DPB. В
еще одном варианте осуществления, если контурный фильтр применяется к
перестроенной области, сначала будет применяться перестраивание к части без ROI
декодированного кадра, затем применяться контурный фильтра, а затем обратное
перестраивание всего кадра. Затем, декодированный кадр сохраняется в DPB. В еще
одном другом варианте осуществления, если контурная фильтрация применяется в
перестроенной области, сначала можно осуществлять обратное перестраивание части
ROI декодированного кадра, затем перестроить весь кадр, затем применять контурный
фильтр, затем осуществлять обратное перестраивание всего кадра. Затем,
декодированный кадр сохраняется вDPB. Три подхода обобщены в таблице 18. С точки
зрения вычислений, способ «A» является более простым. В варианте осуществления,
задействование ROI может использоваться для задания порядка выполнения обратного
перестраивания по отношению к контурной фильтрации (LF). Например, если ROI
активно используется (например, флаг синтаксиса SPS=истина), то LF (блок 270 на фиг.
2C и фиг. 2D) выполняется после обратного перестраивания (блок 265 на фиг. 2C и фиг.
2D). ЕслиROI активно не используется, то LF выполняется до обратного перестраивания.

Таблица 18. Варианты контурной фильтрации (LF) с использованием ROI

Способ CСпособ BСпособ A
Осуществить обратное перестраивание

ROI декодированного кадра
Перестроить весь кадр

Применить LF ко всему кадру
Осуществить обратное перестраивание

Применить перестраивание к не связан-
ной с ROI част декодированного кадра.

Применить LF ко всему кадру
Осуществить обратное перестраивание

всего кадра
Сохраняет в DPB

Осуществить обратное перестраивание
ROI декодированного кадра

Применить контурнуюфильтрацию (LF)
ко всему кадру
Сохраняет в DPB всего кадра

Сохраняет в DPB

Обработка ROI при внутриконтурном перестраивании остаточных значений
предсказания

[0134]Применительно к архитектуре внутриконтурного перестраивания остаточных
значений (предсказания) (например, смотрите 200C_D на фиг. 2F), в декодере, с
использованием уравнения (3), обработка может быть выражена в виде:

Если (currentCTU принадлежит ROI),
Reco_sample= Inv(Res_d+Fwd(Pred_sample)), (смотрите уравнение (3))
иначе
Reco_sample= Res_d+Pred_sample
конец
ROI и соображения касательно кодировщика

Стр.: 44

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

[0135] В кодировщике, необходимо, чтобы каждый CTU проверялся, принадлежит
ли он ROI или нет. Например, применительно к внутриконтурному перестраиванию
остаточных значений предсказания, на основе уравнения (3), может выполняться
простая проверка:

Если (currentCTU принадлежит ROI),
применять взвешенное искажение в RDO применительно к яркости. Вес выводится

на основе уравнения (10).
иначе
применять невзвешенное искажение в RDO применительно к яркости.
конец
[0136] Примерный рабочий процесс кодирования, который принимает во внимание

ROI во время перестраивания, может содержать следующие этапы:
Для кадра с внутрикадровым предсказанием:
Применить прямое перестраивание к зоне ROI исходного кадра
Кодировать кадр с внутрикадровым предсказанием
Применить обратное перестраивание к зоне ROI восстановленного кадра до

контурного фильтра (LF).
Выполнить контурнуюфильтрацию в неперестроенной области, как изложено ниже

(например, смотрите способ «C» в таблице 18), что включает в себя следующие этапы:
Применить прямое перестраивание к зоне без ROI исходного кадра (для того чтобы

сделать весь исходный кадр перестроеннымдля опорного сигнала контурногофильтра)
Применить прямое перестраивание ко всей площади изображения восстановленного

кадра
Вывести параметры контурного фильтра и применить контурную фильтрацию
Применитьобратноеперестраивание ко всейплощадиизображения восстановленного

кадра и сохранить в DPB
На стороне кодировщика, поскольку необходимо, чтобыLF имел несжатое опорное

изображение для оценки параметров фильтра, обработка опорного сигнала LF для
каждого способа является такой, как в таблице 19:

Таблица 19. Обработка опорного изображения LF касательно ROI

Способ CСпособ BСпособ A
Применятьперестраивание по всему (как
на части без ROI, так и на части ROI)

Применятьперестраиваниепо всему (как
на части без ROI, так и на части ROI)Использовать неперестроенный исход-

ный входной кадр для опорного значе- исходному входному кадру для опорно-исходному входному кадру для опорно-ния LF; го значения LF;го значения LF;

Что касается кадра с межкадровым предсказанием:
При кодировании кадра с межкадровым предсказанием, что касается каждого CU

внутриROI, применить перестраивание остаточных значений предсказания и взвешенное
искажение по яркости; для каждого CU вне ROI, не применять никакого перестраивания

Оптимизация контурной фильтрации (вариант 1 выбора) выполняется как раньше
(как если бы ROI не использовалась):

Осуществить прямое перестраивание всей площади изображения исходного кадра
Осуществить прямое перестраивание всей площади изображения восстановленного

кадра
Вывести параметры контурного фильтра и применить контурную фильтрацию
Применитьобратноеперестраивание ко всейплощадиизображения восстановленного

кадра и сохранить в DPB
Перестраивание кодированного с помощью HLG контента
[0137] Термин HybridLog-Gamma или HLG обозначает еще одну передаточную

Стр.: 45

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

функцию, определеннуювпротоколеBT. 2100 для отображения сигналов с расширенным
динамическим диапазоном. HLG был разработан, чтобы поддерживать обратную
совместимость с традиционными сигналами со стандартнымдинамическимдиапазоном,
кодированными с использованием традиционной функции степени контрастности. При
сравнении классификации кодовой комбинацией между кодированным с помощью PQ
контентом и кодированным с помощью HLG контентом, отображение PQ имеет
тенденцию выделять больше кодовых комбинаций в темных и ярких зонах, тогда как
большинство контента HLG оказывается распределенным в средний диапазон. Два
подхода могут использоваться для перестраивания яркостиHLG. В одном из вариантов
осуществления, можно просто преобразовывать контент HLG в контент PQ, а затем,
применять все связанные с PQ технологии перестраивания, обсужденные ранее.
Например, могли бы применяться следующие этапы:

1) Отобразить яркость HLG (например, Y) в яркость PQ. Пусть функция или LUT
преобразования будет обозначена как HLG2PQLUT(Y)

2) Анализировать значения яркости PQ и вывести основанную на PQ функцию или
LUT прямого перестраивания. Обозначим ее как PQAdpFLUT(Y)

3) Объединить две функции или LUT в единую функцию или LUT: HLGAdpFLUT[i]=
PQAdpFLUT[HLG2PQLUT[i]].

[0138] Поскольку классификация кодовой комбинацией HLG совершенно не такая
как классификация кодовой комбинацией PQ, такой подход может давать
субоптимальные результаты перестраивания. В еще одном варианте осуществления,
функция перестраивания HLG выводится непосредственно из отсчетов HLG. Можно
применять такую же инфраструктуру, как используется для сигналов PQ, но изменить
таблицу CW_Bins_Dft, чтобы отражала характеристики сигнала HLG. В варианте
осуществления, с использованием профиля средних тонов для сигналовHLG, несколько
таблицCW_Bins_Dft конструируются согласно предпочтениямпользователя.Например,
когда предпочтительно сохранять яркие участки изображения, для альфа=1,4,

g_DftHLGCWBin0={ 8, 14, 17, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36,
37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 44, 30 }.

Когда предпочтительно сохранять средние тоны (или средний диапазон):
g_DftHLGCWBin1= { 12, 16, 16, 20, 24, 28, 32, 32, 32, 32, 36, 36, 40, 44, 48, 52, 56, 52, 48,

44, 40, 36, 36, 32, 32, 32, 26, 26, 20, 16, 16, 12 }.
Когда предпочтительно сохранять цвет кожи:
g_DftHLGCWBin2= {12, 16, 16, 24, 28, 32, 56, 64, 64, 64, 64, 56, 48, 40, 32, 32, 32, 32, 32,

32, 28, 28, 24, 24, 20, 20, 20, 20, 20, 16, 16, 12};
[0139] С точки зрения синтаксиса битового потока, для проведения различия между

основанным на PQ и HLG перестраиванием, добавлен новый параметр, обозначенный
как sps_reshaper_signal_type, где значение sps_reshaper_signal_type указывает тип сигнала,
который перестраивался (например, 0 для основанных на степени контрастности
сигналов SDR, 1 для кодированных с помощью PQ сигналов, а 2 для кодированных с
помощью HLG сигналов).

[0140]Примеры таблиц синтаксиса для перестраиванияHDR в SPS и заголовке секции
как для PQ, так и для HLG, со всеми признаками, обсужденными ранее (например, ROI,
оптимизацией внутриконтурного фильтра (ILFOPT), и ChromaDQPAdjustment), показаны
в таблицах 20 и 21.

Таблица 20: Пример синтаксиса SPS для перестраивания

DescriptorSPS()
……

Стр.: 46

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

u(1)sps_reshaper_enable_flag /*1: перестраивание включено, иначе отключено */
if (sps_reshaper_enable_flag) {

u(1)sps_reshaper_adaptive_flag /* 1: адаптивное перестраивание включено, иначе выключено */
u(2)sps_reshaper_signal_type /* например: 0: SDR, 1:PQ, 2: HLG */
u(1)sps_in_loop_filter_opt_flag /* флаг ILFOPT */
u(1)sps_luma_based_chroma_qp_offset_flag /* флаг chromaDQPAjustment */
u(1)sps_reshaper_active_ROI_flag

if (sps_reshaper_active_ROI_flag) {
ue(v)reshaper_active_ROI_in_CTUsize_left
ue(v)reshaper_active_ROI_in_CTUsize_right
ue(v)reshaper_active_ROI_in_CTUsize_top
ue(v)reshaper_active_ROI_in_CTUsize_bottom

}
}

sps_in_loop_filter_opt_flag, равный 1, задает, что оптимизация внутриконтурного
фильтра должна выполняться в перестроенной области в кодированной
видеопоследовательности (CVS). sps_in_loop_filter_opt_flag, равный 0, задает, что
оптимизация внутриконтурного фильтра должна выполняться в неперестроенной
области в CVS.

sps_luma_based_chroma_qp_offset_flag, равный 1, задает, что основанный на яркости
сдвиг QP цветности выводится (например, согласно таблице 11 или 12) и применяется
к кодированиюцветности каждогоCUв кодированной видеопоследовательности (CVS).
sps_luma_based_chroma_qp_offset_flag, равный 0, задает, что основанный на яркости
сдвиг QP цветности, не активирован в CVS.

Таблица 21: Примерный синтаксис для перестраивания на уровне секции

Descriptorreshaping_sliceheader_table_model() {
ue(v)reshape_model_profile_type
u(2)reshape_model_scale_idx
u(5)reshape_model_min_bin_idx
u(5)reshape_model_max_bin_idx
u(4)reshape_model_num_band

for (i=0; i < reshape_model_num_band; i++) {
u(1)reshape_model_band_profile_delta [i]

}
if (sps_reshaper_active_ROI_flag) {

u(1)reshape_model_ROI_modification_flag
if (reshape_model_ROI_modification_flag) {

se(v)reshaper_ROI_mod_offset_left
se(v)reshaper_ROI_mod_offset_right
se(v)reshaper_ROI_mod_offset_top
se(v)reshaper_ROI_mod_offset_bottom

}
}
}

Улучшение качества цветности
[0141] Сторонники основанного на HLG кодирования утверждают, что оно дает

лучшую обратную совместимость с сигнализацией SDR. Поэтому, теоретически,
основанные на HLG сигналы могли бы применять такие же настройки кодирования,
как унаследованные сигналы SDR. Но, при просмотре кодированных с помощью HLG
сигналов в режиме HDR, по-прежнему могут наблюдаться некоторые цветные
артефакты, особенно в бесцветных областях (таких как белого и серого цвета). В

Стр.: 47

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

варианте осуществления, такие артефактымогутбытьослабленыпосредствомкоррекции
значений chromaQPOffset во время кодирования. Предполагается, что, для контента
HLG, применяется менее агрессивная корректировка chromaQP, чем та, что используется
при кодировании сигналов PQ. Например, в справочном материале [10], модель для
назначения сдвигов QP для Cb и Cr на основе яркости QP и коэффициента, основанного
на основных цветах видеоввода и представления, описана в виде:

, (18a)

, (18b)
где ccb=1, если основные цвета видеоввода идентичны основным цветам

представления, ccb=1,0, если основные цвета видеоввода равны основным цветам P3D65,
и основные цвета представления равны основным цветам протокола BT.2020 ITU-R, и
ccb=1,14, если основные цвета видеоввода равны основным цветам протокола BT.709
ITU-R, а основные цвета представления равны основным цветам протокола BT.2020
ITU-R.Подобнымобразом, ccb=1, если основные цвета видеоввода идентичныосновным
цветам представления, ccb=1,0, если основные цвета видеоввода равныосновным цветам
P3D65, и основные цвета представления равны основным цветам протокола BT.2020
ITU-R, и ccb=1,78, если основные цвета видеоввода равны основным цветам протокола
BT.709 ITU-R, а основные цвета представления равны основным цветам протокола
BT.2020 ITU-R. В заключение, и .

[0142] В варианте осуществления, предложено использовать ту же самую модель,
но с другими параметрами, которые дают менее агрессивное изменение chromaQPOffset.
Например, без ограничения, в варианте осуществления, применительно кCb в уравнении
(18a), ccb=1, k=-0,2, и l=7, а применительно к Cr в уравнении (18b), ccr=1, k=-0,2, и l=7.
Фиг. 6A и фиг. 6B изображают примеры того, как изменяются значения chromaQPOffset
согласно параметру (QP) квантования яркости для PQ (протокол 709) иHLG.Связанные
с PQ значения изменяются значительнее, чем связанные с HLG значения. Фиг. 6A
соответствует Cb (уравнение (18a)), тогда как фиг. 6B соответствует Cr (уравнение (18b)).

Библиографический список
Каждый из справочныхматериалов, перечисленных в материалах настоящей заявки,

включен в состав посредством ссылки во всей своей полноте.
[1] Заявка PCT под номером PCT/US2016/025082, In-Loop Block-Based Image Reshaping

in High Dynamic Range Video Coding (Внутриконтурное основанное на блоках
перестраивание изображения при кодировании видео с расширенным динамическим
диапазоном), поданная 30 марта 2016 года, также опубликованная какWO2016/164235,
на Г-М Су.

[2] Д. Бэйлон, З. Гу, А. Лютра, К. Майну, П. Инь, Ф. Пу, Т. Лю, Т. Чен, В. Хьюсак,
И. Хе, Л. Керовски, И. Йе, Б. И, «Response to Call for Evidence for HDR and WCG Video
Coding: Arris, Dolby and InterDigital» («Ответ на требование данных касательно
кодирования видеосигнала HDR и WCG: Arris, Dolby и InterDigital»), документ m36264,
июль (2015), Варшава, Польша.

[3] Заявка 15/410,563 на выдачу патента США, Content-Adaptive Reshaping for High
Codeword representation Images (Адаптирующееся к контенту перестраивание изображений
в представлении большой кодовой комбинацией), поданная 19 января 2017 года Т. Лю
и другими.

[4] Заявка PCT под номером PCT/US2016/042229, Signal Reshaping and Coding for HDR
andWide Color Gamut Signals (Перестраивание и кодирование сигнала для сигналовHDR

Стр.: 48

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

и широкой цветовой гаммы), поданная 14 июля 2016 года, также опубликованная как
WO 2017/011636, П. Инем и другими.

[5] «Exploratory TestModel for HDR extension of HEVC» («Экспериментальный опытный
образец для расширенияHDR extension в HEVC»),К.Мину и другие, выходной документ
MPEG, JCTVC-W0092 (m37732), 2016 год, Сан-Диего, США.

[6] Е. Франкойс, Дж. Соул, ДжШтрем, П. Инь, «Common Test Conditions for HDR/
WCG video coding experiments» («Общие режимы испытания для экспериментов с
кодированием видеосигналаHDR/WCG»), документ Z1020 JCTVC,Женева, январь 2017
года.

[7] А. Сегал, Е.Франкойс иД. Русановский, «JVET common test conditions and evaluation
procedures for HDR/WCG Video» («Общие режимы испытания и процедуры оценки JVET
для видеосигнала HDR/WCG»), JVET-E1020, конференция ITU-T, Женева, январь 2017
года.

[8] Программное обеспечение JEM 6.0: https://jvet.hhi.fraunhofer.de/svn/
svn_HMJEMSoftware/tags/HM-16.6-JEM-6.0

[9] Предварительная заявка на выдачу патентаСШАпод порядковым№62/406,483,
поданная 11 октября 2016 года, «Adaptive ChromaQuantization in Video Coding forMultiple
Color Imaging Formats» («Адптивное квантование цветности при кодировании
видеосигнала для многочисленныхформаторвформирования цветного изображения»),
Т.Люидругие, также поданнуюв виде заявки на выдачу патентаСШАподпорядковым
номером 15/728,939, опубликованной в качестве публикации US 2018/0103253 заявки
на выдачу патента США.

[10] Дж. Самюельсон и другие (Эдз), «Conversion and coding practices for HDR/WCG
Y'CbCr 4:2:0 Video with PQ Transfer Characteristics» («Инструкции по преобразованию и
кодированию для видеосигнала HDR/WCG Y'CbCr 4:2:0 с характеристиками передачи
PQ») JCTVC-Y1017, конференция ITU-T/ISO, Ченду, октябрь 2016 года.

[11] ITU-T H.265, «High efficiency video coding» («Высокоэффективное кодирование
видеосигнала») ITU, версия 4.0, (12/2016).

Примерная реализация компьютерной системы
[0143] Варианты осуществления настоящего изобретения могут быть реализованы

компьютерной системой, системами, сконфигурированными в электронной схеме и
компонентах, устройством на интегральных схемах (ИС, IC), такими как
микроконтроллер, программируемая пользователем вентильная матрица (FPGA) или
другое конфигурируемое или программируемое логическое устройство (PLD), процессор
дискретного времени или сигнальный процессор (DSP), специализированнаяИС (ASIC),
и/или устройством, которое включает в себя одно или более из таких систем, устройств
или компонентов. Компьютер и/или ИС могут выполнять, управлять или приводить в
исполнение команды, относящиеся к совместному перестраиванию и кодированию
сигналов изображений, таким как описанные в материалах настоящей заявки.
Компьютер и/или ИС может вычислять любой из многообразия параметров или
значений, которые относятся к процессам перестраивания и кодирования сигналов,
описанным в материалах настоящей заявки. Варианты осуществления изображения и
видеосигнала могут быть реализованы в аппаратных средствах, программном
обеспечении, программно-аппаратных средствах и различных их комбинациях.

[0144] Некоторые реализации изобретения содержат компьютерные процессоры,
которые исполняют команды программного обеспечения, которые побуждают
процессоры выполнять способ по изобретению.Например, один или более процессоров
в устройстве отображения, кодировщике, телевизионной абонентской приставке,

Стр.: 49

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

транскодере, или тому подобном, могут реализовывать способы, имеющие отношение
к перестраиванию и кодированию сигналов изображений, как описано выше, приводя
в исполнение команды программного обеспечения в памяти программ, доступной
процессорам. Изобретение также может быть предоставлено в форме программного
продукта. Программный продукт может содержать любой долговременный носитель,
которыйнесет набормашиночитаемых сигналов, содержащих команды, которые, когда
исполняются процессором данных, побуждают процессор данных исполнять способ
по изобретению. Программные продукты согласно изобретению могут быть в любом
широком многообразии форм. Программный продукт, например, может содержать
физические носители, такие как магнитные запоминающие носители данных, в том
числе, гибкие диски, накопители нажестком диске, оптические запоминающие носители
данных, в том числе, CD-ROM (ПЗУ на компакт-диске), DVD (цифровые
многофункциональные диски, электронные запоминающие носители данных, в том
числе, ПЗУ (постоянные запоминающие носители, ROM), ОЗУ (оперативное
запоминающее устройство, RAM) на флэш-памяти, или тому подобное.
Машиночитаемый сигналы в программномпродукте по выборумогут быть сжаты или
зашифрованы.

[0145] В тех случаях, когда компонент (например, модуль программного обеспечения,
процессор, узел, устройство, схема, и т. д.) упоминается выше, если не указано иное,
ссылка на такой компонент (в том числе, ссылка на «средство») должна
интерпретироваться в качестве включающей в себя, в виде эквивалентов такого
компонента, любой компонент, который выполняет функцию описанного компонента
(например, который являетсяфункционально эквивалентным), в томчисле, компоненты,
которые конструктивно не эквивалентны раскрытой конструкции, которая выполняет
функцию в проиллюстрированных примерных вариантах осуществления изобретения.

Эквиваленты, расширения, альтернативные варианты и прочее
[0146] Таким образом, описаны примерные варианты осуществления, которые

относятся к действенному совместному перестраиванию и кодированию сигнала
изображений. В вышеизложенном описании изобретения, варианты осуществления
настоящего изобретения были описаны со ссылкой на многочисленные конкретные
детали, которые могут меняться от реализации к реализации. Таким образом,
единственным и исключительным признаком того, что является изобретением и
подразумевается изобретением заявителями, является набор пунктов формулы
изобретения, которыми кончается данная заявка, в конкретной форме, в которой
публикуется такая формула изобретения, в том числе, любые последующие правки.
Любые определения, изложенные в материалах настоящей заявки в прямой форме,
применительно к терминам, содержащимся в таких пунктах формулы изобретения,
будут обуславливать смысл таких терминов, как используемые в формуле изобретения.
Отсюда, никакие ограничения, элементы, свойства, признаки, преимущества или
свойства, которые не упомянуты в пункте формулы изобретения в прямой форме, ни
коим образом не будут ограничивать объем такого пункта формулы изобретения.
Описание изобретения и чертежи, соответственно, должны рассматриваться в скорее
в иллюстративном, чем ограничительном смысле.

(57) Формула изобретения
1. Способ декодирования, с помощью процессора, кодированного битового потока

для формирования выходного изображения, при этом способ содержит этапы, на
которых:

Стр.: 50

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

принимают кодированный битовый поток, содержащий параметры отображения
для отображения кодированных пикселей из перестроенного представления кодовой
комбинацией в выходное представление кодовой комбинацией;

осуществляют доступ к кодированному изображению в кодированном битовом
потоке посредством пикселей в перестроенном представлении кодовой комбинацией;

извлекают упомянутые параметры отображения, чтобы сформировать функцию
прямого перестраивания, причемфункция прямого перестраивания отображает пиксели
из выходного представления кодовой комбинацией в перестроенное представление
кодовойкомбинацией, ифункциюобратногоперестраивания, причемфункцияобратного
перестраивания отображает пиксели из перестроенного представления кодовой
комбинацией в выходное представление кодовой комбинацией; и

декодируюткодированное изображение, чтобы сформировать выходное изображение
в выходном представлении кодовой комбинацией, при этом декодирование
кодированного изображения содержит этапы, на которых:

для области кодированного изображения,
формируют декодированную область остаточных значений в перестроенном

представлении кодовой комбинацией,
формируют предсказанную область на основе пикселей в буфере опорных пикселей

в выходном представлении кодовой комбинацией,
формируют область восстановленных пикселей в перестроенном представлении

кодовой комбинацией на основе декодированной области остаточных значений,
предсказанной области и функции прямого перестраивания и

формируют первую выходную область в выходном представлении кодовой
комбинацией на основе области восстановленных пикселей и функции обратного
перестраивания.

2. Способ по п.1, в котором формирование области восстановленных пикселей
содержит этап, на котором вычисляют

Rec_sample = Res_d + Fwd(Pred_sample),
где Rec_sample обозначает пиксель из области восстановленных пикселей, Res_d

обозначает пиксель из декодированной области остаточных значений, Pred_sample
обозначает пиксель из предсказанной области, и Fwd() обозначает функцию прямого
перестраивания.

3. Способ по п.2, в которомформирование первой выходной области содержит этап,
на котором вычисляют

Reco_sample = Inv(Rec_sample),
где Reco_sample обозначает пиксель из первой выходной области, и Inv() обозначает

функцию обратного перестраивания.
4. Способ по п.1, дополнительно содержащий этап, на котором формируют

фильтрованную область выходных пикселей выходного изображения посредством
применения внутриконтурной фильтрации к пикселям первой выходной области.

5. Способ по п.1, в котором параметры отображения содержат:
флаг, указывающий, активировано ли перестраивание в кодированном битовом

потоке,
один или более флагов, указывающих, активировано ли перестраивание для

конкретной кодированной области кодированного изображения,
флаг, указывающий, активирована ли коррекция цветности в кодированном битовом

потоке, и
набор синтаксических элементов, представляющихфункциюпрямогоперестраивания.

Стр.: 51

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

6. Способ по п.5, в котором упомянутый набор синтаксических элементов,
представляющихфункциюпрямого перестраивания, содержит значение минимального
индекса элемента разрешения и значение максимального индекса элемента разрешения.

7. Способ по п.1, дополнительно содержащий этап, на котором применяют
масштабный коэффициент к значениям цветности пикселей декодированной области
остаточных значений.

8. Способ по п.7, в котором масштабный коэффициент основывается на функции
прямого перестраивания и параметре, относящемся к яркости.

9.Устройство для декодированияперестроенныхизображений, содержащеепроцессор
и выполненное с возможностью осуществления любого одного из способов согласно
пп.1-8.

10. Долговременный машиночитаемый носитель для декодирования перестроенных
изображений, на котором сохранены машиноисполняемые команды для выполнения
способа в соответствии с любым из пп.1-8.

Стр.: 52

RU 2 746 981 C2

5

10

15

20

25

30

35

40

45

1

2

Стр.: 53

RU 2 746 981 C2

3

Стр.: 54

RU 2 746 981 C2

4

Стр.: 55

RU 2 746 981 C2

5

Стр.: 56

RU 2 746 981 C2

6

Стр.: 57

RU 2 746 981 C2

7

Стр.: 58

RU 2 746 981 C2

8

Стр.: 59

RU 2 746 981 C2

9

Стр.: 60

RU 2 746 981 C2

10

Стр.: 61

RU 2 746 981 C2

11

Стр.: 62

RU 2 746 981 C2

12

Стр.: 63

RU 2 746 981 C2

13

Стр.: 64

RU 2 746 981 C2

14

Стр.: 65

RU 2 746 981 C2

15

Стр.: 66

RU 2 746 981 C2

16

Стр.: 67

RU 2 746 981 C2

17

Стр.: 68

RU 2 746 981 C2

18

Стр.: 69

RU 2 746 981 C2

19

Стр.: 70

RU 2 746 981 C2

20

Стр.: 71

RU 2 746 981 C2

Стр.: 72

RU 2 746 981 C2

	Биб.поля
	Реферат
	Bibliography
	Abstract
	Описание
	Формула
	Чертежи

