US008166466B2

a2z United States Patent (10) Patent No.: US 8,166,466 B2
Mohanan et al. (45) Date of Patent: Apr. 24, 2012
(54) FUNCTION MATCHING IN BINARIES 7,065,759 B2* 6/2006 Hank 717/156
2004/0154009 Al* 82004 Reynaud 717/155
N :
(75) Inventors: Harish Mohanan, Hyderabad (IN); 2005/0060696 AL* ~3/2005 Bicsak etal. oo 7171156
Perraju Bendapudi, Hyderabad (IN); OTHER PUBLICATIONS
AbIShel.{ Kumar&fsubramanlan, Wengzel, et al. “Automatic Timing Model Generation by CFG Parti-
Chennai (IN); Rajesh Jalan, Hyderabad tioning and Model Checking”, 2005, IEEE, p. 1-6.*
(IN); Ramarathnam Venkatesan, Dullien et al., “Graph-based comparison of Executable Objects”, pp.
Redmond, WA (US) 1-13 , Ruhr-Universitaet Bochum.
Srivastava et al., “Effectively Prioritizing Tests in Development Envi-
(73) Assignee: Microsoft Corporation, Redmond, WA ronment” ACM Press, 2002, pp. 97-106.))
US) Raghavan et al., “Dex: A Semantic-Graph Differencing Tool for
Studying Changes in Large Code Bases”, IEEE, Sep. 11-14, 2004,
. pp. 10.
(*) Notice: SubJeCt, to any dlSCIalmer’, the term of this Zhang et al., “Matching Execution Histories of Program Versions”,
patent is extended or adjusted under 35 ACM Press, 2005, pp. 197-206.
U.S.C. 154(b) by 1341 days. Sinha et al., “GRAPHDIFF: Matching and Patching Program Bina-
ries”, pp. 11 , Rockefeller University.
(21) Appl. No.: 11/767,364 Wang et al.; “BMAT—A Binary Matching Tool for Stale Profile
Propagation”, vol. 2, Morgan Kaufmann Publishers, 2000, pp. 1-20.
22) Filed: Jun. 22,2007
22) ’ * cited by examiner
(65) Prior Publication Data . .
Primary Examiner — Qamrun Nahar
US 2008/0320056 Al Dec. 25, 2008 (74) Attorney, Agent, or Firm —Zete Law, PL.L.C.;
(51) Int.Cl MacLane C. Key
nt. CL.
GO6F 9/45 (2006.01) (57) ABSTRACT
(52) US.CL ... 717/144; 717/136; 717/140; 717/141 . L . .
. . . Which target functions in a target binary have target function
(58) Field of Classification Search 717/144,
T17/136. 140. 141 basic blocks that match the source function basic blocks in a
g lication file f et i t’ ’ source function in a source binary is determined. For the
c¢ applcation liie for complete search hustory. target functions having matching target function basic blocks,
(56) References Cited atarget function control flow graph is determined that has the

U.S. PATENT DOCUMENTS

greatest control flow matching strength to a source function
control flow graph, wherein a node in the source function
control graph represents a source function basic block,

5,978,588 A * 11/1999 Wallaceccooovnnnnn 717/159 . . .
533,580 Bl 52001 Balcha et al wherein a node in a target function control graph represents a
6: 594:822 Bl 7/2003 Schweitz et al. target function basic block in a corresponding target function.
6,925,467 B2 8/2005 Guetal.
7,058,941 B1* 6/2006 Venkatesanetal. 717/168 18 Claims, 6 Drawing Sheets
SOURCE TARGET
BINARY BINARY THRESHOLD
102 104 108
CONTROL FLOW BASIC BLOCK
MATCHING TOOL MATCHING TOOL
m 12
100
MATCH
RESULT

120

U.S. Patent Apr. 24,2012 Sheet 1 of 6 US 8,166,466 B2

SOURCE TARGET
BINARY BINARY THRESHOLD
102 104 106
v v
CONTROL FLOW BASIC BLOCK

MATCHING TOOL pe—— > MATCHING TOOL
110 12

100

h 4

MATCH
RESULT
120

FIG. 1

US 8,166,466 B2

Sheet 2 of 6

Apr. 24,2012

U.S. Patent

¢ 'Old

00¢

91 ™~

940 NOILONNA LIOHVL J04 HLIONIHLS
ONIHOLVYIN MOT4 TOY.LNOD J1VHINID

vl ™

SNOILONNA
139dv1 ANV 304N0OS N33mL34
SHAYYO MO14 TOHLNOD HOLVYI

y

NOILONNA L1394V1 ONIHOLYIN LNdLNO

A

HLONIHLS
ONIHOLYA MOT4 TOHLNOD 1S31VIHO
HLIM NOILONNA 139¥VL ININGFL3a

7'y
ON

¢SNOILONNS L3OYYL FHON
(1]¥4

NOILONNA 1324YL Q4vo3usId

S3A

S3A

< 5
80¢ ON
¢{HOLVIN S3AON
90¢ y §
SNOILONNS L3D4VL TV

d04 SHAVHO MOT4 TOHLNOD J1VHINTD

A

20¢ ™~

NOILONNAH 334N0S N3AID
HO4 HAYID MOT4 TOHLNOD F1VHINTO

U.S. Patent Apr. 24, 2012 Sheet 3 of 6 US 8,166,466 B2

SOURCE
FUNCTION
CFG
300

TARGET
FUNCTION
CFG
310

FIG. 3

U.S. Patent

Apr. 24,2012

Sheet 4 of 6

PERFORM HASH-BASED MATCHING |~ 402

PERFORM CONTROL FLOW-BASED

MATCHING ON ANY REMAINING |\ 404

UNMATCHED BLOCKS

h 4

INDICATE MATCHING QUALITY OF

THE BASIC BLOCKS N\ 406
400
SOURCE TARGET MATCH
BLOCK BLOCK QUALITY
S1 T 3
S2 T2 3
S3 T4 1
S4 T3 CF
S5 T5 1

500

US 8,166,466 B2

FIG. 4

FIG. 5

U.S. Patent

A

Apr. 24,2012

RECEIVE MATCHED NODES (I.E.,
BASIC BLOCKS)

Sheet 5 of 6

N\ 602

A

SET NEIGHBORHOOD DISTANCE d

~ 604

FOR UNMATCHED NODES AT THE
SOURCE AND TARGET, CONSTRUCT
A DISTANCE d NEIGHBORHOOD

™\ 606

AUGMENT THE NEIGHBORHOODS
WITH A RANDOM PATH

N\ 608

IF THEIR NEIGHBORHOODS HAVE A
COMPLETE BIPARTITE MATCH,
THEN MATCH THE TWO NODES AND
SET THE MATCH INDEX FOR THE
TARGET NODE

™\~ 610

A
FOR EACH NEWLY MATCHED NODE,
IF THE MATCHED NODE’S
IMMEDIATE NEIGHBORS MATCH,
THEN SET THE MATCH INDICES FOR
THE NEIGHBORS

N\ 614

A

MARK THE NEWLY MATCHED
NODES AND ANY MATCHING
NEIGHBORS AS MATCHED

. 616

FIG. 6

600

620

AT MINIMUM DISTANCE &?

618

YES

v ’

MATCH ANY UNMATCHED NODES
TO THEIR CLOSEST MATCH AND
SET MATCH INDEX OF UNMATCHED
TARGET NODES

y

62274

OUTPUT SUM OF MATCH INDICES
OF ALL NODES IN TARGET
FUNCTION CFG

US 8,166,466 B2

U.S. Patent Apr. 24, 2012 Sheet 6 of 6 US 8,166,466 B2

COMPUTING DEVICE 700

706
|' _________________ S__'l
! l
i | STORAGE 708
) |
|
I PROCESSING |
| UNIT 702 i OUTPUT DEVICE(S) 716
|
| I
! l
i | INPUT DEVICE(S) 714
| MEMORY 704 |
| |
| | COMMUNICATION
i | CONNECTION(S) 712
| |

COMPUTING
DEVICE 730

FIG. 7

US 8,166,466 B2

1
FUNCTION MATCHING IN BINARIES

BACKGROUND

Functions in two separate binaries may match syntactically
and/or semantically. Discovering whether functions in bina-
ries match has various applications. Example applications
include code plagiarism identification and test prioritization.
In the case of test prioritization, if two functions (e.g., an old
version and a new version) are very closely matched, then
fewer test cases may be needed in order to test the new version
of the function. The test cases may be targeted at the differ-
ential code of the new version with respect to the old version.

SUMMARY

The following presents a simplified summary of the dis-
closure in order to provide a basic understanding to the reader.
This summary is not an extensive overview of the disclosure
and it does not identify key/critical elements of the invention
or delineate the scope of the invention. Its sole purpose is to
present some concepts disclosed herein in a simplified form
as a prelude to the more detailed description that is presented
later.

Embodiments of the invention are directed to function
matching in binaries. A given source function from a source
binary is compared to target functions in a target binary in
order to find the target function that best matches the source
function. The source and target functions are compared using
the basic blocks of the functions as well as compared using
control flow graphs of the functions.

Many of the attendant features will be more readily appre-
ciated as the same become better understood by reference to
the following detailed description considered in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Like reference numerals are used to designate like parts in
the accompanying drawings.

FIG. 1 is a block diagram of a function matching system in
accordance with an embodiment of the invention.

FIG. 2 is a flowchart showing the logic and operations of
function matching in accordance with an embodiment of the
invention.

FIG. 3 shows control flow graphs for function matching in
accordance with an embodiment of the invention.

FIG. 4 is a flowchart showing the logic and operations of
basic block matching in accordance with an embodiment of
the invention.

FIG. 5 is a match quality table in accordance with an
embodiment of the invention.

FIG. 6 is a flowchart showing the logic and operations of
control flow graph matching in accordance with an embodi-
ment of the invention.

FIG. 7 is a block diagram of an example computing device
for implementing embodiments of the invention.

DETAILED DESCRIPTION

The detailed description provided below in connection
with the appended drawings is intended as a description of the
present examples and is not intended to represent the only
forms in which the present examples may be constructed or
utilized. The description sets forth the functions of the
examples and the sequence of steps for constructing and

20

25

30

35

40

45

50

55

60

65

2

operating the examples. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

FIG. 1 shows a function matching system 100 in accor-
dance with an embodiment of the invention. Components of
system 100 may be implemented using computer readable
instructions executable by one or more computing devices.
Embodiments of a computing device are described below in
connection with FIG. 7.

Function matching system 100 includes a control flow
matching tool 110 and a basic block matching tool 112.
System 100 may receive a source binary 102 having one or
more source functions and a target binary 104 having one or
more target functions. System 100 uses tools 110 and 112 to
find a target function in target binary 104 that best matches to
a source function in source binary 102. In one embodiment,
the function matching is accomplished without prior knowl-
edge of source code of source binary 102 or target binary 104.

In one embodiment, control flow matching tool 110 may
use a matching algorithm as described in “GRAPHDIFF:
Matching and Patching Binaries”, Saurabh Sinha, et al., Inter-
national Conference on Software Engineering, 2002. In
another embodiment, basic block matching tool 112 may use
a matching algorithm as described in “BMAT—A Binary
Matching Tool for Stale Profile Propagation,” Zheng Wang, et
al., Journal of Instruction-Level Parallelism, Vol. 2, May
2000. However, it will be appreciated that embodiments of
the invention are not limited to the matching algorithms as
described in the above publications.

It will be appreciated that one of ordinary skill in the art
would not be motivated to combine the matching algorithms
of BMAT and DIFFGRAPH to practice embodiments as
described herein. For at least one reason, BMAT and DIFF-
GRAPH are targeted at different problems. BMAT is targeted
to find differences between daily builds of a program and is
particularly more focused on basic block matching. The
assumption is made in BMAT that the program does not
change much between daily builds. In contrast, DIFFGRAPH
is designed to find differences between control flow and lay-
outs of programs. These differences are often of greater scope
than differences between daily builds. Further, embodiments
of the invention include features not disclosed nor suggested
by BMAT or DIFFGRAPH such as, but not limited to, per-
forming a complete bipartite matching, setting match indices
for control flow graph nodes, or computing a total control
flow graph matching strength from match indices of indi-
vidual nodes.

In one embodiment, system 100 may receive a threshold of
correctness 106 that is used during the function matching.
The threshold is an indication of the quality of the match of
two basic blocks. When comparing two sets of basic blocks,
only basic block matchings that exceed the threshold are
considered.

Function matching system 100 may output a match result
120 that indicates which target functions in target binary 104
match to which source functions in source binary 102. It will
be appreciated that in some cases, not all functions in target
binary 104 will necessarily match to a function in source
binary 102.

Turning to FIG. 2, a flowchart 200 shows the logic and
operations of function matching in accordance with an
embodiment of the invention. In one embodiment, at least a
portion of the logic of flowchart 200 may be implemented by
computer readable instructions executable by one or more
computing devices. In another embodiment, the logic of flow-
chart 200 may be used by function matching system 100. The
logic shown in flowchart 200 may be used repeatedly to

US 8,166,466 B2

3

attempt to match all source functions in source binary 102 to
a target function in target binary 104.

Starting in block 202, a control flow graph is generated for
a given source function in the source binary. Next, in block
204, a control flow graph is generated for each of the target
functions in the target binary. A basic block of a binary is a
series of instructions with one entry point and one exit point.
A Control Flow Graph (CFG) is a directed graph having
nodes that represent the basic blocks of a function and the
edges in the CFG represent all possible control flow between
the basic blocks. In one embodiment, control flow matching
tool 110 may create the control flow graphs for the source and
target functions.

Turning to FIG. 3, an embodiment of a source function
CFG 300 and a target function CFG 310 is shown. Source
function CFG 300 includes five nodes (i.e., basic blocks)
301-305 and target function CFG 310 includes five nodes
(i.e., basic blocks) 311 -315. Matching letters in the nodes of
CFG 300 and 310 indicate theses nodes match. Edges
between the nodes are shown by arrows.

As will be described below, the logic will iterate through all
the target function CFGs to determine which ones have nodes
(i.e., basic blocks) that match nodes in the source function
CFG. If the nodes in a target function CFG match the nodes in
the source function CFG, then that target function is marked
for further analysis, while target function CFGs having
poorly matching nodes are disregarded. The target function
CFGs having matching nodes are then matched to the source
function CFG and rated for control flow matching strength.
The target function CFG with the best control flow matching
strength is then determined to be the matching target function.

Proceeding to decision block 206, the logic of flowchart
200 determines if any node in a target function CFG matches
any node in the given source function CFG. If there is at least
one node in the source function CFG which has a matching
node in the target function CFG, then a control flow matching
is performed, such as in blocks 214 and 216. In one embodi-
ment, the node matching is performed by basic block match-
ing tool 112. In one embodiment, the nodes (i.e., basic blocks)
are considered matching if the matching exceeds a given
threshold. If the basic blocks do not match, then the logic
continues to block 208 where the associated target function is
disregarded as a possible match. An embodiment of basic
block matching is discussed below in conjunction with FIG.
4.

Next, in decision block 210, then logic determines if there
are more target functions for matching. If the answer to deci-
sion block 210 is yes, then the logic returns to decision block
206 to compare the nodes of the given source function CFG to
the nodes of another target function CFG. If the answer to
decision block 210 is no, then the logic proceeds to block 218
(discussed below).

In decision block 206, if any node matches, then the logic
proceeds to block 214. In block 214, a match is performed
between the source function CFG and the target function
CFG. The logic measures the structural match ofthe CFGs for
both functions. An embodiment of matching the CFGs is
discussed below in conjunction with FIG. 5.

Proceeding to block 216, a control flow matching strength
for the target function is generated. In one embodiment, the
control flow matching strength is an integer value where a
higher value indicates a better control flow match. After block
216, the logic proceeds to decision block 210 to determine if
there are more target function CFGs that needed to be com-
pared to the source function CFG.

Once all the target function CFGs have been compared to
the source function CFG on a basic block level (and possibly

20

25

30

35

40

45

50

55

60

65

4

on a control flow level in blocks 214 and 216), the logic
proceeds to block 218. In block 218, the logic determines
which target function has the greatest control flow matching
strength. In one embodiment, the control flow matching
strength is expressed as an integer value and the logic selects
the target function having the largest integer value. Next, in
block 220, the matching target function (or an associated
target function identification) is output.

Turning to FIG. 4, a flowchart 400 shows the logic and
operations of matching basic blocks in CFGs in accordance
with an embodiment of the invention. In one embodiment, at
least a portion of the logic of flowchart 400 may be imple-
mented by computer readable instructions executable by one
or more computing devices.

Starting in block 402, a hash-based matching is performed.
In one embodiment, a hash value is calculated using at least a
portion of the contents of a basic block. If two basic blocks
have the same hash value (i.e., a source function basic block
and a target function basic block), then the basic blocks are a
match. The basic block matching algorithm looks at the con-
tent of basic blocks to see if they match functionally, taking
into account register renaming and other possible variations
in the instruction pattern which do not affect the functionality
of the basic block. For example, some information that may
be filtered out include numerical offsets in memory address
operands, register allocation, immediate operands (e.g., loop
boundaries and program constants), and block address oper-
ands. Block address operands appear in control flow instruc-
tions (e.g., jump, branch, call, etc.) and pointer operations.

Multiple passes of matching are performed with various
levels of fuzziness. At each level of fuzziness, less informa-
tion is used in the hashing calculation. For example, the
fuzziness levels may be from level 1 (most information and
least approximation) to level 5 (least information and most
approximation). In general, the levels that use more informa-
tion provide accurate matches for blocks that have not
changed or changed little while the fuzzier levels find
matches for basic blocks that have changed considerably.

In one embodiment using a BMAT algorithm, information
used in the hash calculation at each fuzziness level is as
follows:

Level 1—The following block address operands are
hashed: target block’s match, target blocks extended name,
target function name or branch offset within the function, and
target block’s distance from the beginning of the function. All
operands and all opcodes are hashed. Registers EAX, ECX
and EDX are converted to the same value for the hash.
Numeral address offsets are excluded from the hash calcula-
tion in all levels 1-5.

Level 2—Same block address operands as level 1 except
the address offset of the target block from the beginning of the
function is excluded. This accommodates indirect changes
that cause address shift for part of a function. All operands and
all opcodes are hashed. Registers EAX, ECX and EDX are
converted to the same value for the hash.

Level 3—The only block address operand hashed is the
target function name or branch offset within the function. All
opcodes are hashed. All immediate operands and operands of
return instructions are excluded from the hashing. Registers
EAX, ECX and EDX as well as EBX, EDI, and ESI are
converted to the same value for the hashing calculation.

Level 4—For each instruction, hash the opcode and the
types (but not the contents) of its operands. Registers and
block address operands are excluded from the hash calcula-
tion.

Level 5—For each instruction, hash the opcode only.

US 8,166,466 B2

5

Proceeding to block 404, a control flow-based matching is
performed. The hashing-based matching focuses on identify-
ing one-to-one matches between basic blocks. Any remaining
blocks after the hash-based matching are matched with a
block that is equivalent according to control flow. The logic
travels through the source and target functions basic blocks
simultaneously following the control flow to identify code
that is comparable in terms of control flow. Unlike hash-based
matching in block 402, the control flow-based matching may
match several basic blocks in the same control flow branch to
a single basic block in the other function. It will be appreci-
ated that this control flow-based matching is part of the basic
block matching algorithm of FIG. 4 and is not to be confused
with CFG matching as described below in conjunction with
FIG. 6.

Next, in block 406, the matching quality of the basic blocks
in the target function CFG are indicated. The quality of the
match for each basic block may be indicated on a scale of a
strong match to a weak match. For example, matching quality
may go from a scale of fuzziness level 1 (strongest match) to
fuzziness level 5 to a control-flow match (weakest match). In
one embodiment, the algorithm may output a match value
between two basic blocks, based on the fuzziness levels/CF,
that is expressed as a percentage match between the two basic
blocks (e.g., 0-100% match).

In one embodiment, for the basic blocks in a target function
CFG to match the basic blocks in the source function CFG (as
in block 206 of flowchart 200), the match quality for a basic
block must exceed a threshold. If there is at least one basic
block in the source function CFG which has a matching basic
block in the target function CFG, then a control flow matching
is performed. In one embodiment, the threshold for basic
block matching is 70% or more as returned by a BMAT
algorithm.

In one embodiment, the basic block matching is described
in a match quality table 500 as shown in FIG. 5. Table 500
includes each source function basic block, the matching tar-
get function basic block, and the fuzziness level at which the
match is established (e.g., level 1 to 5) or whether the match
was made at the control flow-based matching level (indicated
by “CF” in table 500). In one embodiment, a basic block
matching indication, such as table 500, is passed to a control
flow matching algorithm as discussed in below in conjunction
with FIG. 6.

Turning to FIG. 6, a flowchart 600 shows the logic and
operations of matching control flow in CFGs, such as in
blocks 214 and 216 of flowchart 200, in accordance with an
embodiment of the invention. In one embodiment, at least a
portion of the logic of flowchart 600 may be implemented by
computer readable instructions executable by one or more
computing devices.

Starting in block 602, an indication of the matched nodes
(i.e., basic blocks) is received. In one embodiment, these
matched nodes are from the basic block matching algorithm
as discussed above in conjunction with FIG. 4. Next, in block
604, a neighborhood distance d is set for the source and target
CFGs. A neighborhood distance d indicates a set of nodes
from a node v (i.e., a basic block) in the CFG. For example, a
distance d=0 from node v would simple be the set {v}. A
distance d=1 from node v would include node v and node v’s
parents and children (if any). For example, in FIG. 3, the set
of nodes a distance d=1 from node 302 includes nodes 301
and 303-305. In one embodiment, the neighborhood distance
d may range between 3 and 1 and is initially set to d=3.

As described below, the logic incrementally reduces the
size of the neighborhood until a minimum neighborhood
distance is reached (for example, minimum of d=1). Nodes

20

25

30

40

45

50

55

60

65

6

are considered to be a better match if the node was matched
when the neighborhood distance d was larger. The strength or
confidence of the match is reduced as the matching is per-
formed on a smaller neighborhood distance d. The total match
strength of the target function may be measured by an aggre-
gation of the match strength of each node in the target func-
tion CFG.

Next, in block 606, for each unmatched node in the source
and target function CFGs (i.e., nodes not matched in the basic
block matching level), construct a distance d neighborhood
from the unmatched nodes.

Next, in block 608, for each unmatched node in the source
and target function CFGs, augment the neighborhoods con-
structed in block 606 with a random path. The random path is
created for both for the source and the target function CFG
neighborhoods. Thus, in one embodiment, a neighborhood
includes the unmatched node, the nodes a distance d from the
unmatched node, and the random path nodes. In one embodi-
ment, the random path includes a set of nodes encountered
while performing a fixed length random walk from the
unmatched node. The walk will end before reaching the fixed
length if the walk encounters a function boundary (e.g., callto
another function or return).

Proceeding to block 610, a node from the target function
CFG is matched to a node from the source function CFG if the
neighborhoods around the nodes have a complete bipartite
match (sometimes referred to as a “perfect match”). The
bipartite matching is conducted for the neighborhood having
distance d nodes as well as the random path nodes. As known
to one skilled in the art, a complete bipartite match is a type of
bipartite match where every vertex of the first set is connected
to every vertex of the second set.

If a complete bipartite match is found, then a match index
is set for the target function CFG node. In one embodiment,
the match index is set to 2°d.

Proceeding to block 614, for each newly matched target
function CFG node, try and match the target function CFG
node’s immediate neighbors (i.e., the node’s parents and chil-
dren) to the matching source function CFG node’s immediate
neighbors. This is a basic block matching, where basic blocks
are considered matching if the match quality exceeds a
threshold. If the neighbors match, then set the match index for
each neighbor the same as the newly matched target function
CFG node. In one embodiment, the match index for each
neighbor is set to 2°d.

Continuing to block 616, the newly matched nodes in the
source and target CFGs are marked as matched. Also, any
immediate neighbors that matched in block 614 are also
marked as matched. The nodes marked as matched will not be
considered again in another iteration of the control flow
matching algorithm.

Next, at decision block 618, the logic determines if the
minimum neighborhood distance has been reached. If the
answer is no, then the logic returns to block 604 to set the
neighborhood distance d to a smaller neighborhood. The
neighborhood distance d will be decreased to construct a
smaller neighborhood for matching. In one embodiment, the
initial distance d=3 and is set to d=2 in the second pass. In this
embodiment, the minimum neighborhood distance is set to
d=l1.

If the answer to decision block 618 is yes, then the logic
proceeds to block 620 where any unmatched nodes in the
target function CFG are matched to their closest matching
node in the source function CFG. The match indices for the
unmatched nodes in the target function CFG are set. In one
embodiment, the match indices are set to 1. Proceeding to
block 622, the sum of all match indices for all the nodes in the

US 8,166,466 B2

7

target function CFG is generated and output. This sum is the
control flow matching strength for this particular target func-
tion CFG.

Embodiments of the invention provide matching of func-
tions in binaries. Embodiments herein may be used to identify
binary code that plagiarizes the functionality of a binary but
not necessary the syntax. Also, testers may use embodiments
herein to identify differences in binary code and target their
testing at the functions that have been changed between
binary build versions.

FIG. 7 and the following discussion are intended to provide
a brief, general description of a suitable computing environ-
ment to implement embodiments of the invention. The oper-
ating environment of FIG. 7 is only one example of a suitable
operating environment and is not intended to suggest any
limitation as to the scope of use or functionality of the oper-
ating environment. Other well known computing devices,
environments, and/or configurations that may be suitable for
use with embodiments described herein include, but are not
limited to, personal computers, server computers, hand-held
or laptop devices, mobile devices (such as mobile phones,
Personal Digital Assistants (PDAs), media players, and the
like), multiprocessor systems, consumer electronics, mini
computers, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like.

Although not required, embodiments of the invention are
described in the general context of “computer readable
instructions” being executed by one or more computing
devices. Computer readable instructions may be distributed
via computer readable media (discussed below). Computer
readable instructions may be implemented as program mod-
ules, such as functions, objects, Application Programming
Interfaces (APIs), data structures, and the like, that perform
particular tasks or implement particular abstract data types.
Typically, the functionality of the computer readable instruc-
tions may be combined or distributed as desired in various
environments.

FIG. 7 shows an example of a computing device 700 for
implementing one or more embodiments of the invention. In
one configuration, computing device 700 includes at least one
processing unit 702 and memory 704. Depending on the exact
configuration and type of computing device, memory 704
may be volatile (such as RAM), non-volatile (such as ROM,
flash memory, etc.) or some combination of the two. This
configuration is illustrated in FIG. 7 by dashed line 706.

In other embodiments, device 700 may include additional
features and/or functionality. For example, device 700 may
also include additional storage (e.g., removable and/or non-
removable) including, but not limited to, magnetic storage,
optical storage, and the like. Such additional storage is illus-
trated in FIG. 7 by storage 708. In one embodiment, computer
readable instructions to implement embodiments of the
invention may be in storage 708. Storage 708 may also store
other computer readable instructions to implement an oper-
ating system, an application program, and the like.

The term “computer readable media” as used herein
includes computer storage media. Computer storage media
includes volatile and nonvolatile, removable and non-remov-
able media implemented in any method or technology for
storage of information such as computer readable instructions
or other data. Memory 704 and storage 708 are examples of
computer storage media. Computer storage media includes,
butis not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, Digital Versatile Disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage

20

25

30

35

40

45

50

55

60

65

8

devices, or any other medium which can be used to store the
desired information and which can be accessed by device
700. Any such computer storage media may be part of device
700.

Device 700 may also include communication
connection(s) 712 that allow device 700 to communicate with
other devices. Communication connection(s) 712 may
include, but is not limited to, a modem, a Network Interface
Card (NIC), an integrated network interface, a radio fre-
quency transmitter/receiver, an infrared port, a USB connec-
tion, or other interfaces for connecting computing device 700
to other computing devices. Communication connection(s)
712 may include a wired connection or a wireless connection.
Communication connection(s) 712 may transmit and/or
receive communication media.

The term “computer readable media” may include commu-
nication media. Communication media typically embodies
computer readable instructions or other data in a “modulated
data signal” such as a carrier wave or other transport mecha-
nism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not
limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency, infrared, Near Field
Communication (NFC), and other wireless media.

Device 700 may include input device(s) 714 such as key-
board, mouse, pen, voice input device, touch input device,
infrared cameras, video input devices, and/or any other input
device. Output device(s) 716 such as one or more displays,
speakers, printers, and/or any other output device may also be
included in device 700. Input device(s) 714 and output
device(s) 716 may be connected to device 700 via a wired
connection, wireless connection, or any combination thereof.
In one embodiment, an input device or an output device from
another computing device may be used as input device(s) 714
or output device(s) 716 for computing device 700.

Components of computing device 700 may be connected
by various interconnects, such as a bus. Such interconnects
may include a Peripheral Component Interconnect (PCI),
such as PCI Express, a Universal Serial Bus (USB), firewire
(IEEE 1394), an optical bus structure, and the like. In another
embodiment, components of computing device 700 may be
interconnected by a network. For example, memory 704 may
be comprised of multiple physical memory units located in
different physical locations interconnected by a network.

In the description and claims, the term “coupled” and its
derivatives may be used. “Coupled” may mean that two or
more elements are in contact (physically, electrically, mag-
netically, optically, etc.). “Coupled” may also mean two or
more elements are not in contact with each other, but still
cooperate or interact with each other (for example, commu-
nicatively coupled).

Those skilled in the art will realize that storage devices
utilized to store computer readable instructions may be dis-
tributed across a network. For example, a computing device
730 accessible via network 720 may store computer readable
instructions to implement one or more embodiments of the
invention. Computing device 700 may access computing
device 730 and download a part or all of the computer read-
able instructions for execution. Alternatively, computing
device 700 may download pieces of the computer readable
instructions, as needed, or some instructions may be executed
at computing device 700 and some at computing device 730.
Those skilled in the art will also realize that all or a portion of
the computer readable instructions may be carried out by a

US 8,166,466 B2

9

dedicated circuit, such as a Digital Signal Processor (DSP),
programmable logic array, and the like.

Various operations of embodiments of the present inven-
tion are described herein. In one embodiment, one or more of
the operations described may constitute computer readable
instructions stored on one or more computer readable media,
which if executed by a computing device, will cause the
computing device to perform the operations described. The
order in which some or all of the operations are described
should not be construed as to imply that these operations are
necessarily order dependent. Alternative ordering will be
appreciated by one skilled in the art having the benefit of this
description. Further, it will be understood that not all opera-
tions are necessarily present in each embodiment of the
invention.

The above description of embodiments of the invention,
including what is described in the Abstract, is not intended to
be exhaustive orto limit the embodiments to the precise forms
disclosed. While specific embodiments and examples of the
invention are described herein for illustrative purposes, vari-
ous equivalent modifications are possible, as those skilled in
the relevant art will recognize in light of the above detailed
description. The terms used in the following claims should
not be construed to limit the invention to the specific embodi-
ments disclosed in the specification. Rather, the following
claims are to be construed in accordance with established
doctrines of claim interpretation.

What is claimed is:

1. A method, comprising:

determining which target functions in a target binary have

target function basic blocks that match source function
basic blocks in a source function in a source binary by
performing a hash-based matching between the target
function basic blocks and the source function basic
blocks, and performing a control flow-based matching
on basic blocks that are unmatched after the hash-based
matching, the control flow-based matching being per-
formed within the unmatched basic blocks; and

for the target functions having matching target function

basic blocks, determining a corresponding target func-
tion control flow graph that has a greatest control flow
matching strength to a source function control flow
graph, wherein a node in the source function control
flow graph represents a source function basic block,
wherein a node in a target function control flow graph
represents a target function basic block.

2. The method of claim 1 wherein determining which target
functions have target function basic blocks that match the
source function basic blocks includes:

determining which target functions have a basic block

matching quality that exceeds a threshold.

3. The method of claim 1, further comprising:

generating a control flow matching strength for each target

function control flow graph corresponding to a target
function having matching target function basic blocks.

4. The method of claim 3 wherein the control flow match-
ing strength of a target function control flow graph is a sum-
mation of a control flow match index for each node of the
target function control flow graph.

5. The method of claim 3 wherein generating a control flow
matching strength for each target function control flow graph
having matching nodes includes:

constructing a neighborhood around an unmatched node in

the source function control flow graph ata neighborhood
distance;

20

25

30

35

40

45

55

60

65

10

constructing a neighborhood around an unmatched node in
the target function control flow graph at the neighbor-
hood distance;

matching the unmatched node in the target function control

flow graph to the unmatched node in the source function
control flow graph when the neighborhoods have a com-
plete bipartite match; and

setting a match index for the newly matched node in the

target function control flow graph based on the neigh-
borhood distance.

6. The method of claim 5, further comprising:

augmenting the neighborhoods around the unmatched

nodes in the source function and the target function with
a random path from the unmatched node in the source
function control flow graph and a random path from the
unmatched node in the target function control flow
graph.

7. The method of claim 6, further comprising:

for the newly matched node in the target function control

flow graph, determining if any immediate neighbor
nodes of the newly matched node match to any imme-
diate neighbor nodes of the matching source function
control flow graph node; and

setting a match index for any matching neighborhood

nodes in the target function control flow graph based on
the neighborhood distance.

8. The method of claim 7, further comprising:

marking the newly matched nodes in the source function

control flow graph and in the target function control flow
graph as matched; and

marking any matching immediate neighbor nodes as

matching.

9. One or more computer storage media storing computer
readable instructions that when executed perform operations
comprising:

generating a source function control flow graph for a

source function in a source binary, wherein a node in the
source function control flow graph represents a source
function basic block;

generating a plurality of target function control flow graphs

corresponding to a plurality oftarget functions in a target
binary, wherein a node in a target function control flow
graph represents a target function basic block in a cor-
responding target function;

determining which target functions have target function

basic blocks that match the source function basic block
by performing a hash-based matching between the target
function basic blocks and the source function basic
block, and performing a control flow-based matching on
basic blocks that are unmatched after the hash-based
matching, the control flow-based matching being per-
formed within the unmatched basic blocks; and

for the target functions having matching target function

basic blocks,

generating a control flow matching strength for each
target function control flow graph corresponding to a
target function having matching target function basic
blocks; and

determining the target function control flow graph that
has a greatest control flow matching strength to the
source function control flow graph.

10. The one or more computer storage media of claim 9
wherein determining which target functions have target func-
tion basic blocks that match the source function basic blocks
includes,

determining which target functions have a basic block

matching quality that exceeds a threshold.

US 8,166,466 B2

11

11. The one or more computer storage media of claim 9
wherein the control flow matching strength of a target func-
tion control flow graph is a summation of a control flow match
index for each node of the target function control flow graph.

12. The one or more computer storage media of claim 9
wherein generating a control flow matching strength
includes:

constructing a neighborhood around an unmatched node in

the source function control flow graph ata neighborhood
distance;

constructing a neighborhood around an unmatched node in

the target function control flow graph at the neighbor-
hood distance;

matching the unmatched node in the target function control

flow graph to the unmatched node in the source function
control flow graph when the neighborhoods have a com-
plete bipartite match; and

setting a match index for the newly matched node in the

target function control flow graph based on the neigh-
borhood distance.

13. The one or more computer storage media of claim 12
wherein the computer readable instructions when executed
further perform operations comprising:

augmenting the neighborhoods around the unmatched

nodes in the source function and the target function with
a random path from the unmatched node in the source
function control flow graph and a random path from the
unmatched node in the target function control flow
graph.

14. The one or more computer storage media of claim 13
wherein the computer readable instructions when executed
further perform operations comprising:

for the newly matched node in the target function control

flow graph, determining if the immediate neighbor
nodes of the newly matched node match to the immedi-
ate neighbor nodes of the matching source function con-
trol flow graph node; and

setting a match index for any matching neighborhood

nodes in the target function control graph based on the
neighborhood distance.

20

25

30

35

12

15. The one or more computer storage media of claim 14
wherein the computer readable instructions when executed
further perform operations comprising:

marking the newly matched nodes in the source function
control flow graph and in the target function control flow
graph as matched; and

marking any matching immediate neighbor nodes as
matching.

16. A function matching system, comprising:

a processing unit; and

a memory operatively coupled to the processing unit to
provide:

a basic block matching tool to determine which target
functions in a target binary have target function basic
blocks that match source function basic blocks in a
source binary by performing a hash-based matching
between the target function basic blocks and the source
function basic blocks, and performing a control flow-
based matching on basic blocks that are unmatched after
the hash-based matching, the control flow-based match-
ing being performed within the unmatched basic blocks;
and

a control flow matching tool communicatively coupled to
the basic block matching tool, the control flow matching
tool to determine a corresponding target function control
flow graph that has a greatest control flow matching
strength to a source function control flow graph for the
target functions having matching target function basic
blocks.

17. The function matching system of claim 16 wherein to
determine which target functions have target function basic
blocks that match the source function basic blocks includes

determining which target functions have a basic block
matching quality that exceeds a threshold.

18. The function matching system of claim 16 wherein the
control flow matching strength of a target function control
flow graph is a summation of a control flow match index for
each node of the target function control flow graph.

#* #* #* #* #*

