(19 DANMARK (100 DK/EP 3248100 T3
(12) Overseettelse af
europaeisk patentskrift
Patent- og
Varemeaerkestyrelsen
(51) Int.Cl.: HO04 L 29/08 (2006.01) G 06 F 9/50 (2006.01) HO04 L 29/06 (2006.01)
(45) Overseettelsen bekendtgjort den: 2020-07-06
(80) Dato for Den Europaeiske Patentmyndigheds
bekendtgarelse om meddelelse af patentet: 2020-04-08
(86) Europaeisk ansggning nr.: 16740600.8
(86) Europaeisk indleveringsdag: 2016-01-19
(87) Den europeeiske ansggnings publiceringsdag: 2017-11-29
(86) International ansggning nr.: US2016013944
(87) Internationalt publikationsnr.: WO2016118518
(30) Prioritet: 2015-01-20 US 201562105685 P 2015-09-17 US 201514857775
(84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV
MC MK MT NL NO PL PT RO RS SE SI SK SM TR
(73) Patenthaver: Cyemptive Technologies, Inc., 18433 22nd Way NE, Woodinville, WA 98077, USA
(72) Opfinder: PIKE, Robert, Enzoo Inc., 18433 22nd Way NE, Woodinville, WA 98077, USA
(74) Fuldmaegtig i Danmark: Plougmann Vingtoft A/S, Strandvejen 70, 2900 Hellerup, Danmark
(54) Benaevnelse: RULLENDE SIKKERHEDSPLATFORM
(56) Fremdragne publikationer:

US-A1-2002 188 706

US-A1-2004 117 622

US-A1- 2004 255 189

US-A1- 2008 046 982

US-A1-2010 274 885

US-A1-2012 209 977

US-A1-2014 108 775

IULIAN NEAMTIU ET AL: "Cloud software upgrades: Challenges and opportunities”, MAINTENANCE AND
EVOLUTION OF SERVICE-ORIENTED AND CLOUD-BASED SYSTEMS (MESOCA), 2011 INTERNATIONAL
WORKSHOP ON THE, IEEE, 26 September 2011 (2011-09-26), pages 1-10, XP032063565, DOI:
10.1109/MESOCA.2011.6049037 ISBN: 978-1-4577-0645-5

Openstack: "Upgrade-with-minimal-downtime", , 28 September 2011 (2011-09-28), XP055512989, Retrieved from
the Internet: URL:https:/wiki.openstack.org/wiki/Upgrad e-with-minimal-downtime [retrieved on 2018-10-05]

DK/EP 3248100 T3

DK/EP 3248100 T3

DESCRIPTION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority from U.S. Provisional Patent Application No. 62/105,685,
filed on January 20, 2015, and U.S. Patent Application No. 14/857,775, filed on September 17,
2015.

BACKGROUND

1. Field

[0002] The present disclosure relates to computer security against unauthorized access to
resources, and more specifically to a rolling security platform for increased security.

2. Description of Related Art

[0003] In network communications there are many forms of software and hardware security,
including firewalls and intrusion detection and prevention systems. But they all fault on one
core issue, that if rules are not applied correctly they can open opportunities for unauthorized
access. Operating systems and applications today also have many bugs which if exposed to
the internet, can enable remote access to servers hosting the applications.

[0004] The IEEE Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA) publication "Cloud software upgrades: Challenges and opportunities” by lulian
Neamtiu and Tudor Dumitras proposes a research agenda for the future of software upgrades
in the cloud.

SUMMARY

[0005] The present invention is defined by the appended independent claims.

[0006] Embodiments of the present disclosure include intelligent methods and systems of
providing online security against hackers. In one embodiment, disclosed is a system for rolling
security. The system comprises a first server group of servers and a second server group of
servers. Each server in the first server group and second server group includes software that
includes an operating system and application that supports user sessions. A non-transitory

DK/EP 3248100 T3

computer readable medium stores instructions that, when executed by at least one processor
cause the at least one processor to access rolling timing information indicating rebuild timings
for the first server group and rebuild timings for the second server group.

[0007] The rebuild timings for the first server group are staggered in time from the rebuild
timings of the second server group. The instructions also cause the processor to periodically
initiate rebuilding of the software of each server of the first server group of servers according to
the rebuild timings for the first server group. The instructions also cause the processor to
periodically initiate rebuilding of the software of each server in the second server group of
servers according to the second rebuild timings for the second server group. The rebuilding of
the first server group of servers is staggered in time from the rebuilding of the second server
group of servers.

[0008] In one embodiment, a method of rolling security for a system that includes multiple
server groups is disclosed. The method includes repeatedly initiating rebuilding of the first
server group of one or more servers. The method also includes repeatedly initiating rebuilding
of the second server group of one or more servers. The rebuilding of the first server group of
one or more servers is staggered in time from the rebuilding of the second server group of one
or more servers.

[0009] In one embodiment, each of the servers in the first and second group include software
that is rebuilt repeatedly, such as on a periodic basis. The software that is rebuilt can include
an operating system, application, and other software. In one embodiment, each of the servers
in the first and second server group includes a respective firmware. Repeatedly initiating
rebuilding of the first server group comprises initiating a rebuilding of the respective firmware in
each server of the first server group. Repeatedly initiating rebuilding of the second server
group comprises initiating a rebuilding of the respective firmware in each server of the second
server group.

[0010] In one embodiment, each of the servers in the first and second server group includes a
respective password. The method also comprises repeatedly initiating a password change of
each server in the first server group when rebuilding the first server group; and repeatedly
initiating a password change of each server in the second server group when rebuilding the
second server group.

[0011] In one embodiment, the method comprises accessing rolling timing information
indicating rebuild timings for rebuilding the first server group and second server group. The
first server group and the second server group are repeatedly rebuilt according to the rolling
timing information. Additionally, each of the servers in the first server group and the second
server group host respective applications and support user sessions for the applications, and
the method further comprises monitoring durations of the user sessions for the respective
applications; and generating the rolling timing information indicating rebuild timings for the first
server group and the second server group based on the monitored durations of the user
sessions.

DK/EP 3248100 T3

[0012] In one embodiment, the servers in the first server group and the second server group
that are repeatedly rebuilt are physical servers. In one embodiment, the servers in the first
server group and the second server group that are repeatedly rebuilt are virtual machines.

[0013] In one embodiment, the system further comprises one or more load balancers to
balance network traffic between the first server group and the second server group. The
method also comprises repeatedly initiating shutdown preparation mode of the first server
group prior to each rebuilding of the first server group, the load balancers preventing new
sessions from being established with applications of the first server group while the first server
group is in shutdown preparation mode. The method also comprises repeatedly initiating
shutdown preparation mode of the second server group prior to each rebuilding of the second
server group, the load balancers preventing new sessions from being established with
applications of the second server group while the second server group is in shutdown
preparation mode.

[0014] Other embodiments include a non-transitory computer readable medium storing
instructions. The instructions are executable by at least one processor to cause the at least
one processor to perform the method of rolling security. Other embodiments may apply rolling
security to software containers. Other embodiments may apply rolling security to networked
computing devices within a datacenter, or computing devices outside of a datacenter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

Figure (FIG.) 1Ais a block diagram of networked communication system with components of a
secured datacenter for rolling security, according to an embodiment.

FIG. 1B is a block diagram of networked communication system with components of a secured
datacenter for rolling security, according to another embodiment.

FIG. 1C is a block diagram of networked communication system with components of a secured
datacenter for rolling security, according to a further embodiment.

FIG. 2A is a block diagram of a frontend server from FIG. 1A, according to an embodiment.
FIG. 2B is a block diagram of a server with virtual machines, according to an embodiment.
FIG. 2C is a block diagram of a server with software containers, according to an embodiment.
FIG. 3 is a diagram of rolling server groups, according to an embodiment.

FIG. 4 is a block diagram of a security control module, according to an embodiment.

FIG. 5 is a flowchart for a method of rolling security, according to an embodiment.

DK/EP 3248100 T3

FIG. 6 illustrates the hardware architecture of a computing device.

DETAILED DESCRIPTION

[0016] Reference will now be made in detail to several embodiments of the present disclosure,
examples of which are illustrated in the accompanying figures. It is noted that wherever
practicable similar or like reference numbers may be used in the figures and may indicate
similar or like functionality. The figures depict embodiments of the present disclosure for
purposes of illustration only. One skilled in the art will readily recognize from the following
description that alternative embodiments of the structures and methods illustrated herein may
be employed without departing from the principles, or benefits touted, of the disclosure
described herein.

[0017] The present disclosure relates to a system platform that prevents hackers from gaining
access to backend datasets and prevents ongoing access to any dataset. More particularly,
this invention can stop escalating access to unauthorized resources for a higher security
solution.

[0018] In one embodiment, a security platform for a datacenter is disclosed. The security
platform continually and repeatedly rebuilds itself in a rolling manner based on specific metrics
of time. The rolling security will automatically replace server software in short periods of time to
completely wipe out any configuration or holes found in operating systems or applications,
thereby limiting access to any server to a short period of time. For example, this time can be as
short as 10 seconds or as long as hours. In one embodiment, a standard configuration will
default to 10 min between rebuilds. Hackers will have such a short window in which to learn the
hack, figure out what the architecture is in the backend, compromise the server and try to
install a root kit for further access. Thus, it is pointless for the hackers to attempt to complete
their hack as the replacement of the server happens so often. By the time a hacker discovers a
password or public key infrastructure (PKI) key, the operating system (OS) is being replaced
along with new passwords and keys.

[0019] The system can, but is not limited to, replace the whole software stack on a device
including the OS, applications, content, data and cache within a short period of time. The
system can be fully integrated with multiple devices in a network (e.g. load balancer, firewalls,
etc) to seamlessly manage both real users and hacker users. In other embodiments, session
count, connection count, unique sensor triggers and other security indications can be used to
trigger rebuilds. In other embodiments, a session can be dynamically contained into an isolated
environment and a time of the session can extended to learn the hacks being performed in an
isolated environment.

[0020] The system can dynamically learn the applications average session counter and time

DK/EP 3248100 T3

and adjust the rebuild timing dynamically or have a manual configuration to enable tighter
security policies. The system limits the time any single session can be connected to a front end
application and dataset to prevent long term remote access to any system.

[0021] FIG. 1A is a block diagram of networked communication system with components of a
secured datacenter for rolling security, according to an embodiment. The system includes
several client devices 105, a network 110, a router 115, frontend firewalls 120A-C, load
balancers 125A-C, frontend server groups 130A-130D, backend firewalls or load balancers
132A-C, backend server groups 135A-135D, storage systems 140A-140D and security server
148. Routers, firewalls 120, load balancer 125, frontend servers 130, firewall 132, backend
server 135, and storage systems 140 may be components of a datacenter. Only a limited
number of devices are shown in FIG. 1A, but in other embodiments there may be a larger
number of devices (e.g. > four frontend server groups).

[0022] Client devices 105 can be computing devices, such as smartphones, tablet computers,
laptop computers, and desktop computers, among others. A user interacts with software of the
client devices 105 through an interface, such as a touchscreen or mouse and keyboard. The
client devices 105 are controlled by the user to establish application sessions and connections
with various applications hosted by the frontend server groups 130.

[0023] The router 115 routes network traffic between the network 110 and the rest of the
components in the datacenter. The frontend firewalls 120 are hardware based firewall devices
that control incoming and outgoing network traffic using an applied rule set. A firewall
establishes a barrier between the internal network of the datacenter and the external network
110. The load balancers 125 distribute network traffic across a large number of frontend server
groups 130. The load balancers increase capacity and reliability of applications by decreasing
the burden on any one particular frontend server group 130.

[0024] Each frontend server group 130 includes several physical frontend servers. A server is
a server class computing device that can include one or more processors and executes an
operating system. A server hosts several software applications. The clients 105 can establish
networking connections and application sessions with the applications hosted by the frontend
servers. For security purposes, each server group can be rolled (i.e. by rebuilding the server
group) after expiration of an amount of time and the server groups can be rolled in staggered
manner. Copies of the same application are hosted by multiple server groups 130 so that,
even as the server groups are rolled, the application is still available to the client devices 105.
In one embodiment there are a total of nine frontend server groups 130 and each frontend
server group 130 includes thousands of frontend servers.

[0025] The backend firewalls 132 are hardware based firewall devices, or virtual firewalls, that
control traffic between the frontend server groups 130 and backend server groups 135 using
an applied rule set. Each backend server group 135 includes one or more backend servers.
Backend servers permit access to the data stored in the storage systems 140. Backend
servers store and retrieve data from the storage systems 140 as requested by the applications

DK/EP 3248100 T3

hosted by the frontend servers groups 130. An example of a backend server is a SQL server
that provides access to a SQL database.

[0026] Security server 148 includes a security control module 150 that coordinates rolling
operation of the frontend server groups 130. Specifically, the security control module 150
repeatedly initiates rebuilds of the frontend server groups 130 at periodic and staggered
intervals. Rebuilding a server can include replacing the entire software stack of a server,
including the operating system (OS), applications, content, data and caches by replacing a
hard drive image of the server with a known good replacement image. Rebuilding a server can
also include replacing the firmware of a server. Rebuilding may also include other operations in
addition to these operations. The time between rebuilds can be as short as 10 seconds or as
long as hours. In other embodiments the standard rebuild time will default to 10 min.

[0027] Repeatedly rebuilding servers on a periodic and frequent basis forces hackers to
complete their hack in a short amount of time (e.g. under 5 seconds) which is near impossible
as response times and upload times usually require a greater amount of time. For example, for
a DNS server, the DNS server can be rebuilt every 10 seconds with a new OS and DNS
database cache. In this situation, hackers will not have time to hack the protocol and upload
bogus data by cache spoofing. Any malicious code uploaded by the hackers will also be
eliminated. Everything tied to the server will be replaced, making it impossible to remote into
the OS from outside. At the same time, all the content needed for standard customer requests
are served correctly. This completely solves any holes found in today's software.

[0028] The security control module 150 also initiates the rebuilds on a rolling basis by
staggering the rebuilding of each frontend server group (e.g. 130A) in time relative to the other
frontend server groups (e.g. 130B). Each frontend server group 130 will start servicing user
sessions at different times creating a staggering approach to when a server group 130 will
come online and start serving traffic. The process from which a session starts and ends all
happens within a single server or group of servers 130. This allows for simple load balancing
within the group but also allows for termination of a session to happen within the group. The
servers within a server group 130 will replace their OS at the same time while other server
groups 130 are just coming online and servicing the new user sessions. The timeframe to
rebuild a server group 130 can vary depending on the functionality of the applications in the
server groups 130.

[0029] The security control module 150 also communicates with the load balancers 125 such
that the load balancers 125 are aware of the server group being shut down for new OS installs,
thereby allowing the load balancers 125 to distribute network traffic only to server groups 130
that are online. The security control module 150 can transmit information to the load balancers
125 to indicate when a server group 130 is beginning preparation for shutting down. In
response, the load balancers 125 take the server group 130 offline and prevent new
connections from being established with the server group 130. Once the server group 130 is
rebuilt, the security control module 150 can transmit information to the load balancers 125
indicating that the server group 1 30 is ready to accept new connections. In response, the load

DK/EP 3248100 T3

balancers 125 put the server group 130 back online and allows new connections to be
established with the server group 130

[0030] The security control module 150 can also change the password of the server groups
130 when rebuilding the server groups 130. Frequent password changes make it impossible to
do password attacks on servers.

[0031] The security control module 150 can be implemented as software, hardware, or as a
combination of hardware and software. In other embodiments, the security control module 150
can be distributed across one or more components of the datacenter other than the security
server 148.

[0032] FIG. 1B is a block diagram of networked communication system with components of a
secured datacenter for rolling security, according to another embodiment. FIG. 1B is similar to
FIG. 1A except that it now includes frontend virtual machine (VM) groups 160 and hypervisors
190. Each VM group 160 includes one or more VMs. A VM is an emulation of a computer
system, such as an emulation of a computer server. Each VM may be attached to its own
virtual disk. A VM may be referred to herein as a virtual server.

[0033] Hypervisor 190 creates and manages the VMs groups 160. Each hypervisor 190 may
be located on its own physical front end server 159, and also control a group of VMs 160 that
are located on the same physical front end server. For example, Hypervisor 190A and VM
group 160A are located on a single physical server 159A.

[0034] In this embodiment, the security control module 150 provides rolling security to the
networked communication system by periodically initiating rebuilds of the frontend VM groups
160 (i.e. virtual server groups). Copies of the same application are hosted by multiple VM
groups 160 so that the application is always online even as the VM groups 160 are being
rebuilt. Rebuilding a VM can include restoring the state of a VM to an original known good
state. Rebuilding will be explained in greater detail below.

[0035] Otherwise the operation of the security control module 150 is the same as that
described in conjunction with FIG. 1A. In one embodiment, the networked communication
system may include both physical server groups and virtual server groups that are rebuilt on a
periodic and staggered basis.

[0036] FIG. 1C is a block diagram of networked communication system with components of a
secured datacenter for rolling security, according to a further embodiment. FIG. 1C is similar to
FIG. 1B except that it now includes container groups 960 and container engines 990 located
on the servers 159.

[0037] Each container group 960 includes one or more software containers used for operating
system level virtualization. A software container includes an application, its dependencies,
libraries and binaries bundled into a single package. A software container shares an operating

DK/EP 3248100 T3

system (not shown) with other software containers on the same server 159. A software
container is instantiated within the kernel of the operation system and virtualizes the instance
of the application. Software containers allow for rapid creation of an application or service to be
put into a block of resources. The deployment of a container is fast because containers can
share core library files from the core OS. The software containers are managed by a container
engine 990. In one embodiment, the software containers 960 are DOCKER containers or are
compliant with the open container project standard.

[0038] In this embodiment, the security control module 150 provides rolling security to the
networked communication system by periodically initiating rebuilds of the container groups 960
on a rolling basis. Copies of the same application are included in multiple container groups 960
so that the application is always online even as some of the container groups 960 are being
rebuilt. A container can be rebuilt by restoring the container to a known good state. Rebuilding
will be explained in greater detail below.

Otherwise the operation of the security control module 150 is the same as that described in
conjunction with FIG. 1A and 1B. In one embodiment, rebuilding containers can be more
efficient than rebuilding physical servers and virtual machines. For example, containers can be
restored and deployed in ~30 seconds. By contrast, rebuilding servers and virtual machines
can take much longer. Although rolling containers can be easier than rolling physical servers
and VMs, they have higher risks due to the use of shared core OS files. Hypervisor
architectures also have risk, but because the OS is dedicated to each VM, it reduces the risk
compared to a container platform. The risk is lower again when rolling physical servers as a
hacker will need to have BIOS level control of a server to do server hijacking, or the hacker will
need remote management tools access.

[0039] The description herein may primarily focus on the rolling of physical servers or virtual
machines. However, the principles of rolling security described herein are applicable to rolling
of physical servers, virtual machines, or containers.

[0040] FIG. 2A is a block diagram of a frontend server 200, according to an embodiment.
Frontend server 200 may represent a frontend server from the frontend server groups 130 of
FIG. 1A. Frontend server 200 includes several software applications 250A-C, an OS 152,
firmware 154 and a frontend security module 156. Examples of OS 152 include LINUX and
MICROSOFT WINDOWS, among others. The applications 250 are executed on top of the OS
152. The firmware 154 includes software that is stored in a programmable memory chip.

[0041] The client devices 105 can establish networking connections C1-C6 with the
applications 250. A connection is used as a bidirectional communication channel between
sockets at the client devices 105 and the server 200. The connection is established at a certain
point in time using a handshake process, and then terminated at a later point in time. The
connection may include several states defined by a protocol. An example of a connection is a
transmission control protocol (TCP) connection of the transport layer of the Open Systems
Interconnect (OSI) model.

DK/EP 3248100 T3

[0042] The client devices 105 also establish application user sessions S1-S6 with the
applications 250 over the connections C1-C6. A user session is an interactive information
exchange between two or more communicating entities for a given application. The user
session is established at a certain point in time, and then terminated at a later point in time.
During the user session, one or more messages may be sent in each direction over a
connection that has been established for the session. In one embodiment, the application
sessions are sessions of the OSI| session layer that sit above the transport layer.

[0043] In one example, a credit card authentication session (e.g. S1, S2) can be initiated when
a user swipes a credit card at a client device 105A, and the client device 105A establishes a
connection and session with credit card payment application 250A. Credit card payment
application 250A communicates with the client device 105A to obtain the credit card number
and charge amount from the client device 105A. The credit card payment application 250 then
accesses the database 140 via backend server 135 to determine if the credit card number has
sufficient credit to process the payment. The credit card payment application 250 then provides
a yes / no response to the client device 105A. The connection and session are then terminated
after providing the response to the client device 105A.

[0044] In another example, a web form session (e.g. S3, S4) can be initiated when a user
enters a URL into a browser at a client 105B. The client device 105B establishes a session with
website 250B. The server 200 may be processing multiple sessions. The server 200 starts a
time counter per session. The user has x amount of time to fill out a form before the session
closes. A different server may process the form submission from the initial session due to the
time it takes to fill out the web form data.

[0045] In a further example, an online banking session (e.g. S5, S6) can be initiated when a
user opens a mobile banking application at the client device 105B, and the client device 105B
establishes a connection and session with online banking application 250C. Online banking
application 250C communicates with the client device 105B to obtain authentication information
from the client device 105B. Once authenticated, the client device 105B can request account
balances, upload copies of checks for deposit, and make other banking requests. The banking
application 250C can access account information stored in database 140 via backend server
135 to process these requests. The connection and session are eventually terminated at the
end of the session.

[0046] Frontend security module 156 can communicate with the security control module 150 to
send and receive security information to implement rolling security. The security module 156
can receive commands to initiate a rebuild of the frontend server 200. The commands can
include a name of a golden image, which is a known good master software image that is to be
used as a template for the rebuild. The security module 156 then rebuilds the frontend server
200 in accordance with the commands, such as by replacing the OS 152, applications and/or
firmware 154. The OS 152, applications 250 and/or firmware 154 can replaced by overwriting
existing software on the server 200 with the golden image, deleting existing software on the
server 200 and copying new software onto the server 200 from the golden image, etc. The

DK/EP 3248100 T3

golden image can be stored locally on a disc within the server 200 or elsewhere on a network.

[0047] Different rebuild techniques with varying rebuild times can be used. In one embodiment,
a single golden image can be used to rebuild multiple servers 200. Data from the golden image
can be copied onto the frontend server 200, and then post process configurations are
executed on each frontend server 200 to configure the OS 152 or applications 250. For
example, a different script may be executed on each frontend server 200 to establish a unique
name for the server and an IP address for the server. In one embodiment, there may be
multiple golden images that are specific and unique to each frontend server 200. The data
from a golden image can be copied onto a respective server without the need for post process
configurations, which reduces reduce rebuild time.

[0048] In another embodiment, a data differencing technique is used to rebuild the frontend
server 200. Specifically, data blocks or files of the software of a frontend server 200 can be
compared to data blocks or files of a golden image. Only the data blocks or files that are
different are restored from the golden image. By leveraging block or file based differencing,
rapid deployment of preconfigured OS and app configurations via local disk, remote SAN disks
or NAS disks is possible. It should be noted that other rebuild techniques may be possible and
still fall within the scope of the disclosure.

[0049] In one embodiment, various hash or encryption models or block state comparisons can
be applied to a rebuilt software image to verify the rebuild is of standard expected configuration
and the state is of a good known configuration. For example, the rebuilt software can be
hashed and then compared to the hash of the golden image to verify that the rebuild was
performed as expected.

[0050] In one embodiment, the frontend security module 156 places a frontend server 200 into
a lock down security mode during rebuilds for protection against tampering. During rebuilds,
the frontend security module 156 may set its internal firewall access control lists (ACL) with
permissions that block any traffic to certain ports other than communications with the security
control module 150 of the security server 148. An ACL can be a list of network ports, along with

specific entities permitted to use the network ports. Other 3™ party applications may also be
given access on a need basis for verification of state of compliance.

[0051] The security module 156 can also receive a command to change the password of the
OS 152 and then replace the password in accordance with the command. In one embodiment,
the security information is communicated via an intelligent platform management interface
(IPM1).

[0052] FIG. 2B is a block diagram of a frontend server 202 with VMs 204, according to an
embodiment. Frontend server 202 may represent a frontend server 159 from FIG. 1B.
Frontend server 202 includes several VMs 204, hypervisor 208, OS 152, and frontend security
module 156A. Each VM includes a virtualized OS 206 and applications 250.

DK/EP 3248100 T3

[0053] Frontend security module 156A is similar to frontend module 156, but now rebuilds VMs
in response to commands to rebuild the VMs 204. The rebuilding of VMs 204 is similar to the
rebuilding described with respect to FIG. 2A, and can also utilize a golden image of a VM 204
to generate a VM 204, utilize data differencing, and/or perform rebuild verification after
rebuilding the VM 204.

[0054] FIG. 2C is a block diagram of a frontend server 290 with containers 292, according to
an embodiment. Frontend server 290 may represent a frontend server 159 from FIG. 1C.
Frontend server 290 includes several containers 292, container engine 294, OS 152, and
frontend security module 156B. Each container includes virtualized applications 250.

[0055] Frontend security module 156B is similar to frontend module 156, but now rebuilds
containers 292 on a rolling basis in response to commands to rebuild the containers 292. The
rebuilding of containers 292 is similar to the rebuilding described with respect to FIG. 2A, and
can also utilize a golden image of a container 292 to generate a container 292, utilize data
differencing, and/or perform rebuild verification after rebuilding the container 292.

[0056] FIG. 3 is a diagram of rolling server groups, according to an embodiment. The rolling
operation of four server groups 130A-130D is illustrated in FIG. 3. In other embodiments, the
rolling operation shown in FIG. 3 is also applicable to rolling of VM groups 160 and software
container groups 960.

[0057] Each server group 130 operates in different rolling security modes: (1) a normal
operation mode (2) a shutdown preparation mode and (3) a rebuilding mode. During the
normal operation mode a server group 130 accepts and services new user sessions and
connections. During the shutdown preparation mode the server group 130 does not accept
new sessions and connections. Existing sessions and connections are allowed to finish. In one
embodiment, the load balancers 125 may be notified that a particular server group 130 is
being placed into shutdown preparation mode and is not accepting new sessions and
connections. The load balancers 125 respond by removing the server group 130 from the
possible server groups 130 to which new sessions and connections can be made. During the
rebuilding mode the server group 130 is removed from service and is rebuilt by replacing the
software of the server group 130. The modes repeat periodically, such as every 60 seconds.

[0058] The server groups 130 are operated in a rolling manner such that the rebuilding of
different server groups is initiated at different times. For example, server group 130A is rebuilt
at 1:00:50, server group 130B is rebuilt at 1:01:00, server group 130C is rebuilt at 1:01:10, and
server group 130D is rebuilt at 1:01:20. The rebuild times are staggered from each other by
ten seconds. The staggering of rebuild times ensures that there is always at least one server
group 130 in service and available to accept new connections and user sessions for
applications hosted by the server group 130. In other words, there is always at least one server
group 130 that is in normal operation mode.

[0059] In one embodiment, shutdown preparation mode may be delayed for a server group

DK/EP 3248100 T3

130 if a security condition indicating the presence of a hacker is triggered. A security condition
may be triggered, for example, if session is associated with a suspicious IP or has kept the
session open for too long. In that situation, the security control module 150 may implement
deep analytics of the session, containment of the session and recording of the session to
better understand a hacker's actions. Alternatively, if a security condition is triggered, the
security module 150 may take a hacked server, on which hacked session is detected, out of a
server group 130. A new server is then hot swapped in place of the hacked server such that
the rolling of the server groups 130 is not interrupted.

[0060] FIG. 4 is a block diagram of a security control module 130, according to an
embodiment. Security control module 130 includes a communication module 405, rolling timing
module 410, rolling control module 415, and password change module 420. In other
embodiments the security control module 130 may have additional modules not shown in FIG.
4.

[0061] The rolling timing module 410 maintains rolling timing information indicating staggered
timings for when the physical server groups 130, VM groups 160, or container groups 960
(collectively referred to herein as "rolling entity groups”) should enter different modes, such as
normal operation mode, shutdown preparation mode and rebuilding mode. The timing
information may be in the form of a timing schedule that includes a list of rolling entity groups
and specific times for when each rolling entity group should enter different modes. The
following table is an example of a timing schedule.

Server Group {Mode: Normal Mode: Shutdown Mode:
Operation Preparation Rebuilding

1 1:00:00 1:00:30 1:00:50
1:01:00 1:01:30 1:01:50

2 1:00:10 1:00:40 1:01:00
1:01:10 1:01:40 1:02:00

3 1:00:20 1:00:50 1:01:10
1:01:20 1:01:50 1:02:10

4 1:00:30 1:01:00 1:01:20
1:01:30 1:02:00 1:02:20

[0062] The first column of the table identifies a server group. The second column identifies
start times for when the server group should enter the normal operation mode. The third
column identifies when the server group should enter shutdown preparation mode. The fourth

DK/EP 3248100 T3

column identifies when the rebuilding process should begin.

[0063] In other embodiments, the timing information may be in the form of maximum time
limits instead of a timing schedule. For example, the timing information may include a
maximum uptime of a rolling entity group, a maximum duration of a normal operation mode, a
maximum duration of a shutdown preparation mode, and/or a maximum duration of a rebuild
mode. The timing information may also include information describing an amount of staggered
delay between the rolling entity groups.

[0064] The rolling timing information for the rolling modes may be manually set by a user. In
another embodiment, the timing information may be machine learned by monitoring the
durations of previous application sessions or connections on the servers and generating
application profiles that include the monitored durations. A statistical measure of the durations
(e.g. average duration, maximum duration) can be determined from the monitored durations.
The statistical measure is then multiplied by a multiplier (e.g. 8x, 10x) to determine the
maximum duration of each rolling mode. The result is that the time between rebuilds is
sufficient for new user sessions and connections to be established and completed before a
rolling entity group is rebuilt. For example, if user sessions tend to be 6 seconds long, this
value may be multiplied by 8x to result in a duration between periodic rebuilds of 48 seconds,
which is much greater than the session duration.

[0065] Rolling control module 415 controls the rolling operation of the rolling entity groups in
accordance with the rolling timing information, such as the rolling timing schedule or the
maximum time limits described above. The rolling control module 415 uses the rolling timing
information to determine the rolling mode that a server group should be in. The rolling control
module 415 then sends control commands to the load balancers 125 and rolling entity groups
via the communication module 405 that cause the rolling entity groups to operate in a rolling
manner as shown in FIG. 3. The commands for each rolling entity group may be staggered in
time relative to commands for the other rolling entity groups to ensure that the rolling entity
groups are rolled at controlled and staggered times.

[0066] To initiate normal operation mode, the rolling control module 415 may transmit a normal
operation initiation command to the load balancers 125. The command identifies a particular
rolling entity group and also indicates that normal operation mode is to begin for that rolling
entity group. The load balancer 125 responds to the command by allowing sessions and
connections to be established with the identified rolling entity group. In one embodiment the
normal operation initiation command may also be transmitted to the appropriate rolling entity
group for which normal operation is being initiated.

[0067] To initiate shutdown preparation mode, the rolling control module 415 may transmit a
shutdown preparation initiation command to the load balancers 125. The command identifies a
particular rolling entity group and also indicates that shutdown preparation mode is to begin for
that rolling entity group. The load balancer 125 responds to the command by preventing any
new sessions and connections to be established with the identified rolling entity group. Existing

DK/EP 3248100 T3

sessions and connections of the rolling entity group are permitted to complete. In one
embodiment the shutdown preparation initiation command may also be transmitted to the
appropriate servers for a rolling entity group.

[0068] To initiate rebuilding, the rolling control module 415 may send a rebuild initiation
command to the appropriate front end server(s) associated with a rolling entity group that is to
be rebuilt. The command can include a name of a known good software image that is to be
used for the rebuild. In response, the rolling entity group can be rebuilt with the known good
software image. The rolling control module 415 may also receive rebuild confirmation
information from the appropriate front end servers once the rebuild is completed.

[0069] Additionally, prior to rebuilding, rolling control module 415 can copy data from a rolling
entity group to a separate storage drive. Machine learning can be used to monitor for changes
in the data and do an inline analysis of the changes for global comparison across other
servers. This allows for understanding of all the changes made by a hacker to the OS,
applications, or files while an entity was online. Machine learning the rebuild state and timing is
important but delaying the rebuild state over a hacked situation to enable more advanced
learning is also part of the system controls managed via the rolling control module 415. Rolling
control module 415 can also communicate with the local server groups, router 115 and firewall
120 to continue servicing a hacker with the intention of learning and collection more data to
learn the hackers capabilities and learn more about new attacks.

[0070] Password change module 420 initiates password changes for the server groups 130.
The passwords can be OS, database, or application passwords, among others. The passwords
can be changed with every rebuild as indicated by the rolling timing information, or can be
rebuilt at specific timestamps (i.e. at certain intervals). The frequency of the password changes
can be the same as or different than the frequency of the rolling entity group rebuilds. In one
embodiment, the password change module 420 can initiate a password change by generating
new passwords and transmitting the passwords to the servers. In another embodiment, the
password change module 420 can initiate a password change by sending a password change
command to the servers. The servers then generate new passwords in response to the
command. Any of a number of algorithms can be used to generate the password. In one
embodiment, a timestamp is one of the elements used to generate the password.

[0071] Communication module 405 communicates with the servers, load balancers 125, and
other devices in the networked communication system. The communication module 405 may
transmit rolling security commands that cause the rolling entity groups to operate in a rolling
and staggered manner. The communication module 405 may send commands that initiate
password changes at the rolling entity groups. The communication module 405 may also
receive other types of information from the devices in the networked communication system.

[0072] FIG. 5 is a flowchart for a method of rolling security, according to an embodiment. In
step 505, previous connections or user sessions for applications hosted by the rolling entity
groups are monitored. The durations are stored in application profiles. Once sufficient

DK/EP 3248100 T3

information is collected, the durations for the previous connections and user sessions is used
to generate rolling timing information that describes staggered timings for different rolling
security modes of the rolling entity groups, such as staggered timing for when different rolling
entity groups should be rebuilt.

[0073] In step 510, the security control module 150 initiates normal operation of the first rolling
entity group at a timing specified by the rolling timing information. In step 512, the security
control module 150 initiates shutdown preparation mode of the rolling entity group at a timing
specified by the rolling timing information. In step 514, the security control module 150 initiates
rebuilding of the first rolling entity group at a timing specified by the rolling timing information.
Additionally, the security control module 150 initiates a password change of the first rolling
entity group at the same time. Steps 510-514 repeat continuously, such as at periodic intervals.

[0074] In step 520, the security control module 150 initiates normal operation of the second
rolling entity group at a timing specified by the rolling timing information. In step 522, the
security control module 150 initiates shutdown preparation mode of the second rolling entity
group at a timing specified by the rolling timing information. In step 524, the security control
module 150 initiates rebuilding of the second rolling entity group at a timing specified by the
rolling timing information. Additionally, the security control module 150 initiates a password
change of the first rolling entity group at the same time. Steps 520-524 repeat continuously,
such as at periodic intervals.

[0075] Other rolling entity groups may also be controlled in a similar manner as steps 510-514
and 520-524. Additionally, for each rolling entity group, the initiation of the rebuilding, normal
operation modes, and shutdown preparation modes is staggered in time relative to the other
rolling entity groups. Staggering of the security modes results in the rolling security illustrated in
FIG. 3.

[0076] FIG. 6 illustrates the hardware architecture of a computing device, such as a firewall
120, router 115, load balancer 125, client device 105, frontend server 130 or 159, backend
server 135, or security server 148, according to one embodiment. In one embodiment, the
computing device is a computer including components such as a processor 602, a memory
603, a storage module 604, an input module (e.g., keyboard, mouse, and the like) 606, a
display module 607 and a communication interface 605, exchanging data and control signals
with one another through a bus 601. The storage module 604 is implemented as one or more
non-transitory computer readable storage media (e.g., hard disk or solid state drive), and
stores software instructions 640 (e.g. modules) that are executed by the processor 602 in
conjunction with the memory 603 to implement the rolling security features described herein.
Operating system software and other application software may also be stored in the storage
module 604 to run on the processor 602.

[0077] The rolling security described herein is not only limited to front end servers 130, virtual
machines 160, and containers 960. In other embodiments the rolling security can be used to
periodically rebuild other groups of computing systems in a datacenter, such as firewalls 120,

DK/EP 3248100 T3

load balancers 125, switches, backend servers 135 and backend storage 140. Additionally, the
functions of the modules described herein may be combined into a single module or distributed
across additional modules.

[0078] In other embodiments, the rolling security described herein may be applied to other
groups of computing systems outside of datacenters that provide common software
functionality. The computing systems can be desktops, laptops, ipads, iphones, and computing
systems in vehicles (cars, trains, planes) and computing systems in power plants, generators,
etc. In the example of a plane, the plane may include several parallel flight control systems,
each of which can provide flight control for the plane. Rolling the flight control systems on a
staggered basis can protect the flight control systems from being hacked while ensuring that at
least one flight control system is always online.

[0079] Upon reading this disclosure, those of skill in the art may appreciate still additional
alternative designs for rolling security. Thus, while particular embodiments and applications of
the present disclosure have been illustrated and described, it is to be understood that the
disclosure is not limited to the precise construction and components disclosed herein. Various
modifications, changes and variations which may be apparent to those skilled in the art may be
made in the arrangement, operation and details of the method and apparatus of the present
disclosure herein without departing from the scope of the disclosure as defined in the
appended claims.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not
form part of the European patent document. Even though great care has been taken in
compiling the references, errors or omissions cannot be excluded and the EPO disclaims all
liability in this regard.

Patent documents cited in the description

o USB2105685 [08011
o USBS777515 [8801]

10

15

20

25

30

DK/EP 3248100 T3

Patentkrav

1. Ikke-transient computerlaesbart medie der lagrer instruktioner til
implementering af rullende sikkerhed for et system, der omfatter en forste
servergruppe af servere og en anden servergruppe af servere, idet hver server i
den fgrste servergruppe og anden servergruppe omfatter software, der omfatter
et styresystem og en applikation, der stgtter brugersessioner, hvor
instruktionerne, nar de udfgres af mindst en processor, far den mindst ene
processor til:
at fa adgang til rullende tidsinformation genereret baseret pa overvadgede
varigheder af tidligere brugersessioner etableret mellem applikationen og
klientindretninger, idet den rullende tidsinformation indikerer fgrste
genoprettelsestider til genoprettelse af den fgrste servergruppe og anden
genoprettelsestider til genoprettelse af den anden servergruppe, idet de
fgrste genoprettelsestider er tidsmaessigt forskudt fra de anden
genoprettelsestider;
gentagne gange at pabegynde genoprettelse af den fgrste servergruppe af
servere i overensstemmelse med de fgrste genoprettelsestider; og
gentagne gange at pabegynde genoprettelse af den anden servergruppe af
servere i overensstemmelse med de anden genoprettelsestider, idet
genoprettelse af den fgrste servergruppe af servere er tidsmaessigt
forskudt fra genoprettelsen af den anden servergruppe af servere.

2. Computerlaesbart medie ifglge krav 1, hvor serverne i den fgrste servergruppe
og den anden servergruppe, som gentagne gange genoprettes, er fysiske servere

eller virtuelle maskiner.

3. Computerleesbart medie ifglge krav 1, hvor systemet yderligere omfatter en
eller flere belastningsudligninger til at fordele netvaerkstrafikken mellem den
fgrste servergruppe og den anden servergruppe, og hvor instruktionerne, nar de
udfgres af den mindst ene processor, far den mindst ene processor til:
gentagne gange at pabegynde lukningsforberedelsesmodus af den fgrste
servergruppe forud for hver genoprettelse af den fgrste servergruppe, idet
belastningsudligningerne forhindrer nye sessioner i at blive etableret med

10

15

20

25

30

DK/EP 3248100 T3

2

applikationer af den fgrste servergruppe, mens den fgrste servergruppe er i
lukningsforberedelsesmodus; og

gentagne gange at pabegynde lukningsforberedelsesmodus af den anden
servergruppe forud for hver genoprettelse af den anden servergruppe, idet
belastningsudligningerne forhindrer nye sessioner i at blive etableret med
applikationer af den anden servergruppe, mens den anden servergruppe er

i lukningsforberedelsesmodus.

4. Computerlzesbart medie ifglge krav 1, hvor

den gentagne pabegyndende genoprettelse af den fgrste servergruppe omfatter
periodisk pabegyndende genoprettelse af den fgrste servergruppe; og

den gentagne pabegyndende genoprettelse af den anden servergruppe omfatter
periodisk pabegyndende genoprettelse af den anden servergruppe.

5. Computerimplementeret fremgangsmade til rullende sikkerhed for et system
der omfatter en fgrste servergruppe af servere og en anden servergruppe af
servere, idet hver server i den fgrste servergruppe og anden servergruppe
omfatter software, der omfatter et styresystem og en applikation, der stgtter
brugersessioner, hvilken fremgangsmade omfatter:
at fa adgang til rullende tidsinformation genereret baseret pa overvdgende
varigheder af tidligere brugersessioner etableret mellem applikationen og
klientindretninger, idet den rullende tidsinformation indikerer fgrste
genoprettelsestider til genoprettelse af den fgrste servergruppe og anden
genoprettelsestider til genoprettelse af den anden servergruppe, idet de
fgrste genoprettelsestider er tidsmaessigt forskudt fra de anden
genoprettelsestider
gentagne gange at pabegynde genoprettelse af den fgrste servergruppe af
servere i overensstemmelse med de fgrste genoprettelsestider; og
gentagne gange at pabegynde oprettelse af den anden servergruppe af
servere i overensstemmelse med de anden genoprettelsestider, idet
genoprettelsen af den fgrste servergruppe er tidsmaessigt forskudt fra
genoprettelsen af den anden servergruppe.

6. Computerlaesbart medie ifglge krav 1 eller fremgangsmade ifglge krav 5, hvor:

DK/EP 3248100 T3

3

den gentagne pabegyndende genoprettelse af den fgrste servergruppe

omfatter pabegyndende genoprettelse af software af hver server af den
fgrste servergruppe; og

den gentagne pabegyndende genoprettelse af den anden servergruppe
omfatter pabegyndende genoprettelse af software af hver server af den

anden servergruppe.

7. Computerlaesbart medie ifglge krav 1 eller fremgangsmade ifglge krav 5, hvor:
den gentagne pabegyndende genoprettelse af den fgrste servergruppe
omfatter at pdbegynde en genoprettelse af firmware i hver server af den
fgrste servergruppe; og
den gentagne pabegyndende genoprettelse af den anden servergruppe
omfatter at pdbegynde en genoprettelse af firmware i hver server af den

anden servergruppe.

8. Fremgangsmade ifglge krav 5, yderligere omfattende:
gentagne gange at pabegynde en kodeordsaendring af hver server i den
fgrste servergruppe, nar den fgrste servergruppe genoprettes; og
gentagne gange at pabegynde en kodeordsaendring af hver server i den

anden servergruppe, nar den anden servergruppe genoprettes.

9. Computerlaesbart medie ifglge krav 1 eller fremgangsmade ifglge krav 6
yderligere omfattende:
at overvage varigheder af brugersessionerne; og
at generere den rullende tidsinformation som indikerer genoprettelses-tider
for den farste servergruppe og den anden servergruppe baseret pa de

overvagede varigheder af brugersessionerne.

10. Ikke-transient computerlaesbart medie der lagrer instruktioner til
implementering af rullende sikkerhed for et system, der omfatter en faorste gruppe
af softwarecontainere og en anden gruppe af softwarecontainere, idet hver
softwarecontainer i den fgrste gruppe af softwarecontainere og den anden gruppe
af softwarecontainere omfatter software, der omfatter en applikation, der stgttes
brugersessioner, hvor instruktionerne, nar de udfgres af mindst en processor, far

den mindst ene processor til:

10

15

20

25

30

DK/EP 3248100 T3

4

at fa adgang til rullende tidsinformation genereret baseret pa overvadgede
varigheder af tidligere brugersessioner etableret mellem applikationen og
klientindretninger, idet den rullende tidsinformation indikerer fgrste
genoprettelsestider til genoprettelse af den fgrste gruppe af
softwarecontainere og anden genoprettelsestider til genoprettelse af den
anden gruppe af softwarecontainere, idet de fgrste genoprettelsestider er
tidsmaessigt forskudt fra de anden genoprettelsestider;

gentagne gange at pabegynde genoprettelse af den fgrste gruppe af
softwarecontainere i overensstemmelse med de fgrste genoprettelsestider;
og

gentagne gange at pabegynde genoprettelsen af den anden gruppe af
softwarecontainere i overensstemmelse med de anden genoprettelsestider,
idet genoprettelsen af den forste gruppe af softwarecontainere er
tidsmaessigt forskudt fra genoprettelsen af anden gruppe af

softwarecontainere.

11. Fremgangsmade til implementering af rullende sikkerhed for et system, der
omfatter en fogrste gruppe af softwarecontainere og en anden gruppe af software-
containere, idet hver softwarecontainer i den fgrste gruppe af softwarecontainere
og den anden gruppe af softwarecontainere omfatter software, der omfatter en
applikation, der stgtter brugersessioner, hvilken fremgangsmade omfatter:
at fa adgang til rullende tidsinformation genereret baseret pa overvadgede
varigheder af tidligere brugersessions etableret mellem applikationen og
klientindretninger, idet den rullende tidsinformation indikerer fgrste
genoprettelsestider til genoprettelse af den fgrste gruppe af
softwarecontainere og anden genoprettelsestider til genoprettelse af den
anden gruppe af softwarecontainere, idet de fgrste genoprettelsestider er
tidsmaessigt forskudt fra de anden genoprettelsestider;
gentagne gange at pabegynde genoprettelse af den fgrste gruppe af
softwarecontainere i overensstemmelse med de fgrste genoprettelsestider;
og
gentagne gange at pabegynde genoprettelse af den anden gruppe af
softwarecontainere i overensstemmelse med de anden genoprettelsestider,

idet genoprettelsen af den forste gruppe af softwarecontainere er

DK/EP 3248100 T3

5

tidsmaessigt forskudt fra genoprettelsen af den anden gruppe af software-

containere.

12. System til rullende sikkerhed, omfattende:
5 en fgrste servergruppe af servere;

en anden servergruppe af servere, idet hver server i den fgrste
servergruppe og den anden servergruppe omfatter software, der omfatter
et styresystem og en applikation, der stgtter brugersessioner; og
et ikke-transient computerlzesbart medie der lagrer instruktioner, hvor

10 instruktionerne, nar de udfgres af den mindst ene processor, far den
mindst ene processor til:
at fa adgang til rullende tidsinformation genereret baseret pa overvadgede
varigheder af tidligere brugersessioner etableret mellem applikationen og
klientindretninger, som indikerer fgrste genoprettelsestider for den farste

15 servergruppe og anden genoprettelsestider for den anden servergruppe,
idet de fgrste genoprettelsestider er tidsmaessigt forskudt fra de anden
genoprettelsestider;
gentagne gange at pabegynde genoprettelse af softwaren af hver server af
den fgrste servergruppe af servere i overensstemmelse med de fgrste

20 genoprettelsestider; og
gentagne gange at pabegynde genoprettelse af softwaren af hver server i
den anden servergruppe af servere i overensstemmelse med de anden
genoprettelsestider, idet genoprettelsen af den fgrste servergruppe af
servere er tidsmaessigt forskudt fra genoprettelsen af den anden

25 servergruppe af servere.

13. System ifglge krav 12, hvor instruktionerne yderligere far den mindst ene
processor til:
at overvage varigheder af brugersessioner; og
30 at generere den rullende tidsinformation der indikerer genoprettelsestider
for den fgrste servergruppe og genoprettelsestider for den anden

[« [« . .
servergruppe baseret pa de overvagede varigheder af brugersessionerne.

14. Computerlaesbart medie ifglge krav 1, hvor instruktionerne, nar de udfgres af
35 den mindst ene processor, far den mindst ene processor til:

DK/EP 3248100 T3

6

gentagne gange at pabegynde en kodeordsaendring af hver server i den
fgrste servergruppe, nar den fgrste servergruppe genoprettes; og
gentagne gange at pabegynde en kodeordsaendring af hver server i den

anden servergruppe, nar den anden servergruppe genoprettes.

DK/EP 3248100 T3

DRAWINGS

Y1 Old
aori o0FL q0rL YovlL
abelolg abelo)g sbelolg sbeio}g
asel ogel asel veer
dnoucy Janleg dnoug) Janleg dnougy Jeasss dnouo) jenseg
|| pusxoeq 4] pusyoeg 4] pudsXoeg puaoeqg
L - T L T 1 T
acel dcel veel 214
[[emali4 [lemall4 [lemali NETVIETS
_, _, _, Ajnoeg
L L L 1 oSl
daoct o0¢l docl vogl 9|NpPoAl
dnoig Jeneg | — — — — dnoig Jjoneg | — — — ||| dnoig sentes | — — dnoug) Jenieg [T |osuon)
pusjuo.H puajuol4 puajuo. | pusjuo.4 “ Anoss
i T : 7 1 T _
a8¢CL ascl veev. |\ ___ 1
Jaoueleg peo Jaouejeg peo Jaoueleqg peo]
T T
J 1
o0ct 12[074) YOcl VSOl
|lemadi [lemalid llemalld el D
T T T
AR
Gl gs01
19]N0Y usID

DK/EP 3248100 T3

dl 9ld
aorl a0k L govl YOorlL
afelolg abeiolg abeloig abeiolg
asel agel asel acer
dnougy JoAleg dnouc) Janleg dnoio) Jjanleg dnoJg) Janiag
[| pusyoed 4] pusXoed | PuSxOEY pusMoeqg
i - - 1 H I T
ocel acel) Vel 514"
[lemali4 [lemall [lemali4 NET VTS
—L T T _ i Aynoeg
L deslt 1 D6G1 J __ d6GH] V651
|_aosl dAH_| 006l dAH | |_g06) dAH | | vosl dAH | 051
) sInpol
aost —— = 0091 — - d09L : V09l -1 — |oJjuo)
dnoig INA dnaig WA dnoig WA dnoJo WA I Ainoag
T T T _
1 1]
| | ! !
o5ct L acer _ veer | i
Jaoueleg peo] Jaoueleg peo] Jeouejeg pro]
T T
L R VS0l
202} a0zl vocl oLl usi)
[|lemali [[lemallH [lemauld .
& T H NIOMIBN
Sl ds01
J8inoy sl

DK/EP 3248100 T3

Old
aovl a0rl aovl Vorl
afelolg abeiolg abeloig abeiolg
el el acel acer
dnougy JoAleg dnouc) Janleg dnoio) Jjanleg dnoJg) Janiag
| pusyoeq H] pusxoeg || pusyoegd puaoeg
i - - 1 H I T
acel dcel veel 14"
[lemali4 [lemall [lemali4 NET VTS
—L T T _ i Aynoeg
L deslt 1 D8GlI J __ d6GH] V651
| doss suibug | | D066 euIbUT | | 9066 suibug | | vo66 suibug | oSl
) SINPOA
aose —_—— 0096 — d096 Y096 —1 — |[0JuoD
dnoug) uon dnouny o) dnoig o) dnoJo Juo9 | Aunoag
T T T T _
| 1 1]
| | ! !
DS5Cl ascl _ veer | i
Jgouejeg peo] Jsouejeg peoT Jeoug|jeg prOT
T T
L v VS0l
202} a0zl vocl oLl usi)
[lemali{ [[emaliq llemaliq .
- T H NIOMIBN
Gl as01
J8inoy sl

Frontend Server 200

[c1] |c2| [c3][ca] [cs]]|cs]
s1|s2]|[s3][s4]|[s5]ss
Application | | Application| | Application
A B C
(credit) (website) (banking)
250A 250B 250C
0Ss Firmware
152 154
Frontend
Security
Module
156

FIG. 2A

DK/EP 3248100 T3

Frontend Server 202

[c1] |c2| [c3][ca] [cs]]|cs]
S1 | s2 S3 | s4 S5 | S6
Application | | Application| | Application
A B C
(credit) (website) (banking)
250A 2508 250C
0S
206
VM 204
Hypervisor
208
Frontend
Security 0S
Module 152
156A

FIG. 2B

DK/EP 3248100 T3

Frontend Server 290

[c1] |c2| [c3][ca] [cs]]|cs]
S1 | s2 S3 | s4 S5 | S6
Application | | Application| | Application
A B C
(credit) (website) (banking)
250A 2508 250C
Container
292
Engine
294
Frontend
Security 0S
Module 152
156B

FIG. 2C

DK/EP 3248100 T3

DK/EP 3248100 T3

¢ Old

aoel
ydQ [euwloN pIingay uopeLedald uonesado |BULION { dnoig
umopinus Janieg
a0¢l
uonessdQ [ewoN plingsy uoye.edaid uone.tado [ewlioN ¢ dnoio
uMopINYS Janeg
d0¢l
uonesadQ) |BULION Plingey UojeEdald uonesadp |ewIoN Z dnoio
umopinys Jansg
vOegL
uofe.edald uopessdo [ewoN pINGoY uopesedai uopeadQ |BuLoN | dnoigy
umopInys UMOpINYS Jonag
1 T T T T 1T 71T T T 1
Ot-L0:L 0ge-l0'l 0<¢'Lo-L O0L:L0:L 00:10'L 0§:00:L OF00:-L 0£:00-L 0Z:00:L O0L:00-L 00:00:1

Security Control Module

Communication
Module
405

Rolling Control
Module
415

130

Rolling

Timing

Module
410

Password Change
Module
420

FIG. 4

DK/EP 3248100 T3

DK/EP 3248100 T3

Monitor previous session / connection durations and determine
rolling timing information based on monitored durations

505

Initiate normal operation of
first rolling entity group based
on rolling timing information
510

Initiate shutdown preparation
of first rolling entity group
based on rolling timing
information
512

Initiate rebuilding of first rolling
entity group based on rolling
timing information and initiate
password change of first
rolling entity group
514

Initiate normal operation of
second rolling entity group
— based on rolling timing
information

Initiate shutdown preparation
of second rolling entity group
based on rolling timing
information

Initiate rebuilding of second
rolling entity group based on
rolling timing information and
initiate password change of
second rolling entity group

FIG. 5

DK/EP 3248100 T3

[601

PROCESSOR MEMORY
602 - 603
STORAGE
MODULE
604 COMMUNICATION
<«>»le»] INTERFACE
Instructions 605
640
INPUT MODULE DISPLAY
606 <l MODULE
607
Y

FIG. 6

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

