Title: LIQUID CRYSTALLINE COMPOUNDS CONTAINING A BIPHENYL CORE

Abstract: A compound of formula (I) or a dimer thereof, where R¹ and R² are independently selected from optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkylnyl, a functional group or a group of sub-formula (i) where m is 0 or 1; p is an integer of from 1 to 12; R⁷ is a group of formula Cₓ₊₁ₓ₋₁ where q is an integer of from 1 to 12 and X is halogen such as fluoro, or a group of sub-formula (ii) where k is an integer of from 1 to 10, R⁸, R⁹, and R¹² and each R⁸ and R¹¹ are independently selected from alkyl, alkenyl or aryl, such as lower alkyl and in particular methyl; provided that at least one of R¹ or R² is a group of sub-formula (i); R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen or halogen, and in particular fluorine, n is 0 or 1, and A is a ring structure as specified. Compounds of formula (I) may have liquid crystal properties and/or be useful in liquid crystal devices.
LIQUID CRYSTALLINE COMPOUNDS CONTAINING A BIPHENYL CORE

The present invention relates to novel compounds, which may be useful in liquid crystal devices, for example because they have the properties of liquid crystals, together with processes for their preparation and liquid crystal devices incorporating them.

The term "liquid crystals" is well known. It refers to compounds which, as a result of their structure, will align themselves in a similar orientation, preferably at working temperatures, for example of from −40 to 200°C. These materials are useful in various devices, in particular the liquid crystal display devices or LCDs.

Liquid crystals can exist in various phases. In essence there are three different classes of liquid crystalline material, each possessing a characteristic molecular arrangement. These classes are nematic, chiral nematic (cholesteric) and smectic.

Broadly speaking, the molecules of nematic compounds will align themselves in a particular orientation in a bulk material. Smectic materials, in addition to being orientated in a similar way, will align themselves closely in layers.

A wide range of smectic phases exists, for example smectic A and smectic C. In the former, the molecules are aligned perpendicularly to a base or support, whilst in the latter, molecules may be inclined to the support. Some liquid crystal materials possess a number of liquid crystal phases on varying the temperature. Others have just one phase. For example, a liquid crystal material may show the following phases on being cooled from the isotropic phase: isotropic - nematic - smectic A - smectic C - solid. If a material is described as being smectic A then it means that the material possesses a smectic A phase over a useful working temperature range.

Such materials are useful, in particular in display devices where their ability to align themselves and to change their alignment under the influence of voltage, is used to impact on the path of polarised light, thus giving rise to liquid crystal displays. These are widely used in devices such as watches, calculators, display boards or hoardings, computer screens, in particular laptop computer screens etc. The properties of the compounds which impact on the speed with which the compounds respond to voltage charges include molecule size, viscosity (Δn), dipole moments (Δε), conductivity etc.

The applicants have found a new class of chemicals many of which have useful liquid crystal properties.

According to the present invention there is provided a compound of formula (I)

\[\text{R}^1 \quad \text{A} \quad \text{R}^2 \]

(I)

or a dimer thereof;

where \(\text{R}^1 \) and \(\text{R}^2 \) are independently selected from optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, a functional group or a group of sub-formula (i)

\[\text{(O)}_m \quad \text{(CH}_2\text{)}_p \quad \text{R}^7 \]

(i)

where \(m \) is 0 or 1;

\(p \) is an integer of from 1 to 12;

\(\text{R}^7 \) is a group of formula \(-\text{C}_q\text{X}_{2q+1}\) where \(q \) is an integer of from 1 to 12 and \(\text{X} \) is halogen such as fluoro,

or \(\text{R}^7 \) is a group of sub-formula (ii)

\[\text{Si} \quad \text{O-Si} \quad \text{R}^{12} \]

(ii)

where \(k \) is an integer of from 1 to 10, \(\text{R}^8 \), \(\text{R}^{10} \) and \(\text{R}^{12} \) and each \(\text{R}^9 \) and \(\text{R}^{11} \) are independently selected from alkyl, alkenyl or aryl, such as lower alkyl and in particular methyl;

provided that at least one of \(\text{R}^1 \) or \(\text{R}^2 \) is a group of sub-formula (i);

\(\text{R}^3 \), \(\text{R}^4 \), \(\text{R}^5 \) and \(\text{R}^6 \) are independently selected from hydrogen or halogen, and in particular fluorine,

\(n \) is 0 or 1, and \(\text{A} \) is a group of sub-formula (iii), (iv), (v), (vi) or (vii).
where \(R_{13} \), \(R_{14} \), \(R_{15} \), \(R_{16} \), \(R_{17} \), \(R_{18} \) and \(R_{19} \) are independently selected from hydrogen or halo, such as fluoro, and the group A may be orientated in either direction, so that the group \(R^2 \) is attached at either of the available bonds in sub-formula (iii) - (vii).

Preferably compounds of formula (i) are selected because they have useful liquid crystal properties as described in more detail below. However, others may be useful as dopants, in particular chiral dopants in liquid crystal mixtures.

Dimers of compounds of formula (i) are suitably prepared by condensation of the groups \(R^7 \), for example by formation of a siloxane chain from two groups of sub-formula (ii).

As used herein the term “hydrocarbonyl” refers to organic groups comprising carbon and hydrogen atoms such as alkyl, alkenyl, alkynyl, cycloalkyl, aryl or aralkyl. The term “alkyl” refers to straight or branched chain alkyl group, suitably containing up to 20, more suitably up to 10 and preferably up to 6 carbon atoms. The expression “lower” used in relation to alkyl groups for instance, indicates an upper limit of 6 carbon atoms, and suitably is C_{1-3}. The term “alkenyl” or “alkynyl” refers to optionally. The term “alkylene” refers to such groups which are divalent and “cycloalkyl” refers to such groups which have at least 3 carbon atoms, and which are cyclic in structure. The term “aryl” refers to aromatic rings such as phenyl and naphthyl. The term aralkyl refers to alkyl groups substituted by aryl groups such as benzyl.
References to “heterocyclic groups” refer to rings which may be mono or bi-cyclic and aromatic, non-aromatic or, in the case of bicyclic rings, partially aromatic and partially non-aromatic. These rings suitably contain from 3 to 20 atoms, up to seven of which are heteroatoms selected from oxygen, nitrogen or sulphur.

The term “functional group” as used herein refers to reactive groups such as halo, cyano, nitro, oxo, -OC(O)Ra, -ORa, -C(O)ORa, S(O)\textsubscript{n}Ra, NRbRc, OC(O)NRbRc, C(O)NRbRc, OC(O)NRbRc, NRcC(O)\textsubscript{n}Rb, -NRbCONRbRc, -C=NORa, -N=CRbRc, S(O)\textsubscript{s}NRbRc, C(S)\textsubscript{n}Ra, C(S)ORa, C(S)NRbRc or -NRbS(O)\textsubscript{n}Ra where Ra, Rb and Rc are independently selected from hydrogen or optionally substituted hydrocarbyl, or Rb and Rc together form an optionally substituted ring which optionally contains further heteroatoms such as S(O)\textsubscript{n} oxygen and nitrogen, nt is an integer of 1 or 2, s is 0, 1 or 2, t is 0 or an integer of 1-3. In particular the functional groups are groups such as halo, cyano, nitro, oxo, C(O)\textsubscript{n}Ra, ORa, S(O)\textsubscript{s}Ra, NRbRc, OC(O)NRbRc, C(O)NRbRc, OC(O)NRbRc, -NRcC(O)\textsubscript{n}Rb, -NRbCONRbRc, -NRbCSNRbRc, -C=NORa, -N=CRbRc, S(O)\textsubscript{s}NRbRc, or -NRbS(O)\textsubscript{n}Ra where Ra, Rb and Rc are as defined above.

Suitable optional substituents for hydrocarbyl groups Ra, Rb and Rc are halo, cyano, nitro, oxo, carboxy or alkyl esters thereof, alkoxy, alkoxy carbonyl, amid, mono or di-alkylamido, amino, mono or di-alkylamino, alkyl sulphonyl, or thioalkyl.

Particular examples of functional groups for R1 and R2 are cyano, halo such as fluoro, or most preferably, a group of formula ORa where Ra is as defined above. A particularly preferred example of a group Ra in this instance is alkyl.

Alternative functional groups for R1 and R2 are groups of formula OC(O)Ra, -C(O)ORa where Ra is preferably a branched alkyl group which suitably carries a halo substituent such as a chloro group.

In formula (I), particular optionally substituted alkenyl or alkynyl groups for R1 or R2 are C\textsubscript{2-4} alkenyl or alkynyl groups such as ethenyl.

Suitable optional substituents for R1 and R2 where these are an optionally substituted alkyl, optionally substituted alkenyl or optionally substituted alkynyl groups are functional groups as defined above.

In a particular embodiment of the invention, one of the groups R1 and R2 is a group of sub-formula (i) and the other is alkyl or alkoxy. Suitable alkyl or alkoxy groups R1 and R2 contain from 3 to 12 carbon atoms, preferably from 7 to 10 carbon atoms.
In an alternative embodiment, both of the groups R¹ and R² are groups of sub-formula (i).

Within the sub-formula (i), m is preferably 1. Furthermore, it is preferred that p is an integer of from 3-10, such as 4.

When R⁷ in the group of sub-formula (i) is a group of formula -C₉X₂q₊₁, X is always the same halogen and is preferably fluoro. Suitable integers for q are from 2 to 10, more suitably from 2 to 6, such as 4. Such compounds are particularly preferred where smectic A phase stabilization is required.

Suitably in the groups of sub-formula (ii), R⁸, R⁹, R¹⁰, R¹¹ and R¹² are C₁₄-alkyl groups such as methyl, ethyl or propyl, and most preferably methyl or ethyl. The integer k is suitably from 1 to 6, more suitably from 1-4 and preferably 1.

Preferably in the compounds of formula (I), n is 1. A particularly preferred example of the group A is a group of sub-formula (iii).

When n is 0, it is preferred that at least one group R¹ or R² is a group of sub-formula (i) wherein R⁷ is a group of sub-formula -C₉X₂q₊₁ as this enhances liquid crystal properties. Some compounds were n is 0 may not have liquid crystal properties and so find applications as dopants in liquid crystal systems only.

Suitably, at least one of the rings in the compound of formula (I) carries one or more halo atoms and in particular fluoro atoms. Suitably, there are two fluorine atoms on the same ring. Thus preferably, either R³ and R⁴, or R⁵ and R⁶ or R¹³ and R¹⁴ (or equivalent moieties on alternative groups A) are both fluoro and the others are all hydrogen.

Where high melting and clearing points are required, it is preferred that m + p in the group of sub-formula (i) equals an odd number. Where there are even numbers of atoms between the R⁷ group in sub-formula (i) and the ring structure to which it is attached, lower melting and clearing points are found.

Particular examples of compounds of formula (I) are set out in Tables 1-3.
Table 1

<table>
<thead>
<tr>
<th>No</th>
<th>R^3</th>
<th>R^4</th>
<th>R^5</th>
<th>R^6</th>
<th>R^{13}</th>
<th>R^{14}</th>
<th>R^1</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>$C_4F_9C_4H_8O$-</td>
<td>$-OC_9H_{17}$</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>$C_4F_9C_4H_8O$-</td>
<td>$-OC_9H_{17}$</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>$C_4F_9C_4H_8O$-</td>
<td>$-OC_9H_{17}$</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>$C_4F_9C_4H_8O$-</td>
<td>$-C_9H_{19}$</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH_3 O S O C_6H_{15}-</td>
<td>$-OC_9H_{17}$</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>CH_3 O S O C_6H_{15}-</td>
<td>$-OC_9H_{17}$</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>CH_3 O S O C_6H_{15}-</td>
<td>$-OC_9H_{17}$</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>CH_3 O S O C_6H_{15}-</td>
<td>$-C_9H_{19}$</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>No</th>
<th>R³</th>
<th>R⁴</th>
<th>R⁵</th>
<th>R⁶</th>
<th>R¹</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H₁₇C₈O⁻ -OC₄H₈C₄F₉</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C₄F₉C₄H₈O⁻ -OC₄H₈C₄F₉</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₄F₉C₄H₈O⁻ -OC₈H₁₇</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₅H₁₉⁻ -OC₄H₈C₄F₉</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₄F₉C₄H₈O⁻ -C₅H₁₉</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-OC₈H₁₇</td>
</tr>
<tr>
<td>15</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-OC₈H₁₇</td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-OC₄H₈C₄F₉</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-OC₄H₈C₄F₉</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₄F₉C₄H₈O⁻</td>
</tr>
<tr>
<td>19</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C₄F₉C₄H₈O⁻</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₄F₉C₁₁H₂₂O⁻</td>
</tr>
</tbody>
</table>
Compounds of formula (I) are suitably prepared by using conventional methods. In general they may be prepared by coupling together appropriately substituted ring systems or by derivatising a core ring structure. For example, they may be prepared by coupling a compound of formula (IV)

where R^3 and R^4 are as defined in relation to formula (I) and $R^{1'}$ is a group R^1 as defined in relation to formula (I) or a precursor thereof, and R^{20} is a reactive group such as boronic acid $B(OH)_2$, with a compound of formula (V)

where R^5 and R^6 are as defined in relation to formula (I), R^{22} is a group $(A)_n-R^{2'}$ where A and n are as defined in relation to formula (I) and $R^{2'}$ is a group R^2 as defined in relation to formula (I) or a precursor thereof, and R^{21} is a leaving group such as halo, and in

<table>
<thead>
<tr>
<th>No</th>
<th>R^3</th>
<th>R^4</th>
<th>R^5</th>
<th>R^6</th>
<th>R^1</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>CH_3CH_3</td>
<td>$\text{C}9\text{H}{19}$</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>$\text{C}4\text{F}{9}\text{C}6\text{H}{9}\text{O}$</td>
<td>$\text{C}9\text{H}{19}$</td>
</tr>
</tbody>
</table>
particular bromide. The reaction is suitably effected in the presence of a coupling agent such as Pd(PPh₃)₄ in an organic solvent such a dimethoxyethane (DME) and in the presence of a base such as an alkali metal carbonate such as Na₂CO₃.

Alternatively, where n is 1, compounds of formula (I) can be prepared by reacting a compound of formula (VI)

![Chemical Structure](image)

(VI)

where R³, R⁴, R⁵ and R⁶ are as defined in relation to formula (I), and R¹ and R²⁰ are as defined in relation to formula (IV) with a compound of formula (VII)

![Chemical Structure](image)

(VII)

where A is as defined in relation to formula (I) and R²² and R²' are as defined in relation to formula (V).

Suitable precursor groups R¹' and R²' may for example be hydroxy groups, which can then be derivatised in one or more stages to form alkoxy groups or groups of subformula (i). The chemistry employed in such reactions is largely conventional and is illustrated in the examples hereinafter.

Compounds of formula (IV), (V), (VI) and (VII) are either known compounds or they can be prepared from known compounds by conventional methods.

Many of the compounds of formula (I) have liquid crystal properties and may be Smectic C compounds. In particular however, compounds of formula (I) may be smectic A type compounds. Thus they may be used in a variety of liquid crystal devices including liquid crystal display cells such as ferroelectric liquid crystal displays, and in particular smectic liquid crystal displays such as surface stabilised ferroelectric liquid crystal (SSFLC) displays.

Such devices form a further aspect of the invention.
The liquid crystal compounds of the invention may be used alone or in admixture with other liquid crystal compounds which may or may not comprise compounds of formula (I).

Such mixtures form a further aspect of the invention.

In particular compounds of formula (I) may be added to liquid crystal mixtures in order to stabilize the smectic A phase thereof.

In yet a further aspect, the invention comprises the use of a compound of formula (I) as a smectic A stabilizing additive in a liquid crystal mixture.

The invention will now be particularly described by way of example with reference to the following Preparations and Examples.

Preparation 1

A. 3-Iodo-5,5,6,6,7,7,8,8,8,8-nonanfluorooct-3-en-1-ol

A mixture of sodium hydrosulfite (85 %) (20.5 g, 0.1 mol) and sodium hydrogen carbonate (8.4 g, 0.1 mol) was added into a mixture of perfluorobutyl iodide (34.6 g, 0.1 mol), 3-buten-1-ol (7.0 g, 0.1 mol), water (172 cm³) and acetonitrile (200 cm³). After the addition, the mixture was continuously irradiated with ultrasound (ca. 30 °C), until GLC analysis revealed a complete reaction (ca.4 h). After adding water (180 cm³) to dissolve the solid, the crude product was extracted into diethyl ether (3 x 100 cm³) and dried (MgSO₄). The solvent was removed *in vacuo* and the pure product was obtained by reduced pressure distillation as a colourless liquid.

Yield = 29 g (70 %); bp. 118-120 °C / 0.1 mmHg.

δH (270 MHz; CDCl₃; Me₄Si): 1.51 (1H, s, OH), 2.94 (2H, t, J 6.3, OCH₂CH₂), [2H, 3.85 (t, J 5.7) 3.87 (t, J 6.2, OCH₂)], [1H, 6.41 (t, J 13.0, Z=CH), 6.49 (t, J 14.5, E=CH)].

νmax (film)/cm⁻¹: 3600-3100 (bonded O-H str), 2942 (-CH₃, C-H asym str), 2888 (-CH₂, C-H sym str), 1630 (C=C str), 1350 (O-H in-plane def), 1230 (C-F str), 1132 and 1044 (C-O str), 877, 739. m/z: 416 [M]⁺, 386, 366.

Several homologues of the series were prepared using analogous methods. The yields and analyses are detailed below.

B. 4-Iodo-6,6,7,7,8,8,9,9,9,9-nonanfluorononan-1-ol

Yield = 26 g (60 %); bp. 68-72 °C / 0.15 mmHg.
\[\delta_H (270 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}): 1.66 (2H, m, \text{OCH}_2\text{CH}_2), 1.90 (2H, m, \text{CHICH}_2), 2.86 (2H, m, \text{CF}_2\text{CH}_2), 3.69 (2H, t, J 6.0, \text{OCH}_2), 4.37 (1H, m, \text{CHI}). \vmax(\text{film})/\text{cm}^{-1}: 3600-3020 (\text{bonded O-H str}), 2940 (-\text{CH}_2-, \text{C-H asym str}), 2878 (-\text{CH}_2-, \text{C-H sym str}), 1350 (\text{O-H in-plane def}), 1230 (\text{C-F str}), 1133 and 1043 (\text{C-O str}), 878, 735, 725, 512 (\text{C-I}). \text{ m/z: 432 [M]+, 431, 415, 305.} \]

C. 5-Iodo-7,7,8,8,9,9,10,10,10,10-nonfluorodecan-1-ol

Crude product without distillation. Yield = 45 g (~100%)

\[\delta_H (270 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}): 1.64 (4H, m, \text{C}_2\text{H}_4), 1.84 (2H, m, \text{CHICH}_2), 2.86 (2H, m, \text{CF}_2\text{CH}_2), 3.69 (2H, t, J 6.0, \text{OCH}_2), 4.34 (1H, m, \text{CHI}). \vmax(\text{film})/\text{cm}^{-1}: 3600-3010 (\text{bonded O-H str}), 2938 (-\text{CH}_2-, \text{C-H asym str}), 2864 (-\text{CH}_2-, \text{C-H sym str}), 1348 (\text{O-H in-plane def}), 1220 (\text{C-F str}), 1130 and 1070 (\text{C-O str}), 878, 722, 510 (\text{C-I}). \text{ m/z: 429 [M-OH]+, 401, 319, 301.} \]

D. 10-Iodo-12,12,13,13,14,14,15,15,15-nonfluoropentadecan-1-ol

Crude product without distillation. Yield = 25.6 g (99%)

\[\delta_H (270 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}): 1.32 (12H, m, \text{C}_6\text{H}_12), 1.44 (1H, s, \text{OH}), 1.56 (2H, m, \text{OCH}_2\text{CH}_2), 1.79 (2H, m, \text{CHICH}_2), 2.85 (2H, m, \text{CF}_2\text{CH}_2), 3.65 (2H, t, J 6.7, \text{OCH}_2), 4.33 (1H, tt, J 8.0 and 5.0, \text{CHI}). \vmax(\text{film})/\text{cm}^{-1}: 3600-3100 (\text{bonded O-H str}), 2926 (-\text{CH}_2-, \text{C-H asym str}), 2854 (-\text{CH}_2-, \text{C-H sym str}), 1350 (\text{O-H in-plane def}), 1234 and 1214 (\text{C-F str}), 1133 (\text{C-O str}), 758. \text{ m/z: 515 [M-1]+, 499, 459, 443, 429, 415, 387.} \]

E. 10-Iodo-12,12,13,13,14,14,15,15,15,15,16,16,17,17,17-tridecafluorooctadecan-1-ol

Crude product without distillation. Yield = 7.5 g (61%)

\[\delta_H (270 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}): 1.32 (12H, m, \text{C}_6\text{H}_12), 1.57 (2H, m, \text{OCH}_2\text{CH}_2), 1.79 (2H, m, \text{CHICH}_2), 2.85 (2H, m, \text{CF}_2\text{CH}_2), 3.65 (2H, t, J 6.7, \text{OCH}_2), 4.33 (1H, tt, J 8.0 and 5.0, \text{CHI}). \vmax(\text{film})/\text{cm}^{-1}: 3600-3100 (\text{bonded O-H str}), 2930 (-\text{CH}_2-, \text{C-H asym str}), 2856 (-\text{CH}_2-, \text{C-H sym str}), 1359 (\text{O-H in-plane def}), 1237 and 1204 (\text{C-F str}), 1143 (\text{C-O str}), 760. \text{ m/z: 615 [M-1]+, 599, 543, 487.} \]

Preparation 2

A. 5,5,6,6,7,7,8,8,8,8-Nonafluorooctan-1-ol

A mixture of 3-iodo-5,5,6,6,7,7,8,8,8,8-nonfluorooct-3-en-1-ol (Preparation 1A, 29 g, 0.07
mol), platinum oxide (1 g), triethylamine (14.1 g, 0.14 mol) and ethyl acetate (110 cm3) was stirred overnight under an atmosphere of hydrogen at room temperature (a triethylamine-hydrogen iodide salt was formed which precipitated out as a white solid from the solution). The catalyst and the solid were removed by filtration and the solid was washed with ethyl acetate (2 x 50 cm3). The combined organic phase was washed with 1% HCl (100 cm3) followed by a saturated NaCl solution (50 cm3), and then dried (MgSO$_4$). The solvent was removed in vacuo and the pure product was obtained by reduced pressure distillation as a colourless liquid.

Yield = 18 g (87%); bp. 44-46 °C / 0.3 mmHg.

δ$_H$ (270 MHz; CDCl$_3$; Me$_4$Si): 1.39 (1H, s, OH), 1.69 (4H, m, C$_2$H$_4$), 2.12 (2H, m, CF$_2$CH$_2$), 3.71 (2H, t, J 6.0, OCH$_2$). ν_{max}(film)/cm$^{-1}$: 3600-3020 (bonded O-H str), 2948 (-CH$_2$-, C-H asym str), 2880 (-CH$_2$-, C-H sym str), 1460 (-CH$_2$- sci, C-H def), 1351 (O-H in-plane def), 1228 (C-F str), 1128 and 1037 (C-O str), 877. m/z: 292 [M]$^+$, 291, 275, 254.

B. 6,6,7,7,8,8,9,9,9-Nonafluorononan-1-ol

A solution of AIBN (4.9 g, 30 mmol) in dioxane (150 cm3) was added dropwise into a solution of 4-iodo-6,6,7,7,8,8,9,9,9-nonafluorononan-1-ol (Preparation 1B, 25 g, 58 mmol), phosphorous acid (19.1 g, 0.29 mol) and triethylamine (32.3 g, 0.32 mol) in dioxane (150 cm3) under an atmosphere of nitrogen during reflux. After addition, the reaction mixture was refluxed for a period of time until the GLC analysis revealed a complete reaction (usually an hour). The crude product was extracted into diethyl ether (3 x 50 cm3) and dried (MgSO$_4$). The solvent was removed in vacuo and the pure product was obtained by reduced pressure distillation as a colourless liquid.

Yield = 13.4 g (75%); bp. ~ 80 °C / 0.2 mmHg.

δ$_H$ (270 MHz; CDCl$_3$; Me$_4$Si): 1.30 (1H, s, OH), 1.68-1.44 (6H, m, C$_3$H$_6$), 2.08 (2H, m, CF$_2$CH$_2$), 3.68 (2H, t, J 6.5, OCH$_2$). ν_{max}(film)/cm$^{-1}$: 3600-3020 (bonded O-H str), 2942 (-CH$_2$-, C-H asym str), 2870 (-CH$_2$-, C-H sym str), 1462 (-CH$_2$- sci, C-H def), 1352 (O-H in-plane def), 1225 (C-F str), 1130 and 1040 (C-O str), 877, 733, 716. m/z: 306 [M]$^+$, 305, 289.
Several homologues of the series were prepared using analogous methods. The yields and analyses are detailed below.

C. 7,7.8.8.9.9.10.10.10-Nonafluorodecan-1-ol

Yield = 26 g (82 %); bp. 68-70 °C / 0.2 mmHg.

δH (270 MHz; CDCl₃; Me₄Si): 1.30 (1H, s, OH), 1.42 (4H, m, C₂H₄), 1.60 (4H, m, CF₂CH₂CH₂, OCH₂CH₂), 2.06 (2H, m, CF₂CH₂), 3.66 (2H, t, J 6.5, OCH₂).

νmax (film)/cm⁻¹: 3600-3020 (bonded O-H str), 2936 (-CH₂-, C-H asym str), 2860 (-CH₂-, C-H sym str), 1459 (-CH₂- sci, C-H def), 1350 (O-H in-plane def), 1248 (C-F str), 1129 and 1045 (C-O str), 877, 717. m/z: 319 [M-1]⁺, 302, 274.

D. 12,12,13,13.14.14,14,15,15,15-Nonafluoropentadecan-1-ol

Yield = 17.5 g (90 %); bp. 76-80 °C / 0.05 mmHg, mp. 36-38 °C.

δH (270 MHz; CDCl₃; Me₄Si): 1.30 (14H, m, C₇H₁₄), 1.45 (1H, s, OH), 1.57 (4H, m, CF₂CH₂CH₂, OHCH₂CH₂), 2.05 (2H, m, CF₂CH₂), 3.64 (2H, t, J 6.7, OCH₂).

νmax (KBr disc)/cm⁻¹: 3600-3100 (bonded O-H str), 2926 (-CH₂-, C-H asym str), 2856 (-CH₂-, C-H sym str), 1463 (-CH₂- sci, C-H def), 1353 (O-H in-plane def), 1220 (C-F str), 1130 and 1049 (C-O str), 880. m/z: 372 [M-H₂O]⁺, 344.

F. 12,12,13,13.14,14,14,15,15,16,16,17,17-Tridecafluoroheptadecan-1-ol

Yield = 5.4 g (92 %); bp. 100-102 °C / 0.2 mmHg, mp. 49-51 °C.

δH (270 MHz; CDCl₃; Me₄Si): 1.29 (14H, m, C₇H₁₄), 1.54 (4H, m, CF₂CH₂CH₂, OCH₂CH₂), 2.06 (2H, m, CF₂CH₂), 3.64 (2H, t, J 6.7, OCH₂). νmax (KBr disc)/cm⁻¹: 3600-3160 (bonded O-H str), 2920 (-CH₂-, C-H asym str), 2848 (-CH₂-, C-H sym str), 1462 (-CH₂- sci, C-H def), 1364 (O-H in-plane def), 1226 and 1199 (C-F str), 1137 (C-O str), 788, 717. m/z: 472 [M-H₂O]⁺, 444.

Preparation 3

A. 4-Bromo-1-(5,5,6,6,7,7,8,8,8,8-nonafluorooctyloxy)benzene

A solution of diethyl azodicarboxylate (3.5 g, 20 mmol) in dry diethyl ether (20 cm³) was added dropwise into a stirred solution of 5,5,6,6,7,7,8,8,8,8-nonafluoroocan-1-ol (Preparation 2A, 5.8 g, 20 mmol), 4-bromophenol (3.5 g, 20 mmol) and triphenylphosphine (5.3 g, 20 mmol) in dry diethyl ether (50 cm³) at room temperature.
The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo and the pure product was obtained by flash column chromatography (dichloromethane) as a colourless liquid.

Yield = 8 g (90%).

δH (270 MHz; CDCl3; Me4Si): 1.85 (4H, m, C2H4), 2.15 (2H, m, CF2CH2), 3.96 (2H, t, J 5.8, OCH2), 6.77 (2H, AA'BB', C6H4), 7.37 (2H, AA'BB', C6H4). νmax(film)/cm⁻¹: 2946 (-CH2-, C-H asym str), 2876 (-CH2-, C-H sym str), 1588 and 1486 (C=C str), 1468 (-CH2- scis, C-H def), 1240 (C-F and aryl-O str), 1131 (C-O str), 879, 822 (C-H o.o.p.d.).

m/z: 448, 446 [M]+, 174, 172.

B. 4-Bromo-4’-(5,5,6,6,7,7,8,8,8-nonfluoroctoxy)biphenyl

Quantities: diethyl azodicarboxylate (3.5 g, 20 mmol), 5,5,6,6,7,7,8,8,8-nonfluoroocctan-1-ol (Preparation 2A, 5.8 g, 20 mmol), 4’-bromo-4-hydroxybiphenyl (5.0 g, 20 mmol) and triphenylphosphine (5.3 g, 20 mmol). The experimental procedure was described in Preparation 3A.

Yield = 9.5 g (91 %); mp. 146-148 °C.

C. 2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8-nonfluoroctoxy)benzene

Quantities: diethyl azodicarboxylate (9.14 g, 52.5 mmol), 5,5,6,6,7,7,8,8,8-nonfluoroocctan-1-ol (Preparation 2A, 15.34 g, 52.5 mmol), 2,3-difluorophenol (6.83 g, 52.5 mmol) and triphenylphosphine (13.77 g, 52.5 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 22 g (86%).

δH (270 MHz; CDCl3; Me4Si): 1.89 (4H, m, C2H4), 2.18 (2H, m, CF2CH2), 4.08 (2H, t, J 6.0, OCH2), 6.83-6.69 (2H, ABCXY, C6F2H3), 7.02-6.93 (1H, ABCXY, C6F2H3).

νmax(film)/cm⁻¹: 2952 (-CH2-, C-H asym str), 2884 (-CH2-, C-H sym str), 1616, 1512 and 1480 (C=C str), 1222 (C-F and aryl-O str), 1132 and 1086 (C-O str), 879, 767 and

Preparation 4

A. 2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)phenylboronic acid

n-Butyllithium (5.5 cm3, 10.0 M in hexanes, 55 mmol) was added dropwise to a stirred, cooled (-78 °C) solution of 2,3-difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)benzene (Preparation 3C, 21.5 g, 53 mmol) in dry THF (200 cm3) under an atmosphere of dry nitrogen. The reaction mixture was stirred (2.5 h) then a solution of trimethyl borate (11.4 g, 0.11 mol) in dry THF (30 cm3) was added dropwise at -78 °C. The reaction mixture was allowed to warm to room temperature overnight then stirred (1 h) with hydrochloric acid (10 %, 30 cm3). The product was extracted into diethyl ether (2 x 50 cm3), and the combined extracts washed with water and dried (MgSO$_4$). The solvent was removed in vacuo to yield colourless crystals.

Yield = 24 g (100 %).

δH (270 MHz; DMSO; Me$_4$Si): 1.71 (2H, m, CF$_2$CH$_2$CH$_2$), 1.86 (2H, m, OCH$_2$CH$_2$), 2.33 (2H, m, CF$_2$CH$_2$), 4.13 (2H, t, J 6.1, OCH$_2$), 6.97 (1H, ABXY, OCF$_2$H$_2$), 7.32 (1H, ABXY, CF$_2$H$_2$), 8.15 (2H, br, OCH$_2$). ν$_{max}$(KBr disc)/cm$^{-1}$: 3700-3020 (bonded O-H str), 2960 (-CH$_2$-, C-H asym str), 2886 (-CH$_2$-, C-H sym str), 1625 and 1515 (C=C str), 1463 (-CH$_2$- scf, C-H def), 1355 (B-O str), 1240 (C-F and aryl-O str), 1138, 1080 and 1028 (C-O str), 883 (C-H o.o.p.d.). m/z: 404 [M-44, -B(OH)$_2$]$^+$, 386.

Preparation 5

2,3-Difluoro-4'-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)biphenyl

A mixture of 4-bromo-1-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)benzene (Preparation 3A, 2.24 g, 5 mmol), 2,3-difluorophenylboronic acid (0.95 g, 6 mmol), tetrakis(triphenylphosphine)palladium(0) (174 mg, 0.15 mmol), aqueous sodium carbonate (2 mol cm$^{-3}$, 5 cm3) and 1,2-dimethoxyethane (30 cm3) was heated under reflux for a period of time until the GLC analysis revealed a complete reaction (ca. 23h) then cooled to room temperature. The mixture was extracted with diethyl ether (2 x 50 cm3), and the ethereal extracts were washed with saturated aqueous sodium chloride (2 x 50 cm3) and dried (Na$_2$SO$_4$). The solvent was removed in vacuo and the product was purified by flash column chromatography (dichloromethane / light petrol).
Yield = 2.1 g (87 %); mp. 51-53 °C.
δH (270 MHz; CDCl₃; Me₄Si): 1.89 (4H, m, C₂H₄), 2.18 (2H, m, CF₂CH₂), 4.06 (2H, t, J 5.7, OCH₂), 6.98 (2H, AA'BB', OC₆H₄), 7.13 (3H, ABCXY, C₆F₂H₃), 7.48 (2H, AA'BB', C₆H₄). \nu_{\text{max}}(\text{KBr disc})/\text{cm}^{-1}: 2950 (-CH₂-, C-H asym str), 2878 (-CH₂-, C-H sym str), 1603, 1588 and 1514 (C=C str), 1470 (-CH₂- sci, C-H def), 1272, 1261, 1196 and 1163 (C-F and aryl-O str), 1127 and 1042 (C-O str), 838, 788 and 721 (C-H o.o.p.d.). m/z: 480 [M]+, 206.

Preparation 6

2,3-Difluoro-4'-(5,5,6,6,7,7,8,8,8-nonafluorooctyloxy)biphenyl-4-yloronic acid

Quantities: n-butyllithium (2 cm³, 2.5 M in hexanes, 5 mmol), 2,3-difluoro-4'-(5,5,6,6,7,7,8,8,8-nonafluorooctyloxy)biphenyl (Preparation 5, 2 g, 4.2 mmol) and trimethyl borate (0.87 g, 8.4 mmol). The experimental procedure was described previously in Preparation 4.

Yield = 2.2 g (100 %).

δH (270 MHz; DMSO; Me₄Si): 1.73 (2H, m, CF₂CH₂CH₂), 1.86 (2H, m, OCH₂CH₂), 2.34 (2H, m, CF₂CH₂), 4.08 (2H, t, J 6.2, OCH₂), 7.06 (2H, AA'BB', OC₆H₄), 7.26 (1H, ABXY, OC₆F₂H₂), 7.38 (1H, ABXY, C₆F₂H₂), 7.51 (2H, AA'BB', C₆H₄), 8.38 (2H, s, OH). \nu_{\text{max}}(\text{KBr disc})/\text{cm}^{-1}: 3700-3000 (bonded O-H str), 2960 (-CH₂-, C-H asym str), 2874 (-CH₂-, C-H sym str), 1605 and 1518 (C=C str), 1449 (-CH₂- sci, C-H def), 1353 (B-O str), 1218 (C-F and aryl-O str), 1127 and 1028 (C-O str), 912, 881, 821 (C-H o.o.p.d.). m/z: 525 [M]+, 508, 480.

Preparation 7

2,3-Difluoro-4'-(5,5,6,6,7,7,8,8,8-nonafluorooctyloxy)-4-hydroxybiphenyl

Hydrogen peroxide (10 %, 5 cm³) was added dropwise to a stirred solution of 2,3-difluoro-4'-(5,5,6,6,7,7,8,8,8-nonafluorooctyloxy)biphenyl-4-yboronic acid (Preparation 6, 1.47 g, 2.8 mmol) in diethyl ether (20 cm³), heated under reflux. The stirred mixture was heated under reflux for a further 2.5 h, and then cooled. The ethereal layer was separated and the aqueous layer extracted with diethyl ether (2 x 30 cm³). The combined ethereal layers were washed with water and dried (MgSO₄). The solvent was removed in vacuo and the product was purified by flash column chromatography (dichloromethane).
Yield = 1.2 g (86%); mp. 112.0-112.5 °C.

δH (270 MHz; CDCl₃; Me₄Si): 1.88 (4H, m, C₂H₄), 2.18 (2H, m, CF₂CH₂), 4.04 (2H, t, J 5.7, OCH₂), 5.15 (1H, s, OH), 6.83 (1H, ABXY, OC₆F₂H₂), 6.96 (2H, AA'BB'), OC₆H₄), 7.05 (1H, ABXY, C₆F₂H₂), 7.42 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹:
5 3600-3100 (bonded O-H str), 2950 (-CH₂-, C-H asym str), 2876 (-CH₂-, C-H sym str), 1604 and 1497 (C=C str), 1470 (-CH₂- sci, C-H def), 1243 (C-F and aryl-O str), 1126 and 1020 (C-O str), 848, 836 (C-H o.o.p.d.), 771. m/z: 496 [M]+, 477, 460.

Preparation 8

2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8-nonafluoroocytloxy)-4'-(2-
tetrahydropanyloxy)biphenyl

Quantities: 4-bromo-1-(2-tetrahydropyranloxy)benzene (2.57 g, 10 mmol), 2,3-difluoro-
4-(5,5,6,6,7,7,8,8,8-nonafluoroocytloxy)phenylboronic acid (Preparation 4), 4.93 g, 11
mmol), tetrakis(triphenylphosphine)palladium(0) (348 mg, 0.3 mmol) and aqueous
sodium carbonate (2 mol cm⁻³, 10 cm³). The experimental procedure was described
previously in Preparation 5.

Yield = 4.8 g (83%); mp. 73-75 °C.

δH (270 MHz; CDCl₃; Me₄Si): 1.67 (3H, m, C₅H₉O), 1.90 (7H, m, C₂H₄, C₅H₉O),
2.20 (2H, m, CF₂CH₂), 3.63 (1H, m, 6-Ha), 3.93 (1H, m, 6-He), 4.11 (2H, t, J 5.7,
OCH₂), 5.47 (1H, t, J 3.2, 2-H), 6.77 (1H, ABXY, OC₆F₂H₂), 7.07 (1H, ABXY,
C₆F₂H₂), 7.12 (2H, AA'BB', OC₆H₄), 7.42 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹:
2952 (-CH₂-, C-H asym str), 2876 (-CH₂-, C-H sym str), 1623, 1604 and 1501 (C=C str),
1466 (-CH₂- sci, C-H def), 1237 (C-F and aryl-O str), 1127 and 1078 (C-O str), 960, 918,

Preparation 9

2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8-nonafluoroocytloxy)-4'-hydroxybiphenyl

A solution of 2,3-difluoro-4-(5,5,6,6,7,7,8,8,8-nonafluoroocytloxy)-4'-(2-
tetrahydropyranloxy)biphenyl (Preparation 8, 4.8 g, 8.3 mmol) and toluene-4-sulfonic
acid monohydrate (0.1 g) in dichloromethane (20 cm³) and methanol (30 cm³) was stirred
overnight at room temperature. The solution was diluted with diethyl ether, and washed
with aqueous sodium bicarbonate (10 cm³), water and dried (MgSO₄). The solvent was
removed in vacuo and the product was purified by flash column chromatography (dichloromethane / light petrol).
Yield = 3.9 g (95%); mp. 132-134 °C.
δH (270 MHz; CDCl3; Me4Si): 1.90 (4H, m, C2H4), 2.20 (2H, m, CF2CH2), 4.11 (2H, t, J 5.7, OCH2), 4.75 (1H, s, OH), 6.77 (1H, ABXY, OC6F2H2), 6.90 (2H, AA'BB', OC6H4), 7.06 (1H, ABXY, C6F2H2), 7.39 (2H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹: 3640-3200 (bonded O-H str), 2954 (-CH2-, C-H asym str), 2880 (-CH2-, C-H sym str), 1607 and 1502 (C=C str), 1471 (-CH2- sci, C-H def), 1233 (C-F and aryl-O str), 1133 and 1078 (C-O str), 833 and 814 (C-H o.o.p.d.), 720. m/z: 496 [M]^+, 477, 222.

Preparation 10

2,3-Difluoro-4-octyloxy-4'- (2-tetrahydropyranloxy)biphenyl
Quantities: 4-bromo-1-(2-tetrahydropyranloxy)benzene (6.43 g, 25 mmol), 2,3-difluoro-4-octyloxyphenylboronic acid (8.58 g, 25 mmol), tetrakis(triphenylphosphine)palladium(0) (869 mg, 0.75 mmol) and aqueous sodium carbonate (2 mol cm⁻³, 25 cm³). The experimental procedure was described previously in Preparation 5.
Yield = 9.1 g (87%); mp. 74-76 °C.
δH (270 MHz; CDCl3; Me4Si): 0.89 (3H, t, J 7.0, CH3), 1.29 (8H, m, C4H8), 1.48 (2H, m, OCH2CH2CH2), 1.67 (3H, m, C5H9O), 1.87 (5H, m, OCH2CH2, C5H9O), 2.02 (1H, m, C5H9O), 3.63 (1H, m, 6-Ha), 3.93 (1H, m, 6-He), 4.06 (2H, t, J 6.5, OCH2), 5.47 (1H, t, J 3.1, 2-H), 6.77 (1H, ABXY, OC6F2H2), 7.05 (1H, ABXY, C6F2H2), 7.11 (2H, AA'BB', OC6H4), 7.42 (2H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹: 2942 (CH3-, C-H asym str), 2924 (-CH2-, C-H asym str), 2868 (-CH2-, C-H sym str), 2852 (-CH2-, C-H sym str), 1624, 1605 and 1497 (C=C str), 1470 (CH3- asym, -CH2- sci, C-H def), 1296, 1237 (aryl-O str), 1199, 1179, 1112 and 1070 (C-O str), 964, 838 and 791 (C-H o.o.p.d.), 716. m/z: 418 [M]^+, 334, 222.

Preparation 11

2,3-Difluoro-4-octyloxy-4''-(2-tetrahydropyranloxy)-1,1':4',1''-terphenyl
Quantities: 4-bromo-4'-(2-tetrahydropyranloxy)biphenyl (4.75 g, 14.3 mmol), 2,3-difluoro-4-octyloxyphenylboronic acid (5.1 g, 17.8 mmol),
tetrakis(triphenylphosphine)palladium(0) (498 mg, 0.43 mmol) and aqueous sodium carbonate (2 mol cm\(^{-3}\), 15 cm\(^3\)). The experimental procedure was described previously for Preparation 5.

Yield = 5.5 g (78 %); Mesomorphism (T / °C): Cryst 105 (SC 82.4) N 133.9 Iso.

\[\delta_H (270 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}) 0.90 (3H, t, J 6.7, CH_3), 1.31 (8H, m, C\text{H}_8), 1.48 (2H, m, OCH_2\text{CH}_2\text{CH}_2), 1.68 (3H, m, C\text{H}_9\text{O}), 1.88 (7H, m, C\text{H}_9\text{O}), 2.03 (1H, m, C\text{H}_9\text{O}), 3.64 (1H, m, 6-Ha), 3.95 (1H, m, 6-He), 4.08 (2H, t, J 6.5, OCH_2), 5.48 (1H, t, J 3.1, 2-H), 6.81 (1H, ABXY, OC\text{H}\text{F}_2\text{H}_2), 7.14 (3H, m, OC\text{H}_6\text{H}_4, C\text{H}_2\text{F}_2\text{H}_2), 7.56 (4H, AA'BB', C\text{H}_4), 7.62 (2H, AA'BB', C\text{H}_4). \]

\(v_{\text{max}}(\text{KBr disc})/\text{cm}^{-1}: 2924 (\text{CH}_3, -\text{CH}_2, -\text{CH}-\text{asym str}), 2852 (\text{CH}_3, -\text{CH}_2, -\text{C}-\text{H} \text{ sym str}), 1625, 1601 \text{ and } 1492 (\text{C=H str}), 1465 (\text{CH}_3, -\text{asym}, -\text{CH}_2, -\text{sci}, \text{C}-\text{H} \text{ def}), 1284 \text{ and } 1243 (\text{aryl-O str}), 1197, 1178, 1107 \text{ and } 1072 (\text{C-O str}), 909, 868 \text{ and } 820 (\text{C-H o.o.p.d.}), 716. \) m/z: 495 [M+1\(^+\)], 410, 298.

Preparation 12

2,3-Difluoro-4'-hydroxy-4-octylxypiphenyl

Quantities: 2,3-difluoro-4-octylxypiphenyl (Preparation 10, 9.0 g, 21.5 mmol). The experimental procedure was described previously in Preparation 9.

Yield = 6.3 g (88 %); mp. 118-119 °C.

\[\delta_H (270 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}) 0.89 (3H, t, J 6.8, CH_3), 1.29 (8H, m, C\text{H}_8), 1.48 (2H, m, OCH_2\text{CH}_2\text{CH}_2), 1.87 (2H, qn, J 7.0, OCH_2\text{CH}_2), 4.07 (2H, t, J 6.6, OCH_2), 4.89 (1H, s, OH), 6.77 (1H, ABXY, OC\text{H}\text{F}_2\text{H}_2), 6.90 (2H, AA'BB', OC\text{H}_6\text{H}_4), 7.05 (1H, ABXY, C\text{H}_2\text{F}_2\text{H}_2), 7.38 (2H, AA'BB', C\text{H}_4). \]

\(v_{\text{max}}(\text{KBr disc})/\text{cm}^{-1}: 3640-3200 \text{ (bonded O-H str)}, 2954 (\text{CH}_3, -\text{C}-\text{H} \text{ sym str}), 2922 (-\text{CH}_2, -\text{C}-\text{H} \text{ sym str}), 2870 (-\text{CH}_2, -\text{C}-\text{H} \text{ sym str}), 2854 (-\text{CH}_2, -\text{C}-\text{H} \text{ sym str}), 1607, 1592 \text{ and } 1501 (\text{C=C str}), 1470 (\text{CH}_3, -\text{asym}, -\text{CH}_2, -\text{sci}, \text{C}-\text{H} \text{ def}), 1255 (\text{aryl-O str}), 1077 (\text{C-O str}), 832 \text{ and } 812 (\text{C-H o.o.p.d.}), 720. \)

m/z: 334 [M\(^+\)], 279, 250, 222.

Preparation 13

2,3-Difluoro-4'-hydroxy-4-octylxyp-1,1':4',1''-terphenyl

Quantities: 2,3-difluoro-4-octylxyp-1,1':4',1''-terphenyl (Preparation 11, 5.5 g, 11 mmol). The experimental procedure was described previously
in Preparation 9.

Yield = 4.4 g (97 %); mp. 195.0-195.5 °C.

δH (270 MHz; CDCl$_3$; Me$_4$Si): 0.90 (3H, t, J 6.6, CH$_3$), 1.30 (8H, m, C$_4$H$_8$), 1.49 (2H, m, OCH$_2$CH$_2$CH$_2$), 1.85 (2H, qn, J 7.0, OCH$_2$CH$_2$), 4.09 (2H, t, J 6.6, OCH$_2$), 4.85 (1H, s, OH), 6.81 (1H, ABXY, OC$_6$F$_2$H$_2$), 6.93 (2H, AA'BB', OC$_6$H$_4$)$_2$, 7.14 (1H, ABXY, C$_6$F$_2$H$_2$), 7.53 (2H, AA'BB', C$_6$H$_4$)$_2$, 7.56 (2H, AA'BB', C$_6$H$_4$)$_2$, 7.61 (2H, AA'BB', C$_6$H$_4$)$_2$. ν_{max}(KBr disc)/cm$^{-1}$: 3600-3100 (bonded O-H str), 2952 (CH$_3$-, C-H asym str), 2918 (-CH$_2$-, C-H asym str), 2868 (CH$_3$-, C-H sym str), 2850 (-CH$_2$-, C-H sym str), 1629, 1607 and 1496 (C=C str), 1463 (CH$_3$- asym, -CH$_2$- sci, C-H def), 1320, 1300, 1254 (aryl-O str), 1106 and 1077 (C-O str), 802 (C-H o.o.p.d.). m/z: 410 [M$^+$], 298.

Preparation 14

2,3-Difluoro-4-hydroxy-4'-octyloxybiphenyl

Quantities: hydrogen peroxide (10 %, 10 cm3) and 2,3-difluoro-4'-octyloxybiphenyl-4-ylboronic acid (1.81 g, 5 mmol). The experimental procedure was described previously in Preparation 7.

Yield = 1.5 g (90 %); mp. 99-101 °C.

δH (270 MHz; CDCl$_3$; Me$_4$Si): 0.90 (3H, t, J 7.0, CH$_3$), 1.32 (8H, m, C$_4$H$_8$), 1.47 (2H, m, OCH$_2$CH$_2$CH$_2$), 1.81 (2H, m, OCH$_2$CH$_2$), 4.00 (2H, t, J 6.7, OCH$_2$), 5.16 (1H, s, OH), 6.85 (1H, ABXY, OC$_6$F$_2$H$_2$), 6.96 (2H, AA'BB', OC$_6$H$_4$)$_2$, 7.05 (1H, ABXY, C$_6$F$_2$H$_2$), 7.41 (2H, AA'BB', C$_6$H$_4$)$_2$. ν_{max}(KBr disc)/cm$^{-1}$: 3640-3100 (bonded O-H str), 2956 (CH$_3$-, C-H asym str), 2934 and 2922 (-CH$_2$-, C-H asym str), 2872 (CH$_3$-, C-H sym str), 2856 (-CH$_2$-, C-H sym str), 1628, 1606 and 1497 (C=C str), 1462 (CH$_3$- asym, -CH$_2$- sci, C-H def), 1284, 1260, 1245 (aryl-O str), 1087 and 1024 (C-O str), 892, 814 (C-H o.o.p.d.), 720. m/z: 334 [M$^+$], 318, 222.

Preparation 15

4-(3-Butenylxyloxy)-2,3-difluoro-4'-octyloxybiphenyl

Quantities: diethyl azodicarboxylate (0.26 g, 1.5 mmol), 3-buten-1-ol (0.11 g, 1.5 mmol), 2,3-difluoro-4-hydroxy-4'-octyloxybiphenyl (Preparation 14, 0.5 g, 1.5 mmol) and triphenylphosphine (0.39 g, 1.5 mmol). The experimental procedure was described previously in Preparation 3A.
Yield = 0.5 g (86 %); mp. 58-59 °C.

δH (270 MHz; CDCl3; Me4Si): 0.89 (3H, t, J 6.6, CH3), 1.31 (8H, m, C4H8), 1.47 (2H, m, OCH2CH2CH2), 1.80 (2H, qn, J 7.0, OCH2CH2), 2.60 (2H, qt, J 6.7 and 1.3, CH2-CH=CH2), 3.99 (2H, t, J 6.5, OCH2C7H15), 4.12 (2H, t, J 6.7, OCH2), 5.14 (1H, ddt, J 10.0, 1.8 and 1.3, ZCH=CH2), 5.19 (1H, ddt, J 17.0, 1.8 and 1.3, ECH=CH2), 5.92 (1H, ddt, J 17.0, 10.0 and 6.7, CH=CH2), 6.78 (1H, ABXY, OC6F2H2), 6.96 (2H, AA'BB', OC6H4), 7.06 (1H, ABXY, C6F2H2), 7.42(2H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹: 3070 (=C-H str), 2948 (CH3-, C-H asym str), 2916 (-CH2-, C-H asym str), 2864 (CH3-, C-H sym str), 2846 (-CH2-, C-H sym str), 1627, 1609 and 1502 (C=C str), 1467 (CH3-asym, -CH2- sci, C-H def), 1299, 1288, 1273, 1250 (aryl-O str), 1106 and 1079 (C-O str), 892, 837 and 797 (C-H o.o.p.d.). m/z: 388 [M]+, 344, 276, 222.

Preparation 16

4'-(3-Butenylxoyl)-2,3-difluoro-4-octyloxybiphenyl

Quantities: diethyl azodicarboxylate (0.26 g, 1.5 mmol), 3-buten-1-ol (0.11 g, 1.5 mmol), 2,3-difluoro-4'-hydroxy-4-octyloxybiphenyl (Preparation 12, 0.5 g, 1.5 mmol) and triphenylphosphine (0.39 g, 1.5 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.4 g (69 %); mp. 55-56 °C.

δH (270 MHz; CDCl3; Me4Si): 0.90 (3H, t, J 6.7, CH3), 1.32 (8H, m, C4H8), 1.48 (2H, m, OCH2CH2CH2), 1.84 (2H, qn, J 7.0, OCH2CH2), 2.57 (2H, qt, J 6.8 and 1.3, CH2-CH=CH2), 4.06 (4H, t, J 6.8, 2xOCH2), 5.13 (1H, ddt, J 10.0, 1.8 and 1.3, ZCH=CH2), 5.19 (1H, ddt, J 17.0, 1.8 and 1.3, ECH=CH2), 5.92 (1H, ddt, J 17.0, 10.0 and 6.7, CH=CH2), 6.77 (1H, ABXY, OC6F2H2), 6.96 (2H, AA'BB', OC6H4), 7.05 (1H, ABXY, C6F2H2), 7.42(2H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹: 3084 (=C-H str), 2954 (CH3-, C-H asym str), 2928 (-CH2-, C-H asym str), 2874 (CH3-, C-H sym str), 2854 (-CH2-, C-H sym str), 1627, 1605 and 1501 (C=C str), 1463 (CH3-asym, -CH2- sci, C-H def), 1251 (aryl-O str), 1082 (C-O str), 800 (C-H o.o.p.d.). m/z: 388 [M]+, 362, 347, 334.

Preparation 17

4-(3-Butenylxoyl)-2,3-difluoro-4"-octyloxy-1,1'-d',1"'-terphenyl

Quantities: diethyl azodicarboxylate (0.35 g, 2 mmol), 3-buten-1-ol (0.18 g, 2.5 mmol),
2,3-difluoro-4-hydroxy-4"-octyloxy-1,1':4',1"-terphenyl (0.82 g, 2 mmol) and triphenylphosphine (0.53 g, 2 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.4 g (43 %);

Mesomorphism (T / °C): Cryst 120 SC 161.8 SA 179.0 N 181.2 Iso.

δH (270 MHz; CDCl3; Me4Si): 0.89 (3H, t, J 6.7, CH3), 1.31 (8H, m, C4H8), 1.48 (2H, m, OCH2CH2CH2), 1.81 (2H, qn, J 7.0, OCH2CH2), 2.62 (2H, qt, J 6.8 and 1.3, CH2-CH=CH2), 4.01 (2H, t, J 6.6, OCH2C7H15), 4.15 (2H, t, J 6.8, OCH2), 5.15 (1H, ddt, J 10.2, 1.7 and 1.3, ZCH=CH2), 5.20 (1H, ddt, J 17.2, 1.7 and 1.3, ECH=CH2), 5.92 (1H, ddt, J 17.2, 10.2 and 6.7, CH=CH2), 6.82 (1H, ABXY, OC6F2H2), 6.99 (2H, AA'BB'), OC6H4), 7.14 (1H, ABXY, C6F2H2), 7.56 (4H, AA'BB', C6H4), 7.62 (2H, AA'BB', C6H4).

vmax(KBr disc)/cm⁻¹: 3080 (C-H str), 2955 (C-H asym str), 2934 and 2920 (C-H sym str), 2872 (CH3, C-H sym str), 2854 (CH2, C-H def), 1629, 1603 and 1496 (C=C str), 1465 (CH3- asym, -CH2- sci, C-H def), 1310, 1260, 1252 (aryl-O str), 1082 (C-O str), 802 (C-H o.o.p.d.). m/z: 464 [M]⁺, 409, 352.

Preparation 18

4"-(3-Butenylxylo)-2,3-difluoro-4-octyloxy-1,1':4',1"-terphenyl

Quantities: diethyl azodicarboxylate (0.23 g, 1.3 mmol), 3-buten-1-ol (0.11 g, 1.5 mmol), 2,3-difluoro-4"-hydroxy-4-octyloxy-1,1':4',1"-terphenyl (Preparation 13, 0.5 g, 1.2 mmol) and triphenylphosphine (0.34 g, 1.3 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.4 g (72 %);

Mesomorphism (T / °C): Cryst 118 SC 138.1 SA 161.7 N 171.4 Iso.

δH (270 MHz; CDCl3; Me4Si): 0.90 (3H, t, J 6.8, CH3), 1.29 (8H, m, C4H8), 1.49 (2H, m, OCH2CH2CH2), 1.85 (2H, qn, J 7.0, OCH2CH2), 2.58 (2H, qt, J 6.8 and 1.3, CH2-CH=CH2), 4.07 (2H, t, J 6.9, OCH2C7H15), 4.08 (2H, t, J 6.7, OCH2), 5.13 (1H, ddt, J 10.2, 1.7 and 1.3, ZCH=CH2), 5.20 (1H, ddt, J 17.2, 1.7 and 1.3, ECH=CH2), 5.94 (1H, ddt, J 17.2, 10.2 and 6.7, CH=CH2), 6.81 (1H, ABXY, OC6F2H2), 7.00 (2H, AA'BB', OC6H4), 7.14 (1H, ABXY, C6F2H2), 7.56 (4H, AA'BB', C6H4), 7.63 (2H, AA'BB', C6H4). vmax(KBr disc)/cm⁻¹: 3076 (C-H str), 2950 (CH3, C-H asym str), 2916 (-
CH₂-, C-H asym str), 2870 (CH₃-, C-H sym str), 2852 (-CH₂-, C-H sym str), 1628, 1602 and 1493 (C=C str), 1462 (CH₃- asym, -CH₂- sci, C-H def), 1250 (aryl-O str), 1080 (C-O str), 827 and 798 (C-H o.o.p.d.). m/z: 464 [M]⁺, 438, 408.

Preparation 19

4-(3-Butenyl oxy)-2',3'-difluoro-4''-octyloxy-1,1':4',1''-terphenyl

Quantities: diethyl azodicarboxylate (0.23 g, 1.3 mmol), 3-buten-1-ol (0.11 g, 1.5 mmol), 2',3'-difluoro-4-hydroxy-4''-octyloxy-1,1':4',1''-terphenyl (0.5 g, 1.2 mmol) and triphenylphosphine (0.34 g, 1.3 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.5 g (90 %); Mesomorphism (T / °C): Cryst 98 SC 101.6 N 161.8 Iso.

δH (270 MHz; CDCl₃; Me₄Si): 0.89 (3H, t, J 6.8, CH₃), 1.30 (8H, m, C₆H₈), 1.48 (2H, m, OCH₂CH₂CH₂), 1.82 (2H, qu, J 7.0, OCH₂CH₂), 2.58 (2H, qu, J 6.8 and 1.3, CH₂CH=CH₂), 4.01 (2H, t, J 6.6, OCH₂C₇H₁₅), 4.08 (2H, t, J 6.7, OCH₂), 5.13 (1H, ddt, J 10.2, 1.7 and 1.3, ZCH=CH₂), 5.20 (1H, ddt, J 17.2, 1.7 and 1.3, ECH=CH₂), 5.93 (1H, ddt, J 17.2, 10.2 and 6.7, CH=CH₂), 7.00 (4H, AA'BB', OCH₆H₄), 7.21 (2H, ABXY, C₆F₂H₂), 7.52 (4H, AA'BB', C₆H₄), 7.63 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹: 3078 (=C-H str), 2950 (CH₃-, C-H asym str), 2928 and 2916 (-CH₂-, C-H asym str), 2866 (CH₃-, C-H sym str), 2850 (-CH₂-, C-H sym str), 1603, 1520 and 1481 (C=C str), 1467 and 1451 (CH₃- asym, -CH₂- sci, C-H def), 1287, 1250 and 1249 (aryl-O str), 1181 (C-O str), 812 (C-H o.o.p.d.). m/z: 464 [M]⁺, 410, 365.

Preparation 20

4-(3-Butenyl oxy)-2',3'-difluoro-4''-nonyl-1,1':4',1''-terphenyl

Quantities: diethyl azodicarboxylate (0.23 g, 1.3 mmol), 3-buten-1-ol (0.11 g, 1.5 mmol), 2',3'-difluoro-4-hydroxy-4''-nonyl-1,1':4',1''-terphenyl (0.5 g, 1.2 mmol) and triphenylphosphine (0.34 g, 1.3 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.5 g (90 %); Mesomorphism (T / °C): Cryst 60 (SC 60.0) N 128.4 Iso.

δH (270 MHz; CDCl₃; Me₄Si): 0.89 (3H, t, J 6.7, CH₃), 1.28 (12H, m, C₆H₁₂), 1.66 (2H, qu, J 7.5, PhCH₂CH₂), 2.58 (2H, qu, J 6.8 and 1.3, CH₂CH=CH₂), 2.66 (2H, t, J 7.5, PhCH₃), 4.08 (2H, t, J 6.8, OCH₂), 5.14 (1H, ddt, J 10.2, 1.7 and 1.3, ZCH=CH₂),
5.20 (1H, ddt, J 17.2, 1.7 and 1.3, \(E\text{CH}=\text{CH}_2\)), 5.93 (1H, ddt, J 17.2, 10.2 and 6.7, \(\text{CH}=\text{CH}_2\)), 7.00 (2H, AA'BB', OC\(_6\)H\(_4\))\(_2\)), 7.22 (2H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.29 (2H, AA'BB', C\(_6\)H\(_4\)), 7.51 (4H, AA'BB', C\(_6\)H\(_4\)). \(\nu_{\text{max}}\text{(KBr disc)/cm}^{-1}\): 3074 (=C-H str), 2948 (CH\(_3\)-, C-H asym str), 2912 (CH\(_2\)-, C-H asym str), 2866 (CH\(_3\)-, C-H sym str), 2844 (CH\(_2\)-, C-H sym str), 1603, 1520 and 1479 (C=C str), 1451 (CH\(_3\)- asym, -CH\(_2\)- sci, C-H def), 1400, 1244 (aryl-O str), 1175 and 1030 (C-O str), 818 (C-H o.o.p.d.). m/z: 462 [M]+, 434, 421, 408.

Preparation 21

2-(4-(3-Butenyloxy)-2,3-difluorobiphenyl-4'-yl)-5-nonyl-1,3-dioxane

Quantities: diethyl azodicarboxylate (0.19 g, 1.1 mmol), 3-buten-1-ol (0.08 g, 1.1 mmol), 2-(2,3-difluoro-4-hydroxybiphenyl-4'-yl)-5-nonyl-1,3-dioxane (0.5 g, 1.2 mmol) and triphenylphosphine (0.34 g, 1.3 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.5 g (~100%); Mesomorphism (T / °C): Cryst 62 S\(_\text{SA}\) 104.0 N 122.9 Iso.

\(\delta\)H (270 MHz; CDCl\(_3\); Me\(_4\)Si): 0.89 (3H, t, J 6.6, CH\(_3\)), 1.11 (2H, q, J 6.6, CH\(_2\)CH\(_3\)), 1.28 (14H, m, C\(_7\)H\(_4\)), 2.14 (1H, m, 5-H), 2.60 (2H, qt, J 6.7 and 1.3, CH\(_2\)-CH=CH\(_2\)), 2.66 (2H, t, J 7.5, PhCH\(_2\)), 3.55 (2H, dd, J 11.5 and 11.5, Ha), 4.13 (2H, t, J 6.7, OCH\(_2\)), 4.25 (2H, dd, J 11.5 and 4.5, He), 5.14 (1H, ddt, J 10.2, 1.8 and 1.3, ZCH=CH\(_2\)), 5.19 (1H, ddt, J 17.2, 1.8 and 1.3, ECH=CH\(_2\)), 5.45 (1H, s, 2-H), 5.92 (1H, ddt, J 17.2, 10.2 and 6.7, \(\text{CH}=\text{CH}_2\)), 6.79 (1H, ABXY, OC\(_6\)H\(_2\)F\(_2\)), 7.07 (1H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.50 (2H, AA'BB', C\(_6\)H\(_4\)), 7.55 (2H, AA'BB', C\(_6\)H\(_4\)). \(\nu_{\text{max}}\text{(KBr disc)/cm}^{-1}\): 3082 (=C-H str), 2954 (CH\(_3\)-, C-H asym str), 2924 (CH\(_2\)-, C-H asym str), 2854 (CH\(_3\)-, -CH\(_2\)-, C-H sym str), 1630 and 1502 (C=C str), 1468 (CH\(_3\)- asym, -CH\(_2\)- sci, C-H def), 1391, 1314 (aryl-O str), 1077 and 1026 (C-O str), 796 (C-H o.o.p.d.). m/z: 472 [M]+, 471, 457, 431, 401.

Preparation 22

4'-(3-Butenyloxy)-2,3-difluoro-4-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)biphenyl

Quantities: diethyl azodicarboxylate (0.57 g, 3.3 mmol), 3-buten-1-ol (0.24 g, 3.3 mmol), 2,3-difluoro-4'-hydroxy-4-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)biphenyl (Preparation 9, 1.45 g, 2.9 mmol) and triphenylphosphine (0.87 g, 3.3 mmol). The experimental procedure was described previously in preparation 3A.
Yield = 1.4 g (88%); Mesomorphism (T / °C): Cryst 76 S_A 83.6 Iso.

δH (270 MHz; CDCl3; Me4Si): 1.91 (4H, m, C2H4), 2.20 (2H, m, CF2CH2), 2.57 (2H, q, J 6.6 and 1.3, CH2-CH=CH2), 4.00 (2H, t, J 6.6, OCH2Rf), 4.11 (2H, t, J 5.7, OCH2), 5.13 (1H, ddt, J 10.5, 1.7 and 1.3, ZCH=CH2), 5.19 (1H, ddt, J 17.0, 1.7 and 1.3, ECH=CH2), 5.92 (1H, ddt, J 17.0, 10.5 and 6.6, CH=CH2), 6.77 (1H, ABXY, OC6F2H2), 6.97 (2H, AA'BB', OC6H4), 7.07 (1H, ABXY, C6F2H2), 7.42 (2H, AA'BB', C6H4). v_max(KBr disc)/cm⁻¹: 3084 (=C-H str), 2944 (-CH₂-, C-H asym str), 2868 (-CH₂-, C-H sym str), 1625, 1604 and 1502 (C=C str), 1467 (-CH₂- sci, C-H def), 1353, 1217 (C-F and aryl-O str), 1129 and 1080 (C-O str), 880, 838 and 797 (C-H o.o.p.d.). m/z: 550 [M]+, 496, 222.

Preparation 23

4-(3-Butenyloxy)-2,3-difluoro-4’-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)biphenyl

Quantities: diethyl azodicarboxylate (0.26 g, 1.5 mmol), 3-buten-1-ol (0.15 g, 2.1 mmol), 2,3-difluoro-4-hydroxy-4’-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)biphenyl (Preparation 7, 0.7 g, 1.4 mmol) and triphenylphosphine (0.39 g, 1.5 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.7 g (88%); Mesomorphism (T / °C): Cryst 48 S_A 81.2 Iso.

δH (270 MHz; CDCl3; Me4Si): 1.88 (4H, m, C2H4), 2.17 (2H, m, CF2CH2), 2.60 (2H, q, J 6.8 and 1.3, CH2-CH=CH2), 4.05 (2H, t, J 5.7, OCH2Rf), 4.13 (2H, t, J 6.8, OCH2), 5.15 (1H, ddt, J 10.5, 1.7 and 1.3, ZCH=CH2), 5.20 (1H, ddt, J 17.2, 1.7 and 1.3, ECH=CH2), 5.93 (1H, ddt, J 17.2, 10.5 and 6.8, CH=CH2), 6.79 (1H, ABXY, OC6F2H2), 6.96 (2H, AA'BB', OC6H4), 7.06 (1H, ABXY, C6F2H2), 7.43 (2H, AA'BB', C6H4). v_max(KBr disc)/cm⁻¹: 3074 (=C-H str), 2944 (-CH₂-, C-H asym str), 2872 (-CH₂-, C-H sym str), 1627, 1603 and 1500 (C=C str), 1463 (-CH₂- sci, C-H def), 1218 (C-F and aryl-O str), 1129 and 1078 (C-O str), 800 (C-H o.o.p.d.). m/z: 550 [M]+, 497.

Example 1

2,3-Difluoro-4-nonyl-4’-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)biphenyl (Compound 12 in Table 2)

Quantities: 4-bromo-1-(5,5,6,6,7,7,8,8,8,8-nonfluorooctyloxy)benzene (Preparation 5, 1.34 g, 3.0 mmol), 2,3-difluoro-4-nonylphenylboronic acid (0.94 g, 3.3 mmol),
tetrakis(triphenylphosphine)palladium(0) (104 mg, 90 \mu mol) and aqueous sodium carbonate (2 mol cm\(^{-3}\), 3 cm\(^3\)). The experimental procedure was described previously for in Preparation 5 except for the further purification by recrystallisation from hexane (HPLC standard).

Yield = 0.7 g (39 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C\(_{29}H_{33}F_{11}O\) (606.56): C, 57.43 (57.37); H, 5.48 (5.47) %.

Mesomorphism (T / °C): Cryst 47 SA 54.6 Iso.

δ\(_H\) (270 MHz; CDCl\(_3\); Me4Si): 0.88 (3H, t, J 6.7, CH\(_3\)), 1.27 (12H, m, C\(_6\)H\(_{12}\)), 1.63 (2H, m, PhCH\(_2\)CH\(_2\)), 1.89 (4H, m, C\(_2\)H\(_4\)), 2.18 (2H, m, CF\(_2\)CH\(_2\)), 2.67 (2H, t, J 7.5, PhCH\(_2\)), 4.05 (2H, t, J 5.7, OCH\(_2\)), 6.95 (1H, ABXY, OC\(_6\)F\(_2\)H\(_2\)), 6.97 (2H, AA'BB', OC\(_6\)H\(_4\)), 7.07 (1H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.47 (2H, AA'BB', C\(_6\)H\(_4\)). \(v_{\text{max (KBr disc)}}/\text{cm}^{-1}\): 2954 (CH\(_3\)-, C-H asym str), 2922 (-CH\(_2\)-, C-H asym str), 2850 (CH\(_3\)-, -CH\(_2\)-, C-H sym str), 1608, 1520 and 1487 (C=C str), 1454 (CH\(_3\)- asym, -CH\(_2\)- sci, C-H def), 1250 and 1215 (C-F and aryl-O str), 1179 (C-O str), 893, 821 (C-H o.o.p.d.), 718. m/z: 606 [M]\(^+\), 506, 493, 332, 219.

Example 2

2,3-Difluoro-4-octyloxy-4'-(5,5,6,6,7,7,8,8,8,8-nonfluoroctyloxy)biphenyl

(Compound 9 in Table 2)

Quantities: 2',3'-difluoro-4-octyloxy-4-hydroxybiphenyl (Preparation 12, 1.0 g, 3 mmol), 5,5,6,6,7,7,8,8,8,8-nonfluoroctan-1-ol (Preparation 2A, 0.88 g, 3 mmol), diethyl azodicarboxylate (0.52 g, 3 mmol) and tris(phenylphosphine) (0.79 g, 3 mmol). The experimental procedure was described previously in Preparation 3, except for the further purification by recrystallisation from hexane (HPLC standard).

Yield = 1.4 g (77 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C\(_{28}H_{31}F_{11}O_2\) (608.54): C, 55.27 (55.17); H, 5.13 (4.98) %.

Mesomorphism (T / °C): Cryst 47 SA 82.9. Iso.

δ\(_H\) (270 MHz; CDCl\(_3\); Me4Si): 0.89 (3H, t, J 6.8, CH\(_3\)), 1.31 (8H, m, C\(_4\)H\(_8\)), 1.48 (2H, m, OCH\(_2\)CH\(_2\)CH\(_2\)H\(_2\)), 1.86 (6H, m, OCH\(_2\)CH\(_2\)H\(_2\), C\(_2\)H\(_4\)), 2.18 (2H, m, CF\(_2\)CH\(_2\)), 4.04 (2H, t, J 6.0, OCH\(_2\)), 4.06 (2H, t, J 6.6, OCH\(_2\)), 6.77 (1H, ABXY, OC\(_6\)F\(_2\)H\(_2\)), 6.96 (2H, AA'BB', OC\(_6\)H\(_4\)), 7.05 (1H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.43 (2H, AA'BB', C\(_6\)H\(_4\)). \(v_{\text{max (KBr)}}/\text{cm}^{-1}\):
disc)/cm⁻¹: 2958 (CH₃-, C-H asym str), 2930 (-CH₂-, C-H asym str), 2878 (CH₃-, C-H sym str), 2854 (-CH₂-, C-H sym str), 1630, 1608 and 1504 (C=C str), 1467 (CH₃- asym, -CH₂- sci, C-H def), 1220 (C-F and aryl-O str), 1132 and 1082 (C-O str), 882, 839 and 800 (C-H o.o.p.d.), 725. m/z: 539 [M-69, -CF₃]⁺, 496, 348, 335, 223.

Example 3

2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)-4'-octyloxybiphenyl (Compound 11 in Table 2)

Quantities: 4-iodo-1-octyloxybenzene (0.83 g, 2.5 mmol), 2,3-difluoro-4-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy) phenylboronic acid (Preparation 4, 1.34 g, 3 mmol), tetrakis(triphenylphosphine)palladium(0) (86.8 mg, 75 μmol) and aqueous sodium carbonate (2 mol cm⁻³, 2.5 cm³). The experimental procedure was described previously in Example 1.

Yield = 1.0 g (66 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C₂₈H₃₁F₁₁O₂ (608.54): C, 55.27 (55.31); H, 5.13 (5.13) %.

Mesomorphism (T / °C): Cryst 83 SA 90.8 Iso.

δH (270 MHz; CDCl₃; Me₄Si): 0.89 (3H, t, J 6.8, CH₃), 1.31 (8H, m, C₄H₈), 1.47 (2H, m, OCH₂CH₂CH₂), 1.80 (2H, m, OCH₂CH₂), 1.90 (4H, m, C₂H₄), 2.20 (2H, m, CF₂CH₂), 3.99 (2H, t, J 6.5, OCH₂), 4.11 (2H, t, J 5.7, OCH₂), 6.77 (1H, ABXY, OC₆F₅H₂), 6.96 (2H, AA'BB', OC₆H₄), 7.06 (1H, ABXY, C₆F₅H₂), 7.41 (2H, AA'BB', C₆H₄). νmax(KBr)/cm⁻¹: 2956 (CH₃-, C-H asym str), 2924 (-CH₂-, C-H asym str), 2874 (CH₃-, C-H sym str), 2852 (-CH₂-, C-H sym str), 1628, 1606 and 1502 (C=C str), 1464 (CH₃- asym, -CH₂- sci, C-H def), 1219 (C-F and aryl-O str), 1131 and 1081 (C-O str), 881, 840 and 798 (C-H o.o.p.d.), 717. m/z: 608 [M⁺], 591, 496, 477.

Example 4

2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)-4'-nonylbiphenyl (Compound 13 in Table 2)

Quantities: 4-bromo-1-nonylbenzene (0.71 g, 2.5 mmol), 2,3-difluoro-4-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy) phenylboronic acid (Preparation 4, 1.34 g, 3 mmol), tetrakis(triphenylphosphine)palladium(0) (86.8 mg, 75 μmol) and aqueous sodium carbonate (2 mol cm⁻³, 2.5 cm³). The experimental procedure was described previously
in Example 1.
Yield = 1.0 g (66 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C29H33F11O (606.56): C, 57.43 (57.25); H, 5.48 (5.37) %.
Mesomorphism (T / °C): Cryst 50 SA 60.2 Iso.
δH (270 MHz; CDCl3; Me4Si): 0.88 (3H, t, J 6.7, CH3), 1.27 (12H, m, C6H12), 1.64 (2H, m, PhCH2CH2), 1.91 (4H, m, C2H4), 2.20 (2H, m, CF2CH2), 2.64 (2H, t, J 7.7, PhCH2), 4.12 (2H, t, J 5.7, OCH2), 6.78 (1H, ABXY, OC6F2H2), 7.10 (1H, ABXY, C6F2H2), 7.25 (2H, AA'BB', OC6H4), 7.41 (2H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹:
2956 (CH3-, C-H asym str), 2924 (-CH2-, C-H asym str), 2884 (CH3-, C-H sym str), 2854 (-CH2-, C-H sym str), 1633 and 1503 (C=C str), 1470 (CH3- asym, -CH2- sci, C-H def), 1239 and 1214 (C-F and aryl-O str), 1132 and 1079 (C-O str), 850 (C-H o.o.p.d.), 769. m/z: 606 [M]+, 506, 493, 332, 219.

Example 5
2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonafluorooclyoxy)-4'(5,5,6,6,7,7,8,8,8,8-nonafluorooclyoxy)biphenyl (Compound 10 in Table 2)
Quantities: 4-bromo-1-(5,5,6,6,7,7,8,8,8,8-nonafluorooclyoxy)benzene (Preparation 3A, 1.12 g, 2.5 mmol), 2,3-difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonafluorooclyoxy) phenylboronic acid (Preparation 4, 1.34 g, 3 mmol), tetrakis(triphenylphosphine)palladium(0) (86.8 mg, 75 µmol) and aqueous sodium carbonate (2 mol cm⁻³, 2.5 cm³). The experimental procedure was described previously in Example 1.
Yield = 1.7 g (88 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C28H22F20O2 (770.45): C, 43.65 (43.62); H, 2.88 (2.64) %.
Mesomorphism (T / °C): Cryst 74 SA 82.0 Iso.
δH (270 MHz; CDCl3; Me4Si): 1.89 (8H, m, 2xC2H4), 2.18 (4H, m, 2xCF2CH2), 4.05 (2H, t, J 5.7, OCH2), 4.12 (2H, t, J 5.7, OCH2), 6.78 (1H, ABXY, OC6F2H2), 6.96 (2H, AA'BB', OC6H4), 7.07 (1H, ABXY, C6F2H2), 7.43 (2H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹:
2958 (CH3-, C-H asym str), 2930 (-CH2-, C-H asym str), 2878 (CH3-, C-H sym str), 2854 (-CH2-, C-H sym str), 1627, 1605 and 1502 (C=C str), 1475 (-CH2- sci, C-H def), 1244 (C-F and aryl-O str), 1131 and 1078 (C-O str), 849 (C-H o.o.p.d.), 721. m/z:
Comparative Example 1

2,3-Difluoro-4-octyloxy-4'-octyloxybiphenyl

Quantities: 4-iodo-1-octyloxybenzene (0.83 g, 2.5 mmol), 2,3-difluoro-4-octyloxyphenylboronic acid (1.34 g, 3 mmol), tetrakis(triphenylphosphine)palladium(0) (86.8 mg, 75 μmol) and aqueous sodium carbonate (2 mol cm\(^{-3}\), 2.5 cm\(^3\)). The experimental procedure was described previously in Example 1.

Yield = 0.6 g (54 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C\(_{28}\)H\(_{40}\)F\(_2\)O\(_2\) (446.62): C, 75.30 (75.30); H, 9.03 (9.04) %.

Mesomorphism (T / °C): Cryst 57 S\(_C\) 59.5 S\(_A\) 60.1 N 63.7 Iso.

δ\(_H\) (270 MHz; CDCl\(_3\); Me4Si): 0.89 (6H, t, J 6.6, 2xCH\(_3\)), 1.31 (16H, m, 2xC\(_4\)H\(_8\)), 1.47 (4H, m, 2xOCH\(_2\)CH\(_2\)CH\(_2\)), 1.84 (4H, m, 2xOCH\(_2\)CH\(_2\)), 3.99 (2H, t, J 6.5, PhOCH\(_2\)), 4.06 (2H, t, J 6.6, C\(_6\)F\(_2\)H\(_2\)OCH\(_2\)), 6.77 (1H, ABXY, OC\(_6\)F\(_2\)H\(_2\)), 6.96 (2H, AA'BB'), OC\(_6\)H\(_4\)), 7.05 (1H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.41 (2H, AA'BB', C\(_6\)H\(_4\)). \(\nu_{\text{max}}\) (KBr disc)/cm\(^{-1}\): 2954 (CH\(_3\)-, C-H asym str), 2920 (-CH\(_2\)-, C-H asym str), 2870 (CH\(_3\)-, C-H sym str), 2850 (-CH\(_2\)-, C-H sym str), 1631, 1606 and 1502 (C=C str), 1464 (CH\(_3\)- asym, -CH\(_2\)- sci, C-H def), 1300, 1272, 1251 (aryl-O str), 1076 (C-O str), 838 and 798 (C-H o.o.p.d.). m/z: 446 [M\(^+\)], 334, 222.

Example 6

2,3-Difluoro-4"-(5,5,6,6,7,7,8,8,8-nonafluoroctyloxy)-4-octyloxy-1.1':4',1"-terphenyl

(Compound No. 3 in Table 1)

Quantities: 4-bromo-4"-(5,5,6,6,7,7,8,8,8-nonafluoroctyloxy)biphenyl (Preparation 3B, 1.57 g, 3.0 mmol), 2,3-difluoro-4-octyloxyphenylboronic acid (0.90 g, 3.1 mmol), tetrakis(triphenylphosphine)palladium(0) (104 mg, 90 μmol) and aqueous sodium carbonate (2 mol cm\(^{-3}\), 3 cm\(^3\)). The experimental procedure was described previously in Example 1.

Yield = 0.8 g (39 %); Purity (HPLC): 98.27 %; Element Analysis: Calc.(found) for C\(_{34}\)H\(_{35}\)F\(_{11}\)O\(_2\) (684.63): C, 59.65 (59.30); H, 5.15 (5.10) %.

Mesomorphism (T / °C): Cryst 99 S\(_C\) 184.7 S\(_A\) 206.8 Iso.

δ\(_H\) (270 MHz; CDCl\(_3\); Me4Si): 0.90 (3H, t, J 6.7, CH\(_3\)), 1.32 (8H, m, C\(_4\)H\(_8\)), 1.49 (2H, m, OCH\(_2\)CH\(_2\)CH\(_2\)), 1.85 (2H, m, OCH\(_2\)CH\(_2\)), 1.89 (4H, m, C\(_2\)H\(_4\)), 2.18 (2H, m,
CF₂CH₂), 4.02 (2H, t, J 6.5, OCH₂), 4.08 (2H, t, J 6.5, OCH₂), 6.81 (1H, ABXY, O₆F₂H₂), 6.98 (2H, AA'BB', O₆H₄), 7.14 (1H, ABXY, C₆F₂H₂), 7.57 (4H, AA'BB', C₆H₄), 7.63 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹: 2956 (CH₃-), C-H asym str), 2928 (CH₂-, C-H asym str), 2874 (CH₃-, C-H sym str), 2854 (CH₂-, C-H sym str), 1627, 1604 and 1496 (C=C str), 1464 (CH₃- asym, -CH₂- sci, C-H def), 1300, 1217 (C-F and aryl-O str), 1130 and 1075 (C-O str), 802 (C-H o.o.p.d.), 720. m/z: 572 [M-112, -C₈H₁₆]⁺, 409, 298.

Example 7

2,3-Difluoro-4-(5,5,6,7,7,8,8,8-nonafluorooctyloxy)-4"-octyloxy-1.1:4.1"-terphenyl

(Compound No 1 in Table 1)

Quantities: 4-bromo-4'-octyloxybiphenyl (1.08 g, 3.0 mmol), 2,3-difluoro-4-(5,5,6,7,7,8,8,8-nonafluoroctyloxy)phenylboronic acid (Preparation 4, 1.68 g, 3.75 mmol), tetrakis(triphenylphosphine)palladium(0) (104 mg, 90 μmol) and aqueous sodium carbonate (2 mol cm⁻³, 0 cm³). The experimental procedure was described previously in Example 1.

Yield = 0.25 g (12 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C₃₄H₃₅F₁₁O₂ (684.63): C, 59.65 (59.89); H, 5.15 (5.20) %.

Mesomorphism (T °C): Cryst 127 SC 183.8 SA 216.1 Iso.

δH (270 MHz; CDCl₃; Me₄Si): 0.90 (3H, t, J 6.7, CH₃), 1.31 (8H, m, C₄H₈), 1.48 (2H, m, OCH₂CH₂CH₂), 1.81 (2H, m, OCH₂CH₂), 1.94 (4H, m, C₄H₄), 2.21 (2H, m, CF₂CH₂), 4.01 (2H, t, J 6.5, OCH₂), 4.14 (2H, t, J 5.7, OCH₂), 6.81 (1H, ABXY, O₆F₂H₂), 6.99 (2H, AA'BB', O₆H₄), 7.15 (1H, ABXY, C₆F₂H₂), 7.56 (4H, AA'BB', C₆H₄), 7.63 (2H, AA'BB', C₆H₄). vmax(KBr disc)/cm⁻¹: 2956 (CH₃-), C-H asym str), 2922 (CH₂-, C-H asym str), 2876 (CH₃-, C-H sym str), 2854 (CH₂-, C-H sym str), 1627, 1604 and 1495 (C=C str), 1465 (CH₃- asym, -CH₂- sci, C-H def), 1300, 1260 and 1218 (C-F and aryl-O str), 1130 and 1081 (C-O str), 881, 800 (C-H o.o.p.d.). m/z: 572 [M-112, -C₈H₁₆]⁺, 466, 409, 298.
Example 8

2',3'-Difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluoroocytloxy)-4''-octyloxy-1',1':4',1''-terphenyl (Compound 2 in Table 1)

Quantities: 2',3'-difluoro-4''-octyloxy-4-hydroxy-1',1':4',1''-terphenyl (0.5 g, 1.2 mmol), 5,5,6,6,7,7,8,8,8,8-nonfluoroocotan-1-ol (Preparation 2A, 0.36 g, 1.2 mmol), diethyl azodicarboxylate (0.21 g, 1.2 mmol) and triphenylphosphinhe (0.32 g, 1.2 mmol). The experimental procedure was described previously in Example 2.

Yield = 0.6 g (73 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C_{34}H_{35}F_{11}O_{2} (684.63): C, 59.65 (59.77); H, 5.15 (5.13) %.

Mesomorphism (T / °C): Cryst 83 Sc 155.7 Sa 193.2 Iso.

δH (270 MHz; CDCl3; Me4Si): 0.90 (3H, t, J 6.7, CH3), 1.30 (8H, m, C4H8), 1.48 (2H, m, OCH2CH2CH2), 1.82 (2H, m, OCH2CH2), 1.90 (4H, m, C2H4), 2.19 (2H, m, CF2CH2), 4.01 (2H, t, J 6.7, OCH2), 4.06 (2H, t, J 5.8, OCH2), 6.99 (4H, AA'BB', OC6H4), 7.21 (2H, ABXY, C6F2H2), 7.52 (4H, AA'BB', C6H4). νmax(KBr disc)/cm⁻¹: 2954 (CH3- C-H asym str), 2922 (-CH2-, C-H asym str), 2872 (CH3-, C-H sym str), 2854 (-CH2-, C-H sym str), 1606, 1522 and 1481 (C=C str), 1453 (-CH2- sci, C-H def), 1247 and 1215 (C-F and aryl-O str), 1130 (C-O str), 810 (C-H o.o.p.d.). m/z: 684 [M]+, 572, 298.

Example 9

2',3'-Difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluoroocytloxy)-4''-nonyl-1',1':4',1''-terphenyl (Compound 4 in Table 1)

Quantities: 2',3'-difluoro-4''-nonyl-4-hydroxy-1',1':4',1''-terphenyl (0.4 g, 1.0 mmol), 5,5,6,6,7,7,8,8,8,8-nonfluoroocotan-1-ol (Preparation 2A, 0.29 g, 1.0 mmol), diethyl azodicarboxylate (0.17 g, 1.0 mmol) and triphenylphosphinhe (0.26 g, 1.0 mmol). The experimental procedure was described previously in Example 2.

Yield = 0.5 g (73 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C_{35}H_{37}F_{11}O (682.66): C, 61.58 (61.58); H, 5.46 (5.46) %.

Mesomorphism (T / °C): Cryst 76 Sc 116.4 Sa 163.6 Iso.

δH (270 MHz; CDCl3; Me4Si): 0.89 (3H, t, J 6.7, CH3), 1.28 (12H, m, C6H12), 1.66 (2H, m, PhCH2CH2), 1.90 (4H, m, C2H4), 2.19 (2H, m, CF2CH2), 2.66 (2H, t, J 7.7,
PhCH₂), 4.06 (2H, t, J 5.7, OCH₂), 6.99 (2H, AA'BB', OC₆H₄), 7.22 (2H, ABXY, C₆F₂H₂), 7.29 (2H, AA'BB', C₆H₄), 7.50 (2H, AA'BB', C₆H₄), 7.53 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹: 2954 (CH₃-, C-H asym str), 2920 (-CH₂-, C-H asym str), 2874 (CH₃-, C-H sym str), 2848 (-CH₂-, C-H sym str), 1608, 1522 and 1481 (C=C str), 1452 (-CH₂- sci, C-H def), 1216 (C-F and aryl-O str), 1131 (C-O str), 816 (C-H o.o.p.d.), 718. m/z: 682 [M]+, 665, 582, 569, 295.

Example 10

2-[2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluoroocyloxy) biphenyl-4'yl]-5-nonyl-1,3-dioxane (Compound no 22 in Table 3)

Quantities: 2-(4-bromophenyl)-5-nonyl-1,3-dioxane (0.92 g, 2.5 mmol), 2,3-difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluoroocyloxy)phenylboronic acid (Preparation 4, 1.34 g, 3 mmol), tetrakis(triphenylphosphe)palladium(0) (86.8 mg, 75 µmol) and aqueous sodium carbonate (2 mol cm⁻³, 2.5 cm³). The experimental procedure was described previously in Example 1.

Yield = 1.25 g (72 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C₃₄H₃₅F₁₁O₂ (692.65): C, 57.22 (57.36); H, 5.68 (5.53) %.

Mesomorphism (T / °C): Cryst 78 S A 164.0 Iso.

δH (270 MHz; CDCl₃; Me₄Si): 0.89 (3H, t, J 6.7, CH₃), 1.11 (2H, m, CH₃CH₂), 1.28 (14H, m, C₇H₁₄), 1.90 (4H, m, C₂H₄), 2.17 (3H, m, CF₂CH₂, 5-H), 3.55 (2H, dd, J 11.5 and 11.5, Ha), 4.12 (2H, t, J 6.5, OCH₂), 4.25 (2H, dd, J 11.5 and 4.5, He), 5.46 (1H, s, 2-H), 6.78 (1H, ABXY, OC₆H₂F₂), 7.08 (1H, ABXY, C₆H₂F₂), 7.50 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹: 2952 (CH₃-, C-H asym str), 2918 (-CH₂-, C-H asym str), 2844 (CH₃-, -CH₂-, C-H sym str), 1625 and 1502 (C=C str), 1464 (CH₃- asym, -CH₂- sci, C-H def), 1385 (CH₃-, C-H sym def), 1315, 1299, 1232 and 1218 (C-F and aryl-O str), 1128, 1077 and 1020 (alkyl-O str), 797 (C-H o.o.p.d.), 717. m/z: 508 [M-184, -OC₁₂H₂₄+], 493, 480, 417, 234.

Example 11

(2S,3S)-2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8,8-nonfluoroocyloxy)biphenyl-4'-yl 2-chloro-3-methylpentanoate (Compound 18 in Table 2)

A solution of (2S,3S)-(−)-2-chloro-3-methylpentanoic acid (0.23 g, 1.5 mmol), 2,3-
difluoro-4-(5,5,6,6,7,7,8,8,8-nonafluoroctyloxy)-4'-hydroxybiphenyl (Preparation 9, 0.5 g, 1 mmol), \(N,N'\)-dicyclohexylcarbodiimde (0.23 g, 1.1 mmol) and 4-(\(N,N'\)-dimethylamino)pyridine (0.01 g, 0.1 mmol) in dichloromethane (10 cm\(^3\)) was stirred overnight at room temperature. The reaction mixture was filtered and the filtrate washed with water (2 x 25 cm\(^3\)) and dried (MgSO\(_4\)). The solvent was removed in vacuo, the product purified by flash column chromatography (light petroleum / dichloromethane) and recrystallisation from hexane (HPLC standard).

Yield = 0.45 g (72 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C\(_{26}\)H\(_{24}\)ClF\(_{11}\)O\(_3\) (628.91): C, 49.66 (49.71); H, 3.85 (3.76) %; \([\alpha]\)\(_D\)\(^{21}\) = 0.0° (13.39 g/dm\(^3\) in CHCl\(_3\)). Mesomorphism (T / °C): Cryst 48 SA 53.2 Iso.

\(\delta_H\) (270 MHz; CDCl\(_3\); Me4Si): 1.00 (3H, t, J 7.5, CH\(_3\)), 1.15 [3H, d, J 7.0, CH(CH\(_3\))], 1.43 [1H, m, CH\(_2\)CH(CH\(_3\))], 1.78 [1H, m, CH\(_2\)CH(CH\(_3\))], 1.93 (4H, m, C\(_2\)H\(_4\)), 2.20 (2H, m, CF\(_2\)CH\(_2\)), 2.23 [1H, m, CH (CH\(_3\))], 4.13 (2H, t, J 5.7, OCH\(_2\)), 4.40 [1H, d, J 7.1, CHCl\(_3\)], 6.80 (1H, ABXY, OC\(_6\)F\(_2\)H\(_2\)), 7.09 (1H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.20 (2H, AA'BB', CO\(_2\)C\(_6\)H\(_4\)), 7.53 (2H, AA'BB', C\(_6\)H\(_4\)). \(\nu_{\text{max}}\) (KBr disc)/cm\(^{-1}\): 2964 (CH\(_3\) -, C-H asym str), 2936 (-CH\(_2\) -, C-H asym str), 2878 (CH\(_3\) -, -CH\(_2\) -, C-H sym str), 1754 (C=O str), 1627 and 1496 (C=C str), 1465 (CH\(_3\) - asym, -CH\(_2\) - sci, C-H def), 1228 and 1216 (C-F and aryl-O str), 1129 and 1076 (C-O str), 848 (C-H o.o.p.d.). m/z: 629 [M+1]^\(+\), 497, 367, 355, 222.

Example 12

\((2S,3S)-2,3\text{-Difluoro-4'-(5,5,6,6,7,7,8,8,8-nonafluoroctyloxy)biphenyl-4-y1\text{-2-chloro-3-methylpentanoate (Compound 19 in Table 2)}}\)

Quantities: (2S,3S)-(--)2-chloro-3-methylpentanoic acid (0.23 g, 1.5 mmol), 2,3-difluoro-4'-(5,5,6,6,7,7,8,8,8-nonafluoroctyloxy)-4-hydroxybiphenyl (Preparation 7, 0.5 g, 1 mmol), \(N,N'\)-dicyclohexylcarbodiimde (0.23 g, 1.1 mmol) and 4-(\(N,N'\)-dimethylamino)pyridine (0.01 g, 0.1 mmol). The experimental procedure was described previously in Example 11.

Yield = 0.4 g (64 %); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C\(_{26}\)H\(_{24}\)ClF\(_{11}\)O\(_3\) (628.91): C, 49.66 (49.76); H, 3.85 (3.76) %; \([\alpha]\)\(_D\)\(^{22}\) = + 3.3° (21.69 g/dm\(^3\) in CHCl\(_3\)). Mesomorphism (T / °C): Cryst 48 SA 53.2 Iso.
δH (270 MHz; CDCl3; Me4Si): 1.00 (3H, t, J 7.5, CH3), 1.16 [3H, d, J 7.0, CH(CH3)], 1.43 [1H, m, CH2CH(CH3)], 1.78 [1H, m, CH2CH(CH3)], 1.89 (4H, m, C2H4), 2.18 (2H, m, CF2CH2), 2.25 [1H, m, CH (CH3)], 4.05 (2H, t, J 5.7, OCH2), 4.46 [1H, d, J 7.0, CHCl], 6.98 (2H, AA'BB', OC6H4), 7.00 (1H, ABXY, CO2C6F2H2), 7.18 (1H, ABXY, C6F2H2), 7.46 (2H, AA'BB', C6H4). v max(KBr disc)/cm⁻¹: 2966 (CH3-, C-H asym str), 2936 (-CH2-, C-H asym str), 2878 (CH3-, -CH2-, C-H sym str), 1779 (C=O str), 1604, 1515 and 1491 (C=C str), 1467 (CH3- asym, -CH2- sci, C-H def), 1242 (C-F and aryl-O str), 1132 (C-O str), 827 (C-H o.o.p.d.), 770. m/z: 572 [M-56, -(C6H4)⁺], 496, 222.

Example 13

(S)-Non-3-yl 4’-(12,12,13,13,14,14,15,15,15-Nonafluoropentadecyloxy)biphenyl-4-carboxylate (Compound 20 in Table 2)

Quantities: diethyl azodicarboxylate (0.09 g, 0.5 mmol), (S)-non-3-yl 4’-hydroxybiphenyl-4-carboxylate (0.17 g, 0.5 mmol), 12,12,13,13,14,14,15,15,15-nonfluoropentadecan-1-ol (0.21 g, 0.5 mmol) and triphenylphosphine (0.13 g, 0.5 mmol). The experimental procedure was described previously in Preparation 3A.

Yield = 0.08 g (22%); mp. 43-45 °C; Purity (HPLC): 100.0 %; [α]D 28° = +10.4° (18.49 g/dm³ in CHCl3).

δH (270 MHz; CDCl3; Me4Si): 0.87 (3H, t, J 6.8, CH3), 0.96 (3H, t, J 7.5, CH3), 1.26 (8H, m, C4H8), 1.32 (14H, m, C7H14), 1.63 (2H, m, CF2CH2CH2), 1.69 [4H, m, CH(CH2)2], 1.81 (2H, qn, J 7.5, OCH2CH2), 2.05 (2H, m, CF2CH2), 4.01 (2H, t, J 6.6, OCH2), 5.09 (1H, qn J 6.2, OCH), 6.99 (2H, AA'BB', OC6H4), 7.56 (2H, AA'BB', C6H4), 7.62 (2H, AA'BB', C6H4), 8.09 (2H, AA'BB', C6H4CO2). v max(KBr disc)/cm⁻¹: 2920 (CH3-, -CH2-, C-H asym str), 2852 (CH3-, -CH2-, C-H sym str), 1697 (C=O str), 1607 and 1522 (C=C str), 1470 (CH3- asym, -CH2- sci, C-H def), 1358, 1242 (C-F and aryl-O str), 1132 (C-O str), 835 (C-H o.o.p.d.), 774, 722. m/z: 627 [M-85, -(C6H13)⁺], 600.
Example 14

2,3-Difluoro-4'-octyloxy-4-(4-pentamethyldisiloxylbutyloxy)biphenyl (Compound 14 in Table 2)

A solution of pentamethyldisiloxane (0.3 g, 2 mmol) in dry toluene (10 cm³) was added dropwise into a solution of 4-(3-butenyloxy)-2,3-difluoro-4'-octyloxybiphenyl (Preparation 14, 0.56 g, 1.4 mmol) and platinum divinyltetramethyldisiloxane complex (10 mm³) in dry toluene (5 cm³) under an atmosphere of dry nitrogen at room temperature. The reaction mixture was stirred for a further period of time at room temperature until HPLC analysis revealed a complete reaction (ca. 2-4 h). The solvent and the excess pentamethyldisiloxane were removed in vacuo, the product purified by flash column chromatography (light petroleum / dichloromethane) and recrystallisation from hexane (HPLC standard).

Yield = 0.6 g (80%); mp. 26-28 °C; Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C₂₉H₄₆F₂O₃Si₂ (536.85): C, 64.88 (64.52); H, 8.64 (8.69) %.

δH (270 MHz; CD₂Cl₂; ExRef 5.30): 0.05 (15H, m, 5xSiCH₃), 0.58 (2H, t, J 8.5, SiCH₂), 0.87 (3H, t, J 6.7, CH₃), 1.28 (8H, m, C₄H₈), 1.50 (4H, m, 2xOCH₂CH₂CH₂), 1.80 (4H, m, 2xOCH₂CH₂), 3.97 (2H, t, J 6.5, OCH₂C₇H₁₅), 4.06 (2H, t, J 6.5, OCH₂), 6.80 (1H, ABXY, OC₆H₂F₂), 6.93 (2H, AA'BB', OC₆H₄), 7.06 (1H, ABXY, C₆F₂H₂), 7.39 (2H, AA'BB', C₆H₄). νmax(KBr disc/cm⁻¹): 2948 (CH₃, C-H asym str), 2924 (-CH₂, C-H asym str), 2852 (CH₃, -CH₂, C-H sym str), 1624, 1606 and 1496 (C=C str), 1465 (CH₃ asym, -CH₂- sci, C-H def), 1311, 1287 and 1248 (Si-C and aryl-O str), 1197, 1178, 1025 and 1003 (Si-O-Si, Si-O-C asym str and C-O str), 840 and 798 (Si-CH₃, Si-O-C def and C-H o.o.p.d.). m/z: 536 [M]+, 504, 479, 464, 445, 424, 390, 368.

Example 15

2,3-Difluoro-4-octyloxy-4'-pentamethyldisiloxylbutyloxy)biphenyl (Compound 15 in Table 2)

Quantities: pentamethyldisiloxane (0.24 g, 1.6 mmol) and 4'-[(3-butenyloxy)-2,3-difluoro-4-octyloxybiphenyl (Preparation 16, 0.42 g, 1.1 mmol). The experimental procedure was described previously in Example 14.

Yield = 0.2 g (34%); mp. 33.0-33.5 °C; Purity (HPLC): 100.0 %; Element Analysis:
Calc. (found) for C_{29}H_{46}F_{2}O_{3}Si_{2} (536.85): C, 64.88 (64.98); H, 8.64 (8.68) %.

δH (270 MHz; CDCl$_3$; ExRef 5.30): 0.05 (15H, m, 5xSi(CH$_3$)$_3$), 0.57 (2H, t, J 8.4, SiCH$_2$), 0.87 (3H, t, J 6.7, CH$_3$), 1.29 (8H, m, C$_4$H$_8$), 1.48 (4H, m, 2xOCH$_2$CH$_2$CH$_2$), 1.80 (4H, qn, J 7.0, 2xOCH$_2$CH$_2$), 3.98 (2H, t, J 6.5, OCH$_2$CH$_2$C$_7$H$_15$), 4.04 (2H, t, J 6.5, OCH$_2$), 6.79 (1H, ABXY, OC$_6$H$_2$F$_2$), 6.93 (2H, AA'BB', OC$_6$H$_4$), 7.06 (1H, ABXY, C$_6$F$_2$H$_2$), 7.39 (2H, AA'BB', C$_6$H$_4$). v$_{\text{max}}$(KBr disc)/cm$^{-1}$: 2950 (CH$_3$- C-H asym str), 2922 (-CH$_2$-, C-H sym str), 2848 (CH$_3$-, -CH$_2$-, C-H sym str), 1627, 1604 and 1498 (C=C str), 1468 (CH$_3$- asym, -CH$_2$- sci, C-H def), 1288 and 1250 (Si-C and aryl-O str), 1067 (Si-O-Si, Si-O-C asym str and C-O str), 839 (Si-CH$_3$, Si-O-C def and C-H o.o.p.d.).

m/z: 536 [M]$^+$, 521, 480, 465, 424, 381, 368, 353.

Example 16

2,3-Difluoro-4"-octyloxy-4-(4-pentamethyldisiloxylbutyloxy)-1,1':4',1"-terphenyl (Compound 5 in Table 1)

Quantities: pentamethyldisiloxane (0.1 g, 0.67 mmol) and 4-(3-butenyloxy)-2,3-difluoro-4"-octyloxy-1,1':4',1"-terphenyl (Preparation 17, 0.2 g, 0.43 mmol). The experimental procedure was described previously for in Example 14.

Yield = 0.08 g (30%); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for C$_{35}$H$_{50}$F$_2$O$_3$Si$_2$ (612.95): C, 68.58 (68.52); H, 8.22 (8.35) %.

Mesomorphism (T / °C): Cryst 53 S C 137.8 Iso.

δH (270 MHz; CDCl$_3$; ExRef 7.26): 0.07 (15H, m, 5xSiCH$_3$), 0.59 (2H, t, J 7.2, SiCH$_2$), 0.90 (3H, t, J 6.8, CH$_3$), 1.30 (8H, m, C$_4$H$_8$), 1.51 (4H, m, 2xOCH$_2$CH$_2$CH$_2$), 1.82 (2H, m, OCH$_2$CH$_2$), 1.88 (2H, m, OCH$_2$CH$_2$), 4.01 (2H, t, J 6.5, OCH$_2$CH$_2$C$_7$H$_15$), 4.10 (2H, t, J 6.5, OCH$_2$), 6.82 (1H, ABXY, OC$_6$H$_2$F$_2$), 6.99 (2H, AA'BB', OC$_6$H$_4$), 7.14 (1H, ABXY, C$_6$F$_2$H$_2$), 7.56 (4H, AA'BB', C$_6$H$_4$), 7.62 (2H, AA'BB', C$_6$H$_4$). v$_{\text{max}}$(KBr disc)/cm$^{-1}$: 2956 (CH$_3$-, C-H asym str), 2936 (-CH$_2$-, C-H asym str), 2860 (CH$_3$-, -CH$_2$-, C-H sym str), 1623, 1603 and 1494 (C=C str), 1464 (CH$_3$- asym, -CH$_2$- sci, C-H def), 1298 and 1250 (Si-C and aryl-O str), 1067 (Si-O-Si, Si-O-C asym str and C-O str), 843 and 829 (Si-CH$_3$, Si-O-C def and C-H o.o.p.d.). m/z: 613 [M+1]$^+$, 556, 541, 298.
Example 17

2,3-Difluoro-4-octyloxy-4"-(4-pentamethyldisiloxylbutyloxy)-1,1':4',1"-terphenyl
(Compound 7 in Table 1)

Quantities: pentamethyldisiloxane (0.19 g, 1.3 mmol) and 4"-(3-butenyloxy)-2,3-difluoro-
4-octyloxy-1,1':4',1"-terphenyl (Preparation 18, 0.4 g, 0.86 mmol). The experimental
procedure was described previously in Example 14.

Yield = 0.2 g (38%); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for
C₃₅H₅₀F₂O₅Si₂ (612.95): C, 68.58 (68.59); H, 8.22 (8.45) %.

Mesomorphism (T / °C): Cryst 54 > C 119.6 Iso.

δH (270 MHz; CDCl₃; Me₄Si): 0.07 (15H, m, 5xSiCH₃), 0.59 (2H, t, J 8.4, SiCH₂), 0.89
(3H, t, J 6.6, CH₃), 1.30 (8H, m, C₄H₈), 1.53 (4H, m, 2xOCH₂CH₂CH₂), 1.84 (4H, m,
2xOCH₂CH₂), 4.02 (2H, t, J 6.5, OCH₂C₇H₁₅), 4.08 (2H, t, J 6.5, OCH₂), 6.81 (1H,
ABXY, OC₆H₂F₂), 6.99 (2H, AA'BB', OC₆H₄), 7.13 (1H, ABXY, C₆F₂H₂), 7.56 (4H,
AA'BB', C₆H₄), 7.62 (2H, AA'BB', C₆H₄). νmax(KBr disc)/cm⁻¹: 2952 (CH₃-, C-H
asym str), 2924 (-CH₂-, C-H asym str), 2856 (CH₃-, -CH₂-, C-H sym str), 1633, 1604 and
1495 (C=C str), 1464 (CH₃- asym, -CH₂- sci, C-H def), 1250 (Si-C and aryl-O str), 1179
and 1078 (Si-O-Si, Si-O-C asym str and C-O str), 841, 827 and 801 (Si-CH₃, Si-O-C def

Example 18

2',3'-Difluoro-4-octyloxy-4"-(4-pentamethyldisiloxylbutyloxy)-1,1':4',1"-terphenyl
(Compound 6 in Table 1)

Quantities: pentamethyldisiloxane (0.22 g, 1.5 mmol) and 4"-(3-butenyloxy)-2',3'-
difluoro-4-octyloxy-1,1':4',1"-terphenyl (Preparation 19, 0.49 g, 1.05 mmol). The experimental
procedure was described previously in Example 14.

Yield = 0.5 g (78%); Purity (HPLC): 98.24 %; Element Analysis: Calc.(found) for
C₃₅H₅₀F₂O₅Si₂ (612.95): C, 68.58 (68.52); H, 8.22 (8.82) %.

Mesomorphism (T / °C): Cryst 70 > C 104.0 N 105.6 Iso.

δH (270 MHz; CD₂Cl₂; ExRef 5.30): 0.06 (15H, m, 5xSiCH₃), 0.59 (2H, t, J 8.5,
SiCH₂), 0.88 (3H, t, J 6.8, CH₃), 1.30 (8H, m, C₄H₈), 1.50 (4H, m, 2xOCH₂CH₂CH₂),
1.79 (2H, m, OCH₂CH₂), 1.81 (2H, m, OCH₂CH₂), 3.99 (2H, t, J 6.5, OCH₂C₇H₁₅),
4.01 (2H, t, J 6.5, OCH2), 6.98 (4H, AA'BB', OC6H4), 7.22 (2H, ABXY, C6F2H2), 7.50 (4H, AA'BB', C6H4). \(\nu_{\text{max}} \) (KBr disc)/cm\(^{-1}\): 2952 (CH\(_3\)-, C-H asym str), 2922 (-CH\(_2\)-, C-H asym str), 2868 (CH\(_3\)-, C-H sym str), 2856 (-CH\(_2\)-, C-H sym str), 1604, 1520 and 1482 (C=C str), 1470 and 1453 (CH\(_3\)- asym, -CH\(_2\)- sci, C-H def), 1290 and 1249 (Si-C and aryl-O str), 1179 and 1038 (Si-O-Si, Si-O-C asym str and C-O str), 847, 832 and 810 (Si-CH\(_3\), Si-O-C def and C-H o.o.p.d.). m/z: 612 [M]\(^+\), 597, 556, 541, 500, 483, 298.

Example 19

2',3'-Difluoro-4-nonyl-4''-(4-pentamethyldisiloxoxybutyloxy)-1,1':4',1''-terphenyl
(Compound 8 in Table 1)

Quantities: pentamethyldisiloxane (0.22 g, 1.5 mmol) and 4''-(3-butenyloxy)-2',3'-difluoro-4-nonyl-1,1':4',1''-terphenyl (Preparation 20, 0.48 g, 1.04 mmol). The experimental procedure was described previously in Example 14.

Yield = 0.4 g (63%); Purity (HPLC): 98.55 %; Element Analysis: Calc.(found) for C\(_{36}\)H\(_{52}\)F\(_2\)O\(_2\)Si\(_2\) (610.97): C, 70.77 (70.67); H, 8.58 (8.66) %.

Mesomorphism (T °C): Cryst 28 Sc 70.9 N 74.1 Iso.

\(\delta H \) (270 MHz; CD\(_2\)Cl\(_2\); ExRef 5.30): 0.06 (15H, m, 5xSiCH\(_3\)), 0.59 (2H, t, J 8.5, SiCH\(_2\)), 0.87 (3H, t, J 7.0, CH\(_3\)), 1.27 (12H, m, C\(_6\)H\(_{12}\)), 1.50 (2H, m, OCH\(_2\)CH\(_2\)CH\(_2\)), 1.63 (2H, m, PhCH\(_2\)CH\(_2\)), 1.82 (2H, qn, J 7.0, OCH\(_2\)CH\(_2\)), 2.64 (2H, t, J 7.7, PhCH\(_2\)), 4.01 (2H, t, J 6.5, OCH\(_2\)), 6.98 (2H, AA'BB', OC\(_6\)H\(_4\)), 7.23 (2H, ABXY, C\(_6\)F\(_2\)H\(_2\)), 7.28 (2H, AA'BB', C\(_6\)H\(_4\)), 7.48 (2H, AA'BB', C\(_6\)H\(_4\)), 7.51 (2H, AA'BB', C\(_6\)H\(_4\)). \(\nu_{\text{max}} \) (KBr disc)/cm\(^{-1}\): 2954 (CH\(_3\)-, C-H asym str), 2922 (-CH\(_2\)-, C-H asym str), 2854 (CH\(_3\)-, -CH\(_2\)-, C-H sym str), 1605, 1521 and 1480 (C=C str), 1463 (CH\(_3\)- asym, -CH\(_2\)- sci, C-H def), 1401, 1250 (Si-C and aryl-O str), 1054 (Si-O-Si, Si-O-C asym str and C-O str), 840 and 804 (Si-CH\(_3\), Si-O-C def and C-H o.o.p.d.). m/z: 610 [M]\(^+\), 609, 539, 497, 408, 295.

Example 20

2-[2,3-Difluoro-4-(4-pentamethyldisiloxoxybutyloxy)biphenyl-4'-yl]-5-nonyl-1,3-dioxane
(Compound No 21 in Table 3)

Quantities: pentamethyldisiloxane (0.22 g, 1.5 mmol) and 2-[4-(3-butenyloxy)-2,3-difluorobiphenyl-4'-yl]-5-nonyl-1,3-dioxane (Preparation 21, 0.5 g, 1 mmol). The experimental procedure was described previously in Example 14.
Yield = 0.4 g (64%); Purity (HPLC): 100.0%; Element Analysis: Calc.(found) for C$_{36}$H$_{52}$F$_2$O$_2$Si$_2$ (610.97): C, 65.76 (66.34); H, 8.77 (9.12)%.

Mesomorphism (T / °C): Cryst 47 Sb 51.4 Sc 87.5 SA 103.0 Iso.

δH (270 MHz; CDCl$_3$; Me$_4$Si): 0.07 (15H, m, 5xSiCH$_3$), 0.58 (2H, t, J 8.4, SiCH$_2$), 0.89 (3H, t, J 6.6, CH$_3$), 1.11 (2H, m, CH$_2$CH$_3$), 1.28 (14H, m, C$_7$H$_{14}$), 1.53 (2H, m, OCH$_2$CH$_2$CH$_2$), 1.86 (2H, q, J 7.0, OCH$_2$CH$_2$), 2.14 (1H, m, 5-H), 3.35 (2H, dd, J 11.5 and 11.5, Ha), 4.08 (2H, t, J 6.5, OCH$_2$), 4.25 (2H, dd, J 11.5 and 4.5, He), 5.45 (1H, s, 2-H), 6.79 (1H, ABXY, OC$_6$H$_2$F$_2$), 7.07 (1H, ABXY, C$_6$F$_2$H$_2$), 7.50 (2H, AA'BB', C$_6$H$_4$), 7.55 (2H, AA'BB', C$_6$H$_4$). v_{max} (film/cm$^{-1}$): 2950 (CH$_3$- C-H asym str), 2920 (-CH$_2$-, C-H asym str), 2848 (CH$_3$-, -CH$_2$-, C-H sym str), 1630 and 1499 (C=C str), 1465 (CH$_3$- asym, -CH$_2$- sci, C-H def), 1391, 1251 (Si-C and aryl-O str), 1078 (Si-O-Si, Si-O-C asym str and C-O str), 842 and 800 (Si-CH$_3$, Si-O-C def and C-H o.o.p.d.). m/z: 563 [M-57, -C$_4$H$_9$]$^+$, 549, 464.

Example 21

2,3-Difluoro-4-(5,5,6,6,7,7,8,8,8-nonafluorooctyloxy)-4'-(4-pentamethyldisiloxobutyloxy)biphenyl (Compound 16 in Table 2)

Quantities: pentamethyldisiloxane (0.18 g, 1.2 mmol) and 4'-(3-butenyloxy)-2,3-difluoro-4-(5,5,6,6,7,7,8,8,8-nonafluorooctyloxy)biphenyl (Preparation 22, 0.45 g, 0.8 mmol). The experimental procedure was described in Example 14.

Yield = 0.25 g (45%); mp. 48-49 °C; Purity (HPLC): 100.0%; Element Analysis:

Calc.(found) for C$_{29}$H$_{37}$F$_{11}$O$_3$Si$_2$ (698.76): C, 49.85 (49.99); H, 5.34 (5.34)%.

δH (270 MHz; CDCl$_3$): 0.07 (15H, m, 5xSiCH$_3$), 0.59 (2H, t, J 8.3, SiCH$_2$), 1.50 (2H, m, SiCH$_2$CH$_2$), 1.89 (6H, m, OCH$_2$CH$_2$C$_2$H$_4$), 2.20 (2H, m, CF$_2$CH$_2$), 4.01 (2H, t, J 6.5, OCH$_2$Rf), 4.12 (2H, t, J 5.7, OCH$_2$), 6.77 (1H, ABXY, OC$_6$F$_2$H$_2$), 6.97 (2H, AA'BB', OC$_6$H$_4$), 7.07 (1H, ABXY, C$_6$F$_2$H$_2$), 7.42 (2H, AA'BB', C$_6$H$_4$). v_{max}(KBr disc/cm$^{-1}$): 2956 (-CH$_2$-, C-H asym str), 2886 (-CH$_2$-, C-H sym str), 1625, 1603 and 1500 (C=C str), 1463 (-CH$_2$- sci, C-H def), 1252, 1222 and 1217 (Si-C, C-F and aryl-O str), 1129 and 1078 (Si-O-Si, Si-O-C asym str and C-O str), 839 (Si-CH$_3$, Si-O-C def and C-H o.o.p.d.). m/z: 698 [M]$^+$, 680, 663.
Example 22

2,3-Difluoro-4′-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)-4-(4-
pentamethyldisiloxylvbutyloxy)biphenyl (Compound 17 in Table 2)

Quantities: pentamethyldisiloxane (0.12 g, 0.82 mmol) and 4-(3-butenyloxy)-2,3-difluoro-
4′-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)biphenyl (Preparation 23, 0.3 g, 0.55 mmol).
The experimental procedure was described previously in Example 14.
Yield = 0.2 g (52%); mp. 40-42 °C; Purity (HPLC): 100.0 %; Element Analysis:
Calc.(found) for C29H37F11O3Si2 (698.76): C, 49.85 (49.89); H, 5.34 (5.23) %.
δH (270 MHz; CD2Cl2; ExRef 5.30): 0.06 (15H, m, 5xSiCH3), 0.58 (2H, t, J 8.3,
SiCH2), 1.50 (2H, m, SiCH2CH2), 1.85 (6H, m, OCH2CH2, C2H4), 2.18 (2H, m,
CF2CH3), 4.02 (2H, t, J 6.0, OCH3Rf), 4.06 (2H, t, J 6.5, OCH2), 6.80 (1H, ABXY,
OC6F2H2), 6.94 (2H, AA'BB', OC6H4), 7.07 (1H, ABXY, C6F2H2), 7.41 (2H, AA'BB',
C6H4). νmax(KBr disc)/cm⁻¹: 2954 (-CH2-, C-H asym str), 2874 (-CH2-, C-H sym str),
1626, 1607 and 1501 (C=C str), 1465 (-CH2- sci, C-H def), 1249 and 1232 (Si-C, C-F
and aryl-O str), 1132 and 1074 (Si-O-Si, Si-O-C asym str and C-O str), 843 and 806 (Si-

Example 23

1,7-Di[4-(2,3-difluoro-4′-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)biphenyl-4-oxy]butyl]-
phenyltetrasiloxane (Dimer of Compound 17 in Table 2)

Quantities: 1,1,3,3,5,5,7,7-octamethyltetrasiloxane (86.9 mg, 0.31 mmol) and 4-(3-
butenyloxy)-2,3-difluoro-4′-(5,5,6,6,7,7,8,8,8-nonfluorooctyloxy)biphenyl (Example 22,
0.35 g, 0.64 mmol). The experimental procedure was described previously in Example 14
without recrystallisation.
Yield = 0.2 g (47%); Purity (HPLC): 100.0 %; Element Analysis: Calc.(found) for
C56H68F22O7Si4 (1383.46): C, 48.62 (47.93); H, 4.95 (4.94) %.
Mesomorphism (T / °C): Cryst 5.21 (DSC, onset) SC 12.5 SA 34.6 Iso.
δH (270 MHz; CDCl3; ExRef 7.26): 0.07 (24H, m, 8xSiCH3), 0.61 (4H, t, J 8.5,
2xSiCH2), 1.54 (4H, m, SiCH2CH2), 1.87 (12H, m, 2xOCH2CH2, 2xC2H4), 2.17 (4H,
m, 2xCF2CH2), 4.03 (4H, t, J 5.8, 2xOCH2Rf), 4.06 (4H, t, J 6.5, 2xOCH2), 6.77 (2H,
ABXY, OC6F2H2), 6.94 (4H, AA'BB', OC6H4), 7.04 (2H, ABXY, C6F2H2), 7.42 (4H,
Example 24

Liquid crystal properties

Liquid crystal properties of the compounds of the invention and some comparative compounds were tested and the results are shown in following Tables 4-7.

Table 4

<table>
<thead>
<tr>
<th>Compound. No</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 1 in Table 1</td>
<td>K 127 S_c 183.8 S_A 216.1°C Iso</td>
</tr>
<tr>
<td>Comparative compound</td>
<td>K 117.5 S_c 180.7 S_A 181.5 N 216.1°C Iso</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 2 in Table 1</td>
<td>K 83 S_c 155.7 S_A 193.2°C Iso</td>
</tr>
<tr>
<td>Comparative Compound</td>
<td>K 92 S_c 128.4 S_A 166.5°C Iso</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 3 in Table 1</td>
<td>K 99 S_c 184.7 S_A 206.8°C Iso</td>
</tr>
<tr>
<td>Compound 4 in Table 1</td>
<td>K 76 S_c 116.4 S_A 163.6°C Iso</td>
</tr>
<tr>
<td>Compound 22 in Table 3</td>
<td>K 78 S_A 164.0°C Iso</td>
</tr>
</tbody>
</table>

The results in Table 4 illustrate that the compounds of the invention have a stabilised Smectic A phase as compared to structurally similar compounds. Thus these compounds may be particularly useful in mixtures to either induce or generate a smectic A phase where one is not present, or to provide for a wider temperature range smectic A phase for purposes of alignment or electroclinic devices. The results suggest that control of mesophase type, transition temperatures, and mesophase sequences may be achieved by making changes to the end-chain.
Table 5

Effect of Fluoro substitution in Terminal end chains of Two-ring systems

<table>
<thead>
<tr>
<th>Compound No</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative compound</td>
<td>K 57 S_c 59.5 S_A 60.1 N 63.7°C Iso</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 9 in Table 2</td>
<td>K 47 S_A 82.9°C Iso (recryst ~ 74°C)</td>
</tr>
<tr>
<td>Compound 10 in Table 2</td>
<td>K 74 S_A 82.0°C Iso (recryst ~ 65°C)</td>
</tr>
<tr>
<td>Compound 11 in Table 2</td>
<td>K 83 S_A 90.8°C Iso (recryst ~ 74°C)</td>
</tr>
<tr>
<td>Compound 12 in Table 2</td>
<td>K 47 S_A 54.6°C Iso (recryst ~ 26°C)</td>
</tr>
<tr>
<td>Compound 13 in Table 2</td>
<td>K 50 S_A 60.2°C Iso (recryst ~ 40°C)</td>
</tr>
</tbody>
</table>

These results show a similar trend with respect to the stabilisation of the Smectic A phase (at the expense of the Smectic C phase), albeit with higher melting points.

Table 6

Effect of Siloxy substitution in Terminal end chains of Three-ring systems

<table>
<thead>
<tr>
<th>Compound No</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound No 5 in Table 1</td>
<td>K 53 S_c 137.8°C</td>
</tr>
<tr>
<td>Comparative compound</td>
<td>K 117.5 S_c 180.7 S_A 181.5 N 216.1°C Iso</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 6 in Table 1</td>
<td>K 70 S_C 104.0 N 105.6 °C Iso</td>
</tr>
<tr>
<td>Comparative compound</td>
<td>K 92 S_c 128.4 N 166.5 °C Iso</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 7 in Table 1</td>
<td>K 54 S_C 119.6 °C Iso</td>
</tr>
<tr>
<td>Compound 8 in Table 1</td>
<td>K 28 S_C 70.9 N 74.1 °C Iso</td>
</tr>
<tr>
<td>Compound 21 in Table 3</td>
<td>K 47 S_B 51.4. S_C 87.5°C S_A 103 °C Iso</td>
</tr>
<tr>
<td>Dimer of Compound 17 in Table 2</td>
<td>K 5.2 S_C(alt) 12.5 S_A 34.6 °C Iso</td>
</tr>
</tbody>
</table>
Compounds of the invention which include silyl groups have lower clearing points when compared with the fluorinated compounds. The Smectic A phase now is totally depressed, and direct Smectic C to nematic or isotropic liquid transitions are observed. The silyl groups in this case are bulky but flexible due to the relative size of the silicon atoms and the linking oxygen.

Results with two ring systems suggest that silyl groups were not as good at supporting liquid crystal stability as the stiffer partially fluorinated end-groups, as some compounds were not mesogenic. However, when dimerised, the desirable properties of both end groups were retained (low melting point, an alternating shift smectic C phase (SmC(alt) –antiferroelectric-like ordering) due to the silyl group and a smectic A phase due to the fluoro-end chain.

Table 7

<table>
<thead>
<tr>
<th>Compound No 18 in Table 2</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>48</td>
</tr>
<tr>
<td>S_A^*</td>
<td>53.2 °C Iso (recrys ~ 22°C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound No 19 in Table 2</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>65</td>
</tr>
<tr>
<td>(S_A^*</td>
<td>60.2 °C Iso (recrys ~ 38°C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound No 20 in Table 2</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp</td>
<td>43-45°C</td>
</tr>
</tbody>
</table>

The compounds in Table 7 had inherently low viscosities making them suitable for ferroelectric mixtures. Esters also show a propensity for exhibiting antiferroelectric phases. In addition, a strongly polar chiral groups with either chloro- or fluoro-substituents attached to a chiral carbon atom was positioned in the terminal aliphatic chain. This template was used in order to confer a strong coupling of the lateral dipoles in the system with the consequence that a large spontaneous polarization would be produced. Without these groups, chiral moieties with large lateral groups exhibited no liquid crystal behaviour but maybe useful as chiral dopants.
Claims

1. A compound of formula (I)

 \[\text{R}^1 \text{R}^3 \cdots \text{R}^5 \text{R}^6 \]
 \[\text{[A]}_n \text{R}^2 \]

 (I)

 or a dimer thereof;

 where \(\text{R}^1 \) and \(\text{R}^2 \) are independently selected from optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, a functional group or a group of sub-formula (i)

 \[\cdots (\text{O})_m (\text{CH}_2)_p \cdots \text{R}^7 \]

 (i)

 where \(m \) is 0 or 1;

 \(p \) is an integer of from 1 to 12;

 \(\text{R}^7 \) is a group of formula \(-\text{C}_q\text{X}_{2q+1}\) where \(q \) is an integer of from 1 to 12 and \(\text{X} \) is halogen,

 or \(\text{R}^7 \) is a group of sub-formula (ii)

 \[\text{R}^8 \quad \text{Si} \quad \text{R}^9 \]
 \[\text{O-Si} \quad \text{R}^{12} \]
 \[\quad \text{R}^{10} \quad \text{R}^{11} \]

 (ii)

 where \(k \) is an integer of from 1 to 10, \(\text{R}^8, \text{R}^{10} \) and \(\text{R}^{12} \) and each \(\text{R}^9 \) and \(\text{R}^{11} \) are independently selected from alkyl, alkenyl or aryl;

 provided that at least one of \(\text{R}^1 \) or \(\text{R}^2 \) is a group of sub-formula (i);

 \(\text{R}^3, \text{R}^4, \text{R}^5 \) and \(\text{R}^6 \) are independently selected from hydrogen or halogen, and in particular fluorine,

 \(n \) is 0 or 1, and \(\text{A} \) is a group of sub-formula (iii), (iv), (v), (vi) or (vii)
where \(R^{13}, R^{14}, R^{15}, R^{16}, R^{17}, R^{18} \) and \(R^{19} \) are independently selected from hydrogen or halo, and the group A may be orientated in either direction, so that the group \(R^2 \) is attached at either of the available bonds in sub-formula (iii) - (vii).

2. A compound according to claim 1 which has liquid crystal properties.

3. A compound according to claim 1 or claim 2, which is a compound of formula (i).

4. A compound according to any one of the preceding claims wherein one of \(R^1 \) or \(R^2 \) is a group of sub-formula (i) and the other is an alkyl group or a functional group.

5. A compound according to claim 4 wherein the said other of \(R^1 \) or \(R^2 \) is a functional group of formula \(OR^a \), where \(R^a \) is an alkyl group.

6. A compound according to claim 4 wherein the said other of \(R^1 \) or \(R^2 \) is a functional group of formula \(OC(O)R^a \) or \(-C(O)OR^a \) where \(R^a \) is a branched alkyl group which optionally carries a halo substituent.

7. A compound according to any one of claims 1 to 3 wherein both of the groups \(R^1 \) and \(R^2 \) are groups of sub-formula (i).
8. A compound according to any one of the preceding claims wherein in the group of sub-formula (i), m is 1.

9. A compound according to any one of the preceding claims wherein R^7 in the group of sub-formula (i) is a group of formula \(-C_qX_{2q+1}\), and each X is the same halogen.

10. A compound according to claim 9 wherein X is fluoro.

11. A compound according to any one of the preceding claims wherein R^7 is a group of sub-formula (ii).

12. A compound according to claim 11 wherein R^8, R^9, R^{10}, R^{11} and R^{12} are the same or different and are C_{1,4}alkyl groups.

13. A compound according to claim 11 or claim 12 wherein the integer k is 1.

14. A compound according to any one of the preceding claims wherein n is 1.

15. A compound according to any one of the preceding claims where A is a group of sub-formula (iii) as defined in claim 1.

16. A compound according to any one of claims 1 to 13 wherein n is 0, and at least one group R^1 or R^2 is a group of sub-formula (i) where R^7 is a group of formula \(-C_qX_{2q+1}\).

17. A compound according to any one of the preceding claims wherein at least one of the rings in the compound of formula (I) carries one or more halo atoms.

18. A compound according to claim 17 wherein a ring within the structure carries two fluoro atoms.
19. A method for preparing a compound according to claim 1 which method comprises coupling a compound of formula (IV)

\[\text{formula (IV)} \]

where \(R^3 \) and \(R^4 \) are as defined in claim 1 and \(R^{11} \) is a group \(R^1 \) as defined in relation to formula (I) or a precursor thereof, and \(R^{20} \) is a reactive group with a compound of formula (V)

\[\text{formula (V)} \]

where \(R^5 \) and \(R^6 \) are as defined in relation to formula (I), \(R^{22} \) is a group \((A)_n \cdot R^{2'} \) where A and n are as defined in relation to formula (I) and \(R^{2'} \) is a group \(R^2 \) as defined in relation to formula (I) or a precursor thereof, and \(R^{21} \) is a leaving group; and thereafter if necessary converting a precursor group \(R^{1'} \) or \(R^{2'} \) to a group \(R^1 \) or \(R^2 \) respectively.

20. A method for preparing a compound according to claim 1 wherein n is 1, said method comprising reacting a compound of formula (VI)

\[\text{formula (VI)} \]

where \(R^3, R^4, R^5 \) and \(R^6 \) are as defined in claim 1, and \(R^{1'} \) and \(R^{20} \) are as defined in claim 19 with a compound of formula (VII)
R^{22}-A-R^{2'}
(VII)

where A is as defined in relation to formula (I) and R^{22} and R^{2'} are as defined in claim 19, and thereafter if necessary converting a precursor group R^1 or R^2' to a group R^1 or R^2 respectively.

22. A liquid crystal device comprising a compound according to any one of claims 1 to 18.

23. A device according to claim 22 wherein the compound of formula (I) has liquid crystal properties.

24. A liquid crystal mixture comprising a compound according to any one of claims 1 to 18.

25. The use of a compound of formula (I) as defined in claim 1 as a smectic A stabilizing additive in a liquid crystal mixture.
INTERNATIONAL SEARCH REPORT

PCT/GB/02/05045

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07C43/225 C07F7/18 C07C69/63 C07C69/76 C070319/04
C09K19/12 C09K19/40 C09K19/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C C07D C09K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00 39062 A (THE SECRETARY OF STATE FOR DEFENCE) 6 July 2000 (2000-07-06) the whole document</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>DE GIVENCHY, ELISABETH TAFFIN ET AL: "Synthesis and mesomorphic behavior of chiral partially fluorinated liquid crystal incorporating S-2-methylbutyl" MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY, SECTION A: MOLECULAR CRYSTALS AND LIQUID CRYSTALS (1999), 332, 2519-2526, XP00803802 particularly the compound of formula 8</td>
<td>1-25</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or other special reason (as specified)
- *D* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

** Latest document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*** Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

**** Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

** Patent family members are listed in annex.

Date of the actual completion of the international search
18 February 2003

Date of mailing of the international search report
26/02/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 310-2040, Tx. 31 651 epos nl
Fax (+31-70) 340-3018

Authorized officer
Besler, L

Form PCT/ISA/210 (second sheet) (July 1999)

Page 1 of 3
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 96 05159 A (MERCK PATENT GMBH) 22 February 1996 (1996-02-22) example 4</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>JP 11 246451 A (DAINIPPON INK & CHEM. INC.) 14 September 1999 (1999-09-14) the whole document</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>WO 92 13928 A (MERCK PATENT GMBH) 20 August 1992 (1992-08-20) example 12</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>WO 90 01021 A (MERCK PATENT GMBH) 8 February 1990 (1990-02-08) example 9</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>DE 44 27 199 A (HOECHST AG) 8 February 1996 (1996-02-08) particularly page 33, examples 412 and 422</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>DE 42 15 277 A (MERCK PATENT GMBH) 11 November 1993 (1993-11-11) particularly example 5</td>
<td>1-25</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>X</td>
<td>KELLY, STEPHEN M. ET AL: "Nematic liquid crystals with a trifluoromethyl group" MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY, SECTION A: MOLECULAR CRYSTALS AND LIQUID CRYSTALS (2001), 364, 873-880 , 2001, XP008013786 tables 1,2</td>
<td>1-25</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0039062 A1</td>
</tr>
<tr>
<td>EP 255236 A</td>
<td>03-02-1988</td>
<td>DE 3789740 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3789740 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0255236 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 872851 A, B,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2086171 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7116107 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63027451 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7324051 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9604450 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9601889 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4886619 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5399701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5254747 A</td>
</tr>
<tr>
<td>WO 9605159 A</td>
<td>22-02-1996</td>
<td>DE 19528085 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59508281 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9605159 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10504032 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 424107 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6159393 A</td>
</tr>
<tr>
<td>JP 11246451 A</td>
<td>14-09-1999</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4127450 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59209827 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9213928 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0525140 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5626793 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5837162 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2093212 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9303113 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6501959 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4222371 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4222371 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2093212 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59209827 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9213928 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9303113 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0525140 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6501959 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5626793 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5837162 A</td>
</tr>
<tr>
<td>WO 9001021 A</td>
<td>08-02-1990</td>
<td>DE 3825424 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 58906378 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9001021 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0387315 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 47196 A</td>
</tr>
<tr>
<td>DE 4427199 A</td>
<td>08-02-1996</td>
<td>DE 4427199 A1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6040988 A</td>
</tr>
</tbody>
</table>