(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 101355654 B
(45) 授权公告日 2011.02.23

(21) 申请号 200810134744.7
(22) 申请日 2008.07.23
(30) 优先权数据
(73) 专利权人 索尼株式会社
地址 日本东京都
(72) 发明人 佐古哲一郎
(74) 专利代理机构 北京东方亿思知识产权代理有限责任公司 11258
代理人 董方源

(51) Int.Cl.
HO4N 5/232 (2006.01)
HO4N 5/235 (2006.01)

审查员 蒋一明

权利要求书 2 页 说明书 19 页 附图 8 页

(54) 发明名称
图像捕获设备和图像捕获控制方法

(57) 摘要
本发明公开了一种图像捕获设备和图像捕获控制方法。所述图像捕获设备包括：图像捕获单元，被配置为捕获对象的图像，以得到被捕获图像的数据；存储处理器，被配置为执行用于存储图像捕获单元计算的被捕获图像的数据的处理；操作单元，被配置为执行自定时器图像捕获操作；运动检测器；以及控制器，被配置为当利用操作单元执行自定时器图像捕获操作时基于运动检测器得到的检测信息控制快门操作，其中，图像捕获单元得到的被捕获图像的数据在自定时器设定的时间段结束后被存储处理器存储。
1. 一种图像捕获设备，该图像捕获设备包括；
图像捕获装置，用于捕获对象的图像，以得到被捕获图像的数据；
存储处理装置，用于执行用于存储由所述图像捕获装置得到的所述被捕获图像的数据的处理；
操作装置，用于执行自定定时器图像捕获操作；
运动检测装置，用于检测所述对象或者所述图像捕获设备的运动；以及
控制装置，用于当利用所述操作装置执行所述自定定时器图像捕获操作时，基于所述运动
d检测装置得到的检测信息控制快门操作，其中，所述图像捕获装置得到的所述被捕获图像的数据在自定时器设定的时间段结束后被所述存储处理装置存储。

2. 根据权利要求1所述的图像捕获设备，其中，所述运动检测装置通过对所述图像捕
获装置得到的所述被捕获图像的数据执行图像分析来检测所述对象的运动，并且
所述控制装置基于所述运动检测装置对所述对象的运动的检测信息来控制所述快门
操作。

3. 根据权利要求2所述的图像捕获设备，其中，所述运动检测装置检测作为对象的人
物的运动，并且
所述控制装置基于所述运动检测装置对要被作为对象检测的人物的运动的检测信息
来控制所述快门操作。

4. 根据权利要求1所述的图像捕获设备，其中，所述运动检测装置检测所述图像捕获
设备的运动。

5. 根据权利要求4所述的图像捕获设备，其中，在所述运动检测装置中，通过利用用于
检测所述图像捕获设备的运动的传感器来检测所述图像捕获设备的运动。

6. 根据权利要求4所述的图像捕获设备，其中，在所述运动检测装置中，通过对所述图
像捕获装置得到的所述被捕获图像的数据执行图像分析来检测所述图像捕获设备的运动。

7. 根据权利要求2所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检
测信息，所述控制装置在所述自定时器设定的时间段结束时所述对象还处于运动的情况下
执行用于延长所述自定时器设定的所述对象的处理。

8. 根据权利要求3所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检
测信息，所述控制装置在所述自定时器设定的时间段结束时所述对象还处于运动的情况下
执行用于延长所述自定时器设定的所述对象的处理。

9. 根据权利要求2所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检
测信息，所述控制装置在所述自定时器设定的时间段的延长时间段结束时所述对象还处于运动的情况下执行用于停止所述快门操作的处理。

10. 根据权利要求3所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检
测信息，所述控制装置在所述自定时器设定的时间段的延长时间段结束时所述对象还处于运动的情况下执行用于停止所述快门操作的处理。

11. 根据权利要求2所述的图像捕获设备，还包括消息输出装置。

其中，基于所述运动检测装置得到的所述检测信息，所述控制装置在所述自定时器设
定的时间段的延长时间段结束时所述对象还处于运动的情况下执行用于使所述消息输出
装置输出消息的处理。
12. 根据权利要求 3 所述的图像捕获设备，还包括消息输出装置，
其中，基于所述运动检测装置得到的所述检测信息，所述控制装置在所述自定时器设定的时间段的延长时间段结束时所述作为对象的人物还处于运动的情况下执行用于使所述消息输出装置输出消息的处理。
13. 根据权利要求 2 所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检测信息，所述控制装置执行控制，以使得在所述自定时器设定的时间段结束之前得到所述对象处于静止的检测信息时执行所述快门操作。
14. 根据权利要求 7 所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检测信息，所述控制装置执行控制，以使得在所述自定时器设定的时间段的延长时间段结束之前得到所述对象处于静止的检测信息时执行所述快门操作。
15. 根据权利要求 1 所述的图像捕获设备，其中，所述图像捕获装置具有曝光校正功能，并且
基于所述运动检测装置得到的所述检测信息，所述控制装置控制所述图像捕获装置，以使得在所述自定时器设定的段时间期间来自所述对象的入射光量改变时执行曝光校正。
16. 根据权利要求 4 所述的图像捕获设备，其中，基于所述运动检测装置得到的所述检测信息，所述控制装置执行控制，以使得在所述自定时器设定的段时间期间所述图像捕获设备已经发生运动的检测信息时停止所述快门操作。
17. 根据权利要求 4 所述的图像捕获设备，还包括消息输出装置，
其中，基于所述运动检测装置得到的所述检测信息，所述控制装置执行控制，以使得在所述自定时器设定的这段时间期间所述图像捕获设备已经发生运动的检测信息时使所述消息输出装置输出消息。
18. 一种图像捕获控制方法，用于结合通过利用自定时器功能执行图像捕获的图像捕获设备使用，该图像捕获控制方法包括以下步骤：
在利用所述自定时器功能进行图像捕获期间，检测对象或者所述图像捕获设备的运动，并且
基于在所述运动检测中的检测结果控制快门操作。
图像捕获设备和图像捕获控制方法

技术领域
[0001] 本发明涉及图像捕获设备和图像捕获控制方法，并且涉及用于在要通过使用自定时器功能（self-timer function）执行图像捕获时基于关于对象（subject）和图像捕获设备的运动的检测信息来控制快门操作的技术。

背景技术
[0002] 到目前为止，诸如数码静态相机的图像捕获设备中，可以使用一种自定时器功能，该功能被设计使得在要捕获对象的图像时，快门操作在自定时器设定的时间段结束后被执行，所述时间段是一个固定时间段，在该固定时间段结束后，快门操作被执行。这种自定时器功能例如是当执行快门操作的摄像者同时是对象时使用的一种功能。
[0003] 然而，当要使用自定时器功能执行图像捕获时，摄像者不能确认快门操作被执行时对象的状态。例如，即使摄像者想要对象为静止的状态中的被捕获图像，也认为图像捕获可能是在对象正在移动时执行的并且可能得到摄像者不希望的被捕获图像。
[0004] 日本未实审专利申请公布No.2007-123953公开了一种技术，其中，关于对象的正在移动的身体信息被检测并且基于此信息定时器被起动，直到快门被释放为止。

发明内容
[0005] 因此，在本发明中，当要利用自定时器功能捕获对象时，用于执行更适当的图像捕获的控制被执行。因此，期望防止在被捕获图像中出现因对象或者图像捕获设备的运动而导致的问题并且期望能够得到摄像者所期望的最佳被捕获图像。
[0006] 根据本发明的一个实施例，提供了一种图像捕获设备，该图像捕获设备包括：图像捕获装置，用于捕获对象的图像，以得到捕获图像的数据；存储处理装置，用于执行用于存储图像捕获装置得到的被捕获图像的数据的处理；操作装置，用于执行自定时器图像捕获操作；运动检测装置；以及控制装置，用于当利用操作装置执行自定时器图像捕获操作时，基于运动检测装置得到的检测信息控制快门操作，利用快门操作，图像捕获装置得到的被捕获图像的数据在自定时器设定的时间段结束后被存储处理装置存储。
[0007] 所述运动检测装置可以通过对图像捕获装置得到的被捕获图像的数据执行图像分析来检测对象的运动，并且所述控制装置可以基于运动检测装置对对象的运动的检测信息来控制快门操作。
[0008] 所述运动检测装置可以检测作为对象的人物的运动，并且所述控制装置可以基于运动检测装置对要被作为对象检测的人物的运动的检测信息来控制快门操作。
[0009] 所述运动检测装置可以检测图像捕获设备的运动。
[0010] 在所述运动检测装置中，还可以通过利用用于检测图像捕获设备的运动的传感器来检测图像捕获设备的运动。
[0011] 在所述运动检测装置中，还可以通过对图像捕获装置得到的被捕获图像的数据执行图像分析来检测图像捕获设备的运动。
基于所述运动检测装置得到的检测信息，所述控制装置可以在自定时器设定的时间段结束后对象还处于运动的情况下执行用于延时自定时器设定的时间段的处理。

基于所述运动检测装置得到的检测信息，所述控制装置可以在自定时器设定的时间段结束后作为对象的人物还处于运动的情况下执行用于延时自定时器设定的时间段的处理。

基于所述运动检测装置得到的检测信息，所述控制装置可以在自定时器设定的时间段的延长时间段结束时对象还处于运动的情况下执行用于延时快门操作的处理。

基于所述运动检测装置得到的检测信息，所述控制装置可以在自定时器设定的时间段的延长时间段结束时作为对象的人物还处于运动的情况下执行用于延时快门操作的处理。

所述图像捕获设备还可以包括消息输出装置，其中，基于所述运动检测装置得到的检测信息，所述控制装置可以在自定时器设定的时间段的延长时间段结束时对象还处于运动的情况下执行用于使所述消息输出装置输出消息的处理。

所述图像捕获设备还可以包括消息输出装置，其中，基于所述运动检测装置得到的检测信息，所述控制装置可以在自定时器设定的时间段的延长时间段结束时作为对象的人物还处于运动的情况下执行用于使所述消息输出装置输出消息的处理。

基于所述运动检测装置得到的检测信息，所述控制装置可以执行控制，以使得当在自定时器设定的时间段结束之前得到对象处于静止的检测信息时执行快门操作。

基于所述运动检测装置得到的检测信息，所述控制装置可以执行控制，以使得当在自定时器设定的时间段的延长时间段结束之前得到对象处于静止的检测信息时执行快门操作。

所述图像捕获装置可以具有曝光校正功能，并且基于所述运动检测装置得到的检测信息，所述控制装置可以控制图像捕获装置，以使得当在自定时器设定的时间段期间来自对象的入射光量改变时执行曝光校正。

基于所述运动检测装置得到的检测信息，所述控制装置可以执行控制，以当得到在自定时器设定的时间段期间图像捕获设备已经发生运动的检测信息时停止快门操作。

图像捕获设备还可以包括消息输出装置，其中，基于所述运动检测装置得到的检测信息，所述控制装置可以执行控制，以当得到在自定时器设定的时间段期间图像捕获设备已经发生运动的检测信息时使消息输出装置输出消息。

根据本发明的另一实施例，提供了一种图像捕获控制方法，用于结合通过利用自定时器功能执行图像捕获的图像捕获设备使用，该图像捕获控制方法包括以下步骤：在利用自定时器功能进行图像捕获期间，检测对象或者图像捕获设备的运动，并且基于在运动检测中的检测结果控制快门操作。

本发明的特征是通过利用图像捕获设备中的自定时器功能来执行图像捕获。自定时器功能是这样一种功能，其被设计以使得在自定时器设定的时间段（例如，约10秒）结束后执行快门操作。此外，此快门操作是提取由图像捕获装置捕获的被捕获图像并且将其存储在存储处理装置中的操作。

因此，图像捕获设备基于在自定时器设定的时间段期间由图像捕获装置捕获的多个帧的被捕获图像的数据的图像分析，并且基于用于检测图像捕获设备的运动的运
动检测处理的检测信息来控制快门操作。

0026 例如，当在自定时刻设定的时间段期间基于关于运动检测处理的检测信息得到对象正在运动的检测结果时，可以延长自定时刻设定的时间段，使得可以延迟快门操作的执行。

0027 根据本发明的实施例，可以在自定时刻设定的时间段期间执行运动检测处理，并且可以基于其检测处理信息控制快门操作。也就是说，当在自定时刻设定的时间段期间对象正在运动时，快门操作被延迟，从而增加得到处于对象静止的状态中的图像捕获图像的可能性。此外，即使快门操作被延迟，当对象仍然运动时，图像捕获也被停止，从而防止得到摄像者不希望的捕获图像。结果，可以得到摄像者所期望的捕获图像。

0028 此外，当图像捕获设备正在运动时，图像捕获也被停止，使得可以防止得到摄像者不希望的捕获图像。

附图说明

0029 图 1 是根据本发明的实施例的图像捕获设备的框图；
0030 图 2 是实施例的图像捕获处理操作示例 I 的流程图；
0031 图 3 是本发明的实施例的图像捕获处理操作示例 II 的流程图；
0032 图 4 是本发明的实施例的图像捕获处理操作示例 III 的流程图；
0033 图 5 是本发明的实施例的图像捕获处理操作示例 IV 的流程图；
0034 图 6 是本发明的实施例的图像捕获处理操作示例 V 的流程图；
0035 图 7 是本发明的实施例的图像捕获处理操作示例 V 的流程图；以及
0036 图 8 是本发明的实施例的图像捕获处理操作示例 VII 的流程图。

具体实施方式

0037 下面将描述本发明的实施例。将按照以下顺序给出描述。
0038 1. 图像捕获设备的配置的示例
0039 2. 图像捕获处理操作示例 I
0040 3. 图像捕获处理操作示例 II
0041 4. 图像捕获处理操作示例 III
0042 5. 图像捕获处理操作示例 IV
0043 6. 图像捕获处理操作示例 V
0044 7. 图像捕获处理操作示例 VI
0045 8. 图像捕获处理操作示例 VII
0046 9. 修正
0047 1. 图像捕获设备的配置的示例
0048 这里，通过利用例如作为数码静态相机的图像捕获设备来给出描述，作为本发明的实施例的图像捕获设备的示例。
0049 图 1 是示出图像捕获设备 I 的内部配置的框图。
0050 如图中所示，图像捕获设备 I 包括系统控制器 2、图像捕获单元 3、图像捕获控制器 4、显示单元 5、显示控制器 6、操作输入单元 7、加速度传感器 8、存储单元 9、音频输出单元
10. 总线 11 和图像分析单元 12。

【0051】系统控制器 2 由微型计算机形成，所述微型计算机例如包括 CPU（中央处理单元）、
ROM（只读存储器）、RAM（随机存取存储器），以及存储单元和接口单元，并且系统控制器 2
用于控制整个图像捕获设备 1 的控制器。系统控制器 2 根据存储在内部 ROM 或类似
装置中的程序执行各种计算处理，并且通过总线 11 向各个单元发送或者从各个单元接收
控制信号等，以便各个单元执行必要的操作。

【0052】图像捕获单元 3 包含图像捕获光学系统 3a、图像捕获元件单元 3b 和图像捕获信号
处理器 3c。

【0053】图像捕获单元 3 的图像捕获光学系统 3a 包含被配置为包括光圈、变焦透镜、聚焦
透镜等的透镜系统，用于促使透镜系统执行聚焦操作和变焦操作的驱动系统等等。

【0054】在图像捕获单元 3 的图像捕获元件单元 3b 中设置有固态图像捕获元件阵列，该固
态图像捕获元件阵列用于检测图像捕获光学系统 3a 获得的图像捕获光并且用于通过对所
述图像捕获光执行光电转换而生成图像捕获信号。固态图像捕获元件阵列被形成为例如
CCD（电荷耦合器件）传感器阵列或者 CMOS（互补金属氧化物半导体）传感器阵列。

【0055】图像捕获单元 3 中的图像捕获信号处理器 3c 包括取样 - 保持 / AGC（自动增益控
制）电路、可编程增益放大器（PGA）和视频 A/D 转换器，所述取样 - 保持 / AGC（自动增益
控制）电路用于对固态图像捕获元件获得的信号执行增益调整和波形整形，并且图像捕获
信号处理器 3c 获得所捕获的图像数据作为数字数据。此外，对所捕获的图像执行白平衡处
理、亮度处理、颜色信号处理等。

【0056】具有图像捕获光学系统 3a、图像捕获元件单元 3b 和图像捕获信号处理器 3c 的图
像捕获单元 3 执行图像捕获，并且获得被捕获图像的数据。

【0057】通过图像捕获单元 3 的图像捕获操作获得的图像数据被图像捕获控制器 4 处理。

【0058】在系统控制器 2 的控制下，图像捕获控制器 4 执行用于把捕获图像的数据转换
成预定图像数据格式的处理以及用于响应于操作状态将经过转换的捕获图像的数据提
供给图像分析单元 12、存储单元 9 和显示控制器 6 的处理。

【0059】基于系统控制器 2 的指示，图像捕获控制器 4 执行对图像捕获单元 3 中的图像捕
获操作的开 / 关控制，对图像捕获光学系统 3a 的变焦透镜和聚焦透镜的驱动控制，对图像
捕获元件单元 3b 的灵敏度和帧率的控制，对图像捕获信号处理器 3c 的各种处理的参数控
制以及对执行处理的设置。

【0060】对于图像捕获设备 1 中用于向用户执行显示的配置，设置有显示单元 5 和显示控
制器 6。

【0061】显示单元 5 设置有用于驱动液态显示器或类似装置的显示驱动单元。该显示驱动
单元由像素驱动电路形成，像素驱动电路用于将从图像捕获控制器 4 提供的图像数据显示
在例如液晶显示器中。所述像素驱动电路以预定水平 / 垂直驱动定时将基于视频信号的驱
动信号施加给液晶显示器的矩阵中的各个像素，以便执行显示。

【0062】在系统控制器 2 的控制下，显示控制器 6 驱动显示单元 5 中的像素驱动电路以执
行预定显示。也就是说，执行了作为图像捕获单元 3 中的图像显示的显示。

【0063】为了执行这些显示，可以执行例如亮度水平调整、颜色校正、对比度、锐化（轮廓
增强）调整等。此外，可以执行使部分图像数据被放大的放大图像生成或者缩小图像生成、
图像效果处理（诸如部分图像的软焦点（soft focus）、马赛克化、亮度转换高亮显示（增强显示）、整个图像的颜色基调的改变）等等。

例如，操作输入单元 7 具有操作元件，诸如按键、按钮和拨号盘。例如，形成有在电源开关操作以及在图像捕获系统的操作（例如，快门操作、变焦操作、曝光设定操作、自定时器图像捕获操作等）中使用的操作元件。

例如，操作输入单元 7 可以从这些操作元件获得的信息提供给系统控制器 2，并且系统控制器 2 可以根据这些信息来决定的必要计算及及控制。

加速度传感器 8 检测图像捕获设备 1 的运动的加速度并且将与此检测到的加速度相应的信号提供给系统控制器 2。

例如，当用户要通过使用自定时器功能捕获对象的图像时，在设定自定时器功能之后，加速度传感器 8 可以检测诸如当图像捕获设备 1 被倾斜时图像捕获设备 1 的运动的加速度。

之后，在系统控制器 2 中，执行用于接收图像捕获设备 1 的运动的加速度的检测值作为从加速度传感器 8 提供的信号的处理。

在本发明中，由于仅仅需要能够检测图像捕获设备 1 的运动和倾斜，因此可以用角速度传感器和振动传感器代替加速度传感器 8。

存储单元 9 被用于存储各种数据。例如，存储单元 9 被用于存储被捕获的图像数据。

存储单元 9 可以由诸如 RAM 或者闪存的固态存储器形成，并且也可以由例如 HDD（硬盘驱动器）形成。

存储单元 9 除了被形成作为集成的记录介质，也可以被形成作为与便携式记录介质兼容的包含固态存储器的记录和再现驱动器，例如，存储卡、光盘、全息存储器或者类似装置。

当然，也可以安装诸如固态存储器或者 HDD 的内置型存储器和用于便携式记录介质的记录和再现驱动器等。

在系统控制器 2 的控制下，存储单元 9 记录并存储被捕获的图像数据。

在系统控制器 2 的控制下，所记录的数据被读取，并且所记录的数据提供给系统控制器 2、显示控制器 6 等。

音频输出单元 10 包括例如音频生成器、声音合成器、放大电路、扬声器等，并且根据来自系统控制器 2 的指示执行对警告声音、消息等的音频输出。例如，当系统控制器 2 向音频输出单元 10 指示电子声音生成和声音合成时，音频输出单元 10 可以生成作为警告声音和消息声音的音频信号，并且可以通过放大电路将生成的音频信号放大，以便该音频信号被输出作为来自扬声器的音频声音。

上面已经描述了图像捕获设备 1 的配置，但是这仅仅是一个示例。当然，鉴于实际中执行的操作的示例，可以考虑增加和删除多个部件和功能。

2. 图像捕获处理操作示例 I

具有这种配置的该示例性图像捕获设备 1 被设计用于执行实现最佳图像获取功能的被捕获图像的获取处理操作，该最佳图像获取功能用于例如当用户执行自定时器图像捕获操作以便捕获对象的图像时得到正如对象没有运动的一帧的静止图像来作为被捕获
图像。

[0080] 下面将描述按照本实施例的被获取图像的获取处理操作。

[0081] 通常，在图象获取设备 1 中，用户通过执行按压仅设置在操作输入单元 7 中的快
门按键的快门操作来执行快门操作，并且获得作为帧的静止图像的被获取图像。

[0082] 快门操作是这样一种处理，该处理用于将快门操作被执行的一帧的图像
存储作为一个静止图像的数据。在图 1 中，系统控制器 2 从图像获取控制器 4 获得在快门
操作被执行时由图像获取单元 3 被获取的一帧的被获取图像的数据，并且将被获取图像的数据
存储在存储单元 9 中。

[0083] 在本实施例的情况中，利用自定时器功能执行快门操作，并且得到作为一帧的
静止图像的被获取图像。此外，自定时器功能是这样一种功能，其中，在从用户执行自定时器
图像获取操作时的固定时间段结束后执行快门操作。从自定时器图像获取操作被执行时
到快门操作被执行时的固定时间段例如约为 10 秒。

[0084] 对于这一点，将参考图 2 描述系统控制器 2 用于实现该操作的处理。

[0085] 在图 2 中示出的处理是由系统控制器 2 根据存储在内置 ROM 中的程序执行的（这
同样适用于后面描述的图 3 到图 8 中示出的处理）。

[0086] 步骤 F101 显示用户利用自定时器功能监控快门操作的处理。当用户利用自定时器
功能执行用于执行快门操作的自定时器图像获取操作时，系统控制器 2 使处理进行到步
骤 F102。

[0087] 在步骤 F102 中，响应于用户执行的自定时器图像获取操作，开始对自定时器设定
的时间段计时。也就是说，开始对自定时器图像获取操作被执行时到快门操作被执行时
的时间段（例如 10 秒）的计时。之后，处理进行到步骤 F103。

[0088] 在步骤 F103 中，指示开始用于执行运动检测的图像分析处理。也就是说，使得图
像分析单元 12 对图像获取单元 3 从开始对自定时器设定的时间段计时刻起接收的被获取
图像的数据执行图像分析。此图像分析是用于执行运动检测并且例如以帧为单位计算像素
的亮度水平的平均值或积分值的图像分析处理。之后，图像分析单元 12 将图像分析结果提
供给系统控制器 2。

[0089] 在步骤 F104 中，基于图像分析处理的结果，系统控制器 2 执行用于确定对象是否
正在运动的处理。例如，以帧为单位计算出的亮度水平的平均值或积分值被比较，并且当连续帧
的亮度水平改变时，对象被确定为正在运动。而当亮度水平的改变很小或者不存在
改变时，对象被确定为处于静止。

[0090] 接着，当对象被确定为处于静止时，在步骤 F105 中，执行用于确定自定时器设定
的时间段是否结束的处理。当确定自定时器设定的时间段（例如 10 秒）的计时没有结束时，
处理返回到步骤 F104。当在步骤 F104 中确定对象处于静止时，重复步骤 F104 → 步骤
F105 → 步骤 F104... 的处理，直到确定自定时器设定的时间段的计时结束时为止。

[0091] 接着，当在步骤 F105 中确定自定时器设定的时间段的计时在某一时刻结束时，在
步骤 F106 中执行快门操作。也就是说，在自定时器设定的时间段的计时结束时，执行用于
将图像获取单元 3 被获取的一帧的被获取图像的数据存储在存储单元 9 中的处理。在自定时
器设定的时间段的计时结束时所捕获的被获取图像的数据是对象处于静止时所捕获的被
获取图像的数据。结果，用户可以得到正如对象没有运动时的静止图像的被获取图像。
在步骤 F104 中确定对象处于运动时，在步骤 F107 中，执行用于确定自定时器设定的时间段的计时是否结束的处理。当在步骤 F107 中确定自定时器设定的时间段的计时没有结束时，处理返回到步骤 F104。而且，当在步骤 F104 中确定对象处于静止时，重复步骤 F104 → 步骤 F107 → 步骤 F104... 的处理，直到在步骤 F107 中确定自定时器设定的时间段的计时结束时为止。接着，当在步骤 F107 中确定自定时器设定的时间段的计时在某一时刻结束时，在步骤 F108 中，执行用于确定自定时器设定的时间段的计时是否已被延长的处理。也就是说，在步骤 F102 开始的自定时器设定的时间段的计时结束之后，执行确定自定时器设定的时间段的计时是否已被延长的处理。

当在步骤 F108 中确定自定时器设定的时间段的计时没有被延长时，处理进行到步骤 F110，此处，执行用于延长自定时器设定的时间段的计时的处理。例如，当自定时器设定的时间段约为 10 秒时，执行将自定时器设定的时间段延长约 5 秒的处理。

由于自定时器设定的时间段的计时的延长，即使对象的运动在初始自定时器设定的时间段的时间段中没有停止，延长时间段的提供也增加了得到非运动对象被捕获的捕获图像的可能性。

例如，假定执行自定时器图像捕获操作的摄像者正在向一个位置运动以便该摄像者他/她自己的图像将被捕获时（即，摄像者变为对象），自定时器设定的时间段的计时结束。在这种情况下，由于延长时间段的提供，可以提供时间裕度（time margin），在该时间裕度中，摄像者移动到该摄像者的图像将被捕获的位置处，并且增加了得到对象处于静止状态中的捕获图像的可能性。

接着，在步骤 F110 中执行用于延长自定时器设定的时间段的计时的处理之后，处理返回步骤 F104。

当在步骤 F104 中确定对象处于静止时，处理进行到步骤 F105。在步骤 F105 中，此时，确定已经延长自定时器设定的时间段的计时是否已经结束。当该计时没有结束时，处理返回步骤 F104。当在步骤 F104 中确定对象处于静止时，重复步骤 F104 → 步骤 F105 → 步骤 F104... 的处理，直到确定已经延长自定时器设定的时间段的计时结束时为止。

接着，当在步骤 F105 中确定已经延长自定时器设定的时间段的计时在某一时刻结束时，在步骤 F106 中执行快门操作。

此外，当在步骤 F104 中确定对象处于运动时，处理进行到步骤 F107，在该步骤中，确定已经延长自定时器设定的时间段的计时是否结束。当在步骤 F107 中确定已经延长自定时器设定的时间段的计时没有结束时，处理返回步骤 F104。之后，当确定对象处于静止时，重复步骤 F104 → 步骤 F107 → 步骤 F104... 的处理，直到在步骤 F107 中确定已经延长自定时器设定的时间段的计时结束时为止。

接着，当在步骤 F107 中确定已经延长自定时器设定的时间段的计时在某一时刻结束时，在步骤 F108 中，执行用于确定自定时器设定的时间段的计时是否已经被延长的处理。此时，当已经在步骤 F110 中已经执行了一次对自定时器设定的时间段的计时的延长时，确定自定时器设定的时间段的计时已经被延长，并且处理进行到步骤 F109。

在步骤 F109 中，执行用于输出消息的处理。也就是说，由于自定时器设定的时间段的计时已经被延长并且即使延长的时间段结束对象也仍然没有静止。因此，在这种情况下，执行用于从音频输出单元 10 输出因对象正在运动而不能执行图像捕获的警告声音和
声音消息的处理。
[0102] 例如，警告声音可以是使用用户识别到图像捕获失败的声音。可替代地，可以利用合成的声音输出诸如“因对象正在运动而不能捕获对象的图像，请重新执行快门操作”的消息声音，以便使用户意识到图像捕获期间的对象的运动。
[0103] 接着，由于甚至在自定时器设定的延长时间段已经结束时对象的运动还没有停止，系统控制器 2 停止被捕获图像获取处理操作，而不执行在步骤 F106 中执行的快门操作。
[0104] 由于执行了到此为止描述的实施例的图像捕获处理操作示例 1，如果在自定时器设定的时间段结束时对象处于静止，则图像捕获设备 1 在自定时器设定的时间段结束时执行快门操作。
[0105] 此外，当在自定时器设定的时间段结束时检测到对象正在运动时，执行用于延长自定时器设定的时间段的处理。
[0106] 此外，当在自定时器设定的时间段的延长时间段中对象变为静止时，在自定时器设定的时间段的延长时间段结束时执行快门操作。
[0107] 此外，当在自定时器设定的时间段的延长时间段结束而检测到对象正在运动时，停止被捕获图像获取处理操作，而不执行快门操作。
[0108] 通常，当用户设定自定时器功能并且获取所谓的“拍摄图像照片”(image-taken photograph，所谓的“拍摄图像照片”是作为对象图像被捕获的一员的静止图像的被捕获图像)时，可以捕获例如执行自定时器图像捕获操作的用户作为对象的图像。然而，当在自定时器设定的时间段执行后执行快门操作时对象正在运动时，则得到对象被模糊的所谓“失败照片”。
[0109] 另一方面，根据上述图像捕获处理操作示例 1，当在最初自定时器设定的时间段结束对像没有变为静止时，直到快门操作被执行时的时间段被延长，使得可以在延长的时间段期间等待对象变为静止。结果，可以获得用户期望的拍摄图像照片的可能性，并且这成为适合于用户的处理。
[0110] 当在自定时器设定的时间段的延长时间段结束而对像还没有变为静止时，自定时器设定的时间段的计时可以被延长一次，也可被延长多次。
[0111] 此外，当在步骤 F110 中自定时器设定的时间段的计时被延长时，可以从音频输出单元 10 以声音的方式输出消息。也就是说，该消息可以是使用用户识别到自定时器设定的时间段的计时已经被延长的声音。
[0112] 例如，可以以声音的方式输出诸如“自定时器设定的时间段已经被延长 5 秒”的消息。
[0113] 3. 图像捕获处理操作示例 II
[0114] 在实现上述最佳图像获取功能的图 2 中的被获取图像获取处理操作中，当设定了自定时器功能并且要拍摄对象的图像时，基于自定时器设定的时间段结束时对象运动的检测结果而执行快门操作或者执行用于延长自定时器设定的时间段的处理。
[0115] 由于执行了被获取图像获取处理操作，避免了得到对象被模糊的失败照片，并且增加了得到具有用户期望的图像质量的拍摄图像照片的可能性。在图 2 中的被获取图像获取处理操作中，为了检测对象的模糊，对整个对象的运动进行检测。
通常，在图像捕获设备1中，当要利用自定时器功能执行图像捕获时，常常捕获人物的图像，并且考虑到，在多数情况下希望执行自定时图像捕获操作的用户作为对象而被捕获图像。也就是说，当利用自定时器功能执行图像捕获时，用户优先考虑的是当人物处于作为对象的最佳状态时该人物的图像被捕获。

在图2的被捕获图像获取处理操作中，整个对象的运动被检测。即使背景中除了被拍摄的人物以外的对象（鸟、车、植物等等）正在运动，也存在对象被认为正在进行运动的可能。例如，可能存在这样的情形，其中，即使在如汽车行驶经过人物或者与人物一起被拍摄的树的树枝和叶子以及灌木丛因风而摇摆而人物处于静止的状态中，图像捕获装置1也确定人物正在运动。

如上所述，通常，当利用自定时器功能执行图像捕获时，用户常常希望将人物处于他的/她的最佳状态时捕获该人物的图像。因此，如果对象中只有人物的运动被检测，则这将变为更适合于用户的处理。

因此，考虑一种当对象的运动被检测时只检测人物的运动的处理的处理操作。

图3以流程图的方式示出系统控制器2实现此操作的处理。

图3示出在图2流程图的步骤F104和步骤F107之间增加了步骤F1000的处理的流程图。在对图3的流程图的描述中，用于执行与图2所示的流程图相同处理的步骤以相同的标号表示，并且省略了对它们的描述。

对于图3中从步骤F101到步骤F104的处理，执行的处理操作与参考图2描述的处理操作相同。然而，对于在步骤F103中的操作，除了参考图2描述的处理之外，还执行用于辨认对象是否是人物的图像分析处理。

接着，当在步骤F104中确定对象没有运动时，处理进行到步骤F105。对于步骤F105以及后续步骤的处理操作，执行与参考图2描述的处理操作相同的处理操作。

此外，当在步骤F104中确定对象正在运动时，在步骤F1000中执行用于确定正在运动的对象是否是人物的处理。也就是说，图像分析单元12对被捕获图像的数据进行图像分析，并且基于分析结果确定正在运动的对象是否是人物。

因此，在图像分析单元12中，执行图像分析，其中，例如，当可以确认面部部分（眼睛、鼻子、耳朵、嘴等）或用来确定人物的各部分（人体轮廓、胳膊、手的手掌、腿等等）时，对象被确定为人物。

当在步骤F1000中确定正在运动的对象是人物时，处理进行到图中所示的步骤F107。在步骤F107以及后续的步骤中，处理操作与参考图2描述的处理操作相同。

此外，当在步骤F1000中确定正在运动的对象不是人物时，处理进行到步骤F105。也就是说，正在运动的对象不是人物的确定结果可以被认为是与得到对象没有正在运动的确定结果相同的结果，因此，处理进行到步骤F105。

由于执行了到此为止参考图3描述的图像捕获处理操作示例II，如果作为对象的人物的运动是静止的，则图像捕获设备1在自定时器设定的时间段结束时执行快门操作。

此外，如果在自定时器设定的时间段结束而检测到对象正在运动时，执行用于延长自定时器设定的时间段的处理。

此外，当在自定时器设定的时间段的延长时间段期间对象变为静止时，在自定时
器设定的时间段的延长时间段结束时执行快门操作。
【0132】此外，如果在自定时器设定的时间段的延长时间段结束而检测到对象正在运动时，停止被捕获图像获取处理操作，而不执行快门操作。
【0133】对于此处理操作示例，首先，类似于图像捕获处理操作示例 1，当通过设定自定时器功能拍摄要被拍摄的对象的图像时，如果自定时器设定的时间段结束而仍没有检测到对象继续运动时，则自定时器设定的时间段被延长。接着，由于自定时器设定的时间段的延长，增加了能够得到用户期望的拍摄图像照片的可能性，而且这是适合于用户的处理。
【0134】接着，在该处理操作示例中，确定正在运动的对象是否是人物。例如，即使如果除了人以外的对象（例如，汽车、树、树枝和叶子、以及灌木丛）正在运动，仍然可以通过在确定人物处于静止时假定对象是静止的来执行快门操作。结果，即使在除了人以外的对象正在运动时，由于仍可以得到人物处于静止的状态的拍摄图像照片，因此这是更适合于用户的处理。
【0135】4、图像捕获处理操作示例 III
【0136】在目前为止描述的图 2 和 3 所示的图像捕获处理操作示例 I 和 II 中，执行了利用自定时器功能执行图像捕获（其中，自定时器设定的时间段的计时结束时执行快门操作）的正常处理操作。
【0137】当在正常处理操作中要被拍摄图像的对象是人物时，假定例如在开始对自定时器设定的时间段计时后人物马上变为静止。根据此时人物的心理，认为该人物希望快速执行图像捕获，而不希望以相同的姿势处于静止直到自定时器设定的时间段结束。
【0138】因此，当对象恰好在自定时器设定的时间段中变为静止时，考虑一种用于在那个定时执行快门操作的被获取图像获取处理操作。
【0139】下面将描述这种被获取图像获取处理操作。
【0140】图 4 以流程图的方式示出系统控制器 2 实现此操作的处理。
【0141】图 4 显示在图 2 流程图的步骤 F104 和步骤 F105 之间增加了步骤 F2000 的处理的流程图。在对图 4 的流程图的描述中，用于执行与图 2 所示的流程图相同处理的步骤以相同的标号表示，并且省略了对它的描述。
【0142】在图 4 的流程图中，首先，执行与参考图 2 描述的从步骤 F101 到步骤 F104 相同的处理。当在步骤 F104 中确定没有正在运动时，在步骤 F2000 中确定从开始对自定时器设定的时间段计时起是否已经经过了预定期间段。
【0143】此预定时间段是这样的时间段，其中，确保在通过自定时器功能执行快门操作之前留出了最小时间段。例如，如果自定时器设定的时间段为 10 秒，则此预定时间段被设定为例如 5 秒。接着，由于提供了预定时间段，可以防止例如在用户执行自定时器图像捕获操作之后，用户他自己 / 她自己向图像捕获位置运动以便成为对象的情况中在用户没有作为对象而被拍摄时执行快门操作。
【0144】当在步骤 F2000 中确定从开始对自定时器设定的时间段的计时起还没有经过预定时间段时，处理进行到步骤 F105。
【0145】对于步骤 F105 以及随后步骤的处理操作，执行与参考图 2 描述的处理操作相同的处理操作。
【0146】此外，当在步骤 F2000 中确定从开始对自定时器设定的时间段的计时起已经经过
了预定时间段时，处理进行到步骤 F106。也就是说，当确定在对象处于静止的状态中预定时间段已经结束，则此状态与处于适于得到被捕捉图像定时的确定结果相同。因此，处理进行到执行快门操作的步骤 F106。

【0147】此外，当在步骤 F104 中确定对象正在运动时，处理进行到步骤 F107，并且执行与参考图 2 描述的处理操作相同的处理操作。

【0148】也就是说，执行用于确定自定时器设定的时间段的计时是否已经结束的处理。当计时没有结束时，处理返回步骤 F104。接着，当计时己经结束时，执行用于确定自定时器设定的时间段是否已经被延长的处理。如果自定时器设定的时间段已经被延长，则执行用于从音频输出单元 10 输出因对象正在运动而不能执行图像捕捉的警告声音或者利用声音达到所述效果的消息的处理，并且处理被停止，而不执行在步骤 F106 中所执行的快门操作。

【0149】此时，当在步骤 F110 中执行了用于延长自定时器设定的时间段的计时的处理时，在步骤 F104 中执行用于确定对象是否处于静止的处理。接着，当确定对象处于静止时，处理进行到步骤 F2000。实际上，由于在步骤 F2000 中预定时间段已经结束，因此确定自开始对自定时器设定的时间段计时起已经经过了预定时间段。接着，处理进行到执行快门操作的步骤 F106。

【0150】由于执行了到此为止参考图 4 描述的图像捕获处理操作示例 III。当从开始对自定时器设定的时间段计时起经过了预定时间段后对象运动停止时，图像捕获设备 1 执行快门操作。也就是说，即使还没有经过自定时器设定的时间段，当对象运动停止时也执行快门操作。

【0151】此外，如果在自定时器设定的时间段结束时而检测到对象运动，执行用于延长自定时器设定的时间段的处理。

【0152】此外，当在自定时器设定的时间段的延长时间段期间对象运动停止时，执行快门操作。

【0153】此外，如果在自定时器设定的时间段的延长时间段结束时而检测到对象运动，则停止被捕获图像获取处理操作，而不执行快门操作。

【0154】对于此处理操作示例，首先，得到了类似于图像捕获处理操作示例 I 的优点。也就是说，如果自定时器设定的时间段结束仍检测到对象继续运动，则自定时器设定的时间段被延长。由于自定时器设定的时间段的延长，增加了可以得到对象处于静止的拍摄图像照片的可能性，并且这是适合于用户的处理。

【0155】此外，在该处理操作示例中，当在自定时器设定的时间段期间对象运动停止时或者当在自定时器设定的时间段的延长时间段期间对象运动停止时，快门操作被执行，而无需等待计时结束。因此，当对象是人物时，可以在不用强迫该人物保持静止状态下获得最佳拍摄图像照片。

【0156】在参考图 4 描述的被捕获图像获取处理操作中，整个对象的运动被检测。参考图 3 描述的用于执行处理以确定正在运动的对象是否是人物的步骤 F1000 可以设置在图 4 所示的步骤 F104 到步骤 F107 之间。在这样的情况下，当在步骤 F1000 中确定正在运动的对象不是人物时，系统控制器 2 使得处理进行到步骤 F2000，而当确定正在运动的对象是人物时，系统控制器 2 使得处理进行到步骤 F107。接着，对于其它处理，执行与参考图 4 描述的处理操作相同的处理操作。
在图3和图4的流程图中被合并的被捕获图像获取处理操作中，可以得到与参考图3和图4描述的被捕获图像获取处理操作同样的优点。

在上述图4的图像捕获处理操作示例III中，描述了在从开始对自定时器设定的时间段计时起或者从已经延长的自定时器设定的时间段的计时起经过了预定时间段后执行快门操作的被捕获图像获取操作。

对于用户来说，直到快门操作被执行为止的自定时器设定的时间段是估计时间段，但是自定时器设定的时间段的延长时间段却不是估计的。在估计时间段的情况下，在直到快门操作被执行为止的时间段期间，用户在准备他自己/她自己作为对象的图像捕获时可以处于放松状态。在不是估计的延长时间段中，很难估计直到快门操作被执行为止的时间段，并且认为用户希望快门操作被尽早执行。

因此，考虑这样一种被捕获图像获取处理操作，其中，只有当对象在自定时器设定的时间段已经被延长的计时中变为静止时，才在该定时执行快门操作。

下面将描述这种被捕获图像获取处理操作。

图5以流程图的方式示出系统控制器2实现此操作的处理。

图5示出在图2流程图的步骤F104和步骤F105之间增加了步骤F3000的处理的流程图，也就是说，图4所示的流程图的步骤F2000的处理被改变为步骤F3000的处理的流程图。因此，在对图5的流程图的描述中，用于执行与图2所示的流程图相同处理的步骤以相同的标号表示，并且省略了对它们的描述。

在图5的流程图中，首先，执行与参考图2描述的从步骤F101到步骤F104的处理操作相同的处理操作。当在步骤F104中确定对象没有正在运动时，在步骤F3000中确定自定时器设定的时间段是否已经被延长。此时，当确定自定时器设定的时间段没有被延长时，处理进行到步骤F105。对于步骤F105以及随后步骤的处理操作，执行与参考图2描述的处理操作类似的用于确定自定时器设定的时间段的计时是否已经结束的处理。如果自定时器设定的时间段的计时没有结束，则处理进行到步骤F104，并且如果结束，则处理进行到快门操作被执行的步骤F106。

此外，当在步骤F104中确定对象正在运动时，处理进行到步骤F107，并且之后，执行与参考图2描述的的处理操作类似的处理操作。也就是说，执行用于确定自定时器设定的时间段的计时是否已经结束的处理。如果自定时器设定的时间段的计时已经结束，执行用于确定自定时器设定的时间段的计时是否已经延长的处理，并且如果所述计时没有结束，执行用于延长自定时器设定的时间段的计时的处理。接着，当所述计时已经被延长时，执行用于从音频输出单元10输出图像捕获由于对象正在运动而不能执行的警告声音或者利用声音达到所述效果的消息的处理。

接着，在步骤F110中执行了用于延长自定时器设定的时间段的处理之后，当在步骤F104中确定对象没有正在运动时，在步骤F3000中执行用于确定自定时器设定的时间段是否已经延长的处理。此情况意味着在所述计时的延长时间段中对象处于静止状态，并且此时是适于得到被捕获图像的定时。因此，处理从步骤F3000进行到快门操作被执行的步骤F106。

由于执行了到此为止参考图5描述的图像捕获处理操作示例IV，如果对象处于静
止，则图像捕获设备 1 在自定时器设定的时间段结束时执行快门操作。

【0169】此外，当在自定时器设定的时间段结束而检测到对象运动时，执行用于延长自定时器设定的时间段的处理。

【0170】此外，当在自定时器设定的时间段的延长时间段期间对象变为静止时，执行快门操作。

【0171】此外，如果在自定时器设定的时间段的延长时间段结束时而检测到对象运动，则停止被捕获图像获取处理操作，而不执行快门操作。

【0172】此外，在执行这样的处理操作的图像捕获处理操作示例 IV 中，首先，可以得到与图像捕获处理操作示例 I 相同的优点。也就是说，如果自定时器设定的时间段结束而仍检测到对象继续运动，则自定时器设定的时间段被延长，并且这增加了可以得到对象处于静止的拍摄图像照片的可能性。因此，这成为适合于用户的处理。

【0173】因此，在图像捕获处理操作示例 IV 中，当在自定时器设定的时间段已经由延长的计时结束之前对象运动停止时新执行快门操作。因此，当对象是人物时，可以在不用加强心理负担的情况下获得最佳拍摄图像照片。

【0174】在参考图 5 描述的被捕获图像获取处理操作中，已经描述了整个对象的运动被检测的情。可替代地，如参考图 3 所描述的，可以检测作为对象的人物的运动。

【0175】在那样的情况下，在图 5 所述的步骤 F104 和步骤 F107 之间设置图 3 所示的用于执行用于确定正在运动的对象是否是人物的步骤 F1000。之后，当在步骤 F1000 中确定正在运动的对象不是人物时，则系统控制器 2 使处理进行到步骤 F3000，并且当确定正在运动的对象是人物时，系统控制器 2 使处理进行到步骤 F107。对于其它处理，执行与参考图 5 描述的处理操作类似的处理操作。

【0176】在图 3 和图 5 的流程图被合并的被捕获图像获取处理操作中，同样可以得到与参考图 3 和图 5 描述的被捕获图像获取处理操作相同的优点。

【0177】6. 图像捕获处理操作示例 V

【0178】这里，当要利用图像捕获设备 1 捕获对象的图像时，考虑到，在用户执行快门操作之前，例如，通过操作输入单元 7 执行操作以对主要对象执行适当的曝光设定。

【0179】在本发明的情况中，认为在用户设定自定时器功能之前执行曝光设定。然而，在此曝光设定被执行之后的自定时器设定的时间段期间，存在照射在对象上的光照条件突然改变的可能性。其示例包括这种情况，其中，在室外执行图像捕获时，太阳突然从云后面出现，或者相反，太阳隐藏在云后面，从而改变光照条件。

【0180】因此，考虑到自动执行对曝光设定的校正的处理操作，以应对以下的情况，其中，在自定时器图像捕获操作被执行之前而用户执行了曝光设定之后，在自定时器设定的时间段期间照射在对象上的光照条件突然改变。

【0181】下面将描述这种被捕获图像获取处理操作。

【0182】图 6 以流程图的方式示出系统控制器 2 实现此操作的处理。

【0183】图 6 显示出图 2 流程图的步骤 F104 和步骤 F105 之间增加了步骤 F4000 和步骤 F4001 的处理的流程图。在对图 6 的流程图的描述中，用于执行与图 2 所示的流程图相同处理的步骤以相同的标号表示，并且省略了对它们的描述。

【0184】首先，从步骤 F101 到步骤 F104，执行与参考图 2 描述的处理操作相同的处理操作。
接着，当在步骤 F104 中确定对象没有正在运动时，在步骤 F4000 中执行处理以确定亮度水平是否已经显著改变。

【0185】这里所指的亮度水平的显著改变是指亮度改变到需要曝光校正的程度的改变。也就是说，当亮度水平从用户设定的曝光设置改变并且超过预定的亮度水平改变阈值时，需要曝光校正，以使其接近用户设定的曝光设置的值。此情形被称作亮度水平的显著改变。

【0186】例如，存在这样一种情况，其中，太阳突然从云中出现，并且照射在对象上的光照条件改变，从而导致亮度水平显著改变并且需要校正曝光设置。

【0187】接着，当在步骤 F4000 中确定亮度水平没有显著改变时，处理进行到步骤 F105，并且之后，执行与参考图 2 描述的处理操作相同的处理操作。

【0188】此外，当确定存在亮度水平的显著改变时，在步骤 F4001 中执行自动曝光校正的处理操作。

【0189】在步骤 F4001 中，在图像捕获控制系统 3a 中执行改变光圈开口量的值的控制，以接近原先由用户执行的曝光设置。在图像捕获元件单元 3b 中，执行改变快门速度的控制，以改变曝光时间。在图像捕获信号处理器 3c 中，执行改变 PGA 增益的设置值的控制。

【0190】依赖于亮度水平的改变程度，可以执行对上述光圈、曝光时间及 PGA 增益的设置的所有三个参数的控制，或者可以执行对一个或两个参数的控制。

【0191】在步骤 F4001 中完成对改变后的曝光的校正时，处理进行到步骤 F105。

【0192】此外，当在步骤 F104 中确定对象正在运动时，处理进行到步骤 F107，并且之后，执行与参考图 2 描述的处理操作相同的处理操作。

【0193】已经执行了到目前为止已经描述的图 6 的图像捕获处理操作示例 V。因此，在图像捕获设备 1 中，当在自定时器设定的时间段期间对象运动停止后亮度水平显著改变时，自动执行曝光校正，并且在自定时器设定的时间段结束时执行快门操作。

【0194】此外，当在自定时器设定的时间段内检测到对象运动时，执行用于延长自定时器设定的时间段的处理。

【0195】此外，在自定时器设定的时间段的延长时间段期间对象运动停止后亮度水平显著改变时，自动执行曝光校正，并且在自定时器设定的延长时间段的延长时间段结束时执行快门操作。

【0196】此外，当在自定时器设定的时间段的延长时间段结束而检测到对象运动时，停止被捕获图像获取处理操作，而不执行快门操作。

【0197】在这样的图像捕获处理操作示例 V 中，同样，可以得到与图像捕获处理操作示例 I 相同的优点。也就是说，由于可以依赖自定时器设定的时间段结束时运动检测的结果来延长自定时器设定的时间段，增加了能够得到用户期望的捕获图像照片的可能性，因此，这是适合于用户的处理。

【0198】此外，在处理示例中，当在自定时器设定的时间段期间图像捕获环境突然改变并且亮度水平显著改变到需要进行曝光校正的程度时，曝光校正被自动执行。因此，用户无需再次对改变后的曝光执行设置，并且这可以被认为是获得最佳图像质量的捕获图像照片的适当的处理操作。

【0199】已经参考图 6 描述的捕获图像获取处理操作的流程图可以设置参考图 3 描述的用于执行确定正在运动的对象是否是人物的处理的步骤 F1000 和参考图 4 描述的用于执行
确定从开始自定时器设定的时间段的计时起的预定时间段是否结束的处理的步骤F2000。
【0200】在这样的情况中，步骤F1000设置在步骤F104到步骤F107之间，并且步骤F2000
设置在步骤F4000和步骤F105之间。
【0201】接着，当在步骤F1000中确定正在运动的对象不是人物时，系统控制器2使处理进
行到步骤F4000。当确定正在运动的对象是人物时，系统控制器2使处理进行到步骤F107。
【0202】此外，当在步骤F4000中确定亮度水平没有显著改变时，处理进行到步骤F2000。
此外，当确定亮度水平已显著改变时，在步骤F4001中自动执行曝光校正的处理操作，并且
之后处理进行到步骤F2000。
【0203】在步骤F2000中，当确定从开始自定时器设定的时间段的计时起的预定时间段还
没有结束时，处理进行到步骤F105，并且当确定从开始自定时器设定的时间段计时起的
预定时间段已经结束时，处理进行到步骤F106。对于其它处理，执行与参考图3、图4和图
6描述的处理操作相同的处理操作。
【0204】在图3、图4和图6的处理操作被合并的处理操作中，代替参考图4描述的步骤
F2000，可以设置参考图5描述的用于执行确定自定时器设定的时间段的计时是否已经被
延长的处理的步骤F3000。
【0205】在这种情况下，当确定自定时器设定的时间段没有被延长时，处理进行到步骤
F105，并且当自定时器设定的时间段已经被延长时，处理进行到步骤F106。对于其它处
理，执行与参考图3、图5和图6描述的处理操作相同的处理操作。
【0206】此外，还可以执行图3和图6的处理操作被合并、图4和图6的处理操作被合并以
及图5和图6的处理操作被合并的处理操作。图3和图6的处理操作被合并的处理操作是
在上述图3、图4和图6的处理操作被合并的处理操作中排除图4的步骤F2000的处理操作
的处理操作。此外，图4和图6的处理操作被合并的处理操作是在上述图3、图4和图6的
处理操作被合并的处理操作中排除图3的步骤F1000的处理操作的处理操作。图5和图6的
处理操作被合并的处理操作是在图3、图5和图6的处理操作被合并的处理操作中排除图3
的步骤F1000的处理操作的处理操作。
【0207】在这些被捕获图像获取处理操作中，同样，可以得到与图3、图4、图5和图6的被
捕获图像获取处理操作相同的优点。
【0208】7. 图像捕获处理操作示例VI
【0209】这里，在直到目前为止描述的图像捕获获取处理操作示例I、II、III、IV和V中，
当在图像捕获设备1中要通过利用自定时器功能捕获对象的图像时，执行了用于检测对象
运动的处理操作以及基于检测结果获取具有最佳图像质量的拍摄图像照片的处理操作。
【0210】此外，在图像捕获设备1中，为了得到具有最佳图像质量的拍摄图像照片，考虑到
不仅基于对象运动的检测结果执行处理操作，而且还检测图像捕获设备1的运动并且基于
此检测结果执行处理操作。
【0211】例如，当要利用安装在图像捕获设备1中的三脚架执行图像捕获时，存在这样的
可能性，在自定时器设定的时间段期间，在放置三脚架的位置发生移动并且图像捕获设备1
可能被倾斜，并且在户外的情况下，三脚架可能由于风的影响而倒下。如上所述，如果在图
像捕获设备1中被倾斜或者已经倒下的状态中执行快门操作，可能得到用户不期望的拍摄图
像照片。
因此，在开始对自定时器设定的时间段计时之后，当图像捕获设备 1 已经运动时，考虑用于停止图像捕获设备 1 的图像捕获的处理操作。

下面将描述这种被捕获图像获取处理操作。

图 7 以流程图的方式示出系统控制器 2 实现此操作的处理。

在图 7 中，对于从步骤 F201 到步骤 F202 的处理，执行与参考图 2 描述的从步骤 F101 到步骤 F102 的处理相同的处理。也就是说，当用户执行了对自定时器功能的设置后，执行用于开始对自定时器设定的时间段计时的处理。

在步骤 F203 中，执行用于开始检测来自加速度传感器 8 的信息的处理，并且然后处理进行到步骤 F204。在步骤 F204 中，基于来自加速度传感器 8 的检测信息确定图像捕获设备 1 是否已运动。当确定图像捕获设备 1 没有正在运动时，处理进行到步骤 F205。之后，对于从步骤 F205 到步骤 F206 的处理，执行与参考图 2 描述的从步骤 F105 到步骤 F106 的处理相同的处理。也就是说，当确定自定时器设定的时间段的计时已经结束时，在自定时器设定的时间段的计时结束时执行处理以将图像捕获单元 3 捕获到的一帧的被捕获图像的数据存储到存储单元 9 中。此外，当确定自定时器设定的时间段的计时没有结束时，处理返回步骤 F204。接着，当确定图像捕获设备 1 没有正在运动时，图像捕获设备 1 重复步骤 F204 → 步骤 F205 → 步骤 F204… 的处理，直到在步骤 F205 中确定自定时器设定的时间段的计时已经结束为止。

此外，当在步骤 F204 中基于来自加速度传感器 8 的信息确定图像捕获设备 1 正在运动时，在步骤 F107 中执行用于停止自定时器设定的时间段的计时的处理。这是因为，如果图像捕获设备 1 被倾斜或者倒向与用户起先确定的方向不同的方向，则可能得不到具有用户希望构成的拍摄图像照片，并且即使实际执行了快门操作，由于不能得到具有最佳图像质量的拍摄图像照片，快门操作也会被停止。

在执行用于停止自定时器设定的时间段的处理之后，在步骤 F208 中执行用于输出消息的处理。也就是说，从音频输出单元 10 输出通知用户图像捕获设备 1 被倾斜或者已经倒下的事实的警告声音以及利用合成的声音达到上述效果的消息。

例如，可以输出诸如“图像捕获设备的姿态已经被改变，快门操作已被停止”消息声音。

接着，由于图像捕获设备 1 的运动，系统控制器 2 停止被捕获图像获取处理操作，而不执行在步骤 F106 中执行的快门操作。

作为用于检测图像捕获设备 1 的运动的技术，可以不仅基于来自加速度传感器 8 的信息而且基于来自图像分析单元 12 的信息来确定图像捕获设备 1 的运动。也就是说，当基于来自图像分析单元 12 的信息确定被捕获图像的数据的场角存在改变时，系统控制器 2 可以认为图像捕获设备 1 的姿态已经从最初姿态改变并且可以确定图像捕获设备 1 已经发生运动。

由于执行了到目前为止参考图 7 的流程图描述的图像捕获处理操作示例 VI，因此，如果图像捕获设备 1 为静止，则图像捕获设备 1 在自定时器设定的时间段结束时执行快门操作。

此外，当在自定时器设定的时间段期间图像捕获设备 1 已经发生运动，则执行用于停止快门操作的处理。根据此图像捕获处理操作示例 VI，当检测到图像捕获设备 1 的运
动时，快门操作被停止。因此，可以避免得到具有不是用户起先希望设定的场角的 3 谓“失败照片”的的拍摄图像照片。结果，不会发生得到用无的用户不希望的作为失败照片的拍摄图像照片，并且这被认为是适合于用户的处理。

[0224] 8、图像捕获处理操作示例 VII

[0225] 这里，还考虑到这样一种被捕获图像获取处理操作，其中，在上述的捕获获取处理操作中的图像捕获处理操作示例 I、II、III、IV 和 V 中描述的用于检测对象或者作为对象的人物的运动并且控制快门操作的技术以及在图像捕获处理操作示例 VI 中描述的用于检测图像捕获设备 1 的运动并且控制快门操作的技术被合并。

[0226] 下面将描述这种被捕获图像获取处理操作。

[0227] 图 8 所示的流程图示出参考图 2 描述的处理操作和参考图 7 描述的处理操作被合并的处理操作。也就是说，在图 8 的流程图中，在参考图 2 描述的步骤 F103 和步骤 F104 之间设置了参考图 7 描述的步骤 F203 和步骤 F204。此外，在参考图 2 描述的步骤 F204 和步骤 F109 之间设置了参考图 7 描述的步骤 F207。

[0228] 此外，对于图 8 中所示的流程图的各个步骤，执行与在图 2 和图 7 中所示的各个步骤的处理相同的处理。因此，在图 8 中所示的流程图的步骤以相同的标号来表示，并且省略了对它们的描述。

[0229] 首先，系统控制器 2 执行与参考图 2 描述的从步骤 F101 到步骤 F103 的处理相同的处理。也就是说，执行确定是否已经执行自定时器图像捕获操作的处理。当确定已经执行自定时器图像捕获操作时，开始自定时器设定的时间段的计时。接着，发布指令以使图像分析单元 12 执行对图像捕获单元 3 接收到的被捕获图像的图像分析，并且处理之后进行到步骤 F203。

[0230] 在步骤 F203 和步骤 F204 中，执行与参考图 7 描述的处理相同的处理。也就是说，开始对来自加速度传感器 8 的信息的检测，并且确定图像捕获设备 1 是否正在运动。接着，当确定图像捕获设备 1 正在运动时，由于图像捕获设备 1 已经移动，因此不能得到具有用户所希望的构成的拍摄图像照片。因此，在步骤 F207 中，执行用于停止自定时器设定的时间段的计时的处理，并且处理进行到步骤 F109，在步骤 F109 中，从音频输出单元 10 输出通知用户图像捕获设备 1 被倾斜或者已经倒下的警告声音以及诸如“图像捕获设备的姿态已经被改变，快门操作已停止”的消息声音。

[0231] 此外，当确定图像捕获设备 1 没有正在运动时，处理进行到步骤 F104，在步骤 F104，基于图像分析单元 12 中的图像分析结果执行用于确定对象是否正在运动的处理。

[0232] 当确定对象没有正在运动时，处理进行到步骤 F105。当自定时器设定的时间段已经结束时，在步骤 F106 中执行快门操作，并且当自定时器设定的时间段没有结束时，处理返回到步骤 F204。

[0233] 接着，当确定对象正在运动时，处理进行到步骤 F107，并且当确定自定时器设定的时间段没有结束时，处理返回到步骤 F204。此外，当确定自定时器设定的时间段已经结束时，处理进行到步骤 F108，在步骤 F108 中，执行用于确定自定时器设定的时间段是否已经被延长的处理。

[0234] 当在步骤 F108 中确定自定时器设定的时间段没有被延长时，自定时器设定的时间段例如为 10 秒，在步骤 F110 中执行将自定时器设定的时间段延长约 5 秒的处理。由于
提供了此延长时间段，增加了得到其运动为静止的对向的捕获图像的可能性。

[0235] 接着，处理返回到步骤F204，在步骤F204中，当确定图像捕获设备1没有正在运动并且对象也没有正在运动时，处理进行到步骤F105。在步骤F105中，此时，执行确定自定时器设定的时间段已经被延长的时是否已经结束的处理。当确定延长的计时已经结束时，处理进行到步骤F106，并且当确定延长的计时没有结束时，处理进行到步骤F204。

[0236] 当在步骤F108中确定自定时器设定的时间段已经被延长时间，处理进行到步骤F109。在此情况下，在步骤F109中，从音频输出单元10输出使用户意识到图像捕获失败的警告信息以及诸如 “由于要被捕获图像的对象正在运动而不能执行图像捕获，请重新执行快门操作” 的消息声。

[0237] 由于执行了直到目前为止参考图8描述的图像捕获处理操作示例VII，如果图象捕获设备1以及对象的运动为静止，则图像捕获设备1在自定时器设定的时间段结束时执行快门操作。

[0238] 此外，当在自定时器设定的时间段期间图像捕获设备1已经发生运动时，则执行用于停止快门操作的处理。

[0239] 此外，当在自定时器设定的时间段结束时图像捕获设备1处于静止并且检测到对象的运动时，执行用于延长自定时器设定的时间段的处理。

[0240] 此外，当在自定时器设定的时间段的延长时间段期间图像捕获设备1的运动以及对向的运动停止时，则在自定时器设定的时间段的延长时间段结束时执行快门操作。

[0241] 此外，当在自定时器设定的时间段的延长时间段结束时图像捕获设备1处于静止并且检测到对象的运动时，停止被捕获图像获取处理操作，而不执行快门操作。

[0242] 根据此图像捕获处理操作示例VII，可以基于对象的运动得到作为最佳捕获图像的处理操作及能够基于图像捕获设备1的运动避免得到作为失败的捕获图像的处理操作被合并，从而得到最佳的捕获图像。因此，这被认为是对用户有利的。

[0243] 除了参考图8描述的图2和图7的捕获图像获取处理操作被合并的处理操作之外，考虑到图3和图7被合并、图4和图7被合并、图5和图7被合并以及图6和图7被合并的处理操作。此外，还考虑到图3、图4和图7被合并的组合、图3、图5和图7被合并的组合、图3、图6和图7被合并的组合、图4、图6和图7被合并的组合、图5、图6和图7被合并的组合、图3、图4、图6和图7被合并的组合、图3、图5、图6和图7被合并的组合的处理操作。

[0244] 在这些组合中的任何组合的捕获图像获取处理操作中，可以得到与参考图2、图3、图4、图5、图6和图7描述的捕获图像获取处理操作的优点相同的优点。

[0245] 9. 修正

[0246] 到目前为止已经描述了本发明的实施例。然而，本发明并不限于到目前为止所描述的实施例。

[0247] 例如，到目前为止描述的最佳图像获取功能可以是响应于用户期望的模式操作设定功能 - 打开或者功能 - 关闭的这样的功能。通过将最佳图像获取功能设定为关闭，例如，当作为摄像者的用户希望利用自定时器功能捕获对象正在运动的图像在捕获的图像时，优先地，利用操作输入单元7执行模式操作以能够关闭上述处理示例中描述的最佳图像获取功能。
此外，在上述示例中，通过从音频输出单元 10 的音频输出来执行警告输出。可替代地，可以利用诸如 LED 的发光元件通过发光输出来发布警告。此外，可以在显示单元 5 中执行消息显示。此外，考虑到不执行警告输出的处理示例。

此外，响应于快门操作，执行用于将一幅的被获取图像的数据存储在存储单元 9 中作为静止图像的被获取图像的处理。另外，对于所述存储处理，还可以将所述被获取图像的数据发送到外部设备。也就是说，可以设置用于外部设备的发送器，并且在本发明涉及的存储处理中包括用于发送被获取图像以及将其存储在外部设备中的操作。

此外，在直到目前为止描述的被获取图像获取处理操作中，如果满足用于执行快门操作的条件，则可以例如利用诸如 LED 的发光元件通过发光输出来向用户通知实际执行快门操作之前的时间段。

例如，当自定时器设定的时间段为约 10 秒时，可以通过使发光元件在快门操作被执行之前约 3 秒进行闪烁来向用户通知快门操作的定时。

此外，在发光元件开始闪烁后，可以检测对象的运动，或者即使图像捕获设备 1 已经运动，快门操作也可以被执行。

本领域技术人员应当理解，根据设计要求和其它因素可能出现各种修改、组合、子组合和替代，只要它们在所附权利要求或其等同物的范围之内。

本发明包含与 2007 年 7 月 24 日向日本专利局提交的日本专利申请 JP2007-192139 有关的主题，其全部内容通过引用而被结合于此。
开始

F101

已利用自定时器功能执行快门操作？

否

是

F102

开始对自定时器时间段计时

F103

指示执行用于运动检测的图像分析处理

F104

对象正在运动？

是

F100

正在运动的对象是人物？

否

是

F107

对自定时器时间段的计时已经结束？

否

是

F108

对自定时器时间段的计时已被延长？

否

F109

延长自定时器时间段

否

是

快门处理～F106

F105

对自定时器时间段的计时已经结束？

是

消息～F109

否

结束

图3
图4
图6
图8