
US011080811B2

(12) United States Patent
Appu et al .

(10) Patent No .: US 11,080,811 B2
(45) Date of Patent : * Aug . 3 , 2021

(54) COMPUTE OPTIMIZATION MECHANISM

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(51) Int . CI .
G06T 1/20 (2006.01)
GO6F 3/14 (2006.01)

(Continued)
(52) U.S. CI .

CPC G06T 1/20 (2013.01) ; G06F 3/14
(2013.01) ; G06F 9/3001 (2013.01) ;
(Continued)

(58) Field of Classification Search
CPC G06T 15/005 ; G06T 1/20 ; G06T 15/04 ;

GO9G 5/363 ; GO9G 2360/06 ;
(Continued)

(72) Inventors : Abhishek R. Appu , El Dorado Hills ,
CA (US) ; Altug Koker , El Dorado
Hills , CA (US) ; Linda L. Hurd , Cool ,
CA (US) ; Dukhwan Kim , San Jose ,
CA (US) ; Mike B. Macpherson ,
Portland , OR (US) ; John C. Weast ,
Portland , OR (US) ; Feng Chen ,
Shanghai (CN) ; Farshad Akhbari ,
Chandler , AZ (US) ; Narayan
Srinivasa , Portland , OR (US) ;
Nadathur Rajagopalan Satish , Santa
Clara , CA (US) ; Joydeep Ray , Folsom ,
CA (US) ; Ping T. Tang , Edison , NJ
(US) ; Michael S. Strickland ,
Sunnyvale , CA (US) ; Xiaoming Chen ,
Shanghai (CN) ; Anbang Yao , Beijing
(CN) ; Tatiana Shpeisman , Menlo Park ,
CA (US)

(56) References Cited

U.S. PATENT DOCUMENTS

5,515,520 A
6,338,135 B1 *

5/1996 Hatta
1/2002 Dijkstra G06F 7/575

712/208
(Continued)

FOREIGN PATENT DOCUMENTS
(73) Assignee : Intel Corporation , Santa Clara , CA

(US) CN
CN

106406812 2/2017
106406812 A 2/2017

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .
This patent is subject to a terminal dis
claimer .

OTHER PUBLICATIONS

Notification of Publication of TW Application No. 108136438 ,
dated Jan. 22 , 2020 , 3 pages .

(Continued) (21) Appl . No .: 16 / 446,398

(22) Filed : Jun . 19 , 2019 Primary Examiner Abderrahim Merouan
(74) Attorney , Agent , or Firm Jaffery Watson
Mendonsa & Hamilton LLP (65) Prior Publication Data

(57) ABSTRACT

(63)

US 2019/0304054 A1 Oct. 3 , 2019
Related U.S. Application Data

Continuation of application No. 15 / 798,574 , filed on
Oct. 31 , 2017 , now Pat . No. 10,255,656 , which is a

(Continued)

An apparatus to facilitate compute optimization is disclosed .
The apparatus includes a mixed precision core to perform a

(Continued)

100 Wireless
Network
Adapter
119

Network
Adapter
118

I / O Switch
116

Add - In
Device (s)

120 Display
Device (s)
1104

1/0 Hub
107

System
Storage
114

Input
Device (s)

108
I / O Subsystem

111

Communication
Link
106

------ Memory Parallel Processor (s)
112

Hub
105

System
Memory
104

Communication
Link
113 Display

Device (s)
110B Processor (s)

102 Processing
Subsystem

101

US 11,080,811 B2
Page 2

mixed precision multi - dimensional matrix multiply and
accumulate operation on 16 - bit and / or 32 bit floating - point
elements .

2014/0280420 A1
2015/0019896 A1
2015/0199963 A1 *

9/2014 Khan
1/2015 Anderson et al .
7/2015 Maaninen GIOL 15/16

704/232

25 Claims , 38 Drawing Sheets
2015/0378741 Al
2016/0026912 A1
2016/0048374 A1
2016/0062947 Al
2016/0092766 A1 *

12/2015 Lukyanov et al .
1/2016 Falcon
2/2016 Argade et al .
3/2016 Chetlur et al .
3/2016 Sainath GOON 3/0481

706/20

G06F 12/1408
Related U.S. Application Data

continuation of application No. 15 / 494,905 , filed on
Apr. 24 , 2017 , now Pat . No. 10,489,877 .

2017/0097824 A1
2017/0285976 Al *
2017/0372202 A1
2018/0046906 A1
2018/0288431 A1
2018/0293737 Al

4/2017 Elmer et al .
10/2017 Durham
12/2017 Ginsburg et al .
2/2018 Dally et al .
10/2018 Liu et al .
10/2018 Sun et al .

FOREIGN PATENT DOCUMENTS

CN
EP
EP
TW
TW
TW
TW

108734648 A
2963538 A1
3396529 A1

201706956 A
201709085 A
201839713
201941159

11/2018
1/2016

10/2018
2/2017
3/2017
11/2018
10/2019

OTHER PUBLICATIONS

(51) Int . Ci .
GO6F 9/30 (2018.01)
G06F 9/38 (2018.01)
G06N 3/04 (2006.01)
GO6N 37063 (2006.01)
GOON 3/08 (2006.01)
G06T 15/00 (2011.01)
GO9G 5/36 (2006.01)
G06T 15/04 (2011.01)

(52) U.S. CI .
CPC G06F 9/30014 (2013.01) ; G06F 9/3017

(2013.01) ; GO6F 9/3887 (2013.01) ; G06F
9/3895 (2013.01) ; G06N 370445 (2013.01) ;

G06N 3/0454 (2013.01) ; G06N 34063
(2013.01) ; GO6N 3/084 (2013.01) ; G06T

15/005 (2013.01) ; G09G 5/363 (2013.01) ;
G06F 9/3851 (2013.01) ; G06T 15/04

(2013.01) ; G09G 2360/06 (2013.01) ; GO9G
2360/08 (2013.01) ; G09G 2360/121 (2013.01)

(58) Field of Classification Search
CPC GO9G 2360/08 ; GO9G 2360/121 ; G06F

9/3851 ; G06F 3/14 ; G06F 9/3001 ; G06F
9/30014 ; GO6F 9/3017 ; G06F 9/3887 ;
G06F 9/3895 ; GO6N 3/0445 ; GOON
3/0454 ; GO6N 37063 ; GO6N 3/084

See application file for complete search history .

(56) References Cited

U.S. PATENT DOCUMENTS

6,463,568 B1 * 10/2002 Wasson G06F 30/39
716/102

7,720,900 B2 5/2010 Gerwig et al .
8,051,123 B1 11/2011 Oberman et al .
8,106,914 B2 1/2012 Oberman et al .

10,528,864 B2 1/2020 Dally et al .
10,860,922 B2 12/2020 Dally et al .
10,891,538 B2 1/2021 Dally et al .

2004/0015533 A1 * 1/2004 Hansen G06F 7/5443
708/523

2004/0205324 A1 10/2004 Hansen et al .
2005/0075849 A1 4/2005 Maher et al .
2006/0101244 A1 * 5/2006 Siu G06F 9/30021

712/221
2010/0158407 A1 6/2010 Standfield
2011/0119446 A1 * 5/2011 Blumrich GO6F 9/30072

711/122
2011/0219208 Al * 9/2011 Asaad G06F 9/06

712/12
2012/0191767 A1 7/2012 Anderson
2013/0007075 A1 1/2013 Oliver et al .
2013/0031328 A1 * 1/2013 Kelleher G06F 12/06

711/203
2013/0232322 A1 9/2013 Fetterman
2014/0089371 A1 3/2014 Dupoint De Dinechin et al .
2014/0188966 A1 7/2014 Galal

Notice of Allowance and Search Report for TW Application No.
108117368 , dated Jun . 27 , 2019 , 6 pages .
Notice of Publication for TW Application No. 108117368 , dated
Sep. 5 , 2019 , 3 pages .
Notice of Allowance for U.S. Appl . No. 15 / 494,905 , 5 pages , dated
Jul . 31 , 2019 .
Office Action for U.S. Appl . No. 15 / 494,905 , 28 pages , dated Feb.
4 , 2019 .
Goodfellow , et al . “ Adaptive Computation and Machine Learning
Series ” , Book , Nov. 18 , 2016 , pp . 98-165 , Chapter 5 , The MIT
Press , Cambridge , MA .
Ross , et al . “ Intel Processor Graphics : Architecture & Program
ming ” , Power Point Presentation , Aug. 2015 , 78 pages , Intel Cor
poration , Santa Clara , CA.
Shane Cook , “ CUDA Programming ” , Book , 2013 , pp . 37-52 , Chap
ter 3 , Elsevier Inc. , Amsterdam Netherlands .
Nicholas Wilt , “ The CUDA Handbook ; A Comprehensive Guide to
GPU Programming ” , Book , Jun . 22 , 2013 , pp . 41-57 , Addison
Wesley Professional , Boston , MA .
Stephen Junking , “ The Compute Architecture of Intel Processor
Graphics Gen9 ” , paper , Aug. 14 , 2015 , 22 pages , Version 1.0 , Intel
Corporation , Santa Clara , CA.
Notice of Allowance for U.S. Appl . No. 15 / 798,574 , 9 pages , dated
Sep. 28 , 2018 .
Extended European Search Report , EP Application No. 18159839.2 ,
13262EP , dated Sep. 18 , 2018 , 9 pages .
Lee , Ruby , et al . , Media Signal Processing , (c) 2002 , CRC Press
LLC , 38 pages .
Morgan , Timothy Prickett , “ Drilling Down into Nvidia's Pascai ”
GPU) Apr. 19 , 2016 , retrieved from the Internet at https : / www
nextplatform.corn / 2016 / 04 / 19 / drilling - nvidias - pascal - gpu , retrieved
on Jan. 25 , 2019 , 10 pages .
Brunie , Nicolas , HAL Ardlives - ouvertes , Mixed - precision Fused
Multiply and Add . 45th Asilomar Conference on Signals , Systems
Computers , Nov. 2011 , United States . pp . 165-169 , 2012. < ensi
00642157 > .
Harris , Mark , “ Mixed - Precision Programming with CUDA 8 ” , Oct.
19 , 2016 , 14 pages .
NVIDIA Tesla P100 , The Most Advanced Datacenter Accelerator
Ever Built Featuring Pascal GP100 , the World's Fastest GPU , (c)
2016 Nvidia Corporation , Whitepaper , VVP - 08019-001 và 1.1 , 45
pages .
Smith , Ryan , Ttle NVIDIA GeForce GTX 1080 & GTX 1070
Founders Editions Review : Kicking offttle FinFET Generation , Jul .
20 , 2016 , retrieved on the INTERNET at 11ttps : //www.anandtech .

US 11,080,811 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

com / print / 10325 / the - nvidia - geforce - gtx - 1080 - and - 1070 - founders
editio 1 Heview , retrieved on Jan. 25 , 2019 , 123 pages .
Wang , Lei , “ Accelerating Linpack Performance with Mixed Preci
sion Algorithm on CPU + GPGPU Heterogeneous Cluster ” , 2010
10th IEEE International Conference on Computer and Information
Technology (CIT 2010) , 6 pages .
Nickolls , John et al . , “ The GPU Computing Era ” , NVIDIA , Pub
lished by the IEEE Computer Society , Mar. 2010 , pp . 56-69 .
Clark , M.A. et al . , “ Solving Lattice QCD Systems of Equations
Using Mixed Precision Solvers on GPUs ” , Computer Physics
Communications , Nov. 14 , 2009 , 30 pages .
Publication of CN Application No. 201910429161.5 , Aug. 29 , 2019 ,
4 pages .
Communication pursuant to Article 94 (3) EPC for Application No.
EP 19 183 024.9 , dated May 14 , 2020 , 8 pages .
Extended European Search Report for EP19218464.6 , dated Apr.
24 , 2020 , pages .
Notification of Publication of CN Application No. 201911107740.4 ,
dated Mar. 13 , 2020 , 4 pages .
Notification of Publication of CN Application No. 201910576830.1 ,
dated Sep. 27 , 2019 , 4 pages .
Notification of Publication of EP Application No. 19175038.9 ,
dated Oct. 9 , 2019 , 2 pages .
Extended European Search Report for EP Application No. 19175038 .
9 , 10 pages , dated Oct. 2 , 2019 .
Kirk , David B. et al . , “ Programming Massively Parallel Proces
sors — A Hands - On Approach ” , XP055073181 , Jan. 1 , 2010 , 279
pages .
Communication pursuant to Article 94 (3) EPC for Application No.
EP 18 159 839.2 , dated May 19 , 2020 , 7 pages .
Communication pursuant to Article 94 (3) EPC for Application No.
EP 19 218 464.6 , dated Jun . 4 , 2020 , 7 pages .
Communication pursuant to Article 94 (3) EPC for Application No.
EP 19 175 038.9 , dated Jul . 21 , 2020 , 7 pages .
N Brunie et al : “ A mixed - precision fused multiply and add ” ,
Asilomar Conference on Signals , Systems and Computers . Confer
ence Record , Nov. 1 , 2011 (Nov. 1 , 2011) , pp . 165-169 , XP055596852 ,
ISSN : 1058-6393 , DOI : 10.1109 / ACSSC.2011.6189977 ISBN : 978
1-4673-5050-1 .

Notification of Publication for CN Application No. 201911107740 .
4 , dated Mar. 13 , 2020 , 4 pages .
Notification of Publication for CN Application No. 202010801699 .
7 , dated Nov. 25 , 2020 , 4 pages .
Communication pursuant to Article 94 (3) for EP Application No.
19218464.6 , dated Jan. 14 , 2021 , 10 pages .
Lane , Nicholas D. et al .: “ DeepX : A Software Accelerator for
Low - Power Deep Learning Inference on Mobile Devices ” , 2016
15th ACM / IEEE International Conference on Information Process
ing in Sensor Networks , Apr. 11 , 2016 , pp . 1-12 .
Notification of Publication of TW Application No. 109127592 , 3
pages , dated Jan. 7 , 2021 .
Extended European Search Report for EP Application No. 20205015 .
9-1203 , dated Feb. 16 , 2021 , 11 pages .
Lin Shi et al : “ VCUDA : GPU - Accelerated High - Performance Com
puting in Virtual Machines " , IEEE Transactions on Computers ,
IEEE , USA , vol . 61 , No. 6 , Jun . 1 , 2012 (Jun . 1 , 2012) , pp . 804-816 ,
XP011442092 , ISSN : 0018-9340
Notification of EP Publication No. 3792839 for EP Application No.
20205015.9-1203 , dated Mar. 17 , 2021 , 2 pages .
Communication pursuant to Article 94 (3) for EP 18159839.2-1203 ,
dated May 19 , 2020 , 7 pages .
Summons to attend oral proceedings for EP Application No. 19175038 .
9 , dated Jan. 28 , 2021 , 11 pages .
Rezaur Rahman : “ Xeon Phi Core Microarchitecture ” , , Dec. 31 ,
2013 , (Dec. 31 , 2013) , XP055355461 , DOI : 10.1007 / 978-1-4302
5927-5 ISBN : 978-1-4302-5927-5 , Retrieved from the Internet : U
RL : http : //www.apress.com/gp/book/9781430259268 ? wt_mc =
ThirdParty.RD.3.EPR653.About_eBook [retrieved on Mar. 16 , 2017] .
Kiran Kasichayanula et al : “ Power Aware Computing on GPUs ” ,
Application Accelerators in High Performance Computing (SAAHPC) ,
2012 Symposium On , IEEE , Jul . 10 , 2012 (Jul . 10 , 2012) , pp . 64-73 ,
XP032262096 , DOI : 10.1109 / SAAHPC.2012.26 ISBN : 978-1-4673
2882-1 .
Office Action for U.S. Appl . No. 16 / 584,076 , dated Oct. 29 , 2020 ,
24 pages .
Notice of Allowance for U.S. Appl . No. 16 / 584,076 dated Mar. 24 ,
2021 , 8 pages .
Decision on Rejection for CN Application No. 201910429161.5
dated Apr. 13 , 2021 , 14 pages .

* cited by examiner

U.S. Patent Aug. 3 , 2021 Sheet 1 of 38 US 11,080,811 B2

100
Wireless
Network
Adapter

119

Network
Adapter

118

I / O Switch
116

Add - In
Device (s)

120 Display
Device (s)
110A

I / O Hub
107

System
Storage
114

Input
Device (s)

108
I / O Subsystem

111

Communication
Link
106

Parallel Processor (s)
112

Memory
Hub
105

System
Memory

104

Communication
Link
113 Display

Device (s)
110B Processor (s)

102 Processing
Subsystem

101

FIG . 1

U.S. Patent Aug. 3 , 2021 Sheet 2 of 38 US 11,080,811 B2

- - -- - - I - - - - I - - - - 1 - - - - - - -

Parallel Processor Memory 222
Memory
Unit
224A || Memory Unit

224B

Memory
Unit
224N

Parallel
Processor

200

Partition
Unit
220A

Partition
Unit
220B

Partition
Unit
220N

Memory Interface 218

Memory Crossbar 216

Cluster
214A

Cluster
214B

Cluster
214N

Processing Array 212

Scheduler 210

Front End
208

Host Interface
206

I / O
Unit
204

Parallel Processing Unit 202

Memory Hub
105

FIG . 2A

U.S. Patent Aug. 3 , 2021 Sheet 3 of 38 US 11,080,811 B2

To / From
Memory Unit

224

Frame buffer
Interface

225

ROP
226

L2 Cache
221

Partition Unit
220

To / From
Memory
Crossbar

216

FIG . 2B

U.S. Patent Aug. 3 , 2021 Sheet 4 of 38 US 11,080,811 B2

To
Memory Crossbar

216 and / or
other Processing

Clusters

PreROP
242 MMU

245

Data Crossbar
240

To / From
Memory
Crossbar

216

Texture
Unit
236

Graphics
Multiprocessor

234
L1 Cache

248

Processing
Cluster
214

Pipeline Manager
232

To / From
Scheduler

210

FIG . 2C

U.S. Patent Aug. 3 , 2021 Sheet 5 of 38 US 11,080,811 B2

Shared Memory
270

Cache Memory
272

Memory and Cache Interconnect 268

Load / Store
Unit
266

GPGPU
Cores
262

Register File 258

Address Mapping
Unit
256

Instruction Unit
254

Graphics
Multiprocessor

234
Instruction Cache 252

From
Pipeline Manager

232

FIG . 2D

U.S. Patent Aug. 3 , 2021 Sheet 6 of 38 US 11,080,811 B2

Graphics Multiprocessor 325

Interconnect Fabric 327

Shared Memory 346

Texture Unit (s) 344A Texture Unit (s) 344B

Cache Memory 342

Load / Store GPGPU GPGPU GPGPU Load / Store GPGPU GPGPU | GPGPU
Unit Core Core Core Unit Core Core Core
340A 338A 337A 336A 340B 338B 337B 336B

Register File 334A Register File 334B

Instruction Unit 332A Instruction Unit 332B

Instruction Cache 330

FIG . 3A

U.S. Patent Aug. 3 , 2021 Sheet 7 of 38 US 11,080,811 B2

Graphics Multiprocessor 350

Interconnect Fabric 352

Shared Memory 362

Texture Unit (s) 360A Texture Unit (s) 360B

Cache Memory 358A

Execution Resources 356A Execution Resources 356B

Texture Unit (s) 3600 Texture Unit (s) 360D

Cache Memory 358B

Execution Resources 356C Execution Resources 356D

Instruction Cache 354

FIG . 3B

430A

443

430B

Processor Memory 401

Multi - Core Processor 405

Multi - Core Processor 406

Processor Memory 402

440A

440C

440B

440D

Aug. 3 , 2021

GPU Memory 420

GPU 410

GPU 411

GPU 412

GPU 413

GPU Memory 423

Sheet 8 of 38

450B

450C
442B

450A

442A

450D

GPU Memory 421

GPU Memory 422

US 11,080,811 B2

FIG . 4A

Coherence Bus 464

440

Graphics Acceleration 446

Core 460A

U.S. Patent

TLB 461A

PROXY
1

INTF 437

INTF 435
?

API

425

GFX MEM 433

GRAPHICS PROCESSING 431

Cache (s) 462A

? ACCELERATOR INTEGRATION 436

Core 460B

GRAPHICS PROCESSING 432
GFX MEM 434

Core 460D

TLB 461B

INTRPT MGMT 447

Aug. 3 , 2021

1

TLB 461D

1 I

Cache (s) 462B

Context MGMT 448

:

?

1

Cache (s) 462D

CORE 460C

Registers 445

GRAPHICS PROCESSING N
GFX MEM M

TLB 461C

?

:

Fetch 491

Sheet 9 of 38

Cache (s) 462C

Cache 438

Processor 407

Shared Cache (s)
456

MMU 439

SYSTEM MEMORY 441

US 11,080,811 B2

FIG . 4B

Coherence Bus 464

440

Graphics Acceleration 446

Core 460A

U.S. Patent

API

TLB 461A

INTF 435

INTF 437

GRAPHICS

GFX

PROCESSING MEM
431

433

Cache (s) 462A

?

Core 460B

ACCELERATOR INTEGRATION 436
PROXY 425

GFX MEM 434

GRAPHICS > PROCESSING K 432

1

TLB 461B

Aug. 3 , 2021

INTRPT MGMT 447

:

WA

Cache (s) 462B

Core 460D

Context MGMT 448

GRAPHICS PROCESSING N
GFX MEM M

CORE 442C

TLB 461D

Registers 445

TLB 461C

Sheet 10 of 38

Cache (s) 462D

Fetch 491

1

Cache (s) 462C

Cache 438

1

Processor 407

Shared Cache (s)
456

MMU 439

?

-1
System Memory 441

US 11,080,811 B2

FIG . 4C

U.S. Patent Aug. 3 , 2021 Sheet 11 of 38 US 11,080,811 B2

Processor 407

Application 480 Application

GPU Invocation 481 GPU Invocation

System Memory 441 V
Application Effective Address

Space 482
I OS Virtual Address Space 485

I

Process Element 483

Segment / Page Tables
486 Work Descriptor (WD)

484

Accelerator Integration Slice
490

MMU 439

WD
Fetch
491

Registers
445

Interrupt MGMT
447

INT
492

Effective
Address
493

Context MGMT
448

Save / Restore

Graphics Acceleration 446

FIG . 4D

Processor 407

Application 480

OS 495

Hypervisor 496

U.S. Patent

System Memory 441

Application Effective Address Space 482

OS Virtual Address Space 485

Hypervisor Real Address Space 498

Process Element 483

1 1

Aug. 3 , 2021

1

I

Segment / Page Tables 486

1

Process Element List 499

Work Descriptor (WD)
484

I

1

I

!

Accelerator Integration Slice 490

Sheet 12 of 38

MMU 439

WD FETCH 491

Registers 445

Interrupt MGMT 447

INT 492

Effective Address 493

Context MGMT 448
Save / Restore

US 11,080,811 B2

Graphics Acceleration 446 FIG . 4E

Multi - Core Processor 405

GPU 410

GPU 411

GPU 412

GPU 413

U.S. Patent

-

MMU 439A

MMU 439B

MMU 439C

MMU 439D

MMU 439E

1

1 1

Bias / Coherence 494A

Bias / Coherence 494B

Bias / Coherence 494C

Bias / Coherence 494D

Bias / Coherence 494E

Aug. 3 , 2021

Processor Memory 401
Processor Memory 402
GPU Memory 420
GPU Memory 421
GPU Memory 422
GPU Memory 423

Sheet 13 of 38

Unified Memory

US 11,080,811 B2

FIG . 4F

U.S. Patent Aug. 3 , 2021 Sheet 14 of 38 US 11,080,811 B2

Graphics
Processing
Pipeline

500

Raster Operations Unit 526

Fragment / Pixel Processing Unit 524
Memory
Interface

528

Rasterizer 522

Viewport Scale , Cull , and Clip Unit 520

Primitive Assembler 518

Geometry Processing Unit 516

Primitive Assembler 514

Tessellation Evaluation Processing Unit 512

Tessellation Unit 510

Tessellation Control Processing Unit 508

Primitive Assembler 506

Vertex Processing Unit 504

Data Assembler 502

Instruction Stream
and Parameters

FIG . 5

U.S. Patent Aug. 3 , 2021 Sheet 15 of 38 US 11,080,811 B2

COMPUTING DEVICE (E.G. , HOST MACHINE)
600

OPERATING SYSTEM (OS)
606

GRAPHICS DRIVER
616

GRAPHICS PROCESSING UNIT (GPU)
614

COMPUTE
610

CENTRAL PROCESSING
UNIT (CPU) 612

MEMORY
608

INPUT / OUTPUT (I / O) SOURCE (S)
(e.g. , CAMERA (S) , MICROPROCESSOR (S) ,

SPEAKER (S) , SENSOR (S) , DISPLAY
SCREEN (S) , MEDIA PLAYER (S) , ETC.)

604

FIG . 6

U.S. Patent Aug. 3 , 2021 Sheet 16 of 38 US 11,080,811 B2

Sorter FP8
Bin

710

FP8

712 716A

FP8
FP16
Bin

716B

714
610

FIG . 7A

730

Delta

732

FP16

731

610

FIG . 7B

U.S. Patent Aug. 3 , 2021 Sheet 17 of 38 US 11,080,811 B2

800

Machine Learning Application
802

Machine Learning Framework
804

Compute Framework
806

GPGPU Driver
808

GPGPU Hardware
810

FIG . 8

900

U.S. Patent

Memory 914A

Memory 914B

Host Interface 902 Global Scheduler 904

Compute Cluster 906A

Compute Cluster 906B

Compute Cluster 906C

Compute Cluster 906D

Aug. 3 , 2021

Cache Memory 908

Sheet 18 of 38

Compute Cluster 906E

Compute Cluster 906F

Compute Cluster 906G

Compute Cluster 906H

I / O Hub 909

Memory Controller 912A

GPU Link 910

Memory Controller 912B

US 11,080,811 B2

FIG.9

U.S. Patent Aug. 3 , 2021 Sheet 19 of 38 US 11,080,811 B2

1000 P2P GPU
Links
1016

GPGPU
1006A

GPGPU
1006B

GPGPU
1006C

GPGPU
1006D

Host Interface Switch
1004

Processor
1002

FIG . 10

U.S. Patent Aug. 3 , 2021 Sheet 20 of 38 US 11,080,811 B2

1108
1104

1106
1102

RGB Components Convolutional Layers Fully Connected Layers

FIG . 11A

Input to Convolutional
Layer
1112

Convolutional Layer
1114

Convolution Stage
1116

Detector Stage
1118

Pooling Stage
1120

Next layer
1122

FIG . 11B

U.S. Patent Aug. 3 , 2021 Sheet 21 of 38 US 11,080,811 B2

1200

1206 ?

1205 1204 FIG . 12

- -

X1 X2

1202

New Data 1312

U.S. Patent

O

Training Framework 1304

?

Training Dataset 1302

Aug. 3 , 2021

{

Untrained Neural Network 1306

Trained Neural Network 1308

Sheet 22 of 38

1 Result 1314

US 11,080,811 B2

FIG . 13

Node 1

Node 2

Model Parallelism 1402

Data Parallelism 1404

?

U.S. Patent

Node 1

Layer 1

Node 3

Node 4

Node 2

Layer 2

Layer 3

Node 3

Aug. 3 , 2021

Node 4

Layer 4

Model and Data Parallelism 1406

Sheet 23 of 38

Node 1

Node 2

Node 3

Node 4

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

US 11,080,811 B2

FIG . 14

U.S. Patent Aug. 3 , 2021 Sheet 24 of 38 US 11,080,811 B2

1500

MEDIA PROCESSOR
1502 VISION PROCESSOR

1504

ON - CHIP MEMORY 1505

GPGPU
1506

MULTI - CORE
PROCESSOR

1508

FIG . 15

U.S. Patent Aug. 3 , 2021 Sheet 25 of 38 US 11,080,811 B2

PROCESSOR CORE (S) - 1607 GRAPHICS
PROCESSOR (S)

1608

CACHE
1604

REGISTER
FILE
1606

INSTRUCTION SET
1609

PROCESSOR (S)
1602

PROCESSOR BUS

1610

MEMORY DEVICE - 1620 ?
1

INSTRUCTIONS - 1621
EXTERNAL
GRAPHICS
PROCESSOR

1612

MEMORY
CONTROLLER

HUB
1616 DATA - 1622

DATA STORAGE
DEVICE
1624

LEGACY I / O
CONTROLLER

1640

USB CONTROLLER (S)
1642 WIRELESS

TRANSCEIVER
1626

1/0
CONTROLLER

HUB
1630

I KEYBOARD
/ MOUSE - 1644 1

FIRMWARE
INTERFACE

1628

AUDIO CONTROLLER
1646

1
NETWORK

CONTROLLER
1634 FIG . 16 1600

PROCESSOR 1700

U.S. Patent

CORE 1702A

CORE 1702N

CACHE UNIT (S) 1704A

SYSTEM AGENT CORE 1710

CACHE UNIT (S) | 1704N

BUS CONTROLLER UNIT (S) 1716
Aug. 3 , 2021

1

EMBEDDED MEMORY MODULE 1718

I / O 1713

SHARED CACHE UNIT (S) - 1706

RING -1712

MEMORY CONTROLLER 1714

DISPLAY CONTROLLER 1711
Sheet 26 of 38

GRAPHICS PROCESSOR 1708

US 11,080,811 B2

FIG . 17

GRAPHICS PROCESSOR 1800

U.S. Patent

GRAPHICS PROCESSING ENGINE 1810

DISPLAY CONTROLLER
BLIT ENGINE

3D PIPELINE

3D / MEDIA SUB - SYSTEM

MEDIA PIPELINE

VIDEO CODEC ENGINE 1806

Aug. 3 , 2021

1802

1804

1812

1815

1816

1 1 I

1 1 1

Sheet 27 of 38

MEMORY INTERFACE - 1814

DISPLAY DEVICE

US 11,080,811 B2

1820

FIG . 18

GRAPHICS PROCESSING ENGINE 1910

U.S. Patent

V

|

www .

www

1

1

UNIFIED RETURN BUFFER 1918

1

3D PIPELINE 312

31

1921

SAMPLER

1

1922 |
1

Aug. 3 , 2021

COMMAND STREAMER 1903

MATH

1923

1

GRAPHICS CORE ARRAY 1914

SHARED FUNCTION LOGIC 1920

INTER - THREAD COMMUNICATION
1 1

MEDIA | PIPELINE 316
1

L

111

1925 |

Sheet 28 of 38

1

CACHE (S)

J

US 11,080,811 B2

FIG . 19

PIPELINE FRONT - END 2004

GRAPHICS PROCESSSOR 2000

U.S. Patent

MEDIA ENGINE - 2037

2002

COMMAND STREAMER 2003

VQE 2030

MFX 2033

SUB - CORE 2050A

VIDEO FRONT END 2034

11

= .
SUB - CORE 2050N 1 EUS SAMPLERS 2052N 2054N

EUS 2052A
SAMPLERS 2054A

Aug. 3 , 2021

RING INTERCONECT

SHARED RESOURCES 2070A

SHARED - RESOURCES 2070N

GEOMETRY PIPELINE 2036

Sheet 29 of 38

SUB - CORE - 2060A
EUS 2062A
SAMPLERS 2064A

SUB - CORE - 2060N 1 EUS SAMPLERS 2062N 2064N

GRAPHICS CORE - 2080A

GRAPHICS CORE - 2080N

US 11,080,811 B2

FIG . 20

EXECUTION LOGIC 2100

U.S. Patent

SHADER THREAD PROCESSOR DISPATCHER
2102

2104

EU 2108A

EU 2108C

1

EU | 2108N - 1 |

SAMPLER 2110

Aug. 3 , 2021

DATA CACHE 2112

INSTRUCTION CACHE 2106

EU

EU 2108B

EU 2108D

Sheet 30 of 38

2108N

DATA PORT 2114

1

US 11,080,811 B2

FIG . 21

GRAPHICS PROCESSOR INSTRUCTION FORMATS 2200

U.S. Patent

128 - BIT INSTRUCTION
2210

H

-

|

OPCODE CONTROL EXEC - SIZE DEST SRCO SRC1 SRC2 2212 2214 2216 2218 2220 2222 2224

ACCESS / ADDRESS MODE 2226

1
1

64 - BIT COMPACT INSTRUCTION
2230

Aug. 3 , 2021

F

OPCODE INDEX CONTROL DESTSRCO SRC1

2212

2213 2214 2218 2220 2222
OPCODE DECODE 2240

Sheet 31 of 38

7 6 5 4 3 2 10

opcode = 000XXxxxb

Move / Logic - 2242

opcode = 0010xxxxb + Flow Control - 2244 opcode = 0011xxxxxb + Miscellaneous - 2246 opcode = 0100xxxxb + Parallel Math - 2248 opcode = 0101xxxxb Vector Math - 2250

US 11,080,811 B2

FIG . 22

U.S. Patent Aug. 3 , 2021 Sheet 32 of 38 US 11,080,811 B2

GRAPHICS PROCESSOR
2300 MEDIA PIPELINE

2330
DISPLAY ENGINE

2340
COMMAND
STREAMER

2303 GRAPHICS
PIPELINE
2320 2302

VIDEO
FRONT - END

2334

MEDIA
ENGINE
2337 2D ENGINE

2341
DISPLAY

CONTROLLER
2343 VERTEX

FETCHER
2305 2331 EXECUTION LOGIC 2350

VERTEX
SHADER
2307

EXECUTION
UNITS
2352A L1

CACHE
2351

SAMPLER
2354 TEXTURE

CACHE DATA 2358 PORT
2356

HULL
SHADER
2311

EXECUTION
UNITS
2352B

RING INTERCONNECT THREAD DISPATCHER TESSELLATOR
2313

RENDER
CACHE
2378 DOMAIN

SHADER
2317

RASTER /
DEPTH
2373

L3
CACHE
2375

PIXEL
OPS
2377 DEPTH

CACHE
2379

GEOMETRY
SHADER
2319

STREAM
OUT
2323

RENDER OUTPUT
PIPELINE
2370

CLIP /
SETUP
2329

FIG . 23

U.S. Patent Aug. 3 , 2021 Sheet 33 of 38 US 11,080,811 B2

FIG . 24A GRAPHICS PROCESSOR COMMAND FORMAT
2400

CLIENT
2402

OPCODE
2404

SUB - OPCODE
2405

DATA
2406

COMMAND SIZE |
2408

FIG . 24B GRAPHICS PROCESSOR COMMAND SEQUENCE
2410

1 PIPELINE FLUSH
2412

PIPELINE SELECT
2413

PIPELINE CONTROL
2414

RETURN BUFFER STATE
2416

2422 2420 2424
Media 3D Pipeline ?

3D PIPELINE STATE
2430

MEDIA PIPELINE STATE
2440

3D PRIMITIVE
2432

MEDIA OBJECT
2442

EXECUTE
2434

EXECUTE
2444

U.S. Patent Aug. 3 , 2021 Sheet 34 of 38 US 11,080,811 B2

DATA PROCESSING SYSTEM -2500

3D GRAPHICS APPLICATION
2510

SHADER INSTRUCTIONS
2512

EXECUTABLE INSTRUCTIONS
2514

GRAPHICS
OBJECTS

2516

OPERATING SYSTEM (OS)
2520

MEMORY
2550

USER MODE GRAPHICS DRIVER
2526 SHADER

COMPILER
2524

GRAPHICS API
2522

SHADER COMPILER
2527

OS KERNEL MODE FUNCTIONS
2528 KERNEL MODE GRAPHICS

DRIVER
2529

GRAPHICS
PROCESSOR

2532
PROCESSOR

2530
GENERAL

PURPOSE CORE (S)
2534

FIG . 25

IP CORE DEVELOPMENT - 2600

U.S. Patent

NON - VOLATILE MEMORY 2640

FABRICATION FACILITY 2665

SIMULATION MODEL 2612

Aug. 3 , 2021

SOFTWARE SIMULATION 2610

HARDWARE MODEL (HDL OR PHYSICAL
DESIGN DATA) 2620

REGISTER TRANSFER LEVEL DESIGN 2615

WIRED CONNECTION 2650

ve
WIRELESS CONNECTION 2660

Sheet 35 of 38

DESIGN FACILITY 2630

US 11,080,811 B2

FIG . 26

U.S. Patent Aug. 3 , 2021 Sheet 36 of 38 US 11,080,811 B2

SOC
INTEGRATED CIRCUIT

2700

APPLICATION
PROCESSOR (s)

2705

GRAPHICS
PROCESSOR

2710

IMAGE
PROCESSOR

2715

VIDEO
PROCESSOR

2720

USB
2725

UART
2730

SPI / SDIO
2735

12S / 12C
2740

DISPLAY
2745

I SECURITY
| ENGINE

2770

MEMORY
2765

FLASH
2760

MIPI
2755

HDMI
2750 I

FIG . 27

U.S. Patent Aug. 3 , 2021 Sheet 37 of 38 US 11,080,811 B2

GRAPHICS PROCESSOR
2810

VERTEX PROCESSOR
2805

1 FRAGMENT
PROCESSOR

2815A

1 FRAGMENT
I PROCESSOR

2815C

FRAGMENT
PROCESSOR |

2815N - 1

FRAGMENT
PROCESSOR I

2815B

I FRAGMENT
| PROCESSOR

2815D
1

FRAGMENT 1
PROCESSORI

2815N 1

MMU
2820A

MMU
2820B

CACHE
2825A

CACHE
2825B

1
1

INTERCONNECT
2830A

INTERCONNECT
2830B

1
1

FIG . 28

U.S. Patent Aug. 3 , 2021 Sheet 38 of 38 US 11,080,811 B2

GRAPHICS PROCESSOR
2910

INTER - CORE TASK - MANAGER
(e.g. , THREAD DISPATCHER)

2905

SHADER
CORE
2915A

SHADER || SHADER |
CORE || CORE I
2915C 2915E 1

1
|

:
| SHADER
1 CORE I
| 2915N - 1

| SHADER | SHADER || SHADER |
CORE CORE CORE

| 2915B | 2915D || 2915F

| SHADER 1
1 CORE
| 2915N

:

TILING UNIT
2918

MMU
2820A

MMU
2820B

CACHE
2825A

CACHE
2825B

INTERCONNECT
2830A

INTERCONNECT
2830B

FIG . 29

5

US 11,080,811 B2
1 2

COMPUTE OPTIMIZATION MECHANISM FIG . 6 illustrates a computing device employing an opti
mization mechanism , according to an embodiment ;

CROSS REFERENCE TO RELATED FIGS . 7A & 7B illustrate embodiments of a compute
APPLICATIONS optimization mechanism ;

FIG . 8 illustrates a machine learning software stack ,
The present patent application is a continuation applica- according to an embodiment ;

tion claiming priority from U.S. application Ser . No. 15/798 , FIG . 9 illustrates a highly - parallel general - purpose graph
574 filed Oct. 31 , 2017 and issued as U.S. Pat . No. 10,255 , ics processing unit , according to an embodiment ;
656 on Apr. 9 , 2019 , which is a continuation of U.S. FIG . 10 illustrates a multi - GPU computing system ,
application Ser . No. 15 / 494,905 filed Apr. 24 and issued as 10 according to an embodiment ;
U.S. Pat . No. 10,489,877 on Nov. 26 , 2019 , the contents of FIG . 11A - 11B illustrate layers of exemplary deep neural
which are incorporated herein in their entirety by reference . networks ;

FIG . 12 illustrates an exemplary recurrent neural network ;
FIELD FIG . 13 illustrates training and deployment of a deep

15 neural network .
Embodiments relate generally to data processing and FIG . 14 is a block diagram illustrating distributed learn

more particularly to data processing via a general - purpose ing ;
graphics processing unit . FIG . 15 illustrates an exemplary inferencing system on a

chip (SOC) suitable for performing inferencing using a
BACKGROUND OF THE DESCRIPTION 20 trained model ;

FIG . 16 is a block diagram of a processing system ,
Current parallel graphics data processing includes sys- according to an embodiment ;

tems and methods developed to perform specific operations FIG . 17 is a block diagram of a processor according to an
on graphics data such as , for example , linear interpolation , embodiment ;
tessellation , rasterization , texture mapping , depth testing , 25 FIG . 18 is a block diagram of a graphics processor ,
etc. Traditionally , graphics processors used fixed function according to an embodiment ;
computational units to process graphics data ; however , more FIG . 19 is a block diagram of a graphics processing
recently , portions of graphics processors have been made engine of a graphics processor in accordance with some
programmable , enabling such processors to support a wider embodiments ;
variety of operations for processing vertex and fragment 30 FIG . 20 is a block diagram of a graphics processor
data . provided by an additional embodiment ;

To further increase performance , graphics processors FIG . 21 illustrates thread execution logic including an
typically implement processing techniques such as pipelin- array of processing elements employed in some embodi
ing that attempt to process , in parallel , as much graphics data ments ;
as possible throughout the different parts of the graphics 35 FIG . 22 is a block diagram illustrating a graphics proces
pipeline . Parallel graphics processors with single instruc- sor instruction formats according to some embodiments ;
tion , multiple thread (SIMT) architectures are designed to FIG . 23 is a block diagram of a graphics processor
maximize the amount of parallel processing in the graphics according to another embodiment ;
pipeline . In an SIMT architecture , groups of parallel threads FIG . 24A - 24B illustrate a graphics processor command
attempt to execute program instructions synchronously 40 format and command sequence , according to some embodi
together as often as possible to increase processing effi- ments ;
ciency . A general overview of software and hardware for FIG . 25 illustrates exemplary graphics software architec
SIMT architectures can be found in Shane Cook , CUDA ture for a data processing system according to some embodi
Programming Chapter 3 , pages 37-51 (2013) . ments ;

FIG . 26 is a block diagram illustrating an IP core devel
BRIEF DESCRIPTION OF THE DRAWINGS opment system , according to an embodiment ;

FIG . 27 is a block diagram illustrating an exemplary
So that the manner in which the above recited features of system on a chip integrated circuit , according to an embodi

the present embodiments can be understood in detail , a more ment ;
particular description of the embodiments , briefly summa- 50 FIG . 28 is a block diagram illustrating an additional
rized above , may be had by reference to embodiments , some exemplary graphics processor , and
of which are illustrated in the appended drawings . It is to be FIG . 29 is a block diagram illustrating an additional
noted , however , that the appended drawings illustrate only exemplary graphics processor of a system on a chip inte
typical embodiments and are therefore not to be considered grated circuit , according to an embodiment .
limiting of its scope .
FIG . 1 is a block diagram illustrating a computer system DETAILED DESCRIPTION

configured to implement one or more aspects of the embodi
ments described herein ; In embodiments , mechanisms for optimizing computing
FIG . 2A - 2D illustrate parallel processor components , of a graphics processor is disclosed . In some embodiments ,

according to an embodiment ; 60 the compute mechanism includes sorting logic to sort pro
FIGS . 3A - 3B are block diagrams of graphics multipro- cessing threads into thread groups based on bit depth of

cessors , according to embodiments ; floating point thread operations . In other embodiments , the
FIGS . 4A - 4F illustrate an exemplary architecture in compute mechanism includes floating logic to process

which a plurality of GPUs are communicatively coupled to threads into floating point thread operations having a higher
a plurality of multi - core processors ; 65 bit depth . In further embodiments , the compute mechanism
FIG . 5 illustrates a graphics processing pipeline , accord- includes logic to provide variable precision support in a

ing to an embodiment ; math instruction .

45

55

US 11,080,811 B2
3 4

In the following description , numerous specific details are munication interfaces and / or protocol (s) , such as the NV
set forth to provide a more thorough understanding . How- Link high - speed interconnect , or interconnect protocols
ever , it will be apparent to one of skill in the art that the known in the art .
embodiments described herein may be practiced without one In one embodiment , the one or more parallel processor (s)
or more of these specific details . In other instances , well- 5 112 incorporate circuitry optimized for graphics and video
known features have not been described to avoid obscuring processing , including , for example , video output circuitry ,
the details of the present embodiments . and constitutes a graphics processing unit (GPU) . In another
System Overview embodiment , the one or more parallel processor (s) 112
FIG . 1 is a block diagram illustrating a computing system incorporate circuitry optimized for general purpose process

100 configured to implement one or more aspects of the 10 ing , while preserving the underlying computational archi
embodiments described herein . The computing system 100 tecture , described in greater detail herein . In yet another
includes a processing subsystem 101 having one or more embodiment , components of the computing system 100 may

be integrated with one or more other system elements on a processor (s) 102 and a system memory 104 communicating single integrated circuit . For example , the one or more via an interconnection path that may include a memory hub 15 parallel processor (s) 112 , memory hub 105 , processor (s)
105. The memory hub 105 may be a separate component 102 , and I / O hub 107 can be integrated into a system on chip
within a chipset component or may be integrated within the (SOC) integrated circuit . Alternatively , the components of
one or more processor (s) 102. The memory hub 105 couples the computing system 100 can be integrated into a single
with an I / O subsystem 111 via a communication link 106 . package to form a system in package (SIP) configuration . In
The I / O subsystem 111 includes an I / O hub 107 that can 20 one embodiment at least a portion of the components of the
enable the computing system 100 to receive input from one computing system 100 can be integrated into a multi - chip
or more input device (s) 108. Additionally , the I / O hub 107 module (MCM) , which can be interconnected with other
can enable a display controller , which may be included in the multi - chip modules into a modular computing system .
one or more processor (s) 102 , to provide outputs to one or It will be appreciated that the computing system 100
more display device (s) 110A . In one embodiment the one or 25 shown herein is illustrative and that variations and modifi
more display device (s) 110A coupled with the I / O hub 107 cations are possible . The connection topology , including the
can include a local , internal , or embedded display device . number and arrangement of bridges , the number of proces

In one embodiment the processing subsystem 101 sor (s) 102 , and the number of parallel processor (s) 112 , may
includes one or more parallel processor (s) 112 coupled to be modified as desired . For instance , in some embodiments ,
memory hub 105 via a bus or other communication link 113. 30 system memory 104 is connected to the processor (s) 102
The communication link 113 may be one of any number of directly rather than through a bridge , while other devices
standards based communication link technologies or proto communicate with system memory 104 via the memory hub

105 and the processor (s) 102. In other alternative topologies , cols , such as , but not limited to PCI Express , or may be a the parallel processor (s) 112 are connected to the I / O hub vendor specific communications interface or communica 35 107 or directly to one of the one or more processor (s) 102 , tions fabric . In one embodiment the one or more parallel rather than to the memory hub 105. In other embodiments , processor (s) 112 form a computationally focused parallel or the I / O hub 107 and memory hub 105 may be integrated into
vector processing system that can include a large number of a single chip . Some embodiments may include two or more
processing cores and / or processing clusters , such as a many sets of processor (s) 102 attached via multiple sockets , which
integrated core (MIC) processor . In one embodiment the one 40 can couple with two or more instances of the parallel
or more parallel processor (s) 112 form a graphics processing processor (s) 112 .
subsystem that can output pixels to one of the one or more Some of the particular components shown herein are
display device (s) 110A coupled via the I / O hub 107. The one optional and may not be included in all implementations of
or more parallel processor (s) 112 can also include a display the computing system 100. For example , any number of
controller and display interface (not shown) to enable a 45 add - in cards or peripherals may be supported , or some
direct connection to one or more display device (s) 110B . components may be eliminated . Furthermore , some archi

Within the I / O subsystem 111 , a system storage unit 114 tectures may use different terminology for components
can connect to the I / O hub 107 to provide a storage mecha- similar to those illustrated in FIG . 1. For example , the
nism for the computing system 100. An 1/0 switch 116 can memory hub 105 may be referred to as a Northbridge in
be used to provide an interface mechanism to enable con- 50 some architectures , while the I / O hub 107 may be referred
nections between the I / O hub 107 and other components , to as a Southbridge .
such as a network adapter 118 and / or wireless network FIG . 2A illustrates a parallel processor 200 , according to
adapter 119 that may be integrated into the platform , and an embodiment . The various components of the parallel
various other devices that can be added via one or more processor 200 may be implemented using one or more
add - in device (s) 120. The network adapter 118 can be an 55 integrated circuit devices , such as programmable processors ,
Ethernet adapter or another wired network adapter . The application specific integrated circuits (ASICs) , or field
wireless network adapter 119 can include one or more of a programmable gate arrays (FPGA) . The illustrated parallel
Wi - Fi , Bluetooth , near field communication (NFC) , or other processor 200 is a variant of the one or more parallel
network device that includes one or more wireless radios . processor (s) 112 shown in FIG . 1 , according to an embodi

The computing system 100 can include other components 60 ment .
not explicitly shown , including USB or other port connec- In one embodiment the parallel processor 200 includes a
tions , optical storage drives , video capture devices , and the parallel processing unit 202. The parallel processing unit
like , may also be connected to the I / O hub 107. Communi- includes an I / O unit 204 that enables communication with
cation paths interconnecting the various components in FIG . other devices , including other instances of the parallel
1 may be implemented using any suitable protocols , such as 65 processing unit 202. The I / O unit 204 may be directly
PCI (Peripheral Component Interconnect) based protocols connected to other devices . In one embodiment the I / O unit
(e.g. , PCI - Express) , or any other bus or point - to - point com- 204 connects with other devices via the use of a hub or

US 11,080,811 B2
5 6

switch interface , such as memory hub 105. The connections transfer data from system memory via the I / O unit 204 for
between the memory hub 105 and the I / O unit 204 form a processing . During processing the transferred data can be
communication link 113. Within the parallel processing unit stored to on - chip memory (e.g. , parallel processor memory
202 , the I / O unit 204 connects with a host interface 206 and 222) during processing , then written back to system
a memory crossbar 216 , where the host interface 206 5 memory .
receives commands directed to performing processing In one embodiment , when the parallel processing unit 202
operations and the memory crossbar 216 receives commands is used to perform graphics processing , the scheduler 210
directed to performing memory operations . can be configured to divide the processing workload into
When the host interface 206 receives a command buffer approximately equal sized tasks , to better enable distribution

via the I / O unit 204 , the host interface 206 can direct work 10 of the graphics processing operations to multiple clusters
operations to perform those commands to a front end 208. In 214A - 214N of the processing cluster array 212. In some
one embodiment the front end 208 couples with a scheduler embodiments , portions of the processing cluster array 212
210 , which is configured to distribute commands or other can be configured to perform different types of processing .
work items to a processing cluster array 212. In one embodi- For example a first portion may be configured to perform
ment the scheduler 210 ensures that the processing cluster 15 vertex shading and topology generation , a second portion
array 212 is properly configured and in a valid state before may be configured to perform tessellation and geometry
tasks are distributed to the processing clusters of the pro- shading , and a third portion may be configured to perform
cessing cluster array 212. In one embodiment the scheduler pixel shading or other screen space operations , to produce a
210 is implemented via firmware logic executing on a rendered image for display . Intermediate data produced by
microcontroller . The microcontroller implemented sched- 20 one or more of the clusters 214A - 214N may be stored in
uler 210 is configurable to perform complex scheduling and buffers to allow the intermediate data to be transmitted
work distribution operations at coarse and fine granularity , between clusters 214A - 214N for further processing .
enabling rapid preemption and context switching of threads During operation , the processing cluster array 212 can
executing on the processing array 212. In one embodiment , receive processing tasks to be executed via the scheduler
the host software can prove workloads for scheduling on the 25 210 , which receives commands defining processing tasks
processing array 212 via one of multiple graphics processing from front end 208. For graphics processing operations ,
doorbells . The workloads can then be automatically distrib- processing tasks can include indices of data to be processed ,
uted across the processing array 212 by the scheduler 210 e.g. , surface (patch) data , primitive data , vertex data , and / or
logic within the scheduler microcontroller . pixel data , as well as state parameters and commands

The processing cluster array 212 can include up to “ N ” 30 defining how the data is to be processed (e.g. , what program
processing clusters (e.g. , cluster 214A , cluster 214B , is to be executed) . The scheduler 210 may be configured to
through cluster 214N) . Each cluster 214A - 214N of the fetch the indices corresponding to the tasks or may receive
processing cluster array 212 can execute a large number of the indices from the front end 208. The front end 208 can be
concurrent threads . The scheduler 210 can allocate work to configured to ensure the processing cluster array 212 is
the clusters 214A - 214N of the processing cluster array 212 35 configured to a valid state before the workload specified by
using various scheduling and / or work distribution algo- incoming command buffers (e.g. , batch - buffers , push buf
rithms , which may vary depending on the workload arising fers , etc.) is initiated .
for each type of program or computation . The scheduling Each of the one or more instances of the parallel process
can be handled dynamically by the scheduler 210 , or can be ing unit 202 can couple with parallel processor memory 222 .
assisted in part by compiler logic during compilation of 40 The parallel processor memory 222 can be accessed via the
program logic configured for execution by the processing memory crossbar 216 , which can receive memory requests
cluster array 212. In one embodiment , different clusters from the processing cluster array 212 as well as the I / O unit
214A - 214N of the processing cluster array 212 can be 204. The memory crossbar 216 can access the parallel
allocated for processing different types of programs or for processor memory 222 via a memory interface 218. The
performing different types of computations . 45 memory interface 218 can include multiple partition units

The processing cluster array 212 can be configured to (e.g. , partition unit 220A , partition unit 220B , through
perform various types of parallel processing operations . In partition unit 220N) that can each couple to a portion (e.g. ,
one embodiment the processing cluster array 212 is config- memory unit) of parallel processor memory 222. In one
ured to perform general - purpose parallel compute opera- implementation the number of partition units 220A - 220N is
tions . For example , the processing cluster array 212 can 50 configured to be equal to the number of memory units , such
include logic to execute processing tasks including filtering that a first partition unit 220A has a corresponding first
of video and / or audio data , performing modeling operations , memory unit 224A , a second partition unit 220B has a
including physics operations , and performing data transfor- corresponding memory unit 224B , and an Nth partition unit
mations . 220N has a corresponding Nth memory unit 224N . In other

In one embodiment the processing cluster array 212 is 55 embodiments , the number of partition units 220A - 220N may
configured to perform parallel graphics processing opera- not be equal to the number of memory devices .
tions . In embodiments in which the parallel processor 200 is In various embodiments , the memory units 224A - 224N
configured to perform graphics processing operations , the can include various types of memory devices , including
processing cluster array 212 can include additional logic to dynamic random access memory (DRAM) or graphics ran
support the execution of such graphics processing opera- 60 dom access memory , such as synchronous graphics random
tions , including , but not limited to texture sampling logic to access memory (SGRAM) , including graphics double data
perform texture operations , as well as tessellation logic and rate (GDDR) memory . In one embodiment , the memory
other vertex processing logic . Additionally , the processing units 224A - 224N may also include 3D stacked memory ,
cluster array 212 can be configured to execute graphics including but not limited to high bandwidth memory
processing related shader programs such as , but not limited 65 (HBM) . Persons skilled in the art will appreciate that the
to vertex shaders , tessellation shaders , geometry shaders , specific implementation of the memory units 224A - 224N
and pixel shaders . The parallel processing unit 202 can can vary , and can be selected from one of various conven

US 11,080,811 B2
7 8

tional designs . Render targets , such as frame buffers or graphics data that is stored in graphics memory . In some
texture maps may be stored across the memory units 224A- embodiments the ROP 226 includes compression logic to
224N , allowing partition units 220A - 220N to write portions compress depth or color data that is written to memory and
of each render target in parallel to efficiently use the avail- decompress depth or color data that is read from memory .
able bandwidth of parallel processor memory 222. In some 5 The compression logic can be lossless compression logic
embodiments , a local instance of the parallel processor that makes use of one or more of multiple compression
memory 222 may be excluded in favor of a unified memory algorithms . The type of compression that is performed by
design that utilizes system memory in conjunction with local the ROP 226 can vary based on the statistical characteristics
cache memory . of the data to be compressed . For example , in one embodi

In one embodiment , any one of the clusters 214A - 214N of 10 ment , delta color compression is performed on depth and
the processing cluster array 212 can process data that will be color data on a per - tile basis .
written any of the memory units 224A - 224N within In some embodiments , the ROP 226 is included within
parallel processor memory 222. The memory crossbar 216 each processing cluster (e.g. , cluster 214A - 214N of FIG .
can be configured to transfer the output of each cluster 2A) instead of within the partition unit 220. In such embodi
214A - 214N to any partition unit 220A - 220N or to another 15 ment , read and write requests for pixel data are transmitted
cluster 214A - 214N , which can perform additional process- over the memory crossbar 216 instead of pixel fragment
ing operations on the output . Each cluster 214A - 214N can data . The processed graphics data may be displayed on a
communicate with the memory interface 218 through the display device , such as one of the one or more display
memory crossbar 216 to read from or write to various device (s) 110 of FIG . 1 , routed for further processing by the
external memory devices . In one embodiment the memory 20 processor (s) 102 , or routed for further processing by one of
crossbar 216 has a connection to the memory interface 218 the processing entities within the parallel processor 200 of
to communicate with the I / O unit 204 , as well as a connec- FIG . 2A .
tion to a local instance of the parallel processor memory 222 , FIG . 2C is a block diagram of a processing cluster 214
enabling the processing units within the different processing within a parallel processing unit , according to an embodi
clusters 214A - 214N to communicate with system memory 25 ment . In one embodiment the processing cluster is an
or other memory that is not local to the parallel processing instance of one of the processing clusters 214A - 214N of
unit 202. In one embodiment the memory crossbar 216 can FIG . 2A . The processing cluster 214 can be configured to
use virtual channels to separate traffic streams between the execute many threads in parallel , where the term “ thread ”
clusters 214A - 214N and the partition units 220A - 220N . refers to an instance of a particular program executing on a

While a single instance of the parallel processing unit 202 30 particular set of input data . In some embodiments , single
is illustrated within the parallel processor 200 , any number instruction , multiple - data (SIMD) instruction issue tech
of instances of the parallel processing unit 202 can be niques are used to support parallel execution of a large
included . For example , multiple instances of the parallel number of threads without providing multiple independent
processing unit 202 can be provided on a single add - in card , instruction units . In other embodiments , single - instruction ,
or multiple add - in cards can be interconnected . The different 35 multiple - thread (SIMT) techniques are used to support par
instances of the parallel processing unit 202 can be config- allel execution of a large number of generally synchronized
ured to inter - operate even if the different instances have threads , using a common instruction unit configured to issue
different numbers of processing cores , different amounts of instructions to a set of processing engines within each one of
local parallel processor memory , and / or other configuration the processing clusters . Unlike a SIMD execution regime ,
differences . For example , in embodiment some 40 where all processing engines typically execute identical
instances of the parallel processing unit 202 can include instructions , SIMT execution allows different threads to
higher precision floating point units relative to other more readily follow divergent execution paths through a
instances . Systems incorporating one or more instances of given thread program . Persons skilled in the art will under
the parallel processing unit 202 or the parallel processor 200 stand that a SIMD processing regime represents a functional
can be implemented in a variety of configurations and form 45 subset of a SIMT processing regime .
factors , including but not limited to desktop , laptop , or Operation of the processing cluster 214 can be controlled
handheld personal computers , servers , workstations , game via a pipeline manager 232 that distributes processing tasks
consoles , and / or embedded systems . to SIMT parallel processors . The pipeline manager 232
FIG . 2B is a block diagram of a partition unit 220 , receives instructions from the scheduler 210 of FIG . 2A and

according to an embodiment . In one embodiment the parti- 50 manages execution of those instructions via a graphics
tion unit 220 is an instance of one of the partition units multiprocessor 234 and / or a texture unit 236. The illustrated
220A - 220N of FIG . 2A . As illustrated , the partition unit 220 graphics multiprocessor 234 is an exemplary instance of a
includes an L2 cache 221 , a frame buffer interface 225 , and SIMT parallel processor . However , various types of SIMT
a ROP 226 (raster operations unit) . The L2 cache 221 is a parallel processors of differing architectures may be
read / write cache that is configured to perform load and store 55 included within the processing cluster 214. One or more
operations received from the memory crossbar 216 and ROP instances of the graphics multiprocessor 234 can be included
226. Read misses and urgent write - back requests are output within a processing cluster 214. The graphics multiprocessor
by L2 cache 221 to frame buffer interface 225 for process- 234 can process data and a data crossbar 240 can be used to
ing . Updates can also be sent to the frame buffer via the distribute the processed data to one of multiple possible
frame buffer interface 225 for processing . In one embodi- 60 destinations , including other shader units . The pipeline
ment the frame buffer interface 225 interfaces with one of manager 232 can facilitate the distribution of processed data
the memory units in parallel processor memory , such as the by specifying destinations for processed data to be distrib
memory units 224A - 224N of FIG . 2A (e.g. , within parallel uted via the data crossbar 240 .
processor memory 222) . Each graphics multiprocessor 234 within the processing

In graphics applications , the ROP 226 is a processing unit 65 cluster 214 can include an identical set of functional execu
that performs raster operations such as stencil , z test , blend- tion logic (e.g. , arithmetic logic units , load - store units , etc.) .
ing , and the like . The ROP 226 then outputs processed The functional execution logic can be configured in a

one

any number

US 11,080,811 B2
9 10

pipelined manner in which new instructions can be issued cache within graphics multiprocessor 234 and is fetched
before previous instructions are complete . The functional from an L2 cache , local parallel processor memory , or
execution logic supports a variety of operations including system memory , as needed . Each graphics multiprocessor
integer and floating point arithmetic , comparison operations , 234 outputs processed tasks to the data crossbar 240 to
Boolean operations , bit - shifting , and computation of various 5 provide the processed task to another processing cluster 214
algebraic functions . In one embodiment the same functional- for further processing or to store the processed task in an L2
unit hardware can be leveraged to perform different opera- cache , local parallel processor memory , or system memory
tions and any combination of functional units may be via the memory crossbar 216. A preROP 242 (pre - raster
present . operations unit) is configured to receive data from graphics

The instructions transmitted to the processing cluster 214 10 multiprocessor 234 , direct data to ROP units , which may be
constitutes a thread . A set of threads executing across the set located with partition units as described herein (e.g. , parti
of parallel processing engines is a thread group . A thread tion units 220A - 220N of FIG . 2A) . The preROP 242 unit can
group executes the same program on different input data . perform optimizations for color blending , organize pixel
Each thread within a thread group can be assigned to a color data , and perform address translations .
different processing engine within a graphics multiprocessor 15 It will be appreciated that the core architecture described
234. A thread group may include fewer threads than the herein is illustrative and that variations and modifications
number of processing engines within the graphics multipro- are possible . Any number of processing units , e.g. , graphics
cessor 234. When a thread group includes fewer threads than multiprocessor 234 , texture units 236 , preROPs 242 , etc. ,
the number of processing engines , one or more of the may be included within a processing cluster 214. Further ,
processing engines may be idle during cycles in which that 20 while only one processing cluster 214 is shown , a parallel
thread group is being processed . A thread group may also processing unit as described herein may include
include more threads than the number of processing engines of instances of the processing cluster 214. In one embodi
within the graphics multiprocessor 234. When the thread ment , each processing cluster 214 can be configured to
group includes more threads than the number of processing operate independently of other processing clusters 214 using
engines within the graphics multiprocessor 234 , processing 25 separate and distinct processing units , L1 caches , etc.
can be performed over consecutive clock cycles . In one FIG . 2D shows a graphics multiprocessor 234 , according
embodiment multiple thread groups can be executed con- to one embodiment . In such embodiment the graphics mul
currently on a graphics multiprocessor 234 . tiprocessor 234 couples with the pipeline manager 232 of the

In one embodiment the graphics multiprocessor 234 processing cluster 214. The graphics multiprocessor 234 has
includes an internal cache memory to perform load and store 30 an execution pipeline including but not limited to an instruc
operations . In one embodiment , the graphics multiprocessor tion cache 252 , an instruction unit 254 , an address mapping
234 can forego an internal cache and use a cache memory unit 256 , a register file 258 , one or more general purpose
(e.g. , L1 cache 248) within the processing cluster 214. Each graphics processing unit (GPGPU) cores 52 , and one or
graphics multiprocessor 234 also has access to L2 caches more load / store units 266. The GPGPU cores 262 and
within the partition units (e.g. , partition units 220A - 220N of 35 load / store units 266 are coupled with cache memory 272 and
FIG . 2A) that are shared among all processing clusters 214 shared memory 270 via a memory and cache interconnect
and may be used to transfer data between threads . The 268 .
graphics multiprocessor 234 may also access off - chip global In one embodiment , the instruction cache 252 receives a
memory , which can include one or more of local parallel stream of instructions to execute from the pipeline manager
processor memory and / or system memory . Any memory 40 232. The instructions are cached in the instruction cache 252
external to the parallel processing unit 202 may be used as and dispatched for execution by the instruction unit 254. The
global memory . Embodiments in which the processing clus- instruction unit 254 can dispatch instructions as thread
ter 214 includes multiple instances of the graphics multi- groups (e.g. , warps) , with each thread of the thread group
processor 234 can share common instructions and data , assigned to a different execution unit within GPGPU core
which may be stored in the L1 cache 248 . 45 262. An instruction can access any of a local , shared , or

Each processing cluster 214 may include an MMU 245 global address space by specifying an address within a
(memory management unit) that is configured to map virtual unified address space . The address mapping unit 256 can be
addresses into physical addresses . In other embodiments , used to translate addresses in the unified address space into
one or more instances of the MMU 245 may reside within a distinct memory address that can be accessed by the
the memory interface 218 of FIG . 2A . The MMU 245 50 load / store units 266 .
includes a set of page table entries (PTEs) used to map a The register file 258 provides a set of registers for the
virtual address to a physical address of a tile and optionally functional units of the graphics multiprocessor 234. The
a cache line index . The MMU 245 may include address register file 258 provides temporary storage for operands
translation lookaside buffers (TLB) or caches that may connected to the data paths of the functional units (e.g. ,
reside within the graphics multiprocessor 234 or the L1 55 GPGPU cores 262 , load / store units 266) of the graphics
cache or processing cluster 214. The physical address is multiprocessor 234. In one embodiment , the register file 258
processed to distribute surface data access locality to allow is divided between each of the functional units such that
efficient request interleaving among partition units . The each functional unit is allocated a dedicated portion of the
cache line index may be used to determine whether a request register file 258. In one embodiment , the register file 258 is
for a cache line is a hit or miss . 60 divided between the different warps being executed by the

In graphics and computing applications , a processing graphics multiprocessor 234 .
cluster 214 may be configured such that each graphics The GPGPU cores 262 can each include floating point
multiprocessor 234 is coupled to a texture unit 236 for units (FPUs) and / or integer arithmetic logic units (ALUS)
performing texture mapping operations , e.g. , determining that are used to execute instructions of the graphics multi
texture sample positions , reading texture data , and filtering 65 processor 234. The GPGPU cores 262 can be similar in
the texture data . Texture data is read from an internal texture architecture or can differ in architecture , according to
L1 cache (not shown) or in some embodiments from the L1 embodiments . For example and in one embodiment , a first

US 11,080,811 B2
11 12

portion of the GPGPU cores 262 include a single precision resource units have a common instruction cache 330 , texture
FPU and an integer ALU while a second portion of the and / or data cache memory 342 , and shared memory 346 .
GPGPU cores include a double precision FPU . In one The various components can communicate via an inter
embodiment the FPUs can implement the IEEE 754-2008 connect fabric 327. In one embodiment the interconnect
standard for floating point arithmetic or enable variable 5 fabric 327 includes one or more crossbar switches to enable
precision floating point arithmetic . The graphics multipro communication between the various components of the
cessor 234 can additionally include one or more fixed graphics multiprocessor 325. In one embodiment the inter
function or special function units to perform specific func connect fabric 327 is a separate , high - speed network fabric
tions such as copy rectangle or pixel blending operations . In layer upon which each component of the graphics multipro
one embodiment one or more of the GPGPU cores can also 10 cessor 325 is stacked . The components of the graphics
include fixed or special function logic . multiprocessor 325 communicate with remote components

via the interconnect fabric 327. For example , the GPGPU In one embodiment the GPGPU cores 262 include SIMD cores 336A - 336B , 337A - 337B , and 3378A - 338B can each logic capable of performing a single instruction on multiple communicate with shared memory 346 via the interconnect sets of data . In one embodiment GPGPU cores 262 can 15 fabric 327. The interconnect fabric 327 can arbitrate com
physically execute SIMD4 , SIMD8 , and SIMD16 instruc munication within the graphics multiprocessor 325 to ensure
tions and logically execute SIMD1 , SIMD2 , and SIMD32 a fair bandwidth allocation between components .
instructions . The SIMD instructions for the GPGPU cores FIG . 3B shows a graphics multiprocessor 350 according
can be generated at compile time by a shader compiler or to an additional embodiment . The graphics processor
automatically generated when executing programs written 20 includes multiple sets of execution resources 356A - 356D ,
and compiled for single program multiple data (SPMD) or where each set of execution resource includes multiple
SIMT architectures . Multiple threads of a program config- instruction units , register files , GPGPU cores , and load store
ured for the SIMT execution model can be executed via a units , as illustrated in FIG . 2D and FIG . 3A . The execution
single SIMD instruction . For example and in one embodi- resources 356A - 356D can work in concert with texture
ment , eight SIMT threads that perform the same or similar 25 unit (s) 360A - 360D for texture operations , while sharing an
operations can be executed in parallel via a single SIMD8 instruction cache 354 , and shared memory 362. In one
logic unit . embodiment the execution resources 356A - 356D can share

The memory and cache interconnect 268 is an intercon- an instruction cache 354 and shared memory 362 , as well as
nect network that connects each of the functional units of the multiple instances of a texture and / or data cache memory
graphics multiprocessor 234 to the register file 258 and to 30 358A - 358B . The various components can communicate via
the shared memory 270. In one embodiment , the memory an interconnect fabric 352 similar to the interconnect fabric
and cache interconnect 268 is a crossbar interconnect that 327 of FIG . 3A .
allows the load / store unit 266 to implement load and store Persons skilled in the art will understand that the archi
operations between the shared memory 270 and the register tecture described in FIGS . 1 , 2A - 2D , and 3A - 3B are descrip
file 258. The register file 258 can operate at the same 35 tive and not limiting as to the scope of the present embodi
frequency as the GPGPU cores 262 , thus data transfer ments . Thus , the techniques described herein may be
between the GPGPU cores 262 and the register file 258 is implemented on any properly configured processing unit ,
very low latency . The shared memory 270 can be used to including , without limitation , one or more mobile applica
enable communication between threads that execute on the tion processors , one or more desktop or server central
functional units within the graphics multiprocessor 234. The 40 processing units (CPUs) including multi - core CPUs , one or
cache memory 272 can be used as a data cache for example , more parallel processing units , such as the parallel process
to cache texture data communicated between the functional ing unit 202 of FIG . 2A , as well as one or more graphics
units and the texture unit 236. The shared memory 270 can processors or special purpose processing units , without
also be used as a program managed cached . Threads execut- departure from the scope of the embodiments described
ing on the GPGPU cores 262 can programmatically store 45 herein .
data within the shared memory in addition to the automati- In some embodiments a parallel processor or GPGPU as
cally cached data that is stored within the cache memory described herein is communicatively coupled to host / pro
272 . cessor cores to accelerate graphics operations , machine
FIGS . 3A - 3B illustrate additional graphics multiproces- learning operations , pattern analysis operations , and various

sors , according to embodiments . The illustrated graphics 50 general purpose GPU (GPGPU) functions . The GPU may be
multiprocessors 325 , 350 are variants of the graphics mul- communicatively coupled to the host processor / cores over a
tiprocessor 234 of FIG . 2C . The illustrated graphics multi- bus or other interconnect (e.g. , a high speed interconnect
processors 325 , 350 can be configured as a streaming such as PCIe or NVLink) . In other embodiments , the GPU
multiprocessor (SM) capable of simultaneous execution of a may be integrated on the same package or chip as the cores
large number of execution threads . 55 and communicatively coupled to the cores over an internal
FIG . 3A shows a graphics multiprocessor 325 according processor bus / interconnect (i.e. , internal to the package or

to an additional embodiment . The graphics multiprocessor chip) . Regardless of the manner in which the GPU is
325 includes multiple additional instances of execution connected , the processor cores may allocate work to the
resource units relative to the graphics multiprocessor 234 of GPU in the form of sequences of commands / instructions
FIG . 2D . For example , the graphics multiprocessor 325 can 60 contained in a work descriptor . The GPU then uses dedicated
include multiple instances of the instruction unit 332A- circuitry / logic for efficiently processing these commands /
332B , register file 334A - 334B , and texture unit (s) 344A- instructions .
344B . The graphics multiprocessor 325 also includes mul- Techniques for GPU to Host Processor Interconnection
tiple sets of graphics or compute execution units (e.g. , FIG . 4A illustrates an exemplary architecture in which a
GPGPU core 336A - 336B , GPGPU core 337A - 337B , 65 plurality of GPUs 410-413 are communicatively coupled to
GPGPU core 338A - 338B) and multiple sets of load / store a plurality of multi - core processors 405-406 over high - speed
units 340A - 340B . In one embodiment the execution links 440A - 440D (e.g. , buses , point - to - point interconnects ,

US 11,080,811 B2
13 14

etc.) . In one embodiment , the high - speed links 440A - 440D addition , one or more shared caches 456 may be included in
support a communication throughput of 4 GB / s , 30 GB / s , 80 the caching hierarchy and shared by sets of the cores
GB / s or higher , depending on the implementation . Various 460A - 460D . For example , one embodiment of the processor
interconnect protocols may be used including , but not lim- 407 includes 24 cores , each with its own L1 cache , twelve
ited to , PCIe 4.0 or 5.0 and NVLink 2.0 . However , the 5 shared L2 caches , and twelve shared L3 caches . In this
underlying principles of the invention are not limited to any embodiment , one of the L2 and L3 caches are shared by two particular communication protocol or throughput . adjacent cores . The processor 407 and the graphics accel

In addition , in one embodiment , two or more of the GPUs erator integration module 446 connect with system memory 410-413 are interconnected over high - speed links 442A 441 , which may include processor memories 401-402 . 442B , which may be implemented using the same or dif- 10 Coherency is maintained for data and instructions stored ferent protocols / links than those used for high - speed links in the various caches 462A - 462D , 456 and system memory 440A - 440D . Similarly , two or more of the multi - core pro 441 via inter - core communication over a coherence bus 464 . cessors 405-406 may be connected over high speed link 443
which may be symmetric multi - processor (SMP) buses For example , each cache may have cache coherency logic /
operating at 20 GB / s , 30 GB / s , 120 GB / s or higher . Alter- 15 circuitry associated therewith to communicate to over the
natively , all communication between the various system coherence bus 464 in response to detected reads or writes to
components shown in FIG . 4A may be accomplished using particular cache lines . In one implementation , a cache
the same protocols / links (e.g. , over a common interconnec snooping protocol is implemented over the coherence bus
tion fabric) . As mentioned , however , the underlying prin- 464 to snoop cache accesses . Cache snooping / coherency
ciples of the invention are not limited to any particular type 20 techniques are well understood by those of skill in the art
of interconnect technology . and will not be described in detail here to avoid obscuring

In one embodiment , each multi - core processor 405-406 is the underlying principles of the invention .
communicatively coupled to a processor memory 401-402 , In one embodiment , a proxy circuit 425 communicatively
via memory interconnects 430A - 430B , respectively , and couples the graphics acceleration module 446 to the coher
each GPU 410-413 is communicatively coupled to GPU 25 ence bus 464 , allowing the graphics acceleration module
memory 420-423 over GPU memory interconnects 450A- 446 to participate in the cache coherence protocol as a peer
450D , respectively . The memory interconnects 430A - 430B of the cores . In particular , an interface 435 provides con
and 450A - 450D may utilize the same or different memory nectivity to the proxy circuit 425 over high - speed link 440
access technologies . By way of example , and not limitation , (e.g. , a PCIe bus , NVLink , etc.) and an interface 437
the processor memories 401-402 and GPU memories 420- 30 connects the graphics acceleration module 446 to the high
423 may be volatile memories such as dynamic random speed link 440 .
access memories (DRAMS) (including stacked DRAMS) , In one implementation , an accelerator integration circuit
Graphics DDR SDRAM (GDDR) (e.g. , GDDR5 , GDDR6) , 436 provides cache management , memory access , context
or High Bandwidth Memory (HBM) and / or may be non- management , and interrupt management services on behalf
volatile memories such as 3D XPoint or Nano - Ram . In one 35 of a plurality of graphics processing engines 431 , 432 , N of
embodiment , some portion of the memories may be volatile the graphics acceleration module 446. The graphics process
memory and another portion may be non - volatile memory ing engines 431 , 432 , N may each comprise a separate
(e.g. , using a two - level memory (2LM) hierarchy) . graphics processing unit (GPU) . Alternatively , the graphics
As described below , although the various processors processing engines 431 , 432 , N may comprise different

405-406 and GPUs 410-413 may be physically coupled to a 40 types of graphics processing engines within a GPU such as
particular memory 401-402 , 420-423 , respectively , a unified graphics execution units , media processing engines (e.g. ,
memory architecture may be implemented in which the video encoders / decoders) , samplers , and blit engines . In
same virtual system address space (also referred to as the other words , the graphics acceleration module may be a
“ effective address ” space) is distributed among all of the GPU with a plurality of graphics processing engines 431
various physical memories . For example , processor memo- 45 432 , N or the graphics processing engines 431-432 , N may
ries 401-402 may each comprise 64 GB of the system be individual GPUs integrated on a common package , line
memory address space and GPU memories 420-423 may card , or chip .
each comprise 32 GB of the system memory address space In one embodiment , the accelerator integration circuit 436
(resulting in a total of 256 GB addressable memory in this includes a memory management unit (MMU) 439 for per
example) 50 forming various memory management functions such as
FIG . 4B illustrates additional details for an interconnec- virtual - to - physical memory translations (also referred to as

tion between a multi - core processor 407 and a graphics effective - to - real memory translations) and memory access
acceleration module 446 in accordance with one embodi- protocols for accessing system memory 441. The MMU 439
ment . The graphics acceleration module 446 may include may also include a translation lookaside buffer (TLB) (not
one or more GPU chips integrated on a line card which is 55 shown) for caching the virtual / effective to physical / real
coupled to the processor 407 via the high - speed link 440 . address translations . In one embodiment , the accelerator
Alternatively , the graphics acceleration module 446 may be integration circuit 436 includes a fetch unit 491 to fetch
integrated on the same package or chip as the processor 407 . commands , instructions , work descriptors , etc. , that define

The illustrated processor 407 includes a plurality of cores operations to be performed . In one implementation , a cache
460A - 460D , each with a translation lookaside buffer 461A- 60 438 stores commands and data for efficient access by the
461D and one or more caches 462A - 462D . The cores may graphics processing engines 431-432 , N. In one embodi
include various other components for executing instructions ment , the data stored in cache 438 and graphics memories
and processing data which are not illustrated to avoid 433-434 , M is kept coherent with the core caches 462A
obscuring the underlying principles of the invention (e.g. , 462D , 456 and system memory 411. As mentioned , this may
instruction fetch units , branch prediction units , decoders , 65 be accomplished via proxy circuit 425 which takes part in
execution units , reorder buffers , etc.) . The caches 462A- the cache coherency mechanism on behalf of cache 438 and
462D may comprise level 1 (L1) and level 2 (L2) caches . In memories 433-434 , M (e.g. , sending updates to the cache

memory 411 .

15

US 11,080,811 B2
15 16

438 related to modifications / accesses of cache lines on preferably not the graphics processing engines 431-432 , N)
processor caches 462A - 462D , 456 and receiving updates within the caches 462A - 462D , 456 of the cores and system
from the cache 438) .
A set of registers 445 store context data for threads FIG . 4C illustrates another embodiment in which the

executed by the graphics processing engines 431-432 , N and 5 accelerator integration circuit 436 is integrated within the
a context management circuit 448 manages the thread con- processor 407. In this embodiment , the graphics processing
texts . For example , the context management circuit 448 may engines 431-432 , N communicate directly over the high
perform save and restore operations to save and restore speed link 440 to the accelerator integration circuit 436 via

interface 437 and interface 435 (which , again , may be utilize contexts of the various threads during contexts switches (e.g. , where a first thread is saved and a second thread is 10 any form of bus or interface protocol) . The accelerator
stored so that the second thread can be execute by a graphics integration circuit 436 may perform the same operations as

those described with respect to FIG . 4B , but potentially at a processing engine) . For example , on a context switch , the higher throughput given its close proximity to the coherency context management circuit 448 may store current register bus 464 and caches 462A - 462D , 456 . values to a designated region in memory (e.g. , identified by One embodiment supports different programming models a context pointer) . It may then restore the register values including a dedicated - process programming model (no
when returning to the context . In one embodiment , an graphics acceleration module virtualization) and shared pro interrupt management circuit 447 receives and processes gramming models (with virtualization) . The latter may
interrupts received from system devices . include programming models which are controlled by the

In one implementation , virtual / effective addresses from a 20 accelerator integration circuit 436 and programming models
graphics processing engine 431 are translated to real / physi- which are controlled by the graphics acceleration module
cal addresses in system memory 411 by the MMU 439. One 446 .
embodiment of the accelerator integration circuit 436 sup- In one embodiment of the dedicated process model ,
ports multiple (e.g. , 4 , 8 , 16) graphics accelerator modules graphics processing engines 431-432 , N are dedicated to a
446 and / or other accelerator devices . The graphics accelera- 25 single application or process under a single operating sys
tor module 446 may be dedicated to a single application tem . The single application can funnel other application
executed on the processor 407 or may be shared between requests to the graphics engines 431-432 , N , providing
multiple applications . In one embodiment , a virtualized virtualization within a VM / partition .
graphics execution environment is presented in which the In the dedicated - process programming models , the graph
resources of the graphics processing engines 431-432 , N are 30 ics processing engines 431-432 , N , may be shared by
shared with multiple applications or virtual machines multiple VM / application partitions . The shared models
(VMs) . The resources may be subdivided into “ slices ” which require a system hypervisor to virtualize the graphics pro
are allocated to different VMs and / or applications based on cessing engines 431-432 , N allow access by each oper
the processing requirements and priorities associated with ating system . For single - partition systems without a hyper
the VMs and / or applications . 35 visor , the graphics processing engines 431-432 , N are owned

Thus , the accelerator integration circuit acts as a bridge to by the operating system . In both cases , the operating system
the system for the graphics acceleration module 446 and can virtualize the graphics processing engines 431-432 , N to
provides address translation and system memory cache provide access to each process or application .
services . In addition , the accelerator integration circuit 436 For the shared programming model , the graphics accel
may provide virtualization facilities for the host processor to 40 eration module 446 or an individual graphics processing
manage virtualization of the graphics processing engines , engine 431-432 , N selects a process element using a process
interrupts , and memory management . handle . In one embodiment , process elements are stored in

Because hardware resources of the graphics processing system memory 411 and are addressable using the effective
engines 431-432 , N are mapped explicitly to the real address address to real address translation techniques described
space seen by the host processor 407 , any host processor can 45 herein . The process handle may be an implementation
address these resources directly using an effective address specific value provided to the host process when registering
value . One function of the accelerator integration circuit its context with the graphics processing engine 431-432 , N
436 , in one embodiment , is the physical separation of the (that is , calling system software to add the process element
graphics processing engines 431-432 , N so that they appear to the process element linked list) . The lower 16 - bits of the
to the system as independent units . 50 process handle may be the offset of the process element
As mentioned , in the illustrated embodiment , one or more within the process element linked list .

graphics memories 433-434 , M are coupled to each of the FIG . 4D illustrates an exemplary accelerator integration
graphics processing engines 431-432 , N , respectively . The slice 490. As used herein , a " slice ” comprises a specified
graphics memories 433-434 , M store instructions and data portion of the processing resources of the accelerator inte
being processed by each of the graphics processing engines 55 gration circuit 436. Application effective address space 482
431-432 , N. The graphics memories 433-434 , M may be within system memory 411 stores process elements 483. In
volatile memories such as DRAMs (including stacked one embodiment , the process elements 483 are stored in
DRAMs) , GDDR memory (e.g. , GDDR5 , GDDR6) , or response to GPU invocations 481 from applications 480
HBM , and / or may be non - volatile memories such as 3D executed on the processor 407. A process element 483
XPoint or Nano - Ram . 60 contains the process state for the corresponding application

In one embodiment , to reduce data traffic over the high- 480. A work descriptor (WD) 484 contained in the process
speed link 440 , biasing techniques are used to ensure that the element 483 can be a single job requested by an application
data stored in graphics memories 433-434 , M is data which or may contain a pointer to a queue of jobs . In the latter case ,
will be used most frequently by the graphics processing the WD 484 is a pointer to the job request queue in the
engines 431-432 , N and preferably not used by the cores 65 application's address space 482 .
460A - 460D (at least not frequently) . Similarly , the biasing The graphics acceleration module 446 and / or the indi
mechanism attempts to keep data needed by the cores (and vidual graphics processing engines 431-432 , N can be

10

US 11,080,811 B2
17 18

shared by all or a subset of the processes in the system . work or it can be a pointer to a memory location where the
Embodiments of the invention include an infrastructure for application has set up a command queue of work to be
setting up the process state and sending a WD 484 to a completed .
graphics acceleration module 446 to start a job in a virtu- FIG . 4E illustrates additional details for one embodiment
alized environment . 5 of a shared model . This embodiment includes a hypervisor

In one implementation , the dedicated - process program real address space 498 in which a process element list 499
ming model is implementation - specific . In this model , a is stored . The hypervisor real address space 498 is accessible
single process owns the graphics acceleration module 446 or via a hypervisor 496 which virtualizes the graphics accel
an individual graphics processing engine 431. Because the eration module engines for the operating system 495 .
graphics acceleration module 446 is owned by a single The shared programming models allow for all or a subset
process , the hypervisor initializes the accelerator integration of processes from all or a subset of partitions in the system
circuit 436 for the owning partition and the operating system to use a graphics acceleration module 446. There are two
initializes the accelerator integration circuit 436 for the programming models where the graphics acceleration mod
owning process at the time when the graphics acceleration ule 446 is shared by multiple processes and partitions :
module 446 is assigned . 15 time - sliced shared and graphics directed shared .

In operation , a WD fetch unit 491 in the accelerator In this model , the system hypervisor 496 owns the graph
integration slice 490 fetches the next WD 484 which ics acceleration module 446 and makes its function available
includes an indication of the work to be done by one of the to all operating systems 495. For a graphics acceleration
graphics processing engines of the graphics acceleration module 446 to support virtualization by the system hyper
module 446. Data from the WD 484 may be stored in 20 visor 496 , the graphics acceleration module 446 may adhere
registers 445 and used by the MMU 439 , interrupt manage to the following requirements : 1) An application's job
ment circuit 447 and / or context management circuit 448 as request must be autonomous (that is , the state does not need
illustrated . For example , one embodiment of the MMU 439 to be maintained between jobs) , or the graphics acceleration
includes segment / page walk circuitry for accessing segment / module 446 must provide a context save and restore mecha
page tables 486 within the OS virtual address space 485. The 25 nism . 2) An application’s job request is guaranteed by the
interrupt management circuit 447 may process interrupt graphics acceleration module 446 to complete in a specified
events 492 received from the graphics acceleration module amount of time , including any translation faults , or the
446. When performing graphics operations , an effective graphics acceleration module 446 provides the ability to
address 493 generated by a graphics processing engine preempt the processing of the job . 3) The graphics accel
431-432 , N is translated to a real address by the MMU 439. 30 eration module 446 must be guaranteed fairness between

In one embodiment , the same set of registers 445 are processes when operating in the directed shared program
duplicated for each graphics processing engine 431-432 , N ming model .
and / or graphics acceleration module 446 and may be ini In one embod ent , for the shared model , the application
tialized by the hypervisor or operating system . Each of these 480 is required to make an operating system 495 system call
duplicated registers may be included in an accelerator inte- 35 with a graphics acceleration module 446 type , a work
gration slice 490. Exemplary registers that may be initialized descriptor (WD) , an authority mask register (AMR) value ,
by the hypervisor are shown in Table 1 . and a context save / restore area pointer (CSRP) . The graphics

acceleration module 446 type describes the targeted accel
TABLE 1 eration function for the system call . The graphics accelera

40 tion module 446 type may be a system - specific value . The
Hypervisor Initialized Registers WD is formatted specifically for the graphics acceleration

module 446 and can be in the form of a graphics acceleration Slice Control Register module 446 command , an effective address pointer to a Real Address (RA) Scheduled Processes Area Pointer
Authority Mask Override Register user - defined structure , an effective address pointer to a
Interrupt Vector Table Entry Offset 45 queue of commands , or any other data structure to describe
Interrupt Vector Table Entry Limit the work to be done by the graphics acceleration module State Register 446. In one embodiment , the AMR value is the AMR state Logical Partition ID
Real address (RA) Hypervisor Accelerator Utilization Record Pointer to use for the current process . The value passed to the
Storage Description Register operating system is similar to an application setting the

50 AMR . If the accelerator integration circuit 436 and graphics
Exemplary registers that may be initialized by the oper acceleration module 446 implementations do not support a

ating system are shown in Table 2 . User Authority Mask Override Register (UAMOR) , the
operating system may apply the current UAMOR value to
the AMR value before passing the AMR in the hypervisor TABLE 2 55 call . The hypervisor 496 may optionally apply the current

Operating System Initialized Registers Authority Mask Override Register (AMOR) value before
placing the AMR into the process element 483. In one Process and Thread Identification embodiment , the CSRP is one of the registers 445 containing Effective Address (EA) Context Save / Restore Pointer

Virtual Address (VA) Accelerator Utilization Record Pointer the effective address of an area in the application's address
Virtual Address (VA) Storage Segment Table Pointer 60 space 482 for the graphics acceleration module 446 to save
Authority Mask and restore the context state . This pointer is optional if no Work descriptor state is required to be saved between jobs or when a job is

preempted . The context save / restore area may be pinned
In one embodiment , each WD 484 is specific to a par- system memory .

ticular graphics acceleration module 446 and / or graphics 65 Upon receiving the system call , the operating system 495
processing engine 431-432 , N. It contains all the information may verify that the application 480 has registered and been
a graphics processing engine 431-432 , N requires to do its given the authority to use the graphics acceleration module

1
2
3
4
5
6
7
8
9

2
3
4
5
6

1
2
3
4
5
6
7

1
2
3

US 11,080,811 B2
19 20

446. The operating system 495 then calls the hypervisor 496 One embodiment allows GPU - attached memory 420-423
with the information shown in Table 3 . to be mapped as part of system memory , and accessed using

shared virtual memory (SVM) technology , but without suf
TABLE 3 fering the typical performance drawbacks associated with

5 full system cache coherence . The ability to GPU - attached
OS to Hypervisor Call Parameters memory 420-423 to be accessed as system memory without

A work descriptor (WD) onerous cache coherence overhead provides a beneficial
An Authority Mask Register (AMR) value (potentially masked) . operating environment for GPU offload . This arrangement
An effective address (EA) Context Save / Restore Area Pointer (CSRP) allows the host processor 405 software to setup operands
A process ID (PID) and optional thread ID (TID)
A virtual address (VA) accelerator utilization record pointer (AURP) 10 and access computation results , without the overhead of
The virtual address of the storage segment table pointer (SSTP) tradition I / O DMA data copies . Such traditional copies
A logical interrupt service number (LISN) involve driver calls , interrupts and memory mapped I / O

(MMIO) accesses that are all inefficient relative to simple
Upon receiving the hypervisor call , the hypervisor 496 memory accesses . At the same time , the ability to access

verifies that the operating system 495 has registered and 15 GPU attached memory 420-423 without cache coherence
been given the authority to use the graphics acceleration overheads can be critical to the execution time of an off
module 446. The hypervisor 496 then puts the process loaded computation . In cases with substantial streaming
element 483 into the process element linked list for the write memory traffic , for example , cache coherence over
corresponding graphics acceleration module 446 type . The head can significantly reduce the effective write bandwidth
process element may include the information shown in Table 20 seen by a GPU 410-413 . The efficiency of operand setup , the
4 . efficiency of results access , and the efficiency of GPU

computation all play a role in determining the effectiveness
TABLE 4 of GPU offload .

In one implementation , the selection of between GPU bias
Process Element Information 25 and host processor bias is driven by a bias tracker data

A work descriptor (WD) structure . A bias table may be used , for example , which may
An Authority Mask Register (AMR) value (potentially masked) . be a page - granular structure (i.e. , controlled at the granu
An effective address (EA) Context Save / Restore Area Pointer larity of a memory page) that includes 1 or 2 bits per
(CSRP)

4 A process ID (PID) and optional thread ID (TID) GPU - attached memory page . The bias table may be imple
5 A virtual address (VA) accelerator utilization record pointer 30 mented in a stolen memory range of one or more GPU

(AURP) attached memories 420-423 , with or without a bias cache in 6 The virtual address of the storage segment table pointer (SSTP)
7 A logical interrupt service number (LISN) the GPU 410-413 (e.g. , to cache frequently / recently used
8 Interrupt vector table , derived from the hypervisor call parameters . entries of the bias table) . Alternatively , the entire bias table
A state register (SR) value may be maintained within the GPU .

10 A logical partition ID (LPID) In one implementation , the bias table entry associated A real address (RA) hypervisor accelerator utilization record pointer
The Storage Descriptor Register (SDR) with each access to the GPU - attached memory 420-423 is

accessed prior the actual access to the GPU memory , causing
the following operations . First , local requests from the GPU In one embodiment , the hypervisor initializes a plurality 410-413 that find their page in GPU bias are forwarded of accelerator integration slice 490 registers 445 . 40 directly to a corresponding GPU memory 420-423 . Local As illustrated in FIG . 4F , one embodiment of the inven requests from the GPU that find their page in host bias are tion employs a unified memory addressable via a common

virtual memory address space used to access the physical forwarded to the processor 405 (e.g. , over a high - speed link
processor memories 401-402 and GPU memories 420-423 . as discussed above) . In one embodiment , requests from the
In this implementation , operations executed on the GPUs processor 405 that find the requested page in host processor
410-413 utilize the same virtual / effective memory address 45 bias complete the request like a normal memory read .
space to access the processors memories 401-402 and vice Alternatively , requests directed to a GPU - biased page may
versa , thereby simplifying programmability . In one embodi be forwarded to the GPU 410-413 . The GPU may then
ment , a first portion of the virtual / effective address space is transition the page to a host processor bias if it is not
allocated to the processor memory 401 , a second portion to currently using the page .
the second processor memory 402 , a third portion to the 50 The bias state of a page can be changed either by a
GPU memory 420 , and so on . The entire virtual / effective software - based mechanism , a hardware - assisted software
memory space (sometimes referred to as the effective based mechanism , or , for a limited set of cases , a purely
address space) is thereby distributed across each of the hardware - based mechanism .
processor memories 401-402 and GPU memories 420-423 , One mechanism for changing the bias state employs an
allowing any processor or GPU to access any physical 55 API call (e.g. OpenCL) , which , in turn , calls the GPU's
memory with a virtual address mapped to that memory . device driver which , in turn , sends a message (or enqueues

In one embodiment , bias / coherence management circuitry a command descriptor) to the GPU directing it to change the
494A - 494E within one or more of the MMUS 439 A - 439E bias state and , for some transitions , perform a cache flushing
ensures cache coherence between the caches of the host operation in the host . The cache flushing operation is
processors (e.g. , 405) and the GPUs 410-413 and imple- 60 required for a transition from host processor 405 bias to
ments biasing techniques indicating the physical memories GPU bias , but is not required for the opposite transition .
in which certain types of data should be stored . While In one embodiment , cache coherency is maintained by
multiple instances of bias / coherence management circuitry temporarily rendering GPU - biased pages uncacheable by
494A - 494E are illustrated in FIG . 4F , the bias / coherence the host processor 405. To access these pages , the processor
circuitry may be implemented within the MMU of one or 65 405 may request access from the GPU 410 which may or
more host processors 405 and / or within the accelerator may not grant access right away , depending on the imple
integration circuit 436 . mentation . Thus , to reduce communication between the

9

35
11
12

US 11,080,811 B2
21 22

processor 405 and GPU 410 it is beneficial to ensure that configured to receive the tessellation factors for edges of a
GPU - biased pages are those which are required by the GPU patch and to tessellate the patch into multiple geometric
but not the host processor 405 and vice versa . primitives such as line , triangle , or quadrilateral primitives ,
Graphics Processing Pipeline which are transmitted to a tessellation evaluation processing
FIG . 5 illustrates a graphics processing pipeline 500 , 5 unit 512. The tessellation evaluation processing unit 512

according to an embodiment . In one embodiment a graphics operates on parameterized coordinates of the subdivided
processor can implement the illustrated graphics processing patch to generate a surface representation and vertex attri
pipeline 500. The graphics processor can be included within butes for each vertex associated with the geometric primi
the parallel processing subsystems as described herein , such tives .
as the parallel processor 200 of FIG . 2A , which , in one 10 A second instance of a primitive assembler 514 receives
embodiment , is a variant of the parallel processor (s) 112 of vertex attributes from the tessellation evaluation processing
FIG . 1. The various parallel processing systems can imple- unit 512 , reading stored vertex attributes as needed , and
ment the graphics processing pipeline 500 via one or more constructs graphics primitives for processing by the geom
instances of the parallel processing unit (e.g. , parallel pro- etry processing unit 516. The geometry processing unit 516
cessing unit 202 of FIG . 2A) as described herein . For 15 is a programmable execution unit that executes geometry
example , a shader unit (e.g. , graphics multiprocessor 234 of shader programs to transform graphics primitives received
FIG . 2C) may be configured to perform the functions of one from primitive assembler 514 as specified by the geometry
or more of a vertex processing unit 504 , a tessellation shader programs . In one embodiment the geometry process
control processing unit 508 , a tessellation evaluation pro- ing unit 516 is programmed to subdivide the graphics
cessing unit 512 , a geometry processing unit 516 , and a 20 primitives into one or more new graphics primitives and
fragment / pixel processing unit 524. The functions of data calculate parameters used to rasterize the new graphics
assembler 502 , primitive assemblers 506 , 514 , 518 , tessel- primitives .
lation unit 510 , rasterizer 522 , and raster operations unit 526 In some embodiments the geometry processing unit 516
may also be performed by other processing engines within can add or delete elements in the geometry stream . The
a processing cluster (e.g. , processing cluster 214 of FIG . 2A) 25 geometry processing unit 516 outputs the parameters and
and a corresponding partition unit (e.g. , partition unit 220A- vertices specifying new graphics primitives to primitive
220N of FIG . 2A) . The graphics processing pipeline 500 assembler 518. The primitive assembler 518 receives the
may also be implemented using dedicated processing units parameters and vertices from the geometry processing unit
for one or more functions . In one embodiment , one or more 516 and constructs graphics primitives for processing by a
portions of the graphics processing pipeline 500 can be 30 viewport scale , cull , and clip unit 520. The geometry pro
performed by parallel processing logic within a general cessing unit 516 reads data that is stored in parallel processor
purpose processor (e.g. , CPU) . In one embodiment , one or memory or system memory for use in processing the geom
more portions of the graphics processing pipeline 500 can etry data . The viewport scale , cull , and clip unit 520 per
access on - chip memory (e.g. , parallel processor memory forms clipping , culling , and viewport scaling and outputs
222 as in FIG . 2A) via a memory interface 528 , which may 35 processed graphics primitives to a rasterizer 522 .
be an instance of the memory interface 218 of FIG . 2A . The rasterizer 522 can perform depth culling and other

In one embodiment the data assembler 502 is a processing depth - based optimizations . The rasterizer 522 also performs
unit that collects vertex data for surfaces and primitives . The scan conversion on the new graphics primitives to generate
data assembler 502 then outputs the vertex data , including fragments and output those fragments and associated cov
the vertex attributes , to the vertex processing unit 504. The 40 erage data to the fragment / pixel processing unit 524. The
vertex processing unit 504 is a programmable execution unit rasterizer 522 can scan convert the new graphics primitives
that executes vertex shader programs , lighting and trans- and output fragment and coverage data to the fragment / pixel
forming vertex data as specified by the vertex shader pro- processing unit 524 .
grams . The vertex processing unit 504 reads data that is The fragment / pixel processing unit 524 is a program
stored in cache , local or system memory for use in process- 45 mable execution unit that is configured to execute fragment
ing the vertex data and may be programmed to transform the shader programs or pixel shader programs . The fragment /
vertex data from an object - based coordinate representation pixel processing unit 524 transforming fragments or pixels
to a world space coordinate space or a normalized device received from rasterizer 522 , as specified by the fragment or
coordinate space . pixel shader programs . For example , the fragment / pixel
A first instance of a primitive assembler 506 receives 50 processing unit 524 may be programmed to perform opera

vertex attributes from the vertex processing unit 504. The tions included but not limited to texture mapping , shading ,
primitive assembler 506 readings stored vertex attributes as blending , texture correction and perspective correction to
needed and constructs graphics primitives for processing by produce shaded fragments or pixels that are output to a raster
tessellation control processing unit 508. The graphics primi- operations unit 526. The fragment / pixel processing unit 524
tives include triangles , line segments , points , patches , and so 55 can read data that is stored in either the parallel processor
forth , as supported by various graphics processing applica- memory or the system memory for use when processing the
tion programming interfaces (APIs) . fragment data . Fragment or pixel shader programs may be

The tessellation control processing unit 508 treats the configured to shade at sample , pixel , tile , or other granu
input vertices as control points for a geometric patch . The larities depending on the sampling rate configured for the
control points are transformed from an input representation 60 processing units .
from the patch (e.g. , the patch's bases) to a representation The raster operations unit 526 is a processing unit that
that is suitable for use in surface evaluation by the tessel- performs raster operations including , but not limited to
lation evaluation processing unit 512. The tessellation con- stencil , z test , blending , and the like , and outputs pixel data
trol processing unit 508 can also compute tessellation factors as processed graphics data to be stored in graphics memory
for edges of geometric patches . A tessellation factor applies 65 (e.g. , parallel processor memory 222 as in FIG . 2A , and / or
to a single edge and quantifies a view - dependent level of system memory 104 as in FIG . 1) , to be displayed on the one
detail associated with the edge . A tessellation unit 510 is or more display device (s) 110 or for further processing by

US 11,080,811 B2
23 24

one of the one or more processor (s) 102 or parallel software components , such as (without limitation) GPU 614 ,
processor (s) 112. In some embodiments the raster operations graphics driver (also referred to as “ GPU driver ” , “ graphics
unit 526 is configured to compress z or color data that is driver logic ” , “ driver logic ” , user - mode driver (UMD) ,
written to memory and decompress z or color data that is UMD , user - mode driver framework (UMDF) , UMDF , or
read from memory . 5 simply “ driver ") 616 , CPU 612 , memory 608 , network
FIG . 6 illustrates one embodiment of a computing device devices , drivers , or the like , as well as input / output (I / O)

600 employing a compute optimization mechanism . Com- sources 604 , such as touchscreens , touch panels , touch pads ,
puting device 600 (e.g. , smart wearable devices , virtual virtual or regular keyboards , virtual or regular mice , ports ,
reality (VR) devices , head - mounted display (HMDs) , connectors , etc.
mobile computers , Internet of Things (IoT) devices , laptop 10 Computing device 600 may include operating system
computers , desktop computers , server computers , etc.) may (OS) 606 serving as an interface between hardware and / or
be the same as computing system 100 of FIG . 1 and physical resources of the computer device 600 and a user . It
accordingly , for brevity , clarity , and ease of understanding , is contemplated that CPU 612 may include one or more
many of the details stated above with reference to FIGS . 1-5 processors , such as processor (s) 102 of FIG . 1 , while GPU
are not further discussed or repeated hereafter . As illustrated , 15 614 may include one or more graphics processors (or
in one embodiment , computing device 600 is shown as multiprocessors) .
hosting a compute optimization mechanism (e.g. , compute It is to be noted that terms like “ node ” , “ computing node ” ,
mechanism 610) . “ server ” , “ server device ” , “ cloud computer ” , “ cloud server ” ,
As illustrated , in one embodiment , compute mechanism “ cloud server computer ” , “ machine " , " host machine ” ,

610 may be hosted by graphics processing unit (GPU) 614. 20 " device ” , “ computing device ” , " computer ” , " computing
In other embodiments , compute mechanism 610 may be system ” , and the like , may be used interchangeably through
hosted by or part of firmware of graphics driver 616. In yet out this document . It is to be further noted that terms like
other embodiments , compute mechanism 610 may be hosted " application " , " software application ” , “ program " , " software
by or part of firmware of central processing unit (“ CPU ” or program ” , “ package ” , “ software package ” , and the like , may
" application processor ”) 612. For brevity , clarity , and ease of 25 be used interchangeably throughout this document . Also ,
understanding , throughout the rest of this document , com- terms like “ job ” , “ input ” , “ request ” , “ message " , and the like ,
pute mechanism 610 may be discussed as part of GPU 614 ; may be used interchangeably throughout this document .
however , embodiments are not limited as such . It is contemplated and as further described with reference

In yet another embodiment , compute mechanism 610 may to FIGS . 1-5 , some processes of the graphics pipeline as
be hosted as software or firmware logic by operating system 30 described above are implemented in software , while the rest
606. In yet a further embodiment , compute mechanism 610 are implemented in hardware . A graphics pipeline may be
may be partially and simultaneously hosted by multiple implemented in a graphics coprocessor design , where CPU
components of computing device 600 , such as one or more 612 is designed to work with GPU 614 which may be
of graphics driver 616 , GPU 614 , GPU firmware , CPU 612 , included in or co - located with CPU 612. In one embodi
CPU firmware , operating system 606 , and / or the like . It is 35 ment , GPU 614 may employ any number and type of
contemplated that compute mechanism 610 or one or more conventional software and hardware logic to perform the
of their components may be implemented as hardware , conventional functions relating to graphics rendering as well
software , and / or firmware . as novel software and hardware logic to execute any number

Throughout the document , term " user ” may be inter- and type of instructions .
changeably referred to as “ viewer , ” “ observer ” , “ person ” , 40 As aforementioned , memory 608 may include a random
“ individual ” , “ end - user " , and / or the like . It is to be noted access memory (RAM) comprising application database
that throughout this document , terms like “ graphics domain ” having object information . Amemory controller hub , such as
may be referenced interchangeably with " graphics process- memory hub 105 of FIG . 1 , may access data in the RAM and
ing unit " , " graphics processor ” , or simply " GPU ” and simi- forward it to GPU 614 for graphics pipeline processing .
larly , “ CPU domain ” or “ host domain ” may be referenced 45 RAM may include double data rate RAM (DDR RAM) ,
interchangeably with “ computer processing unit ” , “ applica- extended data output RAM (EDO RAM) , etc. CPU 612
tion processor ” , or simply " CPU ” . interacts with a hardware graphics pipeline to share graphics

Computing device 600 may include any number and type pipelining functionality .
of communication devices , such as large computing sys- Processed data is stored in a buffer in the hardware
tems , such as server computers , desktop computers , etc. , and 50 graphics pipeline , and state information is stored in memory
may further include set - top boxes (e.g. , Internet - based cable 608. The resulting image is then transferred to I / O sources
television set - top boxes , etc.) , global positioning system 604 , such as a display component for displaying of the
(GPS) -based devices , etc. Computing device 600 may image . It is contemplated that the display device may be of
include mobile computing devices serving as communica- various types , such as Cathode Ray Tube (CRT) , Thin Film
tion devices , such as cellular phones including smartphones , 55 Transistor (TFT) , Liquid Crystal Display (LCD) , Organic
personal digital assistants (PDAs) , tablet computers , laptop Light Emitting Diode (OLED) array , etc. , to display infor
computers , e - readers , smart televisions , television plat- mation to a user .
forms , wearable devices (e.g. , glasses , watches , bracelets , Memory 608 may comprise a pre - allocated region of a
smartcards , jewelry , clothing items , etc.) , media players , etc. buffer (e.g. , frame buffer) ; however , it should be understood
For example , in one embodiment , computing device 600 60 by one of ordinary skill in the art that the embodiments are
may include a mobile computing device employing a com- not so limited , and that any memory accessible to the lower
puter platform hosting an integrated circuit (“ IC ”) , such as graphics pipeline may be used . Computing device 600 may
system on a chip (“ SOC ” or “ SOC ”) , integrating various further include input / output (I / O) control hub (ICH) 107 as
hardware and / or software components of computing device referenced in FIG . 1 , as one or more I / O sources 604 , etc.
600 on a single chip . CPU 612 may include one or more processors to execute
As illustrated , in one embodiment , computing device 600 instructions in order to perform whatever software routines

may include any number and type of hardware and / or the computing system implements . The instructions fre

65

US 11,080,811 B2
25 26

quently involve some sort of operation performed upon data . example , an Ethernet cable , a coaxial cable , a fiber optic
Both data and instructions may be stored in system memory cable , a serial cable , or a parallel cable .
608 and any associated cache . Cache is typically designed to Network interface (s) may provide access to a LAN , for
have shorter latency times than system memory 608 ; for example , by conforming to IEEE 802.11b and / or IEEE
example , cache might be integrated onto the same silicon 5 802.11g standards , and / or the wireless network interface
chip (s) as the processor (s) and / or constructed with faster may provide access to a personal area network , for example ,
static RAM (SRAM) cells whilst the system memory 608 by conforming to Bluetooth standards . Other wireless net
might be constructed with slower dynamic RAM (DRAM) work interfaces and / or protocols , including previous and
cells . By tending to store more frequently used instructions subsequent versions of the standards , may also be supported .
and data in the cache as opposed to the system memory 608 , 10 In addition to , or instead of , communication via the wireless
the overall performance efficiency of computing device 600 LAN standards , network interface (s) may provide wireless
improves . It is contemplated that in some embodiments , communication using , for example , Time Division , Multiple
GPU 614 may exist as part of CPU 612 (such as part of a Access (TDMA) protocols , Global Systems for Mobile
physical CPU package) in which case , memory 608 may be Communications (GSM) protocols , Code Division , Multiple
shared by CPU 612 and GPU 614 or kept separated . 15 Access (CDMA) protocols , and / or any other type of wireless

System memory 608 may be made available to other communications protocols .
components within the computing device 600. For example , Network interface (s) may include one or more commu
any data (e.g. , input graphics data) received from various nication interfaces , such as a modem , a network interface
interfaces to the computing device 600 (e.g. , keyboard and card , or other well - known interface devices , such as those
mouse , printer port , Local Area Network (LAN) port , 20 used for coupling to the Ethernet , token ring , or other types
modem port , etc.) or retrieved from an internal storage of physical wired or wireless attachments for purposes of
element of the computer device 600 (e.g. , hard disk drive) providing a communication link to support a LAN or a
are often temporarily queued into system memory 608 prior WAN , for example . In this manner , the computer system
to being operated upon by the one or more processor (s) in may also be coupled to a number of peripheral devices ,
the implementation of a software program . Similarly , data 25 clients , control surfaces , consoles , or servers via a conven
that a software program determines should be sent from the tional network infrastructure , including an Intranet or the
computing device 600 to an outside entity through one of the Internet , for example .
computing system interfaces , or stored into an internal It is to be appreciated that a lesser or more equipped
storage element , is often temporarily queued in system system than the example described above may be preferred
memory 608 prior to its being transmitted or stored . 30 for certain implementations . Therefore , the configuration of

Further , for example , an ICH may be used for ensuring computing device 600 may vary from implementation to
that such data is properly passed between the system implementation depending upon numerous factors , such as
memory 608 and its appropriate corresponding computing price constraints , performance requirements , technological
system interface (and internal storage device if the comput- improvements , or other circumstances . Examples of the
ing system is so designed) and may have bi - directional 35 electronic device or computing device 600 may include
point - to - point links between itself and the observed 110 (without limitation) a mobile device , a personal digital
sources / devices 604. Similarly , an MCH may be used for assistant , a mobile computing device , a smartphone , a cel
managing the various contending requests for system lular telephone , a handset , a one - way pager , a two - way
memory 608 accesses amongst CPU 612 and GPU 614 , pager , a messaging device , a computer , a personal computer
interfaces and internal storage elements that may proxi- 40 (PC) , a desktop computer , a laptop computer , a notebook
mately arise in time with respect to one another . computer , a handheld computer , a tablet computer , a server ,

I / O sources 604 may include one or more 110 devices that a server array or server farm , a web server , a network server ,
are implemented for transferring data to and / or from com- an Internet server , a work station , a mini - computer , a main
puting device 600 (e.g. , a networking adapter) ; or , for a large frame computer , a supercomputer , a network appliance , a
scale non - volatile storage within computing device 600 45 web appliance , a distributed computing system , multipro
(e.g. , hard disk drive) . User input device , including alpha- cessor systems , processor - based systems , consumer elec
numeric and other keys , may be used to communicate tronics , programmable consumer electronics , television ,
information and command selections to GPU 614. Another digital television , set top box , wireless access point , base
type of user input device is cursor control , such as a mouse , station , subscriber station , mobile subscriber center , radio
a trackball , a touchscreen , a touchpad , or cursor direction 50 network controller , router , hub , gateway , bridge , switch ,
keys to communicate direction information and command machine , or combinations thereof .
selections to GPU 614 and to control cursor movement on Embodiments may be implemented as any or a combina
the display device . Camera and microphone arrays of com- tion of : one or more microchips or integrated circuits
puter device 600 may be employed to observe gestures , interconnected using a parentboard , hardwired logic , soft
record audio and video and to receive and transmit visual 55 ware stored by a memory device and executed by a micro
and audio commands . processor , firmware , an application specific integrated cir

Computing device 600 may further include network inter- cuit (ASIC) , and / or a field programmable gate array
face (s) to provide access to a network , such as a LAN , a (FPGA) . The term “ logic ” may include , by way of example ,
wide area network (WAN) , a metropolitan area network software or hardware and / or combinations of software and
(MAN) , a personal area network (PAN) , Bluetooth , a cloud 60 hardware .
network , a mobile network (e.g. , 3rd Generation (3G) , 4th Embodiments may be provided , for example , as a com
Generation (4G) , etc.) , an intranet , the Internet , etc. Network puter program product which may include one or more
interface (s) may include , for example , a wireless network machine - readable media having stored thereon machine
interface having antenna , which may represent one or more executable instructions that , when executed by one or more
antenna (e) . Network interface (s) may also include , for 65 machines such as a computer , network of computers , or
example , a wired network interface to communicate with other electronic devices , may result in the one or more
remote devices via network cable , which may be , for machines carrying out operations in accordance with

US 11,080,811 B2
27 28

embodiments described herein . A machine - readable medium while the delta processing component 732 is used to process
may include , but is not limited to , floppy diskettes , optical the upper 16 - bits . In a further embodiment , 16 - bit operations
disks , CD - ROMs (Compact Disc - Read Only Memories) , are also processed at logic 730. However in this embodi
and magneto - optical disks , ROMs , RAMS , EPROMs (Eras- ment , 16 - bit operations are processed by only the FP16
able Programmable Read Only Memories) , EEPROMs 5 processing component 731 at logic 730. In yet a further
(Electrically Erasable Programmable Read Only Memories) , embodiment , compute mechanism 610 may shut down (e.g. ,
magnetic or optical cards , flash memory , or other type of power - gate) the delta processing component 732 during
media / machine - readable medium suitable for storing processing of 16 - bit operations , thus saving power . In other
machine - executable instructions . embodiments , compute mechanism 610 may process opera
Moreover , embodiments may be downloaded as a com- 10 tions having higher bit depths (e.g. , 64 - bit) .

puter program product , wherein the program may be trans- In conventional systems , support is provided for operands
ferred from a remote computer (e.g. , a server) to a requesting having the same precision . If some operands are in a
computer (e.g. , a client) by way of one or more data signals different format , separate instructions are needed to first
embodied in and / or modulated by a carrier wave or other convert the operands to a common format . According to one
propagation medium via a communication link (e.g. , a 15 embodiment , compute mechanism 610 also provides vari
modem and / or network connection) . able precision support in a math instruction . In such an

High end graphics processors (e.g. , discrete package and embodiment , compute mechanism 610 supports mixed pre
on - package graphics die) typically implement high band- cision fused multiply - accumulate (FMAC) operations , such
width memory (HBM) , which is a high - performance RAM that in an ALU operation of D = A * B + C ; A and B and / or C
interface . HBM is included in the same package as a GPU , 20 may include different precision and format . Thus , A , B , C
and is connected via a silicon bridge . The silicon bridge may include , but not be limited to , any of FP64 , FP32 , FP16 ,
includes a high density of wires that connect the GPU die INT32 , INT16 , INT8 or INT16 .
pins with the HBM pins . Often , graphics operations are According to one embodiment , an ALU instruction is
performed on a memory location in a streaming fashion with provided that includes a 16 - bit attribute that specifies the
very low cache locality . For such operations , it is not 25 format for each operand , and a required format for the result
beneficial to bring the memory data into the GPU cache , (destination) . In response to the instruction , a GPU ALU
perform the operation , and eventually evict the data back to (e.g. , in a shader core) executes the instruction by parsing
memory since this is wasteful in power and performance the attribute to determine the format for each operand .
(high memory bandwidth and a waste of cache entries) . A Subsequently , each operand is converted to the destination
common example is atomic operations in compute shaders 30 format and the FMAC operation is executed .
resulting from image histogram calculation . Machine Learning Overview

According various embodiments , compute mechanism A machine learning algorithm is an algorithm that can
610 features various operations that optimize computing at learn based on a set of data . Embodiments of machine
GPU 614. In one embodiment , compute mechanism 610 learning algorithms can be designed to model high - level
may sort threads into thread groups based on 8 - bit and 16 - bit 35 abstractions within a data set . For example , image recogni
operation . Currently , a GPU operates in a mixed mode in tion algorithms can be used to determine which of several
which random 8 - bit and 16 - bit operations are processed at categories to which a given input belong ; regression algo
GPU 614 hardware . In one embodiment , compute mecha- rithms can output a numerical value given an input ; and
nism 610 includes a sorter to sort threads into groups based pattern recognition algorithms can be used to generate
on bit depth (8 - bit or 16 - bit) . 40 translated text or perform text to speech and / or speech
FIG . 7A illustrates one embodiment of compute mecha- recognition .

nism 610 including a sorter 710 , floating point bins 712 and An exemplary type of machine learning algorithm is a
714 , and floating point units 716A - 716B . In one embodi- neural network . There are many types of neural networks , a
ment , sorter 710 receives threads having both 8 - bit and simple type of neural network is a feedforward network . A
16 - bit floating point operations , and sorts those operations 45 feedforward network may be implemented as an acyclic
into respective bins 712 and 714. Once in the bins , the graph in which the nodes are arranged in layers . Typically ,
operations are forwarded to floating point units 716A - 716B . a feedforward network topology includes an input layer and
In one embodiment , floating point units 716A - 716B are an output layer that are separated by at least one hidden
eight - bit floating point units having support for FP8 opera- layer . The hidden layer transforms input received by the
tions , but can jointly perform FP16 operations . Accordingly , 50 input layer into a representation that is useful for generating
FP8 operations received from bin 712 can be processed at a output in the output layer . The network nodes are fully
single one of floating - point unit 716A or 716B , while FP16 connected via edges to the nodes in adjacent layers , but there
operations received from bin 714 are processed by both are no edges between nodes within each layer . Data received
floating - point units 716A and 716B . at the nodes of an input layer of a feedforward network are

In a further embodiment , compute mechanism 610 may 55 propagated (i.e. , " fed forward ”) to the nodes of the output
also receive threads having 32 - bit operations . In this layer via an activation function that calculates the states of
embodiment , compute mechanism 610 includes floating the nodes of each successive layer in the network based on
point logic to process floating point thread operations having coefficients (“ weights ”) respectively associated with each of
a higher bit depth . For instance , floating point logic can the edges connecting the layers . Depending on the specific
process 32 - bit operations using 16 - bit logic rather than 60 model being represented by the algorithm being executed ,
32 - bit logic . FIG . 7B illustrates an embodiment of compute the output from the neural network algorithm can take
mechanism 610 having logic 730 to perform such opera- various forms .
tions . Before a machine learning algorithm can be used to model
As shown in FIG . 7B , logic 730 includes a FP16 pro- a particular problem , the algorithm is trained using a training

cessing component 731 and a delta processing component 65 data set . Training a neural network involves selecting a
732. Whenever a 32 - bit operation is received , the FP16 network topology , using a set of training data representing a
processing component 731 can process the lower 16 - bits problem being modeled by the network , and adjusting the

US 11,080,811 B2
29 30

weights until the network model performs with a minimal requiring the machine learning framework 804 to have
error for all instances of the training data set . For example , intimate knowledge of the architecture of the GPGPU hard
during a supervised learning training process for a neural ware 810. Additionally , the compute framework 806 can
network , the output produced by the network in response to enable hardware acceleration for the machine learning
the input representing an instance in a training data set is 5 framework 804 across a variety of types and generations of
compared to the correct ” labeled output for that instance , an the GPGPU hardware 810 .
error signal representing the difference between the output GPGPU Machine Learning Acceleration
and the labeled output is calculated , and the weights asso- FIG . 9 illustrates a highly - parallel general - purpose graph
ciated with the connections are adjusted to minimize that ics processing unit 900 , according to an embodiment . In one
error as the error signal is backward propagated through the 10 embodiment , the general - purpose processing unit (GPGPU)
layers of the network . The network is considered “ trained ” 900 can be configured to be particularly efficient in process
when the errors for each of the outputs generated from the ing the type of computational workloads associated with
instances of the training data set are minimized . training deep neural networks . Additionally , the GPGPU 900

The accuracy of a machine learning algorithm can be can be linked directly to other instances of the GPGPU to
affected significantly by the quality of the data set used to 15 create a multi - GPU cluster to improve training speed for
train the algorithm . The training process can be computa- particularly deep neural networks .
tionally intensive and may require a significant amount of The GPGPU 900 includes a host interface 902 to enable
time on a conventional general - purpose processor . Accord- a connection with a host processor . In one embodiment , the
ingly , parallel processing hardware is used to train many host interface 902 is a PCI Express interface . However , the
types of machine learning algorithms . This is particularly 20 host interface can also be a vendor specific communications
useful for optimizing the training of neural networks , as the interface or communications fabric . The GPGPU 900
computations performed in adjusting the coefficients in receives commands from the host processor and uses a
neural networks lend themselves naturally to parallel imple- global scheduler 904 to distribute execution threads associ
mentations . Specifically , many machine learning algorithms ated with those commands to a set of compute clusters
and software applications have been adapted to make use of 25 906A - H . The compute clusters 906A - H share a cache
the parallel processing hardware within general - purpose memory 908. The cache memory 908 can serve as a higher
graphics processing devices . level cache for cache memories within the compute clusters

FIG . 8 is a generalized diagram of a machine learning 906A - H .
software stack 800. A machine learning application 802 can The GPGPU 900 includes memory 914A - B coupled with
be configured to train a neural network using a training 30 the compute clusters 906A - H via a set of memory control
dataset or to use a trained deep neural network to implement lers 912A - B . In various embodiments , the memory 914A - B
machine intelligence . The machine learning application 802 can include various types of memory devices including
can include training and inference functionality for a neural dynamic random access memory (DRAM) or graphics ran
network and / or specialized software that can be used to train dom access memory , such as synchronous graphics random
a neural network before deployment . The machine learning 35 access memory (SGRAM) , including graphics double data
application 802 can implement any type of machine intel- rate (GDDR) memory . In one embodiment , the memory
ligence including but not limited to image recognition , units 224A - N may also include 3D stacked memory , includ
mapping and localization , autonomous navigation , speech ing but not limited to high bandwidth memory (HBM) .
synthesis , medical imaging , or language translation . In one embodiment , each compute cluster 906A - H

Hardware acceleration for the machine learning applica- 40 includes a set of graphics multiprocessors , such as the
tion 802 can be enabled via a machine learning framework graphics multiprocessor 234 of FIG . 2C . The graphics
804. The machine learning framework 804 can provide a multiprocessors of the compute cluster multiple types of
library of machine learning primitives . Machine learning integer and floating point logic units that can perform
primitives are basic operations that are commonly per- computational operations at a range of precisions including
formed by machine learning algorithms . Without the 45 suited for machine learning computations . For example , and
machine learning framework 804 , developers of machine in one embodiment at least a subset of the floating point
learning algorithms would be required to create and opti- units in each of the compute clusters 906A - H can be
mize the main computational logic associated with the configured to perform 16 - bit or 32 - bit floating point opera
machine learning algorithm , then re - optimize the computa- tions , while a different subset of the floating point units can
tional logic as new parallel processors are developed . 50 be configured to perform 64 - bit floating point operations .
Instead , the machine learning application can be configured Multiple instances of the GPGPU 900 can be configured
to perform the necessary computations using the primitives to operate as a compute cluster . The communication mecha
provided by the machine learning framework 804. Exem- nism used by the compute cluster for synchronization and
plary primitives include tensor convolutions , activation data exchange varies across embodiments . In one embodi
functions , and pooling , which are computational operations 55 ment , the multiple instances of the GPGPU 900 communi
that are performed while training a convolutional neural cate over the host interface 902. In one embodiment , the
network (CNN) . The machine learning framework 804 can GPGPU 900 includes an I / O hub 908 that couples the
also provide primitives to implement basic linear algebra GPGPU 900 with a GPU link 910 that enables a direct
subprograms performed by many machine learning algo- connection to other instances of the GPGPU . In one embodi
rithms , such as matrix and vector operations . 60 ment , the GPU link 910 is coupled to a dedicated GPU - to

The machine learning framework 804 can process input GPU bridge that enables communication and synchroniza
data received from the machine learning application 802 and tion between multiple instances of the GPGPU 900. In one
generate the appropriate input to a compute framework 806 . embodiment , the GPU link 910 couples with a high speed
The compute framework 806 can abstract the underlying interconnect to transmit and receive data to other GPGPUS
instructions provided to the GPGPU driver 808 to enable the 65 or parallel processors . In one embodiment , the multiple
machine learning framework 804 to take advantage of instances of the GPGPU 900 are located in separate data
hardware acceleration via the GPGPU hardware 810 without processing systems and communicate via a network device

US 11,080,811 B2
31 32

that is accessible via the host interface 902. In one embodi- the network . The computations for a CNN include applying
ment , the GPU link 910 can be configured to enable a the convolution mathematical operation to each filter to
connection to a host processor in addition to or as an produce the output of that filter . Convolution is a specialized
alternative to the host interface 902 . kind of mathematical operation performed by two functions

While the illustrated configuration of the GPGPU 900 can 5 to produce a third function that is a modified version of one
be configured to train neural networks , one embodiment of the two original functions . In convolutional network
provides alternate configuration of the GPGPU 900 that can terminology , the first function to the convolution can be
be configured for deployment within a high performance or referred to as the input , while the second function can be
low power inferencing platform . In an inferencing configu- referred to as the convolution kernel . The output may be
ration the GPGPU 900 includes fewer of the compute 10 referred to as the feature map . For example , the input to a
clusters 906A - H relative to the training configuration . Addi- convolution layer can be a multidimensional array of data
tionally , memory technology associated with the memory that defines the various color components of an input image .
914A - B may differ between inferencing and training con- The convolution kernel can be a multidimensional array of
figurations . In one embodiment , the inferencing configura- parameters , where the parameters are adapted by the training
tion of the GPGPU 900 can support inferencing specific 15 process for the neural network .
instructions . For example , an inferencing configuration can Recurrent neural networks (RNNs) are a family of feed
provide support for one or more 8 - bit integer dot product forward neural networks that include feedback connections
instructions , which are commonly used during inferencing between layers . RNNs enable modeling of sequential data
operations for deployed neural networks . by sharing parameter data across different parts of the neural
FIG . 10 illustrates a multi - GPU computing system 1000 , 20 network . The architecture for a RNN includes cycles . The

according to an embodiment . The multi - GPU computing cycles represent the influence of a present value of a variable
system 1000 can include a processor 1002 coupled to on its own value at a future time , as at least a portion of the
multiple GPGPUs 1006A - D via a host interface switch output data from the RNN is used as feedback for processing
1004. The host interface switch 1004 , in one embodiment , is subsequent input in a sequence . This feature makes RNNs
a PCI express switch device that couples the processor 1002 25 particularly useful for language processing due to the vari
to a PCI express bus over which the processor 1002 can able nature in which language data can be composed .
communicate with the set of GPGPUS 1006A - D . Each of the The figures described below present exemplary feedfor
multiple GPGPUs 1006A - D can be an instance of the ward , CNN , and RNN networks , as well as describe a
GPGPU 900 of FIG . 9. The GPGPUs 1006A - D can inter- general process for respectively training and deploying each
connect via a set of high - speed point to point GPU to GPU 30 of those types of networks . It will be understood that these
links 1016. The high - speed GPU to GPU links can connect descriptions are exemplary and non - limiting as to any spe
to each of the GPGPUs 1006A - D via a dedicated GPU link , cific embodiment described herein and the concepts illus
such as the GPU link 910 as in FIG . 9. The P2P GPU links trated can be applied generally to deep neural networks and
1016 enable direct communication between each of the machine learning techniques in general .
GPGPUs 1006A - D without requiring communication over 35 The exemplary neural networks described above can be
the host interface bus to which the processor 1002 is used to perform deep learning . Deep learning is machine
connected . With GPU - to - GPU traffic directed to the P2P learning using deep neural networks . The deep neural net
GPU links , the host interface bus remains available for works used in deep learning are artificial neural networks
system memory access or to communicate with other composed of multiple hidden layers , as opposed to shallow
instances of the multi - GPU computing system 1000 , for 40 neural networks that include only a single hidden layer .
example , via one or more network devices . While in the Deeper neural networks are generally more computationally
illustrated embodiment the GPGPUs 1006A - D connect to intensive to train . However , the additional hidden layers of
the processor 1002 via the host interface switch 1004 , in one the network enable multistep pattern recognition that results
embodiment the processor 1002 includes direct support for in reduced output error relative to shallow machine learning
the P2P GPU links 1016 and can connect directly to the 45 techniques .
GPGPUS 1006A - D . Deep neural networks used in deep learning typically
Machine Learning Neural Network Implementations include a front - end network to perform feature recognition
The computing architecture provided by embodiments coupled to a back - end network which represents a math

described herein can be configured to perform the types of ematical model that can perform operations (e.g. , object
parallel processing that is particularly suited for training and 50 classification , speech recognition , etc.) based on the feature
deploying neural networks for machine learning . A neural representation provided to the model . Deep learning enables
network can be generalized as a network of functions having machine learning to be performed without requiring hand
a graph relationship . As is well - known in the art , there are crafted feature engineering to be performed for the model .
a variety of types of neural network implementations used in Instead , deep neural networks can learn features based on
machine learning . One exemplary type of neural network is 55 statistical structure or correlation within the input data . The
the feedforward network , as previously described . learned features can be provided to a mathematical model
A second exemplary type of neural network is the Con- that can map detected features to an output . The mathemati

volutional Neural Network (CNN) . A CNN is a specialized cal model used by the network is generally specialized for
feedforward neural network for processing data having a the specific task to be performed , and different models will
known , grid - like topology , such as image data . Accordingly , 60 be used to perform different task .
CNNs are commonly used for compute vision and image Once the neural network is structured , a learning model
recognition applications , but they also may be used for other can be applied to the network to train the network to perform
types of pattern recognition such as speech and language specific tasks . The learning model describes how to adjust
processing . The nodes in the CNN input layer are organized the weights within the model to reduce the output error of
into a set of “ filters " (feature detectors inspired by the 65 the network . Backpropagation of errors is a common method
receptive fields found in the retina) , and the output of each used to train neural networks . An input vector is presented
set of filters is propagated to nodes in successive layers of to the network for processing . The output of the network is

US 11,080,811 B2
33 34

compared to the desired output using a loss function and an The linear activations can be processed by a detector stage
error value is calculated for each of the neurons in the output 1118. In the detector stage 1118 , each linear activation is
layer . The error values are then propagated backwards until processed by a non - linear activation function . The non
each neuron has an associated error value which roughly linear activation function increases the nonlinear properties
represents its contribution to the original output . The net- 5 of the overall network without affecting the receptive fields
work can then learn from those errors using an algorithm , of the convolution layer . Several types of non - linear activa
such as the stochastic gradient descent algorithm , to update tion functions may be used . One particular type is the
the weights of the of the neural network . rectified linear unit (ReLU) , which uses an activation func

FIGS . 11A & 11B illustrate an exemplary convolutional tion defined as f (x) = max (0 , x) , such that the activation is
10 thresholded at zero . neural network . FIG . 11A illustrates various layers within a

CNN . As shown in FIG . 11A , an exemplary CNN used to The pooling stage 1120 uses a pooling function that
replaces the output of the convolutional layer 1106 with a model image processing can receive input 1102 describing summary statistic of the nearby outputs . The pooling func the red , green , and blue (RGB) components of an input tion can be used to introduce translation invariance into the image . The input 1102 can be processed by multiple con 15 neural network , such that small translations to the input do volutional layers (e.g. , convolutional layer 1104 , convolu not change the pooled outputs . Invariance to local transla

tional layer 1106) . The output from the multiple convolu- tion can be useful in scenarios where the presence of a
tional layers may optionally be processed by a set of fully feature in the input data is more important than the precise
connected layers 1108. Neurons in a fully connected layer location of the feature . Various types of pooling functions
have full connections to all activations in the previous layer , 20 can be used during the pooling stage 1120 , including max
as previously described for a feedforward network . The pooling , average pooling , and 12 - norm pooling . Addition
output from the fully connected layers 1108 can be used to ally , some CNN implementations do not include a pooling
generate an output result from the network . The activations stage . Instead , such implementations substitute and addi
within the fully connected layers 1108 can be computed tional convolution stage having an increased stride relative
using matrix multiplication instead of convolution . Not all 25 to previous convolution stages .
CNN implementations are configured to make use of fully The output from the convolutional layer 1114 can then be
connected layers 1108. For example , in some implementa- processed by the next layer 1122. The next layer 1122 can be
tions the convolutional layer 1106 can generate output for an additional convolutional layer or one of the fully con
the CNN . nected layers 1108. For example , the first convolutional

The convolutional layers are sparsely connected , which 30 layer 1104 of FIG . 11A can output to the second convolu
differs from traditional neural network configuration found tional layer 1106 , while the second convolutional layer can
in the fully connected layers 1108. Traditional neural net- output to a first layer of the fully connected layers 1108 .
work layers are fully connected , such that every output unit FIG . 12 illustrates an exemplary recurrent neural network
interacts with every input unit . However , the convolutional 1200. In a recurrent neural network (RNN) , the previous
layers are sparsely connected because the output of the 35 state of the network influences the output of the current state
convolution of a field is input (instead of the respective state of the network . RNNs can be built in a variety of ways using
value of each of the nodes in the field) to the nodes of the a variety of functions . The use of RNNs generally revolves
subsequent layer , as illustrated . The kernels associated with around using mathematical models to predict the future
the convolutional layers perform convolution operations , the based on a prior sequence of inputs . For example , an RNN
output of which is sent to the next layer . The dimensionality 40 may be used to perform statistical language modeling to
reduction performed within the convolutional layers is one predict an upcoming word given a previous sequence of
aspect that enables the CNN to scale to process large images . words . The illustrated RNN 1200 can be described has
FIG . 11B illustrates exemplary computation stages within having an input layer 1202 that receives an input vector ,

a convolutional layer of a CNN . Input to a convolutional hidden layers 1204 to implement a recurrent function , a
layer 1112 of a CNN can be processed in three stages of a 45 feedback mechanism 1205 to enable a ' memory’of previous
convolutional layer 1114. The three stages can include a states , and an output layer 1206 to output a result . The RNN
convolution stage 1116 , a detector stage 1118 , and a pooling 1200 operates based on time - steps . The state of the RNN at
stage 1120. The convolution layer 1114 can then output data a given time step is influenced based on the previous time
to a successive convolutional layer . The final convolutional step via the feedback mechanism 1205. For a given time
layer of the network can generate output feature map data or 50 step , the state of the hidden layers 1204 is defined by the
provide input to a fully connected layer , for example , to previous state and the input at the current time step . An
generate a classification value for the input to the CNN . initial input (xi) at a first time step can be processed by the

In the convolution stage 1116 performs several convolu- hidden layer 1204. A second input (x2) can be processed by
tions in parallel to produce a set of linear activations . The the hidden layer 1204 using state information that is deter
convolution stage 1116 can include an affine transformation , 55 mined during the processing of the initial input (x1) . A given
which is any transformation that can be specified as a linear state can be computed as sz = f (Ux , + WSt - 1) , where U and W
transformation plus a translation . Affine transformations are parameter matrices . The function f is generally a non
include rotations , translations , scaling , and combinations of linearity , such as the hyperbolic tangent function (Tan h) or
these transformations . The convolution stage computes the a variant of the rectifier function f (x) = max (0 , x) . However ,
output of functions (e.g. , neurons) that are connected to 60 the specific mathematical function used in the hidden layer
specific regions in the input , which can be determined as the 1204 can vary depending on the specific implementation
local region associated with the neuron . The neurons com- details of the RNN 1200 .
pute a dot product between the weights of the neurons and In addition to the basic CNN and RNN networks
the region in the local input to which the neurons are described , variations on those networks may be enabled .
connected . The output from the convolution stage 1116 65 One example RNN variant is the long short term memory
defines a set of linear activations that are processed by (LSTM) RNN . LSTM RNNs are capable of learning long
successive stages of the convolutional layer 1114 . term dependencies that may be necessary for processing

10

US 11,080,811 B2
35 36

longer sequences of language . A variant on the CNN is a Incremental learning enables the trained neural network
convolutional deep belief network , which has a structure 1308 to adapt to the new data 1312 without forgetting the
similar to a CNN and is trained in a manner similar to a deep knowledge instilled within the network during initial train
belief network . A deep belief network (DBN) is a generative ing .
neural network that is composed of multiple layers of 5 Whether supervised or unsupervised , the training process
stochastic (random) variables . DBNs can be trained layer for particularly deep neural networks may be too computa by - layer using greedy unsupervised learning . The learned tionally intensive for a single compute node . Instead of using
weights of the DBN can then be used to provide pre - train a single compute node , a distributed network of computa neural networks by determining an optimal initial set of tional nodes can be used to accelerate the training process . weights for the neural network .
FIG . 13 illustrates training and deployment of a deep FIG . 14 is a block diagram illustrating distributed learn

ing . Distributed learning is a training model that uses neural network . Once a given network has been structured
for a task the neural network is trained using a training multiple distributed computing nodes to perform supervised
dataset 1302. Various training frameworks 1304 have been or unsupervised training of a neural network . The distributed
developed to enable hardware acceleration of the training 15 computational nodes can each include one or more host
process . For example , the machine learning framework 804 processors and one or more of the general - purpose process
of FIG . 8 may be configured as a training framework 1304 . ing nodes , such as the highly - parallel general - purpose
The training framework 1304 can hook into an untrained graphics processing unit 900 as in FIG . 9. As illustrated ,
neural network 1306 and enable the untrained neural net to distributed learning can be performed model parallelism
be trained using the parallel processing resources described 20 1402 , data parallelism 1404 , or a combination of model and
herein to generate a trained neural net 1308 . data parallelism 1406 .

To start the training process the initial weights may be In model parallelism 1402 , different computational nodes
chosen randomly or by pre - training using a deep belief in a distributed system can perform training computations
network . The training cycle then be performed in either a for different parts of a single network . For example , each
supervised or unsupervised manner . 25 layer of a neural network can be trained by a different

Supervised learning is a learning method in which train- processing node of the distributed system . The benefits of
ing is performed as a mediated operation , such as when the model parallelism include the ability to scale to particularly
training dataset 1302 includes input paired with the desired large models . Splitting the computations associated with
output for the input , or where the training dataset includes different layers of the neural network enables the training of
input having known output and the output of the neural 30 very large neural networks in which the weights of all layers
network is manually graded . The network processes the would not fit into the memory of a single computational
inputs and compares the resulting outputs against a set of node . In some instances , model parallelism can be particu
expected or desired outputs . Errors are then propagated back larly useful in performing unsupervised training of large
through the system . The training framework 1304 can adjust neural networks .
to adjust the weights that control the untrained neural 35 In data parallelism 1404 , the different nodes of the dis
network 1306. The training framework 1304 can provide tributed network have a complete instance of the model and
tools to monitor how well the untrained neural network 1306 each node receives a different portion of the data . The results
is converging towards a model suitable to generating correct from the different nodes are then combined . While different
answers based on known input data . The training process approaches to data parallelism are possible , data parallel
occurs repeatedly as the weights of the network are adjusted 40 training approaches all require a technique of combining
to refine the output generated by the neural network . The results and synchronizing the model parameters between
training process can continue until the neural network each node . Exemplary approaches to combining data include
reaches a statistically desired accuracy associated with a parameter averaging and update - based data parallelism .
trained neural network 1308. The trained neural network Parameter averaging trains each node on a subset of the
1308 can then be deployed to implement any number of 45 training data and sets the global parameters (e.g. , weights ,
machine learning operations to generate an inference result biases) to the average of the parameters from each node .
1314 based on input of new data 1312 . Parameter averaging uses a central parameter server that

Unsupervised learning is a learning method in which the maintains the parameter data . Update based data parallelism
network attempts to train itself using unlabeled data . Thus , is similar to parameter averaging except that instead of
for unsupervised learning the training dataset 1302 will 50 transferring parameters from the nodes to the parameter
include input data without any associated output data . The server , the updates to the model are transferred . Addition
untrained neural network 1306 can learn groupings within ally , update - based data parallelism can be performed in a
the unlabeled input and can determine how individual inputs decentralized manner , where the updates are compressed
are related to the overall dataset . Unsupervised training can and transferred between nodes .
be used to generate a self - organizing map , which is a type of 55 Combined model and data parallelism 1406 can be imple
trained neural network 1308 capable of performing opera- mented , for example , in a distributed system in which each
tions useful in reducing the dimensionality of data . Unsu- computational node includes multiple GPUs . Each node can
pervised training can also be used to perform anomaly have a complete instance of the model with separate GPUs
detection , which allows the identification of data points in an within each node are used to train different portions of the
input dataset that deviate from the normal patterns of the 60 model .
data . Distributed training has increased overhead relative to

Variations on supervised and unsupervised training may training on a single machine . However , the parallel proces
also be employed . Semi - supervised learning is a technique sors and GPGPUs described herein can each implement
in which in the training dataset 1302 includes a mix of various techniques to reduce the overhead of distributed
labeled and unlabeled data of the same distribution . Incre- 65 training , including techniques to enable high bandwidth
mental learning is a variant of supervised learning in which GPU - to - GPU data transfer and accelerated remote data
input data is continuously used to further train the model . synchronization .

US 11,080,811 B2
37 38

Exemplary Machine Learning Applications configured for use in autonomous vehicles the SOC is
Machine learning can be applied to solve a variety of designed and configured for compliance with the relevant

technological problems , including but not limited to com- functional safety standards of the deployment jurisdiction .
puter vision , autonomous driving and navigation , speech During operation , the media processor 1502 and vision
recognition , and language processing . Computer vision has 5 processor 1504 can work in concert to accelerate computer
traditionally been one of the most active research areas for vision operations . The media processor 1502 can enable low
machine learning applications . Applications of computer latency decode of multiple high - resolution (e.g. , 4K , 8K)
vision range from reproducing human visual abilities , such video streams . The decoded video streams can be written to
as recognizing faces , to creating new categories of visual a buffer in the on - chip - memory 1505. The vision processor
abilities . For example , computer vision applications can be 10 1504 can then parse the decoded video and perform pre
configured to recognize sound waves from the vibrations liminary processing operations on the frames of the decoded
induced in objects visible in a video . Parallel processor video in preparation of processing the frames using a trained
accelerated machine learning enables computer vision appli- image recognition model . For example , the vision processor
cations to be trained using significantly larger training 1504 can accelerate convolution operations for a CNN that
dataset than previously feasible and enables inferencing 15 is used to perform image recognition on the high - resolution
systems to be deployed using low power parallel processors . video data , while back end model computations are per

Parallel processor accelerated machine learning has formed by the GPGPU 1506 .
autonomous driving applications including lane and road The multi - core processor 1508 can include control logic
sign recognition , obstacle avoidance , navigation , and driv- to assist with sequencing and synchronization of data trans
ing control . Accelerated machine learning techniques can be 20 fers and shared memory operations performed by the media
used to train driving models based on datasets that define the processor 1502 and the vision processor 1504. The multi
appropriate responses to specific training input . The parallel core processor 1508 can also function as an application
processors described herein can enable rapid training of the processor to execute software applications that can make use
increasingly complex neural networks used for autonomous of the inferencing compute capability of the GPGPU 1506 .
driving solutions and enables the deployment of low power 25 For example , at least a portion of the navigation and driving
inferencing processors in a mobile platform suitable for logic can be implemented in software executing on the
integration into autonomous vehicles . multi - core processor 1508. Such software can directly issue

Parallel processor accelerated deep neural networks have computational workloads to the GPGPU 1506 or the com
enabled machine learning approaches to automatic speech putational workloads can be issued to the multi - core pro
recognition (ASR) . ASR includes the creation of a function 30 cessor 1508 , which can offload at least a portion of those
that computes the most probable linguistic sequence given operations to the GPGPU 1506 .
an input acoustic sequence . Accelerated machine learning The GPGPU 1506 can include compute clusters such as a
using deep neural networks have enabled the replacement of low power configuration of the compute clusters 906A
the hidden Markov models (HMMs) and Gaussian mixture 906H within the highly - parallel general - purpose graphics
models (GMMs) previously used for ASR . 35 processing unit 900. The compute clusters within the

Parallel processor accelerated machine learning can also GPGPU 1506 can support instruction that are specifically
be used to accelerate natural language processing . Auto- optimized to perform inferencing computations on a trained
matic learning procedures can make use of statistical infer- neural network . For example , the GPGPU 1506 can support
ence algorithms to produce models that are robust to erro- instructions to perform low precision computations such as
neous or unfamiliar input . Exemplary natural language 40 8 - bit and 4 - bit integer vector operations .
processor applications include automatic machine transla- Additional Exemplary Graphics Processing System
tion between human languages . Details of the embodiments described above can be

The parallel processing platforms used for machine learn- incorporated within graphics processing systems and
ing can be divided into training platforms and deployment devices described below . The graphics processing system
platforms . Training platforms are generally highly parallel 45 and devices of FIGS . 16-29 illustrate alternative systems and
and include optimizations to accelerate multi - GPU single graphics processing hardware that can implement any and
node training and multi - node , multi - GPU training . Exem- all of the techniques described above .
plary parallel processors suited for training include the Additional Exemplary Graphics Processing System Over
highly - parallel general - purpose graphics processing unit and view
the multi - GPU computing system . On the contrary , deployed 50 FIG . 16 is a block diagram of a processing system 1600 ,
machine learning platforms generally include lower power according to an embodiment . In various embodiments the
parallel processors suitable for use in products such as system 1600 includes one or more processors 1602 and one
cameras , autonomous robots , and autonomous vehicles . or more graphics processors 1608 , and may be a single
FIG . 15 illustrates an exemplary inferencing system on a processor desktop system , a multiprocessor workstation

chip (SOC) 1500 suitable for performing inferencing using 55 system , or a server system having a large number of pro
a trained model . The SOC 1500 can integrate processing cessors 1602 or processor cores 1607. In one embodiment ,
components including a media processor 1502 , a vision the system 1600 is a processing platform incorporated
processor 1504 , a GPGPU 1506 and a multi - core processor within a system - on - a - chip (SOC) integrated circuit for use in
1508. The SOC 1500 can additionally include on - chip mobile , handheld , or embedded devices .
memory 1505 that can enable a shared on - chip data pool that 60 An embodiment of system 1600 can include , or be incor
is accessible by each of the processing components . The porated within a server - based gaming platform , a game
processing components can be optimized for low power console , including a game and media console , a mobile
operation to enable deployment to a variety of machine gaming console , a handheld game console , or an online
learning platforms , including autonomous vehicles and game console . In some embodiments system 1600 is a
autonomous robots . For example , one implementation of the 65 mobile phone , smart phone , tablet computing device or
SOC 1500 can be used as a portion of the main control mobile Internet device . Data processing system 1600 can
system for an autonomous vehicle . Where the SOC 1500 is also include , couple with , or be integrated within a wearable

US 11,080,811 B2
39 40

device , such as a smart watch wearable device , smart data storage device 1624 (e.g. , hard disk drive , flash
eyewear device , augmented reality device , or virtual reality memory , etc.) , and a legacy I / O controller 1640 for coupling
device . In some embodiments , data processing system 1600 legacy (e.g. , Personal System 2 (PS / 2)) devices to the
is a television or set top box device having one or more system . One or more Universal Serial Bus (USB) controllers
processors 1602 and a graphical interface generated by one 5 1642 connect input devices , such as keyboard and mouse
or more graphics processors 1608 . 1644 combinations . A network controller 1634 may also

In some embodiments , the one or more processors 1602 couple with ICH 1630. In some embodiments , a high
each include one or more processor cores 1607 to process performance network controller (not shown) couples with
instructions which , when executed , perform operations for processor bus 1610. It will be appreciated that the system
system and user software . In some embodiments , each of the 10 1600 shown is exemplary and not limiting , as other types of
one or more processor cores 1607 is configured to process a data processing systems that are differently configured may
specific instruction set 1609. In some embodiments , instruc- also be used . For example , the I / O controller hub 1630 may
tion set 1609 may facilitate Complex Instruction Set Com- be integrated within the one or more processor 1602 , or the
puting (CISC) , Reduced Instruction Set Computing (RISC) , memory controller hub 1616 and I / O controller hub 1630
or computing via a Very Long Instruction Word (VLIW) . 15 may be integrated into a discreet external graphics proces
Multiple processor cores 1607 may each process a different sor , such as the external graphics processor 1612 .
instruction set 1609 , which may include instructions to FIG . 17 is a block diagram of an embodiment of a
facilitate the emulation of other instruction sets . Processor processor 1700 having one or more processor cores 1702A
core 1607 may also include other processing devices , such 1702N , an integrated memory controller 1714 , and an inte
a Digital Signal Processor (DSP) . 20 grated graphics processor 1708. Those elements of FIG . 17

In some embodiments , the processor 1602 includes cache having the same reference numbers (or names) as the
memory 1604. Depending on the architecture , the processor elements of any other figure herein can operate or function
1602 can have a single internal cache or multiple levels of in any manner similar to that described elsewhere herein , but
internal cache . In some embodiments , the cache memory is are not limited to such . Processor 1700 can include addi
shared among various components of the processor 1602. In 25 tional cores up to and including additional core 1702N
some embodiments , the processor 1602 also uses an external represented by the dashed lined boxes . Each of processor
cache (e.g. , a Level - 3 (L3) cache or Last Level Cache cores 1702A - 1702N includes one or more internal cache
(LLC)) (not shown) , which may be shared among processor units 1704A - 1704N . In some embodiments each processor
cores 1607 using known cache coherency techniques . A core also has access to one or more shared cached units
register file 1606 is additionally included in processor 1602 30 1706 .
which may include different types of registers for storing The internal cache units 1704A - 1704N and shared cache
different types of data (e.g. , integer registers , floating point units 1706 represent a cache memory hierarchy within the
registers , status registers , and an instruction pointer regis- processor 1700. The cache memory hierarchy may include at
ter) . Some registers may be general - purpose registers , while least one level of instruction and data cache within each
other registers may be specific to the design of the processor 35 processor core and one or more levels of shared mid - level
1602 . cache , such as a Level 2 (L2) , Level 3 (L3) , Level 4 (L4) ,

In some embodiments , processor 1602 is coupled with a or other levels of cache , where the highest level of cache
processor bus 1610 to transmit communication signals such before external memory is classified as the LLC . In some
as address , data , or control signals between processor 1602 embodiments , cache coherency logic maintains coherency
and other components in system 1600. In one embodiment 40 between the various cache units 1706 and 1704A - 1704N .
the system 1600 uses an exemplary ' hub ' system architec- In some embodiments , processor 1700 may also include
ture , including a memory controller hub 1616 and an Input a set of one or more bus controller units 1716 and a system
Output (I / O) controller hub 1630. A memory controller hub agent core 1710. The one or more bus controller units 1716
1616 facilitates communication between a memory device manage a set of peripheral buses , such as one or more
and other components of system 1600 , while an I / O Con- 45 Peripheral Component Interconnect buses (e.g. , PCI , PCI
troller Hub (ICH) 1630 provides connections to I / O devices Express) . System agent core 1710 provides management
via a local I / O bus . In one embodiment , the logic of the functionality for the various processor components . In some
memory controller hub 1616 is integrated within the pro- embodiments , system agent core 1710 includes one or more

integrated memory controllers 1714 to manage access to
Memory device 1620 can be a dynamic random access 50 various external memory devices (not shown) .

memory (DRAM) device , a static random access memory In some embodiments , one or more of the processor cores
(SRAM) device , flash memory device , phase - change 1702A - 1702N include support for simultaneous multi
memory device , or some other memory device having threading . In such embodiment , the system agent core 1710
suitable performance to serve as process memory . In one includes components for coordinating and operating cores
embodiment the memory device 1620 can operate as system 55 1702A - 1702N during multi - threaded processing . System
memory for the system 1600 , to store data 1622 and instruc- agent core 1710 may additionally include a power control
tions 1621 for use when the one or more processors 1602 unit (PCU) , which includes logic and components to regu
executes an application or process . Memory controller hub late the power state of processor cores 1702A - 1702N and
1616 also couples with an optional external graphics pro- graphics processor 1708 .
cessor 1612 , which may communicate with the one or more 60 In some embodiments , processor 1700 additionally
graphics processors 1608 in processors 1602 to perform includes graphics processor 1708 to execute graphics pro
graphics and media operations . cessing operations . In some embodiments , the graphics

In some embodiments , ICH 1630 enables peripherals to processor 1708 couples with the set of shared cache units
connect to memory device 1620 and processor 1602 via a 1706 , and the system agent core 1710 , including the one or
high - speed I / O bus . The I / O peripherals include , but are not 65 more integrated memory controllers 1714. In some embodi
limited to , an audio controller 1646 , a firmware interface ments , a display controller 1711 is coupled with the graphics
1628 , a wireless transceiver 1626 (e.g. , Wi - Fi , Bluetooth) , a processor 1708 to drive graphics processor output to one or

cessor .

5

US 11,080,811 B2
41 42

more coupled displays . In some embodiments , display con- one or more components of graphics processing engine
troller 1711 may be a separate module coupled with the (GPE) 1810. In some embodiments , GPE 1810 is a compute
graphics processor via at least one interconnect , or may be engine for performing graphics operations , including three
integrated within the graphics processor 1708 or system dimensional (3D) graphics operations and media operations .
agent core 1710 . In some embodiments , GPE 1810 includes a 3D pipeline

In some embodiments , a ring based interconnect unit 1812 for performing 3D operations , such as rendering three
1712 is used to couple the internal components of the dimensional images and scenes using processing functions
processor 1700. However , an alternative interconnect unit that act upon 3D primitive shapes (e.g. , rectangle , triangle ,
may be used , such as a point - to - point interconnect , a etc.) . The 3D pipeline 1812 includes programmable and
switched interconnect , or other techniques , including tech- 10 fixed function elements that perform various tasks within the
niques well known in the art . In some embodiments , graph- element and / or spawn execution threads to a 3D / Media
ics processor 1708 couples with the ring interconnect 1712 sub - system 1815. While 3D pipeline 1812 can be used to
via an I / O link 1713 . perform media operations , an embodiment of GPE 1810 also

The exemplary I / O link 1713 represents at least one of includes a media pipeline 1816 that is specifically used to
multiple varieties of 1/0 interconnects , including an on- 15 perform media operations , such as video post - processing
package I / O interconnect which facilitates communication and image enhancement .
between various processor components and a high - perfor- In some embodiments , media pipeline 1816 includes fixed
mance embedded memory module 1718 , such as an eDRAM function or programmable logic units to perform one or
module . In some embodiments , each of the processor cores more specialized media operations , such as video decode
1702A - 1702N and graphics processor 1708 use embedded 20 acceleration , video de - interlacing , and video encode accel
memory modules 1718 as a shared Last Level Cache . eration in place of , or on behalf of video codec engine 1806 .

In some embodiments , processor cores 1702A - 1702N are In some embodiments , media pipeline 1816 additionally
homogenous cores executing the same instruction set archi- includes a thread spawning unit to spawn threads for execu
tecture . In another embodiment , processor cores 1702A- tion on 3D / Media sub - system 1815. The spawned threads
1702N are heterogeneous in terms of instruction set archi- 25 perform computations for the media operations on one or
tecture (ISA) , where one or more of processor cores 1702A- more graphics execution units included in 3D / Media sub
1702N execute a first instruction set , while at least one of the system 1815 .
other cores executes a subset of the first instruction set or a In some embodiments , 3D / Media subsystem 1815
different instruction set . In one embodiment processor cores includes logic for executing threads spawned by 3D pipeline
1702A - 1702N are heterogeneous in terms of microarchitec- 30 1812 and media pipeline 1816. In one embodiment , the
ture , where one or more cores having a relatively higher pipelines send thread execution requests to 3D / Media sub
power consumption couple with one or more power cores system 1815 , which includes thread dispatch logic for arbi
having a lower power consumption . Additionally , processor trating and dispatching the various requests to available
1700 can be implemented on one or more chips or as an SoC thread execution resources . The execution resources include
integrated circuit having the illustrated components , in addi- 35 an array of graphics execution units to process the 3D and
tion to other components . media threads . In some embodiments , 3D / Media subsystem

FIG . 18 is a block diagram of a graphics processor 1800 , 1815 includes one or more internal caches for thread instruc
which may be a discrete graphics processing unit , or may be tions and data . In some embodiments , the subsystem also
a graphics processor integrated with a plurality of processing includes shared memory , including registers and addressable
cores . In some embodiments , the graphics processor com- 40 memory , to share data between threads and to store output
municates via a memory mapped I / O interface to registers data .
on the graphics processor and with commands placed into Graphics Processing Engine
the processor memory . In some embodiments , graphics FIG . 19 is a block diagram of a graphics processing
processor 1800 includes a memory interface 1814 to access engine 1910 of a graphics processor in accordance with
memory . Memory interface 1814 can be an interface to local 45 some embodiments . In one embodiment , the graphics pro
memory , one or more internal caches , one or more shared cessing engine (GPE) 1910 is a version of the GPE 1810
external caches , and / or to system memory . shown in FIG . 18. Elements of FIG . 19 having the same

In some embodiments , graphics processor 1800 also reference numbers (or names) as the elements of any other
includes a display controller 1802 to drive display output figure herein can operate or function in any manner similar
data to display device 1820. Display controller 1802 50 to that described elsewhere herein , but are not limited to
includes hardware for one or more overlay planes for the such . For example , the 3D pipeline 1812 and media pipeline
display and composition of multiple layers of video or user 1816 of FIG . 18 are illustrated . The media pipeline 1816 is
interface elements . In some embodiments , graphics proces- optional in some embodiments of the GPE 1910 and may not
sor 1800 includes a video codec engine 1806 to encode , be explicitly included within the GPE 1910. For example
decode , or transcode media to , from , or between one or more 55 and in at least one embodiment , a separate media and / or
media encoding formats , including , but not limited to Mov- image processor is coupled to the GPE 1910 .
ing Picture Experts Group (MPEG) formats such as MPEG- In some embodiments , GPE 1910 couples with or
2 , Advanced Video Coding (AVC) formats such as H.264 / includes a command streamer 1903 , which provides a com
MPEG - 4 AVC , as well as the Society of Motion Picture & mand stream to the 3D pipeline 1812 and / or media pipelines
Television Engineers (SMPTE) 421M / VC - 1 , and Joint Pho- 60 1816. In some embodiments , command streamer 1903 is
tographic Experts Group (JPEG) formats such as JPEG , and coupled with memory , which can be system memory , or one
Motion JPEG (MJPEG) formats . or more of internal cache memory and shared cache

In some embodiments , graphics processor 1800 includes memory . In some embodiments , command streamer 1903
a block image transfer (BLIT) engine 1804 to perform receives commands from the memory and sends the com
two - dimensional (2D) rasterizer operations including , for 65 mands to 3D pipeline 1812 and / or media pipeline 1816. The
example , bit - boundary block transfers . However , in one commands are directives fetched from a ring buffer , which
embodiment , 2D graphics operations are performed using stores commands for the 3D pipeline 1812 and media

10

array 1914 .

US 11,080,811 B2
43 44

pipeline 1816. In one embodiment , the ring buffer can array 1914 and included within the graphics core array 1914
additionally include batch command buffers storing batches varies between embodiments .
of multiple commands . The commands for the 3D pipeline FIG . 20 is a block diagram of another embodiment of a
1812 can also include references to data stored in memory , graphics processor 2000. Elements of FIG . 20 having the
such as but not limited to vertex and geometry data for the 5 same reference numbers (or names) as the elements of any
3D pipeline 1812 and / or image data and memory objects for other figure herein can operate or function in any manner
the media pipeline 1816. The 3D pipeline 1812 and media similar to that described elsewhere herein , but are not
pipeline 1816 process the commands and data by performing limited to such .
operations via logic within the respective pipelines or by In some embodiments , graphics processor 2000 includes
dispatching one or more execution threads to a graphics core a ring interconnect 2002 , a pipeline front - end 2004 , a media

engine 2037 , and graphics cores 2080A - 2080N . In some
In various embodiments the 3D pipeline 1812 can execute embodiments , ring interconnect 2002 couples the graphics

one or more shader programs , such as vertex shaders , processor to other processing units , including other graphics
geometry shaders , pixel shaders , fragment shaders , compute 15 processors or one or more general - purpose processor cores .
shaders , or other shader programs , by processing the instruc- In some embodiments , the graphics processor is one of many
tions and dispatching execution threads to the graphics core processors integrated within a multi - core processing system .
array 1914. The graphics core array 1914 provides a unified In some embodiments , graphics processor 2000 receives
block of execution resources . Multi - purpose execution logic batches of commands via ring interconnect 2002. The
(e.g. , execution units) within the graphic core array 1914 20 incoming commands are interpreted by a command streamer
includes support for various 3D API shader languages and 2003 in the pipeline front - end 2004. In some embodiments ,
can execute multiple simultaneous execution threads asso- graphics processor 2000 includes scalable execution logic to
ciated with multiple shaders . perform 3D geometry processing and media processing via

In some embodiments the graphics core array 1914 also the graphics core (s) 2080A - 2080N . For 3D geometry pro
includes execution logic to perform media functions , such as 25 cessing commands , command streamer 2003 supplies com
video and / or image processing . In one embodiment , the mands to geometry pipeline 2036. For at least some media
execution units additionally include general - purpose logic processing commands , command streamer 2003 supplies the
that is programmable to perform parallel general purpose commands to a video front end 2034 , which couples with a
computational operations , in addition to graphics processing media engine 2037. In some embodiments , media engine
operations . The general - purpose logic can perform process- 30 2037 includes a Video Quality Engine (VQE) 2030 for video
ing operations in parallel or in conjunction with general and image post - processing and a multi - format encode / de
purpose logic within the processor core (s) 1607 of FIG . 16 code (MFX) 2033 engine to provide hardware - accelerated
or core 1702A - 1702N as in FIG . 17 . media data encode and decode . In some embodiments ,

Output data generated by threads executing on the graph- geometry pipeline 2036 and media engine 2037 each gen
ics core array 1914 can output data to memory in a unified 35 erate execution threads for the thread execution resources
return buffer (URB) 1918. The URB 1918 can store data for provided by at least one graphics core 2080A .
multiple threads . In some embodiments the URB 1918 may In some embodiments , graphics processor 2000 includes
be used to send data between different threads executing on scalable thread execution resources featuring modular cores
the graphics core array 1914. In some embodiments the 2080A - 2080N (sometimes referred to as core slices) , each
URB 1918 may additionally be used for synchronization 40 having multiple sub - cores 2050A - 550N , 2060A - 2060N
between threads on the graphics core array and fixed func- (sometimes referred to as core sub - slices) . In some embodi
tion logic within the shared function logic 1920 . ments , graphics processor 2000 can have any number of

In some embodiments , graphics core array 1914 is scal- graphics cores 2080A through 2080N . In some embodi
able , such that the array includes a variable number of ments , graphics processor 2000 includes a graphics core
graphics cores , each having a variable number of execution 45 2080A having at least a first sub - core 2050A and a second
units based on the target power and performance level of sub - core 2060A . In other embodiments , the graphics pro
GPE 1910. In one embodiment the execution resources are cessor is a low power processor with a single sub - core (e.g. ,
dynamically scalable , such that execution resources may be 2050A) . In some embodiments , graphics processor 2000
enabled or disabled as needed . includes multiple graphics cores 2080A - 2080N , each

The graphics core array 1914 couples with shared func- 50 including a set of first sub - cores 2050A - 2050N and a set of
tion logic 1920 that includes multiple resources that are second sub - cores 2060A - 2060N . Each sub - core in the set of
shared between the graphics cores in the graphics core array . first sub - cores 2050A - 2050N includes at least a first set of
The shared functions within the shared function logic 1920 execution units 2052A - 2052N and media / texture samplers
are hardware logic units that provide specialized supple- 2054A - 2054N . Each sub - core in the set of second sub - cores
mental functionality to the graphics core array 1914. In 55 2060A - 2060N includes at least a second set of execution
various embodiments , shared function logic 1920 includes units 2062A - 2062N and samplers 2064A - 2064N . In some
but is not limited to sampler 1921 , math 1922 , and inter- embodiments , each sub - core 2050A - 2050N , 2060A - 2060N
thread communication (ITC) 1923 logic . Additionally , some shares a set of shared resources 2070A - 2070N . In some
embodiments implement one or more cache (s) 1925 within embodiments , the shared resources include shared cache
the shared function logic 1920. A shared function is imple- 60 memory and pixel operation logic . Other shared resources
mented where the demand for a given specialized function may also be included in the various embodiments of the
is insufficient for inclusion within the graphics core array graphics processor .
1914. Instead a single instantiation of that specialized func- Execution Units
tion is implemented as a stand - alone entity in the shared FIG . 21 illustrates thread execution logic 2100 including
function logic 1920 and shared among the execution 65 an array of processing elements employed in some embodi
resources within the graphics core array 1914. The precise ments of a GPE . Elements of FIG . 21 having the same
set of functions that are shared between the graphics core reference numbers (or names) as the elements of any other

10

15

US 11,080,811 B2
45 46

figure herein can operate or function in any manner similar tion unit can perform operations for a pixel shader , fragment
to that described elsewhere herein , but are not limited to shader , or another type of shader program , including a
such . different vertex shader .

In some embodiments , thread execution logic 2100 Each execution unit in execution units 2108A - 2108N
includes a shader processor 2102 , a thread dispatcher 2104 , 5 operates on arrays of data elements . The number of data
instruction cache 2106 , a scalable execution unit array elements is the " execution size , " or the number of channels
including a plurality of execution units 2108A - 2108N , a for the instruction . An execution channel is a logical unit of
sampler 2110 , a data cache 2112 , and a data port 2114. In one execution for data element access , masking , and flow control
embodiment the scalable execution unit array can dynami- within instructions . The number of channels may be inde
cally scale by enabling or disabling one or more execution pendent of the number of physical Arithmetic Logic Units
units (e.g. , any of execution unit 2108A , 2108B , 2108C , (ALUS) or Floating Point Units (FPUs) for a particular
2108D , through 2108N - 1 and 2108N) based on the com- graphics processor . In some embodiments , execution units
putational requirements of a workload . In one embodiment 2108A - 2108N support integer and floating - point data types .
the included components are interconnected via an intercon- The execution unit instruction set includes SIMD instruc
nect fabric that links to each of the components . In some tions . The various data elements can be stored as a packed
embodiments , thread execution logic 2100 includes one or data type in a register and the execution unit will process the
more connections to memory , such as system memory or various elements based on the data size of the elements . For
cache memory , through one or more of instruction cache example , when operating on a 256 - bit wide vector , the 256
2106 , data port 2114 , sampler 2110 , and execution units 20 bits of the vector are stored in a register and the execution
2108A - 2108N . In some embodiments , each execution unit unit operates on the vector as four separate 64 - bit packed
(e.g. 2108A) is a stand - alone programmable general purpose data elements (Quad - Word (QW) size data elements) , eight
computational unit that is capable of executing multiple separate 32 - bit packed data elements (Double Word (DW)
simultaneous hardware threads while processing multiple size data elements) , sixteen separate 16 - bit packed data
data elements in parallel for each thread . In various embodi- 25 elements (Word (W) size data elements) , or thirty - two
ments , the array of execution units 2108A - 2108N is scalable separate 8 - bit data elements (byte (B) size data elements) .
to include any number individual execution units . However , different vector widths and register sizes are In some embodiments , the execution units 2108A - 2108N possible .
are primarily used to execute shader programs . A shader One or more internal instruction caches (e.g. , 2106) are processor 2102 can process the various shader programs and 30 included in the thread execution logic 2100 to cache thread
dispatch execution threads associated with the shader pro instructions for the execution units . In some embodiments , grams via a thread dispatcher 2104. In one embodiment the
thread dispatcher includes logic to arbitrate thread initiation one or more data caches (e.g. , 2112) are included to cache

thread data during thread execution . In some embodiments , requests from the graphics and media pipelines and instan
tiate the requested threads on one or more execution unit in 35 a sampler 2110 is included to provide texture sampling for
the execution units 2108A - 2108N . For example , the geom 3D operations and media sampling for media operations . In
etry pipeline (e.g. , 2036 of FIG . 20) can dispatch vertex , some embodiments , sampler 2110 includes specialized tex
tessellation , or geometry shaders to the thread execution ture or media sampling functionality to process texture or
logic 2100 (FIG . 21) for processing . In some embodiments , media data during the sampling process before providing the
thread dispatcher 2104 can also process runtime thread 40 sampled data to an execution unit .
spawning requests from the executing shader programs . During execution , the graphics and media pipelines send

In some embodiments , the execution units 2108A - 2108N thread initiation requests to thread execution logic 2100 via
support an instruction set that includes native support for thread spawning and dispatch logic . Once a group of geo
many standard 3D graphics shader instructions , such that metric objects has been processed and rasterized into pixel
shader programs from graphics libraries (e.g. , Direct 3D and 45 data , pixel processor logic (e.g. , pixel shader logic , fragment
OpenGL) are executed with a minimal translation . The shader logic , etc.) within the shader processor 2102 is
execution units support vertex and geometry processing invoked to further compute output information and cause
(e.g. , vertex programs , geometry programs , vertex shaders) , results to be written to output surfaces (e.g. , color buffers ,
pixel processing (e.g. , pixel shaders , fragment shaders) and depth buffers , stencil buffers , etc.) . In some embodiments , a
general - purpose processing (e.g. , compute and media shad- 50 pixel shader or fragment shader calculates the values of the
ers) . Each of the execution units 2108A - 2108N is capable of various vertex attributes that are to be interpolated across the
multi - issue single instruction multiple data (SIMD) execu- rasterized object . In some embodiments , pixel processor
tion and multi - threaded operation enables an efficient execu- logic within the shader processor 2102 then executes an
tion environment in the face of higher latency memory application programming interface (API) -supplied pixel or
accesses . Each hardware thread within each execution unit 55 fragment shader program . To execute the shader program ,
has a dedicated high - bandwidth register file and associated the shader processor 2102 dispatches threads to an execution
independent thread - state . Execution is multi - issue per clock unit (e.g. , 2108A) via thread dispatcher 2104. In some
to pipelines capable of integer , single and double precision embodiments , pixel shader 2102 uses texture sampling logic
floating point operations , SIMD branch capability , logical in the sampler 2110 to access texture data in texture maps
operations , transcendental operations , and other miscella- 60 stored in memory . Arithmetic operations on the texture data
neous operations . While waiting for data from memory or and the input geometry data compute pixel color data for
one of the shared functions , dependency logic within the each geometric fragment , or discards one or more pixels
execution units 2108A - 2108N causes a waiting thread to from further processing .
sleep until the requested data has been returned . While the In some embodiments , the data port 2114 provides a
waiting thread is sleeping , hardware resources may be 65 memory access mechanism for the thread execution logic
devoted to processing other threads . For example , during a 2100 output processed data to memory for processing on a
delay associated with a vertex shader operation , an execu- graphics processor output pipeline . In some embodiments ,

US 11,080,811 B2
47 48

the data port 2114 includes or couples to one or more cache specifies an address mode and / or an access mode for the
memories (e.g. , data cache 2112) to cache data for memory instruction . In one embodiment the access mode is used to
access via the data port . define a data access alignment for the instruction . Some

FIG . 22 is a block diagram illustrating a graphics proces- embodiments support access modes including a 16 - byte
sor instruction formats 2200 according to some embodi- 5 aligned access mode and a 1 - byte aligned access mode ,
ments . In one or more embodiment , the graphics processor where the byte alignment of the access mode determines the
execution units support an instruction set having instructions access alignment of the instruction operands . For example ,
in multiple formats . The solid lined boxes illustrate the when in a first mode , the instruction may use byte - aligned
components that are generally included in an execution unit addressing for source and destination operands and when in
instruction , while the dashed lines include components that 10 a second mode , the instruction may use 16 - byte - aligned
are optional or that are only included in a sub - set of the addressing for all source and destination operands .
instructions . In some embodiments , instruction format 2200 In one embodiment , the address mode portion of the
described and illustrated are macro - instructions , in that they access / address mode field 2226 determines whether the
are instructions supplied to the execution unit , as opposed to instruction is to use direct or indirect addressing . When
micro - operations resulting from instruction decode once the 15 direct register addressing mode is used bits in the instruction
instruction is processed . directly provide the register address of one or more oper

In some embodiments , the graphics processor execution ands . When indirect register addressing mode is used , the
units natively support instructions in a 128 - bit instruction register address of one or more operands may be computed
format 2210. A 64 - bit compacted instruction format 2230 is based on an address register value and an address immediate
available for some instructions based on the selected instruc- 20 field in the instruction .
tion , instruction options , and number of operands . The In some embodiments instructions are grouped based on
native 128 - bit instruction format 2210 provides access to all opcode 2212 bit - fields to simplify Opcode decode 2240. For
instruction options , while some options and operations are an 8 - bit opcode , bits 4 , 5 , and 6 allow the execution unit to
restricted in the 64 - bit format 2230. The native instructions determine the type of opcode . The precise opcode grouping
available in the 64 - bit format 2230 vary by embodiment . In 25 shown is merely an example . In some embodiments , a move
some embodiments , the instruction is compacted in part and logic opcode group 2242 includes data movement and
using a set of index values in an index field 2213. The logic instructions (e.g. , move (mov) , compare (cmp)) . In
execution unit hardware references a set of compaction some embodiments , move and logic opcode group 2242
tables based on the index values and uses the compaction shares the five most significant bits (MSB) , where move
table outputs to reconstruct a native instruction in the 128 - bit 30 (mov) instructions are in the form of 0000xxxxb and logic
instruction format 2210 . instructions are in the form of 0001xxxxb . A flow control

For each format , instruction opcode 2212 defines the instruction group 2244 (e.g. , call , jump (jmp)) includes
operation that the execution unit is to perform . The execu- instructions in the form of 0010xxxxb (e.g. , 0x20) . A
tion units execute each instruction in parallel across the miscellaneous instruction group 2246 includes a mix of
multiple data elements of each operand . For example , in 35 instructions , including synchronization instructions (e.g. ,
response to an add instruction the execution unit performs a wait , send) in the form of 0011xxxxb (e.g. , Ox30) . A parallel
simultaneous add operation across each color channel rep- math instruction group 2248 includes component - wise arith
resenting a texture element or picture element . By default , metic instructions (e.g. , add , multiply (mul)) in the form of
the execution unit performs each instruction across all data 0100xxxxb (e.g. , Ox40) . The parallel math group 2248
channels of the operands . In some embodiments , instruction 40 performs the arithmetic operations in parallel across data
control field 2214 enables control over certain execution channels . The vector math group 2250 includes arithmetic
options , such as channels selection (e.g. , predication) and instructions (e.g. , dp4) in the form of 0101xxxxb (e.g. ,
data channel order (e.g. , swizzle) . For instructions in the 0x50) . The vector math group performs arithmetic such as
128 - bit instruction format 2210 an exec - size field 2216 dot product calculations on vector operands .
limits the number of data channels that will be executed in 45 Graphics Pipeline
parallel . In some embodiments , exec - size field 2216 is not FIG . 23 is a block diagram of another embodiment of a
available for use in the 64 - bit compact instruction format graphics processor 2300. Elements of FIG . 23 having the
2230 . same reference numbers (or names) as the elements of any
Some execution unit instructions have up to three oper- other figure herein can operate or function in any manner

ands including two source operands , src0 2220 , src1 2222 , 50 similar to that described elsewhere herein , but are not
and one destination 2218. In some embodiments , the execu- limited to such .
tion units support dual destination instructions , where one of In some embodiments , graphics processor 2300 includes
the destinations is implied . Data manipulation instructions a graphics pipeline 2320 , a media pipeline 2330 , a display
can have a third source operand (e.g. , SRC2 2224) , where engine 2340 , thread execution logic 2350 , and a render
the instruction opcode 2212 determines the number of 55 output pipeline 2370. In some embodiments , graphics pro
source operands . An instruction's last source operand can be cessor 2300 is a graphics processor within a multi - core
an immediate (e.g. , hard - coded) value passed with the processing system that includes one or more general purpose
instruction . processing cores . The graphics processor is controlled by

In some embodiments , the 128 - bit instruction format register writes to one or more control registers (not shown)
2210 includes an access / address mode field 2226 specifying , 60 or via commands issued to graphics processor 2300 via a
for example , whether direct register addressing mode or ring interconnect 2302. In some embodiments , ring inter
indirect register addressing mode is used . When direct connect 2302 couples graphics processor 2300 to other
register addressing mode is used , the register address of one processing components , such as other graphics processors or
or more operands is directly provided by bits in the instruc- general - purpose processors . Commands from ring intercon
tion . 65 nect 2302 are interpreted by a command streamer 2303 ,

In some embodiments , the 128 - bit instruction format which supplies instructions to individual components of
2210 includes an access / address mode field 2226 , which graphics pipeline 2320 or media pipeline 2330 .

US 11,080,811 B2
49 50

In some embodiments , command streamer 2303 directs verts vertex - based objects into an associated pixel - based
the operation of a vertex fetcher 2305 that reads vertex data representation . In some embodiments , the rasterizer logic
from memory and executes vertex - processing commands includes a windower / masker unit to perform fixed function
provided by command streamer 2303. In some embodi- triangle and line rasterization . An associated render cache
ments , vertex fetcher 2305 provides vertex data to a vertex 5 2378 and depth cache 2379 are also available in some
shader 2307 , which performs coordinate space transforma- embodiments . A pixel operations component 2377 performs
tion and lighting operations to each vertex . In some embodi- pixel - based operations on the data , though in some
ments , vertex fetcher 2305 and vertex shader 2307 execute instances , pixel operations associated with 2D operations
vertex - processing instructions by dispatching execution (e.g. bit block image transfers with blending) are performed
threads to execution units 2352A - 2352B via a thread dis- 10 by the 2D engine 2341 , or substituted at display time by the
patcher 2331 . display controller 2343 using overlay display planes . In

In some embodiments , execution units 2352A - 2352B are some embodiments , a shared L3 cache 2375 is available to
an array of vector processors having an instruction set for all graphics components , allowing the sharing of data with
performing graphics and media operations . In some embodi- out the use of main system memory .
ments , execution units 2352A - 2352B have an attached L1 15 In some embodiments , graphics processor media pipeline
cache 2351 that is specific for each array or shared between 2330 includes a media engine 2337 and a video front end
the arrays . The cache can be configured as a data cache , an 2334. In some embodiments , video front end 2334 receives
instruction cache , or a single cache that is partitioned to pipeline commands from the command streamer 2303. In
contain data and instructions in different partitions . some embodiments , media pipeline 2330 includes a separate

In some embodiments , graphics pipeline 2320 includes 20 command streamer . In some embodiments , video front end
tessellation components to perform hardware - accelerated 2334 processes media commands before sending the com
tessellation of 3D objects . In some embodiments , a pro- mand to the media engine 2337. In some embodiments ,
grammable hull shader 811 configures the tessellation opera- media engine 2337 includes thread spawning functionality
tions . A programmable domain shader 817 provides back- to spawn threads for dispatch to thread execution logic 2350
end evaluation of tessellation output . A tessellator 2313 25 via thread dispatcher 2331 .
operates at the direction of hull shader 2311 and contains In some embodiments , graphics processor 2300 includes
special purpose logic to generate a set of detailed geometric a display engine 2340. In some embodiments , display engine
objects based on a coarse geometric model that is provided 2340 is external to graphics processor 2300 and couples with
as input to graphics pipeline 2320. In some embodiments , if the graphics processor via the ring interconnect 2302 , or
tessellation is not used , tessellation components (e.g. , hull 30 some other interconnect bus or fabric . In some embodi
shader 2311 , tessellator 2313 , and domain shader 2317) can ments , display engine 2340 includes a 2D engine 2341 and
be bypassed . a display controller 2343. In some embodiments , display

In some embodiments , complete geometric objects can be engine 2340 contains special purpose logic capable of
processed by a geometry shader 2319 via one or more operating independently of the 3D pipeline . In some
threads dispatched to execution units 2352A - 2352B , or can 35 embodiments , display controller 2343 couples with a display
proceed directly to the clipper 2329. In some embodiments , device (not shown) , which may be a system integrated
the geometry shader operates on entire geometric objects , display device , as in a laptop computer , or an external
rather than vertices or patches of vertices as in previous display device attached via a display device connector .
stages of the graphics pipeline . If the tessellation is disabled In some embodiments , graphics pipeline 2320 and media
the geometry shader 2319 receives input from the vertex 40 pipeline 2330 are configurable to perform operations based
shader 2307. In some embodiments , geometry shader 2319 on multiple graphics and media programming interfaces and
is programmable by a geometry shader program to perform are not specific to any one application programming inter
geometry tessellation if the tessellation units are disabled . face (API) . In some embodiments , driver software for the

Before rasterization , a clipper 2329 processes vertex data . graphics processor translates API calls that are specific to a
The clipper 2329 may be a fixed function clipper or a 45 particular graphics or media library into commands that can
programmable clipper having clipping and geometry shader be processed by the graphics processor . In some embodi
functions . In some embodiments , a rasterizer and depth test ments , support is provided for the Open Graphics Library
component 2373 in the render output pipeline 2370 dis- (OpenGL) , Open Computing Language (OpenCL) , and / or
patches pixel shaders to convert the geometric objects into Vulkan graphics and compute API , all from the Khronos
their per pixel representations . In some embodiments , pixel 50 Group . In some embodiments , support may also be provided
shader logic is included in thread execution logic 2350. In for the Direct3D library from the Microsoft Corporation . In
some embodiments , an application can bypass the rasterizer some embodiments , a combination of these libraries may be
and depth test component 2373 and access un - rasterized supported . Support may also be provided for the Open
vertex data via a stream out unit 2323 . Source Computer Vision Library (OpenCV) . A future API

The graphics processor 2300 has an interconnect bus , 55 with a compatible 3D pipeline would also be supported if a
interconnect fabric , or some other interconnect mechanism mapping can be made from the pipeline of the future API to
that allows data and message passing amongst the major the pipeline of the graphics processor .
components of the processor . In some embodiments , execu- Graphics Pipeline Programming
tion units 2352A - 2352B and associated cache (s) 2351 , tex- FIG . 24A is a block diagram illustrating a graphics
ture and media sampler 2354 , and texture / sampler cache 60 processor command format 2400 according to some embodi
2358 interconnect via a data port 2356 to perform memory ments . FIG . 24B is a block diagram illustrating a graphics
access and communicate with render output pipeline com- processor command sequence 2410 according to an embodi
ponents of the processor . In some embodiments , sampler ment . The solid lined boxes in FIG . 24A illustrate the
2354 , caches 2351 , 2358 and execution units 2352A - 2352B components that are generally included in a graphics com
each have separate memory access paths . 65 mand while the dashed lines include components that are

In some embodiments , render output pipeline 2370 con- optional or that are only included in a sub - set of the graphics
tains a rasterizer and depth test component 2373 that con- commands . The exemplary graphics processor command

5

US 11,080,811 B2
51 52

format 2400 of FIG . 24A includes data fields to identify a embodiment , the pipeline control command 2414 is used for
target client 2402 of the command , a command operation pipeline synchronization and to clear data from one or more
code (opcode) 2404 , and the relevant data 2406 for the cache memories within the active pipeline before processing
command . A sub - opcode 2405 and a command size 2408 are a batch of commands .
also included in some commands . In some embodiments , return buffer state commands 2416

In some embodiments , client 2402 specifies the client unit are used to configure a set of return buffers for the respective
of the graphics device that processes the command data . In pipelines to write data . Some pipeline operations require the
some embodiments , a graphics processor command parser allocation , selection , or configuration of one or more return
examines the client field of each command to condition the buffers into which the operations write intermediate data
further processing of the command and route the command 10 during processing . In some embodiments , the graphics pro
data to the appropriate client unit . In some embodiments , the cessor also uses one or more return buffers to store output
graphics processor client units include a memory interface data and to perform cross thread communication . In some
unit , a render unit , a 2D unit , a 3D unit , and a media unit . embodiments , the return buffer state 2416 includes selecting
Each client unit has a corresponding processing pipeline that the size and number of return buffers to use for a set of
processes the commands . Once the command is received by 15 pipeline operations .
the client unit , the client unit reads the opcode 2404 and , if The remaining commands in the command sequence
present , sub - opcode 2405 to determine the operation to differ based on the active pipeline for operations . Based on
perform . The client unit performs the command using infor- a pipeline determination 2420 , the command sequence is
mation in data field 2406. For some commands an explicit tailored to the 3D pipeline 2422 beginning with the 3D
command size 2408 is expected to specify the size of the 20 pipeline state 2430 or the media pipeline 2424 beginning at
command . In some embodiments , the command parser auto- the media pipeline state 2440 .
matically determines the size of at least some of the com- The commands to configure the 3D pipeline state 2430
mands based on the command opcode . In some embodi- include 3D state setting commands for vertex buffer state ,
ments commands are aligned via multiples of a double word . vertex element state , constant color state , depth buffer state ,

The flow diagram in FIG . 24B shows an exemplary 25 and other state variables that are to be configured before 3D
graphics processor command sequence 2410. In some primitive commands are processed . The values of these
embodiments , software or firmware of a data processing commands are determined at least in part based on the
system that features an embodiment of a graphics processor particular 3D API in use . In some embodiments , 3D pipeline
uses a version of the command sequence shown to set up , state 2430 commands are also able to selectively disable or
execute , and terminate a set of graphics operations . A sample 30 bypass certain pipeline elements if those elements will not
command sequence is shown and described for purposes of be used .
example only as embodiments are not limited to these In some embodiments , 3D primitive 2432 command is
specific commands or to this command sequence . Moreover , used to submit 3D primitives to be processed by the 3D
the commands may be issued as batch of commands in a pipeline . Commands and associated parameters that are
command sequence , such that the graphics processor will 35 passed to the graphics processor via the 3D primitive 2432
process the sequence of commands in at least partially command are forwarded to the vertex fetch function in the
concurrence . graphics pipeline . The vertex fetch function uses the 3D

In some embodiments , the graphics processor command primitive 2432 command data to generate vertex data struc
sequence 2410 may begin with a pipeline flush command tures . The vertex data structures are stored in one or more
2412 to cause any active graphics pipeline to complete the 40 return buffers . In some embodiments , 3D primitive 2432
currently pending commands for the pipeline . In some command is used to perform vertex operations on 3D
embodiments , the 3D pipeline 2422 and the media pipeline primitives via vertex shaders . To process vertex shaders , 3D
2424 do not operate concurrently . The pipeline flush is pipeline 2422 dispatches shader execution threads to graph
performed to cause the active graphics pipeline to complete ics processor execution units .
any pending commands . In response to a pipeline flush , the 45 In some embodiments , 3D pipeline 2422 is triggered via
command parser for the graphics processor will pause an execute 2434 command or event . In some embodiments ,
command processing until the active drawing engines com- a register write triggers command execution . In some
plete pending operations and the relevant read caches are embodiments execution is triggered via a ' go ' or ‘ kick ’
invalidated . Optionally , any data in the render cache that is command in the command sequence . In one embodiment ,
marked ‘ dirty ' can be flushed to memory . In some embodi- 50 command execution is triggered using a pipeline synchro
ments , pipeline flush command 2412 can be used for pipe- nization command to flush the command sequence through
line synchronization or before placing the graphics proces- the graphics pipeline . The 3D pipeline will perform geom
sor into a low power state . etry processing for the 3D primitives . Once operations are

In some embodiments , a pipeline select command 2413 is complete , the resulting geometric objects are rasterized and
used when a command sequence requires the graphics 55 the pixel engine colors the resulting pixels . Additional
processor to explicitly switch between pipelines . In some commands to control pixel shading and pixel back end
embodiments , a pipeline select command 2413 is required operations may also be included for those operations .
only once within an execution context before issuing pipe- In some embodiments , the graphics processor command
line commands unless the context is to issue commands for sequence 2410 follows the media pipeline 2424 path when
both pipelines . In some embodiments , a pipeline flush 60 performing media operations . In general , the specific use
command 2412 is required immediately before a pipeline and manner of programming for the media pipeline 2424
switch via the pipeline select command 2413 . depends on the media or compute operations to be per

In some embodiments , a pipeline control command 2414 formed . Specific media decode operations may be offloaded
configures a graphics pipeline for operation and is used to to the media pipeline during media decode . In some embodi
program the 3D pipeline 2422 and the media pipeline 2424. 65 ments , the media pipeline can also be bypassed and media
In some embodiments , pipeline control command 2414 decode can be performed in whole or in part using resources
configures the pipeline state for the active pipeline . In one provided by one or more general purpose processing cores .

US 11,080,811 B2
53 54

In one embodiment , the media pipeline also includes ele- graphics application 2510. In some embodiments , the shader
ments for general - purpose graphics processor unit (GPGPU) instructions 2512 are provided in an intermediate form , such
operations , where the graphics processor is used to perform as a version of the Standard Portable Intermediate Repre
SIMD vector operations using computational shader pro- sentation (SPIR) used by the Vulkan API .
grams that are not explicitly related to the rendering of 5 In some embodiments , user mode graphics driver 2526
graphics primitives . contains a back - end shader compiler 2527 to convert the

In some embodiments , media pipeline 2424 is configured shader instructions 2512 into a hardware specific represen
in a similar manner as the 3D pipeline 2422. A set of tation . When the OpenGL API is in use , shader instructions
commands to configure the media pipeline state 2440 are 2512 in the GLSL high - level language are passed to a user
dispatched or placed into a command queue before the 10 mode graphics driver 2526 for compilation . In some
media object commands 2442. In some embodiments , media embodiments , user mode graphics driver 2526 uses operat
pipeline state commands 2440 include data to configure the ing system kernel mode functions 2528 to communicate
media pipeline elements that will be used to process the with a kernel mode graphics driver 2529. In some embodi
media objects . This includes data to configure the video ments , kernel mode graphics driver 2529 communicates
decode and video encode logic within the media pipeline , 15 with graphics processor 2532 to dispatch commands and
such as encode or decode format . In some embodiments , instructions .
media pipeline state commands 2440 also support the use of IP Core Implementations
one or more pointers to “ indirect ” state elements that contain One or more aspects of at least one embodiment may be
a batch of state settings . implemented by representative code stored on a machine

In some embodiments , media object commands 2442 20 readable medium which represents and / or defines logic
supply pointers to media objects for processing by the media within an integrated circuit such as a processor . For
pipeline . The media objects include memory buffers con- example , the machine - readable medium may include
taining video data to be processed . In some embodiments , all instructions which represent various logic within the pro
media pipeline states must be valid before issuing a media cessor . When read by a machine , the instructions may cause
object command 2442. Once the pipeline state is configured 25 the machine to fabricate the logic to perform the techniques
and media object commands 2442 are queued , the media described herein . Such representations , known as “ IP cores , ”
pipeline 2424 is triggered via an execute command 2444 or are reusable units of logic for an integrated circuit that may
an equivalent execute event (e.g. , register write) . Output be stored on a tangible , machine - readable medium as a
from media pipeline 2424 may then be post processed by hardware model that describes the structure of the integrated
operations provided by the 3D pipeline 2422 or the media 30 circuit . The hardware model may be supplied to various
pipeline 2424. In some embodiments , GPGPU operations customers or manufacturing facilities , which load the hard
are configured and executed in a similar manner as media ware model on fabrication machines that manufacture the
operations . integrated circuit . The integrated circuit may be fabricated
Graphics Software Architecture such that the circuit performs operations described in asso
FIG . 25 illustrates exemplary graphics software architec- 35 ciation with any of the embodiments described herein .

ture for a data processing system 2500 according to some FIG . 26 is a block diagram illustrating an IP core devel
embodiments . In some embodiments , software architecture opment system 2600 that may be used to manufacture an
includes a 3D graphics application 2510 , an operating sys- integrated circuit to perform operations according to an
tem 2520 , and at least one processor 2530. In some embodi- embodiment . The IP core development system 2600 may be
ments , processor 2530 includes a graphics processor 2532 40 used to generate modular , re - usable designs that can be
and one or more general - purpose processor core (s) 2534 . incorporated into a larger design or used to construct an
The graphics application 2510 and operating system 2520 entire integrated circuit (e.g. , an SOC integrated circuit) . A
each execute in the system memory 2550 of the data design facility 2630 can generate a software simulation 2610
processing system . of an IP core design in a high level programming language

In some embodiments , 3D graphics application 2510 45 (e.g. , C / C ++) . The software simulation 2610 can be used to
contains one or more shader programs including shader design , test , and verify the behavior of the IP core using a
instructions 2512. The shader language instructions may be simulation model 2612. The simulation model 2612 may
in a high - level shader language , such as the High Level include functional , behavioral , and / or timing simulations . A
Shader Language (HLSL) or the OpenGL Shader Language register transfer level (RTL) design 2615 can then be created
(GLSL) . The application also includes executable instruc- 50 or synthesized from the simulation model 2612. The RTL
tions 2514 in a machine language suitable for execution by design 2615 is an abstraction of the behavior of the inte
the general - purpose processor core 2534. The application grated circuit that models the flow of digital signals between
also includes graphics objects 2516 defined by vertex data . hardware registers , including the associated logic performed

In some embodiments , operating system 2520 is a using the modeled digital signals . In addition to an RTL
Microsoft® Windows® operating system from the 55 design 2615 , lower - level designs at the logic level or tran
Microsoft Corporation , a proprietary UNIX - like operating sistor level may also be created , designed , or synthesized .
system , or an open source UNIX - like operating system Thus , the particular details of the initial design and simula
using a variant of the Linux kernel . The operating system tion may vary .
2520 can support a graphics API 2522 such as the Direct3D The RTL design 2615 or equivalent may be further
API , the OpenGL API , or the Vulkan API . When the 60 synthesized by the design facility into a hardware model
Direct3D API is in use , the operating system 2520 uses a 2620 , which may be in a hardware description language
front - end shader compiler 2524 to compile any shader (HDL) , or some other representation of physical design data .
instructions 2512 in HLSL into a lower - level shader lan- The HDL may be further simulated or tested to verify the IP
guage . The compilation may be a just - in - time (JIT) compi- core design . The IP core design can be stored for delivery to
lation or the application can perform shader pre - compila- 65 a third - party fabrication facility 2665 using non - volatile
tion . In some embodiments , high - level shaders are compiled memory 2640 (e.g. , hard disk , flash memory , or any non
into low - level shaders during the compilation of the 3D volatile storage medium) . Alternatively , the IP core design

15

US 11,080,811 B2
55 56

may be transmitted (e.g. , via the Internet) over a wired tex or image / texture data stored in memory , in addition to
connection 2650 or wireless connection 2660. The fabrica- vertex or image / texture data stored in the one or more
tion facility 2665 may then fabricate an integrated circuit cache (s) 2825A - 2825B . In one embodiment the one or more
that is based at least in part on the IP core design . The MMU (S) 2820A - 2820B may be synchronized with other
fabricated integrated circuit can be configured to perform 5 MMUs within the system , including one or more MMUS
operations in accordance with at least one embodiment associated with the one or more application processor (s)
described herein . 2705 , image processor 2715 , and / or video processor 2720 of Exemplary System on a Chip Integrated Circuit FIG . 27 , such that each processor 2705-2720 can participate FIGS . 27-29 illustrated exemplary integrated circuits and in a shared or unified virtual memory system . The one or associated graphics processors that may be fabricated using 10 more circuit interconnect (s) 2830A - 2830B enable graphics one or more IP cores , according to various embodiments
described herein . In addition to what is illustrated , other processor 2810 to interface with other IP cores within the

SoC , either via an internal bus of the SoC or via a direct logic and circuits may be included , including additional
graphics processors / cores , peripheral interface controllers , connection , according to embodiments .
or general purpose processor cores . FIG . 29 is a block diagram illustrating an additional

FIG . 27 is a block diagram illustrating an exemplary exemplary graphics processor 2910 of a system on a chip
system on a chip integrated circuit 2700 that may be integrated circuit that may be fabricated using one or more
fabricated using one or more IP cores , according to an IP cores , according to an embodiment . Graphics processor
embodiment . Exemplary integrated circuit 2700 includes 2910 can be a variant of the graphics processor 2710 of FIG .
one or more application processor (s) 2705 (e.g. , CPUs) , at 20 27. Graphics processor 2910 includes the one or more
least one graphics processor 2710 , and may additionally MMU (S) 2820A - 2820B , caches 2825A - 2825B , and circuit
include an image processor 2715 and / or a video processor interconnect (s) 2830A - 2830B of the graphics processor
2720 , any of which may be a modular IP core from the same 2810 of FIG . 28 .
or multiple different design facilities . Integrated circuit 2700 Graphics processor 2910 includes one or more shader
includes peripheral or bus logic including a USB controller 25 core (s) 2915A - 2915N (e.g. , 2915A , 2915B , 2915C , 2915D ,
2725 , UART controller 2730 , an SPI / SDIO controller 2735 , 2915E , 2915F , through 2915N - 1 , and 2915N) , which pro
and an IPS / I²C controller 2740. Additionally , the integrated vides for a unified shader core architecture in which a single
circuit can include a display device 2745 coupled to one or core or type or core can execute all types of programmable
more of a high - definition multimedia interface (HDMI) shader code , including shader program code to implement
controller 2750 and a mobile industry processor interface 30 vertex shaders , fragment shaders , and / or compute shaders .
(MIPI) display interface 2755. Storage may be provided by The exact number of shader cores present can vary among
a flash memory subsystem 2760 including flash memory and embodiments and implementations . Additionally , graphics
a flash memory controller . Memory interface may be pro- processor 2910 includes an inter - core task manager 2905 ,
vided via a memory controller 2765 for access to SDRAM which acts as a thread dispatcher to dispatch execution
or SRAM memory devices . Some integrated circuits addi- 35 threads to one or more shader core (s) 2915A - 2915N and a
tionally include an embedded security engine 2770 . tiling unit 2918 to accelerate tiling operations for tile - based
FIG . 28 is a block diagram illustrating a graphics proces- rendering , in which rendering operations for a scene are

sor 2810 of a system on a chip integrated circuit that may be subdivided in image space , for example to exploit local
fabricated using one or more IP cores , according to an spatial coherence within a scene or to optimize use of
embodiment . Graphics processor 2810 can be a variant of 40 internal caches .
the graphics processor 2710 of FIG . 27. Graphics processor Some embodiments pertain to Example 1 that includes an
2810 includes a vertex processor 2805 and one or more apparatus to facilitate compute optimization , comprising a
fragment processor (s) 2815A - 2815N (e.g. , 2815A , 2815B , graphics processor including sorting logic to sort floating
2815C , 2815D , through 2815N - 1 , and 2815N) . Graphics point processing threads into thread groups based on bit
processor 2810 can execute different shader programs via 45 depth of floating point thread operations .
separate logic , such that the vertex processor 2805 is opti- Example 2 includes the subject matter of Example 1 ,
mized to execute operations for vertex shader programs , wherein the sorting logic sorts further comprises a plurality
while the one or more fragment processor (s) 2815A - 2815N of bins to store the sorted threads , wherein each of the
execute fragment (e.g. , pixel) shading operations for frag- plurality of bins is associated with a bit depth .
ment or pixel shader programs . The vertex processor 2805 50 Example 3 includes the subject matter of Examples 1 and
performs the vertex processing stage of the 3D graphics 2 , wherein the plurality of bins comprise a first bin to store
pipeline and generates primitives and vertex data . The floating point thread operations having a first bit depth and
fragment processor (s) 2815A - 2815N use the primitive and a second bin to store floating point thread operations having
vertex data generated by the vertex processor 2805 to a second bit depth .
produce a framebuffer that is displayed on a display device . 55 Example 4 includes the subject matter of Examples 1-3 ,
In one embodiment , the fragment processor (s) 2815A- further comprising one or more floating point units to
2815N are optimized to execute fragment shader programs process the floating point thread operations .
as provided for in the OpenGL API , which may be used to Example 5 includes the subject matter of Examples 1-4 ,
perform similar operations as a pixel shader program as wherein the graphics processor further comprises floating
provided for in the Direct 3D API . 60 logic to process threads into floating point thread operations

Graphics processor 2810 additionally includes one or having a higher bit depth .
more memory management units (MMUs) 2820A - 2820B , Example 6 includes the subject matter of Examples 1-5 ,
cache (s) 2825A - 2825B , and circuit interconnect (s) 2830A- wherein the floating point logic comprises a first component
2830B . The one or more MMU (s) 2820A - 2820B provide for to process a lower half of a bit depth of the floating point
virtual to physical address mapping for graphics processor 65 thread operations and a second component to process an
2810 , including for the vertex processor 2805 and / or frag- upper half of a bit depth of the floating point thread
ment processor (s) 2815A - 2815N , which may reference ver- operations .

US 11,080,811 B2
57 58

Example 7 includes the subject matter of Examples 1-6 , cessing cores include a mixed precision core to perform a
wherein the floating point logic processes floating point mixed precision multi - dimensional matrix multiply and
thread operations having a lower bit depth at the first accumulate operation in response to the instruction . To
component . perform the mixed precision multi - dimensional matrix mul

Example 8 includes the subject matter of Examples 1-7 , 5 tiply and accumulate operation , the mixed precision core can
wherein the floating point logic deactivates the second perform an operation D = A * B + C , wherein A , B , C , and D are
component during processing of the floating point thread matrix elements , A and B are 16 - bit floating - point elements ,
operations having the lower bit depth at the first component . and C is selected as either a 16 - bit floating - point element , or

Example 9 includes the subject matter of Examples 1-8 , a 32 - bit floating - point element .
wherein the graphics processor further comprises logic to 10 The foregoing description and drawings are to be
provide variable precision support in a math instruction . regarded in an illustrative rather than a restrictive sense .

Example 10 includes the subject matter of Examples 1-9 , Persons skilled in the art will understand that various
wherein the logic generates an instruction including an modifications and changes may be made to the embodiments
attribute to specify a format of each operand in an operation described herein without departing from the broader spirit
and a format of a final result , where one or more of the 15 and scope of the invention as set forth in the appended
operands has a different format . claims .

Example 11 includes the subject matter of Examples 1-10 , What is claimed is :
wherein one or more of the operands comprise a different 1. A graphics processor comprising :
format . a memory controller ;

Example 12 includes the subject matter of Examples 1-11 , 20 a level - two (L2) cache memory coupled with the memory
further comprising a processing unit to receive the instruc controller ; and
tion , parse the instruction , convert all operands to the a multiprocessor coupled to the memory controller , the
destination format and execute the operation . multiprocessor having a single instruction , multiple
Some embodiments pertain to Example 13 that includes a thread (SIMT) architecture including hardware multi

method to facilitate compute optimization at a processing 25 threading , the multiprocessor including a scheduler , a
unit , comprising receiving a plurality of processing threads plurality of processing cores , and a shared memory
and sorting the plurality of processing threads into thread coupled to the plurality of processing cores , wherein
groups based on bit depth of floating point thread operations . the scheduler is to schedule an instruction for execution

Example 14 includes the subject matter of Example 13 , by the plurality of processing cores and the plurality of
wherein each of the plurality of bins is associated with a bit 30 processing cores include a mixed precision core to
depth . perform a mixed precision multi - dimensional matrix

Example 15 includes the subject matter of Examples 13 multiply and accumulate operation in response to the
and 14 , sorting the plurality of processing threads comprises instruction , wherein to perform the mixed precision
sorting operations having a first bit depth into a first bin and multi - dimensional matrix multiply and accumulate
sorting operations having a second bit depth into a second 35 operation , the mixed precision core is to perform an
bin . operation D = A * B + C , wherein A , B , C , and D are

Example 16 includes the subject matter of Examples matrix elements , A and B are 16 - bit floating - point
13-15 , further comprising processing the floating point elements , and C is capable of being selected as either
thread operations . a 16 - bit floating - point element , or a 32 - bit floating

Example 17 includes the subject matter of Examples 40 point element , and wherein the instruction is to specify
13-16 , further comprising processing threads into floating a first format for matrix elements A and B , separately
point thread operations having a higher bit depth . specify a second format for matrix element C , and the

Example 18 includes the subject matter of Examples mixed precision core is to perform the operation
13-17 , further comprising providing variable precision sup- according to the specified formats .
port in a math instruction . 2. The graphics processor as in claim 1 , the multiproces

Example 19 includes the subject matter of Examples sor additionally including a register file to store data asso
13-18 , wherein providing the variable precision support in a ciated with operands , wherein the instruction is additionally
math instruction comprises receiving an instruction includ- to specify a separate format for matrix element D.
ing an attribute to specify a format of each operand in an 3. The graphics processor as in claim 2 , wherein the
operation and a format of a final result , wherein one or more 50 multiprocessor is to load the data associated with operands
of the operands includes a different format . of the operation D = A * B + C into the register file from

Example 20 includes the subject matter of Examples memory .
13-19 , wherein providing the variable precision support in a 4. The graphics processor of claim 3 , wherein the multi
math instruction further comprises parsing the instruction , processor is to load the data associated with operands of the
converting all operands to the destination format and execut- 55 operation D = A * B + C into the register file from the shared
ing the operation . memory .

In addition to the above examples , one embodiment 5. The graphics processor of claim 4 , wherein the multi
provides for a graphics processor comprising a memory processor is to load the data associated with operands of the
controller , a level - two (L2) cache memory coupled with the operation D = A * B + C into the register file from the L2 cache
memory controller , and a multiprocessor coupled to the 60 memory in response to a load from the shared memory .
memory controller . The multiprocessor can include a single 6. The graphics processor of claim 1 , wherein the multi
instruction , multiple thread (SIMT) architecture including processor includes an instruction cache to store the instruc
hardware multithreading . The multiprocessor additionally tion for execution at the multiprocessor , the instruction is
includes a scheduler , a plurality of processing cores , and a executed as a warp of threads , and the mixed precision core
shared memory coupled to the plurality of processing cores . 65 is to execute multiple threads of the warp of threads .
The scheduler can schedule an instruction for execution by 7. The graphics processor of claim 1 , wherein the mixed
the plurality of processing cores and the plurality of pro- precision core is additionally to perform an additional opera

45

US 11,080,811 B2
59 60

tion D = A * B + C , wherein A and B are 8 - bit integer elements , includes a scheduler , a plurality of processing cores ,
and C is a 32 - bit integer element . and a shared memory coupled to the plurality of

8. A graphics processing system comprising : processing cores , and wherein the plurality of process
a graphics memory device ; ing cores include a mixed precision core to perform a
a memory controller coupled to the graphics memory 5 mixed precision multi - dimensional matrix multiply and

device ; accumulate operation ;
a level - two (L2) cache memory coupled with the memory scheduling the decoded instruction for execution by the

controller and the graphics memory device ; and multiprocessor ; and
a multiprocessor coupled to the memory controller , the executing the decoded instruction via the mixed precision

multiprocessor having a single instruction , multiple 10 core , wherein the mixed precision core , in response to
thread (SIMT) architecture including hardware multi- the instruction is to perform the mixed precision multi
threading , the multiprocessor including a scheduler , a dimensional matrix multiply and accumulate operation
plurality of processing cores , and a shared memory and wherein performing the multi - dimensional matrix
coupled to the plurality of processing cores , wherein multiply and accumulate operation includes performing
the scheduler is to schedule an instruction for execution 15 an operation D = A * B + C , wherein A , B , C , and D are
by the plurality of processing cores and the plurality of matrix elements , A and B are 16 - bit floating - point
processing cores include a mixed precision core to elements , and C is capable of being selected as either
perform a mixed precision multi - dimensional matrix a 16 - bit floating - point element , or a 32 - bit floating
multiply and accumulate operation in response to the point element , and wherein the instruction specifies a
instruction , wherein to perform the mixed precision 20 first format for matrix elements A and B , separately
multi - dimensional matrix multiply and accumulate specifies a second format for matrix element C , and the
operation , the mixed precision core is to perform an mixed precision core performs the operation according
operation D = A * B + C , wherein A , B , C , and D are to the specified formats .
matrix elements , A and B are 16 - bit floating - point 17. The method as in claim 16 , further comprising loading
elements , and C is capable of being selected as either 25 data associated with operands of the operation D = A * B + C
a 16 - bit floating - point element , or a 32 - bit floating- into a register file from the L2 cache memory , wherein the
point element , and wherein the instruction is to specify instruction additionally specifies a separate format for
a first format for matrix elements A and B , separately matrix element D.
specify a second format for matrix element C , and the 18. The method as in claim 16 , further comprising fetch
mixed precision core is to perform the operation 30 ing the instruction from an instruction cache and dispatching
according to the specified formats . a warp of threads associated with the instruction for execu

9. The graphics processing system of claim 8 , wherein the tion by the mixed precision core , wherein the mixed preci
graphics memory device includes graphics double data rate sion core executes multiple threads of the warp of threads .
(GDDR) memory . 19. The method as in claim 16 , wherein A or B each

10. The graphics processing system of claim 9 , wherein 35 include values associated with a weight of a layer of a neural
the GDDR memory includes GDDR6 memory . network or an input to the layer of the neural network .

11. The graphics processing system as in claim 8 , wherein 20. The method as in claim 16 , wherein performing the
the multiprocessor additionally includes a register file to mixed precision multi - dimensional matrix multiply and
store data associated with operands and the multiprocessor accumulate operation additionally includes performing an
is to load the data associated with operands of the operation 40 additional operation D = A * B + C , wherein A and B are 8 - bit
D = A * B + C into the register file from the graphics memory integer elements , and C is a 32 - bit integer element .
device and the instruction is additionally to specify a sepa- 21. A processor including a graphics processor , the pro
rate format for matrix element D. cessor comprising :

12. The graphics processing system of claim 8 , wherein a memory controller ;
the multiprocessor additionally includes a register file to 45 a level - three (L3) cache memory coupled with the
store data associated with operands and the multiprocessor memory controller ; and
is to load the data associated with operands of the operation a graphics processor coupled with the memory controller ,
D = A * B + C into the register file from the L2 cache memory . the graphics processor having an architecture including

13. The graphics processing system of claim 12 , wherein hardware multithreading , the graphics processor
A and B each include values associated with a layer of a 50 including a scheduler , a plurality of processing cores ,
neural network . and a shared memory coupled to the plurality of

14. The graphics processing system of claim 13 , wherein processing cores , wherein the scheduler is to schedule
A or B each include values associated with a weight of the an instruction for execution by the plurality of process
layer of the neural network or an input to the layer of the ing cores and the plurality of processing cores include
neural network . a matrix core to perform a multi - dimensional matrix

15. The graphics processing system of claim 8 , wherein multiply and accumulate operation in response to the
the mixed precision core is to perform an additional opera- instruction , wherein to perform the multi - dimensional
tion D = A * B + C , wherein A and B are 8 - bit integer elements , matrix multiply and accumulate operation , the matrix
and C is a 32 - bit integer element . core is to perform a set of multiply and accumulate

16. A method comprising : operations including an operation D = A * B + C , wherein
decoding an instruction into a decoded instruction for A , B , C , and D are matrix elements , A and B are 8 - bit

execution by a graphics processor including a multi- integer elements , and C is a 32 - bit integer element , and
processor coupled to a memory controller and a level- wherein the instruction is to specify a first format for
two (L2) cache memory coupled with the memory matrix elements A and B , separately specify a second
controller , the multiprocessor having a single instruc- 65 format for matrix element C , and the matrix core is to
tion , multiple thread (SIMT) architecture including perform the operation according to the specified for
hardware multithreading , wherein the multiprocessor mats .

55

60

62

5

US 11,080,811 B2
61

22. The graphics processor as in claim 21 , wherein the
plurality of processing cores include hardware having a
single instruction , multiple data (SIMD) architecture .

23. The graphics processor as in claim 21 , wherein the
graphics processor additionally includes a register file to
store data associated with operands .

24. The graphics processor as in claim 23 , wherein the
graphics processor is to load the data associated with oper
ands of the operation D = A * B + C into the register file from
the shared memory .

25. The graphics processor as in claim 23 , wherein the
graphics processor is to load the data associated with oper
ands of the operation D = A * B + C into the register file from
the L3 cache memory .

10

15 *

