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SPELL CHECKER WITH ARBITRARY 
LENGTH STRING-TO-STRING 

TRANSFORMATIONS TO IMPROVE NOISY 
CHANNEL SPELLING CORRECTION 

RELATED APPLICATIONS 

This continuation patent application claims priority to 
US. patent application Ser. No. 09/539,357 to Brill et al., 
?led Mar. 31, 2000 and entitled, “Spell Checker With 
Arbitrary Length String to String Transformations to 
Improve Noisy Channel Spelling Correction”, Which issued 
as US. Pat. No. 7,047,493 on May 16, 2006. 

TECHNICAL FIELD 

This invention relates to spell checkers used in computer 
programs to identify and potentially correct misspelled 
Words. 

BACKGROUND 

Spell checkers are Well-knoWn program components used 
in computer programs to inform users that a Word is mis 
spelled, and in some cases, to correct the error to the 
appropriate spelling. Word processing programs, email pro 
grams, spreadsheets, broWsers, and the like are examples of 
computer programs that employ spell checkers. 
One conventional type of spell checker corrects errors in 

an ad-hoc fashion by manually specifying the types of 
alloWable edits and the Weights associated With each edit 
type. For the spell checker to recognize an entry error 
“fysical” and correct the error to the appropriate Word 
“physical”, a designer manually speci?es a substitution edit 
type that alloWs substitution of the letters “ph” for the letter 
“f”. Since it is built manually, this approach does not readily 
port to a neW language or adapt to an individual’s typing 
style. 

Another type of spell checker is one that learns errors and 
Weights automatically, rather than being manually con?g 
ured. One type of trainable spell checker is based on a noisy 
channel model, Which observes character strings actually 
entered by a user and attempts to determine the intended 
string based on a model of generation. 

Spell checkers based on the noisy channel model have 
tWo components: (1) a Word or source generation model, and 
(2) a channel or error model. The source model describes 
hoW likely a particular Word is to have been generated. The 
error model describes hoW likely a person intending to input 
X Will instead input Y. Together, the spell checker attempts 
to describe hoW likely a particular Word is to be the intended 
Word, given an observed string that Was entered. 
As an example, suppose a user intends to type the Word 

“physical”, but instead types “fysical”. The source model 
evaluates hoW likely the user is to have intended the Word 
“physical”. The error model evaluates hoW likely the user is 
to type in the erroneous Word “fysical” When the intended 
Word is “physical”. 

The classic error model computes the Levenshtein Dis 
tance betWeen tWo strings, Which is the minimum number of 
single letter insertions, deletions, and substitutions needed to 
transform one character string into another. The classic error 
model is described in Levenshtein, V. “Binary Codes 
Capable of Correcting Deletions, Insertions and Reversals.” 
Soviet PhysicsiDoklady 10, 10, pp. 707-710. 1966. 
A modi?cation of the classic error model employs a 

Weighted Levenshtein Distance, in Which each edit opera 
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2 
tion is assigned a different Weight. For instance, the Weight 
assigned to the operation “Substitute e for i” is signi?cantly 
different than the Weight assigned to the operation “Substi 
tute e for M”. Essentially all existing spell checkers that are 
based on edit operations use the Weighted Levenshtein 
Distance as the error model, While sometimes adding a small 
number of additional edit templates, such as transposition, 
doubling, and halving. 
The error model can be implemented in several Ways. One 

Way is to assume all edits are equally likely. In an article by 
Mays, E., Damerau, F, and Mercer, R. entitled “Context 
Based Spelling Correction,” Information Processing and 
Management, Vol. 27, No. 5, pp. 517-522, 1991, the authors 
describe pre-computing a set of edit-neighbors for every 
Word in the dictionary. A Word is an edit-neighbor of another 
Word, if it can be derived from the other Word from a single 
edit, Where an edit is de?ned as a single letter insertion (e. g., 
OQa), a single letter substitution (e.g., aQb), a single letter 
deletion (e.g., aQO), or a letter-pair transposition (e.g., 
ab—>ba). For every Word in a document, the spell checker 
determines Whether any edit-neighbor of that Word is more 
likely to appear in that context than the Word that Was typed. 
All edit-neighbors of a Word are assigned equal probability 
of having been the intended Word, and the context is used to 
determine Which Word to select. It is noted that the Word 
itself (if it is in the dictionary) is considered an edit-neighbor 
of itself, and it is given a much higher probability of being 
the intended Word than the other edit-neighbors. 
A second Way to implement the error model is to estimate 

the probabilities of various edits from training data. In an 
article by Church, K. and Gale, W., entitled “Probability 
Scoring for Spelling Correction,” Statistics and Computing 
1, pp. 93-103, 1991, the authors propose employing the 
identical set of edit types used by Mays et al. (i.e., single 
letter insertion, substitution, deletion, and letter-pair trans 
position) and automatically deriving probabilities for all 
edits by computing the probability of an intended Word W 
given an entered string s. The Church et al. method trains on 
a training corpus to learn the probabilities for each possible 
change, regardless of the correct Word and entered Word. In 
other Words, it learns the probability that an erroneous input 
string s Will be Written When the correct Word W Was 
intended, or P(slW). The Church et al. method improves 
insertion and deletion by including one character of context. 

The error model probability P(slW) used in noisy channel 
spell correction programs, such as the one described in 
Church et al., may seem backWards initially because it 
suggests ?nding hoW likely a string s is to be entered given 
that a dictionary Word W is intended. In contrast, the spell 
correction program actually Wants to knoW hoW likely the 
entered string s is to be a Word W in the dictionary, or P(Wls). 
The error model probability P(slW) comes from Bayes for 
mula, Which can be used to represent the desired probability 
P(Wls) as folloWs: 

The denominator P(s) remains the same for purposes of 
comparing possible intended Words given the entered string. 
Accordingly, the spell checking analysis concerns only the 
numerator product P(s|W)~P(W), Where the probability P(slW) 
represents the error model and the probability P(W) repre 
sents the source model. 
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As application programs become more sophisticated and 
the needs of users evolve, there is an ongoing need to 
improve spell checkers. The inventors have developed an 
improved spell checker that is based on the noisy channel 
model, Which incorporates a more powerful error model 
component. 

SUMMARY 

A spell checker based on the noisy channel model has a 
source model and an error model. The source model deter 

mines hoW likely a Word W in a dictionary is to have been 
generated. The error model determines hoW likely the Word 
W Was to have been incorrectly entered as the string s (e.g., 
mistyped or incorrectly interpreted by a speech recognition 
system). 
The error model determines this probability based on edit 

operations that convert arbitrary length character sequences 
in the Word W to arbitrary length character sequences in the 
string s. These edit operations are characterized as 0t—>[3, 
Where 0t is one character sequence of Zero or more characters 

and [3 is another character sequence of Zero or more char 
acters. In many cases, the number of characters in each 
sequence 0t and [3 Will be different. In this manner, the edit 
operations are not constrained or limited to the speci?ed set 
of changes, such as single letter insertion, deletion, or 
substitution. 
The error model determines hoW likely a Word W in the 

dictionary Was to have been mistyped as the string s (i.e. 
P(s|W)) according to the probabilities of the string-to-string 
edits. One implementation is to ?nd all possible sets of 
string-to-string edits that transform the Word W into the 
string s, calculating P(slW) for each set and then summing 
over all sets. The probabilities are derived through a training 
process that initially uses Levenshtein Distance or other cost 
metric to ?nd the least cost alignment of characters in a pair 
of Wrong and right inputs. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of an exemplary computer that 
runs a spell checker. 

FIG. 2 is a How diagram of a process implemented by the 
spell checker to compute a probability P(slW) given an 
erroneously entered string s and a dictionary Word W. 

FIG. 3 is a block diagram of a training computer used to 
train the spell checker. 

FIG. 4 is a How diagram of a training method imple 
mented by the training computer. 

FIG. 5 is a diagrammatic illustration of an alignment 
technique used during training of an error model employed 
in the spell checker. 

FIG. 6 is a diagrammatic illustration of the alignment 
technique of FIG. 5 at a point later in the process. 

DETAILED DESCRIPTION 

This invention concerns a spell checker used in computer 
programs to identify and, in some cases, correct misspelled 
Words. The spell checker may be used in many different 
applications, including Word processing programs, email 
programs, spreadsheets, broWsers, and the like. For discus 
sion purposes, the spell checker is described in the context 
of a spell correction program implemented in a Word pro 
cessing program. 

HoWever, aspects of this invention may be implemented 
in other environments and in other types of programs. For 
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4 
instance, the invention may be implemented in language 
conversion softWare (e.g., Japanese Katakana to English) 
that may implement string-to-string mapping. 

Exemplary Computing Environment 
FIG. 1 shoWs an exemplary computer 20 having a pro 

cessor 22, volatile memory 24 (e.g., RAM), and non-volatile 
memory 26 (e.g., ROM, Flash, hard disk, ?oppy disk, 
CD-ROM, etc.). The computer 20 also has one or more input 
devices 28 (e.g., keyboard, mouse, microphone, stylus, etc.) 
and a display 30 (e.g., monitor, LCD, etc.). The computer 
may also have other output devices (noW not shoWn), such 
as a speaker. The computer 20 is representative of many 
diverse types of computing devices, including desktop com 
puters, laptops, handheld computers, set-top boxes, infor 
mation appliances, and so forth. 

The computer 20 runs an operating system 32 and a Word 
processing application program 34. For purposes of illus 
tration, operating system 32 and Word processor 34 are 
illustrated herein as discrete blocks stored in the non-volatile 
memory 26, although it is recogniZed that such programs 
and components reside at various times in different storage 
components of the computer 20 and are executed by the 
processor 22. Generally, these softWare components are 
stored in non-volatile memory 26 and from there, are loaded 
at least partially into the volatile main memory 24 for 
execution on the processor 22. 

The Word processor 34 includes a spell correction pro 
gram 40 that identi?es and, Where appropriate, corrects 
misspelled Words that the user has entered. The user enters 
the Words in a conventional manner, such as typing them in 
on a keyboard, using a stylus to input individual letters, or 
speaking Words into a microphone. In the event voice entry 
is employed, the computer 20 Would also implement a 
speech recognition program (not shoWn) to convert voice 
input to Words. 
The spell correction program 40 is based on the noisy 

channel model and has tWo components: a source model 42 
and an error model 44. The source model 42 includes 
computer-executable instructions that determine hoW likely 
a particular Word W in a dictionary D is to have been 
generated in this particular context. The source model is 
represented statistically as the probability P(W|context). The 
error model 44 includes computer-executable instructions 
that determine hoW likely a user is to enter the string s When 
intending to enter the Word W. The error model is represented 
statistically as the probability P(slW). 

Accordingly, the spell checker 40 attempts to correct an 
erroneously entered string s into a Word W by returning the 
change that maximiZes the probabilities of the source and 
error models, as folloWs: 

argmaxP(s | W) X P(w | context) 
weD 

The source and error models are independent of each 
other. Thus, different source models 42 may be used inter 
changeably With the preferred error model described beloW. 
The source model 42 may be implemented as a language 
model, if one is available. In this case, P(W|context) is the 
probability of Word W, given the context Words that the user 
had entered prior to W. If the relative Word probabilities are 
knoWn, but not anything about hoW the Words are used in 
context, P(W|context) can be reduced to P(W). Finally, if the 
spell checker knoWs nothing about the relative Word prob 
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abilities of the user generating Words in the dictionary, the 
source model can be eliminated entirely by setting 

1 
P(w| context) to — 

ml 

for all W. 

Improved Error Model 44 

Unlike conventional error models, the error model 44 
employed in spell checker 40 permits edit operations that 
convert a ?rst string of arbitrary siZe to a second string of 
arbitrary siZe. That is, given an alphabet V and arbitrary 
length character sequences 0t and [3, the error model 44 
alloWs edit operations of the form OLQB, Where 0t, [3EV* 
(Where V* represents the set of all strings of characters in V 
of length 0 or more). Each character sequence 0t and [3 may 
have Zero or more characters and in many cases, the number 

of characters in each sequence 0t and [3 Will be different. In 
this manner, the edit operations are not constrained or 
limited to a speci?ed set of changes, such as single letter 
insertion, deletion, or substitution. 

The error model 44 can therefore be characterized as the 

probability that, When a user intends to type a character 
sequence 0t, he/ she instead types [3. This is represented as the 
probability P([3|0t). The error model probability P(s|W) can 
then be expressed as a set of probabilities describing various 
arbitrary length string-to-string conversions, as folloWs: 

One implementation of the error model 44 is to ?nd all 
possible sets of string-to-string edits that transform the Word 
W into the string s, calculate the probability P(s|W) for each 
set using the above formula, and sum over all sets. More 
particularly, for each possible Word W that the erroneous 
string s might be, the error model 44 partitions the Word W 
and string s into different numbers of segments that de?ne 
varying lengths of character sequences. For example, sup 
pose the dictionary Word is “physical” and the number of 
partition segments is ?ve. One possible partition is, say, “p_h 
y s i_c a_l”. NoW, suppose that a generates each partition, 
possibly With errors. One possible result of the user input is 
a string “?sikle” With a ?ve-segment partition “f i s m l_e”. 

The error model then computes the probability P([3|0t) for 
each associated segment pair, such as P(flph), P(i|y), and so 
on. The error model probability P(f i s ik le|ph y s ic al) can 
then be expressed as the product of these segment pair 
probabilities, as folloWs: 

The error model 44 examines all probabilities for all 
partitions over all possible Words and selects the Word that 
returns the highest probability, summed over all partitions. 
For example, let Part(W) be the set of all possible Ways of 
partitioning Word W and Part(s) be the set of all possible 
Ways of partitioning the entered string s. For a particular 
partition R of the Word W (i.e., REPart(W), Where 
|R|:contiguous segments), let partition Rl- be the ith segment. 
Similarly, for a particular partition T of the string s (i.e., 
TEPart(s), Where ITIIj contiguous segments), let partition Tl 
be the ith segment. The error model 44 computes: 
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The ?rst summation sums probabilities over all possible 
partitions of the Word W. For a given partition R, the second 
summation sums over all possible partitions of the string s, 
With the restriction that both partitions must have the same 
number of segments. The product then multiplies the prob 
abilities of each Ri—>Ti. 

To demonstrate this computation, consider the Word 
“physical” and the ?ve-segment partition. The error model 
44 tries different partitions R of the Word, and for each Word 
partition R, tries different partitions T of the entered string. 
For each combination, the error model 44 computes a 
corresponding probability P(s|W), as illustrated in Table 1: 

After all permutations have been computed for a ?ve 
segment partition, the error model repeats the process for 
partitions of more or less than ?ve segments. The error 
model 44 selects the Word that yields the highest probability 
P(s|W), summed over all possible partitions. The spell 
checker 40 uses the error model probability, along With the 
source model probability, to determine Whether to autocor 
rect the entered string, leave the string alone, or suggest 
possible alternate Words for the user to choose from. 

If computational ef?ciency is a concern, the above rela 
tionship may be approximated as folloWs: 

TWo further simpli?cations can be made during imple 
mentation that still provides satisfactory results. One sim 
pli?cation is to drop the term P(R|W). Another simpli?cation 
is to set the terms P(Tl-|Ri):l Whenever TZ-IRi. 
The error model 44 has a number of advantages over 

previous approaches. First, the error model is not con 
strained to single character edits, but robustly handles con 
version of one arbitrary length string to another arbitrary 
length string. As noted in the Background, virtually all 
conventional spell checkers based on the noisy channel 
model use a ?xed set of single character editsiinsertion, 
deletion, and substitutioniWith some checkers also includ 
ing simple transposition, doubling, and halving. HoWever, 
people often mistype one string for another string, Where one 
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or both of the strings has length greater than one. These 
types of errors cannot be modeled succinctly using the 
conventional Weighted Levenshtein Distance. 

The error model 44 captures the traditional single char 
acter edits, transposition, doubling, and halving, as Well as 
many phenomena not captured in such simpler models. For 
example, if a person mistypes “philosophy” as “?losofy”, 
the error model 44 captures this directly by the edit “ph—>f”, 
Whereby a tWo-character string is converted to a single 
character string. Even When an error is a single letter 
substitution, often the environment in Which it occurs is 
signi?cant. For instance, if a user enters “signi?cant” as 
“signi?cant”, it makes more sense to describe this by the edit 
operation “ant—>ent” than simply by “a—>e”. 

Another advantage of the error model 44 is that it can 
implement an even richer set of edits by alloWing an edit to 
be conditioned on the position that the edit occurs, 
P(0tQ[3|PSN), Where PSN describes positional information 
about the substring Within the Word. For example, the 
position may be the start of a Word, the end of a Word, or 
some other location Within the Word (i.e., PSN:{start of 
Word, end of Word, other}). The spell checker adds a 
start-of-Word symbol and an end-of-Word symbol to each 
Word to provide this positional information. 

FIG. 2 shoWs the process implemented by the spell 
checker 40 to compute a probability P(s|W) given an entered 
string s and a dictionary Word W. At block 202, the spell 
checker receives a user-entered string s that might contain 
errors. Assume that the entered Word is “?sikle”. Given this 
entered string s, the spell checker iterates over all Words W. 
Suppose, for sake of discussion, the current Word W is 
“physical”. 
At block 204, the Word W is partitioned into multiple 

segments. The Word “physical” is partitioned, for example, 
into ?ve segments “p_h y s i_c a_l”. At block 206, the string s 
is partitioned into the same number of segments, such as “ 
f i s ik le”. 

At block 208, the error model computes a probability for 
this pair of partitioned strings as P(flph)*P(i|y)*P(s|s)*P 
(ik|ic)*P(le|al) and temporarily stores the result. The error 
model considers other partitions of the user-entered string s 
against the partitioned Word W, as represented by the inner 
loop blocks 210 and 212. With each completion of all 
possible partitions of the user-entered string s, the error 
model 44 iteratively tries different partitions of the Word W, 
as represented by the outer loop blocks 214 and 216. 
At block 218, When all possible combinations of parti 

tions have been processed, the error model 44 sums the 
probabilities to produce the probability P(s|W). 

Training the Error Model 
The error model 44 is trained prior to being implemented 

in the spell checker 40. The training is performed by a 
computing system, Which may be the same computer as 
shoWn in FIG. 1 (i.e., the model is trained on the ?y) or a 
separate computer employed by the developer of the spell 
checker (i.e., the model is trained during development). The 
training utiliZes a training set or corpus that includes correct 
dictionary Words along With errors observed When a user 
enters such Words. One technique for training the error 
model is to use a training set consisting of <Wrong, right> 
training pairs. Each training pair represents a spelling error 
together With the correct spelling of the Word. 

FIG. 3 shoWs a training computer 300 having a processor 
302, a volatile memory 304, and a non-volatile memory 306. 
The training computer 300 runs a training program 308 to 
produce probabilities of different arbitrary-length string-to 
string corrections (0t—>[3) over a large set of training Words 
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8 
and associated mistakes observed from entry of such Words. 
The training program 308 is illustrated as executing on the 
processor 302, although it is loaded into the processor from 
storage on non-volatile memory 306. 

Training computer 300 has a training set 310 stored in 
non-volatile memory 306 (i.e., hard disk(s), CD-ROM, etc.). 
The training set has <Wrong, right> training pairs. As an 
example, the training set 310 may have 10,000 pairs. The 
training computer uses the training set to derive probabilities 
associated With hoW likely the right Word is to be changed 
to the Wrong Word. The probabilities are based on the least 
cost Way to edit an arbitrary length character sequence 0t into 
another arbitrary length character sequence [3(i.e., (X—>[3). 

FIG. 4 shoWs a training method implemented by the 
training program 308. At block 402, the training method 
arranges the Wrong and right Words according to single letter 
edits: insertion (i.e., @Qa), substitution (i.e., aQb), deletion 
(i.e., aQQ), and match (i.e., a :a). The edits are assigned 
different Weights. Using the Levenshtein Distance, for 
example, a match is assigned a Weight of 0 and all other edits 
are given a Weight of 1. Given a <Wrong, Right> training 
pair, the training method ?nds the least-cost alignment using 
single letter edits and edit Weights. 

FIG. 5 shoWs one possible least-cost alignment of a 
training pair <akgsual, actual>. In the illustrated alignment, 
the ?rst letters “a” in each string match, as represented by the 
label “Mat” beneath the associated characters. This edit type 
is assessed a Weight of 0. The second letters do not match. 
A substitution edit needs to be performed to convert the “c” 
into the “k”, as represented by the legend “Sub”. This edit 
type is assigned a Weight of 1. There is no letter in the right 
Word “actual” that corresponds to the letter “g” in the Wrong 
Word “akgsual” and hence an insertion edit is needed to 
insert the “g”. Insertion is represented by the legend “Ins” 
and is given a Weight of 1. Another substitution is needed to 
convert the “t” into an “s”, and this substitution is also 
assessed a Weight of l. The last three letters in each string 
are matched and are accorded a Weight of 0. 

The alignment in FIG. 5 is one example of a least-cost 
alignment, having an edit cost of 3. Other alignments With 
the same cost may exist. For instance, perhaps the letter “g” 
in “akgsual” may be aligned With “t” and “s” With space. 
This alternate alignment results in the same cost of 3. 
Selection of one alignment in such ties is handled arbitrarily. 

After this initial alignment, all contiguous non-match 
edits are collapsed into a single error region (block 404 in 
FIG. 4). There may be multiple error regions in a given 
training pair, but the contiguous non-match edits are com 
bined as common regions. Using the alignment of training 
pair <akgsual, actual> in FIG. 5, the contiguous “substitu 
tion-insertion-substitution” edits are collapsed into a single 
substitution edit “ctQkgs”. 

FIG. 6 shoWs the training pair <akgsual, actual> after all 
contiguous non-match edits are collapsed. NoW, there is only 
one non-match edit, namely a generic substitution operation 
“ctQkgs”. 
An alternate Way of training is to not collapse contiguous 

non-match edits. Given the alignment shoWn in FIG. 5, this 
Would result in three substitution operations: cQk, 
NULL—>g and tQs, instead of the single substitution opera 
tion obtained by collapsing. 

To alloW for richer contextual information, each substi 
tution is expanded to incorporate one or more edits from the 
left and one or more edits from the right (block 406 in FIG. 
4). As an example, the expansion might entail up to tWo edits 
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from the left and tWo edits from the right. For the substitu 
tion “ctQkgs”, the training method generates the following 
substitutions: 

actQakgs 
actuQakgsu 

ctuaQkgsua 
Each of these possible substitutions is assigned an equal 

fractional count, such as one-?fth of a count per substitution. 

At block 408, the probability of each substitution 0t—>[3 is 
computed as count(0tQ[3)/count(0t). For instance, to com 
pute P(ct—>kgs), the method ?rst sums up all of the counts 
found for the edit ctQkgs in the training corpus. Then, the 
method counts the number of times the substring “ct” is seen 
in a suitably siZed corpus of representative text, and divides 
the ?rst count by the second. 

After obtaining the set of edits and edit probabilities, the 
process may iteratively re-estimate the probabilities using a 
form of the Well knoWn E-M algorithm, similar to the 
retraining method described in the Church paper. HoWever, 
the inventors have observed that very good results can be 
obtained Without re-estimating the parameters. 
By varying the training set 310, the error model 44 may 

be trained to accommodate the error pro?les on a user-by 
user basis, or on a group-by-group basis. For instance, a user 
With dyslexia is likely to have a very different error pro?le 
than somebody Without dyslexia. An English professor is 
likely to have a very different error pro?le from a third 
grader, and a native Japanese speaker entering English text 
is likely to have a very different error pro?le from a native 
English speaker. 

Therefore, the e?icacy of the spelling correction program 
can be improved further if it is trained to the particular error 
pro?le of an individual or subpopulation. For a relatively 
static subpopulation, the training set 310 is created to 
contain <Wrong, right> pairs from the subpopulation. The 
error model 44 is then trained based on this training set. 

For individuals, a generally trained error model can be 
con?gured to adapt to the user’s oWn tendencies. As the user 
employs the spell checker, it keeps track of instances Where 
an error is corrected. One Way to track such instances is to 
monitor Which Word the user accepts from a list of correc 
tions presented by the spell checker When it ?ags a Word as 
incorrect. Another Way is to monitor When the spell checker 
autocorrects a string the user has input. By tracking cor 
rected errors, the spell checker collects <Wrong, right> pairs 
that are speci?c to that individual. This can then be used to 
adapt the error model to the individual, by retraining the 
((X—>[3) parameters to take into account these individual error 
tuples. 

It is desirable to use a large number of <Wrong, right> 
pairs for training, as this typically improves accuracy of the 
resultant correction probabilities. One method for collecting 
the training pairs is to harvest it from available on-line 
resources such as the World Wide Web. A spell checker can 
auto-correct a string s into a Word W When it is suf?ciently 
certain that W Was the intended Word that Was mistyped as 
s. For instance, the spell checker can auto-correct s into W if 
W is the most likely intended Word according to our model, 
and the second most likely intended Word is su?iciently less 
probable than W. The error model can thus be iteratively 
trained as follows: 

(1) Obtain a set of <Wrong, right> pairs and use them to 
train an initial model. 
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10 
(2) Run the model over a collection of on-line resources. 

In all cases, When the model auto-corrects string s into 
Word W, save the tuple <s,W>. 

(3) Use these saved <s,W> tuples to retrain the model. 
(4) Go to step (2). 
Spell Correction Method 
Once the error model is trained, the spell checker 40 is 

ready to identify and correct misspelled Words. As noted 
earlier, the spell checker 40 attempts to correct an errone 
ously entered string s by returning the change that maxi 
miZes the probabilities of the source and error models, as 
folloWs: 

argmaxP(s | W) X P(w | context) 
weD 

One approach to performing this search is to ?rst return 
the k best candidate Words according to P(s|W) and then 
re-score these k best Words according to the full model 

P(s|W)*P(W|context). 

argmaxP(s | w) , 
weD 

the spell checker can be con?gured to iterate over the entire 
dictionary D. HoWever, it is much more ef?cient to convert 
the dictionary into a trie and compute edit costs for each 
node in the trie. Representing a dictionary as a trie is 
conventional and Well knoWn to those of skill in the art. 
Further ef?ciency gains can be had if the set of edits are 
stored as a trie of edit left-hand-sides, With pointers to 
corresponding tries of right-hand-sides of edit rules. 

Depending upon the certainty that Word W is intended 
When string s is input, the spell checker 40 has the folloWing 
options: (1) leave the string unchanged, (2) autocorrect the 
string s into the Word W, or (3) offer a list of possible 
corrections for the string s. The spell correction process may 
be represented by the folloWing pseudo code: 

For each space-delimited string s 
Find the k most likely Words 
If there is suf?cient evidence that s is the intended string 

Then do nothing 
Else 

If there is suf?cient evidence that the most likely Word 
W is the intended Word given the generated string s, 
Then autocorrect s into W 

Else 
Flag the string s as potentially incorrect and offer the 

user a sorted list of possible corrections. 

CONCLUSION 

Although the description above uses language that is 
speci?c to structural features and/or methodological acts, it 
is to be understood that the invention de?ned in the 
appended claims is not limited to the speci?c features or acts 
described. Rather, the speci?c features and acts are disclosed 
as exemplary forms of implementing the invention. 
What is claimed is: 
1. An apparatus, comprising: 
a computing processor; 
an electronic memory coupled With the computing pro 

cessor; 
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an input device to receive an entered string s, and 
a program in the memory for execution on the computing 

processor to determine a probability P(s|W) expressing 
hoW likely a Word W Was to have been incorrectly 
entered as the string s, by partitioning the Word W and 
the string s into di?cerent numbers of segments that 
de?ne varying lengths of character sequences and com 
puting probabilities for various partitionings, as fol 
loWs: 

Where Part(W) is a set of possible Ways of partitioning the 
Word W, Part(s) is a set of possible Ways of partitioning the 
string s, R is a particular partition of the Word W, and T is a 
particular partition of the string s. 

2. The apparatus as recited in claim 1, Wherein the 
program determines hoW likely the Word W is to have been 
generated. 

3. The apparatus as recited in claim 1, Wherein the 
program corrects the string s to the Word W. 

4. The apparatus as recited in claim 1, Wherein the 
program identi?es the string s as potentially incorrect. 

5. The apparatus as recited in claim 1, further comprising 
a training program: 

to determine, given a <Wrong, right> training pair and 
multiple single character edits that convert characters in 
one of the right or Wrong strings to characters in the 
other of the right or Wrong strings at dilTering costs, an 
alignment of the Wrong string and the right string that 
results is a least cost to convert the characters, 

to collapse contiguous non-match edits into one or more 
common error regions, each error region containing 
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one or more characters that can be converted to one or 

more other characters using a substitution edit, and 
to compute a probability for each substitution edit. 
6. The apparatus as recited in claim 5, Wherein the training 

program assigns a cost ofO to match edits and a cost of 1 to 
non-match edits. 

7. The apparatus as recited in claim 6, Wherein the single 
character edits comprises insertion, deletion, and substitu 
tion. 

8. The apparatus as recited in claim 1, Wherein the training 
program collects multiple <Wrong, right > training pairs 
from online resources. 

9. The apparatus as recited in claim 1, Wherein the training 
program expands each of the error regions to capture at least 
one character on at least one side of the error region. 

10. A system, comprising: 
means for receiving an entered string s, and 
an input device to receive an entered string s, and 
means for determining a probability P(s|W) expressing 
hoW likely a Word W Was to have been incorrectly 
entered as the string s, by partitioning the Word W and 
the string s into di?cerent numbers of segments that 
de?ne varying lengths of character sequences and com 
puting probabilities for various partitonings, as folloWs: 

Where Part(W) is a set of possible Ways of partitioning the 
Word W, Part(s) is a set of possible Ways of partitioning the 
string s, R is a particular partition of the Word W, and T is a 
particular partition of the string. 


