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SPELL CHECKER WITH ARBITRARY
LENGTH STRING-TO-STRING
TRANSFORMATIONS TO IMPROVE NOISY
CHANNEL SPELLING CORRECTION

RELATED APPLICATIONS

This continuation patent application claims priority to
U.S. patent application Ser. No. 09/539,357 to Brill et al.,
filed Mar. 31, 2000 and entitled, “Spell Checker With
Arbitrary Length String to String Transformations to
Improve Noisy Channel Spelling Correction”, which issued
as U.S. Pat. No. 7,047,493 on May 16, 2006.

TECHNICAL FIELD

This invention relates to spell checkers used in computer
programs to identify and potentially correct misspelled
words.

BACKGROUND

Spell checkers are well-known program components used
in computer programs to inform users that a word is mis-
spelled, and in some cases, to correct the error to the
appropriate spelling. Word processing programs, email pro-
grams, spreadsheets, browsers, and the like are examples of
computer programs that employ spell checkers.

One conventional type of spell checker corrects errors in
an ad-hoc fashion by manually specifying the types of
allowable edits and the weights associated with each edit
type. For the spell checker to recognize an entry error
“fysical” and correct the error to the appropriate word
“physical”, a designer manually specifies a substitution edit
type that allows substitution of the letters “ph” for the letter
“f”. Since it is built manually, this approach does not readily
port to a new language or adapt to an individual’s typing
style.

Another type of spell checker is one that learns errors and
weights automatically, rather than being manually config-
ured. One type of trainable spell checker is based on a noisy
channel model, which observes character strings actually
entered by a user and attempts to determine the intended
string based on a model of generation.

Spell checkers based on the noisy channel model have
two components: (1) a word or source generation model, and
(2) a channel or error model. The source model describes
how likely a particular word is to have been generated. The
error model describes how likely a person intending to input
X will instead input Y. Together, the spell checker attempts
to describe how likely a particular word is to be the intended
word, given an observed string that was entered.

As an example, suppose a user intends to type the word
“physical”, but instead types “fysical”. The source model
evaluates how likely the user is to have intended the word
“physical”. The error model evaluates how likely the user is
to type in the erroneous word “fysical” when the intended
word is “physical”.

The classic error model computes the Levenshtein Dis-
tance between two strings, which is the minimum number of
single letter insertions, deletions, and substitutions needed to
transform one character string into another. The classic error
model is described in Levenshtein, V. “Binary Codes
Capable of Correcting Deletions, Insertions and Reversals.”
Soviet Physics—Doklady 10, 10, pp. 707-710. 1966.

A modification of the classic error model employs a
Weighted Levenshtein Distance, in which each edit opera-
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tion is assigned a different weight. For instance, the weight
assigned to the operation “Substitute e for i” is significantly
different than the weight assigned to the operation “Substi-
tute e for M”. Essentially all existing spell checkers that are
based on edit operations use the weighted Levenshtein
Distance as the error model, while sometimes adding a small
number of additional edit templates, such as transposition,
doubling, and halving.

The error model can be implemented in several ways. One
way is to assume all edits are equally likely. In an article by
Mays, E., Damerau, F, and Mercer, R. entitled “Context
Based Spelling Correction,” Information Processing and
Management, Vol. 27, No. 5, pp. 517-522, 1991, the authors
describe pre-computing a set of edit-neighbors for every
word in the dictionary. A word is an edit-neighbor of another
word, if it can be derived from the other word from a single
edit, where an edit is defined as a single letter insertion (e.g.,
¥—a), a single letter substitution (e.g., a—=b), a single letter
deletion (e.g., a—@), or a letter-pair transposition (e.g.,
ab—ba). For every word in a document, the spell checker
determines whether any edit-neighbor of that word is more
likely to appear in that context than the word that was typed.
All edit-neighbors of a word are assigned equal probability
ot having been the intended word, and the context is used to
determine which word to select. It is noted that the word
itself (if it is in the dictionary) is considered an edit-neighbor
of itself, and it is given a much higher probability of being
the intended word than the other edit-neighbors.

A second way to implement the error model is to estimate
the probabilities of various edits from training data. In an
article by Church, K. and Gale, W., entitled “Probability
Scoring for Spelling Correction,” Statistics and Computing
1, pp. 93-103, 1991, the authors propose employing the
identical set of edit types used by Mays et al. (i.e., single
letter insertion, substitution, deletion, and letter-pair trans-
position) and automatically deriving probabilities for all
edits by computing the probability of an intended word w
given an entered string s. The Church et al. method trains on
a training corpus to learn the probabilities for each possible
change, regardless of the correct word and entered word. In
other words, it learns the probability that an erroneous input
string s will be written when the correct word w was
intended, or P(stw). The Church et al. method improves
insertion and deletion by including one character of context.

The error model probability P(siw) used in noisy channel
spell correction programs, such as the one described in
Church et al., may seem backwards initially because it
suggests finding how likely a string s is to be entered given
that a dictionary word w is intended. In contrast, the spell
correction program actually wants to know how likely the
entered string s is to be a word w in the dictionary, or P(wls).
The error model probability P(siw) comes from Bayes for-
mula, which can be used to represent the desired probability
P(wls) as follows:

Pls|w)- P(w)

Pw|s) = )

The denominator P(s) remains the same for purposes of
comparing possible intended words given the entered string.
Accordingly, the spell checking analysis concerns only the
numerator product P(stw)-P(w), where the probability P(slw)
represents the error model and the probability P(w) repre-
sents the source model.
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As application programs become more sophisticated and
the needs of users evolve, there is an ongoing need to
improve spell checkers. The inventors have developed an
improved spell checker that is based on the noisy channel
model, which incorporates a more powerful error model
component.

SUMMARY

A spell checker based on the noisy channel model has a
source model and an error model. The source model deter-
mines how likely a word w in a dictionary is to have been
generated. The error model determines how likely the word
w was to have been incorrectly entered as the string s (e.g.,
mistyped or incorrectly interpreted by a speech recognition
system).

The error model determines this probability based on edit
operations that convert arbitrary length character sequences
in the word w to arbitrary length character sequences in the
string s. These edit operations are characterized as o—f,
where a is one character sequence of zero or more characters
and  is another character sequence of zero or more char-
acters. In many cases, the number of characters in each
sequence o and §§ will be different. In this manner, the edit
operations are not constrained or limited to the specified set
of changes, such as single letter insertion, deletion, or
substitution.

The error model determines how likely a word w in the
dictionary was to have been mistyped as the string s (i.e.
P(stw)) according to the probabilities of the string-to-string
edits. One implementation is to find all possible sets of
string-to-string edits that transform the word w into the
string s, calculating P(slw) for each set and then summing
over all sets. The probabilities are derived through a training
process that initially uses Levenshtein Distance or other cost
metric to find the least cost alignment of characters in a pair
of wrong and right inputs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary computer that
runs a spell checker.

FIG. 2 is a flow diagram of a process implemented by the
spell checker to compute a probability P(siw) given an
erroneously entered string s and a dictionary word w.

FIG. 3 is a block diagram of a training computer used to
train the spell checker.

FIG. 4 is a flow diagram of a training method imple-
mented by the training computer.

FIG. 5 is a diagrammatic illustration of an alignment
technique used during training of an error model employed
in the spell checker.

FIG. 6 is a diagrammatic illustration of the alignment
technique of FIG. 5 at a point later in the process.

DETAILED DESCRIPTION

This invention concerns a spell checker used in computer
programs to identify and, in some cases, correct misspelled
words. The spell checker may be used in many different
applications, including word processing programs, email
programs, spreadsheets, browsers, and the like. For discus-
sion purposes, the spell checker is described in the context
of a spell correction program implemented in a word pro-
cessing program.

However, aspects of this invention may be implemented
in other environments and in other types of programs. For
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instance, the invention may be implemented in language
conversion software (e.g., Japanese Katakana to English)
that may implement string-to-string mapping.

Exemplary Computing Environment

FIG. 1 shows an exemplary computer 20 having a pro-
cessor 22, volatile memory 24 (e.g., RAM), and non-volatile
memory 26 (e.g., ROM, Flash, hard disk, floppy disk,
CD-ROM, etc.). The computer 20 also has one or more input
devices 28 (e.g., keyboard, mouse, microphone, stylus, etc.)
and a display 30 (e.g., monitor, LCD, etc.). The computer
may also have other output devices (now not shown), such
as a speaker. The computer 20 is representative of many
diverse types of computing devices, including desktop com-
puters, laptops, handheld computers, set-top boxes, infor-
mation appliances, and so forth.

The computer 20 runs an operating system 32 and a word
processing application program 34. For purposes of illus-
tration, operating system 32 and word processor 34 are
illustrated herein as discrete blocks stored in the non-volatile
memory 26, although it is recognized that such programs
and components reside at various times in different storage
components of the computer 20 and are executed by the
processor 22. Generally, these software components are
stored in non-volatile memory 26 and from there, are loaded
at least partially into the volatile main memory 24 for
execution on the processor 22.

The word processor 34 includes a spell correction pro-
gram 40 that identifies and, where appropriate, corrects
misspelled words that the user has entered. The user enters
the words in a conventional manner, such as typing them in
on a keyboard, using a stylus to input individual letters, or
speaking words into a microphone. In the event voice entry
is employed, the computer 20 would also implement a
speech recognition program (not shown) to convert voice
input to words.

The spell correction program 40 is based on the noisy
channel model and has two components: a source model 42
and an error model 44. The source model 42 includes
computer-executable instructions that determine how likely
a particular word w in a dictionary D is to have been
generated in this particular context. The source model is
represented statistically as the probability P(wicontext). The
error model 44 includes computer-executable instructions
that determine how likely a user is to enter the string s when
intending to enter the word w. The error model is represented
statistically as the probability P(slw).

Accordingly, the spell checker 40 attempts to correct an
erroneously entered string s into a word w by returning the
change that maximizes the probabilities of the source and
error models, as follows:

argmaxP(s | w) X P(w | context)
weD

The source and error models are independent of each
other. Thus, different source models 42 may be used inter-
changeably with the preferred error model described below.
The source model 42 may be implemented as a language
model, if one is available. In this case, P(wlcontext) is the
probability of word w, given the context words that the user
had entered prior to w. If the relative word probabilities are
known, but not anything about how the words are used in
context, P(wicontext) can be reduced to P(w). Finally, if the
spell checker knows nothing about the relative word prob-
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abilities of the user generating words in the dictionary, the
source model can be eliminated entirely by setting

1
P(w| context) to —
|D|

for all w.
Improved Error Model 44

Unlike conventional error models, the error model 44
employed in spell checker 40 permits edit operations that
convert a first string of arbitrary size to a second string of
arbitrary size. That is, given an alphabet V and arbitrary
length character sequences o and {3, the error model 44
allows edit operations of the form a—f, where a, pEV*
(where V* represents the set of all strings of characters in V
of length 0 or more). Each character sequence o and § may
have zero or more characters and in many cases, the number
of characters in each sequence o and f§ will be different. In
this manner, the edit operations are not constrained or
limited to a specified set of changes, such as single letter
insertion, deletion, or substitution.

The error model 44 can therefore be characterized as the
probability that, when a user intends to type a character
sequence o, he/she instead types f3. This is represented as the
probability P(Blat). The error model probability P(siw) can
then be expressed as a set of probabilities describing various
arbitrary length string-to-string conversions, as follows:

P(sw)=P(Blo)*P(Balaz)* P(Bslas)™ . . . *P(B,la,)

One implementation of the error model 44 is to find all
possible sets of string-to-string edits that transform the word
w into the string s, calculate the probability P(slw) for each
set using the above formula, and sum over all sets. More
particularly, for each possible word w that the erroneous
string s might be, the error model 44 partitions the word w
and string s into different numbers of segments that define
varying lengths of character sequences. For example, sup-
pose the dictionary word is “physical” and the number of
partition segments is five. One possible partition is, say, “ph
y s ic al”. Now, suppose that a generates each partition,
possibly with errors. One possible result of the user input is

The error model then computes the probability P(fla) for
each associated segment pair, such as P(flph), P(ily), and so
on. The error model probability P(fi s ik lelph y s ic al) can
then be expressed as the product of these segment pair
probabilities, as follows:

P(fis ik lelph y s ic al)=P(fiph)* P(ily)* P(sls)*P
(iklic)* P(lelal).

The error model 44 examines all probabilities for all
partitions over all possible words and selects the word that
returns the highest probability, summed over all partitions.
For example, let Part(w) be the set of all possible ways of
partitioning word w and Part(s) be the set of all possible
ways of partitioning the entered string s. For a particular
partiton R of the word w (i.e.,, REPart(w), where
IRI=contiguous segments), let partition R, be the i” segment.
Similarly, for a particular partition T of the string s (i.e.,
TEPart(s), where ITI= contiguous segments), let partition T,
be the i” segment. The error model 44 computes:
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|R|

Z PRIw > [P R

REPariw) Tehars) =1

Ps|w) =

The first summation sums probabilities over all possible
partitions of the word w. For a given partition R, the second
summation sums over all possible partitions of the string s,
with the restriction that both partitions must have the same
number of segments. The product then multiplies the prob-
abilities of each Ri—Ti.

To demonstrate this computation, consider the word
“physical” and the five-segment partition. The error model
44 tries different partitions R of the word, and for each word
partition R, tries different partitions T of the entered string.
For each combination, the error model 44 computes a
corresponding probability P(siw), as illustrated in Table 1:

TABLE 1
Partitions Probabilities P(siw)
Ryphysical
Ti:fisikle P(fiph) *P(ily) * P(sls) * P(iklic) *P(lelal)
Trxfisikle P(fiph) *P(sly) * P(ils) * P(klic) *P(lelal)
Ty fisikle P(fisiph) *P(ily) * P(lls) * P(llic) *P(elal)
T, fisikle _ _ P(fisiph) *P(ikly) * P(lels) * P( lic) *P( lal)
Ts:... -
R, phy si cal _
Ti:fisikle P(fiphy) *P(ilsi) * P(sleal) * P(ikl ) *P(lel )
T fisikle P(filphy) *P(slsi) * P(ilcal) * P(kl ) *P(lel )
Ty fisikle P(fisiphy) *P(ilsi) * P(lical) * P(ll ) *P(el )
Ty fisikle _ _ P(fisiphy) *P(ikisi) * P(lelcal) * P(1) *P( )
Ts:. .. S
Ry

After all permutations have been computed for a five-
segment partition, the error model repeats the process for
partitions of more or less than five segments. The error
model 44 selects the word that yields the highest probability
P(stw), summed over all possible partitions. The spell
checker 40 uses the error model probability, along with the
source model probability, to determine whether to autocor-
rect the entered string, leave the string alone, or suggest
possible alternate words for the user to choose from.

If computational efficiency is a concern, the above rela-
tionship may be approximated as follows:

|R|

P(s | W) = 0aX Repartuy Tepartsy PR | W) | | P(TS | Rp)
i=1

Two further simplifications can be made during imple-
mentation that still provides satisfactory results. One sim-
plification is to drop the term P(RIw). Another simplification
is to set the terms P(T,IR,)=1 whenever T=R,.

The error model 44 has a number of advantages over
previous approaches. First, the error model is not con-
strained to single character edits, but robustly handles con-
version of one arbitrary length string to another arbitrary
length string. As noted in the Background, virtually all
conventional spell checkers based on the noisy channel
model use a fixed set of single character edits—insertion,
deletion, and substitution—with some checkers also includ-
ing simple transposition, doubling, and halving. However,
people often mistype one string for another string, where one
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or both of the strings has length greater than one. These
types of errors cannot be modeled succinctly using the
conventional Weighted Levenshtein Distance.

The error model 44 captures the traditional single char-
acter edits, transposition, doubling, and halving, as well as
many phenomena not captured in such simpler models. For
example, if a person mistypes “philosophy” as “filosofy”,
the error model 44 captures this directly by the edit “ph—1”,
whereby a two-character string is converted to a single
character string. Even when an error is a single letter
substitution, often the environment in which it occurs is
significant. For instance, if a user enters “significant” as
“significant”, it makes more sense to describe this by the edit
operation “ant—ent” than simply by “a—e”.

Another advantage of the error model 44 is that it can
implement an even richer set of edits by allowing an edit to
be conditioned on the position that the edit occurs,
P(o—fBIPSN), where PSN describes positional information
about the substring within the word. For example, the
position may be the start of a word, the end of a word, or
some other location within the word (i.e., PSN={start of
word, end of word, other}). The spell checker adds a
start-of-word symbol and an end-of-word symbol to each
word to provide this positional information.

FIG. 2 shows the process implemented by the spell
checker 40 to compute a probability P(siw) given an entered
string s and a dictionary word w. At block 202, the spell
checker receives a user-entered string s that might contain
errors. Assume that the entered word is “fisikle”. Given this
entered string s, the spell checker iterates over all words w.
Suppose, for sake of discussion, the current word w is
“physical”.

At block 204, the word w is partitioned into multiple
segments. The word “physical” is partitioned, for example,
into five segments “ph y s ic al”. At block 206, the string s
is partitioned into the same number of segments, such as
fisikle”

At block 208, the error model computes a probability for
this pair of partitioned strings as P(fiph)*P(ily)*P(sls)*P
(iklic)*P(lelal) and temporarily stores the result. The error
model considers other partitions of the user-entered string s
against the partitioned word w, as represented by the inner
loop blocks 210 and 212. With each completion of all
possible partitions of the user-entered string s, the error
model 44 iteratively tries different partitions of the word w,
as represented by the outer loop blocks 214 and 216.

At block 218, when all possible combinations of parti-
tions have been processed, the error model 44 sums the
probabilities to produce the probability P(slw).

Training the Error Model

The error model 44 is trained prior to being implemented
in the spell checker 40. The training is performed by a
computing system, which may be the same computer as
shown in FIG. 1 (i.e., the model is trained on the fly) or a
separate computer employed by the developer of the spell
checker (i.e., the model is trained during development). The
training utilizes a training set or corpus that includes correct
dictionary words along with errors observed when a user
enters such words. One technique for training the error
model is to use a training set consisting of <wrong, right>
training pairs. Each training pair represents a spelling error
together with the correct spelling of the word.

FIG. 3 shows a training computer 300 having a processor
302, a volatile memory 304, and a non-volatile memory 306.
The training computer 300 runs a training program 308 to
produce probabilities of different arbitrary-length string-to-
string corrections (a.—>f) over a large set of training words
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and associated mistakes observed from entry of such words.
The training program 308 is illustrated as executing on the
processor 302, although it is loaded into the processor from
storage on non-volatile memory 306.

Training computer 300 has a training set 310 stored in
non-volatile memory 306 (i.e., hard disk(s), CD-ROM, etc.).
The training set has <wrong, right> training pairs. As an
example, the training set 310 may have 10,000 pairs. The
training computer uses the training set to derive probabilities
associated with how likely the right word is to be changed
to the wrong word. The probabilities are based on the least
cost way to edit an arbitrary length character sequence o into
another arbitrary length character sequence f(i.e., a—=).

FIG. 4 shows a training method implemented by the
training program 308. At block 402, the training method
arranges the wrong and right words according to single letter
edits: insertion (i.e., @—a), substitution (i.e., a—b), deletion
(i.e., a—0), and match (i.e., a =a). The edits are assigned
different weights. Using the Levenshtein Distance, for
example, a match is assigned a weight of 0 and all other edits
are given a weight of 1. Given a <Wrong, Right> training
pair, the training method finds the least-cost alignment using
single letter edits and edit weights.

FIG. 5 shows one possible least-cost alignment of a
training pair <akgsual, actual>. In the illustrated alignment,
the first letters “a” in each string match, as represented by the
label “Mat” beneath the associated characters. This edit type
is assessed a weight of 0. The second letters do not match.
A substitution edit needs to be performed to convert the “c”
into the “k™, as represented by the legend “Sub”. This edit
type is assigned a weight of 1. There is no letter in the right
word “actual” that corresponds to the letter “g” in the wrong
word “akgsual” and hence an insertion edit is needed to
insert the “g”. Insertion is represented by the legend “Ins”
and is given a weight of 1. Another substitution is needed to
convert the “t” into an “s”, and this substitution is also
assessed a weight of 1. The last three letters in each string

are matched and are accorded a weight of 0.

The alignment in FIG. 5 is one example of a least-cost
alignment, having an edit cost of 3. Other alignments with
the same cost may exist. For instance, perhaps the letter “g”
in “akgsual” may be aligned with “t” and “s” with space.
This alternate alignment results in the same cost of 3.
Selection of one alignment in such ties is handled arbitrarily.

After this initial alignment, all contiguous non-match
edits are collapsed into a single error region (block 404 in
FIG. 4). There may be multiple error regions in a given
training pair, but the contiguous non-match edits are com-
bined as common regions. Using the alignment of training
pair <akgsual, actual> in FIG. 5, the contiguous “substitu-
tion-insertion-substitution” edits are collapsed into a single
substitution edit “ct—kgs”.

FIG. 6 shows the training pair <akgsual, actual> after all
contiguous non-match edits are collapsed. Now, there is only
one non-match edit, namely a generic substitution operation
“ct—kgs”.

An alternate way of training is to not collapse contiguous
non-match edits. Given the alignment shown in FIG. 5, this
would result in three substitution operations: c—k,
NULL—g and t—=s, instead of the single substitution opera-
tion obtained by collapsing.

To allow for richer contextual information, each substi-
tution is expanded to incorporate one or more edits from the
left and one or more edits from the right (block 406 in FIG.
4). As an example, the expansion might entail up to two edits
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from the left and two edits from the right. For the substitu-
tion “ct—kgs”, the training method generates the following
substitutions:

ct—kgs

act—akgs

actu—akgsu

ctu—kgsu

ctua—kgsua

Each of these possible substitutions is assigned an equal
fractional count, such as one-fifth of'a count per substitution.

At block 408, the probability of each substitution a—f is
computed as count(c.—f)/count(ct). For instance, to com-
pute P(ct—kgs), the method first sums up all of the counts
found for the edit ct—kgs in the training corpus. Then, the
method counts the number of times the substring “ct” is seen
in a suitably sized corpus of representative text, and divides
the first count by the second.

After obtaining the set of edits and edit probabilities, the
process may iteratively re-estimate the probabilities using a
form of the well known E-M algorithm, similar to the
retraining method described in the Church paper. However,
the inventors have observed that very good results can be
obtained without re-estimating the parameters.

By varying the training set 310, the error model 44 may
be trained to accommodate the error profiles on a user-by-
user basis, or on a group-by-group basis. For instance, a user
with dyslexia is likely to have a very different error profile
than somebody without dyslexia. An English professor is
likely to have a very different error profile from a third
grader, and a native Japanese speaker entering English text
is likely to have a very different error profile from a native
English speaker.

Therefore, the efficacy of the spelling correction program
can be improved further if it is trained to the particular error
profile of an individual or subpopulation. For a relatively
static subpopulation, the training set 310 is created to
contain <wrong, right> pairs from the subpopulation. The
error model 44 is then trained based on this training set.

For individuals, a generally trained error model can be
configured to adapt to the user’s own tendencies. As the user
employs the spell checker, it keeps track of instances where
an error is corrected. One way to track such instances is to
monitor which word the user accepts from a list of correc-
tions presented by the spell checker when it flags a word as
incorrect. Another way is to monitor when the spell checker
autocorrects a string the user has input. By tracking cor-
rected errors, the spell checker collects <wrong, right> pairs
that are specific to that individual. This can then be used to
adapt the error model to the individual, by retraining the
(0—=p) parameters to take into account these individual error
tuples.

It is desirable to use a large number of <wrong, right>
pairs for training, as this typically improves accuracy of the
resultant correction probabilities. One method for collecting
the training pairs is to harvest it from available on-line
resources such as the World Wide Web. A spell checker can
auto-correct a string s into a word w when it is sufficiently
certain that w was the intended word that was mistyped as
s. For instance, the spell checker can auto-correct s into w if
w is the most likely intended word according to our model,
and the second most likely intended word is sufficiently less
probable than w. The error model can thus be iteratively
trained as follows:

(1) Obtain a set of <wrong, right> pairs and use them to
train an initial model.
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(2) Run the model over a collection of on-line resources.
In all cases, when the model auto-corrects string s into
word w, save the tuple <s,w>.

(3) Use these saved <s,w> tuples to retrain the model.

(4) Go to step (2).

Spell Correction Method

Once the error model is trained, the spell checker 40 is

ready to identify and correct misspelled words. As noted
earlier, the spell checker 40 attempts to correct an errone-
ously entered string s by returning the change that maxi-
mizes the probabilities of the source and error models, as
follows:

argmaxP(s | w) X P(w | context)
weD

One approach to performing this search is to first return
the k best candidate words according to P(slw) and then
re-score these k best words according to the full model
P(stw)*P(wlcontext).

To find

argmaxP(s | w),
weD

the spell checker can be configured to iterate over the entire
dictionary D. However, it is much more efficient to convert
the dictionary into a trie and compute edit costs for each
node in the trie. Representing a dictionary as a trie is
conventional and well known to those of skill in the art.
Further efficiency gains can be had if the set of edits are
stored as a trie of edit left-hand-sides, with pointers to
corresponding tries of right-hand-sides of edit rules.
Depending upon the certainty that word w is intended
when string s is input, the spell checker 40 has the following
options: (1) leave the string unchanged, (2) autocorrect the
string s into the word w, or (3) offer a list of possible
corrections for the string s. The spell correction process may
be represented by the following pseudo code:
For each space-delimited string s
Find the k most likely words
If there is sufficient evidence that s is the intended string
Then do nothing
Else
If there is sufficient evidence that the most likely word
w is the intended word given the generated string s,
Then autocorrect s into w
Else
Flag the string s as potentially incorrect and offer the
user a sorted list of possible corrections.

CONCLUSION

Although the description above uses language that is
specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the
appended claims is not limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as exemplary forms of implementing the invention.

What is claimed is:

1. An apparatus, comprising:

a computing processor;

an electronic memory coupled with the computing pro-

cessor;
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an input device to receive an entered string s, and

a program in the memory for execution on the computing
processor to determine a probability P(slw) expressing
how likely a word w was to have been incorrectly
entered as the string s, by partitioning the word w and
the string s into different numbers of segments that
define varying lengths of character sequences and com-
puting probabilities for various partitionings, as fol-
lows:

|R|

Z PRIw > | |P@iR)

REPartiw) Tﬁ-ff",’eﬂx) =l

P(s|w) =

where Part(w) is a set of possible ways of partitioning the
word w, Part(s) is a set of possible ways of partitioning the
string s, R is a particular partition of the word w, and T is a
particular partition of the string s.

2. The apparatus as recited in claim 1, wherein the
program determines how likely the word w is to have been
generated.

3. The apparatus as recited in claim 1, wherein the
program corrects the string s to the word w.

4. The apparatus as recited in claim 1, wherein the
program identifies the string s as potentially incorrect.

5. The apparatus as recited in claim 1, further comprising
a training program:

to determine, given a <wrong, right> training pair and

multiple single character edits that convert characters in
one of the right or wrong strings to characters in the
other of the right or wrong strings at differing costs, an
alignment of the wrong string and the right string that
results is a least cost to convert the characters,

to collapse contiguous non-match edits into one or more

common error regions, each error region containing
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one or more characters that can be converted to one or
more other characters using a substitution edit, and
to compute a probability for each substitution edit.

6. The apparatus as recited in claim 5, wherein the training
program assigns a cost of 0 to match edits and a cost of 1 to
non-match edits.

7. The apparatus as recited in claim 6, wherein the single
character edits comprises insertion, deletion, and substitu-
tion.

8. The apparatus as recited in claim 1, wherein the training
program collects multiple <wrong, right > training pairs
from online resources.

9. The apparatus as recited in claim 1, wherein the training
program expands each of the error regions to capture at least
one character on at least one side of the error region.

10. A system, comprising:

means for receiving an entered string s, and

an input device to receive an entered string s, and

means for determining a probability P(slw) expressing

how likely a word w was to have been incorrectly
entered as the string s, by partitioning the word w and
the string s into different numbers of segments that
define varying lengths of character sequences and com-
puting probabilities for various partitonings, as follows:

|R|

PRIw Y | |PT1RY

TePart(s) i=1
ITI=IRI

o= 3

RePart(w)

where Part(w) is a set of possible ways of partitioning the
word w, Part(s) is a set of possible ways of partitioning the
string s, R is a particular partition of the word w, and T is a
particular partition of the string.



