[

3,714,978

Feb. 6, 1973 [45]

54]	APPARATUS FOR HANDLING
	URANIUM HEXAFLUORIDE AT
	ELEVATED PRESSURE

[75] Inventors: Hans Pirk, Dornigheim; Ulrich Tillessen, Grossauheim, both of Ger-

[73] Assignee: Nukem Nuklear-Chemie und-Metallurgie, GmbH, Wolfgang near

Hanau am Main, Germany

[22] Filed: April 21, 1970

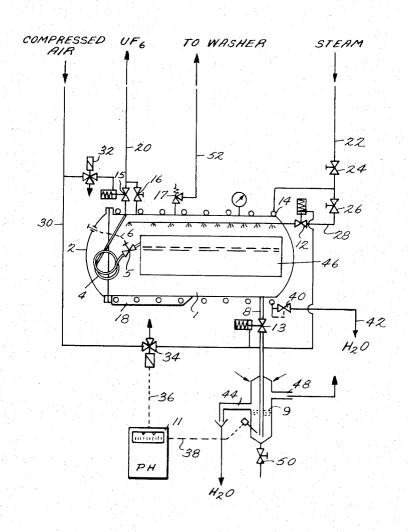
[21] Appl. No.: 30,503

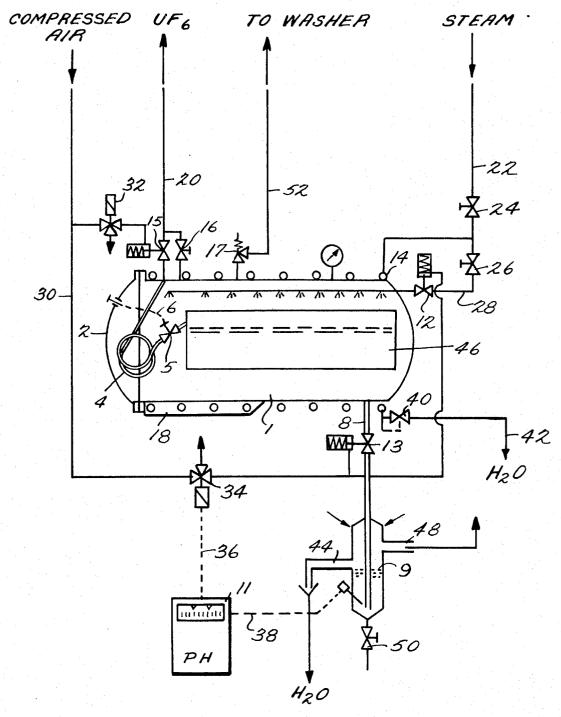
[30] Foreign Application Priority Data

May 14, 1969 Germany......P 19 24 595.5

Int. Cl.F28f 11/00

[56] References Cited UNITED STATES PATENTS


3,098,023 7/1963 Schluderberg165/70 2,658,728 11/1953 Evans, Jr.....165/1


Primary Examiner—Charles Sukalo Attorney-Cushman, Darby & Cushman

ABSTRACT

The danger of UF6 break out is eliminated by placing the container with the UF6 in an outer container, heating the outer vessel with a condensible gas, catching the condensible gas and any UF₆ leakage, measuring the leakage with an indicating device, e.g. a pH instrument, shutting off the heating and closing the outer vessel when the indicating device exceeds a predetermined value.

4 Claims, 1 Drawing Figure

INVENTORS
HANS PIAK
BY ULAICH TILLESSEN

Cushman, Dally Cushman
ATTORNEYS

APPARATUS FOR HANDLING URANIUM HEXAFLUORIDE AT ELEVATED PRESSURE

Uranium hexafluoride is a colorless salt which is very volatile at room temperature and which changes to the gaseous form without melting. The sublimation point is 5 at 56° C., the triple point at 1.5 atmospheres absolute and 64° C. at a temperature at 100° C. liquid UF₆ already is under a vapor pressure of 4.3 atmospheres absolute. Because of these thermodynamic properties, uranium can be vaporized as the hexafluoride at very 10 low temperatures. UF₆, therefore, has acquired great importance as the starting material in isotope separation and the subsequent production of nuclear fuels with enrichment in U 235.

On account of its high volatility, it is packed in pres- 15sure containers of steel, stored, transported and delivered as is done in a manner similar to condensable gases. The filling and emptying of the container can be accomplished in various ways.

In physical chemical processes, as for example, the process of separating or reconversion, the gaseous form of UF₆ is utilized. In this case, UF₆ is taken from the containers as a gas and injected directly into the process by way of hot conduits. In this case, it is liquified under pressure by heat supply through the container wall and withdrawn from the gas cushion above the surface of the liquid continuously by means of reducing valves.

Frequently, however, it is appropriate to handle the 30 liquid UF₆. If, for example, UF₆ from a condenser or a buffer container is packed in another container or different lots should be united in a container for the purpose of homogenization, the handling of the liquid saves time and energy and therefore is preferred to 35 vaporization. In this case, also the UF, must be held in pressure containers at a temperature level above the melting point by heat insulation or controlled heat addition or removal so that it can be drawn off as a liquid below the container through openings in the container 40 bottom under the influence of gravity and vapor pressure. After the cooling of the liquid UF, down to the melting point, a compact, crystalline material is obtained.

The equipment for handling UF₆ in the above 45 and valve 12. described manner consists of chambers which surrounds the pressure container and are loaded with various liquid or gaseous heating or cooling media, such as, for example, water, air or steam.

crease in volume. Therefore, the heat must be steadily distributed over the container surface when heating up the filled containers in order to avoid local buildup of excess pressure (hydraulic bursting apart). The installation of a direct electrical source of heat is not per- 55 missible. But even, the use of electrical radiation heating implicates the danger of overheating inspite of possibly more extensive safety precautions whereby the maximum permissible container pressure can be easily

Steam in comparison to hot air possesses a higher heat capacity. Moreover, it has the advantage that because of its better heat transfer very short heating up times are required and, using saturated steam, pressure or temperature regulation can be dispensed with. Steam heating also makes it possible to detect reliably and quickly in a simple manner very small UF, leakages

by measurement of the change of the conductivity or the pH value in the condensate.

All known equipment for the treatment of UF₆ under pressure does not offer sufficient protection against a spontaneous explosion. Mathematically it can easily be shown that because of the small heat of vaporization, however high the heat capacity of the liquid UF₆, the greater part of the container contents is vaporized during such a failure until the rest effectively is cooled by utilization of the heat of vaporization.

Lately, several accidents have become known in which larger amounts of UF₆ have escaped through defective container valves. Thereby the service personnel were injured dangerously by cauterization of the respiratory ducts. The escaped fluoride could only be made usable again with great losses and after an expensive chemical purification.

The present invention is directed to overcome the 20 depicted dangers and disadvantages which have been unavoidable until now in case of UF₆ escape. Furthermore, the invention also enables an unhindered subsequent treatment in case of failure.

With the apparatus of the invention, a heat container 25 has been developed that takes over the function of a pressure container in the event of a UF6 escape and which permits escaped UF₆ to be totally caught and to be controllably supplied for further use by a valve on the outer container.

The device will be explained in the following by the example of an evaporating plant with reference to the attached diagram.

The heating vessel consists of a vertically or horizontally arranged cylindrical steel container 1 having a diameter of 1 meter and a length of 2.50 meters in which there is inserted UF₆ container 3 of the type USAEC-30 A by opening locking cover 2. The UF₆ withdrawal takes place over an elastic helical tube and the pneumatic valve 15. The container valve 5 is operated from outside by a flexible spindle 6. The outer pressure container 1 is provided with steam sprinklers 7 on the inside and with a condensate drain 8. Steam enters from line 22 by way of the valves 24, 26, line 28

The condensate passes through a condensate pot 9 which is provided with a pH measuring electrode 10. This responds to trivial leakages and automatically closes the quick-shut valves 12 and 13 for steam intake The melting of UF6 is combined with a distinct in- 50 or condensate exit by electro-pneumatic control after exceeding an adjustable (predetermined) threshold on the regulator 11.

> Criticality calculations have shown that the amounts of condensate and steam found in the container are kept so small by the safety precautions of the apparatus of the invention that a critical accident is out of the question, even by using large UF6 containers with contents of 2.2 metric tons and enrichment degrees up to 4 percent.

> In case of a larger UF₆ leakage, steel container 1 then takes over the function of the UF, container until the complete emptying of the UF₆ present.

> The withdrawal then takes place additionally or exclusively according to the case of the disturbance through valve 16 and line 20. Thus the steel container 1 is heated with steam by an outer tube register 14. This additional heating apparatus is imbedded in an insulat

ing layer 18 for the purpose of heat insulation and

uniform heat distribution. Steam enters tube register 14

from line 22 by way of valve 24. Compressed air for the

pneumatic-electrical control of the valves 32 and 34

dotted line 36 and the electrical connection between

regulator 11 and control 10 is indicated by dotted line

An overflow tube 44 is provided for water to leave condensate pot 9 and vapors in the condensate pot go

to a washer (not shown) by way of conduit 48. A drain

through valve 40 and line 42.

enters through line 30. The electrical connection 5 between regulator 11 and valve 34 is indicated by

ment, if the container to be filled is first evacuated. In comparison, if liquid UF₆ is then withdrawn the valve of the inner container must be placed at the lowest point of the container bottom. Such an arrangement can be obtained if the apparatus depicted in horizontal position is tilted vertically.

By freezing of liquid UF₆, the container stands under excess pressure until the temperature goes below 56°C. In this case also the use of an additional outer container brings increased safety against UF₆ leakage. In such case, the outer container is impinged upon with a suitable cooling medium, for example, air.

1. A method for handling liquid and gaseous UF₆ under elevated pressure and for preventing leakage thereof into the atmosphere comprising: disposing the UFs in an inner container; surrounding the inner container with an outer pressure-resistant heat-insulating container; passing a condensible fluid heat exchange medium into the space between the containers; condensing the heat exchange medium on the exterior of the inner container; withdrawing the resulting condensate from the outer container; detecting the presence of UF, in the condensate by measuring the pH of the condensate; stopping the flow of heat exchange mecium in response to the detection of UF₆ in the condensate; and withdrawing the leaked UF₆ from the outer container.

2. A method as in claim 1 wherein the heat exchange medium is steam.

A method as in claim 1 wherein leaked UF, is withdrawn from the outer container by withdrawing the condensate.

4. A method as in claim 1 wherein leaked UF₆ is withdrawn from the outer container by heating the

Water condensed from tube register 14 is withdrawn 10

What is claimed is:

valve 50 is provided for the condensate pot. In case of a UF₆ escape, the condensate will react according to the equation: $UF_6 + 2H_2O \rightarrow UO_2F_2 + 4HF$. When in this way the pressure in the outer container 1^{20} rises above the predetermined amount, it opens the safety valve 17 and discharges the excess pressure by way of line 52 to a wash tower. The heating vessel can also be operated with other gaseous heating media than steam, as, for example, hot 25

In the above example, an evaporation equipment is described. An apparatus for safe handling of liquid UF, does not differ in principle from the described ap-

air. In order to guarantee a quick shutting down in the

case of a UF₆ break out, the exiting air is led over a

water bath that is equipped with a pH measuring ap-

paratus and the shutting down accomplished in the

paratus for withdrawal of gaseous UF₆.

above described manner.

Should a container be filled with liquid UF₆, there 35 outer container and venting the outer container. can be selected an equivalent to the illustrated arrange-

40

45

50

55

60