04/010269 A 2 I 0K .0 OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

(10) International Publication Number

WO 2004/010269 A2

(51

(21)

(22)
(25)
(26)

(30)

(71)

(71)

(72)

29 January 2004 (29.01.2004) PCT
International Patent Classification’: GOGF 1/00
International Application Number:

PCT/GB2003/003112
International Filing Date: 17 July 2003 (17.07.2003)
Filing Language: English (74)
Publication Language: English
Priority Data: (81)
10/202,517 23 July 2002 (23.07.2002) US
Applicant: INTERNATIONAL BUSINESS MA-

CHINES CORPORATION [US/US]; New Orchard
Road, Armonk, NY 10504 (US).

Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

Inventors: ARNOLD, William, Carlisle; 207 Hill Street,
Mahopac, NY 10541 (US). CHESS, David, Michael;
1744 Lawrence Road, Mohegan Lake, NY 10547 (US).

(84)

MORAR, John, Frederick; 53 Hillside View Road,
Mahopac, NY 10541 (US). SEGAL, Alla; 48 Park
Drive, Mount Kisco, NY 10549 (US). WHALLEY, Ian,
Nicholas; 203 Charles Colman Boulevard, Pawling, NY
12564-1124 (US). WHITE, Steve, Richard; 225 East
57th Street, Apartment 19F, New York, NY 10016 (US).

Agent: LING, Christopher, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
ter, Hampshire SO21 2IN (GB).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR THE AUTOMATIC DETERMINATION OF POTENTIALLY WORM-LIKE BE-
HAVIOUR OF A PROGRAM

ns

SAMPLE

(SAP)
PROGRAM
{CONTROLLER)

0 el

INTERPRETERS, COMPILERS (700LS)

116

LA
REGISTRY l’

4B Mk
*] DLUs -+

102 <

A CODE

105 ~] 106~

RAM

CPU

106~ 10

|

LINK [~12 TERM

DISK

PRINTER

L109

130 T

113

1M3A
INTERNET

g

L‘I‘H

(57) Abstract: A method and system for the automatic determination of the behavioural profile of a program suspected of having
worm-like characteristics includes analyzing data processing system resources required by the program and, if the required resources
are not indicative of the program having worm-like characteristics, running the program in a controlled non-network environment
while monitoring and logging accesses to system resources to determine the behaviour of the program in the non-network envi-

ronment. A logged record of the observed behaviour is analyzed to determine if the behaviour is indicative of the program having

worm-like characteristics. The non-network environment may simulate the appearance of a network to the program, without emu-
lating the operation of the network.

WO 2004/010269 A2 [N} IN0VYR) T AP0 A0 AR

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

WO 2004/010269 PCT/GB2003/003112

METHOD AND APPARATUS FOR THE AUTOMATIC DETERMINATION OF POTENTIALLY
WORM-LIKE BEHAVIOUR OF A PROGRAM

FIELD OF THE INVENTION

This invention relates generally to methods and apparatus for
analyzing undesirable software entities, such as those known as worms, and
relates more particularly to methods and apparatus for automatically

identifying potentially worm-like behaviour in a software program.

BACKGROUND OF THE INVENTION

A Computer Virus can be defined as a self-replicating program or
software routine that spreads on a computer in a possibly modified manner
without human interaction. A Computer Worm can be defined as a program
that can clandestinely send a copy of itself between computers on a
computer network, and which uses a network service or services to

replicate.

In the field of automated computer virus detection and analysis it
is often necessary to predict what type of behaviour a program will
exhibit so that the program can be replicated and analyzed in the

environment most appropriate for the program.

Software can be dynamically analyzed to identify
potentially-important behaviours (such as worm-like behaviour). Such
behaviour may only be displayed when the software is executed in an
environment where the software has, or appears to have, access to a
production network and/or to the global Internet. The software may be
executed in a real or in an emulated network environment that includes a
monitoring component and an emulation component. The monitoring component
serves to capture and/or record the behaviours displayed by the software
and/or other components of the system, and the emulation component gives
the software being analyzed the impression that it is executing with
access to a production network and/or to the global Internet. The
software being analyzed is effectively confined to the analysis network
environment, and cannot in fact read information from, or alter any

information on, any production network or the global Internet.

It would be desirable to provide a capability to specify the
identity of computer worms outside of such an environment. While it may

be possible to use such an environment for the replication of both

WO 2004/010269 PCT/GB2003/003112

computer software viruses and worms, it may be inefficient, as the worm
replication environment assumes the presence of a real or an emulated

network that in practice can be expensive to implement.

Thus an ability to predict if a sample of software is a potential
worm, outside of the network environment, would reduce the number of
samples sent to the worm replication environment, and result in a
significant improvement to the efficiency of automated replication and

analysis systems.

SUMMARY OF THE INVENTION

The present invention accordingly provides methods and apparatus for
the automatic determination of the behavioural profile of a program
suspected of having worm-like characteristics. In a first aspect a method
includes analyzing data processing system resources required by the
program and, if the required resources are not indicative of the program
having worm-like characteristics, running the program in a controlled
non-network environment while monitoring and logging accesses to system
resources to determine the behaviour of the program in the non-network
environment. A logged record of the observed behaviour is analyzed to
determine if the behaviour is indicative of the program having worm-like
characteristics. The non-network environment may simulate the appearance
of a network to the program, without emulating an actual operation of the

network.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be
described, by way of example only, with reference to the accompanying

drawings, in which:

Fig. 1 is a block diagram of a data processing system in a preferred

embodiment of the present invention;

Fig. 2 is a block diagram of a controller unit in a preferred

embodiment of the present invention;

Fig. 3 is a logic flow diagram that illustrates the operation of the
resource analyzer component of Fig. 2 in a preferred embodiment of the

present invention;

WO 2004/010269 PCT/GB2003/003112

Figs. 4A and 4B, collectively referred to as Fig. 4, show a logic
flow diagram that illustrates the operation of the replicator unit of
Fig. 2 and a loglc flow diagram that illustrates the operation of a
behaviour pattern analyzer component of Fig. 2 in a preferred embodiment

of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

The method disclosed herein is based on the characteristics of a
worm program that enable it to spread to other computers. These
characteristics include, but need not be limited to, one or more of the
following: (a) using Application Program Interfaces (APIs) from dynamic
link libraries (dlls) to send electronic mail to another machine; (b) the
automating of common mail programs such as, but not limited to, Microsoft
Outlook™ and Outlook Express™; (¢) the use of address books, system
registry and other system resources to determine the potential recipients
of the worm and/or the location of mail programs; (d) overwriting or
replacing network APIs in system libraries with worm code that, if
executed, would cause the inclusion of the worm code in all mail sent from
the machine as an attachment, or as a separate mail message; (e)
attempting to access resources on remote drives; and (f) dropping
programs that would run after the system is restarted and would cause the
worm code to be sent to other machines using one of the previously

described methods.

A profile of a worm is one exhibiting those characteristics that
would indicate the use of one or more of the aforementioned methods. For
example, a worm profile may include importing a send method from a network
dll, or changing a network resource, or attempting to access a system
registry for obtaining information that is descriptive of any installed

electronic mail programs.

The determination of the behavioural profile of a suspected program
(i.e., one suspected of having worm-like behaviour, characteristics or

attributes) is performed in two stages.

During the first stage, the resources required by the program are
determined. Examples of the resources indicative of a potential worm-like
behaviour include, but need not be limited to: (a) the dynamic link
libraries for the network access; (b) methods imported from these

libraries that indicate possible attempts to send electronic mail; and

WO 2004/010269 PCT/GB2003/003112

(c) dynamic link libraries and methods indicating the automation of

existing mail programs such as, for example, OLE or DDE.

During the second stage the suspect program is run one or more times
in a controlled non-network environment where accesses to system
resources, possibly all accesses, are monitored and logged. To narrow
down the results and to reduce the number of false positives, the
non-network environment may be configured to appear to have some network
capabilities. For example, 1f a suspected worm is attempting to access
address books or check for the presence of electronic mail programs, the
environment can provide the expected information in order to elicit a more
specific worm-like response. In some cases, it may be advantageous to
install an electronic mail program on the system in order to facilitate a
positive response to the suspected program should it attempt to access

such a program.

After the one or more program runs are completed, the behaviour
profile of the program is created based on both the changes made to the
system, such as, by example only, a modification of any network dll, and
any attempts to access specific resources such as a registry key

containing the location of the mail program or of an address book.

A preferred embodiment of this invention runs on one or more of the
computer systems 100 shown in Fig. 1, which shows a block diagram of a
typical computing system 100 where the preferred embodiment of this
invention can be practiced. The computer system 100 includes a computer
platform 102 having a hardware unit 103, and a software-analyzing program
(SAP) 101, also referred to herein as a controller 101, that implements
the methods disclosed below. The SAP 101 operates on the computer
platform 102 and hardware unit 103. The hardware unit 103 typically
includes one or more central processing units (CPUs) 104, a memory 105
that may include a random access memory (RAM), and an input/output (I/0)
interface 106. Micro instruction code 107, for example a reduced
instruction set, may also be included on the platform 102. Various
peripheral components 130 may be connected to the computer platform 102.
Typically provided peripheral components 130 include a display 109, an
external data storage device (e.g. tape or disk) 110 where the data used
by the preferred embodiment is stored, and where a worm resource profile
205 (see Fig. 2) resides, and a printing device 111. A link 112 may also
be included to connect the system 100 to one or more other similar
computer systems shown simply as the block 113. The link 112 is used to

transmit digital information between the computers 100 and 113. The link

WO 2004/010269 PCT/GB2003/003112

112 may also provide access to the global Internet 113a. An operating
system (08) 114 coordinates the operation of the various components of the
computer system 100, and is also responsible for managing various objects
and files, and for recording certain information regarding same, such as
date and time last modified, file length, etc. Associated with the 0S 114
in a conventional manner is a registry 114A, the use of which is discussed
below, and system initialization files (SYS_INIT FILES) and other files,
such as dlls 114B. Lying above the 0S 114 is a software tools layer 114A
containing, for example, compilers, interpreters and other software tools.
The interpreters, compilers and other tools in the layer 116 run above the
operating system 114 and enable the execution of programs that use methods
known to the art.

One suitable and non-limiting example of computer system 100 is the
IBM IntelliStation™ (trademark of the International Business Machines
Corporation). An example of a suitable CPU is a Pentium™ III processor
(trademark of the Intel Corporation); examples of an operating systems
are Microsoft Windows™ 2000 (trademark of Microsoft Corporation) and a
Redhat build of GNU/Linux; examples of an interpreter and a compiler are
a Perl interpreter and a C++ compiler. Those skilled in the art will
realize that one could substitute other examples of computing systems,

processors, operating systems and tools for those mentioned above.

The SAP or controller 101 operates in accordance with the teachings
of this invention to determine possible worm-like behaviour resulting from
the execution of a suspected malicious program or undesirable software

entity, referred to herein generically as a sample 115.

A presently preferred, but non-limiting, embodiment of the SAP or
controller 101 uses one or multiple computers for implementing a
controller subsystem or unit 200 and a replicator subsystem or unit 201,
both of which are shown in Fig. 2. A worm-like behaviour analyzer 202,
which forms a part of the controller 200, uses some of the currently
existing tools 114A in order to determine the dlls and the imports used by

the suspected program or sample 115.

Fig. 2 is a detailed block diagram of a controller unit 200 and a
replicator unit 201 in the preferred embodiment of this invention, and
shows a worm-like behaviour analyzer 202 and the environment where the
preferred embodiment is run. The environment includes several computing
systems, one of which is a controller 200 and another one of which is a

replicator 201.

WO 2004/010269 PCT/GB2003/003112

It should be noted that while the unit 201 is referred to herein as
a replicator, its primary function is not to replicate a worm, i.e.,
provide additional instance of the worm. Instead its primary purpose is
to create a system environment, more precisely an emulated system
environment, in which to exercise the sample 115, one or more times in one
or more ways, so as to determine the behaviour of the sample 115 as it
pertains to and induces changes in the state of the system environment, as
well as to obtain a record or log of the activities of the sample 115 when
operating in the (emulated) system environment. Any changes in the system
state, and the log of the activities of the executed sample 115, are
compared to system state changes and activities known to be associated
with worm-like behaviour and, if a match occurs, the sample 115 is deemed
to exhibit worm-like characteristics. At this point it may be desirable
to attempt to replicate the suspected worm to gain further instances

thereof for analysis and subsequent identification.

Exercising the sample 115 in a number of "ways" implies, for the
purposes of this invention, running the sample program via different
system APIs (e.g., system and/or CreateProcess) one or several times, and
also exercising a GUI, if the program has a GUI. Exercising the sample
115 in a number of ways may also be accomplished by running the sample
program, then restarting the system and running the program again. These
techniques are not intended to be exhaustive of the "ways" in which the

sample 115 can be exercised.

The worm-like behaviour analyzer 202 includes a resource analyzer
203, also referred to herein as a static analyzer or as a static
determination unit, and a behaviour pattern analyzer 204, also referred to
herein as a dynamic analyzer or as a dynamic determination unit. The
behaviour pattern analyzer 202 uses tools 206 and 207 that determine a
list of dynamic link libraries 114B required by the sample 115 and the
methods imported from the dynamic link libraries 114B, respectively. An
example of a tool 206, 207 that can be used to determine which dynamic
link libraries 114B are required by a program is known as Microsoft
DEPENDS.EXE, described in an article "Under the Hood" by Matt Pietrek in
the Feb. 1997 issue of the Microsoft Systems Journal and available through
the Microsoft Developer Network. An example of a tool 206, 207 that can
be used to determine the imports of the sample program 215 is known as
DUMPBIN.EXE, which forms a part of the Microsoft Developer Studio™ version
6.0. Other tools for performing the same or similar functions can be

found or written by those skilled in the art.

WO 2004/010269 PCT/GB2003/003112

The resource analyzer 203 (static determination) uses these tools to
create a profile of the resources used by the suspected program or sample
115, and compares the results to the content of the worm resource profile
205. A typical worm resource profile 205 may include the network dlls
114B such as, as non-limiting examples, WSOCK32.DLL, INETMIB1.DLL,
WINSOCK.DLL, MSWSOCK.DLL, WININET.DLL, MAPI32.DLL, MAPI.DLL and
WS2_32.DLL, as well as a dll indicating use of OLE automation such as, for
example, OLE32.DLL, as well as the list of methods imported from these
dynamic link libraries. These imported methods can include, but need not
be limited to, the "send", "sendto" and WSAsend methods imported from
WSOCK32.DLL, the CoCreateInstance and CoCreateInstanceEx methods from
OLE32.DLL, or the DDEConnect method from USER32.DLL.

The behaviour pattern analyzer 204 (dynamic determination) creates
the behaviour profile of a suspected program using the results of the run
of the sample 115 on the replicator 201, and compares these results to a
worm behaviour profile 208. A typical worm behaviour profile 208 includes
a list of changes to the system and/or attempts at file and registry
access that are indicative of worm-like behaviour. The worm behaviour
profile 208 list may include, but need not be limited to, the following
elements: (a) changes to one or more network dlls, but no non-network
dlls; (b) creation of one or more files with the VBS extension; (c)
creation of any new files and corresponding changes to/creation of the
system initialization files 114B that would cause a replacement of any of
the network dlls with a new file. An example of this latter scenario is
the creation of the file wininit.ini in the Windows directory on a Windows
system, where the created wininit.ini file contains instructions such as
"WSOCK32.DLL=SOME.FILE", where SOME.FILE is a new file created by the
program. The worm behaviour profile 208 list may further include (d) a
record of attempts to access address books or/and registry keys

corresponding to the location of an electronic mail program .

Both the worm resource profile 205 and the worm behaviour profile
208 are preferably static in nature, and are preferably created before the

sample 115 is run on the replicator 201.

The replicator 201 is invoked by the controller 200 prior to the
behaviour pattern analysis operation discussed above. The replicator 201
includes a replication controller (RC) 209, behaviour monitors 210 and an

optional network behaviour simulator 211.

WO 2004/010269 PCT/GB2003/003112

The network behaviour simulator 211 operates in conjunction with the
behaviour monitors 210 to create an appearance of a network-like behaviour
to elicit certain worm-like behaviours of the sample 115. For example,
the network behaviour simulator 211 operates to provide a false network
address, such as a false IP address to the sample 215 when the behaviour
monitor 210 detects a request for an IP address by the sample 115. 1In
this case the sample 115 may request the local IP address to ascertain if
the system has network capabilities before displaying worm-like behaviour,
and a local IP address may be provided to the sample 115 as an inducement

for the sample 115 to display worm-like behaviour.

In a similar fashion, the environment in which the sample 115 is run
can be made to exhibit the presence of system resources and/or objects
that do not, in fact, exist. For example, the sample 115 may request
information about a specific file, and it may then be advantageous for the
environment to respond with the regquested information as if the file
exists, or to create the file before returning it to the sample 115 as an
inducement for the sample to display worm-like behaviour. That is, a
known non-network environment can be made to exhibit at least one of
rnon-existent local network-related resources and local network-related

objects to the program.

Figs. 3 and 4 illustrate the overall control flow during the
execution of the controller 200 and the replicator 201. In Fig. 3 the
sample 115 is first delivered to the controller 200 at step 301, which
then passes the sample 115 to the resource analyzer 203 at step 302. The
resource analyzer 203 determines which dynamic link libraries 114B are
accessed by the sample 115 at step 303, and compares the accessed dlls to
those in the worm resource profile 205 (step 304).

If the dll usage matches the worm resource profile 205, the methods
imported from these dlls are determined at step 305. If these methods
match those contained in the worm resource profile 205 (step 306), the
sample 115 is classified as a potential worm. If neither the dll usage or
the imported methods match the worm resource profile 205, as indicated by
a No indication at either of steps 304 and 306, the sample 115 is passed
to the replicator 201, shown in Fig 4A, for replication and the subsequent

behaviour pattern determination.

Fig. 4 illustrates the flow of control through the replicator 201
(Fig 4A) and the behaviour pattern analyzer 204 (Fig 4B). After the

replication environment is initialized at step 401, the sample is sent to

WO 2004/010269 PCT/GB2003/003112

the replicator 201 at step 402 and is executed at step 403. Control then
passes to the behaviour pattern analyzer 204 (Fig 4B) that examines any
changes to the system at step 404, and compares detected changes to those
in the worm behaviour profile 208 at step 405. If there is a match the
sample 115 is declared to be a potential worm, otherwise the behaviour
pattern analyzer 204 analyzes the activity reported by the behaviour
monitors 210 at step 406 and attempts at step 407 to match the reported
sample behaviour to the activity patterns (worm-like behaviour patterns)

listed in the worm behaviour profile 208.

If either the changes to the system analyzed at step 404 or the
activity reported by the behaviour monitors at step 406 contains any of
the patterns listed in the worm behaviour profile 208, the sample is
classified as a potential worm, otherwise the sample 115 is classified as
not being a worm. If classified as a worm at step 407, the sample 115A
can be provided to a worm replication and analysis system for further

characterization.

The method described above can be embodied on a computer readable
medium, such as the disk 110, for implementing a method for the automatic
determination of the behavioural profile of the sample program 115
suspected of having worm-like characteristics. The execution of the
computer program causes the computer 100, 200 to analyze computer system
resources required by the sample program 115 and, if the reguired
resources are not indicative of the sample program 115 having worm-like
characteristics, further execution of the computer program causes the
computer 100, 200, 201 to run the program in a controlled non-network
environment while monitoring and logging accesses to system resources to
determine the behaviour of the program in the non-network environment.
The further execution of the computer program may cause the computer to
simulate the appearance of a network to the sample program, without

emulating the operation of the network.

Note that foregoing description implies that only if the system
resource requirements of the sample do not indicate a potential worm
(static determination), that the replicator 201 is operated (dynamic
determination). In the presently preferred embodiment this is the case,
as the static determination process is typically much less computationally
expensive than the dynamic determination process, and will typically
execute much faster. However, it is also possible to execute both
processes or subsystems when a potential worm is indicated by the first,

with the second process or subsystem serving to verify the result of the

WO 2004/010269 PCT/GB2003/003112

10

first. It should be further noted that in some cases it may not be
desirable to require that both the static and dynamic determination
brocesses reach the same conclusion as to the worm-like nature of a
particular sample 115, as the generation of false negative results might
occur. It is thus presently preferred that one of the static or dynamic
processes is relied on to declare a particular sample to be worm-like,
enabling the system to switch to processing the sample as a potential

virus if worm-like behaviour is not indicated.

As was noted above, the sample 115 can typically be processed faster
for the static determination executed by resource analyzer 203 (outside of
the emulated environment) than for the dynamic determination executed by

behaviour pattern analyzer 204.

WO 2004/010269 PCT/GB2003/003112
11

CLAIMS

1. A method for the automatic determination of potentially
worm-like behaviour of a program, comprising:

determining a behavioural profile of the program in an environment
that does not emulate the operation of a network;

comparing the determined behavioural profile against a profile
indicative of worm-like behaviour; and

providing an indication of potentially worm-like behaviour based on

the result of the comparison.

2. A method as in claim 1, where the behavioural profile is
determined by determining what system resources are required by the

program.

3. A method as in claim 1, where the behavioural profile is
determined by determining what system resources are referred to by the

program.

4. A method as in claim 1, where the determination of the
behavioural profile comprises:

executing the program in at least one known non-network environment,

using an automated method for examining the environment and
determining what changes, if any, have occurred in the environment; and

recording any determined changes as said behavioural profile.

5. A method as in claim 4, where the known non-network
environment has an ability to appear to exhibit network-related

capabilities.

6. A method as in claim 5 where, in response to the program
seeking to determine if the environment has network capabilities,
providing a network address to the program as an inducement for the

program to display worm-like behaviour.

7. A method as in claim 4, where the known non-network
environment exhibits at least one of non-existent local network-related

resources and local network-related objects to the program.

8. A method as in claim 4 where, in response to the program
seeking to determine information about a file, responding as if the file

exists as an inducement for the program to display worm-like behaviour.

WO 2004/010269 PCT/GB2003/003112
12

9. A method as in claim 4 where, in response to the program
seeking to determine information about a file, creating the file before
returning the file to the program as an inducement for the program to
display worm-like behaviour.

10. A method as in claim 4 where, in response to the program
seeking to determine information about an electronic mail program,
returning the information to the program as an inducement for the program

to display worm-like behaviour.

11. A method as in claim 4 where, in response to the program

seeking to determine information about an electronic mail address book,

returning the information to the program as an inducement for the program

to display worm-like behaviour.

12. A method as in claim 1, where determining the behavioural
profile of the program includes exercising the program in a plurality of

ways.

13. A method as in claim 1, where determining the behavioural
profile of the program comprises determining a dynamic link library usage

of the program.

14. A method as in claim 1, where determining the behavioural
profile of the program comprises determining the identities of methods
imported by the program from a library.

15. A method as in claim 1, where determining the behavioural
profile of the program comprises determining what resources are requested

by the program.

16. A method as in claim 15, where said resources comprise at
least one of dynamic link libraries for network access, methods imported
from dynamic link libraries that indicate a possible attempt to send
electronic mail, and dynamic link libraries and methods indicating an

automation of an electronic mail program.

17. A method as in claim 1, where determining the behavioural
profile of the program comprises determining if system resources requested
by the program match certain predetermined system resources and, if so,
executing the program in a controlled environment, determining if system

changes made during execution of the program match certain predetermined

WO 2004/010269 PCT/GB2003/003112
13

system changes and, if so, declaring the program to be a possible worm,
and if not, determining if activities reported by a program behaviour
monitor match certain predetermined activities and, if so, declaring the

program to be a possible worm.

18. A data processing system comprising at least one computer for
executing a stored program for making an automatic determination of
potentially worm-like behaviour of a program, comprising:

means for determining a behavioural profile of the program in an
environment that does not emulate the operation of a network;

means for comparing the determined behavioural profile against a
stored profile indicative of worm-like behaviour; and

means for providing an indication of potentially worm-like behaviour

based on the result of the comparison.

19. A computer program product comprising instructions which, when
executed on a data processing system having a non-volatile memory storage
device, causes said system to carry out a method as claimed in any of

claims 1 to 17.

PCT/GB2003/003112

WO 2004/010269

114

LINYILN]

VELL -
ik
“ Woc
| .
LLL 0L~ 601y .
¥ILNIYd ¥sIa WY3L ZL="1 MNIN
7~
€0, —T 0/1 901 NdJ ./3_\ WVd ~— c|
= 3007 > 201
- s10 SO Ad 15193y
1 gyl v/
=T (S100L) SYITIdWOI “SYILIUMYILNI P
(¥3T104.LNOD) 4
| 4 WYY00dd e IS |
OS\\ . LOL (dVS) SLl

PCT/GB2003/003112

WO 2004/010269

214

¢ 914

0z -

SYOLINOW

dOLVINWIS

dOIAVHIE | — LIZ

AYOMLIN

602 |

JY

L0¢ - HOLVIId3Y

| MTTTTTTT T oTTTTTTmTomss—mooees oo
| m
o 207 i
| [|
L — |
| 43Z ATYNY 80¢ m
L NYillvd 1 39,3044 !
| YOIAVH3E | HOIAYH3Y |
| | WHOM !
_ ! "

| (51001 |

dOIAVHIE | m

o YIZAWNY e] |

L 1UN0SY [_,

[“ |

Sl “
e——— 1 | 371404d $700L

FIAWYS ' | 33n0S 3y Ceoz |

| oM m

| | 50 | | |

| : |

i |

| Nz |

|
|
|
|
|
|
I
“ 00Z - §ITI09INO)
|

WO 2004/010269

3/4

PCT/GB2003/003112

RESOURCE ANALYZER 203

DELIVER SAMPLE 115
10 CONTROLLER 200

301

l

PASS SAMPLE 115 TO
RESOURCE ANALYZER 203

[™-302

1

DLL 114B USAGE
BETERMINATION

304

DLL USAGE
MATCHES WORM
PROFILE

| ™~-303

DETERMINE METHODS
IMPORTED FROM USED
DLL's 14B

/305

306

METHOD ™
IMPORTS MATCH

WORM PROFILE

DECLARE SAMPLE 115
10 BE POSSIBLE WORM

(1) FIG 4A

FIG. 3

WO 2004/010269

L4

T

PCT/GB2003/003112

REPLICATOR - 201

INITIALIZE REPLICATION
ENVIROMENT

- 401

l

SEND SAMPLE 115

—— 402

TO REPLICATOR 201

l

EXECUTE THE SAMPLE 11

5 —~403

¢
?

FIG. LA

BEHAVIOR PATTERN

EXAMINE CHANGES

ANALYZER 204

TO THE SYSTEM

N\~ 404

CHANGES
MATCH WORM

405

YES

PROFILE
?
NO

ANALYZE ACTIVITY REPORTED
BY BEHAVIOR MONITORS 210 \406

ACTIVITY
CONSISTENT WITH
WORM P?ROFILE

NOT A WORM

POSSIBLE WORM
FIG. 4B

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

