TIME ATTENDANCE TRACKING METHOD AND SYSTEM

Applicants: TEH HON SENG, Selangor Darul Ehsan (MY); Chong Kah Heng, Selangor Darul Ehsan (MY); Chok Khang Yu, Selangor Darul Ehsan (MY)

Inventors: TEH HON SENG, Selangor Darul Ehsan (MY); Chong Kah Heng, Selangor Darul Ehsan (MY); Chok Khang Yu, Selangor Darul Ehsan (MY)

Publication Classification

Int. Cl. G06Q 10/10 (2006.01)
U.S. Cl. CPC G06Q 10/1091 (2013.01)
USPC 705/32

ABSTRACT

Time attendance tracking methods and systems are described in which a hand-held device is set as a primary device or a secondary device based on an inherent mobile identity of the hand-held device and operable in either a first mode or a second mode. The first mode permits the user to clock-in or clock-out for attendance recording for the user tied account while the second mode restricts the user to clock-in or clock-out for attendance recording for the user tied account.
Figure 2

- Return to Log In Page
- Clock-in / Clock-out
- Attendance List
- Report
- Settings

- History
- Clock-in / Clock-out by Face Image

- Verifies Face Image
- Check for Connection

- Send Clock-in / Clock-out Data to Server
- Send Notification

- Day
- Week
- Month
- Range of Dates
Figure 3
Figure 4
TIME ATTENDANCE TRACKING METHOD
AND SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION


FIELD OF INVENTION

[0002] The present invention generally relates to a time attendance tracking method and system. More particularly, the present invention relates to a method and system of tracking time attendance using mobile computing platforms.

BACKGROUND OF THE INVENTION

[0003] Systems and methods are known in the art for tracking time attendance and location of employees. Commonly, employees are required to clock-in and clock-out when checking in and checking out of work respectively. Various devices can be found for time attendance tracking, frequently by the use of time clock installed within office or work premises using punch cards, identity card and even fingerprints. While time tracking is achievable for workers within their work premises, time attendance of workers outside work premises such as business trips or customer visiting are unable to be tracked. There also exists the possibility that time attendance devices at a job site are not functioning, damaged due to vandalism or even stolen. In such a case, it would be highly desirable for the supervisor, manager or foreman to be able to not only track his or her time, but also track the time of the employees at that job site. Therefore, the best option of tracking time attendance of these workers is by using mobile time tracking platforms.

[0004] Until now, time attendance tracking through wireless devices can be found by a number of patented technologies. Of interest is U.S. Pat. No. 8,126,788 which appears to disclose a method for selectively tracking time attendance for either a single dedicated user or multiple non-dedicated users using a single multifunction electronic hand-held device. A time tracking software application is installed on the device to enable the dedicated user and non-dedicated users to clock-in or clock-out in a solo mode and in multiple users mode respectively. However, this patent disclosed that the switching of the solo mode to the multiple users mode on the device, or the other way around, requires an authorized password, which could be troublesome.

[0005] U.S. Pat. No. 7,835,955, on the other hand, appears to disclose a time attendance system that provides a device having a periodically changing code which is synchronized with a time clock associated with a service location. While the patent discloses a system to track actual location and time of employees, it does not explore the importance of deterring buddy punching by limiting user of a computing device used for time attendance reporting. Moreover, the patent focuses on tracking traveling time between a departure location and an arrival location by the computing device. Misuse of the computing device for buddy punching is therefore not explained which may be not a concern for this patent.

[0006] Therefore there is a need for systems and methods to track time attendance and location of employees, even out of work premises. Such systems and methods should also provide a way for employees not having such devices to record their attendances without having to go through a cumbersome request of an authorized password and could be done through a one-time registration method.

SUMMARY OF THE INVENTION

[0007] Accordingly, it is a primary object of the present invention to provide a system and method that offer employees extreme flexibility of reporting time attendance anywhere and anytime. The present invention allows the employees to record their attendances and locations even when they are on business trips or visiting customers, which are located out of office premises, through network connections between a server and their hand-held devices.

[0008] It is another object of the present invention to track time attendance of employees by using an employee's personal hand-held device for time attendance recording to avoid “buddy punching” and reporting of fake time attendances by a third party.

[0009] It is yet another object of the present invention to provide a time and location attendance tracking system and method that aims to help employees to become better motivated and more productive through observation of their working habits. The system provides detailed time attendance records where productivity of the workforce can be monitored and corrections of work shifts can be applied.

[0010] To fulfill the aforementioned objectives, a time attendance tracking method comprising providing a server in communication with a database storing a plurality of registered primary and secondary mobile identities, which are hand-held device specific, that each secondary mobile identity is paired with a preset user name linked to a preset access code, wherein each user name is tied to an account; setting a hand-held device as a primary device or a secondary device based on an inherent mobile identity of the hand-held device sent to the server, upon respectively matching the registered primary or registered secondary mobile identity in the database; allowing any user to use the primary device to operate in a first mode upon the user provided user name and access code matching with the preset user name and preset access code paired with the first mobile identity; allowing a single user to use the secondary device to operate in the first mode upon the user provided user name and access code matching with the preset user name and preset access code paired with the second mobile identity; or, optionally, allowing any user to use the secondary device to operate in a second mode upon the first user provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code; wherein the first mode permits the user to clock-in or clock-out for attendance recording, view the recorded attendance, export the recorded attendance or any combination derived thereof for the tied account; wherein the second mode permits the user to view recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

[0011] A preferred embodiment of the present invention also provides that the method further comprises the step of allowing the single user to use the primary or secondary device operated in the first mode to record clock-in or clock-out attendance in an offline condition.

[0012] Another preferred embodiment of the present invention also provides that the method further comprises the step of allowing an administrator to use the primary or secondary device to operate in an administrative mode upon the admini-
istrator provided user name and access code matching with preset administrator user name and linked access code without pairing with the mobile identity, wherein the administrative mode permits the administrator to view recorded attendance, export the recorded attendance or any combination derived thereof for all accounts.

[0013] In another embodiment of the present invention, the method further comprises the step of setting a hand-held device as a non-registered device based on inherent mobile identity of the hand-held device sent to the server, upon the provided mobile identity failed to match with any registered mobile identity.

[0014] In yet another embodiment of the present invention, the hand-held device further comprises a Global Positioning System for detecting location of the user at each clock-in or clock-out occasion and the detected location is tagged with the related clock-in or clock-out occasion.

[0015] In still another embodiment of the present invention, the access code or the preset access code is generated from alphabetic, numeric, alphanumeric, biometric data or a combination thereof. The biometric data can be selected from a group comprising face features, fingerprint, palm print or any two or more combinations thereof.

[0016] In yet another embodiment of the present invention, the hand-held device communicates with the server through a program installed onto the hand-held device.

[0017] In a further embodiment of the present invention, a time attendance tracking system comprises a server in communication with a database storing a plurality of registered primary and secondary mobile identity, which are hand-held device specific, that each secondary mobile identity is paired with a preset user identity linked to a preset access code, wherein each user identity is tied to an account; a hand-held device being set as a primary device or a secondary device based on inherent mobile identity of the hand-held device sent to the server; wherein the primary device is operable in a first mode upon any user provided user name and access code matching with the preset user name and preset access code paired with the first mobile identity; the secondary device is operable in the first mode upon a single user provided user name and access code matching with the preset user name and preset access code paired with the second mobile identity; or, optionally, the secondary device is operable in a second mode upon any user provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code; wherein the first mode permits the user to clock-in or clock-out for attendance recording, view the recorded attendance or any combination derived thereof for the tied account; and wherein the second mode permits the user to view recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

[0018] The present preferred embodiments of the invention consists of novel features and a combination of parts herein-after fully described and illustrated in the accompanying drawings and particularly pointed out in the appended claims; it being understood that various changes in the details may be effected by those skilled in the arts but without departing from the scope of the invention or sacrificing any of the advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] These and other features, aspects and advantages of the present invention will be more fully understood when considered with respect to the following detailed descriptions, appended claims and accompanying drawings wherein:

[0020] FIG. 1 illustrates a process flow depicting the primary steps taken in a first embodiment of the present invention;

[0021] FIG. 2 illustrates a process flow depicting the primary steps taken in a second embodiment of the present invention;

[0022] FIG. 3 illustrates a process flow depicting the primary steps taken in a third embodiment of the present invention; and

[0023] FIG. 4 illustrates a process flow depicting the primary steps taken in a fourth embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0024] Hereinafter, the present invention shall be described according to the preferred embodiments of the present invention and by referring to the accompanying description and drawings. However, it is to be understood that limiting the description to the preferred embodiments of the invention and to the drawings is merely to facilitate discussion of the present invention and it is envisioned that those skilled in the art may devise various modifications without departing from the scope of the appended claim.

[0025] The present invention relates to a time attendance tracking method and system. More particularly, the invention relates to a method and system of tracking time attendance using mobile computing platforms.

[0026] The present invention is aimed at providing a time attendance tracking method comprising providing a server in communication with a database storing a plurality of registered primary and secondary mobile identities, which are hand-held device specific, that each secondary mobile identity is paired with a preset user name linked to a preset access code, wherein each user name is tied to an account; setting a hand-held device as a primary device or a secondary device based on an inherent mobile identity of the hand-held device sent to the server, upon respectively matching the registered primary or registered secondary mobile identity in the database; allowing any user to use the primary device to operate in a first mode upon the user provided user name and access code matching with the preset user name and preset access code paired with the first mobile identity; or, optionally, allowing any user to use the secondary device to operate in a second mode upon the user provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code; wherein the first mode permits the user to clock-in or clock-out for attendance recording, view the recorded attendance, export the recorded attendance or any combination derived thereof for the tied account; and wherein the second mode permits the user to view recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

[0027] The method as described in the present invention is in a form of a software application or program particularly suited for operation with hand-held devices such as smartphones, Personal Digital Assistants (PDA), mobile computers or other multifunctional electronic hand-held devices with compatible operating systems to support the program. Pref-
erably, the hand-held device comprises a display screen, data entry inputs via touch screen, keyboards or voice commands, operating system to support the program and most preferably, it has a camera to recognize face features of the user. The hand-held device communicates with the server through the program installed onto the handheld device. The handheld device is preferred to be a personal hand-held device to the user so as to avoid “buddy punching.” “Buddy punching” generally refers to an act where employees at work are clocking-in or punching-in attendances for their co-workers, especially when they are late for work. The present invention helps to eliminate this situation because the hand-held device having a function to clock-in or clock-out for attendance recording is registered under, and personalized to, a specific user.

Accordingly, the database stores the plurality of registered primary and secondary mobile identities, preset user names and preset access codes linked to each user name, wherein each user name is tied to an account. Each account can be logged in with a user name and the linked access code. Each account stores all attendances recordings for a particular registered user and may have further information of the registered user such as full name, gender, address, contact number, designation or other user particulars.

According to a preferred embodiment of the present invention, each hand-held device bears a mobile identity, which is assigned by its manufacturer. The mobile identity is commonly known as International Mobile Equipment Identity (IMEI), which is stored in the hand-held device. The IMEI is used to differentiate the hand-held device as the primary or secondary device. For the primary and secondary device, the owner of the hand-held device is preferred to initially log into his or her account after installation of the program as described. This initial log in step is essential in the first mode as this permits the provided user name and access code to pair up with the preset user name and preset access code in the database. Upon this log in step, the primary or secondary device is operable in the first mode, which allows the users to clock-in or clock-out for attendance recording, view recorded attendance and export the recorded attendance.

In another embodiment of the present invention, the user name and access code can be in alphabetical, numerical or alphanumerical format. The access code can be provided by the user or generated by biometric data such as facial features, fingerprints, palm prints or voice. For facial features, a camera is preferred to be used to capture an image containing the facial features of the user. Facial templates are generated on the captured image and liveliness verification is performed. The captured image is used to match with a preset facial template stored in the database and verified if the user’s face is live. Other methods may be used for liveliness verification of facial features, for example, three dimensional face recognition or blink recognition. It is also acceptable that only biometric data is provided to the program upon logging in.

In yet another embodiment of the present invention, there will always be a situation when not every employee, or person who desires to keep track of attendance, owns a hand-held device or a hand-held device that has an operating system compatible with the program. In such an event, the hand-held devices of employees in managerial levels such as managers, supervisors are preferred to be used to permit those employees not owning the required hand-held device to clock-in or clock-out their attendance. The hand-held devices owned by managers or supervisors are preferred to be known as managerial devices or the primary devices. Each mobile identity of the primary device is stored in the database of the server and referred as the first mobile identity. The primary device operating in the first mode allows any user to clock-in or clock-out for attendance recording. That is to say, upon recognizing that the hand-held device is the primary device by matching the mobile identity of the hand-held device with the registered primary mobile identity stored in the database, any user, one at a time, is allowed to log into his or her account and clock-in or clock-out for attendance recording. Each user is preferred to log out of their accounts after accomplishing one or more desired tasks to allow another user to log into his or her account.

In still another embodiment of the present invention, the secondary device is operable in two modes, which is the first or second mode. The first mode only permits a single user, who is preferably the owner of the hand-held device, to clock-in or clock-out for attendance recording, viewing the recorded attendance, exporting the recorded attendance or any combination thereof, while the second mode permits the user to view the recorded attendance, export the recorded attendance or any combination thereof, without the capability of clocking-in or out attendances. That is, the user in the second mode is refrained from clocking-in or clocking-out for attendance recording. The secondary device operates in the first mode when the provided user name, access code and mobile identity matches with the preset user name, preset access code and the registered secondary mobile identity, whereas the secondary device operates in the second mode when the provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code.

In another embodiment of the present invention, the hand-held device is set as a non-registered device when the provided mobile identity, which is sent silently to the server, failed to match with any registered mobile identity. If the user provides a registered user name and access code, the hand-held device is permitted to function in the second mode. However, if the user provided a user name and access code that failed to match with any preset user name and access code, the program prevents the user to log into the program. In order to log into the program, the user must register with the administrator.

In a further embodiment of the present invention, the server is preferred to be capable of delivering complex computing and storage capacity to one or more of the programs. The server stores the plurality of registered primary and secondary mobile identities, as well as the preset user identities and linked preset access codes. With a matched user name, access code and mobile identity, the users are capable of accessing the program through their hand-held devices to clock-in or clock-out, view the recorded attendance or export the recorded attendance, and the recorded attendances are sent and stored in the server in communication with the program. Comparing with conventional time attendance recording using a punch card, the system and method as described herein can improve manageability, require less maintenance and enable human resources to be more rapidly adjusted to meet fluctuating and unpredictable business demand.

In a further embodiment of the present invention, the hand-held device further comprises a Global Positioning System (GPS). The GPS is preferred to be used because it is capable of detecting locations of each user at each clock-in or clock-out occasion and the detected location is preferred to be tagged with the related clock-in or clock-out occasion. As a
result, time and location of the user can be recorded during attendance recording. The location can be presented in geo-
detic location information, civic address information or a combination thereof.

[0036] In a particular embodiment of the present invention, the recorded attendances can be viewed and exported for printing. The recorded attendances are preferred to be stored in the server and exported into a sheet format for printing. The attendance sheets may be presented by having user informa-
tion along with start and end dates of working days and clock-in or clock-out time with respect to specific locations detected by the GPS. The recorded attendances may be exported to the attendance sheet format that is sorted according to day, week, month or a selected date range.

[0037] In another preferred embodiment of the present invention, the time attendance tracking system comprises a server in communication with a database storing a plurality of registered primary and secondary mobile identities, which are hand-held device specific, that each secondary mobile identity is paired with a preset user identity linked to a preset access code, wherein each user identity is tied to an account; a hand-held device being set as a primary device or a sec-
dondary device based on an inherent mobile identity of the hand-
held device sent to the server; wherein the primary device is operable in a first mode upon any user provided user name and access code matching with the preset user name and preset access code paired with the first mobile identity; the secondary device is operable in the first mode upon a single user provided user name and access code matching with the preset user name and preset access code paired with the second mobile identity; or, optionally, the secondary device is operable in a second mode upon any user provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code; wherein the first mode permits the user to clock-in or clock-out for attendance recording, view the recorded attendance, export the recorded attendance or any combination derived thereof for the tied account; wherein the second mode permits the user to view recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

[0038] In use, the method and system of tracking time attendance are described hereinafter:

[0039] Referring to FIG. 1, an activation process of the program starts (101) when the user selects for first time acti-
vation (103). Upon selecting for first time activation (103), the user is prompted to key in a network number in either an Internet Protocol (IP) Address page (105) or a domain name system (DNS) page (107). In the IP address page (105), the user is prompted to provide a static IP address and its relevant connection port, whereas in the DNS page (107), the user is prompted to provide a DNS IP and its relevant port. Both the IP and DNS IP addresses are preferred to be provided by the administrator associated with the server. In an event that the hand-held device is directly connected to the server via a local area network (LAN), the user is required to select the IP address page (105) for the activation process. If the IP and DNS IP addresses are invalid, the program rejects the connection and prompts the user to re-enter the IP or DNS IP address. If the IP or DNS IP address is valid, the program checks for connectivity of the program to the server and upon successful connectivity, a log in page (109) is shown on the screen of the hand-held device. The user is prompted to provide his or her user name and access code in the log in page (109). If connection to the server is available, the user name, access code and the mobile identity is matched with the database in the server in an online mode. It is to be noted that the mobile identity is sent silently from the hand-held device to the server when the user provides his or her user name and access code. User type (111) is then identified from the matching process. If connection is not available, an offline mode appears on the screen of the hand-held device (113).

[0040] Still referring to FIG. 1, upon entering the log in page (109), when no connection is detected between the server and the hand-held device or when the server is down, the time attendance can be recorded as well. That is to say, workers on business trips can record their time attendance even when they are in areas without an Internet connection. The hand-held device is preferred to be in communication with a local database provided within the hand-held device. In the offline mode (113), the user is capable of performing tasks like clock-in or clock-out for attendance recording (115), checking for location (119) or seeking further assistance in a ‘Help’ page (121). To clock-in or clock-out in the offline mode (113), the single user is required to log into the first mode to clock-in or clock-out time attendance at least once before leaving for places without Internet connections in order to create a tag for the server to pair the program installed in the hand-held device. That is to say, upon logging in to the program in the online mode, the user’s user name and access code are saved in the local database. The single user herein refers to the IP user of the hand-held device. During unavail-
ability of connection between the program and the server, user name and access code entered in the log in page (109) are preferred to be checked with the saved user name and access code in the database. Upon matching of the entered user name and access code with the saved user name and access code, the user can be identified and allowed to proceed to attendance recording (115). Following to that, any clock-in or clock-out attendance in the offline mode will be saved in the local database. Whenever an Internet connection is available, all recorded clock-in or clock-out attendances are uploaded to the database in the server. Upon successful attendance recording, a message is shown on the screen of the hand-held device to notify the user (117).

[0041] Still referring to FIG. 1, different user types can be distinguished in the online mode (111). The program sorts the accounts in the first mode as “user” (123), the accounts in the second mode as “visitor” (127) and the accounts in the admin-
istrative mode as “administrator” (125). In the user account (123), the user can either register his or her biometric data for first time log in or proceed for a clock-in or clock-out page.

[0042] Now referring to FIG. 2, the program prompts the user (123) to select a desired task from a plurality of tasks including clock-in or clock-out for attendance recording (129), view recorded time attendance (131), export recorded attendance for printing (133), edit settings (135) or return to the log in page (139). For the clock-in or clock-out task (129), the user is allowed to clock-in or clock-out (141), view history of time attendances (145) and view current location in a map (143). To clock-in, the user may clock-in or clock-out attend-
ance by providing his or her face biometric data such as face features. The biometric data is then verified (147) by comparing it with the preset biometric data stored either in local database or the database of the server. Upon clocking-in or clocking-out attendance, the program preferably checks for connection between the program and the server (149). If connection is available, the clock-in or clock-out time and
location, or together with the verified biometric data, is sent to the server for recording (151). If no connection can be detected, the clock-in or clock-out time and location, or together with the verified biometric data, is preferred to be saved in the local database (153) and further uploaded to the server when a connection is available. Upon successful delivery of the clock-in or clock-out time and location, or together with the verified biometric data, to the server or the local database for the respective online mode or offline mode, a notification is sent to the hand-held device (155) to notify the user that the clock-in or clock-out time is successfully recorded.

Accordingly, upon successful log in to the first mode, the program checks for availability of saved attendance in the local database. Any saved attendance in the local database is preferred to be uploaded to the server before permitting the user to proceed for attendance recording.

Still referring to FIG. 2, to view recorded attendances (131), the user may select to view all recorded attendances or sort the attendances according to a list of time period including day, week, month or a range of date (157). The recorded attendances can be exported to a printable format to be printed out subsequently (133). As for the task to edit settings (135), the user is allowed to switch to different servers, change time and date format, search for date, contact server for providing feedback, sound adjustment or view details of the software application such as application name, application version, device model and its operating system.

Now referring to FIG. 3, the administrator is capable of selecting from a plurality of tasks including view recorded attendance (159), export recorded attendances for printing (161), edit settings of the program (163) or return to the log in page (165). The “administrator” is preferred to have the highest authority compared to the “user” and “visitor” and permitted to view recorded attendances of all registered users. To view recorded attendances of a desired user (159), the administrator may provide the user name of the desired user. Then, the administrator may check all recorded attendances or sort the recorded attendances according to a list of time period including day, week, month or a range of date (167). The recorded attendances can be exported to a printable format to be printed out subsequently (161). The administrator is allowed to edit settings of the program including switch to different servers, check for user name, contact server for providing feedback or view details of the program such as application name, application version, device model and its operating system. However, the administrator is restricted from clocking-in or clocking-out attendance.

Now referring to FIG. 4, the visitor is capable of using the hand-held devices to perform tasks such as view recorded attendances (171), export recorded attendances for printing (173), edit settings of the program (175) or return to the log in page (177). The recorded attendances can be sorted according to a desired time period such as day, week, month or a range of dates (179). The visitor may also edit settings of the program including switch to different servers, change time and date format, search for date, contact server for providing feedback, sound adjustment or view details of the program such as application name, version, device model and its operating system (181).

It is desirable that the system and method as described in the embodiments of the present invention can control labor costs with a consistent application of work and pay rules, observe with penetrating visibility how operations perform against productivity goals and benchmarks, improve workforce productivity by reducing manual and timely administrative tasks and freeing staffs involved in the administrative tasks for other more value-added activities.

While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes can be made and equivalents can be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications can be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

What is claimed is:

1. A time attendance tracking method, comprising the steps of:

   providing a server in communication with a database storing a plurality of registered primary and secondary mobile identity, which are hand-held device specific, that each secondary mobile identity is paired with a preset user name linked to a preset access code, wherein each user name is tied to an account;

   setting a hand-held device as a primary device or a secondary device based on inherent mobile identity of the handheld device sent to the server, upon respectively matching the registered primary or registered secondary mobile identity in the database;

   allowing any user to use the primary device to operate in the first mode upon the user provided user name and access code matching with the preset user name and preset access code paired with the first mobile identity; and

   allowing a single user to use the secondary device to operate in the first mode upon the user provided user name and access code matching with the preset user name and preset access code paired with the second mobile identity;

   wherein the first mode permits the user to clock-in or clock-out for attendance recording, view the recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

2. The method according to claim 1, further comprising the step of:

   allowing any user to use the secondary device to operate in a second mode upon the user provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code.

3. The method according to claim 2, wherein the second mode permits the user to view recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

4. The method according to claim 1, further comprising the step of:

   allowing the single user to use the primary or secondary device operated in the first mode to record clock-in or clock-out attendance in an offline condition.

5. The method according to claim 1, further comprising the step of:

   allowing an administrator to use the primary or secondary device to operate in an administrative mode upon the administrator provided user name and access code.
matching with preset administrator user name and linked access code without pairing with the mobile identity, wherein the administrative mode permits the administrator to view recorded attendance, export the recorded attendance or any combination derived thereof for all accounts.

6. The method according to claim 1, further comprising the step of:
setting a hand-held device as a non-registered device based on inherent mobile identity of the hand-held device sent to the server, upon the provided mobile identity failed to match with any registered mobile identity.

7. The method according to claim 1, wherein the hand-held device comprises a Global Positioning System for detecting location of the user at each clock-in or clock-out occasion and the detected location is tagged with the related clock-in or clock-out occasion.

8. The method according to claim 1, wherein the access code or the preset access code is generated from alphabetic, numeric, alphanumeric, biometric data or a combination thereof.

9. The method according to claim 1, wherein the hand-held device communicates with the server through a program installed onto the hand-held device.

10. A time attendance tracking system, comprising:
a server in communication with a database storing a plurality of registered primary and secondary mobile identities, which are hand-held device specific, that each secondary mobile identity is paired with a preset user identity linked to a preset access code, wherein each user identity is tied to an account; and
a hand-held device being set as a primary device or a secondary device based on an inherent mobile identity of the hand-held device sent to the server;
wherein the primary device is operable in a first mode upon any user provided user name and access code matching with the preset user name and preset access code paired with the first mobile identity;
wherein the secondary device is operable in the first mode upon a single user provided user name and access code matching with the preset user name and preset access code paired with the second mobile identity;
wherein the first mode permits the user to clock-in or clock-out for attendance recording, view the recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.

11. The system according to claim 10, wherein the secondary device is operable in a second mode upon any user provided user name and access code failed to pair with the mobile identity while matching with the preset user name and preset access code.

12. The system according to claim 11, wherein the second mode permits the user to view recorded attendance, export the recorded attendance or any combination derived thereof for the tied account.