
DE69735351T220061130
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 697 35 351 T2 2006.11.30

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 929 961 B1
(21) Deutsches Aktenzeichen: 697 35 351.6
(86) PCT-Aktenzeichen: PCT/US97/17407
(96) Europäisches Aktenzeichen: 97 909 883.7
(87) PCT-Veröffentlichungs-Nr.: WO 1998/015092
(86) PCT-Anmeldetag: 02.10.1997
(87) Veröffentlichungstag

der PCT-Anmeldung: 09.04.1998
(97) Erstveröffentlichung durch das EPA: 21.07.1999
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 01.03.2006
(47) Veröffentlichungstag im Patentblatt: 30.11.2006

(51) Int Cl.8: H04L 29/06 (2006.01)
G06F 19/00 (2006.01)

(54) Bezeichnung: SYSTEM ZUR ÜBERMITTLUNG VON BILDINFORMATIONEN ÜBER EIN NETZWERK ZWISCHEN
BEBILDERUNGSVORRICHTUNGEN, DIE NACH MEHREREN PROTOKOLLEN ARBEITEN

(30) Unionspriorität:
720882 04.10.1996 US

(73) Patentinhaber:
Eastman Kodak Co., Rochester, N.Y., US

(74) Vertreter:
WAGNER & GEYER Partnerschaft Patent- und
Rechtsanwälte, 80538 München

(84) Benannte Vertragsstaaten:
DE

(72) Erfinder:
SIEFFERT, J., Kent, Saint Paul, MN 55164-0898,
US; IHLENFELDT, R., Andrew, Saint Paul, MN
55164-0898, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/60

DE 697 35 351 T2 2006.11.30
Beschreibung

[0001] Die vorliegende Erfindung betrifft Abbildungssysteme und insbesondere Systeme zur Übermittlung
von Bildinformationen zwischen einer Eingabe-Bebilderungsvorrichtung und einer Ausgabe-Bebildungsvor-
richtung in einer Netzwerkumgebung.

[0002] Ein Bilderzeugungssystem umfasst üblicherweise eine Eingabe-Bebilderungsvorrichtung, die Bildin-
formationen erzeugt, und eine Ausgabe-Bebilderungsvorrichtung, die anhand von Bildinformationen eine sicht-
bare Darstellung des Bildes, abhängig von den Bildinformationen, erzeugt. In einem medizinischen Bebilde-
rungssystem kann die Eingabe-Bebilderungsvorrichtung beispielsweise eine Magnetresonanz- (MR), Compu-
tertomographie- (CT), herkömmliche Radiographie- (Röntgen) oder Ultraschallvorrichtung sein. Alternativ hier-
zu kann die Eingabe-Bebilderungsvorrichtung eine Benutzerschnittstellen-Einrichtung umfassen, beispielswei-
se eine Tastatur, eine Maus oder einen Trackball, die auch zum Erzeugen medizinischer Bildinformationen in
der Lage ist. Als weitere Alternative kann die Eingabe-Bebilderungsvorrichtung eine Bildarchiv-Arbeitsstation
zum Abrufen archivierter Bildinformationen umfassen. Die Ausgabe-Bebilderungsvorrichtung in einem medizi-
nischen Bebilderungssystem umfasst üblicherweise einen digitalen Laserbelichter. Der Laserbelichter belichtet
ein Bebilderungsmedium abhängig von den Bildinformationen zum Herstellen einer sichtbaren Darstellung.

[0003] Die von der Eingabe-Bebilderungsvorrichtung erzeugten Bildinformationen umfassen Bilddaten, die
digitale, das Bild darstellende Bildwerte enthalten, sowie Bebilderungsanforderungen, die von dem Laserbe-
lichter durchzuführende Operationen bezeichnen. Jeder dieser digitalen Bildwerte entspricht einem Pixel aus
einer Vielzahl von Pixeln in dem Originalbild und stellt eine optische Dichte dar, die dem jeweiligen Pixel zuge-
ordnet ist. Abhängig von einer Bebilderungsanforderung wandelt der Laserbelichter die digitalen Bildwerte um,
um Laseransteuerungswerte zu erzeugen, die zur Modulation der Intensität eines Abtastlasers dienen. Die La-
seransteuerungswerte werden berechnet, um auf dem Bebilderungsmedium Belichtungswerte zu erzeugen,
die notwendig sind, um die optischen Dichten zu reproduzieren, die den Pixeln des Originalbildes zugeordnet
werden, wenn das Medium entwickelt wird, und zwar entweder durch eine chemische Nassverarbeitung oder
durch eine thermische Trockenverarbeitung. Das Laserabbildungsgerät kann eine Anzahl zusätzlicher Opera-
tionen in Abhängigkeit von den Bebilderungsanforderungen ausführen, die von der Eingabe-Bebilderungsvor-
richtung erzeugt werden. Beispielsweise kann das Laserabbildungsgerät vor dem Erzeugen der Laseransteu-
erungswerte die Bilddaten manipulieren, um eine Vielzahl verschiedener Formate und/oder Anzeigeeigen-
schaften zu erstellen.

[0004] Die von dem Laserabbildungsgerät verarbeiteten Bildinformationen haben ein Format, das durch ein
Eingabeprotokoll bestimmt wird, das der jeweiligen Eingabe-Bebilderungsvorrichtung zugeordnet ist. Medizi-
nische Bebilderungssysteme sind üblicherweise in der Lage, Bildinformationen zu handhaben, die nach ver-
schiedenen, unterschiedlichen Eingabeprotokollen erzeugt worden sind. Ein Eingabeprotokoll kann als Netz-
werk-Treiberprotokoll gekennzeichnet sein, das Kommunikationsspezifikationen auf unterer Ebene für eine be-
stimmte Eingabe-Bebilderungsvorrichtung bereitstellt, und ein Netzwerk-Interpreterprotokoll, das das Format
zur Interpretation der von der Eingabe-Bebilderungsvorrichtung erzeugten Bildinformationen ermittelt. Die Zahl
der verschiedenen Eingabeprotokolle ergibt sich in gewissem Maße aus den verschiedenen Typen von derzeit
verwendeten Eingabe-Bebilderungsvorrichtungen, wie Magnetresonanz- (MR), Computertomographie- (CT),
herkömmlichen Radiographie- (Röntgen) oder Ultraschallvorrichtungen, die unter Umständen jeweils Bildinfor-
mationen nach einem anderen Protokoll erzeugen. Die Hauptquelle für unterschiedliche Eingabeprotokolle ist
jedoch das Vorhandensein einer Reihe von Modalitäten, d.h. Eingabe-Bebilderungsvorrichtungen, die von ver-
schiedenen Herstellern stammen und eigene, herstellerspezifische Eingabeprotokolle aufweisen. Hersteller,
wie Siemens, Toshiba, GE und Picker, stellen derzeit CT-Eingabe-Bebilderungsvorrichtungen her, die eine
ähnliche Funktionalität bereitstellen, aber die Bildinformationen nach unterschiedlichen, modalitätsspezifi-
schen Eingabeprotokollen erzeugen.

[0005] Neben der Fähigkeit, mehrere Eingabeprotokolle zu verarbeiten, sind medizinische Bebilderungssys-
teme üblicherweise in der Lage, die Kommunikation der Bildinformationen mit Ausgabe-Bebilderungsvorrich-
tungen nach mehreren Ausgabeprotokollen abzuwickeln. Wie ein Eingabeprotokoll kann auch ein Ausgabe-
protokoll dadurch gekennzeichnet sein, dass es ein Ausgabe-Treiberprotokoll umfasst, das die Anforderungen
zur Kommunikation mit einer bestimmten Ausgabe-Bebilderungsvorrichtung sowie ein Ausgabe-Interpreter-
protokoll umfasst, das das Format zur Übersetzung der Bildinformationen in eine Form ermittelt, die von der
Ausgabe-Bebilderungsvorrichtung verstanden wird. Der Hauptgrund für unterschiedliche Ausgabeprotokolle
ist die Verfügbarkeit von Laser-Bebilderungsvorrichtungen mit unterschiedlichen Funktionsmengen. Diese un-
terschiedlichen Funktionsmengen stellen eine wechselnde Komplexität dar, die zu verschiedenen Ausgabe-
protokollen führt. Beispielsweise bietet die Imation Enterprise Corp. ("Imation") aus Oakdale, Minnesota, USA,
2/60

DE 697 35 351 T2 2006.11.30
derzeit Laserabbildungsgeräte an, die über unterschiedliche Funktionsmengen verfügen, die als "831", "952"
und als "SuperSet" bezeichnet werden, und denen jeweils ein bestimmtes Ausgabeprotokoll zugeordnet ist.

[0006] Bestehende medizinische Bebilderungssysteme beinhalten derzeit mehrere Eingabe- und Ausgabe-
protokolle auf Ad-hoc-Basis durch Konstruktion von Punkt-zu-Punkt-Hardware- und/oder Softwareschnittstel-
len, die speziell für ein bestimmtes Eingabeprotokoll und ein bestimmtes Ausgabeprotokoll konfiguriert sind.
Die Verwendung einer speziell hergestellten Schnittstelle ist äußerst inflexibel. Wenn später die Kommunikati-
on mit einer anderen Eingabe-Bebilderungsvorrichtung benötigt wird, muss die gesamte Schnittstelle neu kon-
struiert werden, um die Beziehung zwischen dem neuen Eingabeprotokoll und dem alten Ausgabeprotokoll ab-
zuwickeln. Eine Änderung der Ausgabe-Bebilderungsvorrichtung erfordert ebenfalls die Neukonstruktion der
Schnittstelle zur Handhabung der Beziehung zwischen dem neuen Ausgabeprotokoll und dem alten Eingabe-
protokoll. Leider ist die Neukonstruktion der Schnittstelle eine umständliche Aufgabe, die oft erhebliche Inves-
titionen in Hardware- und/oder Softwareentwicklungszeit erfordert. Auch anscheinend geringfügige Änderun-
gen an der Funktionalität einer Eingabe- oder Ausgabe-Bebilderungsvorrichtung können zahlreiche, kostspie-
lige konstruktive Änderungen erforderlich machen, die sich durch die gesamte Schnittstelle ziehen.

[0007] Eine Lösung dieser Probleme wird in der Hauptanmeldung US-A-5,630,101 mit dem Titel "System for
Communication of Image Information Between Multiple-Protocol Imaging Device" beschrieben. Das in dieser
Patentanmeldung beschriebene System verfolgt eine objektorientierte, modulare Konstruktion, um eine soft-
waregestützte Architektur mit direkter Verbindung vorzusehen, die in Bezug auf die Kommunikation mit dem
Laserabbildungsgerät eine erhebliche Flexibilität ermöglicht. Eine Schnittstellenausführungskomponente in-
stanziiert das benötigte Paar aus Eingabetreiber und Eingabeinterpreter sowie das benötigte Paar aus Ausga-
beinterpreter und Ausgabetreiber, um eine Pipeline zu erzeugen, so dass eine bestimmte Hostmodalität mit
einem bestimmten Laserabbildungsgerät kommunizieren kann. Die jeweiligen Komponenten aus Eingabetrei-
ber, Eingabeinterpreter, Ausgabeinterpreter und Ausgabetreiber stellen ein diskretes Softwareobjekt oder eine
„Blackbox" dar. Auf diese Weise kann jede Komponente modifiziert oder durch ein neues Objekt ersetzt wer-
den, ohne die Leistung der übrigen Komponenten oder der gesamten Pipeline zu beeinträchtigen. Beispiels-
weise kann das Paar aus Eingabetreiber und Eingabeinterpreter speziell für eine Siemens-Hostmodalität vor-
gesehen sein, während das Paar aus Ausgabeinterpreter und Ausgabetreiber speziell für einen Imation-Laser-
belichter vorgesehen sein kann, der das Protokoll 831 verwendet. Wenn das letztgenannte Paar durch ein Paar
ersetzt wird, das für ein Imation-Laserabbildungsgerät gedacht ist, das mit dem SuperSet-Protokoll arbeitet, ist
die Konstruktion der Komponenten derart beschaffen, dass das Paar aus Eingabetreiber und Eingabeinterpre-
ter nicht ebenfalls ersetzt zu werden braucht.

[0008] Obwohl US-A-5,630,101 mehr Flexibilität in der Architektur von Laserabbildungsgeräten fördert, be-
schreibt auch diese Anmeldung nur eine direktverbundene Punkt-zu-Punkt-Architektur. Für jedes Einga-
be-Ausgabe-Paar muss die Schnittstellenausführungskomponente ein separates Paar aus Eingabetreiber und
Eingabeinterpreter sowie ein Paar aus Ausgabeinterpreter und Ausgabetreiber instanziieren. Die Schnittstel-
lenausführungskomponente muss daher eine separate Pipeline zwischen jeder Hostmodalität und jedem La-
serabbildungsgerät herstellen. Zwar ist dies in einem System mit einer relativ kleinen Zahl von Hostmodalitäten
nicht unbedingt bedenklich, aber es kann in Umgebungen problematisch sein, in denen eine erhebliche Anzahl
von Hostmodalitäten mit einer Vielzahl unterschiedlicher Laserabbildungsgeräte kommuniziert. Dies gilt insbe-
sondere in einer Netzwerkumgebung, in der üblicherweise eine Reihe von Netzwerk-Clients das gleiche Pro-
tokoll verwenden. In einer derartigen Situation ist es wünschenswert, dass keine redundanten Paare aus Ein-
gabetreiber und Eingabeinterpreter für jeden Client vorhanden sind. Neben der Beanspruchung von Ressour-
cen belastet diese Architektur die Schnittstellenausführungskomponente zudem mit einem hohen Overhead.

[0009] Es besteht somit zunehmend Bedarf nach flexibleren medizinischen Bebilderungssystemen, die in der
Lage sind, die Kommunikation zwischen einer Vielzahl von Eingabe- und Ausgabe-Bebilderungsvorrichtungen
mit mehreren Protokollen abzuwickeln. Es ist wünschenswert, dass diese medizinischen Bebilderungssysteme
nicht nur in Bezug auf die vorhandenen Protokolle flexibel sind, sondern auch zukünftige Protokolle in kosten-
günstiger Weise nutzen können. Es besteht zudem zunehmender Bedarf nach der Netzwerkübermittlung von
Bildinformationen zwischen Eingabe- und Ausgabe-Bebilderungsvorrichtungen. Im Bereich der medizinischen
Bebilderung haben beispielsweise das American College of Radiology (ACR) und die National Electrical Ma-
nufacturers Association (NEMA) einen gemeinsamen Ausschuss zur Entwicklung eines Standards für die di-
gitale Bebilderung und Kommunikation in der Medizin gegründet, der als DICOM-Protokoll bekannt ist. Das DI-
COM-Protokoll wurde entworfen, um die Connectivity unter medizinischen Geräten zu ermöglichen, insbeson-
dere mit Blick auf den Entwicklungstrend in Krankenhäusern, der eine Abkehr von Punkt-zu-Punkt-Umgebun-
gen und eine Hinwendung zu Netzwerkumgebungen vorsieht. Hersteller medizinischer Geräte beginnen jetzt
branchenweit mit der Implementierung des DICOM-Kommunikationsprotokolls. Das DICOM-Protokoll setzt ei-
3/60

DE 697 35 351 T2 2006.11.30
nen Standard für die Netzwerkkommunikation von Bildinformationen. Doch auch andere Netzwerkprotokolle
sind vorhanden und werden weiterhin entwickelt werden. Es besteht somit weiterhin Bedarf nach einer Proto-
kollübersetzung in Netzwerksystemen. Der Bedarf nach Protokollübersetzung in Netzwerksystemen begrün-
det Probleme, die mit denen in Punkt-zu-Punkt-Systemen vergleichbar sind. Insbesondere sind Flexibilität und
einfache Anpassung an mehrere Protokolle weiterhin kritisch. Es besteht daher Bedarf nach einem System,
das in der Lage ist, Bildinformationen zwischen Bebilderungsvorrichtungen gemäß mehreren Kommunikati-
onsprotokollen zu übermitteln.

[0010] US-A-5,060,140 beschreibt ein universell programmierbares Datenkommunikations-Verbindungssys-
tem, das benutzerseitig programmierbar ist, um einen ausgewählten Datenweg zwischen einer oder mehreren
Datenquellen und einem oder mehreren Datenzielen bereitzustellen. Das Datenkommunikationssystem er-
möglicht dem Benutzer, Signale von der Quelle zum Ziel mithilfe einfacher Befehle zu "verbinden". Das be-
schriebene System betrifft nicht die Lösung von Problemen, die die Übermittlung medizinischer Informationen
zwischen unterschiedlichen medizinischen Bebilderungsmodalitäten und mindestens einem Abbildungsgerät
aus einer Vielzahl von Abbildungsgeräten betreffen und insbesondere das Problem mehrerer medizinischer
Bebilderungsmodalitäten unter Verwendung des gleichen Netzwerkschnittstellenprotokolls zur Kommunikation
mit einem der Abbildungsgeräte über eine einzelne Kommunikationspipeline.

[0011] Die vorliegende Erfindung betrifft ein System zum Übermitteln medizinischer Bildinformationen zwi-
schen verschiedenen medizinischen Abbildungsmodalitäten und mindestens einem aus einer Vielzahl von un-
terschiedlichen Abbildungsgeräten über eine Netzwerkschnittstelle. Das System umfasst eine Netzwerkaus-
führungskomponente, eine oder mehrere Ausgabeschnittstellenkomponenten und eine Schnittstellenausfüh-
rungskomponente.

[0012] Die Netzwerkausführungskomponente instanziiert eine oder mehrere Netzwerkschnittstellenkompo-
nenten gemäß ausgewählten Netzwerkschnittstellenprotokollen. Jede Netzwerkschnittstellenkomponente ist
derart ausgebildet, dass sie medizinische Bildinformationen von einer der medizinischen Abbildungsmodalitä-
ten über die Netzwerkschnittstelle empfängt, wobei die medizinischen Bildinformationen gemäß dem ausge-
wählten Netzwerk-Schnittstellenprotokoll empfangen werden. Jedes Netzwerkschnittstellenprotokoll ist ausge-
wählten medizinischen Abbildungsmodalitäten speziell zugeordnet. Erste Abbildungsanforderungen werden
auf der Grundlage der empfangenen medizinischen Bildinformationen und gemäß dem ausgewählten Netz-
werkschnittstellenprotokoll erzeugt.

[0013] Jede der einen oder mehreren Ausgabeschnittstellenkomponenten ist derart ausgebildet, dass sie
zweite Abbildungs- oder Bebilderungsanforderungen auf der Grundlage der ersten, von einer der Netzwerk-
schnittstellenkomponenten erzeugten Bebilderungsanforderungen erzeugt, Die zweiten Bebilderungsanforde-
rungen werden gemäß einem aus einer Vielzahl unterschiedlicher Ausgabeschnittstellenprotokolle erzeugt.
Jedes der Ausgabeschnittstellenprotokolle ist einem der Abbildungsgeräte speziell zugeordnet. Die zweiten,
von einer der Ausgabeschnittstellenkomponenten erzeugten Bebilderungsanforderungen werden zu einem
der Abbildungsgeräte übermittelt, und die zweiten Bebilderungsanforderungen werden gemäß dem einen der
Ausgabeschnittstellenprotokolle übermittelt.

[0014] Eine Schnittstellenausführungskomponente bildet eine oder mehrere Übermittlungsleitungen, von de-
nen jede Leitung eine oder mehrere medizinische Abbildungsmodalitäten mit einer der Netzwerkschnittstellen-
komponenten kommunikativ verbindet unter Verwendung des gleichen Netzwerkschnittstellenprotokolls, einer
der Ausgabeschnittstellenkomponenten und eines der Abbildungsgeräte. Dadurch können mehrere medizini-
sche Abbildungsmodalitäten unter Verwendung des gleichen Netzwerkschnittstellenprotokolls mit einem der
Abbildungsgeräte über eine einzelne Übermittlungsleitung kommunizieren.

[0015] Die vorliegende Erfindung weist eine Reihe von Vorteilen in Bezug auf die Bereitstellung der Kommu-
nikation zwischen den Eingabe-Bebilderungsvorrichtungen und den Laserabbildungsgeräten auf. Weil die
Netzwerkausführungskomponenten jeweils die Kommunikation mit einer Reihe von Eingabe-Bebilderungsvor-
richtungen ermöglichen können, ist keine separate Leitung für jede medizinische Abbildungsmodalität erfor-
derlich, wodurch Ressourcen geschont werden. Die Netzwerkausführungskomponenten ermöglichen zudem
die erfindungsgemäße Kommunikation zwischen medizinischen Abbildungsmodalitäten und Abbildungsgerä-
ten auf Netzwerkebene im Unterschied zu einer direkten Anschlussweise. Den Netzwerkausführungskompo-
nenten wird von der Schnittstellenausführungskomponente zudem die Zuständigkeit bezüglich der Überwa-
chung der Übermittlung von den medizinischen Abbildungsmodalitäten übertragen. Dadurch wird die Schnitt-
stellenausführungskomponente von der diesbezüglichen Zuständigkeit entlastet.
4/60

DE 697 35 351 T2 2006.11.30
[0016] Andere und weitere Ausführungsbeispiele, Aspekte und Vorteile der vorliegenden Erfindung werden
anhand der folgenden Beschreibung und unter Bezug auf die anliegenden Zeichnungen deutlich.

[0017] Die Erfindung wird im folgenden anhand in der Zeichnung dargestellter Ausführungsbeispiele näher
erläutert.

[0018] Es zeigen

[0019] Fig. 1 ein Funktionsblockdiagramm eines medizinischen Bebilderungssystems zur Übermittlung von
Bildinformationen zwischen Mehrprotokoll-Bebilderungsvorrichtungen in einer Netzwerkkommunikationsum-
gebung gemäß der vorliegenden Erfindung;

[0020] Fig. 2 ein Funktionsblockdiagramm eines alternativen medizinischen Bebilderungssystems zur Über-
mittlung von Bildinformationen zwischen Mehrprotokoll-Bebilderungsvorrichtungen in einer Netzwerkkommu-
nikationsumgebung gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;

[0021] Fig. 3 ein Funktionsblockdiagramm zur Darstellung eines Subsystems des medizinischen Bebilde-
rungssystems aus Fig. 1;

[0022] Fig. 4 ein Diagramm zur Darstellung der objektorientierten Protokollhierarchie, die die Austauschbar-
keit der Netzwerkprotokollkomponenten ermöglicht, einschließlich der Netzwerktreiberkomponente und der
Netzwerkinterpreterkomponente;

[0023] Fig. 5 ein Diagramm zur Darstellung der objektorientierten Protokollhierarchie, die die Austauschbar-
keit der Ausgabeinterpreterkomponente und der Ausgabetreiberkomponente ermöglicht, und;

[0024] Fig. 6 ein Funktionsblockdiagramm einer erfindungsgemäßen Client-Server-Beziehung, die auf das in
Fig. 1 gezeigte medizinische Bebilderungssystem anwendbar ist;

[0025] Die vorliegende Erfindung betrifft eine skalierbare Softwarearchitektur zur simultanen Übersetzung
mehrerer medizinischer Bebilderungsprotokolle innerhalb eines Netzwerkparadigmas. Fig. 1 zeigt ein Funkti-
onsblockdiagramm eines medizinischen Bebilderungssystems zur Übermittlung von Bildinformationen zwi-
schen Mehrprotokoll-Bebilderungsvorrichtungen in einer Netzwerkkommunikationsumgebung gemäß der vor-
liegenden Erfindung. Das System 10 umfasst eine Vielzahl von Eingabe-Bebilderungsvorrichtungen in Form
von Netzwerk-Clients 12, eine oder mehrere Netzwerkausführungskomponenten 14, eine oder mehrere Aus-
gabeschnittstellenkomponenten 16, eine Ausgabe-Bebilderungsvorrichtung 18 und eine Schnittstellenausfüh-
rungskomponente 20. Jede Ausgabeschnittstellenkomponente 16 umfasst eine Ausgabeinterpreterkompo-
nente 22 und eine Ausgabetreiberkomponente 24.

[0026] Wie in Fig. 1 gezeigt, kommuniziert jeder Client 12 mit einer Ausgabe-Bebilderungsvorrichtung 18
über eine spezielle Leitung 26 gemäß einem bestimmten Protokoll. Sofern jeder Client 12 dasselbe Protokoll
verwendet, wird also nur eine Leitung 26 benötigt, um die Kommunikation zwischen den Clients 12 und der
Ausgabe-Bebilderungsvorrichtung 18 zu ermöglichen. Wenn jeder Client 12 ein oder zwei Protokolle von zwei
verschiedenen Protokollen verwendet, werden zwei verschiedene Leitungen benötigt usw. Auf diese Weise er-
möglicht die vorliegende Erfindung N unterschiedliche Leitungen für N unterschiedliche Protokolle, wobei jede
Leitung in der Lage ist, M unterschiedliche Clients zu handhaben, die dieses jeweilige Protokoll verwenden.
Daher ist eine separate Leitung für jeden Client nicht erforderlich, sondern nur für jedes unterschiedliche Pro-
tokoll.

[0027] Jede Leitung 26 umfasst drei primäre Komponenten: eine Netzwerkausführungskomponente 14, eine
Ausgabeinterpreterkomponente 22 und eine Ausgabetreiberkomponente 24, wobei die beiden letztgenannten
als eine einzelne Ausgabeschnittstellenkomponente 16 zusammengefasst sind. Allgemein gesagt ist das in
Fig. 1 gezeigte System folgendermaßen aufgebaut. Für jede Ausgabe-Bebilderungsvorrichtung 18 erstellt die
Netzwerkausführungskomponente 14 eine separate Leitung 26 für jedes separate Protokoll, das von mindes-
tens einem Netzwerk-Client 12 verwendet wird, der mit der Ausgabe-Bebilderungsvorrichtung 18 ggf. kommu-
niziert. Die Netzwerkausführungskomponente 14 erreicht dies, indem sie eine Netzwerkausführungskompo-
nente 14 speziell für das Protokoll instanziiert, das von einem oder mehreren Netzwerk-Clients 12 verwendet
wird, sowie eine Ausgabeschnittstellenkomponente 16, die speziell der Ausgabe-Bebilderungsvorrichtung 18
zugeordnet ist, zwei spezielle Netzwerkausführungskomponenten 14 und 16, wodurch eine spezielle Leitung
26 entsteht. Die Erstellung der Leitungen 26 kann entweder „spontan" erfolgen, wenn Clients, die unterschied-
5/60

DE 697 35 351 T2 2006.11.30
liche Protokolle verwenden, in das Netzwerk des Systems 10 eintreten oder dieses verlassen, oder sie kann
erfolgen, wenn das Netzwerk erstmals instanziiert wird. Die vorliegende Erfindung ist in beiden Fällen nicht ein-
geschränkt.

[0028] Bei Erstellung der Leitungen 26 kommuniziert ein Client 12 mit der Ausgabe-Bebilderungsvorrichtung
18 allgemein auf folgende Weise. Die Netzwerkausführungskomponente 14 filtert und interpretiert die von ei-
nem Client 12 erhaltenen Anforderungen gemäß ersten Anforderungen, die die Ausgabeschnittstellenkompo-
nente 16 versteht. Bei Übertragung an die Ausgabeschnittstellenkomponente 16 werden die ersten Anforde-
rungen weiter gefiltert und in die entsprechenden zweiten Anforderungen interpretiert, die die Ausgabe-Bebil-
derungsvorrichtung 18 versteht. Auf diese Weise nimmt die vorliegende Erfindung Anforderungen entgegen,
die für ein bestimmtes Protokoll bestimmt sind, übersetzt diese in erste Anforderungen und übersetzt diese
dann weiter in zweite Anforderungen für eine bestimmte Bebilderungsvorrichtung. Somit können die Kompo-
nente 14 und die Komponente 16 unabhängig voneinander ausgetauscht werden, weil beide miteinander über
erste Anforderungen kommunizieren. Anders ausgedrückt, ist die Implementierung einer Netzwerkausfüh-
rungskomponente 14 für ein bestimmtes Protokoll unabhängig von einer Ausgabe-Bebilderungsvorrichtung
18, während die Implementierung der Ausgabeschnittstellenkomponente 16 von einem gegebenen Protokoll
unabhängig ist, das von einem bestimmten Client 12 verwendet wird. Es sei darauf hingewiesen, dass der be-
schriebene Vorgang auch in umgekehrter Richtung erfolgen kann, so dass Anforderungen von der Ausga-
be-Bebilderungsvorrichtung 18 an den Client 12 gesendet werden können.

[0029] Die vorliegende Erfindung sieht somit ein Leitungsmodell vor, um die Kommunikation zwischen M Cli-
ents mit einer Bebilderungsvorrichtung zu ermöglichen, die N Protokolle verwenden. Die Schnittstellenausfüh-
rungskomponente verwaltet die Erstellung dieser Leitungen. Eine Leitung wird für jedes spezielle Protokoll er-
stellt, das von mindestens einem von M Clients im Netzwerk verwendet wird. Da typischerweise N << M ist,
schont die vorliegende Erfindung Ressourcen in einem System, in dem eine separate Leitung für jeden Client,
jedoch kein separates Protokoll notwendig ist. Dies stellt einen wesentlichen Vorteil der vorliegenden Erfindung
dar.

[0030] Fig. 2 zeigt ein Funktionsblockdiagramm eines weiteren Ausführungsbeispiels der vorliegenden Erfin-
dung. Elemente aus Fig. 2 mit gleichen Bezugsziffern wie in Fig. 1 weisen darauf hin, dass die Elemente iden-
tisch sind, und dass die Beschreibung in Verbindung mit Fig. 1 gleichermaßen auf Fig. 2 anwendbar ist. Alter-
nativ zur Instanziierung von N vollständigen Übersetzungsleitungen kann die Schnittstellenausführungskomp-
onente so konfiguriert werden, dass sie eine Übersetzungsleitung mit N Netzwerkausführungskomponenten
instanziiert, die unabhängig oder parallel arbeiten. Auf diese Weise können N × M Clients unterstützt werden,
ohne N – 1 Ausgabeinterpreterkomponenten und N – 1 Ausgabetreiberkomponenten ineffizient bereitstellen zu
müssen. Das System 58 aus Fig. 2 unterstützt N Netzwerkprotokolle und N × M Netzwerk-Clients mit der Im-
plementierung nur einer Kommunikationsleitung. System 58 umfasst eine Vielzahl von Netzwerkausführungs-
komponenten 14, die auf Netzwerk-Clients 12 achten, die bestimmte Netzwerkprotokolle verwenden. Die
Schnittstellenausführungskomponente 20 verbindet jede Netzwerkausführungskomponente 14 kommunikativ
mit einer einzelnen Ausgabeinterpreterkomponente 22, einer einzelnen Ausgabetreiberkomponente 24 und ei-
ner einzelnen Ausgabe-Bebilderungsvorrichtung 18, um eine einzelne Kommunikationsleitung mit mehreren,
protokollspezifischen Netzwerkeingaben bereitzustellen.

[0031] Das in Fig. 2 gezeigte Ausführungsbeispiel der vorliegenden Erfindung unterscheidet sich von dem in
Fig. 1 gezeigten insofern, als dass das erste Ausführungsbeispiel noch mehr Ressourcen schont als das letz-
tere. Für den Fall, dass eine Ausgabe-Bebilderungsvorrichtung, jedoch mehrere Netzwerkprotokolle vorhan-
den sind, vergeudet das in Fig. 1 gezeigte Ausführungsbeispiel einige Ressourcen, indem redundante Ausga-
beschnittstellenkomponenten 16 für jede Leitung 26 bereitgestellt werden, welche alle aufgrund der Tatsache
redundant sind, dass nur eine Ausgabe-Bebilderungsvorrichtung vorhanden ist. Diese Redundanz und die ent-
sprechende Vergeudung von Ressourcen wird durch das in Fig. 2 gezeigte Ausführungsbeispiel beseitigt.
Fig. 2 zeigt nur eine Leitung 26 und nur eine Ausgabeschnittstellenkomponente 16, mit der jede Netzwerkaus-
führungskomponente 14 verbunden ist. Abgesehen von dieser geringeren Redundanz arbeitet das in Fig. 2
gezeigte Ausführungsbeispiel gleich wie das in Fig. 1 gezeigte, wobei die Beschreibung für Fig. 1 auch auf die
Beschreibung in Bezug auf Fig. 2 angewendet werden sollte.

[0032] Wie in Fig. 1 gezeigt, sind die Netzwerkausführungskomponenten 14, die Ausgabeschnittstellenkom-
ponenten 16 und die Schnittstellenausführungskomponente 20 in einem Ausführungsbeispiel als ein objekto-
rientiertes Softwaresystem implementiert, das Schnittstellen zu Netzwerken mit Netzwerk-Clients 12 und Aus-
gabe-Bebilderungsvorrichtungen 18 bildet. Das Softwaresystem kann als Teil einer Ausgabe-Bebilderungsvor-
richtung 18 implementiert werden, beispielsweise als ein digitaler Halbton-Laserabbildungsgerät, oder es kann
6/60

DE 697 35 351 T2 2006.11.30
als Teil einer diskreten Schnittstellenvorrichtung implementiert werden, die die Kommunikation von Bildinfor-
mationen zwischen den Netzwerk-Clients 12 und der Ausgabe-Bebilderungsvorrichtung 18 steuert.

[0033] In einem Ausführungsbeispiel der Erfindung umfasst das Netzwerk eine Vielzahl verschiedener Cli-
ents, wie beispielsweise Magnetresonanz- (MR), Computertomographie- (CT), herkömmliche Radiographie-
(Röntgen) oder Ultraschallvorrichtungen, die von einer Reihe verschiedener Hersteller hergestellt werden, bei-
spielsweise von Siemens, Toshiba, GE oder Picker. Das Laserabbildungsgerät kann ein beliebiges Abbil-
dungsgerät sein, wie beispielsweise einer der von Imation hergestellten, der die Protokolle 831, 952 oder Su-
perSet beherrscht. Das Laserabbildungsgerät kann direkt im Netzwerk angeordnet sein, wobei in diesem Fall
das Softwaresystem üblicherweise auf einer Hardwarekarte angeordnet ist, die in das Laserabbildungsgerät
gesteckt wird. Die Karte umfasst üblicherweise eine Eingabe-Ausgabe-Schaltung (IO) sowie einen Speicher,
wie einen ROM oder Flash-ROM, bei dem es sich um einen umprogrammierbaren ROM handelt. Das Soft-
waresystem befindet sich in diesem Speicher.

[0034] In dem alternativen Ausführungsbeispiel befindet sich das Laserabbildungsgerät nicht direkt im Netz-
werk, sondern ist statt dessen mit dem Netzwerk über einen Zwischencomputer verbunden, der sich selbst di-
rekt im Netzwerk befindet. Der Zwischencomputer ist üblicherweise mit einem Schreib-/Lesespeicher (RAM),
einem Lesespeicher (ROM), einer zentralen Verarbeitungseinheit (CPU) und einer Speichervorrichtung be-
stückt, beispielsweise einem Festplattenlaufwerk, einem programmierbaren ROM oder einem Plattenlaufwerk.
In diesem Fall befindet sich das Softwaresystem auf der Speichervorrichtung des Zwischencomputers und wird
in den RAM kopiert und von dort seitens der CPU ausgeführt. Wenn es sich bei der Speichervorrichtung um
ein Plattenlaufwerk oder um eine andere auswechselbare Speichervorrichtung handelt, kann das Softwaresys-
tem auf dem Speichermedium zur Einführung in die Vorrichtung gespeichert werden. Die vorliegende Erfin-
dung ist allerdings nicht auf eine bestimmte Hardwareimplementierung beschränkt.

[0035] Die von den Eingabe-Bebilderungsvorrichtungen erzeugten und den Netzwerk-Clients 12 zugeordne-
ten Bildinformationen umfassen sowohl Anforderungen nach Bebilderungsoperationen als auch Bilddaten, die
digitale Bildwerte enthalten, die ein von der Ausgabe-Bebilderungsvorrichtung 18 zu handhabendes Bild dar-
stellen. Die Leitung 26 wird hier so beschrieben, dass sie die Übermittlung von Bildinformationen in Form von
Bebilderungsanforderungen handhabt, wobei Bildinformationen in Form digitaler Bildwerte das Bild darstellen,
das von einem separaten Kommunikationsweg übermittelt wird. Innerhalb des Geltungsbereichs der vorliegen-
den Erfindung könnte die Leitung 26 jedoch auch so konfiguriert werden, dass sie die Kommunikation der Bild-
informationen in Form von Anforderungen nach Bebilderungsoperationen und Bilddaten handhabt, die die di-
gitalen Bildwerte enthalten.

[0036] In einem typischen medizinischen Bebilderungssystem umfassen Bebilderungsanforderungen Anfor-
derungen zur Veranlassung eines Bilddruckauftrags seitens der Ausgabe-Bebilderungsvorrichtung 18, Anfor-
derungen zum Abbrechen eines zuvor veranlassten Bilddruckauftrags, Anforderungen zur Definition oder Mo-
difikation eines Formats eines zu druckenden Bildes, Anforderungen zum Löschen eines Satzes von Bilddaten,
die ein zuvor erfasstes Bild darstellen, sowie Anforderungen zum Speichern von Bilddaten an einer bestimmten
Bildposition.

Komponenten der Erfindung: Schnittstellenausführungskomponente

[0037] Die Schnittstellenausführungskomponente 20 bildet eine oder mehrere (1 bis N) Kommunikationslei-
tungen. Jede Kommunikationsleitung 26 verbindet kommunikativ einen oder mehrere von M Netzwerk-Clients
12, eine der Netzwerkausführungskomponenten 14, eine der Ausgabeinterpreterkomponenten 22, eine der
Ausgabetreiberkomponenten 24 und eine Ausgabe-Bebilderungsvorrichtung 18 in bidirektionaler Weise. Die
Ausgabe-Bebilderungsvorrichtung 18 kann mit jeder Leitung 26 auf gemeinsamer Basis kommunizieren. Alter-
nativ hierzu könnte eine Vielzahl von Ausgabe-Bebilderungsvorrichtungen 18 bereitgestellt werden, von denen
jede kommunikativ mit einer bestimmten Leitung 26 verbunden ist.

[0038] Die Schnittstellenausführungskomponente 20 stellt die höchste Intelligenzebene innerhalb des Sys-
tems 10 aus Fig. 1 dar. Sie lenkt und verwaltet die jeweiligen Netzwerkkomponenten 26 und Ausgabeschnitt-
stellenkomponenten 16, die für die Netzwerk-Clients 12 zur Kommunikation mit der Ausgabe-Bebilderungsvor-
richtung 18 benötigt werden. Wie in Fig. 1 gezeigt, instanziiert die Schnittstellenausführungskomponente 20
auf Basis von N verschiedenen Protokollen, die die Clients 12 beherrschen, eine bestimmte Leitung 26, die
aus einer Netzwerkausführungskomponente 14 und der Ausgabeschnittstellenkomponente 16 besteht. Wenn
P unterschiedliche Ausgabe-Bebilderungsvorrichtungen vorhanden sind (im Unterschied zu einer, wie in Fig. 1
gezeigt), instanziiert die Schnittstellenausführungskomponente N × P unterschiedliche Leitungen, und zwar
7/60

DE 697 35 351 T2 2006.11.30
eine für jedes eindeutige Paar aus Bebilderungsvorrichtung und Protokoll. Dies kann in einem separaten Ein-
richtungsbetrieb oder "spontan" erfolgen, während Clients, die unterschiedliche Protokolle beherrschen, in das
Netzwerk eintreten oder dieses verlassen.

[0039] Zwar verfügt die Schnittstellenausführungskomponente 20 über die größte Intelligenz aller Komponen-
ten innerhalb der vorliegenden Erfindung, aber sie unterscheidet sich von der in US-A-5,630,101 offengelegten
und beschriebenen Schnittstellenausführungskomponente darin, dass sie eine geringere Intelligenz aufweist
als die in dieser Patentanmeldung beschriebene Schnittstellenausführungskomponente. Die in
US-A-5,630,101 offengelegte und beschriebene Schnittstellenausführungskomponente instanziiert eine Ein-
gabeschnittstellenkomponente speziell für jeden Client, der mit einer bestimmten Bebilderungsvorrichtung
kommunizieren muss. Die Schnittstellenausführungskomponente konstruiert eine Leitung auf Client-Client-Ba-
sis. Im Unterschied dazu instanziiert die vorliegende Erfindung eine Netzwerkausführungskomponente 14 für
ein bestimmtes Protokoll und delegiert damit die Zuständigkeit für die Bedienung der Netzwerk-Clients. Die er-
findungsgemäße Schnittstellenausführungskomponente konstruiert somit eine Leitung auf Protokoll-Proto-
koll-Basis. Sie verfügt insofern über weniger Intelligenz, als dass sie die Kommunikation mit bestimmten Cli-
ents nicht verwalten muss, wie dies bei der Schnittstellenausführungskomponente nach US-A-5,630,101 der
Fall ist. Die letztere Schnittstellenausführungskomponente „kennt" somit alle Details über die Eingabevorrich-
tung, während die erfindungsgemäße Schnittstellenausführungskomponente nur „weiß", dass sich im Netz
Eingabevorrichtungen befinden, während sie die Zuständigkeit für die Handhabung der Implementierung der
Schnittstelle bezüglich der Eingabevorrichtungen an die Netzwerkausführungskomponente 14 delegiert.

[0040] Die Schnittstellenausführungskomponente 20 definiert die Struktur der Leitung 26. Die Leitung 26 ist
derart konfiguriert, dass sie eine Reihe von Komponenten 30, 32' (die in Fig. 3 gezeigt werden und, wie dort
gezeigt und später erläutert, von der Netzwerkausführungskomponente 14 instanziiert werden), 22 und 24 mit
unterschiedlichen Protokollen wahlweise miteinander verbindet, was ein wesentliches Maß an Flexibilität be-
reitstellt. Diese Flexibilität ermöglicht ein medizinisches Bebilderungssystem 10, das in der Lage ist, die Kom-
munikation zwischen einer Vielzahl verschiedener Netzwerk-Clients 12 und einer oder mehreren Ausgabe-Be-
bilderungsvorrichtungen 18 mit einer Vielzahl unterschiedlicher Funktionsmöglichkeiten herzustellen. Die
Schnittstellenausführungskomponente 20 behandelt jede Funktionalität unabhängig von Komponente 14, 22
und 24 als eine "Blackbox" mit einer eindeutig definierten Menge von Zuständigkeiten und einer definierten
Schnittstelle. Die Schnittstellenausführungskomponente 20 wählt die entsprechende Reihe von Blackboxes je
nach Umgebung aus und verbindet diese mit „Griffen" untereinander, um eine vollständige Leitung 26 zu bil-
den. Als ein weiterer Vorteil ist die Schnittstellenausführungskomponente 20 in einem Ausführungsbeispiel der-
art konfiguriert, dass sie die Komponenten dynamisch „spontan" verbinden kann, um eine Kommunikationslei-
tung 26 zu bilden, die für die aktuelle Bebilderungsumgebung geeignet ist. Die Schnittstellenausführungskom-
ponente 20 ist zudem derart konfiguriert, dass sie eine skalierbare Softwarearchitektur mit einer Vielzahl von
Kommunikationsleitungen 26 erzeugt, die nach unterschiedlichen Protokollen konfiguriert sind. Die skalierbare
Architektur ermöglicht es der Ausgabe-Bebilderungsvorrichtung 18, simultan mit mehreren Netzwerk-Clients
12 auf gemeinsamer Basis unter Verwendung der nötigen Netzwerkprotokolle, wie von jeder Leitung 26 bereit-
gestellt, zu kommunizieren. Alternativ hierzu könnte eine Vielzahl von Ausgabe-Bebilderungsvorrichtungen 18
bereitgestellt werden, von denen jede kommunikativ mit einer bestimmten Leitung 26 verbunden ist.

[0041] Die Schnittstellenausführungskomponente 20 skaliert die Softwarearchitektur somit derart, dass sie
die Anforderungen an die Umgebung erfüllt, wobei so viele Netzwerkausführungskomponenten und Leitungen
erstellt werden, wie es unterschiedliche Netzwerkprotokolle gibt. Die Schnittstellenausführungskomponente 20
verbindet wahlweise eine Reihe von Komponenten 14, 22 und 24, die bestimmte Protokolle aufweisen, die not-
wendig sind, um zu einem bestimmten Netzwerk-Client 12, einer bestimmten Ausgabe-Bebilderungsvorrich-
tung 18 und den erforderlichen Hardwareschnittstellen zu passen.

Komponenten der Erfindung: Netzwerkausführungskomponenten

[0042] Die Netzwerkausführungskomponente 14 ist für die Handhabung aller Netzwerk-Clients 12 zuständig,
die über ein bestimmtes Protokoll miteinander kommunizieren. Wie in Fig. 1 gezeigt, wird eine Netzwerkaus-
führungskomponente 14 für jedes bestimmte von N Netzwerkprotokollen bereitgestellt. Die Netzwerkausfüh-
rungskomponente 14 verwaltet somit mehrere Netzwerk-Clients 12 gleichzeitig. Die Schnittstellenausfüh-
rungskomponente 20 delegiert die Zuständigkeit für die Verwaltung aller netzwerkspezifischen Dienste an die
Netzwerkausführungskomponente 14. Die Schnittstellenausführungskomponente 20 instanziiert eine be-
stimmte Netzwerkausführungskomponente 14 für jedes medizinische Bebilderungsnetzwerkprotokoll, das im
Netzwerk von dem System 10 unterstützt wird. Wenn beispielsweise das Picker-Netzwerkprotokoll unterstützt
wird, instanziiert die Schnittstellenausführungskomponente 20 eine Netzwerkausführungskomponente 14, die
8/60

DE 697 35 351 T2 2006.11.30
ein derartiges Protokoll bedienen kann. Beispielsweise instanziiert die Schnittstellenausführungskomponente
20 eine weitere Netzwerkausführungskomponente, die in der Lage ist, das DICOM-Protokoll zu bedienen, so-
fern dieses Protokoll unterstützt werden muss.

[0043] Die Netzwerkausführungskomponente 14 lenkt alle Objekte, die zur Verwaltung der Netzwerkkommu-
nikation erforderlich sind. Die primäre Funktion der Netzwerkausführungskomponente 14 besteht darin, eine
Netzwerkschnittstelle 28 zu überwachen oder auf Bebilderungsanforderungen von Netzwerk-Clients 12, die
ein bestimmtes Protokoll verwenden, „abzuhören". Wenn ein Netzwerk-Client 12 den Zugang zu einer Ausga-
be-Bebilderungsvorrichtung 18 über ein bestimmtes Netzwerkprotokoll anfordert, erstellt die Netzwerkausfüh-
rungskomponente 14 eine Netzwerktreiberkomponente 30 und eine Netzwerkinterpreterkomponente 32, die
für dieses Protokoll geeignet sind, wie in Fig. 3 gezeigt. Die Netzwerkausführungskomponente 14 bindet die
Netzwerktreiberkomponente 30 an die Netzwerkinterpreterkomponente 32 und dann die Netzwerkinterpreter-
komponente 32 an die Ausgabeinterpreterkomponente 22 unter Verwendung von Informationen, die zuvor von
der Schnittstellenausführungskomponente 20 bereitgestellt wurden. Die Netzwerkausführungskomponente 14
hört dann die Netzwerkschnittstelle 28 auf neue Anforderungen ab, die gemäß dem bestimmten Netzwerkpro-
tokoll gesendet werden. Die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 bilden
zusammen eine Netzwerkschnittstellenkomponente 33, wie ebenfalls in Fig. 3 gezeigt.

[0044] Das Vorhandensein der Netzwerkausführungskomponente in der vorliegenden Erfindung dient als Un-
terscheidungsmerkmal der Erfindung gegenüber US-A-5,630,101. In US-A-5,630,101 gibt es keine entspre-
chenden Netzwerkausführungskomponenten, sondern Eingabeschnittstellenkomponenten. die Eingabe-
schnittstellenkomponente ist allerdings keine intelligente Komponente wie die erfindungsgemäße Netzwer-
kausführungskomponente. Stattdessen wird die Eingabeschnittstellenkomponente von der Schnittstellenaus-
führungskomponente für jede Verbindung zwischen einem bestimmten Client und der Bebilderungsvorrichtung
instanziiert. Im Unterschied dazu delegiert die Schnittstellenausführungskomponente in der vorliegenden Er-
findung die Zuständigkeit für die Client-Kommunikation an eine Netzwerkausführungskomponente, die ihrer-
seits weitere Komponenten instanziiert, wie für eine oder mehrere Clients erforderlich, die ein gemeinsames
Protokoll beherrschen, um mit der Bebilderungsvorrichtung kommunizieren zu können.

[0045] Die Netzwerkausführungskomponenten verleihen der vorliegenden Erfindung somit den Vorteil der
Netzwerkkommunikation unter minimaler Nutzung der Ressourcen. Beispielsweise bewirkt die Anwendung
des in US-A-5,630,101 beschriebenen Systems auf ein Netzwerk von Clients die Erstellung von Leitungen für
jeden dieser Clients. Durch Einbringung der Client-Kommunikation in eine intelligente Netzwerkausführungs-
komponente 14 entfällt für die vorliegende Erfindung die Notwendigkeit, Leitungen für jeden Client erstellen zu
müssen, so dass nur die Erstellung einer Leitung für jedes der Protokolle angefordert zu werden braucht, über
die die Clients kommunizieren können. Weil die Zahl der Kommunikationsprotokolle üblicherweise wesentlich
kleiner als die Zahl der Clients ist, führt dies zu einer deutlichen Einsparung bei der Ressourcennutzung. Indem
die Zuständigkeit für die Client-Kommunikation an die Netzwerkausführungskomponente 14 übergeben wird,
wird die Schnittstellenausführungskomponente 20 von derartigen Verwaltungsaufgaben befreit, die ansonsten
die Schnittstellenausführungskomponente übermäßig belasten könnten.

[0046] In einem Ausführungsbeispiel werden die Netzwerktreiberkomponente 30 und die Netzwerkinterpre-
terkomponente 32, wie in Fig. 3 gezeigt, "spontan" dann instanziiert, wenn die Netzwerkausführungskompo-
nente 14 eines Netzwerk-Clients 12 ein bestimmtes Protokoll an der Netzwerkschnittstelle 84 erkennt, wodurch
die zur Unterstützung dieser Komponenten erforderlichen Hardware- und Softwareressourcen reserviert wer-
den, bis diese benötigt werden. Diese dynamische Instanziierung der Netzwerktreiberkomponente 30 und der
Netzwerkinterpreterkomponente 32 ermöglicht eine Reduzierung des Systemoverheads, der ansonsten not-
wendig wäre. Wenn eine Reservierung der Ressourcen nicht kritisch ist, werden diese Komponenten alternativ
dauerhaft bereitgestellt, um für jedes Protokoll eine feste, dedizierte Leitung 26 bereitzustellen.

[0047] Sobald die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 erstellt worden
sind, delegiert die Netzwerkausführungskomponente 14 die gesamte Zuständigkeit für die Bedienung des je-
weiligen Netzwerk-Clients 12 an das Paar aus Treiber und Interpreter. Die Netzwerkausführungskomponente
14 bindet den Netzwerk-Client 12, die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente
32 kommunikativ an eine der Ausgabeinterpreterkomponenten 22, wobei Verbindungsinformationen genutzt
werden, die zuvor von der Netzwerkausführungskomponente 14 über die Schnittstellenausführungskompo-
nente 20 bereitgestellt wurden.

[0048] Jede Netzwerktreiberkomponente 30 ist derart konfiguriert, dass sie Bildinformationen von einem
Netzwerk-Client 12 gemäß einer Vielzahl verschiedener Netzwerkschnittstellenprotokolle empfängt. Jedes
9/60

DE 697 35 351 T2 2006.11.30
Netzwerkschnittstellenprotokoll ist speziell einem der Netzwerk-Clients 12 zugeordnet und gibt die modalitäts-
spezifischen Anforderungen zur Kommunikation mit dem jeweiligen Netzwerk-Client wieder. Jede der Netzwer-
kinterpreterkomponenten 30 ist derart konfiguriert, dass sie erste Bebilderungsanforderungen gemäß einem
der Netzwerkschnittstellenprotokolle, basierend auf den empfangenen Bildinformationen, erzeugt. Die ersten
Bebilderungsanforderungen werden von der Netzwerkinterpreterkomponente 32 erzeugt und entsprechen den
von dem Netzwerk-Client 12 erzeugten Bebilderungsanforderungen. Die ersten Bebilderungsanforderungen
werden an die Ausgabeschnittstellenkomponente 16 übermittelt.

[0049] Jedes der Netzwerkschnittstellenprotokolle umfasst sowohl ein Netzwerktreiberprotokoll, das auf
Netzwerktreiberkomponenten 30 anwendbar ist, als auch ein Netzwerkinterpreterprotokoll, das auf Netzwer-
kinterpreterkomponenten 32 anwendbar ist. Die entsprechenden Netzwerktreiberprotokolle werden von den
Kommunikationsanforderungen eines bestimmten Netzwerk-Clients 12 ermittelt, während die geeigneten
Netzwerkinterpreterprotokolle von dem Bildinformationsformat einer bestimmten Eingabe-Bebilderungsvor-
richtung ermittelt werden, die dem Netzwerk-Client zugeordnet ist. Das Bildinformationsformat bezieht sich auf
die Art der Bebilderungsanforderungen, die gemäß dem Protokoll einer bestimmten Eingabe-Bebilderungsvor-
richtung erzeugt werden. Das Netzwerktreiberprotokoll spezifiziert die Weise, in der eine Netzwerktreiberkom-
ponente 30 die Übertragung von Bildinformationen von einer Eingabe-Bebilderungsvorrichtung durchführen
sollte, die einem Netzwerk-Client 12 zugeordnet ist. Das Netzwerkinterpreterprotokoll spezifiziert die Weise, in
der die Netzwerkinterpreterkomponente 32 die Bildinformationen interpretieren sollte, um die ersten Bebilde-
rungsanforderungen zu erzeugen. Die Netzwerktreiber- und Netzwerkinterpreterprotokolle können sich je nach
Art des Netzwerk-Clients 12 und des Herstellers der Ausgabe-Bebilderungsvorrichtung 18 erheblich voneinan-
der unterscheiden.

[0050] Die Netzwerkinterpreterkomponente 32 nutzt zudem einen gemeinsamen Satz von Aufgaben mit an-
deren Netzwerkinterpreterkomponenten, ungeachtet eines bestimmten Netzwerkinterpreterprotokolls. Nach
Erhalt der Bildinformationen von einer Netzwerktreiberkomponente 30 analysiert eine Netzwerkinterpreter-
komponente 32 Anforderungen, die in den Bildinformationen enthalten sind, und übersetzt diese, um erste Be-
bilderungsanforderungen zu erzeugen, die den von der Ausgabe-Bebilderungsvorrichtung 18 bereitgestellten
Operationen entsprechen. Die ersten Bebilderungsanforderungen umfassen Anforderungen nach einer Reihe
von gemeinsamen Bebilderungsdiensten, die von der Ausgabe-Bebilderungsvorrichtung 18 bereitgestellt wer-
den.

[0051] Die Weise, in der die Netzwerkinterpreterkomponente 32 die Anforderungen interpretiert, die von dem
Netzwerk-Client 12 erzeugt werden, kann sich je nach Netzwerkinterpreterprotokoll ändern. Die Netzwerkin-
terpreterkomponente 32 versteht das genaue Format, die Anweisungen und die Timing-Einschränkungen, die
den Bildinformationen inhärent sind, die von einem bestimmten Netzwerk-Client 12 erzeugt wurden. Dennoch
stellen alle Ausgabeinterpreterkomponenten 22 eine gemeinsame Grundfunktion zur Erzeugung erster Bebil-
derungsanforderungen zur Verfügung. Die Netzwerkinterpreterkomponente 32 sendet die ersten Bebilde-
rungsanforderungen über die Leitung 26. Sobald die ersten Bebilderungsanforderungen von nachgeordneten
Komponenten in der bidirektionalen Leitung 26 verarbeitet worden sind und eine Antwort erhalten worden ist,
erzeugt die Netzwerkinterpreterkomponente 32 eine entsprechende Antwort für den vernetztes System 13. Die
Netzwerkinterpreterkomponente 32 sendet die Antwort an den Netzwerk-Client 12 über die Leitung 26 und die
Netzwerktreiberkomponente 30, die die Kommunikationsanforderungen handhabt, die zur Übermittlung der
Antwort an die Eingabe-Bebilderungsvorrichtung erforderlich sind.

[0052] Die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 wurden unter Berück-
sichtigung der Tatsache beschrieben, dass die Netzwerkschnittstellenkomponente 33 alternativ als ein einzel-
nes, integriertes Softwaremodul implementiert werden könnte. In dem beschriebenen Ausführungsbeispiel
wird eine Netzwerkschnittstellenkomponente 33 von einer diskreten Netzwerktreiberkomponente 30 und einer
diskreten Netzwerkinterpreterkomponente 32 realisiert. Eine diskrete Implementierung der Unterkomponenten
teilt die Funktionalität jeder Netzwerkschnittstellenkomponente 33 zur besseren Modularität in kleinere Pakete
auf. Beispielsweise bedürfen Änderungen der Hardwarespezifikationen für die Netzwerkschnittstelle 28, die
auf eine erweiterte Modularität zurückzuführen sind, nur einer Rekonfiguration der Netzwerktreiberkomponen-
te 30, statt der gesamten Netzwerkschnittstellenkomponente 33.

[0053] Ungeachtet der protokollspezifischen Funktionen sind die Netzwerktreiberkomponente 30 und die
Netzwerkinterpreterkomponente 32 des gleichen Typs (d.h. alle Netzwerktreiberkomponenten) so konfiguriert,
dass sie mehrere gemeinsame Aufgaben wahrnehmen. Beispielsweise nutzen die Netzwerktreiberkomponen-
ten 30 gemeinsame Aufgaben, die zur Kommunikation mit einem Netzwerk-Client 12 notwendig sind, der nach
einem bestimmten Netzwerkprotokoll arbeitet. Eine Netzwerktreiberkomponente 30 ist derart konfiguriert, dass
10/60

DE 697 35 351 T2 2006.11.30
sie alle hardwarespezifischen Faktoren handhabt, also beispielsweise Unterbrechungen, Puffer und Quittungs-
vorgänge, die notwendig sind, um Bebilderungsinformationen an einen bestimmten Netzwerk-Client 12 zu
übermitteln oder von diesem zu empfangen. Eine Netzwerktreiberkomponente 30 ist zudem so konfiguriert,
dass sie alle anderen spezifischen Notwendigkeiten eines Netzwerk-Clients 12 handhabt, wie beispielsweise
die Paketisierung oder Initialisierung. Die Netzwerktreiberkomponente 30 führt alle notwendigen Kommunika-
tionsaufgaben durch, und isoliert damit die verbleibende Leitung 26 von Kenntnissen über bestimmte Anforde-
rungen zur Kommunikation mit dem Netzwerk-Client 12. Die Netzwerktreiberkomponente 30 übernimmt somit
eine zweifache Zuständigkeit. Erstens empfängt die Netzwerktreiberkomponente 30 Bildinformationen abseits
des Netzwerks vom Netzwerk-Client 12 und bereitet diese Bildinformationen für die nächste Stufe der Leitung
26 auf, d.h. für die Netzwerkinterpreterkomponente 32. Zweitens übermittelt die Netzwerktreiberkomponente
30 Antworten, die auf der bidirektionalen Leitung 26 auftreten, an das Netzwerk zur Kommunikation mit dem
Netzwerk-Client 12.

Komponenten der Erfindung: Ausgabeschnittstellenkomponenten

[0054] Wie in Fig. 1 gezeigt, ist jede Ausgabeschnittstellenkomponente 16 derart konfiguriert, dass sie zweite
Bebilderungsanforderungen gemäß einer Vielzahl verschiedener Ausgabeprotokolle über eine Ausgabeinter-
preterkomponente 22 erzeugt, und zwar je nach Inhalt der ersten Bebilderungsanforderung. Die zweiten Be-
bilderungsanforderungen stellen den Inhalt der ersten Bebilderungsanforderungen dar, wie von der Ausga-
beinterpreterkomponente 22 zur Übermittlung an die Ausgabe-Bebilderungsvorrichtung 18 übersetzt. Jedes
Ausgabeschnittstellenprotokoll ist speziell dem Typ der Ausgabe-Bebilderungsvorrichtung 18 zugeordnet und
gibt ebenso wie das Netzwerkschnittstellenprotokoll die Anforderungen an die Kommunikation mit der jeweili-
gen Ausgabe-Bebilderungsvorrichtung wieder. Außerdem ist jede Ausgabeschnittstellenkomponente 16 so
konfiguriert, dass sie die zweiten Bebilderungsanforderungen an die Ausgabe-Bebilderungsvorrichtung 18
über die Ausgabetreiberkomponente 24 gemäß einem der Ausgabeschnittstellenprotokolle übermittelt.

[0055] Jedes der Ausgabeschnittstellenprotokolle umfasst ein Ausgabeinterpreterprotokoll, das auf die Aus-
gabeinterpreterkomponenten 22 anwendbar ist, und ein Ausgabetreiberprotokoll, das auf die Ausgabetreiber-
komponenten 24 anwendbar ist. Das Ausgabetreiberprotokoll wird durch die Kommunikationsanforderungen
der Ausgabe-Bebilderungsvorrichtung 18 bestimmt, während das entsprechende Ausgabeinterpreterprotokoll
durch das Bildinformationsformat der Ausgabe-Bebilderungsvorrichtung bestimmt wird. Das Ausgabeinterpre-
terprotokoll spezifiziert die Weise, in der die Ausgabeinterpreterkomponente 22 erste Bebilderungsanforderun-
gen interpretieren sollte, um zweite Bebilderungsanforderungen in einer Form zu erzeugen, die von der Aus-
gabe-Bebilderungsvorrichtung 18 verstanden werden. Das Ausgabetreiberprotokoll spezifiziert die Weise, in
der eine Ausgabetreiberkomponente 24 die Übermittlung der zweiten Bebilderungsanforderungen an die Aus-
gabe-Bebilderungsvorrichtung 18 durchführen sollte. Wie bei den Netzwerkschnittstellenprotokollen unterlie-
gen die Ausgabeschnittstellenprotokolle Abweichungen. Beispielsweise kann sowohl das Ausgabetreiber- als
auch das Ausgabeinterpreterprotokoll entsprechend dem Typ der Funktionsmöglichkeiten variieren, die von
der Ausgabe-Bebilderungsvorrichtung 18 bereitgestellt werden, beispielsweise 831, 952 oder SuperSet im Fal-
le des von Imation hergestellten Laserabbildungsgeräts.

[0056] Eine Ausgabeinterpreterkomponente 22 ist derart konfiguriert, dass sie über die Leitung 26 erste Be-
bilderungsanforderungen empfängt, die von einer Netzwerkinterpreterkomponente 32 erzeugt worden sind,
und die ersten Bebilderungsanforderungen interpretiert, um zweite Bebilderungsanforderungen zu erzeugen,
die dem von der Ausgabe-Bebilderungsvorrichtung 18 jeweils geforderten Protokoll entsprechen. Die zweiten
Bebilderungsanforderungen entsprechen im Wesentlichen den ersten Bebilderungsanforderungen, sind aber
entsprechend dem Ausgabeprotokoll konfiguriert, das von der Ausgabe-Bebilderungsvorrichtung 18 be-
herrscht wird. Somit dienen die zweiten Bebilderungsanforderungen als Anforderungen für dieselben Bebilde-
rungsdienste, die von den ersten Bebilderungsanforderungen spezifiziert worden sind. Die Weise, in der die
Ausgabeinterpreterkomponente 22 die Anweisungen interpretiert, kann je nach dem speziellen Ausgabeinter-
preterprotokoll variieren, das von der Ausgabe-Bebilderungsvorrichtung 18 vorgegeben wird, aber alle Ausga-
beinterpreterkomponenten 22 nutzen eine gemeinsame Aufgabe, um zweite Bebilderungsanforderungen in ei-
nem Protokoll zu erzeugen, das von der Ausgabe-Bebilderungsvorrichtung beherrscht wird. Die Ausgabeinter-
preterkomponente 22 sendet die zweiten Bebilderungsanforderungen über die Leitung 26. Wenn die Ausga-
be-Bebilderungsvorrichtung 18 die zweiten Bebilderungsanforderungen verarbeitet und eine über die Leitung
26 empfangene Antwort formuliert, entfernt die Ausgabeinterpreterkomponente 22 ausgabeprotokollspezifi-
sche Informationen und erstellt eine entsprechende Antwort für die Netzwerkinterpreterkomponente 32.

[0057] Mit Bezug auf die Ausgabetreiberkomponente 24, führen alle Ausgabetreiberkomponenten 24, ebenso
wie die Netzwerktreiberkomponenten 30, einen gemeinsamen Satz an Kommunikationsaufgaben durch. Eine
11/60

DE 697 35 351 T2 2006.11.30
Ausgabetreiberkomponente 24 ist derart konfiguriert, dass sie alle hardwarespezifischen Faktoren handhabt,
also beispielsweise Unterbrechungen, Puffer und Quittungsvorgänge, die notwendig sind, um Bebilderungsin-
formationen an eine bestimmte Ausgabe-Bebilderungsvorrichtung 18 zu übermitteln oder von diesem zu emp-
fangen. Die Ausgabetreiberkomponente 24 isoliert die verbleibende Pipeline 26 von jeglicher Kenntnis, dass
die Kommunikation mit der Ausgabe-Bebilderungsvorrichtung 18 über eine serielle Schnittstelle, eine parallele
Schnittstelle oder ein Dual-Port-RAM usw. erfolgt. Die Ausgabetreiberkomponente 24 übermittelt zweite Bebil-
derungsanforderungen, die von der Ausgabeinterpreterkomponente 22 erzeugt wurden, an die Ausgabe-Be-
bilderungsvorrichtung 18, wobei alle Kommunikationsanforderungen gewahrt bleiben. Die Ausgabetreiber-
komponente 24 empfängt Antworten von der Ausgabe-Bebilderungsvorrichtung 18 und bereitet die Antwort zur
Übertragung an die Ausgabeinterpreterkomponente 22 über die bidirektionale Leitung 26 vor.

[0058] Die Ausgabeinterpreterkomponente 22 und die Ausgabetreiberkomponente 24 wurden unter Berück-
sichtigung der Tatsache beschrieben, dass die Ausgabeschnittstellenkomponente 16 alternativ als ein einzel-
nes, integriertes Softwaremodul implementiert werden könnte. In dem beschriebenen Ausführungsbeispiel
wird eine Ausgabeschnittstellenkomponente 16 allerdings von einer diskreten Ausgabeinterpreterkomponente
22 und einer diskreten Ausgabetreiberkomponente 24 realisiert. Eine diskrete Implementierung der Unterkom-
ponenten teilt die Funktionalität jeder Ausgabeschnittstellenkomponente 16 zur besseren Modularität in klei-
nere Pakete auf. Beispielsweise bedürfen Änderungen der Hardwarespezifikationen für die Ausgabeschnitt-
stellenkomponente 16, die auf eine erweiterte Modularität zurückzuführen sind, nur einer Rekonfiguration der
Ausgabetreiberkomponente 24 statt der gesamten Ausgabeschnittstellenkomponente 16.

Objektorientierung der Komponenten

[0059] Um die Austauschbarkeit der Komponenten wie beschrieben zu ermöglichen, müssen die Software-
schnittstellen zwischen den Komponenten 30, 32, 22 und 24 vordefiniert werden, um jeden Komponententyp
abzustimmen. Gleichzeitig muss eine individuelle Komponente 30, 32, 22 und 24 konfiguriert werden, um für
ein bestimmtes Protokoll spezifische Funktionen zu implementieren. Die vorliegende Erfindung nutzt objekto-
rientierte Techniken, insbesondere die der Weitervererbung, um ein generisches Basisklassenprotokoll für je-
den Komponententyp zu entwickeln (z.B. Netzwerktreiberkomponente 30).

[0060] Die Weitervererbung ist eine objektorientierte Technik, die als Mechanismus zur Erzeugung neuer
Klassen aus vorhandenen Daten dient. Eine neue Klasse ist bis auf einen kleinen Unterschied ähnlich zu einer
vorhandenen Klasse; die Weitervererbung dient dazu, die neue Klasse anhand der vorhandenen Klasse zu de-
finieren. Die vorhandene Klasse, die als Quelle für die Weitervererbung dient, wird als Basisklasse bezeichnet,
während die neue Klasse, die von der Basisklasse abgeleitet wird, als abgeleitete Klasse bezeichnet wird. Eine
vorhandene Klasse kann als Basisklasse für mehrere abgeleitete Klassen dienen. Die Basisklasse ist eine De-
finition einer generischen Klasse von Softwareobjekten, während die Klassen, die von der Basisklasse abge-
leitet sind, mehr spezifische oder spezialisierte Klassen der Objekte definieren. Das generische Basisklassen-
protokoll spezifiziert die Funktionen, die von einer Komponente bereitgestellt werden, sowie die Prozeduren
für den Zugang zu diesen Funktionen. Jede spezifische Protokollkomponente "erbt" von dem entsprechenden
Basisklassenprotokoll und implementiert die Schnittstelle gemäß der Umgebung.

[0061] Klassenvererbung ermöglicht es, Mitglieder einer Klasse so zu benutzen, als ob sie Mitglieder einer
zweiten Klasse seien. Es ist keine zusätzliche Programmierung erforderlich, um die Unterklasse zu implemen-
tieren, ausgenommen der Operationen, die entweder die von den anderen Klassen geerbten Mitglieder erwei-
tern oder ersetzen. Während der Entwicklung dieses objektorientierten Systems werden Unterklassen aus be-
stehenden Klassen konstruiert, bis die entsprechende Funktionalität entwickelt ist. Die Konstruktion von Un-
terklassen fuhrt zur Bildung einer Klassenhierarchie. Die Klassenhierarchie ist in der Basisklasse begründet,
die einen minimalen Verhaltenssatz umfasst, der allen Unterklassen gemeinsam ist.

[0062] Erfindungsgemäß ist jede Komponente 30, 32, 22 und 24 gemäß einem bestimmten Protokoll konfi-
guriert, dient aber auch als Unterklasse des Basisklassenprotokolls. Weil jede Komponente 30, 32, 22 und 24
von dem Basisklassenprotokoll erbt und einen minimalen Funktionssatz implementiert, so dass die Basisklas-
senanforderungen erfüllt werden, kann sie direkt gegen eine andere Komponente des gleichen Typs ausge-
tauscht werden, die von demselben Basisklassenprotokoll erbt. Die Austauschbarkeit, die sich aus den objek-
torientierten Techniken ergibt, erzeugt eine „direktverbundene" Softwarearchitektur, in der jede Komponente
effektiv in die Leitung 26 eingefügt werden kann, ohne dass eine zusätzliche Schnittstellenentwicklung notwen-
dig wäre.

[0063] Fig. 5 und Fig. 6 zeigen ein Beispiel einer objektorientierten Protokollhierarchie, die die Austauschbar-
12/60

DE 697 35 351 T2 2006.11.30
keit der Komponenten 30, 32, 22 und 24 erleichtert. Die Protokollhierarchie veranschaulicht die Implementie-
rung der Komponenten 30, 32, 22 und 24 für bestimmte Protokolle, die als abgeleitete Klasse jeweils ein ge-
nerisches Basisklassenprotokoll „beerben". Wie in Fig. 4 gezeigt, kann ein Netzwerkausführungs-Basisklas-
senprotokoll 34 eine Vielzahl von „vererbenden" Netzwerkausführungsprotokollen 40, 42, 44 für verschiedene
Netzwerk-Clients 12 umfassen, wie beispielsweise DICOM, Picker und LP, die es einer entsprechend instan-
ziierten Netzwerkausführungskomponente 14 ermöglichen, das Vorhandensein eines bestimmten Netz-
werk-Clients zu erkennen. Auf ähnliche Weise kann ein Netzwerktreiber-Basisklassenprotokoll 36 eine Viel-
zahl von „vererbenden" Netzwerktreiberprotokollen 46, 48, 50 für verschiedene Netzwerkschnittstellenanfor-
derungen umfassen, die einem Netzwerk-Client 12 zugeordnet sind, beispielsweise DICOM, Picker oder LP.
Ein Basisklassen-Netzwerkinterpreterprotokoll 38 kann eine Vielzahl von vererbenden Netzwerkinterpreterpro-
tokollen 52, 54, 56 für verschiedene Arten von Eingabe-Bebilderungsvorrichtungen oder Herstellern umfassen,
die einem Netzwerk-Client 12 zugeordnet sind, beispielsweise DICOM, Picker und LP.

[0064] Wie in Fig. 5 gezeigt, kann ein Basisklassen-Ausgabeinterpreterprotokoll 35 eine Vielzahl von verer-
benden Ausgabeinterpreterprotokollen für verschiedene Arten von Ausgabe-Bebilderungsvorrichtungen 18
umfassen, wie beispielsweise ein SuperSet Ausgabeinterpreterprotokoll 41 von Imation, ein 831 Ausgabein-
terpreterprotokoll 43 von Imation oder ein 952 Ausgabeinterpreterprotokoll 45 von Imation. Ein Basisklas-
sen-Ausgabetreiberprotokoll 37 kann eine Vielzahl von vererbenden Ausgabetreiberprotokollen für verschie-
dene Hardwareschnittstellenanforderungen umfassen, die der Ausgabe-Bebilderungsvorrichtung 18 zugeord-
net sind, wie ein Dual-Port-RAM-Ausgabetreiberprotokoll 47, ein serielles Ausgabetreiberprotokoll 49 oder ein
paralleles Ausgabetreiberprotokoll 51. Jedes der vorstehend beschriebenen vererbenden Protokolle umfasst
protokollspezifische Funktionen, die von einer Komponente 30, 32, 22 und 24 bereitgestellt werden, implemen-
tiert aber derartige Funktionen über eine generische Schnittstellen, die das entsprechende Basisklassenpro-
tokoll 34, 35, 36, 37, 38 beerbt. Für jedes zuvor beschriebene Basisklassenprotokoll 34, 35, 36, 37, 38 kann
eine Reihe zusätzlicher vererbender Protokolle implementiert werden, und zwar gemäß den Anforderungen
der medizinischen Bebilderungssystemumgebung.

[0065] Die Art der Komponenten 30, 32, 22 und 24 ermöglicht eine wahlweise und modulare „Einsetzung" und
„Entnahme" in bzw. aus einer Leitung 26 durch die Schnittstellenausführungskomponente 20. Jede der Kom-
ponenten 39, 32, 22, 24 ist mit einer anderen Komponente des gleichen Typs, aber eines anderen Protokolls,
mittels einer Reihe von Softwareschnittstellen austauschbar. Diese Basisklassenschnittstelle ist ein Ausfüh-
rungsbeispiel, das in jede Komponente eingebaut ist, so dass jede Komponente 30, 32, 22 und 24 in einer
Pipeline 26 ersetzt werden kann, ohne die Konfiguration der anderen Komponenten in der Pipeline zu beein-
trächtigen. Jede einzelne Komponente 30, 32, 22 und 24 ist also wiederverwendbar, wodurch sich die bisher
notwendigen Kosten für ein Redesign erheblich reduzieren.

[0066] Wenn die Leitung 26 beispielsweise für die Kommunikation zwischen den Siemens Netzwerk-Clients
12 und einer Ausgabe-Bebilderungsvorrichtung 18, die die Funktionalität des Imation SuperSet implementiert,
konfiguriert werden soll, würde die Schnittstellenausführungskomponente 20 zunächst eine Netzwerkausfüh-
rungskomponente 14 instanziieren, die zur Überwachung des Vorhandenseins der Siemens Netzwerk-Clients
konfiguriert ist. Bei Erkennung eines Siemens Netzwerk-Clients 12 würde die Netzwerkausführungskompo-
nente 14 eine Netzwerktreiberkomponente 30 und eine Netzwerkinterpreterkomponente 32 erstellen, die für
den Betrieb gemäß dem Siemens Netzwerkprotokoll konfiguriert sind. Die Netzwerktreiberkomponente 30 wür-
de für den Betrieb gemäß einem Netzwerktreiberprotokoll konfiguriert sein, das für den Empfang von Bebilde-
rungsinformationen seitens des Siemens Netzwerk-Clients 12 geeignet ist. Die Netzwerkinterpreterkomponen-
te 32 würde gemäß einem Netzwerk-Interpreterprotokoll arbeiten, das zur Erstellung erster Bebilderungsfor-
derungen geeignet ist, und zwar gestützt auf das Format der Bildinformationen, die von dem Siemens Netz-
werk-Client eingehen. Die Netzwerkausführungskomponente 14 würde dann die Netzwerktreiberkomponente
30 und die Netzwerkinterpreterkomponente 32 kommunikativ an eine Ausgabeinterpreterkomponente 22 bin-
den, die ein Ausgabeinterpreterprotokoll aufweist, das zur Erzeugung zweiter Bebilderungsanforderungen ge-
eignet ist, die von der Ausgabe-Bebilderungsvorrichtung des Typs Imation SuperSet verstanden werden, wo-
bei die Netzwerkinterpreterkomponente 32 bereits an eine Ausgabetreiberkomponente 24 gebunden ist, die
ein Ausgabetreiberprotokoll aufweist, das für die Übermittlung der zweiten Bebilderungsanforderungen über
eine serielle Hardwareschnittstelle geeignet ist, die der Ausgabe-Bebilderungsvorrichtung des Typs Imation
SuperSet zugeordnet ist.

[0067] Alternativ hierzu und sofern die Leitung 26 für die Kommunikation zwischen einem Toshiba Netz-
werk-Client 12 und einer Ausgabe-Bebilderungsvorrichtung 18 des Typs Imation SuperSet konfiguriert ist,
wäre es nur erforderlich, die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 mit
Komponenten auszuwechseln, die gemäß den Netzwerktreiber- bzw. Netzwerkinterpreterprotokollen konfigu-
13/60

DE 697 35 351 T2 2006.11.30
riert ist, die für die Toshiba-Modalität geeignet sind. Eine Netzwerkausführungskomponente 14, die zur Über-
wachung auf Toshiba-Netzwerk-Clients 12 instanziiert wurde, würde eine Netzwerktreiberkomponente 30 und
eine Netzwerkinterpreterkomponente 32 erstellen, die für den Betrieb gemäß dem Toshiba-Protokoll konfigu-
riert sind. Die für die Siemens Netzwerk-Clients 12 verwendete Ausgabeschnittstellenkomponente 16 könnte
repliziert und in einer separaten Kommunikationsleitung 26 für Toshiba-Netzwerk-Clients verwendet werden.
Die Ausgabeschnittstellenkomponente 16 würde eine für den Imation SuperSet konfigurierte Ausgabeinterpre-
terkomponente 22 und eine seriell für den Imation SuperSet konfigurierte Ausgabetreiberkomponente 24 um-
fassen und somit bereits gemäß den Anforderungen der Ausgabe-Bebilderungsvorrichtung 18 konfiguriert
sein, und zwar unabhängig von dem Netzwerk-Client 12. Die Netzwerkausführungskomponente 14 würde in
einer separaten Leitung 26 die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32
kommunikativ an die standardmäßige Ausgabeinterpreterkomponente 22 und Ausgabetreiberkomponente 24
binden, die für die Ausgabe-Bebilderungsvorrichtung des Typs Imation SuperSet konfiguriert sind und in einer
beliebigen Leitung mit einer SuperSet-Ausgabevorrichtung verwendbar sind, welche bereits aneinander ge-
bunden sind.

[0068] Als weitere Alternative und sofern die zuvor beschriebene Leitung 26 zur Kommunikation zwischen ei-
nem Toshiba-Netzwerk-Client 12 und einer Ausgabe-Bebilderungsvorrichtung 18 des Typs Imation 952 modi-
fiziert werden müsste, wäre nur die Modifikation der Ausgabeschnittstellenkomponente 16 erforderlich. Die
Netzwerkausführungskomponente 14 würde dann die Netzwerktreiberkomponente 30 und die Netzwerkinter-
preterkomponente 32 kommunikativ an eine Ausgabeinterpreterkomponente 22 binden, die ein Ausgabeinter-
preterprotokoll aufweist, das zur Erzeugung zweiter Bebilderungsanforderungen geeignet ist, die von der Aus-
gabe-Bebilderungsvorrichtung des Typs Imation 952 verstanden werden, die bereits an eine Ausgabetreiber-
komponente 24 gebunden ist, die ein Ausgabetreiberprotokoll aufweist, das für die Übermittlung der zweiten
Bebilderungsanforderungen über eine serielle Hardwareschnittstelle geeignet ist, die der Ausgabe-Bebilde-
rungsvorrichtung des Typs Imation 952 zugeordnet ist. Somit wäre die von der Netzwerkausführungskompo-
nente 14 erstellte Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 von einer Ände-
rung in der Ausgabebebilderungsvorrichtung nicht betroffen, die der Kommunikationsleitung 26 zugeordnet ist.

[0069] Abschließend und sofern die zuvor beschriebene Leitung 26 zur Kommunikation zwischen einem Tos-
hiba-Netzwerk-Client 12 und einer Ausgabe-Bebilderungsvorrichtung 18 des Typs Imation 952 mit Du-
al-Port-RAM-Schnittstelle modifiziert werden müsste, wäre nur die Modifikation der Ausgabeschnittstellenkom-
ponente 16 erforderlich. Die Netzwerkausführungskomponente 14 würde dann die Netzwerktreiberkomponen-
te 30 und die Netzwerkinterpreterkomponente 32 kommunikativ an eine Ausgabeinterpreterkomponente 22
binden, die ein Ausgabeinterpreterprotokoll aufweist, das zur Erzeugung zweiter Bebilderungsanforderungen
geeignet ist, die von der Ausgabe-Bebilderungsvorrichtung des Typs Imation 952 verstanden werden, die be-
reits an eine Ausgabetreiberkomponente 24 gebunden ist, die ein Ausgabetreiberprotokoll aufweist, das für die
Übermittlung der zweiten Bebilderungsanforderungen über eine Dual-Port-RAM-Hardwareschnittstelle geeig-
net ist, die der Ausgabe-Bebilderungsvorrichtung des Typs Imation 952 zugeordnet ist. Somit bliebe die Netz-
werkausführungskomponente 14, einschließlich der für Toshiba konfigurierten Netzwerktreiberkomponente 30
und Netzwerkinterpreterkomponente 32, von der Modifikation nicht betroffen.

[0070] Die Verwendung von Vererbungskonzepten der objektorientierten Programmierung seitens der vorlie-
genden Erfindung hat den Vorteil der Wiederverwendbarkeit von Netzwerktreiber- und Netzwerkinterpreter-
komponenten sowie die Vereinfachung in der Erstellung neuer Netzwerktreiber- und Netzwerkinterpreterkom-
ponenten. Die Vererbung ermöglicht es, neue Komponenten durch Vergleich mit bereits entwickelten Kompo-
nenten zu definieren, was als differenzielle Programmierung („Differential Programming") bekannt ist. Inner-
halb dieser Komponenten wird eine gemeinsame Funktionalität wiederverwendet, so dass diese nicht erneut
entwickelt zu werden braucht. Alle an der Basisklasse vorgenommenen Fehlerbehebungen und Verbesserun-
gen werden außerdem automatisch an die abgeleiteten Klassen weitergegeben. Auf diese Weise ermöglicht
die vorliegende Erfindung die Einbeziehung neuer Protokolle in das Softwaresystem innerhalb eines üblicher-
weise kürzeren Zeitraums sowie die Nutzung einer kleineren Zahl von Ressourcen, als dies nach dem Stand
der Technik üblich ist.

Client-Server-Hierarchie der Komponenten

[0071] Wie in Fig. 6 gezeigt, bildet die Schnittstellenausführungskomponente 20 in einem Ausführungsbei-
spiel die Leitung 26 gemäß einer Client-Server-Architektur. In Fig. 6 weist ein von Komponente A auf Kompo-
nente B gerichteter Pfeil darauf hin, dass Komponente A eine Client-Komponente der Server-Komponente B
ist. Die bidirektionalen Pfeile zwischen der Netzwerktreiberkomponente 30 und dem Netzwerk-Client 12 sowie
zwischen der Ausgabetreiberkomponente 24 und der Ausgabe-Bebilderungsvorrichtung 18 stellen keine Cli-
14/60

DE 697 35 351 T2 2006.11.30
ent-Server-Beziehung dar, sondern die Hardware-/Software-Schnittstellen des medizinischen Bebilderungs-
systems 10. Wie anhand der Pfeile in Fig. 6 dargestellt, definiert die Schnittstellenausführungskomponente 20
in einem Ausführungsbeispiel die Client-Server-Beziehung des Softwaresystems derart, dass: (1) die Schnitt-
stellenausführungskomponente 20 eine Client-Komponente der Netzwerkausführungskomponente 14, der
Ausgabeinterpreterkomponente 22 und der Ausgabetreiberkomponente 24 ist; dass (2) die Netzwerkausfüh-
rungskomponente 14 eine Client-Komponente der Netzwerktreiberkomponente 30 und der Netzwerkinterpre-
terkomponente 32 ist; dass (3) die Netzwerktreiberkomponente 30 eine Client-Komponente der Netzwerkinter-
preterkomponente 32 ist; dass (4) die Netzwerkinterpreterkomponente 32 eine Client-Komponente der Ausga-
beinterpreterkomponente 22 ist, und dass (5) die Ausgabeinterpreterkomponente 22 eine Client-Komponente
der Ausgabetreiberkomponente 24 ist.

[0072] Das Client-Server-Paradigma ermöglicht eine nahtlose Integration unter den erfindungsgemäßen
Komponenten. Die Client-Komponente fordert einen durchzuführenden Dienst an; der Server ist die Ressour-
ce, die die Client-Anfrage abwickelt. Der Client sendet eine Nachricht an einen Server, um den Server zur
Durchführung einer Aufgabe aufzufordern, worauf der Server auf die Anfrage des Clients antwortet. Durch die
Verwendung von Client-Server-Beziehungen in der vorliegenden Erfindung ergeben sich Vorteile in Bezug auf
die Wartungsfreundlichkeit im Vergleich mit objektorientierten Programmierungsgrundsätzen. Hinter dem Cli-
ent-Server-Konzept steht die Idee, dass separate Komponenten, die von einer objektorientierten Architektur
bereitgestellt werden, nicht alle aus demselben Speicherraum ausgeführt zu werden brauchen. Client-Ser-
ver-Computing fördert somit die Skalierbarkeit: jede Komponente der vorliegenden Erfindung kann ersetzt wer-
den, wenn es der wachsende oder sinkende Verarbeitungsbedarf für diese Komponente diktiert, ohne dass die
übrigen Komponenten davon wesentlich beeinträchtigt werden. Wie zuvor beschrieben, befinden sich die
Komponenten der vorliegenden Erfindung innerhalb desselben Speichers, sei es auf einer Karte in der Bebil-
derungsvorrichtung oder in dem RAM eines Computers, an den die Vorrichtung gekoppelt ist. Sollte die Zahl
der Bebilderungsvorrichtungen, mit denen die Clients kommunizieren können, relativ groß werden, könnten
sich die Ausgabeschnittstellenkomponenten für jede Vorrichtung auf einer Karte in der Vorrichtung befinden,
während sich die übrigen Komponenten auf einem an das Netz angeschlossenen Computer befinden können.
Als Ergebnis der Übernahme eines Client-Server-Modells ermöglicht die vorliegende Erfindung die Neuanord-
nung einzelner Komponenten, ohne dass davon die Logik der übrigen Komponenten besonders betroffen wä-
re.

[0073] In der beschriebenen Client-Server-Beziehung der vorliegenden Erfindung ist die Ausgabetreiberkom-
ponente 24 eine reine Server-Komponente für die Ausgabeinterpreterkomponente 22. Die Ausgabetreiber-
komponente 24 ist für die Hardwareanforderungen auf unterer Ebene zuständig und unterliegt der Steuerung
durch die auf höherer Ebene angeordnete Ausgabeinterpreterkomponente 22. Die Netzwerkinterpreterkompo-
nente 32 ist eine Client-Komponente der Ausgabeinterpreterkomponente 22, die einen Funktionssatz bereit-
stellt, mit dem die Netzwerkinterpreterkomponente die Ausgabe-Bebilderungsvorrichtung 18 steuert. Die Aus-
gabeinterpreterkomponente 22 initiiert niemals die Kommunikation mit der Netzwerkinterpreterkomponente
32, sondern stellt auf Anfrage der Netzwerkinterpreterkomponente Services bereit. Die Netzwerktreiberkom-
ponente 30 ist eine Client-Komponente der Netzwerkinterpreterkomponente 32, die mit der Netzwerktreiber-
komponente 30 kommuniziert, um die Bildinformationen von einem Client zu empfangen und zu interpretieren
und die ersten Bebilderungsanforderungen zu erzeugen. Die Netzwerktreiberkomponente 30 kommuniziert di-
rekt mit den Clients gemäß einem bestimmten Protokoll. Jede Komponente 30, 32, 22 und 24 ist eine Ser-
ver-Komponente für die Schnittstellenausführungskomponente 20. Die Schnittstellenausführungskomponente
20 steuert somit das gesamte Softwaresystem.

Kommunikation unter den Komponenten

[0074] Die Kommunikation unter den erfindungsgemäßen Komponenten erfolgt über die Ausgabe von RPCs
(Remote Procedure Calls/Verfahrensfernabrufe). Ein RPC ist ein gemeinsamer Kommunikationsmechanis-
mus, der oft in komplexen, verteilten Softwaresystemen verwendet wird. Eine Client-Komponente führt eine
bestimmte Funktion aus, indem sie einen RPC an eine entsprechende Server-Komponente absetzt. Der RPC
wickelt alle Mechanismen ab, die für die Kommunikation zwischen den Komponenten erforderlich sind. Jede
Komponente ist derart konfiguriert, dass sie Services für eine Client-Komponente bereitstellt, wobei sie aller-
dings nicht weiß, von wie vielen Komponenten sie als Server-Komponente benutzt wird. Die Server-Kompo-
nenten führen einfach Anfragen der Client-Komponenten aus, ohne protokollspezifische Abhängigkeiten auf-
zuweisen.

[0075] Die Verwendung von RPCs ermöglicht der vorliegenden Erfindung die Nutzung von Vorteilen, die sich
aus einem als „Kapselung" bezeichneten Konzept ergeben. Die Kapselung einer Komponente bedeutet, dass
15/60

DE 697 35 351 T2 2006.11.30
die übrigen Komponenten nur die Services oder Aufgaben sehen, die diese Komponente anbietet, ohne zu se-
hen, wie diese Services und Aufgaben implementiert sind. Wie eine Komponente ihre Aktionen implementiert
und wie ihre internen Daten angeordnet sind, ist also innerhalb eines prozeduralen Mantels „gekapselt", der
den gesamten Zugang zu dem Objekt über RPCs vermittelt. Die Prozeduren und deren Daten sind nur für die
Komponente selbst sichtbar. Die erfindungsgemäßen Komponenten sind somit gekapselte Funktionseinhei-
ten. Anders ausgedrückt ermöglicht die Kapselung das Verstecken von Informationen und eine Datenabstrak-
tion. Welches Verfahren von einer bestimmten Komponente verfolgt wird, ist ein Implementierungsdetail, das
davon abhängt, wie die Daten verwendet werden. Die Operationen, die auf die gekapselten Daten ausgeführt
werden können, werden als Teil der Schnittstelle zu der Komponente angegeben, also als RPCs. Die Imple-
mentierungsdetails der Operationen, die die gespeicherten Daten verarbeiten, können also geändert werden,
ohne dass die RPCs betroffen sind. Zusammen mit der Vererbung hat das Kapselungskonzept den Vorteil,
dass die Komponenten innerhalb der vorliegenden Erfindung austauschbar sind.

[0076] In einem Ausführungsbeispiel der vorliegenden Erfindung wird ein RPC verwendet, um eine Funktion
auf folgende Weise auszuführen. Wenn ein Softwareprozess, der von einem Client durchgeführt wird, eine be-
stimmte Funktion ausführen muss, ruft der Prozess einfach die Funktion anhand ihres Bezeichners. Eine Soft-
wareschicht, die innerhalb der Client-Komponente angeordnet ist, die als „Client-Stub" bezeichnet wird, fängt
den Funktionsaufruf ab. Wenn der Client-Stub feststellt, dass der zur Durchführung der aufgerufenen Funktion
notwendige Softwarecode bereits in einer anderen Server-Komponente vorhanden ist, erzeugt er eine Mel-
dung, wobei er dem Funktionsaufruf alle Daten sowie die notwendige Paketierung und Adressierung mitgibt.
Der Client-Stub sendet in einem Ausführungsbeispiel die Meldung über das Echtzeitbetriebssystem, das in
dem Softwaresystem vorhanden ist, an die Server-Komponente. Das Servermodul enthält eine Schicht des
Software-Codes, die als „Server-Stub" bezeichnet wird, die die Meldung entgegennimmt. Der Server-Stub ent-
nimmt die Meldung und ruft die richtige lokale Funktion ggf. in Verbindung mit Daten auf, die der Meldung ent-
nommen worden sind. Die lokale Funktion wird ausgeführt, als wäre sie ursprünglich lokal aufgerufen worden,
und gibt alle angeforderten Informationen zurück. Der Server-Stub erzeugt eine Antwort anhand der zurückge-
gebenen Informationen und sendet die Antwort über das Betriebssystem an die Client-Komponente. Bei Erhalt
der Antwort entnimmt der Client-Stub die zurückgegebenen Informationen und übergibt die Informationen an
den lokalen Softwareprozess, der die Funktion ursprünglich aufgerufen hat. Der lokale Softwareprozess fährt
dann fort, ohne zu wissen, dass eine intermodulare Kommunikation stattgefunden hat.

Komponentendefinitionen eines Ausführungsbeispiels der vorliegenden Erfindung

[0077] Die folgenden Unterabschnitte stellen Details bezüglich der Art und Weise vor, in denen jedes Basis-
klassenprotokoll in einem Ausführungsbeispiel des erfindungsgemäßen medizinischen Bebilderungssystems
aus Fig. 1 implementierbar ist. Die Unterabschnitte stellen Definitionen und Anforderungen von Services be-
reit, die von jeder Komponente 30, 32, 22 sowie 24, 14 bereitgestellt werden, wobei die Darstellung zur Veran-
schaulichung in der objektorientierten Programmiersprache C++ erfolgt, die nach Bedarf kommentiert wird.
Wenn nachstehend Programmcode in C++ zur Veranschaulichung der Funktionalität einer bestimmten Kom-
ponente verwendet wird, wird ggf. das Label „Host" benutzt, um einen Netzwerk-Client 12 zu bezeichnen, und
das Label „Laserabbildungsgerät" oder "LI" wird ggf. benutzt, um die Ausgabe-Bebilderungsvorrichtung 18 zu
bezeichnen.

Das Netzwerkausführungs-Basisklassenprotokoll

[0078] Das Netzwerkausführungs-Basisklassenprotokoll umfasst in dem vorliegenden Ausführungsbeispiel
einen RPC, den die Netzwerkausführungskomponente 14 benötigt, um die Client-Komponente, also die
Schnittstellenausführungskomponente 20, bereitzustellen. Der RPC wird nachstehend in Bezug auf die Art der
verarbeiteten Parameter und der durchgeführten Funktionen beschrieben.

[0079] Das tatsächliche Basisklassenprotokoll für die Netzwerkausführungskomponente 14 kann in C++ fol-
gendermaßen definiert werden:
16/60

DE 697 35 351 T2 2006.11.30
[0080] Das Basisklassenprotokoll für eine nach dem DICOM-Protokoll konfigurierte Netzwerkausführungs-
komponente kann in C++ folgendermaßen definiert werden:
17/60

DE 697 35 351 T2 2006.11.30
[0081] In diesem Beispiel enthält die DICOM-Ausführungsbasisklasse zwei RPCs: set_debug_level() und
async_handler(). Der async_handler() RPC ermöglicht einem DICOM_Driver, um das DICOM_executive dar-
über zu informieren, dass es eine Aufgabe abgeschlossen hat und beendet werden sollte.

Das Netzwerktreiber-Basisklassenprotokoll

[0082] Das Netzwerktreiber-Basisklassenprotokoll kann in dem vorliegenden Ausführungsbeispiel zwei
RPCs umfassen: set_debug_level() und ni_event_handler(). Die RPCs werden nachstehend in Bezug auf die
Art der verarbeiteten Parameter und der durchgeführten Funktionen beschrieben.
18/60

DE 697 35 351 T2 2006.11.30
[0083] Der RPC ni_event-handler empfängt asynchrone Ereignisse von der Ausgabe-Bebilderungsvorrich-
tung 18, die über die Netzwerkinterpreterkomponente 32, die Ausgabeinterpreterkomponente 22 und die Aus-
gabetreiberkomponente 24 weitergegeben werden.

[0084] Wie zuvor erwähnt, stellt die Netzwerktreiberkomponente 30 einen Mechanismus zur Handhabung
asynchroner Ereignisse bereit, die von der Ausgabe-Bebilderungsvorrichtung 18 empfangen wurden. Die Er-
eignisse dienen dazu, die Netzwerktreiberkomponente 30 über eine Statusänderung an der Ausgabe-Bebilde-
rungsvorrichtung 18 zu informieren. Verschiedene Ereignisse, die den Status der Ausgabe-Bebilderungsvor-
richtung 18 bezeichnen, sind u.a. (1) NI_printer_update, was anzeigt, dass die Ausgabe-Bebilderungsvorrich-
tung ihren Status geändert hat, und (2) NI_print_job_update, was anzeigt, dass ein Bebilderungsauftrag seinen
Status geändert hat. Die Funktion der vorstehenden Statusereignisse besteht darin, zu vermeiden, dass der
Netzwerk-Client 12 die Ausgabe-Bebilderungsvorrichtung 18 fortlaufend abfragen muss.

[0085] Das tatsächliche Basisklassenprotokoll für die Netzwerktreiberkomponente 30 kann in C++ folgender-
maßen definiert werden:

[0086] Das Basisklassenprotokoll für eine nach dem DICOM-Protokoll konfigurierte Netzwerktreiberkompo-
nente kann ein Objekt DD_NET_MONITOR verwenden, das in C++ folgendermaßen definiert werden kann:
19/60

DE 697 35 351 T2 2006.11.30
[0087] DD_NET_MONITOR ist ein Objekt, das sich in einem Objekt DICOM_DRIVER befindet, das die DI-
COM-Treiberkomponente implementiert. Das Objekt DD_NET_MONITOR überwacht kontinuierlich das Netz-
werk auf eingehende Nachrichten und informiert bei Eintreffen einer Nachricht das Objekt DICOM_DRIVER.
Das Objekt DICOM_DRIVER liest und verarbeitet die Meldungen, wobei Informationen an das Objekt
DICOM_INTERPRETER (Netzwerkinterpreterkomponente 32) über RPC-gestützte Funktionen weitergegeben
werden, die von der Netzwerkinterpreterkomponente definiert sind.

[0088] Das Basisklassenprotokoll für eine nach dem DICOM-Protokoll konfigurierte Netzwerktreiberkompo-
nente kann in C++ folgendermaßen definiert werden:
20/60

DE 697 35 351 T2 2006.11.30
21/60

DE 697 35 351 T2 2006.11.30
[0089] In diesem Beispiel umfasst der DICOM_DRIVER eine große Zahl von Funktionen, die auf die einge-
henden DICOM-Meldungen wirken. Die meisten Funktionen können DICOM-spezifisch sein und sind für ein-
schlägige Fachleute unter Bezug auf den DICOM-Standard verständlich. Jede dieser Funktionen ist intern und
eng an die betreffenden DICOM DIMSE Befehle gebunden. Außerdem enthält der DICOM_DRIVER den RPC,
der in der Basisklasse network_driver angegeben worden ist: ni_event_handler(). Die DICOM-Funktionen ru-
fen netzwerkinterpreterspezifische Funktionen auf, die den RPC-Mechanismus verwenden.

Das Netzwerkinterpreter-Basisklassenprotokoll

[0090] Das Netzwerkinterpreter-Basisklassenprotokoll umfasst in dem vorliegenden Ausführungsbeispiel
RPCs, die die Netzwerkinterpreterkomponente 32 anfordern, um die Client-Komponente, also die Netzwer-
kausführungskomponente 14, bereitzustellen.

[0091] Das eigentliche Basisklassenprotokoll für die Netzwerkinterpreterkomponente 32 kann in C++ folgen-
dermaßen definiert werden, wobei der Netzwerkinterpreter als "NETWORK INTERFACE" bezeichnet wird:
22/60

DE 697 35 351 T2 2006.11.30
23/60

DE 697 35 351 T2 2006.11.30
[0092] Ein Basisklassenprotokoll für eine nach dem DICOM-Protokoll konfigurierte Netzwerkinterpreterkom-
ponente kann in C++ folgendermaßen definiert werden:
24/60

DE 697 35 351 T2 2006.11.30
25/60

DE 697 35 351 T2 2006.11.30
26/60

DE 697 35 351 T2 2006.11.30
27/60

DE 697 35 351 T2 2006.11.30
Das Ausgabeinterpreter-Basisklassenprotokoll

[0093] Die Netzwerkinterpreterkomponente 32 bildet über einen Satz von Bebilderungsobjekten eine Schnitt-
stelle zur Ausgabeinterpreterkomponente 22. Die Bebilderungsobjekte dienen als Parameter für die RPCs und
enthalten alle verfügbaren Informationen bezüglich der Eigenschaften der Ausgabe-Bebilderungsvorrichtung
18 und des Bebilderungsprozesses. Die Netzwerkinterpreterkomponente 32 kann beliebige Teile der Informa-
tionen verwenden und den übrigen Teil ignorieren. Es gibt sechs Definitionen für Bebilderungsobjekte, nämlich
(1) ein Boxobjekt, (2) ein Formatobjekt, (3) ein Bildobjekt, (4) ein Testbildobjekt, 5) ein Stringobjekt und 6) eine
Vielzahl allgemeiner Bebilderungsparameterobjekte.

[0094] Ein Formatobjekt wird verwendet, um ein gesamtes Blatt an Bebilderungsmedien zu beschreiben, auf
denen die Ausgabe-Bebilderungsvorrichtung 18 ein Bild erzeugt. Das Formatobjekt enthält Informationen be-
züglich Filmtyp, Filmformat, Randfarbe, Randdichte usw. Die Eigenschaften des Formatobjekts können in C++
folgendermaßen definiert werden:

[0095] Eine Box ist ein rechtwinkliger Bereich des Filmbogens, der zur Aufnahme eines Bildes vorgesehen
ist. Die Box hat zahlreiche Eigenschaften, wie beispielsweise Lage, Größe, Kontrast, Farbe usw. Die Boxdefi-
nitionen sind einem bestimmten Format zugeordnet. Mehrere Boxen werden also in Verbindung mit einem be-
stimmten Format verwendet. Das folgende Beispiel in C++ beschreibt das Boxobjekt und dessen Eigenschaf-
ten:
28/60

DE 697 35 351 T2 2006.11.30
[0096] Ein Bild wird anhand von Bilddaten dargestellt, die digitale Bildwerte enthalten. Die Bilddaten werden
in einem Bildspeicher gespeichert, der der Ausgabe-Bebilderungsvorrichtung 18 zugeordnet ist. Das Bildobjekt
wird verwendet, um dem Bild bestimmte Eigenschaften zuzuordnen. Wie zuvor erwähnt, können die Eigen-
schaften Pixellänge, Pixelbreite, Pixeltiefe, Farbformat usw. umfassen. Beim Drucken wird ein Bild verwendet,
um die für das zu verwendende Format definierten Boxen auszufüllen. Das folgende Beispiel in C++ beschreibt
das Bildobjekt und dessen Eigenschaften:
29/60

DE 697 35 351 T2 2006.11.30
[0097] Um Bilder zu symbolisieren, die für Testzwecke verwendet werden, wird ein Testbildobjekt benutzt. Die
Bilder werden per Software erzeugt und haben andere Attribute als ein Bild. Das folgende Beispiel in C++ be-
schreibt das Testbildobjekt und dessen Eigenschaften:

[0098] Ein Stringobjekt wird benutzt, um ASCII-Text im Bildspeicher zu halten. Das Stringobjekt ermöglicht
zudem die Verwendung derartiger Parameter, wie Länge, Intensität, Typ usw. Das folgende Beispiel in C++
beschreibt das Stringobjekt und dessen Eigenschaften:
30/60

DE 697 35 351 T2 2006.11.30
[0099] Das Objekt „allgemeine Parameter" wird benutzt, um alle Prozesskonfigurationsparameter zu spei-
chern. Dieses Objekt ist verwendbar, um die Parameter in dem Laserabbildungsgerät einzustellen oder um die
aktuellen Einstellungen der Parameter auszulesen. Beispiele einiger Parameter sind Standard-Betatabelle,
Standard-Farbkonstrast, Standardziel, Standard-Filmformat sowie -typ usw. Einige Parameter sind nur lesbar
und können somit nicht eingestellt werden, wie beispielsweise die Größe des verfügbaren Speichers, die ak-
tuelle Softwarerevision, die Gesamtzahl der in die Warteschlange eingestellten Prints usw. Das folgende Bei-
spiel in C++ beschreibt das Objekt „allgemeine Parameter" und dessen Eigenschaften:
31/60

DE 697 35 351 T2 2006.11.30
32/60

DE 697 35 351 T2 2006.11.30
[0100] Eine der Hauptaufgaben der Ausgabeinterpreterkomponente 22 besteht darin, den Status der Ausga-
be-Bebilderungsvorrichtung 18 mit der Client-Komponente, also der Netzwerkinterpreterkomponente 32, in
Beziehung zu setzen. Dieser Prozess erfolgt in zwei Stufen. Wenn die Ausgabeinterpreterkomponente 22 eine
Statusänderung in der Ausgabe-Bebilderungsvorrichtung 18 erkennt, wird der Event-Handler in der Cli-
ent-Komponente direkt von der Ausgabeinterpreterkomponente gerufen. Ein Status-Ereignis wird an den
Event-Handler übergeben. Mögliche Ereignisstati sind (1) FP_status_change, (2) PR_status_change, (3)
IMS_status_change, (4) JOB_status_change und (5) XFR_status_change. Die Ausgabetreiberkomponente 24
benachrichtigt den Client, also die Ausgabeinterpreterkomponente 22, über die vorstehenden Statusänderun-
gen, so dass die Netzwerkinterpreterkomponente das Laserabbildungsgerät nicht ständig abzurufen braucht.

[0101] Der Client, also die Netzwerkinterpreterkomponente 32, ignoriert entweder die Statusänderung oder
fragt weitere Informationen an. Alle Statusinformationen sind in fünf Statusobjekten enthalten. Es gibt ein Sta-
tusobjekt für den Filmprozessor, den Drucker, das Bildverwaltungssystem, Aufträge und Hintergrundaufträge
(Transfers). Jedes Statusobjekt weist ein Statusfeld auf, das einfach daraufhin geprüft werden kann, ob War-
nungen oder Fehler vorhanden sind. Wenn Warnungen oder Fehler vorhanden sind, kann eine weitere Unter-
suchung der Warnstruktur oder der Fehlerstruktur erfolgen. Der Client kann nach Wahl nur die Informationen
verwenden, die er benötigt. Das folgende Beispiel in C++ zeigt die Definition für jedes Statusobjekt und die
darin enthaltenen Strukturen:
33/60

DE 697 35 351 T2 2006.11.30
34/60

DE 697 35 351 T2 2006.11.30
35/60

DE 697 35 351 T2 2006.11.30
36/60

DE 697 35 351 T2 2006.11.30
37/60

DE 697 35 351 T2 2006.11.30
38/60

DE 697 35 351 T2 2006.11.30
[0102] Die Ausgabetreiberkomponente 24 stellt in diesem Ausführungsbeispiel fünfzehn Arten von RPCs be-
reit. Bei Verwendung der zuvor beschriebenen Bebilderungsobjekte und RPCs kann der Client die Ausga-
be-Bebilderungsvorrichtung 18 vollständig betreiben. Es sei darauf hingewiesen, dass sämtliche Parameter,
39/60

DE 697 35 351 T2 2006.11.30
die in den vorstehend beschriebenen Bebilderungsobjekten enthalten sind, auf einen „nichtzugewiesenen
Wert/unassigned value" initialisiert werden. Wenn die Parameter von dem Client nicht geändert werden, igno-
riert die Ausgabetreiberkomponente 24 diese. Dieses Merkmal ermöglicht dem Client, nur die Parameter zu
verwenden, die er benötigt. Jeder von der Ausgabetreiberkomponente 24 bereitgestellte RPC wird nachste-
hend beschrieben. Im Unterschied dazu ist der zurückgegebene Wert für jeden der folgenden RPCs ein Laser
Imager Response Object des Typs LI_response, wie nachstehend ausführlicher beschrieben wird.

[0103] Der vorstehende RPC initiiert einen allgemeinen Druckvorgang eines Laserabbildungsgeräts, der als
Ausgabe-Bebilderungsvorrichtung 18 dient. Der vorstehende RPC ist zur Verwendung mit Festformaten aus-
gelegt. Das Format ist ein momentan gewähltes Festformat. "Copies" ist ein optionaler Parameter, der die An-
zahl der zu erstellenden Kopien oder Exemplare angibt. Die seit dem letzten Druckvorgang erfassten Bilder
werden für den Druck verwendet.

[0104] Der vorstehende RPC initiiert einen Druck von dem Laserabbildungsgerät. Das Format ist die zu ver-
wendende Format-ID. Die Bildliste (image list) zeigt an, welche Bilder verwendet werden, um das Format zu
füllen. "Copies" ist ein optionaler Parameter, der die Anzahl der zu erstellenden Kopien oder Exemplare angibt.
Die Dichte ist eine optionale Ganzzahl, die verwendet wird, wenn ein Dichtetestfeld erwünscht ist. Der Wert der
Ganzzahl entspricht einer Bild-ID. Das Ziel (destination) ist ein optionaler Parameter, der für die Ausgabe ein
anderes Ziel anstelle des Standardziels angibt.

[0105] Der vorstehende RPC initiiert einen Druck von dem Laserabbildungsgerät. Das Format ist die zu ver-
wendende Format-ID. Die Bildliste (image list) zeigt an, welche Bilder verwendet werden, um das Format zu
füllen. "Dens_id" ist eine Ganzzahl, die die Bild-ID eines Dichtetestfeldes darstellt. "Copies" ist ein optionaler
Parameter, der die Anzahl der zu erstellenden Kopien oder Exemplare angibt. Das Ziel (destination) ist ein op-
tionaler Parameter, der für die Ausgabe ein anderes Ziel anstelle des Standardziels angibt.

[0106] Der vorstehende RPC bricht einen Auftrag mit der entsprechenden ID ab.

1. RPCs für das Bedrucken von Medien
40/60

DE 697 35 351 T2 2006.11.30
[0107] Der vorstehende RPC bricht alle gestarteten Aufträge ab.

[0108] Der vorstehende RPC definiert ein Format mit den in dem FORMAT-Objekt aufgefundenen Parame-
tern. Alle Parameter, die gleich NOT_ASSIGNED sind, sind in der Definition nicht enthalten.

[0109] Der vorstehende RPC definiert eine Box mit den in dem BOX-Objekt aufgefundenen Parametern. Alle
Parameter, die gleich NOT_ASSIGNED sind, sind in der Definition nicht enthalten.

[0110] Der vorstehende RPC modifiziert die Box, die der in dem BOX-Objekt angegebenen ID entspricht. Alle
Parameter, die in dem Boxobjekt gleich NOT_ASSIGNED sind, werden nicht modifiziert.

[0111] Der vorstehende RPC modifiziert die Box, die der in dem BOX-Objekt angegebenen ID entspricht. Die
Lage der Box wird anhand der in x_shift und y_shift genannten Angaben verschoben. Alle Parameter, die in
dem Boxobjekt gleich NOT_ASSIGNED sind, werden nicht modifiziert.

[0112] Der vorstehende RPC modifiziert das Format, das der in dem BOX-Objekt angegebenen ID entspricht.
Alle Parameter, die in dem Formatobjekt gleich NOT_ASSIGNED sind, werden nicht modifiziert.

[0113] Der vorstehende RPC löscht das zuletzt erfasste Bild.

[0114] Der vorstehende RPC löscht die Box, die der ID des empfangenen BOX-Objekts entspricht. DEF ist
ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag zurückgestellt und im Hin-

2. RPC für das Formatieren
41/60

DE 697 35 351 T2 2006.11.30
tergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE gesetzt. ALL ist ein optionaler
Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass alle definierten Boxen gelöscht werden. Wenn ALL
nicht empfangen wird, wird ALL auf FALSE gesetzt.

[0115] Der vorstehende RPC löscht das Format, das der ID des empfangenen FORMAT-Objekts entspricht.
DEF ist ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag zurückgestellt und
im Hintergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE gesetzt. ALL ist ein
optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass alle definierten Formate gelöscht werden.
Wenn ALL nicht empfangen wird, wird ALL auf FALSE gesetzt.

[0116] Der vorstehende RPC löscht das Bild, das der ID des empfangenen IMAGE-Objekts entspricht. DEF
ist ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag zurückgestellt und im Hin-
tergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE gesetzt. ALL ist ein optionaler
Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass alle definierten Bilder gelöscht werden. Wenn ALL nicht
empfangen wird, wird ALL auf FALSE gesetzt.

[0117] Der vorstehende RPC löscht alle Bilder, Boxen, Formate und Tabellen, die in dem Laserabbildungsge-
rät definiert sind. DEF ist ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag
zurückgestellt und im Hintergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE ge-
setzt.

[0118] Der vorstehende RPC löscht alle Bilder, die über RPCs in Festformaten gespeichert wurden.

[0119] Dieser RPC wird ausschließlich mit Festformatierung verwendet. Dieser RPC legt das nächste Bild in
der nächst verfügbaren, festen Bildstelle ab. Die Stellen erstrecken sich von 1 bis N, wobei N formatspezifisch
ist.

[0120] Dieser RPC wird ausschließlich mit Festformatierung verwendet. Dieser RPC erfasst das nächste Bild
in der durch die ID angegebenen Stelle. Die Stellen erstrecken sich von 1 bis N, wobei N formatspezifisch ist.

3. RPC zur Bildbearbeitung
42/60

DE 697 35 351 T2 2006.11.30
[0121] Der vorstehende RPC erfasst das nächste Bild. Der zurückgegebene Wert über die Bildgröße wird in
LI_response abgelegt.

[0122] Der vorstehende RPC erfasst das nächste Bild als Testmuster. Der zurückgegebene Wert über die
Bildgröße wird in LI_response abgelegt.

[0123] Der vorstehende RPC speichert den Text und die ID im STRING-Objekt. Dadurch kann die Client-Kom-
ponente den Text jederzeit über die id abrufen. Der zurückgegebene Wert über die Stringgröße wird in
LI_response abgelegt.

[0124] Der vorstehende RPC überträgt das nächste Bild als Hintergrundauftrag. Der zurückgegebene Wert
bezüglich der Bildgröße ist verfügbar, wenn die Bildübertragung abgeschlossen ist.

[0125] Der vorstehende RPC weist genügend Bildspeicher zu, um das von IMAGE-Objekt beschriebene Bild
aufzubewahren.

[0126] Der vorstehende RPC stellt die Bebilderungsparameter für das Laserabbildungsgerät ein. Alle auf
NOT_ASSIGNED gesetzten Parameter bleiben unverändert.

[0127] Der vorstehende RPC ruft die Bebilderungsparameter für das Laserabbildungsgerät ab.

[0128] Der vorstehende RPC ruft die Festformatierungs-Bebilderungsparameter für das Laserabbildungsge-
rät ab. Alle übrigen Elemente in dem Parameterobjekt bleiben unverändert.

4. RPC über Prozesskonfiguration/Status

5. Status-RPCs
43/60

DE 697 35 351 T2 2006.11.30
[0129] Der vorstehende RPC ruft die Speicherbedingungen des Laserabbildungsgeräts ab.

[0130] Der vorstehende RPC ruft die Länge und Breite des Bildes ab, dessen ID der in dem Bildobjekt ange-
gebenen ID entspricht. Alle Bildinformationen werden in dem Bildobjekt abgelegt.

[0131] Der vorstehende RPC ruft den Status des Druckers ab, dessen ID der in dem Druckerobjekt angege-
benen ID entspricht. Alle Druckerinformationen werden in dem Druckerobjekt abgelegt.

[0132] Der vorstehende RPC ruft den Status des Auftrags ab, dessen ID der in dem Auftragsobjekt angege-
benen ID entspricht. Alle Auftragsinformationen werden in dem Auftragsobjekt abgelegt.

[0133] Der vorstehende RPC ruft den Status des Übertragungsauftrags ab, dessen ID der in dem Übertra-
gungsauftragsobjekt angegebenen ID entspricht. Alle Übertragungsauftragsinformationen werden in dem Auf-
tragsobjekt abgelegt.

[0134] Der vorstehende RPC ruft einen String der IDs der definierten Formate ab.

[0135] Der vorstehende RPC ruft einen String der IDs der erfassten Bilder ab.

[0136] Der vorstehende RPC ruft einen String der IDs der definierten Kontrasttabellen ab.

[0137] Der vorstehende RPC ruft einen String der IDs der definierten Farbkontrasttabellen ab.
44/60

DE 697 35 351 T2 2006.11.30
[0138] Der vorstehende RPC ermöglicht es der Client-Komponente, den Debug-Level der Netzwerkinterpre-
terkomponente 32 einzustellen. Die Debug-Level sind NO_DEBUG, LOW_DEBUG, MEDIUM_DEBUG und
HIGH_DEBUG. Dieser Parameter betrifft die während des Debuggings angezeigten Informationen.

[0139] Ein Vorteil der Schnittstelle zu der Ausgabeinterpreterkomponente 22 besteht darin, dass jeder RPC
ein ähnliches Objekt zurückgibt. Dieses Objekt wird als Laserabbildungsgeräte-Antwortobjekt (Laser Imager
Response Object) bezeichnet, wie zuvor erwähnt. Innerhalb des Laserabbildungsgeräte-Antwortobjekts befin-
det sich eine Fülle von Informationen bezüglich des Ergebnisses des RPC. Allerdings verwendet der Client ggf.
nur die Informationen, die er benötigt. Das Laserabbildungsgeräte-Antwortobjekt setzt sich aus drei Hauptfel-
dern zusammen. Ein erstes Feld ist ein einfacher boolescher Wert mit dem Titel „success" (Erfolg). Der boole-
sche Wert besagt, ob die dem RPC zugehörige Anfrage erfolgreich war oder fehlgeschlagen ist. Diese Infor-
mationen erfüllen die Anforderungen der meisten Client-Komponenten. Das zweite Feld, „success_data" (Er-
folgsdaten), gibt Werte zurück, die die Client-Komponente erwartet, wenn der Befehl erfolgreich war. Norma-
lerweise gibt es keine Informationen für einen erfolgreichen Befehl. Ein Beispiel für Informationen, die bei ei-
nem erfolgreichen Befehl zurückgegeben werden, wäre die Bildgröße, die nach erfolgreicher Ausführung des
Bildspeicherbefehls zurückgegeben wird. Das dritte Feld, „errors" (Fehler), dient dazu, zu erläutern, warum der
RPC fehlgeschlagen ist. Dieses Feld ist ein Gesamt-Bit-Feld von Fehlern, die am Laser-Abbildungsgerät auf-
getreten sind. Auch dieses Feld ist nur gültig, wenn „success" gleich „false" ist.

[0140] Der nachfolgend aufgeführte Programmcode in C++ beschreibt das Laserabbildungsgeräte-Antwort-
objekt. Die Klasse definiert die von dem Laser-Abbildungsgerät empfangene Antwort, nachdem ein Befehl aus-
gegeben worden ist. Wenn der Befehl erfolgreich ausgeführt worden ist, wird die Markierung SUCCESS auf
TRUE gesetzt. Alle Daten, die bei einem erfolgreichen Abschluss empfangen worden sind, werden in
Success_Data gespeichert. Wenn der Befehl nicht erfolgreich ausgeführt war, wird die Markierung SUCCESS
auf FALSE gesetzt. Die Fehlerursache wird in der Struktur "failures" (Fehler) gespeichert.
45/60

DE 697 35 351 T2 2006.11.30
46/60

DE 697 35 351 T2 2006.11.30
47/60

DE 697 35 351 T2 2006.11.30
[0141] Die folgende Struktur enthält Daten, die die Ausgabe-Bebilderungsvorrichtung 18 (das Laser-Abbil-
dungsgerät) zurückgibt, wenn der Befehl einwandfrei ausgeführt wird. Diese Daten sind somit nur gültig, wenn
während der Ausführung keine Fehler auftreten.

[0142] Die tatsächliche Basisklasse für die Ausgabetreiberkomponente 24 kann in C++ folgendermaßen de-
finiert werden:
48/60

DE 697 35 351 T2 2006.11.30
49/60

DE 697 35 351 T2 2006.11.30
50/60

DE 697 35 351 T2 2006.11.30
Ausgabetreiber-Basisklassenprotokoll

[0143] Die Ausgabetreiberkomponente 24 stellt fünf RPCs für die Ausgabeinterpreterkomponente 22 bereit.
Mit den fünf RPCs kann die Ausgabeinterpreterkomponente 22 eine direkte Schnittstelle zu einer Ausgabe-Be-
bilderungsvorrichtung 18 bilden, beispielsweise einem Laser-Abbildungsgerät. Jede der fünf RPCs wird nach-
folgend beschrieben:

[0144] Der vorstehende RPC übergibt der Ausgabetreiberkomponente 24 die Meldung, die über die Leitung
30 an die Netzwerk-Client 12 übertragen werden soll. Die Ausgabetreiberkomponente wickelt alle Anforderun-
gen für die Kommunikation mit der Ausgabe-Bebilderungsvorrichtung 18 ab.

[0145] Der vorstehende RPC ruft eine Meldung von der Ausgabetreiberkomponente ab, die von der Ausga-
be-Bebilderungsvorrichtung 18 gesendet worden ist. Die Ausgabetreiberkomponente wickelt auch hier alle An-
forderungen für die Kommunikation mit der Ausgabe-Bebilderungsvorrichtung ab.
51/60

DE 697 35 351 T2 2006.11.30
[0146] Der vorstehende RPC setzt den Timeout-Wert, den die Ausgabetreiberkomponente verwenden sollte,
wenn sie Daten an die Ausgabe-Bebilderungsvorrichtung 18 sendet.

[0147] Der vorstehende RPC übergibt der Ausgabetreiberkomponente ein Handle an den asynchronen Hand-
ler der Client-Komponente, also der Ausgabetreiberkomponente 24. Der vorstehende RPC wird verwendet, um
die Client-Komponente über asynchrone Ereignisse zu informieren, die aufgetreten sind. Das einzige Ereignis
ist MSG_PENDING, welches darauf hinweist, dass eine Meldung vollständig von der Ausgabe-Bebilderungs-
vorrichtung 18 empfangen wurde und für die Ausgabeinterpreterkomponente bereit steht.

[0148] Der vorstehende RPC ermöglicht es der Client-Komponente, den Debug-Level für die Ausgabetreiber-
komponente einzustellen. Die Debug-Level sind NO_DEBUG, LOW_DEBUG, MEDIUM_DEBUG und
HIGH_DEBUG. Dieser Parameter betrifft die während des Debuggings angezeigten Informationen.

[0149] Wie zuvor erwähnt, gibt jeder RPC einen von drei Treiber-Rückgabecodes zurück: (1) RPC_OK, (2)
PORT_BUSY und (3) NO_MESSAGE. Die Treiber-Rückgabecodes (Return-Codes) können in C++ folgender-
maßen definiert werden:

[0150] Das tatsächliche Basisklassenprotokoll für die Ausgabetreiberkomponente kann in C++ folgenderma-
ßen definiert werden:
52/60

DE 697 35 351 T2 2006.11.30
[0151] Obwohl die Erfindung mit besonderem Bezug auf bevorzugte Ausführungsbeispiele bereits beschrie-
ben wurde, ist die Erfindung nicht darauf beschränkt, sondern kann innerhalb des Geltungsbereichs Änderun-
gen und Abwandlungen unterzogen werden. Die Beschreibung und die verwendeten Beispiele sind daher nur
exemplarisch zu verstehen, während Geltungsbereich und Umfang der Erfindung in den anhängenden Ansprü-
chen dargelegt sind.

Patentansprüche

1. System zum Übermitteln medizinischer Bildinformationen zwischen verschiedenen medizinischen Abbil-
dungsmodalitäten (12) und mindestens einem aus einer Vielzahl von unterschiedlichen Abbildungsgeräten
(18) über eine Netzwerk-Schnittstelle (28), mit:
einer Netzwerk-Ausführungskomponente, die eine oder mehrere Netzwerk-Schnittstellenkomponenten (33) in-
stanziiert gemäß einem ausgewählten Netzwerk-Schnittstellenprotokoll aus einer Vielzahl von Netz-
werk-Schnittstellenprotokollen, wobei jede Netzwerk-Schnittstellenkomponente derart ausgebildet ist, dass sie
medizinische Bildinformationen von einer der medizinischen Abbildungsmodalitäten über die Netz-
werk-Schnittstelle empfängt, wobei die medizinischen Bildinformationen gemäß dem ausgewählten Netz-
werk-Schnittstellenprotokoll empfangen werden, wobei jedes Netzwerk-Schnittstellenprotokoll ausgewählten
medizinischen Abbildungsmodalitäten speziell zugeordnet ist, und wobei zum Erzeugen erster Abbildungsan-
forderungen auf der Grundlage der empfangenen medizinischen Bildinformationen die ersten Abbildungsan-
forderungen gemäß dem ausgewählten Netzwerk-Schnittstellenprotokoll erzeugt werden;
einer oder mehreren Ausgabeschnittstellenkomponenten (16), von denen jede derart ausgebildet ist, dass sie
zweite Abbildungsanforderungen auf der Grundlage der ersten, von einer der Netzwerk-Schnittstellenkompo-
nenten erzeugten Abbildungsanforderungen erzeugt, wobei die zweiten Abbildungsanforderungen gemäß ei-
nem aus einer Vielzahl unterschiedlicher Ausgangsschnittstellenprotokolle erzeugt werden, wobei jedes der
Ausgangsschnittstellenprotokolle einem der Abbildungsgeräte speziell zugeordnet ist, und wobei zum Über-
mitteln der zweiten, von einer der Ausgangsschnittstellenkomponenten erzeugten Abbildungsanforderungen
zu einem der Abbildungsgeräte die zweiten Abbildungsanforderungen gemäß dem einen der Ausgangsschnitt-
stellenprotokolle übermittelt werden; und
einer Schnittstellen-Ausführungskomponente (20) zum Bilden einer oder mehrerer Übermittlungsleitungen
(26), von denen jede Leitung eine oder mehrere medizinische Abbildungsmodalitäten (12) mit einer der Netz-
werk-Schnittstellenkomponenten (33) kommunikativ verbindet unter Verwendung des gleichen Netz-
werk-Schnittstellenprotokolls, einer der Ausgangsschnittstellenkomponenten (16) und eines der Abbildungs-
geräte (18), wodurch mehrere medizinische Abbildungsmodalitäten unter Verwendung des gleichen Netz-
werk-Schnittstellenprotokolls mit einem der Abbildungsgeräte über eine einzelne Übermittlungsleitung (26)
kommunizieren können.

2. System nach Anspruch 1, worin jede der Netzwerk-Schnittstellenkomponenten eine erste Schnittstelle
umfasst zum Übermitteln der ersten Abbildungsanforderungen zu einer der Ausgangsschnittstellenkomponen-
ten gemäß einem Basisklassenprotokoll, das generisch ist für jede Netzwerk-Schnittstellenkomponente und
von jeder Ausgangsschnittstellenkomponente verstanden wird.
53/60

DE 697 35 351 T2 2006.11.30
3. System nach Anspruch 2, worin das Basisklassenprotokoll gemäß einer objektorientierten Hierarchie
definiert ist.

4. System nach Anspruch 2, worin
jede Ausgangsschnittstellenkomponente derart ausgebildet ist, dass sie von einem der Abbildungsgeräte erste
Antworten auf die zweiten Abbildungsanforderungen erhält,
wobei die ersten Antworten empfangen werden gemäß einem der Ausgangsschnittstellenprotokolle, und wobei
zum Erzeugen zweiter Antworten auf der Grundlage der ersten Antworten die zweiten Antworten gemäß einem
der Ausgangsschnittstellenprotokolle erzeugt werden; und
jede Netzwerk-Schnittstellenkomponente derart ausgebildet ist, dass sie auf der Grundlage der zweiten, von
einer der Ausgangsschnittstellenkomponenten erzeugten Antworten dritte Antworten erzeugt, die gemäß ei-
nem der Netzwerk-Schnittstellenprotokolle erzeugt sind, und dass sie die dritten Antworten zu einer der medi-
zinischen Abbildungsmodalitäten überträgt, wobei die dritten Antworten gemäß einem der Netzwerk-Schnitt-
stellenprotokolle übertragen werden; und
jede der von der Schnittstellenausführungskomponente gebildeten Leitungen eine bidirektionale Leitung ist,
die eine oder mehrere medizinische Abbildungsmodalitäten, eine der Netzwerkschnittstellenkomponenten,
eine der Ausgangsschnittstellenkomponenten und eines der Abbildungsgeräte zur bidirektionalen Kommuni-
kation zwischen den medizinischen Abbildungsmodalitäten und einem der Abbildungsgeräte kommunikativ
verbindet.

5. System nach Anspruch 4, worin jede der Ausgangsschnittstellenkomponenten eine zweite Schnittstelle
umfasst zum Übermitteln der zweiten Antworten zu einer der Netzwerk-Schnittstellenkomponenten gemäß ei-
nem zweiten Basisklassenprotokoll, das generisch ist für jede Ausgangsschnittstellenkomponente und von je-
der der Netzwerkschnittstellenkomponenten verstanden wird.

6. System nach Anspruch 4, worin die Schnittstellenausführungskomponente jede der Leitungen gemäß
einer Client/Server-Beziehung derart definiert, dass jede der Netzwerk-Schnittstellenkomponenten ein Client
einer der Ausgangsschnittstellenkomponenten ist und dass die Schnittstellenausführungskomponente ein Cli-
ent einer jeden Netzwerk-Schnittstellenkomponente ist.

7. System nach Anspruch 6, worin die Kommunikation zwischen den Netzwerk-Schnittstellenkomponenten
und den Ausgangsschnittstellenkomponenten von Verfahrensfernabrufen ausgeführt wird, die erzeugt werden
von den Netzwerk-Schnittstellenkomponenten und ausgeführt werden von den Ausgangsschnittstellenkompo-
nenten, und worin die Kommunikation zwischen den Schnittstellenausführungskomponenten, den Netz-
werk-Schnittstellenkomponenten und den Ausgangsschnittstellenkomponenten von Verfahrensfernabrufen
durchgeführt werden, die erzeugt werden von der Schnittstellenausführungskomponente und ausgeführt von
den Netzwerk-Schnittstellenkomponenten.

8. Vorrichtung zum Verteilen medizinischer Informationen, die von Abbildungsmodalitäten (12) auf einem
Netzwerk übermittelbar sind, mit:
einem Netzwerkausführungsmittel (14) zum Erzeugen einer entsprechenden ersten Abbildungsanforderung in
Abhängigkeit vom Empfang einer Abbildungsanforderung von einer der Abbildungsmodalitäten;
einem Ausgabeschnittstellenmittel (16) zum Erzeugen einer entsprechenden zweiten Abbildungsanforderung
und zu deren Übermittlung zu einem Abbildungsgerät (18) in Abhängigkeit vom Empfang der entsprechenden
ersten Abbildungsanforderung von den Netzwerkausführungsmitteln; und
einem Schnittstellenausführungsmittel (20) zum Instanziieren des Netzwerkausführungsmittels gemäß einem
von der Abbildungsmodalität vorgegebenen Eingangsprotokoll und Instanziieren des Ausgangsschnittstellen-
mittels gemäß einem vom Abbildungsgerät vorgegebenen Ausgangsprotokoll,
worin das Netzwerkausführungsmittel ein Netzwerkschnittstellenmittel instanziiert, welches umfasst:
einen Netzwerktreiber (30) gemäß einem Netzwerktreiberprotokoll des Eingangsprotokolls zum Empfangen
der Abbildungsanforderung von der Abbildungsmodalität; und
einen Netzwerkinterpreter (32) gemäß einem Netzwerkinterpreterprotokoll des Eingangsprotokolls zum Erzeu-
gen der entsprechenden ersten Abbildungsanforderung; und
worin das Schnittstellenausführungsmittel (20) eine oder mehrere Kommunikationsleitungen (26) bildet, von
denen jede eine oder mehrere der Abbildungsmodalitäten kommunikativ verbindet und wobei eines der Netz-
werkschnittstellenmittel (33) das gleiche Netzwerkschnittstellenprotokoll, eines der Ausgangsschnittstellenmit-
tel (16) und eines der Abbildungsgeräte (18) verwendet, wodurch multiple, das gleiche Netzwerkschnittstellen-
protokoll verwendende Abbildungsmodalitäten mit einem der Abbildungsgeräte über eine einzelne Kommuni-
kationsleitung (26) kommunizieren können.
54/60

DE 697 35 351 T2 2006.11.30
9. Vorrichtung nach Anspruch 8, worin das Ausgangsschnittstellenmittel umfasst:
einen Ausgangsinterpreter (22), der spezifisch ist für ein Ausgangsinterpreterprotokoll des Ausgangsprotokolls
zum Empfangen der ersten Abbildungsanforderung von den Netzwerkausführungsmitteln und zum Erzeugen
der entsprechenden zweiten Abbildungsanforderung; und
einen Ausgangstreiber (24), der spezifisch ist für ein Ausgangstreiberprotokoll des Ausgangsprotokolls zum
Übermitteln der entsprechenden zweiten Abbildungsanforderung zum Abbildungsgerät.

Es folgen 5 Blatt Zeichnungen
55/60

DE 697 35 351 T2 2006.11.30
Anhängende Zeichnungen
56/60

DE 697 35 351 T2 2006.11.30
57/60

DE 697 35 351 T2 2006.11.30
58/60

DE 697 35 351 T2 2006.11.30
59/60

DE 697 35 351 T2 2006.11.30
60/60

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

