(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(19 DE 697 35 351 T2 2006.11.30

(12) Ubersetzung der europiischen Patentschrift

(97) EP 0 929 961 B1
(21) Deutsches Aktenzeichen: 697 35 351.6
(86) PCT-Aktenzeichen: PCT/US97/17407
(96) Europaisches Aktenzeichen: 97 909 883.7
(87) PCT-Verdffentlichungs-Nr.: WO 1998/015092
(86) PCT-Anmeldetag: 02.10.1997
(87) Veroffentlichungstag
der PCT-Anmeldung: 09.04.1998
(97) Erstverdffentlichung durch das EPA: 21.07.1999
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 01.03.2006
(47) Veroffentlichungstag im Patentblatt: 30.11.2006

1) intcle:. HO4L 29/06 (2006.01)

GO6F 19/00(2006.01)

(30) Unionsprioritat:
720882 04.10.1996 us

(73) Patentinhaber:
Eastman Kodak Co., Rochester, N.Y., US

(74) Vertreter:
WAGNER & GEYER Partnerschaft Patent- und
Rechtsanwilte, 80538 Miinchen

(84) Benannte Vertragsstaaten:
DE

(72) Erfinder:
SIEFFERT, J., Kent, Saint Paul, MN 55164-0898,
US; IHLENFELDT, R., Andrew, Saint Paul, MN
55164-0898, US

(54) Bezeichnung: SYSTEM ZUR UBERMITTLUNG VON BILDINFORMATIONEN UBER EIN NETZWERK ZWISCHEN
BEBILDERUNGSVORRICHTUNGEN, DIE NACH MEHREREN PROTOKOLLEN ARBEITEN

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 697 35351 T2 2006.11.30

Beschreibung

[0001] Die vorliegende Erfindung betrifft Abbildungssysteme und insbesondere Systeme zur Ubermittlung
von Bildinformationen zwischen einer Eingabe-Bebilderungsvorrichtung und einer Ausgabe-Bebildungsvor-
richtung in einer Netzwerkumgebung.

[0002] Ein Bilderzeugungssystem umfasst Ublicherweise eine Eingabe-Bebilderungsvorrichtung, die Bildin-
formationen erzeugt, und eine Ausgabe-Bebilderungsvorrichtung, die anhand von Bildinformationen eine sicht-
bare Darstellung des Bildes, abhangig von den Bildinformationen, erzeugt. In einem medizinischen Bebilde-
rungssystem kann die Eingabe-Bebilderungsvorrichtung beispielsweise eine Magnetresonanz- (MR), Compu-
tertomographie- (CT), herkémmliche Radiographie- (Réntgen) oder Ultraschallvorrichtung sein. Alternativ hier-
zu kann die Eingabe-Bebilderungsvorrichtung eine Benutzerschnittstellen-Einrichtung umfassen, beispielswei-
se eine Tastatur, eine Maus oder einen Trackball, die auch zum Erzeugen medizinischer Bildinformationen in
der Lage ist. Als weitere Alternative kann die Eingabe-Bebilderungsvorrichtung eine Bildarchiv-Arbeitsstation
zum Abrufen archivierter Bildinformationen umfassen. Die Ausgabe-Bebilderungsvorrichtung in einem medizi-
nischen Bebilderungssystem umfasst Ublicherweise einen digitalen Laserbelichter. Der Laserbelichter belichtet
ein Bebilderungsmedium abhangig von den Bildinformationen zum Herstellen einer sichtbaren Darstellung.

[0003] Die von der Eingabe-Bebilderungsvorrichtung erzeugten Bildinformationen umfassen Bilddaten, die
digitale, das Bild darstellende Bildwerte enthalten, sowie Bebilderungsanforderungen, die von dem Laserbe-
lichter durchzuflihrende Operationen bezeichnen. Jeder dieser digitalen Bildwerte entspricht einem Pixel aus
einer Vielzahl von Pixeln in dem Originalbild und stellt eine optische Dichte dar, die dem jeweiligen Pixel zuge-
ordnet ist. Abhangig von einer Bebilderungsanforderung wandelt der Laserbelichter die digitalen Bildwerte um,
um Laseransteuerungswerte zu erzeugen, die zur Modulation der Intensitat eines Abtastlasers dienen. Die La-
seransteuerungswerte werden berechnet, um auf dem Bebilderungsmedium Belichtungswerte zu erzeugen,
die notwendig sind, um die optischen Dichten zu reproduzieren, die den Pixeln des Originalbildes zugeordnet
werden, wenn das Medium entwickelt wird, und zwar entweder durch eine chemische Nassverarbeitung oder
durch eine thermische Trockenverarbeitung. Das Laserabbildungsgerat kann eine Anzahl zusatzlicher Opera-
tionen in Abhangigkeit von den Bebilderungsanforderungen ausfiihren, die von der Eingabe-Bebilderungsvor-
richtung erzeugt werden. Beispielsweise kann das Laserabbildungsgerat vor dem Erzeugen der Laseransteu-
erungswerte die Bilddaten manipulieren, um eine Vielzahl verschiedener Formate und/oder Anzeigeeigen-
schaften zu erstellen.

[0004] Die von dem Laserabbildungsgerat verarbeiteten Bildinformationen haben ein Format, das durch ein
Eingabeprotokoll bestimmt wird, das der jeweiligen Eingabe-Bebilderungsvorrichtung zugeordnet ist. Medizi-
nische Bebilderungssysteme sind ublicherweise in der Lage, Bildinformationen zu handhaben, die nach ver-
schiedenen, unterschiedlichen Eingabeprotokollen erzeugt worden sind. Ein Eingabeprotokoll kann als Netz-
werk-Treiberprotokoll gekennzeichnet sein, das Kommunikationsspezifikationen auf unterer Ebene fur eine be-
stimmte Eingabe-Bebilderungsvorrichtung bereitstellt, und ein Netzwerk-Interpreterprotokoll, das das Format
zur Interpretation der von der Eingabe-Bebilderungsvorrichtung erzeugten Bildinformationen ermittelt. Die Zahl
der verschiedenen Eingabeprotokolle ergibt sich in gewissem Male aus den verschiedenen Typen von derzeit
verwendeten Eingabe-Bebilderungsvorrichtungen, wie Magnetresonanz- (MR), Computertomographie- (CT),
herkdmmlichen Radiographie- (Réntgen) oder Ultraschallvorrichtungen, die unter Umstanden jeweils Bildinfor-
mationen nach einem anderen Protokoll erzeugen. Die Hauptquelle fir unterschiedliche Eingabeprotokolle ist
jedoch das Vorhandensein einer Reihe von Modalitaten, d.h. Eingabe-Bebilderungsvorrichtungen, die von ver-
schiedenen Herstellern stammen und eigene, herstellerspezifische Eingabeprotokolle aufweisen. Hersteller,
wie Siemens, Toshiba, GE und Picker, stellen derzeit CT-Eingabe-Bebilderungsvorrichtungen her, die eine
ahnliche Funktionalitdt bereitstellen, aber die Bildinformationen nach unterschiedlichen, modalitatsspezifi-
schen Eingabeprotokollen erzeugen.

[0005] Neben der Fahigkeit, mehrere Eingabeprotokolle zu verarbeiten, sind medizinische Bebilderungssys-
teme Ublicherweise in der Lage, die Kommunikation der Bildinformationen mit Ausgabe-Bebilderungsvorrich-
tungen nach mehreren Ausgabeprotokollen abzuwickeln. Wie ein Eingabeprotokoll kann auch ein Ausgabe-
protokoll dadurch gekennzeichnet sein, dass es ein Ausgabe-Treiberprotokoll umfasst, das die Anforderungen
zur Kommunikation mit einer bestimmten Ausgabe-Bebilderungsvorrichtung sowie ein Ausgabe-Interpreter-
protokoll umfasst, das das Format zur Ubersetzung der Bildinformationen in eine Form ermittelt, die von der
Ausgabe-Bebilderungsvorrichtung verstanden wird. Der Hauptgrund fir unterschiedliche Ausgabeprotokolle
ist die Verfligbarkeit von Laser-Bebilderungsvorrichtungen mit unterschiedlichen Funktionsmengen. Diese un-
terschiedlichen Funktionsmengen stellen eine wechselnde Komplexitat dar, die zu verschiedenen Ausgabe-
protokollen fiihrt. Beispielsweise bietet die Imation Enterprise Corp. ("Imation") aus Oakdale, Minnesota, USA,

2/60

DE 697 35351 T2 2006.11.30

derzeit Laserabbildungsgerate an, die Uber unterschiedliche Funktionsmengen verflgen, die als "831", "952"
und als "SuperSet" bezeichnet werden, und denen jeweils ein bestimmtes Ausgabeprotokoll zugeordnet ist.

[0006] Bestehende medizinische Bebilderungssysteme beinhalten derzeit mehrere Eingabe- und Ausgabe-
protokolle auf Ad-hoc-Basis durch Konstruktion von Punkt-zu-Punkt-Hardware- und/oder Softwareschnittstel-
len, die speziell fir ein bestimmtes Eingabeprotokoll und ein bestimmtes Ausgabeprotokoll konfiguriert sind.
Die Verwendung einer speziell hergestellten Schnittstelle ist dulerst inflexibel. Wenn spater die Kommunikati-
on mit einer anderen Eingabe-Bebilderungsvorrichtung benétigt wird, muss die gesamte Schnittstelle neu kon-
struiert werden, um die Beziehung zwischen dem neuen Eingabeprotokoll und dem alten Ausgabeprotokoll ab-
zuwickeln. Eine Anderung der Ausgabe-Bebilderungsvorrichtung erfordert ebenfalls die Neukonstruktion der
Schnittstelle zur Handhabung der Beziehung zwischen dem neuen Ausgabeprotokoll und dem alten Eingabe-
protokoll. Leider ist die Neukonstruktion der Schnittstelle eine umstandliche Aufgabe, die oft erhebliche Inves-
titionen in Hardware- und/oder Softwareentwicklungszeit erfordert. Auch anscheinend geringfiigige Anderun-
gen an der Funktionalitat einer Eingabe- oder Ausgabe-Bebilderungsvorrichtung kénnen zahlreiche, kostspie-
lige konstruktive Anderungen erforderlich machen, die sich durch die gesamte Schnittstelle ziehen.

[0007] Eine LOosung dieser Probleme wird in der Hauptanmeldung US-A-5,630,101 mit dem Titel "System for
Communication of Image Information Between Multiple-Protocol Imaging Device" beschrieben. Das in dieser
Patentanmeldung beschriebene System verfolgt eine objektorientierte, modulare Konstruktion, um eine soft-
waregestutzte Architektur mit direkter Verbindung vorzusehen, die in Bezug auf die Kommunikation mit dem
Laserabbildungsgerat eine erhebliche Flexibilitat ermdglicht. Eine Schnittstellenausfliihrungskomponente in-
stanziiert das bendtigte Paar aus Eingabetreiber und Eingabeinterpreter sowie das bendtigte Paar aus Ausga-
beinterpreter und Ausgabetreiber, um eine Pipeline zu erzeugen, so dass eine bestimmte Hostmodalitat mit
einem bestimmten Laserabbildungsgerat kommunizieren kann. Die jeweiligen Komponenten aus Eingabetrei-
ber, Eingabeinterpreter, Ausgabeinterpreter und Ausgabetreiber stellen ein diskretes Softwareobjekt oder eine
~Blackbox" dar. Auf diese Weise kann jede Komponente modifiziert oder durch ein neues Objekt ersetzt wer-
den, ohne die Leistung der Ubrigen Komponenten oder der gesamten Pipeline zu beeintrachtigen. Beispiels-
weise kann das Paar aus Eingabetreiber und Eingabeinterpreter speziell fiir eine Siemens-Hostmodalitat vor-
gesehen sein, wahrend das Paar aus Ausgabeinterpreter und Ausgabetreiber speziell fir einen Imation-Laser-
belichter vorgesehen sein kann, der das Protokoll 831 verwendet. Wenn das letztgenannte Paar durch ein Paar
ersetzt wird, das fir ein Imation-Laserabbildungsgerat gedacht ist, das mit dem SuperSet-Protokoll arbeitet, ist
die Konstruktion der Komponenten derart beschaffen, dass das Paar aus Eingabetreiber und Eingabeinterpre-
ter nicht ebenfalls ersetzt zu werden braucht.

[0008] Obwohl US-A-5,630,101 mehr Flexibilitat in der Architektur von Laserabbildungsgeraten férdert, be-
schreibt auch diese Anmeldung nur eine direktverbundene Punkt-zu-Punkt-Architektur. Fur jedes Einga-
be-Ausgabe-Paar muss die Schnittstellenausfiihrungskomponente ein separates Paar aus Eingabetreiber und
Eingabeinterpreter sowie ein Paar aus Ausgabeinterpreter und Ausgabetreiber instanziieren. Die Schnittstel-
lenausfiihrungskomponente muss daher eine separate Pipeline zwischen jeder Hostmodalitat und jedem La-
serabbildungsgerat herstellen. Zwar ist dies in einem System mit einer relativ kleinen Zahl von Hostmodalitaten
nicht unbedingt bedenklich, aber es kann in Umgebungen problematisch sein, in denen eine erhebliche Anzahl
von Hostmodalitdten mit einer Vielzahl unterschiedlicher Laserabbildungsgerate kommuniziert. Dies gilt insbe-
sondere in einer Netzwerkumgebung, in der Ublicherweise eine Reihe von Netzwerk-Clients das gleiche Pro-
tokoll verwenden. In einer derartigen Situation ist es wiinschenswert, dass keine redundanten Paare aus Ein-
gabetreiber und Eingabeinterpreter fiir jeden Client vorhanden sind. Neben der Beanspruchung von Ressour-
cen belastet diese Architektur die Schnittstellenausflihrungskomponente zudem mit einem hohen Overhead.

[0009] Es besteht somit zunehmend Bedarf nach flexibleren medizinischen Bebilderungssystemen, die in der
Lage sind, die Kommunikation zwischen einer Vielzahl von Eingabe- und Ausgabe-Bebilderungsvorrichtungen
mit mehreren Protokollen abzuwickeln. Es ist wiinschenswert, dass diese medizinischen Bebilderungssysteme
nicht nur in Bezug auf die vorhandenen Protokolle flexibel sind, sondern auch zukunftige Protokolle in kosten-
glinstiger Weise nutzen kénnen. Es besteht zudem zunehmender Bedarf nach der Netzwerkibermittlung von
Bildinformationen zwischen Eingabe- und Ausgabe-Bebilderungsvorrichtungen. Im Bereich der medizinischen
Bebilderung haben beispielsweise das American College of Radiology (ACR) und die National Electrical Ma-
nufacturers Association (NEMA) einen gemeinsamen Ausschuss zur Entwicklung eines Standards fiir die di-
gitale Bebilderung und Kommunikation in der Medizin gegriindet, der als DICOM-Protokoll bekannt ist. Das DI-
COM-Protokoll wurde entworfen, um die Connectivity unter medizinischen Geraten zu ermdglichen, insbeson-
dere mit Blick auf den Entwicklungstrend in Krankenh&usern, der eine Abkehr von Punkt-zu-Punkt-Umgebun-
gen und eine Hinwendung zu Netzwerkumgebungen vorsieht. Hersteller medizinischer Gerate beginnen jetzt
branchenweit mit der Implementierung des DICOM-Kommunikationsprotokolls. Das DICOM-Protokoll setzt ei-

3/60

DE 697 35351 T2 2006.11.30

nen Standard fur die Netzwerkkommunikation von Bildinformationen. Doch auch andere Netzwerkprotokolle
sind vorhanden und werden weiterhin entwickelt werden. Es besteht somit weiterhin Bedarf nach einer Proto-
kollubersetzung in Netzwerksystemen. Der Bedarf nach Protokollibersetzung in Netzwerksystemen begrin-
det Probleme, die mit denen in Punkt-zu-Punkt-Systemen vergleichbar sind. Insbesondere sind Flexibilitat und
einfache Anpassung an mehrere Protokolle weiterhin kritisch. Es besteht daher Bedarf nach einem System,
das in der Lage ist, Bildinformationen zwischen Bebilderungsvorrichtungen gemalt mehreren Kommunikati-
onsprotokollen zu tibermitteln.

[0010] US-A-5,060,140 beschreibt ein universell programmierbares Datenkommunikations-Verbindungssys-
tem, das benutzerseitig programmierbar ist, um einen ausgewahlten Datenweg zwischen einer oder mehreren
Datenquellen und einem oder mehreren Datenzielen bereitzustellen. Das Datenkommunikationssystem er-
moglicht dem Benutzer, Signale von der Quelle zum Ziel mithilfe einfacher Befehle zu "verbinden". Das be-
schriebene System betrifft nicht die Lésung von Problemen, die die Ubermittlung medizinischer Informationen
zwischen unterschiedlichen medizinischen Bebilderungsmodalitaten und mindestens einem Abbildungsgerat
aus einer Vielzahl von Abbildungsgeraten betreffen und insbesondere das Problem mehrerer medizinischer
Bebilderungsmodalitaten unter Verwendung des gleichen Netzwerkschnittstellenprotokolls zur Kommunikation
mit einem der Abbildungsgerate Uber eine einzelne Kommunikationspipeline.

[0011] Die vorliegende Erfindung betrifft ein System zum Ubermitteln medizinischer Bildinformationen zwi-
schen verschiedenen medizinischen Abbildungsmodalitaten und mindestens einem aus einer Vielzahl von un-
terschiedlichen Abbildungsgeraten Uber eine Netzwerkschnittstelle. Das System umfasst eine Netzwerkaus-
fuhrungskomponente, eine oder mehrere Ausgabeschnittstellenkomponenten und eine Schnittstellenausfih-
rungskomponente.

[0012] Die Netzwerkausfuhrungskomponente instanziiert eine oder mehrere Netzwerkschnittstellenkompo-
nenten gemal ausgewahlten Netzwerkschnittstellenprotokollen. Jede Netzwerkschnittstellenkomponente ist
derart ausgebildet, dass sie medizinische Bildinformationen von einer der medizinischen Abbildungsmodalita-
ten Uber die Netzwerkschnittstelle empfangt, wobei die medizinischen Bildinformationen gemafl dem ausge-
wahlten Netzwerk-Schnittstellenprotokoll empfangen werden. Jedes Netzwerkschnittstellenprotokoll ist ausge-
wahlten medizinischen Abbildungsmodalitaten speziell zugeordnet. Erste Abbildungsanforderungen werden
auf der Grundlage der empfangenen medizinischen Bildinformationen und gemafl dem ausgewahlten Netz-
werkschnittstellenprotokoll erzeugt.

[0013] Jede der einen oder mehreren Ausgabeschnittstellenkomponenten ist derart ausgebildet, dass sie
zweite Abbildungs- oder Bebilderungsanforderungen auf der Grundlage der ersten, von einer der Netzwerk-
schnittstellenkomponenten erzeugten Bebilderungsanforderungen erzeugt, Die zweiten Bebilderungsanforde-
rungen werden gemal einem aus einer Vielzahl unterschiedlicher Ausgabeschnittstellenprotokolle erzeugt.
Jedes der Ausgabeschnittstellenprotokolle ist einem der Abbildungsgerate speziell zugeordnet. Die zweiten,
von einer der Ausgabeschnittstellenkomponenten erzeugten Bebilderungsanforderungen werden zu einem
der Abbildungsgerate Ubermittelt, und die zweiten Bebilderungsanforderungen werden gemal dem einen der
Ausgabeschnittstellenprotokolle Gbermittelt.

[0014] Eine Schnittstellenausfiinrungskomponente bildet eine oder mehrere Ubermittlungsleitungen, von de-
nen jede Leitung eine oder mehrere medizinische Abbildungsmodalitaten mit einer der Netzwerkschnittstellen-
komponenten kommunikativ verbindet unter Verwendung des gleichen Netzwerkschnittstellenprotokolls, einer
der Ausgabeschnittstellenkomponenten und eines der Abbildungsgerate. Dadurch kdnnen mehrere medizini-
sche Abbildungsmodalitdten unter Verwendung des gleichen Netzwerkschnittstellenprotokolls mit einem der
Abbildungsgerate lber eine einzelne Ubermittlungsleitung kommunizieren.

[0015] Die vorliegende Erfindung weist eine Reihe von Vorteilen in Bezug auf die Bereitstellung der Kommu-
nikation zwischen den Eingabe-Bebilderungsvorrichtungen und den Laserabbildungsgeraten auf. Weil die
Netzwerkausfuhrungskomponenten jeweils die Kommunikation mit einer Reihe von Eingabe-Bebilderungsvor-
richtungen erméglichen kénnen, ist keine separate Leitung fir jede medizinische Abbildungsmodalitat erfor-
derlich, wodurch Ressourcen geschont werden. Die Netzwerkausfuhrungskomponenten ermdglichen zudem
die erfindungsgemafie Kommunikation zwischen medizinischen Abbildungsmodalitadten und Abbildungsgera-
ten auf Netzwerkebene im Unterschied zu einer direkten Anschlussweise. Den Netzwerkausfliihrungskompo-
nenten wird von der Schnittstellenausfiihrungskomponente zudem die Zustandigkeit beziglich der Uberwa-
chung der Ubermittlung von den medizinischen Abbildungsmodalitéten tibertragen. Dadurch wird die Schnitt-
stellenausfihrungskomponente von der diesbezlglichen Zustandigkeit entlastet.

4/60

DE 697 35351 T2 2006.11.30

[0016] Andere und weitere Ausflihrungsbeispiele, Aspekte und Vorteile der vorliegenden Erfindung werden
anhand der folgenden Beschreibung und unter Bezug auf die anliegenden Zeichnungen deutlich.

[0017] Die Erfindung wird im folgenden anhand in der Zeichnung dargestellter Ausflihrungsbeispiele naher
erlautert.

[0018] Es zeigen

[0019] Fig. 1 ein Funktionsblockdiagramm eines medizinischen Bebilderungssystems zur Ubermittlung von
Bildinformationen zwischen Mehrprotokoll-Bebilderungsvorrichtungen in einer Netzwerkkommunikationsum-
gebung geman der vorliegenden Erfindung;

[0020] Fig. 2 ein Funktionsblockdiagramm eines alternativen medizinischen Bebilderungssystems zur Uber-
mittlung von Bildinformationen zwischen Mehrprotokoll-Bebilderungsvorrichtungen in einer Netzwerkkommu-
nikationsumgebung gemaf einem weiteren Ausfiihrungsbeispiel der vorliegenden Erfindung;

[0021] Fig. 3 ein Funktionsblockdiagramm zur Darstellung eines Subsystems des medizinischen Bebilde-
rungssystems aus Fig. 1;

[0022] Fig. 4 ein Diagramm zur Darstellung der objektorientierten Protokollhierarchie, die die Austauschbar-
keit der Netzwerkprotokollkomponenten ermdglicht, einschlieBlich der Netzwerktreiberkomponente und der
Netzwerkinterpreterkomponente;

[0023] Fig. 5 ein Diagramm zur Darstellung der objektorientierten Protokollhierarchie, die die Austauschbar-
keit der Ausgabeinterpreterkomponente und der Ausgabetreiberkomponente ermdglicht, und;

[0024] Fig. 6 ein Funktionsblockdiagramm einer erfindungsgemafen Client-Server-Beziehung, die auf das in
Fig. 1 gezeigte medizinische Bebilderungssystem anwendbar ist;

[0025] Die vorliegende Erfindung betrifft eine skalierbare Softwarearchitektur zur simultanen Ubersetzung
mehrerer medizinischer Bebilderungsprotokolle innerhalb eines Netzwerkparadigmas. Eig. 1 zeigt ein Funkti-
onsblockdiagramm eines medizinischen Bebilderungssystems zur Ubermittlung von Bildinformationen zwi-
schen Mehrprotokoll-Bebilderungsvorrichtungen in einer Netzwerkkommunikationsumgebung gemaR der vor-
liegenden Erfindung. Das System 10 umfasst eine Vielzahl von Eingabe-Bebilderungsvorrichtungen in Form
von Netzwerk-Clients 12, eine oder mehrere Netzwerkausfuhrungskomponenten 14, eine oder mehrere Aus-
gabeschnittstellenkomponenten 16, eine Ausgabe-Bebilderungsvorrichtung 18 und eine Schnittstellenausfiih-
rungskomponente 20. Jede Ausgabeschnittstellenkomponente 16 umfasst eine Ausgabeinterpreterkompo-
nente 22 und eine Ausgabetreiberkomponente 24.

[0026] Wie in Fig. 1 gezeigt, kommuniziert jeder Client 12 mit einer Ausgabe-Bebilderungsvorrichtung 18
Uber eine spezielle Leitung 26 gemal einem bestimmten Protokoll. Sofern jeder Client 12 dasselbe Protokoll
verwendet, wird also nur eine Leitung 26 bendtigt, um die Kommunikation zwischen den Clients 12 und der
Ausgabe-Bebilderungsvorrichtung 18 zu erméglichen. Wenn jeder Client 12 ein oder zwei Protokolle von zwei
verschiedenen Protokollen verwendet, werden zwei verschiedene Leitungen benétigt usw. Auf diese Weise er-
moglicht die vorliegende Erfindung N unterschiedliche Leitungen fir N unterschiedliche Protokolle, wobei jede
Leitung in der Lage ist, M unterschiedliche Clients zu handhaben, die dieses jeweilige Protokoll verwenden.
Daher ist eine separate Leitung flr jeden Client nicht erforderlich, sondern nur fir jedes unterschiedliche Pro-
tokoll.

[0027] Jede Leitung 26 umfasst drei primare Komponenten: eine Netzwerkausfihrungskomponente 14, eine
Ausgabeinterpreterkomponente 22 und eine Ausgabetreiberkomponente 24, wobei die beiden letztgenannten
als eine einzelne Ausgabeschnittstellenkomponente 16 zusammengefasst sind. Allgemein gesagt ist das in
Fig. 1 gezeigte System folgendermalfien aufgebaut. Fur jede Ausgabe-Bebilderungsvorrichtung 18 erstellt die
Netzwerkausfiihrungskomponente 14 eine separate Leitung 26 fir jedes separate Protokoll, das von mindes-
tens einem Netzwerk-Client 12 verwendet wird, der mit der Ausgabe-Bebilderungsvorrichtung 18 ggf. kommu-
niziert. Die Netzwerkausfihrungskomponente 14 erreicht dies, indem sie eine Netzwerkausfihrungskompo-
nente 14 speziell fir das Protokoll instanziiert, das von einem oder mehreren Netzwerk-Clients 12 verwendet
wird, sowie eine Ausgabeschnittstellenkomponente 16, die speziell der Ausgabe-Bebilderungsvorrichtung 18
zugeordnet ist, zwei spezielle Netzwerkausfuhrungskomponenten 14 und 16, wodurch eine spezielle Leitung
26 entsteht. Die Erstellung der Leitungen 26 kann entweder ,spontan" erfolgen, wenn Clients, die unterschied-

5/60

DE 697 35351 T2 2006.11.30

liche Protokolle verwenden, in das Netzwerk des Systems 10 eintreten oder dieses verlassen, oder sie kann
erfolgen, wenn das Netzwerk erstmals instanziiert wird. Die vorliegende Erfindung ist in beiden Fallen nicht ein-
geschrankt.

[0028] Bei Erstellung der Leitungen 26 kommuniziert ein Client 12 mit der Ausgabe-Bebilderungsvorrichtung
18 allgemein auf folgende Weise. Die Netzwerkausfihrungskomponente 14 filtert und interpretiert die von ei-
nem Client 12 erhaltenen Anforderungen gemaR ersten Anforderungen, die die Ausgabeschnittstellenkompo-
nente 16 versteht. Bei Ubertragung an die Ausgabeschnittstellenkomponente 16 werden die ersten Anforde-
rungen weiter gefiltert und in die entsprechenden zweiten Anforderungen interpretiert, die die Ausgabe-Bebil-
derungsvorrichtung 18 versteht. Auf diese Weise nimmt die vorliegende Erfindung Anforderungen entgegen,
die fir ein bestimmtes Protokoll bestimmt sind, Ubersetzt diese in erste Anforderungen und Ubersetzt diese
dann weiter in zweite Anforderungen fiir eine bestimmte Bebilderungsvorrichtung. Somit kénnen die Kompo-
nente 14 und die Komponente 16 unabhangig voneinander ausgetauscht werden, weil beide miteinander tber
erste Anforderungen kommunizieren. Anders ausgedriickt, ist die Implementierung einer Netzwerkausfih-
rungskomponente 14 fir ein bestimmtes Protokoll unabhangig von einer Ausgabe-Bebilderungsvorrichtung
18, wahrend die Implementierung der Ausgabeschnittstellenkomponente 16 von einem gegebenen Protokoll
unabhangig ist, das von einem bestimmten Client 12 verwendet wird. Es sei darauf hingewiesen, dass der be-
schriebene Vorgang auch in umgekehrter Richtung erfolgen kann, so dass Anforderungen von der Ausga-
be-Bebilderungsvorrichtung 18 an den Client 12 gesendet werden kénnen.

[0029] Die vorliegende Erfindung sieht somit ein Leitungsmodell vor, um die Kommunikation zwischen M Cli-
ents mit einer Bebilderungsvorrichtung zu ermdéglichen, die N Protokolle verwenden. Die Schnittstellenausfiih-
rungskomponente verwaltet die Erstellung dieser Leitungen. Eine Leitung wird fir jedes spezielle Protokoll er-
stellt, das von mindestens einem von M Clients im Netzwerk verwendet wird. Da typischerweise N << M ist,
schont die vorliegende Erfindung Ressourcen in einem System, in dem eine separate Leitung fur jeden Client,
jedoch kein separates Protokoll notwendig ist. Dies stellt einen wesentlichen Vorteil der vorliegenden Erfindung
dar.

[0030] Fig. 2 zeigt ein Funktionsblockdiagramm eines weiteren Ausfiihrungsbeispiels der vorliegenden Erfin-
dung. Elemente aus Fig. 2 mit gleichen Bezugsziffern wie in Fig. 1 weisen darauf hin, dass die Elemente iden-
tisch sind, und dass die Beschreibung in Verbindung mit Fig. 1 gleichermalen auf Fig. 2 anwendbar ist. Alter-
nativ zur Instanziierung von N vollstdndigen Ubersetzungsleitungen kann die Schnittstellenausflihrungskomp-
onente so konfiguriert werden, dass sie eine Ubersetzungsleitung mit N Netzwerkausfiihrungskomponenten
instanziiert, die unabhangig oder parallel arbeiten. Auf diese Weise kdnnen N x M Clients unterstutzt werden,
ohne N — 1 Ausgabeinterpreterkomponenten und N — 1 Ausgabetreiberkomponenten ineffizient bereitstellen zu
missen. Das System 58 aus Fig. 2 unterstitzt N Netzwerkprotokolle und N x M Netzwerk-Clients mit der Im-
plementierung nur einer Kommunikationsleitung. System 58 umfasst eine Vielzahl von Netzwerkausfuhrungs-
komponenten 14, die auf Netzwerk-Clients 12 achten, die bestimmte Netzwerkprotokolle verwenden. Die
Schnittstellenausflihrungskomponente 20 verbindet jede Netzwerkausfiihrungskomponente 14 kommunikativ
mit einer einzelnen Ausgabeinterpreterkomponente 22, einer einzelnen Ausgabetreiberkomponente 24 und ei-
ner einzelnen Ausgabe-Bebilderungsvorrichtung 18, um eine einzelne Kommunikationsleitung mit mehreren,
protokollspezifischen Netzwerkeingaben bereitzustellen.

[0031] Das in Fig. 2 gezeigte Ausflihrungsbeispiel der vorliegenden Erfindung unterscheidet sich von dem in
Fig. 1 gezeigten insofern, als dass das erste Ausflihrungsbeispiel noch mehr Ressourcen schont als das letz-
tere. Fur den Fall, dass eine Ausgabe-Bebilderungsvorrichtung, jedoch mehrere Netzwerkprotokolle vorhan-
den sind, vergeudet das in Fig. 1 gezeigte Ausfihrungsbeispiel einige Ressourcen, indem redundante Ausga-
beschnittstellenkomponenten 16 fiir jede Leitung 26 bereitgestellt werden, welche alle aufgrund der Tatsache
redundant sind, dass nur eine Ausgabe-Bebilderungsvorrichtung vorhanden ist. Diese Redundanz und die ent-
sprechende Vergeudung von Ressourcen wird durch das in Fig. 2 gezeigte Ausfihrungsbeispiel beseitigt.
Fig. 2 zeigt nur eine Leitung 26 und nur eine Ausgabeschnittstellenkomponente 16, mit der jede Netzwerkaus-
fuhrungskomponente 14 verbunden ist. Abgesehen von dieser geringeren Redundanz arbeitet das in Fig. 2
gezeigte Ausflihrungsbeispiel gleich wie das in Fig. 1 gezeigte, wobei die Beschreibung fiir Fig. 1 auch auf die
Beschreibung in Bezug auf Fig. 2 angewendet werden sollte.

[0032] Wie in Eig. 1 gezeigt, sind die Netzwerkausfuhrungskomponenten 14, die Ausgabeschnittstellenkom-
ponenten 16 und die Schnittstellenausfihrungskomponente 20 in einem Ausflihrungsbeispiel als ein objekto-
rientiertes Softwaresystem implementiert, das Schnittstellen zu Netzwerken mit Netzwerk-Clients 12 und Aus-
gabe-Bebilderungsvorrichtungen 18 bildet. Das Softwaresystem kann als Teil einer Ausgabe-Bebilderungsvor-
richtung 18 implementiert werden, beispielsweise als ein digitaler Halbton-Laserabbildungsgerat, oder es kann

6/60

DE 697 35351 T2 2006.11.30

als Teil einer diskreten Schnittstellenvorrichtung implementiert werden, die die Kommunikation von Bildinfor-
mationen zwischen den Netzwerk-Clients 12 und der Ausgabe-Bebilderungsvorrichtung 18 steuert.

[0033] In einem Ausfiihrungsbeispiel der Erfindung umfasst das Netzwerk eine Vielzahl verschiedener Cli-
ents, wie beispielsweise Magnetresonanz- (MR), Computertomographie- (CT), herkdmmliche Radiographie-
(Roéntgen) oder Ultraschallvorrichtungen, die von einer Reihe verschiedener Hersteller hergestellt werden, bei-
spielsweise von Siemens, Toshiba, GE oder Picker. Das Laserabbildungsgerat kann ein beliebiges Abbil-
dungsgerat sein, wie beispielsweise einer der von Imation hergestellten, der die Protokolle 831, 952 oder Su-
perSet beherrscht. Das Laserabbildungsgerat kann direkt im Netzwerk angeordnet sein, wobei in diesem Fall
das Softwaresystem Ublicherweise auf einer Hardwarekarte angeordnet ist, die in das Laserabbildungsgerat
gesteckt wird. Die Karte umfasst (iblicherweise eine Eingabe-Ausgabe-Schaltung (I0) sowie einen Speicher,
wie einen ROM oder Flash-ROM, bei dem es sich um einen umprogrammierbaren ROM handelt. Das Soft-
waresystem befindet sich in diesem Speicher.

[0034] In dem alternativen Ausfihrungsbeispiel befindet sich das Laserabbildungsgerat nicht direkt im Netz-
werk, sondern ist statt dessen mit dem Netzwerk tiber einen Zwischencomputer verbunden, der sich selbst di-
rekt im Netzwerk befindet. Der Zwischencomputer ist Gblicherweise mit einem Schreib-/Lesespeicher (RAM),
einem Lesespeicher (ROM), einer zentralen Verarbeitungseinheit (CPU) und einer Speichervorrichtung be-
stiickt, beispielsweise einem Festplattenlaufwerk, einem programmierbaren ROM oder einem Plattenlaufwerk.
In diesem Fall befindet sich das Softwaresystem auf der Speichervorrichtung des Zwischencomputers und wird
in den RAM kopiert und von dort seitens der CPU ausgefihrt. Wenn es sich bei der Speichervorrichtung um
ein Plattenlaufwerk oder um eine andere auswechselbare Speichervorrichtung handelt, kann das Softwaresys-
tem auf dem Speichermedium zur Einflhrung in die Vorrichtung gespeichert werden. Die vorliegende Erfin-
dung ist allerdings nicht auf eine bestimmte Hardwareimplementierung beschrankt.

[0035] Die von den Eingabe-Bebilderungsvorrichtungen erzeugten und den Netzwerk-Clients 12 zugeordne-
ten Bildinformationen umfassen sowohl Anforderungen nach Bebilderungsoperationen als auch Bilddaten, die
digitale Bildwerte enthalten, die ein von der Ausgabe-Bebilderungsvorrichtung 18 zu handhabendes Bild dar-
stellen. Die Leitung 26 wird hier so beschrieben, dass sie die Ubermittlung von Bildinformationen in Form von
Bebilderungsanforderungen handhabt, wobei Bildinformationen in Form digitaler Bildwerte das Bild darstellen,
das von einem separaten Kommunikationsweg Ubermittelt wird. Innerhalb des Geltungsbereichs der vorliegen-
den Erfindung kénnte die Leitung 26 jedoch auch so konfiguriert werden, dass sie die Kommunikation der Bild-
informationen in Form von Anforderungen nach Bebilderungsoperationen und Bilddaten handhabt, die die di-
gitalen Bildwerte enthalten.

[0036] In einem typischen medizinischen Bebilderungssystem umfassen Bebilderungsanforderungen Anfor-
derungen zur Veranlassung eines Bilddruckauftrags seitens der Ausgabe-Bebilderungsvorrichtung 18, Anfor-
derungen zum Abbrechen eines zuvor veranlassten Bilddruckauftrags, Anforderungen zur Definition oder Mo-
difikation eines Formats eines zu druckenden Bildes, Anforderungen zum Ldschen eines Satzes von Bilddaten,
die ein zuvor erfasstes Bild darstellen, sowie Anforderungen zum Speichern von Bilddaten an einer bestimmten
Bildposition.

Komponenten der Erfindung: Schnittstellenausfiihrungskomponente

[0037] Die Schnittstellenausfiihrungskomponente 20 bildet eine oder mehrere (1 bis N) Kommunikationslei-
tungen. Jede Kommunikationsleitung 26 verbindet kommunikativ einen oder mehrere von M Netzwerk-Clients
12, eine der Netzwerkausflihrungskomponenten 14, eine der Ausgabeinterpreterkomponenten 22, eine der
Ausgabetreiberkomponenten 24 und eine Ausgabe-Bebilderungsvorrichtung 18 in bidirektionaler Weise. Die
Ausgabe-Bebilderungsvorrichtung 18 kann mit jeder Leitung 26 auf gemeinsamer Basis kommunizieren. Alter-
nativ hierzu kénnte eine Vielzahl von Ausgabe-Bebilderungsvorrichtungen 18 bereitgestellt werden, von denen
jede kommunikativ mit einer bestimmten Leitung 26 verbunden ist.

[0038] Die Schnittstellenausflihrungskomponente 20 stellt die héchste Intelligenzebene innerhalb des Sys-
tems 10 aus Fig. 1 dar. Sie lenkt und verwaltet die jeweiligen Netzwerkkomponenten 26 und Ausgabeschnitt-
stellenkomponenten 16, die fiir die Netzwerk-Clients 12 zur Kommunikation mit der Ausgabe-Bebilderungsvor-
richtung 18 bendtigt werden. Wie in Eia. 1 gezeigt, instanziiert die Schnittstellenausfihrungskomponente 20
auf Basis von N verschiedenen Protokollen, die die Clients 12 beherrschen, eine bestimmte Leitung 26, die
aus einer Netzwerkausfiihrungskomponente 14 und der Ausgabeschnittstellenkomponente 16 besteht. Wenn
P unterschiedliche Ausgabe-Bebilderungsvorrichtungen vorhanden sind (im Unterschied zu einer, wie in Fig. 1
gezeigt), instanziiert die Schnittstellenausfiihrungskomponente N x P unterschiedliche Leitungen, und zwar

7/60

DE 697 35351 T2 2006.11.30

eine fir jedes eindeutige Paar aus Bebilderungsvorrichtung und Protokoll. Dies kann in einem separaten Ein-
richtungsbetrieb oder "spontan" erfolgen, wahrend Clients, die unterschiedliche Protokolle beherrschen, in das
Netzwerk eintreten oder dieses verlassen.

[0039] Zwar verfiigt die Schnittstellenausfiihrungskomponente 20 Gber die grofite Intelligenz aller Komponen-
ten innerhalb der vorliegenden Erfindung, aber sie unterscheidet sich von der in US-A-5,630,101 offengelegten
und beschriebenen Schnittstellenausfihrungskomponente darin, dass sie eine geringere Intelligenz aufweist
als die in dieser Patentanmeldung beschriebene Schnittstellenausfihrungskomponente. Die in
US-A-5,630,101 offengelegte und beschriebene Schnittstellenausfihrungskomponente instanziiert eine Ein-
gabeschnittstellenkomponente speziell fiir jeden Client, der mit einer bestimmten Bebilderungsvorrichtung
kommunizieren muss. Die Schnittstellenausfiihrungskomponente konstruiert eine Leitung auf Client-Client-Ba-
sis. Im Unterschied dazu instanziiert die vorliegende Erfindung eine Netzwerkausfuihrungskomponente 14 fur
ein bestimmtes Protokoll und delegiert damit die Zustandigkeit fiir die Bedienung der Netzwerk-Clients. Die er-
findungsgemalRe Schnittstellenausfihrungskomponente konstruiert somit eine Leitung auf Protokoll-Proto-
koll-Basis. Sie verfugt insofern tber weniger Intelligenz, als dass sie die Kommunikation mit bestimmten Cli-
ents nicht verwalten muss, wie dies bei der Schnittstellenausfiihrungskomponente nach US-A-5,630,101 der
Fall ist. Die letztere Schnittstellenausfihrungskomponente ,kennt" somit alle Details tiber die Eingabevorrich-
tung, wahrend die erfindungsgemalle Schnittstellenausfliihrungskomponente nur ,weil", dass sich im Netz
Eingabevorrichtungen befinden, wahrend sie die Zustandigkeit fiir die Handhabung der Implementierung der
Schnittstelle bezuglich der Eingabevorrichtungen an die Netzwerkausfuhrungskomponente 14 delegiert.

[0040] Die Schnittstellenausfiihrungskomponente 20 definiert die Struktur der Leitung 26. Die Leitung 26 ist
derart konfiguriert, dass sie eine Reihe von Komponenten 30, 32' (die in Fig. 3 gezeigt werden und, wie dort
gezeigt und spater erlautert, von der Netzwerkausfliihrungskomponente 14 instanziiert werden), 22 und 24 mit
unterschiedlichen Protokollen wahlweise miteinander verbindet, was ein wesentliches Maf} an Flexibilitat be-
reitstellt. Diese Flexibilitat ermdglicht ein medizinisches Bebilderungssystem 10, das in der Lage ist, die Kom-
munikation zwischen einer Vielzahl verschiedener Netzwerk-Clients 12 und einer oder mehreren Ausgabe-Be-
bilderungsvorrichtungen 18 mit einer Vielzahl unterschiedlicher Funktionsmdglichkeiten herzustellen. Die
Schnittstellenausfiihrungskomponente 20 behandelt jede Funktionalitdt unabhangig von Komponente 14, 22
und 24 als eine "Blackbox" mit einer eindeutig definierten Menge von Zustandigkeiten und einer definierten
Schnittstelle. Die Schnittstellenausflihrungskomponente 20 wahlt die entsprechende Reihe von Blackboxes je
nach Umgebung aus und verbindet diese mit ,Griffen" untereinander, um eine vollstandige Leitung 26 zu bil-
den. Als ein weiterer Vorteil ist die Schnittstellenausfiihrungskomponente 20 in einem Ausflihrungsbeispiel der-
art konfiguriert, dass sie die Komponenten dynamisch ,spontan” verbinden kann, um eine Kommunikationslei-
tung 26 zu bilden, die firr die aktuelle Bebilderungsumgebung geeignet ist. Die Schnittstellenausfliihrungskom-
ponente 20 ist zudem derart konfiguriert, dass sie eine skalierbare Softwarearchitektur mit einer Vielzahl von
Kommunikationsleitungen 26 erzeugt, die nach unterschiedlichen Protokollen konfiguriert sind. Die skalierbare
Architektur ermdglicht es der Ausgabe-Bebilderungsvorrichtung 18, simultan mit mehreren Netzwerk-Clients
12 auf gemeinsamer Basis unter Verwendung der nétigen Netzwerkprotokolle, wie von jeder Leitung 26 bereit-
gestellt, zu kommunizieren. Alternativ hierzu kdnnte eine Vielzahl von Ausgabe-Bebilderungsvorrichtungen 18
bereitgestellt werden, von denen jede kommunikativ mit einer bestimmten Leitung 26 verbunden ist.

[0041] Die Schnittstellenausflihrungskomponente 20 skaliert die Softwarearchitektur somit derart, dass sie
die Anforderungen an die Umgebung erfillt, wobei so viele Netzwerkausfihrungskomponenten und Leitungen
erstellt werden, wie es unterschiedliche Netzwerkprotokolle gibt. Die Schnittstellenausfiihrungskomponente 20
verbindet wahlweise eine Reihe von Komponenten 14, 22 und 24, die bestimmte Protokolle aufweisen, die not-
wendig sind, um zu einem bestimmten Netzwerk-Client 12, einer bestimmten Ausgabe-Bebilderungsvorrich-
tung 18 und den erforderlichen Hardwareschnittstellen zu passen.

Komponenten der Erfindung: Netzwerkausfihrungskomponenten

[0042] Die Netzwerkausfiuihrungskomponente 14 ist fir die Handhabung aller Netzwerk-Clients 12 zustandig,
die Uber ein bestimmtes Protokoll miteinander kommunizieren. Wie in Fig. 1 gezeigt, wird eine Netzwerkaus-
fuhrungskomponente 14 fir jedes bestimmte von N Netzwerkprotokollen bereitgestellt. Die Netzwerkausfih-
rungskomponente 14 verwaltet somit mehrere Netzwerk-Clients 12 gleichzeitig. Die Schnittstellenausfih-
rungskomponente 20 delegiert die Zustandigkeit fur die Verwaltung aller netzwerkspezifischen Dienste an die
Netzwerkausfuhrungskomponente 14. Die Schnittstellenausfihrungskomponente 20 instanziiert eine be-
stimmte Netzwerkausflihrungskomponente 14 fiir jedes medizinische Bebilderungsnetzwerkprotokoll, das im
Netzwerk von dem System 10 unterstiitzt wird. Wenn beispielsweise das Picker-Netzwerkprotokoll unterstitzt
wird, instanziiert die Schnittstellenausfihrungskomponente 20 eine Netzwerkausfiihrungskomponente 14, die

8/60

DE 697 35351 T2 2006.11.30

ein derartiges Protokoll bedienen kann. Beispielsweise instanziiert die Schnittstellenausfiihrungskomponente
20 eine weitere Netzwerkausfliihrungskomponente, die in der Lage ist, das DICOM-Protokoll zu bedienen, so-
fern dieses Protokoll unterstitzt werden muss.

[0043] Die Netzwerkausfihrungskomponente 14 lenkt alle Objekte, die zur Verwaltung der Netzwerkkommu-
nikation erforderlich sind. Die primare Funktion der Netzwerkausfiihrungskomponente 14 besteht darin, eine
Netzwerkschnittstelle 28 zu Uberwachen oder auf Bebilderungsanforderungen von Netzwerk-Clients 12, die
ein bestimmtes Protokoll verwenden, ,abzuhéren". Wenn ein Netzwerk-Client 12 den Zugang zu einer Ausga-
be-Bebilderungsvorrichtung 18 tiber ein bestimmtes Netzwerkprotokoll anfordert, erstellt die Netzwerkausfiih-
rungskomponente 14 eine Netzwerktreiberkomponente 30 und eine Netzwerkinterpreterkomponente 32, die
fur dieses Protokoll geeignet sind, wie in Fig. 3 gezeigt. Die Netzwerkausflihrungskomponente 14 bindet die
Netzwerktreiberkomponente 30 an die Netzwerkinterpreterkomponente 32 und dann die Netzwerkinterpreter-
komponente 32 an die Ausgabeinterpreterkomponente 22 unter Verwendung von Informationen, die zuvor von
der Schnittstellenausfiihrungskomponente 20 bereitgestellt wurden. Die Netzwerkausfiihrungskomponente 14
hort dann die Netzwerkschnittstelle 28 auf neue Anforderungen ab, die gemal dem bestimmten Netzwerkpro-
tokoll gesendet werden. Die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 bilden
zusammen eine Netzwerkschnittstellenkomponente 33, wie ebenfalls in Fig. 3 gezeigt.

[0044] Das Vorhandensein der Netzwerkausfihrungskomponente in der vorliegenden Erfindung dient als Un-
terscheidungsmerkmal der Erfindung gegenuber US-A-5,630,101. In US-A-5,630,101 gibt es keine entspre-
chenden Netzwerkausfiihrungskomponenten, sondern Eingabeschnittstellenkomponenten. die Eingabe-
schnittstellenkomponente ist allerdings keine intelligente Komponente wie die erfindungsgemafle Netzwer-
kausfuhrungskomponente. Stattdessen wird die Eingabeschnittstellenkomponente von der Schnittstellenaus-
fuhrungskomponente fur jede Verbindung zwischen einem bestimmten Client und der Bebilderungsvorrichtung
instanziiert. Im Unterschied dazu delegiert die Schnittstellenausfiihrungskomponente in der vorliegenden Er-
findung die Zustandigkeit fur die Client-Kommunikation an eine Netzwerkausfiihrungskomponente, die ihrer-
seits weitere Komponenten instanziiert, wie fur eine oder mehrere Clients erforderlich, die ein gemeinsames
Protokoll beherrschen, um mit der Bebilderungsvorrichtung kommunizieren zu kénnen.

[0045] Die Netzwerkausfihrungskomponenten verleihen der vorliegenden Erfindung somit den Vorteil der
Netzwerkkommunikation unter minimaler Nutzung der Ressourcen. Beispielsweise bewirkt die Anwendung
des in US-A-5,630,101 beschriebenen Systems auf ein Netzwerk von Clients die Erstellung von Leitungen fir
jeden dieser Clients. Durch Einbringung der Client-Kommunikation in eine intelligente Netzwerkausfuhrungs-
komponente 14 entfallt fir die vorliegende Erfindung die Notwendigkeit, Leitungen flr jeden Client erstellen zu
missen, so dass nur die Erstellung einer Leitung fur jedes der Protokolle angefordert zu werden braucht, tber
die die Clients kommunizieren kénnen. Weil die Zahl der Kommunikationsprotokolle Ublicherweise wesentlich
kleiner als die Zahl der Clients ist, fihrt dies zu einer deutlichen Einsparung bei der Ressourcennutzung. Indem
die Zustandigkeit fir die Client-Kommunikation an die Netzwerkausfliihrungskomponente 14 ibergeben wird,
wird die Schnittstellenausfihrungskomponente 20 von derartigen Verwaltungsaufgaben befreit, die ansonsten
die Schnittstellenausfihrungskomponente Gibermafig belasten kdnnten.

[0046] In einem Ausflhrungsbeispiel werden die Netzwerktreiberkomponente 30 und die Netzwerkinterpre-
terkomponente 32, wie in Fig. 3 gezeigt, "spontan" dann instanziiert, wenn die Netzwerkausflihrungskompo-
nente 14 eines Netzwerk-Clients 12 ein bestimmtes Protokoll an der Netzwerkschnittstelle 84 erkennt, wodurch
die zur Unterstitzung dieser Komponenten erforderlichen Hardware- und Softwareressourcen reserviert wer-
den, bis diese benétigt werden. Diese dynamische Instanziierung der Netzwerktreiberkomponente 30 und der
Netzwerkinterpreterkomponente 32 erméglicht eine Reduzierung des Systemoverheads, der ansonsten not-
wendig ware. Wenn eine Reservierung der Ressourcen nicht kritisch ist, werden diese Komponenten alternativ
dauerhaft bereitgestellt, um fir jedes Protokoll eine feste, dedizierte Leitung 26 bereitzustellen.

[0047] Sobald die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 erstellt worden
sind, delegiert die Netzwerkausfiihrungskomponente 14 die gesamte Zustandigkeit fir die Bedienung des je-
weiligen Netzwerk-Clients 12 an das Paar aus Treiber und Interpreter. Die Netzwerkausflihrungskomponente
14 bindet den Netzwerk-Client 12, die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente
32 kommunikativ an eine der Ausgabeinterpreterkomponenten 22, wobei Verbindungsinformationen genutzt
werden, die zuvor von der Netzwerkausfiihrungskomponente 14 (ber die Schnittstellenausfiihrungskompo-
nente 20 bereitgestellt wurden.

[0048] Jede Netzwerktreiberkomponente 30 ist derart konfiguriert, dass sie Bildinformationen von einem
Netzwerk-Client 12 gemal einer Vielzahl verschiedener Netzwerkschnittstellenprotokolle empfangt. Jedes

9/60

DE 697 35351 T2 2006.11.30

Netzwerkschnittstellenprotokoll ist speziell einem der Netzwerk-Clients 12 zugeordnet und gibt die modalitats-
spezifischen Anforderungen zur Kommunikation mit dem jeweiligen Netzwerk-Client wieder. Jede der Netzwer-
kinterpreterkomponenten 30 ist derart konfiguriert, dass sie erste Bebilderungsanforderungen gemaf einem
der Netzwerkschnittstellenprotokolle, basierend auf den empfangenen Bildinformationen, erzeugt. Die ersten
Bebilderungsanforderungen werden von der Netzwerkinterpreterkomponente 32 erzeugt und entsprechen den
von dem Netzwerk-Client 12 erzeugten Bebilderungsanforderungen. Die ersten Bebilderungsanforderungen
werden an die Ausgabeschnittstellenkomponente 16 Ubermittelt.

[0049] Jedes der Netzwerkschnittstellenprotokolle umfasst sowohl ein Netzwerktreiberprotokoll, das auf
Netzwerktreiberkomponenten 30 anwendbar ist, als auch ein Netzwerkinterpreterprotokoll, das auf Netzwer-
kinterpreterkomponenten 32 anwendbar ist. Die entsprechenden Netzwerktreiberprotokolle werden von den
Kommunikationsanforderungen eines bestimmten Netzwerk-Clients 12 ermittelt, wahrend die geeigneten
Netzwerkinterpreterprotokolle von dem Bildinformationsformat einer bestimmten Eingabe-Bebilderungsvor-
richtung ermittelt werden, die dem Netzwerk-Client zugeordnet ist. Das Bildinformationsformat bezieht sich auf
die Art der Bebilderungsanforderungen, die gemaf dem Protokoll einer bestimmten Eingabe-Bebilderungsvor-
richtung erzeugt werden. Das Netzwerktreiberprotokoll spezifiziert die Weise, in der eine Netzwerktreiberkom-
ponente 30 die Ubertragung von Bildinformationen von einer Eingabe-Bebilderungsvorrichtung durchfiihren
sollte, die einem Netzwerk-Client 12 zugeordnet ist. Das Netzwerkinterpreterprotokoll spezifiziert die Weise, in
der die Netzwerkinterpreterkomponente 32 die Bildinformationen interpretieren sollte, um die ersten Bebilde-
rungsanforderungen zu erzeugen. Die Netzwerktreiber- und Netzwerkinterpreterprotokolle kdnnen sich je nach
Art des Netzwerk-Clients 12 und des Herstellers der Ausgabe-Bebilderungsvorrichtung 18 erheblich voneinan-
der unterscheiden.

[0050] Die Netzwerkinterpreterkomponente 32 nutzt zudem einen gemeinsamen Satz von Aufgaben mit an-
deren Netzwerkinterpreterkomponenten, ungeachtet eines bestimmten Netzwerkinterpreterprotokolls. Nach
Erhalt der Bildinformationen von einer Netzwerktreiberkomponente 30 analysiert eine Netzwerkinterpreter-
komponente 32 Anforderungen, die in den Bildinformationen enthalten sind, und tbersetzt diese, um erste Be-
bilderungsanforderungen zu erzeugen, die den von der Ausgabe-Bebilderungsvorrichtung 18 bereitgestellten
Operationen entsprechen. Die ersten Bebilderungsanforderungen umfassen Anforderungen nach einer Reihe
von gemeinsamen Bebilderungsdiensten, die von der Ausgabe-Bebilderungsvorrichtung 18 bereitgestellt wer-
den.

[0051] Die Weise, in der die Netzwerkinterpreterkomponente 32 die Anforderungen interpretiert, die von dem
Netzwerk-Client 12 erzeugt werden, kann sich je nach Netzwerkinterpreterprotokoll andern. Die Netzwerkin-
terpreterkomponente 32 versteht das genaue Format, die Anweisungen und die Timing-Einschrankungen, die
den Bildinformationen inharent sind, die von einem bestimmten Netzwerk-Client 12 erzeugt wurden. Dennoch
stellen alle Ausgabeinterpreterkomponenten 22 eine gemeinsame Grundfunktion zur Erzeugung erster Bebil-
derungsanforderungen zur Verfiigung. Die Netzwerkinterpreterkomponente 32 sendet die ersten Bebilde-
rungsanforderungen uber die Leitung 26. Sobald die ersten Bebilderungsanforderungen von nachgeordneten
Komponenten in der bidirektionalen Leitung 26 verarbeitet worden sind und eine Antwort erhalten worden ist,
erzeugt die Netzwerkinterpreterkomponente 32 eine entsprechende Antwort fir den vernetztes System 13. Die
Netzwerkinterpreterkomponente 32 sendet die Antwort an den Netzwerk-Client 12 (iber die Leitung 26 und die
Netzwerktreiberkomponente 30, die die Kommunikationsanforderungen handhabt, die zur Ubermittlung der
Antwort an die Eingabe-Bebilderungsvorrichtung erforderlich sind.

[0052] Die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 wurden unter Berlick-
sichtigung der Tatsache beschrieben, dass die Netzwerkschnittstellenkomponente 33 alternativ als ein einzel-
nes, integriertes Softwaremodul implementiert werden kdnnte. In dem beschriebenen Ausfihrungsbeispiel
wird eine Netzwerkschnittstellenkomponente 33 von einer diskreten Netzwerktreiberkomponente 30 und einer
diskreten Netzwerkinterpreterkomponente 32 realisiert. Eine diskrete Implementierung der Unterkomponenten
teilt die Funktionalitat jeder Netzwerkschnittstellenkomponente 33 zur besseren Modularitat in kleinere Pakete
auf. Beispielsweise bediirfen Anderungen der Hardwarespezifikationen fiir die Netzwerkschnittstelle 28, die
auf eine erweiterte Modularitat zurtickzufiihren sind, nur einer Rekonfiguration der Netzwerktreiberkomponen-
te 30, statt der gesamten Netzwerkschnittstellenkomponente 33.

[0053] Ungeachtet der protokollspezifischen Funktionen sind die Netzwerktreiberkomponente 30 und die
Netzwerkinterpreterkomponente 32 des gleichen Typs (d.h. alle Netzwerktreiberkomponenten) so konfiguriert,
dass sie mehrere gemeinsame Aufgaben wahrnehmen. Beispielsweise nutzen die Netzwerktreiberkomponen-
ten 30 gemeinsame Aufgaben, die zur Kommunikation mit einem Netzwerk-Client 12 notwendig sind, der nach
einem bestimmten Netzwerkprotokoll arbeitet. Eine Netzwerktreiberkomponente 30 ist derart konfiguriert, dass

10/60

DE 697 35351 T2 2006.11.30

sie alle hardwarespezifischen Faktoren handhabt, also beispielsweise Unterbrechungen, Puffer und Quittungs-
vorgange, die notwendig sind, um Bebilderungsinformationen an einen bestimmten Netzwerk-Client 12 zu
Ubermitteln oder von diesem zu empfangen. Eine Netzwerktreiberkomponente 30 ist zudem so konfiguriert,
dass sie alle anderen spezifischen Notwendigkeiten eines Netzwerk-Clients 12 handhabt, wie beispielsweise
die Paketisierung oder Initialisierung. Die Netzwerktreiberkomponente 30 flhrt alle notwendigen Kommunika-
tionsaufgaben durch, und isoliert damit die verbleibende Leitung 26 von Kenntnissen lber bestimmte Anforde-
rungen zur Kommunikation mit dem Netzwerk-Client 12. Die Netzwerktreiberkomponente 30 Gbernimmt somit
eine zweifache Zustandigkeit. Erstens empfangt die Netzwerktreiberkomponente 30 Bildinformationen abseits
des Netzwerks vom Netzwerk-Client 12 und bereitet diese Bildinformationen fur die nachste Stufe der Leitung
26 auf, d.h. fiir die Netzwerkinterpreterkomponente 32. Zweitens tbermittelt die Netzwerktreiberkomponente
30 Antworten, die auf der bidirektionalen Leitung 26 auftreten, an das Netzwerk zur Kommunikation mit dem
Netzwerk-Client 12.

Komponenten der Erfindung: Ausgabeschnittstellenkomponenten

[0054] Wiein Fig. 1 gezeigt, ist jede Ausgabeschnittstellenkomponente 16 derart konfiguriert, dass sie zweite
Bebilderungsanforderungen gemaR einer Vielzahl verschiedener Ausgabeprotokolle Uber eine Ausgabeinter-
preterkomponente 22 erzeugt, und zwar je nach Inhalt der ersten Bebilderungsanforderung. Die zweiten Be-
bilderungsanforderungen stellen den Inhalt der ersten Bebilderungsanforderungen dar, wie von der Ausga-
beinterpreterkomponente 22 zur Ubermittlung an die Ausgabe-Bebilderungsvorrichtung 18 iibersetzt. Jedes
Ausgabeschnittstellenprotokoll ist speziell dem Typ der Ausgabe-Bebilderungsvorrichtung 18 zugeordnet und
gibt ebenso wie das Netzwerkschnittstellenprotokoll die Anforderungen an die Kommunikation mit der jeweili-
gen Ausgabe-Bebilderungsvorrichtung wieder. AuBerdem ist jede Ausgabeschnittstellenkomponente 16 so
konfiguriert, dass sie die zweiten Bebilderungsanforderungen an die Ausgabe-Bebilderungsvorrichtung 18
Uber die Ausgabetreiberkomponente 24 gemal einem der Ausgabeschnittstellenprotokolle Gbermittelt.

[0055] Jedes der Ausgabeschnittstellenprotokolle umfasst ein Ausgabeinterpreterprotokoll, das auf die Aus-
gabeinterpreterkomponenten 22 anwendbar ist, und ein Ausgabetreiberprotokoll, das auf die Ausgabetreiber-
komponenten 24 anwendbar ist. Das Ausgabetreiberprotokoll wird durch die Kommunikationsanforderungen
der Ausgabe-Bebilderungsvorrichtung 18 bestimmt, wahrend das entsprechende Ausgabeinterpreterprotokoll
durch das Bildinformationsformat der Ausgabe-Bebilderungsvorrichtung bestimmt wird. Das Ausgabeinterpre-
terprotokoll spezifiziert die Weise, in der die Ausgabeinterpreterkomponente 22 erste Bebilderungsanforderun-
gen interpretieren sollte, um zweite Bebilderungsanforderungen in einer Form zu erzeugen, die von der Aus-
gabe-Bebilderungsvorrichtung 18 verstanden werden. Das Ausgabetreiberprotokoll spezifiziert die Weise, in
der eine Ausgabetreiberkomponente 24 die Ubermittlung der zweiten Bebilderungsanforderungen an die Aus-
gabe-Bebilderungsvorrichtung 18 durchfiihren sollte. Wie bei den Netzwerkschnittstellenprotokollen unterlie-
gen die Ausgabeschnittstellenprotokolle Abweichungen. Beispielsweise kann sowohl das Ausgabetreiber- als
auch das Ausgabeinterpreterprotokoll entsprechend dem Typ der Funktionsmdglichkeiten variieren, die von
der Ausgabe-Bebilderungsvorrichtung 18 bereitgestellt werden, beispielsweise 831, 952 oder SuperSet im Fal-
le des von Imation hergestellten Laserabbildungsgerats.

[0056] Eine Ausgabeinterpreterkomponente 22 ist derart konfiguriert, dass sie tber die Leitung 26 erste Be-
bilderungsanforderungen empfangt, die von einer Netzwerkinterpreterkomponente 32 erzeugt worden sind,
und die ersten Bebilderungsanforderungen interpretiert, um zweite Bebilderungsanforderungen zu erzeugen,
die dem von der Ausgabe-Bebilderungsvorrichtung 18 jeweils geforderten Protokoll entsprechen. Die zweiten
Bebilderungsanforderungen entsprechen im Wesentlichen den ersten Bebilderungsanforderungen, sind aber
entsprechend dem Ausgabeprotokoll konfiguriert, das von der Ausgabe-Bebilderungsvorrichtung 18 be-
herrscht wird. Somit dienen die zweiten Bebilderungsanforderungen als Anforderungen fir dieselben Bebilde-
rungsdienste, die von den ersten Bebilderungsanforderungen spezifiziert worden sind. Die Weise, in der die
Ausgabeinterpreterkomponente 22 die Anweisungen interpretiert, kann je nach dem speziellen Ausgabeinter-
preterprotokoll variieren, das von der Ausgabe-Bebilderungsvorrichtung 18 vorgegeben wird, aber alle Ausga-
beinterpreterkomponenten 22 nutzen eine gemeinsame Aufgabe, um zweite Bebilderungsanforderungen in ei-
nem Protokoll zu erzeugen, das von der Ausgabe-Bebilderungsvorrichtung beherrscht wird. Die Ausgabeinter-
preterkomponente 22 sendet die zweiten Bebilderungsanforderungen uber die Leitung 26. Wenn die Ausga-
be-Bebilderungsvorrichtung 18 die zweiten Bebilderungsanforderungen verarbeitet und eine ber die Leitung
26 empfangene Antwort formuliert, entfernt die Ausgabeinterpreterkomponente 22 ausgabeprotokollspezifi-
sche Informationen und erstellt eine entsprechende Antwort fir die Netzwerkinterpreterkomponente 32.

[0057] Mit Bezug auf die Ausgabetreiberkomponente 24, flihren alle Ausgabetreiberkomponenten 24, ebenso
wie die Netzwerktreiberkomponenten 30, einen gemeinsamen Satz an Kommunikationsaufgaben durch. Eine

11/60

DE 697 35351 T2 2006.11.30

Ausgabetreiberkomponente 24 ist derart konfiguriert, dass sie alle hardwarespezifischen Faktoren handhabt,
also beispielsweise Unterbrechungen, Puffer und Quittungsvorgange, die notwendig sind, um Bebilderungsin-
formationen an eine bestimmte Ausgabe-Bebilderungsvorrichtung 18 zu tibermitteln oder von diesem zu emp-
fangen. Die Ausgabetreiberkomponente 24 isoliert die verbleibende Pipeline 26 von jeglicher Kenntnis, dass
die Kommunikation mit der Ausgabe-Bebilderungsvorrichtung 18 tber eine serielle Schnittstelle, eine parallele
Schnittstelle oder ein Dual-Port-RAM usw. erfolgt. Die Ausgabetreiberkomponente 24 ibermittelt zweite Bebil-
derungsanforderungen, die von der Ausgabeinterpreterkomponente 22 erzeugt wurden, an die Ausgabe-Be-
bilderungsvorrichtung 18, wobei alle Kommunikationsanforderungen gewahrt bleiben. Die Ausgabetreiber-
komponente 24 empfangt Antworten von der Ausgabe-Bebilderungsvorrichtung 18 und bereitet die Antwort zur
Ubertragung an die Ausgabeinterpreterkomponente 22 iiber die bidirektionale Leitung 26 vor.

[0058] Die Ausgabeinterpreterkomponente 22 und die Ausgabetreiberkomponente 24 wurden unter Berlick-
sichtigung der Tatsache beschrieben, dass die Ausgabeschnittstellenkomponente 16 alternativ als ein einzel-
nes, integriertes Softwaremodul implementiert werden koénnte. In dem beschriebenen Ausfihrungsbeispiel
wird eine Ausgabeschnittstellenkomponente 16 allerdings von einer diskreten Ausgabeinterpreterkomponente
22 und einer diskreten Ausgabetreiberkomponente 24 realisiert. Eine diskrete Implementierung der Unterkom-
ponenten teilt die Funktionalitat jeder Ausgabeschnittstellenkomponente 16 zur besseren Modularitat in klei-
nere Pakete auf. Beispielsweise bediirfen Anderungen der Hardwarespezifikationen fiir die Ausgabeschnitt-
stellenkomponente 16, die auf eine erweiterte Modularitat zurtickzufuhren sind, nur einer Rekonfiguration der
Ausgabetreiberkomponente 24 statt der gesamten Ausgabeschnittstellenkomponente 16.

Objektorientierung der Komponenten

[0059] Um die Austauschbarkeit der Komponenten wie beschrieben zu ermdglichen, missen die Software-
schnittstellen zwischen den Komponenten 30, 32, 22 und 24 vordefiniert werden, um jeden Komponententyp
abzustimmen. Gleichzeitig muss eine individuelle Komponente 30, 32, 22 und 24 konfiguriert werden, um fur
ein bestimmtes Protokoll spezifische Funktionen zu implementieren. Die vorliegende Erfindung nutzt objekto-
rientierte Techniken, insbesondere die der Weitervererbung, um ein generisches Basisklassenprotokoll fiir je-
den Komponententyp zu entwickeln (z.B. Netzwerktreiberkomponente 30).

[0060] Die Weitervererbung ist eine objektorientierte Technik, die als Mechanismus zur Erzeugung neuer
Klassen aus vorhandenen Daten dient. Eine neue Klasse ist bis auf einen kleinen Unterschied ahnlich zu einer
vorhandenen Klasse; die Weitervererbung dient dazu, die neue Klasse anhand der vorhandenen Klasse zu de-
finieren. Die vorhandene Klasse, die als Quelle fir die Weitervererbung dient, wird als Basisklasse bezeichnet,
wahrend die neue Klasse, die von der Basisklasse abgeleitet wird, als abgeleitete Klasse bezeichnet wird. Eine
vorhandene Klasse kann als Basisklasse fiir mehrere abgeleitete Klassen dienen. Die Basisklasse ist eine De-
finition einer generischen Klasse von Softwareobjekten, wahrend die Klassen, die von der Basisklasse abge-
leitet sind, mehr spezifische oder spezialisierte Klassen der Objekte definieren. Das generische Basisklassen-
protokoll spezifiziert die Funktionen, die von einer Komponente bereitgestellt werden, sowie die Prozeduren
fur den Zugang zu diesen Funktionen. Jede spezifische Protokollkomponente "erbt" von dem entsprechenden
Basisklassenprotokoll und implementiert die Schnittstelle gemafl der Umgebung.

[0061] Klassenvererbung ermoglicht es, Mitglieder einer Klasse so zu benutzen, als ob sie Mitglieder einer
zweiten Klasse seien. Es ist keine zusatzliche Programmierung erforderlich, um die Unterklasse zu implemen-
tieren, ausgenommen der Operationen, die entweder die von den anderen Klassen geerbten Mitglieder erwei-
tern oder ersetzen. Wahrend der Entwicklung dieses objektorientierten Systems werden Unterklassen aus be-
stehenden Klassen konstruiert, bis die entsprechende Funktionalitat entwickelt ist. Die Konstruktion von Un-
terklassen fuhrt zur Bildung einer Klassenhierarchie. Die Klassenhierarchie ist in der Basisklasse begrindet,
die einen minimalen Verhaltenssatz umfasst, der allen Unterklassen gemeinsam ist.

[0062] Erfindungsgemal ist jede Komponente 30, 32, 22 und 24 gemal einem bestimmten Protokoll konfi-
guriert, dient aber auch als Unterklasse des Basisklassenprotokolls. Weil jede Komponente 30, 32, 22 und 24
von dem Basisklassenprotokoll erbt und einen minimalen Funktionssatz implementiert, so dass die Basisklas-
senanforderungen erflllt werden, kann sie direkt gegen eine andere Komponente des gleichen Typs ausge-
tauscht werden, die von demselben Basisklassenprotokoll erbt. Die Austauschbarkeit, die sich aus den objek-
torientierten Techniken ergibt, erzeugt eine ,direktverbundene" Softwarearchitektur, in der jede Komponente
effektiv in die Leitung 26 eingefligt werden kann, ohne dass eine zusatzliche Schnittstellenentwicklung notwen-
dig ware.

[0063] Fig. 5 und Fig. 6 zeigen ein Beispiel einer objektorientierten Protokollhierarchie, die die Austauschbar-

12/60

DE 697 35351 T2 2006.11.30

keit der Komponenten 30, 32, 22 und 24 erleichtert. Die Protokollhierarchie veranschaulicht die Implementie-
rung der Komponenten 30, 32, 22 und 24 fiir bestimmte Protokolle, die als abgeleitete Klasse jeweils ein ge-
nerisches Basisklassenprotokoll ,beerben”. Wie in Fig. 4 gezeigt, kann ein Netzwerkausfliihrungs-Basisklas-
senprotokoll 34 eine Vielzahl von ,vererbenden" Netzwerkausfiihrungsprotokollen 40, 42, 44 fiir verschiedene
Netzwerk-Clients 12 umfassen, wie beispielsweise DICOM, Picker und LP, die es einer entsprechend instan-
ziierten Netzwerkausfihrungskomponente 14 ermdglichen, das Vorhandensein eines bestimmten Netz-
werk-Clients zu erkennen. Auf ahnliche Weise kann ein Netzwerktreiber-Basisklassenprotokoll 36 eine Viel-
zahl von ,vererbenden" Netzwerktreiberprotokollen 46, 48, 50 fur verschiedene Netzwerkschnittstellenanfor-
derungen umfassen, die einem Netzwerk-Client 12 zugeordnet sind, beispielsweise DICOM, Picker oder LP.
Ein Basisklassen-Netzwerkinterpreterprotokoll 38 kann eine Vielzahl von vererbenden Netzwerkinterpreterpro-
tokollen 52, 54, 56 fiir verschiedene Arten von Eingabe-Bebilderungsvorrichtungen oder Herstellern umfassen,
die einem Netzwerk-Client 12 zugeordnet sind, beispielsweise DICOM, Picker und LP.

[0064] Wie in Fig. 5 gezeigt, kann ein Basisklassen-Ausgabeinterpreterprotokoll 35 eine Vielzahl von verer-
benden Ausgabeinterpreterprotokollen fur verschiedene Arten von Ausgabe-Bebilderungsvorrichtungen 18
umfassen, wie beispielsweise ein SuperSet Ausgabeinterpreterprotokoll 41 von Imation, ein 831 Ausgabein-
terpreterprotokoll 43 von Imation oder ein 952 Ausgabeinterpreterprotokoll 45 von Imation. Ein Basisklas-
sen-Ausgabetreiberprotokoll 37 kann eine Vielzahl von vererbenden Ausgabetreiberprotokollen fur verschie-
dene Hardwareschnittstellenanforderungen umfassen, die der Ausgabe-Bebilderungsvorrichtung 18 zugeord-
net sind, wie ein Dual-Port-RAM-Ausgabetreiberprotokoll 47, ein serielles Ausgabetreiberprotokoll 49 oder ein
paralleles Ausgabetreiberprotokoll 51. Jedes der vorstehend beschriebenen vererbenden Protokolle umfasst
protokollspezifische Funktionen, die von einer Komponente 30, 32, 22 und 24 bereitgestellt werden, implemen-
tiert aber derartige Funktionen Uber eine generische Schnittstellen, die das entsprechende Basisklassenpro-
tokoll 34, 35, 36, 37, 38 beerbt. Fir jedes zuvor beschriebene Basisklassenprotokoll 34, 35, 36, 37, 38 kann
eine Reihe zusatzlicher vererbender Protokolle implementiert werden, und zwar gemaf den Anforderungen
der medizinischen Bebilderungssystemumgebung.

[0065] Die Art der Komponenten 30, 32, 22 und 24 ermdglicht eine wahlweise und modulare ,,Einsetzung" und
»-Entnahme" in bzw. aus einer Leitung 26 durch die Schnittstellenausfihrungskomponente 20. Jede der Kom-
ponenten 39, 32, 22, 24 ist mit einer anderen Komponente des gleichen Typs, aber eines anderen Protokolls,
mittels einer Reihe von Softwareschnittstellen austauschbar. Diese Basisklassenschnittstelle ist ein Ausfih-
rungsbeispiel, das in jede Komponente eingebaut ist, so dass jede Komponente 30, 32, 22 und 24 in einer
Pipeline 26 ersetzt werden kann, ohne die Konfiguration der anderen Komponenten in der Pipeline zu beein-
trachtigen. Jede einzelne Komponente 30, 32, 22 und 24 ist also wiederverwendbar, wodurch sich die bisher
notwendigen Kosten flr ein Redesign erheblich reduzieren.

[0066] Wenn die Leitung 26 beispielsweise fir die Kommunikation zwischen den Siemens Netzwerk-Clients
12 und einer Ausgabe-Bebilderungsvorrichtung 18, die die Funktionalitat des Imation SuperSet implementiert,
konfiguriert werden soll, wiirde die Schnittstellenausfiihrungskomponente 20 zunachst eine Netzwerkausfih-
rungskomponente 14 instanziieren, die zur Uberwachung des Vorhandenseins der Siemens Netzwerk-Clients
konfiguriert ist. Bei Erkennung eines Siemens Netzwerk-Clients 12 wirde die Netzwerkausfuhrungskompo-
nente 14 eine Netzwerktreiberkomponente 30 und eine Netzwerkinterpreterkomponente 32 erstellen, die fur
den Betrieb gemaf dem Siemens Netzwerkprotokoll konfiguriert sind. Die Netzwerktreiberkomponente 30 wiir-
de fur den Betrieb gemaf einem Netzwerktreiberprotokoll konfiguriert sein, das fir den Empfang von Bebilde-
rungsinformationen seitens des Siemens Netzwerk-Clients 12 geeignet ist. Die Netzwerkinterpreterkomponen-
te 32 wirde gemaf einem Netzwerk-Interpreterprotokoll arbeiten, das zur Erstellung erster Bebilderungsfor-
derungen geeignet ist, und zwar gestitzt auf das Format der Bildinformationen, die von dem Siemens Netz-
werk-Client eingehen. Die Netzwerkausfuhrungskomponente 14 wiirde dann die Netzwerktreiberkomponente
30 und die Netzwerkinterpreterkomponente 32 kommunikativ an eine Ausgabeinterpreterkomponente 22 bin-
den, die ein Ausgabeinterpreterprotokoll aufweist, das zur Erzeugung zweiter Bebilderungsanforderungen ge-
eignet ist, die von der Ausgabe-Bebilderungsvorrichtung des Typs Imation SuperSet verstanden werden, wo-
bei die Netzwerkinterpreterkomponente 32 bereits an eine Ausgabetreiberkomponente 24 gebunden ist, die
ein Ausgabetreiberprotokoll aufweist, das fiir die Ubermittlung der zweiten Bebilderungsanforderungen Uber
eine serielle Hardwareschnittstelle geeignet ist, die der Ausgabe-Bebilderungsvorrichtung des Typs Imation
SuperSet zugeordnet ist.

[0067] Alternativ hierzu und sofern die Leitung 26 fir die Kommunikation zwischen einem Toshiba Netz-
werk-Client 12 und einer Ausgabe-Bebilderungsvorrichtung 18 des Typs Imation SuperSet konfiguriert ist,
ware es nur erforderlich, die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 mit
Komponenten auszuwechseln, die gemal den Netzwerktreiber- bzw. Netzwerkinterpreterprotokollen konfigu-

13/60

DE 697 35351 T2 2006.11.30

riert ist, die fur die Toshiba-Modalitat geeignet sind. Eine Netzwerkausfiihrungskomponente 14, die zur Uber-
wachung auf Toshiba-Netzwerk-Clients 12 instanziiert wurde, wirde eine Netzwerktreiberkomponente 30 und
eine Netzwerkinterpreterkomponente 32 erstellen, die fur den Betrieb gemal dem Toshiba-Protokoll konfigu-
riert sind. Die fir die Siemens Netzwerk-Clients 12 verwendete Ausgabeschnittstellenkomponente 16 konnte
repliziert und in einer separaten Kommunikationsleitung 26 fiir Toshiba-Netzwerk-Clients verwendet werden.
Die Ausgabeschnittstellenkomponente 16 wiirde eine fiir den Imation SuperSet konfigurierte Ausgabeinterpre-
terkomponente 22 und eine seriell fiir den Imation SuperSet konfigurierte Ausgabetreiberkomponente 24 um-
fassen und somit bereits gemall den Anforderungen der Ausgabe-Bebilderungsvorrichtung 18 konfiguriert
sein, und zwar unabhangig von dem Netzwerk-Client 12. Die Netzwerkausfuhrungskomponente 14 wirde in
einer separaten Leitung 26 die Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32
kommunikativ an die standardmaRige Ausgabeinterpreterkomponente 22 und Ausgabetreiberkomponente 24
binden, die fiir die Ausgabe-Bebilderungsvorrichtung des Typs Imation SuperSet konfiguriert sind und in einer
beliebigen Leitung mit einer SuperSet-Ausgabevorrichtung verwendbar sind, welche bereits aneinander ge-
bunden sind.

[0068] Als weitere Alternative und sofern die zuvor beschriebene Leitung 26 zur Kommunikation zwischen ei-
nem Toshiba-Netzwerk-Client 12 und einer Ausgabe-Bebilderungsvorrichtung 18 des Typs Imation 952 modi-
fiziert werden misste, ware nur die Modifikation der Ausgabeschnittstellenkomponente 16 erforderlich. Die
Netzwerkausfuhrungskomponente 14 wirde dann die Netzwerktreiberkomponente 30 und die Netzwerkinter-
preterkomponente 32 kommunikativ an eine Ausgabeinterpreterkomponente 22 binden, die ein Ausgabeinter-
preterprotokoll aufweist, das zur Erzeugung zweiter Bebilderungsanforderungen geeignet ist, die von der Aus-
gabe-Bebilderungsvorrichtung des Typs Imation 952 verstanden werden, die bereits an eine Ausgabetreiber-
komponente 24 gebunden ist, die ein Ausgabetreiberprotokoll aufweist, das fiir die Ubermittiung der zweiten
Bebilderungsanforderungen Uber eine serielle Hardwareschnittstelle geeignet ist, die der Ausgabe-Bebilde-
rungsvorrichtung des Typs Imation 952 zugeordnet ist. Somit ware die von der Netzwerkausfihrungskompo-
nente 14 erstellte Netzwerktreiberkomponente 30 und die Netzwerkinterpreterkomponente 32 von einer Ande-
rung in der Ausgabebebilderungsvorrichtung nicht betroffen, die der Kommunikationsleitung 26 zugeordnet ist.

[0069] AbschlieRend und sofern die zuvor beschriebene Leitung 26 zur Kommunikation zwischen einem Tos-
hiba-Netzwerk-Client 12 und einer Ausgabe-Bebilderungsvorrichtung 18 des Typs Imation 952 mit Du-
al-Port-RAM-Schnittstelle modifiziert werden misste, ware nur die Modifikation der Ausgabeschnittstellenkom-
ponente 16 erforderlich. Die Netzwerkausfihrungskomponente 14 wiirde dann die Netzwerktreiberkomponen-
te 30 und die Netzwerkinterpreterkomponente 32 kommunikativ an eine Ausgabeinterpreterkomponente 22
binden, die ein Ausgabeinterpreterprotokoll aufweist, das zur Erzeugung zweiter Bebilderungsanforderungen
geeignet ist, die von der Ausgabe-Bebilderungsvorrichtung des Typs Imation 952 verstanden werden, die be-
reits an eine Ausgabetreiberkomponente 24 gebunden ist, die ein Ausgabetreiberprotokoll aufweist, das fiir die
Ubermittlung der zweiten Bebilderungsanforderungen iiber eine Dual-Port-RAM-Hardwareschnittstelle geeig-
net ist, die der Ausgabe-Bebilderungsvorrichtung des Typs Imation 952 zugeordnet ist. Somit bliebe die Netz-
werkausfihrungskomponente 14, einschlieflich der fir Toshiba konfigurierten Netzwerktreiberkomponente 30
und Netzwerkinterpreterkomponente 32, von der Modifikation nicht betroffen.

[0070] Die Verwendung von Vererbungskonzepten der objektorientierten Programmierung seitens der vorlie-
genden Erfindung hat den Vorteil der Wiederverwendbarkeit von Netzwerktreiber- und Netzwerkinterpreter-
komponenten sowie die Vereinfachung in der Erstellung neuer Netzwerktreiber- und Netzwerkinterpreterkom-
ponenten. Die Vererbung ermoglicht es, neue Komponenten durch Vergleich mit bereits entwickelten Kompo-
nenten zu definieren, was als differenzielle Programmierung (,Differential Programming") bekannt ist. Inner-
halb dieser Komponenten wird eine gemeinsame Funktionalitadt wiederverwendet, so dass diese nicht erneut
entwickelt zu werden braucht. Alle an der Basisklasse vorgenommenen Fehlerbehebungen und Verbesserun-
gen werden auRerdem automatisch an die abgeleiteten Klassen weitergegeben. Auf diese Weise ermoglicht
die vorliegende Erfindung die Einbeziehung neuer Protokolle in das Softwaresystem innerhalb eines Ublicher-
weise kurzeren Zeitraums sowie die Nutzung einer kleineren Zahl von Ressourcen, als dies nach dem Stand
der Technik ublich ist.

Client-Server-Hierarchie der Komponenten

[0071] Wie in Fig. 6 gezeigt, bildet die Schnittstellenausfiihrungskomponente 20 in einem Ausflihrungsbei-
spiel die Leitung 26 gemaR einer Client-Server-Architektur. In Eig. 6 weist ein von Komponente A auf Kompo-
nente B gerichteter Pfeil darauf hin, dass Komponente A eine Client-Komponente der Server-Komponente B
ist. Die bidirektionalen Pfeile zwischen der Netzwerktreiberkomponente 30 und dem Netzwerk-Client 12 sowie
zwischen der Ausgabetreiberkomponente 24 und der Ausgabe-Bebilderungsvorrichtung 18 stellen keine Cli-

14/60

DE 697 35351 T2 2006.11.30

ent-Server-Beziehung dar, sondern die Hardware-/Software-Schnittstellen des medizinischen Bebilderungs-
systems 10. Wie anhand der Pfeile in Fig. 6 dargestellt, definiert die Schnittstellenausfihrungskomponente 20
in einem Ausflhrungsbeispiel die Client-Server-Beziehung des Softwaresystems derart, dass: (1) die Schnitt-
stellenausfihrungskomponente 20 eine Client-Komponente der Netzwerkausfiihrungskomponente 14, der
Ausgabeinterpreterkomponente 22 und der Ausgabetreiberkomponente 24 ist; dass (2) die Netzwerkausfih-
rungskomponente 14 eine Client-Komponente der Netzwerktreiberkomponente 30 und der Netzwerkinterpre-
terkomponente 32 ist; dass (3) die Netzwerktreiberkomponente 30 eine Client-Komponente der Netzwerkinter-
preterkomponente 32 ist; dass (4) die Netzwerkinterpreterkomponente 32 eine Client-Komponente der Ausga-
beinterpreterkomponente 22 ist, und dass (5) die Ausgabeinterpreterkomponente 22 eine Client-Komponente
der Ausgabetreiberkomponente 24 ist.

[0072] Das Client-Server-Paradigma ermdglicht eine nahtlose Integration unter den erfindungsgemafien
Komponenten. Die Client-Komponente fordert einen durchzufiihrenden Dienst an; der Server ist die Ressour-
ce, die die Client-Anfrage abwickelt. Der Client sendet eine Nachricht an einen Server, um den Server zur
Durchfuhrung einer Aufgabe aufzufordern, worauf der Server auf die Anfrage des Clients antwortet. Durch die
Verwendung von Client-Server-Beziehungen in der vorliegenden Erfindung ergeben sich Vorteile in Bezug auf
die Wartungsfreundlichkeit im Vergleich mit objektorientierten Programmierungsgrundséatzen. Hinter dem Cli-
ent-Server-Konzept steht die Idee, dass separate Komponenten, die von einer objektorientierten Architektur
bereitgestellt werden, nicht alle aus demselben Speicherraum ausgefiihrt zu werden brauchen. Client-Ser-
ver-Computing fordert somit die Skalierbarkeit: jede Komponente der vorliegenden Erfindung kann ersetzt wer-
den, wenn es der wachsende oder sinkende Verarbeitungsbedarf fiir diese Komponente diktiert, ohne dass die
Ubrigen Komponenten davon wesentlich beeintrachtigt werden. Wie zuvor beschrieben, befinden sich die
Komponenten der vorliegenden Erfindung innerhalb desselben Speichers, sei es auf einer Karte in der Bebil-
derungsvorrichtung oder in dem RAM eines Computers, an den die Vorrichtung gekoppelt ist. Sollte die Zahl
der Bebilderungsvorrichtungen, mit denen die Clients kommunizieren kénnen, relativ gro3 werden, kénnten
sich die Ausgabeschnittstellenkomponenten fiir jede Vorrichtung auf einer Karte in der Vorrichtung befinden,
wahrend sich die Uibrigen Komponenten auf einem an das Netz angeschlossenen Computer befinden kénnen.
Als Ergebnis der Ubernahme eines Client-Server-Modells erméglicht die vorliegende Erfindung die Neuanord-
nung einzelner Komponenten, ohne dass davon die Logik der tGbrigen Komponenten besonders betroffen wa-
re.

[0073] In der beschriebenen Client-Server-Beziehung der vorliegenden Erfindung ist die Ausgabetreiberkom-
ponente 24 eine reine Server-Komponente fir die Ausgabeinterpreterkomponente 22. Die Ausgabetreiber-
komponente 24 ist fir die Hardwareanforderungen auf unterer Ebene zustandig und unterliegt der Steuerung
durch die auf héherer Ebene angeordnete Ausgabeinterpreterkomponente 22. Die Netzwerkinterpreterkompo-
nente 32 ist eine Client-Komponente der Ausgabeinterpreterkomponente 22, die einen Funktionssatz bereit-
stellt, mit dem die Netzwerkinterpreterkomponente die Ausgabe-Bebilderungsvorrichtung 18 steuert. Die Aus-
gabeinterpreterkomponente 22 initiiert niemals die Kommunikation mit der Netzwerkinterpreterkomponente
32, sondern stellt auf Anfrage der Netzwerkinterpreterkomponente Services bereit. Die Netzwerktreiberkom-
ponente 30 ist eine Client-Komponente der Netzwerkinterpreterkomponente 32, die mit der Netzwerktreiber-
komponente 30 kommuniziert, um die Bildinformationen von einem Client zu empfangen und zu interpretieren
und die ersten Bebilderungsanforderungen zu erzeugen. Die Netzwerktreiberkomponente 30 kommuniziert di-
rekt mit den Clients gemal einem bestimmten Protokoll. Jede Komponente 30, 32, 22 und 24 ist eine Ser-
ver-Komponente fiir die Schnittstellenausfihrungskomponente 20. Die Schnittstellenausfliihrungskomponente
20 steuert somit das gesamte Softwaresystem.

Kommunikation unter den Komponenten

[0074] Die Kommunikation unter den erfindungsgemafen Komponenten erfolgt Gber die Ausgabe von RPCs
(Remote Procedure Calls/Verfahrensfernabrufe). Ein RPC ist ein gemeinsamer Kommunikationsmechanis-
mus, der oft in komplexen, verteilten Softwaresystemen verwendet wird. Eine Client-Komponente fiihrt eine
bestimmte Funktion aus, indem sie einen RPC an eine entsprechende Server-Komponente absetzt. Der RPC
wickelt alle Mechanismen ab, die fiir die Kommunikation zwischen den Komponenten erforderlich sind. Jede
Komponente ist derart konfiguriert, dass sie Services fur eine Client-Komponente bereitstellt, wobei sie aller-
dings nicht weil}, von wie vielen Komponenten sie als Server-Komponente benutzt wird. Die Server-Kompo-
nenten fihren einfach Anfragen der Client-Komponenten aus, ohne protokollspezifische Abhangigkeiten auf-
zuweisen.

[0075] Die Verwendung von RPCs ermdglicht der vorliegenden Erfindung die Nutzung von Vorteilen, die sich
aus einem als ,Kapselung" bezeichneten Konzept ergeben. Die Kapselung einer Komponente bedeutet, dass

15/60

DE 697 35351 T2 2006.11.30

die ubrigen Komponenten nur die Services oder Aufgaben sehen, die diese Komponente anbietet, ohne zu se-
hen, wie diese Services und Aufgaben implementiert sind. Wie eine Komponente ihre Aktionen implementiert
und wie ihre internen Daten angeordnet sind, ist also innerhalb eines prozeduralen Mantels ,gekapselt", der
den gesamten Zugang zu dem Objekt tiber RPCs vermittelt. Die Prozeduren und deren Daten sind nur fur die
Komponente selbst sichtbar. Die erfindungsgemafen Komponenten sind somit gekapselte Funktionseinhei-
ten. Anders ausgedrickt ermoglicht die Kapselung das Verstecken von Informationen und eine Datenabstrak-
tion. Welches Verfahren von einer bestimmten Komponente verfolgt wird, ist ein Implementierungsdetail, das
davon abhangt, wie die Daten verwendet werden. Die Operationen, die auf die gekapselten Daten ausgefiihrt
werden konnen, werden als Teil der Schnittstelle zu der Komponente angegeben, also als RPCs. Die Imple-
mentierungsdetails der Operationen, die die gespeicherten Daten verarbeiten, kdnnen also geandert werden,
ohne dass die RPCs betroffen sind. Zusammen mit der Vererbung hat das Kapselungskonzept den Vorteil,
dass die Komponenten innerhalb der vorliegenden Erfindung austauschbar sind.

[0076] In einem Ausflhrungsbeispiel der vorliegenden Erfindung wird ein RPC verwendet, um eine Funktion
auf folgende Weise auszufiihren. Wenn ein Softwareprozess, der von einem Client durchgefihrt wird, eine be-
stimmte Funktion ausfiihren muss, ruft der Prozess einfach die Funktion anhand ihres Bezeichners. Eine Soft-
wareschicht, die innerhalb der Client-Komponente angeordnet ist, die als ,Client-Stub" bezeichnet wird, fangt
den Funktionsaufruf ab. Wenn der Client-Stub feststellt, dass der zur Durchfuhrung der aufgerufenen Funktion
notwendige Softwarecode bereits in einer anderen Server-Komponente vorhanden ist, erzeugt er eine Mel-
dung, wobei er dem Funktionsaufruf alle Daten sowie die notwendige Paketierung und Adressierung mitgibt.
Der Client-Stub sendet in einem Ausfiihrungsbeispiel die Meldung Uber das Echtzeitbetriebssystem, das in
dem Softwaresystem vorhanden ist, an die Server-Komponente. Das Servermodul enthalt eine Schicht des
Software-Codes, die als ,Server-Stub" bezeichnet wird, die die Meldung entgegennimmt. Der Server-Stub ent-
nimmt die Meldung und ruft die richtige lokale Funktion ggf. in Verbindung mit Daten auf, die der Meldung ent-
nommen worden sind. Die lokale Funktion wird ausgefiihrt, als ware sie urspriinglich lokal aufgerufen worden,
und gibt alle angeforderten Informationen zurtick. Der Server-Stub erzeugt eine Antwort anhand der zuriickge-
gebenen Informationen und sendet die Antwort tUiber das Betriebssystem an die Client-Komponente. Bei Erhalt
der Antwort entnimmt der Client-Stub die zurtickgegebenen Informationen und Ubergibt die Informationen an
den lokalen Softwareprozess, der die Funktion urspriinglich aufgerufen hat. Der lokale Softwareprozess fahrt
dann fort, ohne zu wissen, dass eine intermodulare Kommunikation stattgefunden hat.

Komponentendefinitionen eines Ausfiihrungsbeispiels der vorliegenden Erfindung

[0077] Die folgenden Unterabschnitte stellen Details bezlglich der Art und Weise vor, in denen jedes Basis-
klassenprotokoll in einem Ausfuhrungsbeispiel des erfindungsgemaflen medizinischen Bebilderungssystems
aus Fiq. 1 implementierbar ist. Die Unterabschnitte stellen Definitionen und Anforderungen von Services be-
reit, die von jeder Komponente 30, 32, 22 sowie 24, 14 bereitgestellt werden, wobei die Darstellung zur Veran-
schaulichung in der objektorientierten Programmiersprache C++ erfolgt, die nach Bedarf kommentiert wird.
Wenn nachstehend Programmcode in C++ zur Veranschaulichung der Funktionalitat einer bestimmten Kom-
ponente verwendet wird, wird ggf. das Label ,Host" benutzt, um einen Netzwerk-Client 12 zu bezeichnen, und
das Label ,Laserabbildungsgerat" oder "LI" wird ggf. benutzt, um die Ausgabe-Bebilderungsvorrichtung 18 zu
bezeichnen.

Das Netzwerkausfiihrungs-Basisklassenprotokoll

[0078] Das Netzwerkausflihrungs-Basisklassenprotokoll umfasst in dem vorliegenden Ausfiihrungsbeispiel
einen RPC, den die Netzwerkausflihrungskomponente 14 bendtigt, um die Client-Komponente, also die
Schnittstellenausfiihrungskomponente 20, bereitzustellen. Der RPC wird nachstehend in Bezug auf die Art der
verarbeiteten Parameter und der durchgefiihrten Funktionen beschrieben.

1. set_debug level Parameters: Type:
debug level DEBUG_LEVEL
Returns: Type:
void n/a

[0079] Das tatsachliche Basisklassenprotokoll fiir die Netzwerkausflihrungskomponente 14 kann in C++ fol-
gendermalien definiert werden:

16/60

DE 697 35351 T2 2006.11.30

class NETWORK_EXECUTIVE({

protected:
LI_INTERFACE *li_handle; // Zeiger auf Laserbelichter-Schnittstelle
INT32 return_code; /I RC fiir OS-Operationen

DEBUG_LEVELS debug_level; //Debug-Level fiir Modul

IMAGER_CONFIG *im_cfg; // Belichter-/Dicom-Konfigurationsobjekt
public:

NETWORK_EXECUTIVE(LI_INTERFACE *,

IMAGER_CONFIG*);

virtual~-NETWORK EXECUTIVE(void);

virtual void_set_debug_level(DEBUG_LEVELS level); //auf neuen Debug-Level setzen
¥

[0080] Das Basisklassenprotokoll fiir eine nach dem DICOM-Protokoll konfigurierte Netzwerkausfiihrungs-
komponente kann in C++ folgendermafien definiert werden:

17/60

DE 697 35351 T2 2006.11.30

class DICOM_EXEC : public TaskVStack, public NETWORK EXECUTIVE{
friend class EVENT MGR;
private:
void execute(void);
Bool init_network(); //initialisiere DIMSE-Schnittstelle auf net
int connect(); //Netzwerk iiberwachen und auf SCU warten
Bool checkHeapSpace(); //Priifen, ob geniigend Speicher fiir neue SCU
Bool checkHeapSpaceVer(); //Priifen, ob geniigend Speicher fiir neue Verify-only-SCU
public:
int numConnections;
int numConnectionsVer;
Bool verification_only;
int port;
int network_socket; // Socket flir Ausfithrungsmodul, um das Netz abzuhé6ren
int assoc_sockfd; // Socket fiir neue Association
DIMSE nethandle netHandle;
DICOM_EXEC(LI_INTERFACE *, IMAGER_CONFIG *);
~DICOM_EXEC(void);
void async_handler(char, ID);
/lAsynkrone Befehle vom Dicom Driver
void set_debug_level(DEBUG_LEVELS level); //setze auf neuen Debug-Level
IR
[0081] In diesem Beispiel enthalt die DICOM-Ausfihrungsbasisklasse zwei RPCs: set_debug_level() und

async_handler(). Der async_handler() RPC ermdglicht einem DICOM_Driver, um das DICOM_executive dar-
Uber zu informieren, dass es eine Aufgabe abgeschlossen hat und beendet werden sollte.

Das Netzwerktreiber-Basisklassenprotokoll
[0082] Das Netzwerktreiber-Basisklassenprotokoll kann in dem vorliegenden Ausfiihrungsbeispiel zwei

RPCs umfassen: set_debug_level() und ni_event_handler(). Die RPCs werden nachstehend in Bezug auf die
Art der verarbeiteten Parameter und der durchgefiihrten Funktionen beschrieben.

18/60

DE 697 35351 T2 2006.11.30

1. set_debug level Parameter: Typ:
debug level DEBUG_LEVEL
Returns: Typ:
void nicht vorhanden
2. ni_event_handler Parameter: Typ:

Network Interpreter event NI_EVENT
Returns: Typ:
void nicht vorhanden

[0083] Der RPC ni_event-handler empfangt asynchrone Ereignisse von der Ausgabe-Bebilderungsvorrich-
tung 18, die Uiber die Netzwerkinterpreterkomponente 32, die Ausgabeinterpreterkomponente 22 und die Aus-
gabetreiberkomponente 24 weitergegeben werden.

[0084] Wie zuvor erwahnt, stellt die Netzwerktreiberkomponente 30 einen Mechanismus zur Handhabung
asynchroner Ereignisse bereit, die von der Ausgabe-Bebilderungsvorrichtung 18 empfangen wurden. Die Er-
eignisse dienen dazu, die Netzwerktreiberkomponente 30 lber eine Statusanderung an der Ausgabe-Bebilde-
rungsvorrichtung 18 zu informieren. Verschiedene Ereignisse, die den Status der Ausgabe-Bebilderungsvor-
richtung 18 bezeichnen, sind u.a. (1) NI_printer_update, was anzeigt, dass die Ausgabe-Bebilderungsvorrich-
tung ihren Status geandert hat, und (2) NI_print_job_update, was anzeigt, dass ein Bebilderungsauftrag seinen
Status geandert hat. Die Funktion der vorstehenden Statusereignisse besteht darin, zu vermeiden, dass der
Netzwerk-Client 12 die Ausgabe-Bebilderungsvorrichtung 18 fortlaufend abfragen muss.

[0085] Das tatsachliche Basisklassenprotokoll fiir die Netzwerktreiberkomponente 30 kann in C++ folgender-
malen definiert werden:

class NETWORK_DRIVER{

protected:
INT32 return_code; /I RC fiir OS-Operationen
ID assoc_socket; // Socket-Deskriptor fiir association
IMAGER_CONFIG *imager config; // Konfigurationsinformationen
NETWORK_DRIVER(ID port, DEBUG_LEVELS,IMAGER_CONFIG *);
virtual.about. NETWORK DRIVER(void);

public:
DEBUG_LEVELS debug_level; //Debug-Level fiir Modul
virtual void set_debug_level(DEBUG _LEVELS level); //setze auf neuen Debug-Level
virtual void ni_event_handler(NI _EVENT,NI async data)=0;

$5

[0086] Das Basisklassenprotokoll fiir eine nach dem DICOM-Protokoll konfigurierte Netzwerktreiberkompo-
nente kann ein Objekt DD_NET_MONITOR verwenden, das in C++ folgendermalen definiert werden kann:

19/60

DE 697 35351 T2 2006.11.30

class DD_NET MONITOR : public TaskVStack{
private:
DICOM_DRIVER *master; //Zeiger auf kontrollierendes Objekt
void execute(void); /Hauptausfithrungs-Thread
public:
DD NET MONITOR(DICOM_DRIVER *);
~DD NET MONITOR(void);
¥
typedef enum {
DD_PrinterStatusChange,
DD_JobStatusChange
} DD_event

[0087] DD_NET_MONITOR ist ein Objekt, das sich in einem Objekt DICOM_DRIVER befindet, das die DI-
COM-Treiberkomponente implementiert. Das Objekt DD_NET_MONITOR uberwacht kontinuierlich das Netz-
werk auf eingehende Nachrichten und informiert bei Eintreffen einer Nachricht das Objekt DICOM_DRIVER.
Das Objekt DICOM_DRIVER liest und verarbeitet die Meldungen, wobei Informationen an das Objekt
DICOM_INTERPRETER (Netzwerkinterpreterkomponente 32) iber RPC-gestiitzte Funktionen weitergegeben
werden, die von der Netzwerkinterpreterkomponente definiert sind.

[0088] Das Basisklassenprotokoll fiir eine nach dem DICOM-Protokoll konfigurierte Netzwerktreiberkompo-
nente kann in C++ folgendermafen definiert werden:

20/60

DE 697 35351 T2 2006.11.30

class DICOM_DRIVER : public TaskVStack,
public NETWORK _DRIVER {
friend class DD_NET _MONITOR;
private:
DD_NET_MONITOR network monitor;
//hole Meldungen vom Netzwerk
//Association-Handlingverfahren und -parameter
void associationServer(); //Association-Handling
void monitorNetwork(); //DICOM-Meldungen kontinuierlich entgegennehmen und
priifen
int processMessage(); //empfangene DICOM-Meldung handeln
/[FilmSession-Verfahren und -parameter
void handleFilmSession(DIMSE _CmdSet cmdSet, DIMSE MsgHandle msg);
void fsNCreate(DIMSE_CmdSet cmdSet, DIMSE MsgHandle msg);
void fsNSet(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
void fsNAction(DIMSE_CmdSet cmdSet, DIMSE MsgHandle msg);
void fsNDelete(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
//FilmBox-Verfahren und -parameter
void handleFilmBox(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
void fbNCreate(DIMSE_CmdSet cmdSet, DIMSE_MsgHandle msg);
void {bNSet(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
void fbNAction(DIMSE_CmdSet cmdSet, DIMSE_MsgHandle msg);
void {bNDelete(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
//lmageBox-Verfahren und -Parameter
void handleImageBox(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);

21/60

DE 697 35351 T2 2006.11.30

void ibNSet(DIMSE_CmdSet cmdSet, DIMSE MsgHandle msg);
//Annotation Box-Verfahren und -Parameter
void handleAnnoBox(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
void abNSet(DIMSE CmdSet cmdSet, DIMSE MsgHandle msg);
//Printer-Verfahren und -parameter
void handlePrinter(DIMSE_CmdSet cmdSet);
void prNGet(DIMSE _CmdSet cmdSet);
//PrintJob-Verfahren und -Parameter
void handlePrintJob(DIMSE_CmdSet cmdSet);
void pjNGet(DIMSE CmdSet cmdSet);
/Iverschiedene Funktionen
void async_event_server(); / aufgerufene Serverfunktionen zur Verarbeitung asynchro-
ner Ereignisse
public:
DICOM_DRIVER(DICOM_EXEC *,ID,
DICOM_INTERPRETER *,
DIMSE_AssocHandle, DIMSE SOPInfo *,
DEBUG_LEVELS,IMAGER_CONFIG *);
~DICOM_DRIVER(void);
void ni_event -handler(NI EVENT,NI async_data);
3

[0089] In diesem Beispiel umfasst der DICOM_DRIVER eine grof3e Zahl von Funktionen, die auf die einge-
henden DICOM-Meldungen wirken. Die meisten Funktionen kdnnen DICOM-spezifisch sein und sind fur ein-
schlagige Fachleute unter Bezug auf den DICOM-Standard verstandlich. Jede dieser Funktionen ist intern und
eng an die betreffenden DICOM DIMSE Befehle gebunden. AuRerdem enthalt der DICOM_DRIVER den RPC,
der in der Basisklasse network_driver angegeben worden ist: ni_event_handler(). Die DICOM-Funktionen ru-
fen netzwerkinterpreterspezifische Funktionen auf, die den RPC-Mechanismus verwenden.

Das Netzwerkinterpreter-Basisklassenprotokoll
[0090] Das Netzwerkinterpreter-Basisklassenprotokoll umfasst in dem vorliegenden Ausflihrungsbeispiel
RPCs, die die Netzwerkinterpreterkomponente 32 anfordern, um die Client-Komponente, also die Netzwer-

kausfiihrungskomponente 14, bereitzustellen.

[0091] Das eigentliche Basisklassenprotokoll fiir die Netzwerkinterpreterkomponente 32 kann in C++ folgen-
dermafen definiert werden, wobei der Netzwerkinterpreter als "NETWORK INTERFACE" bezeichnet wird:

22/60

DE 697 35351 T2 2006.11.30

//Asynchrone Ereignisse fiir Netzwerkschnittstelle definieren
typedef enum {
NI printer_update, // Bekanntgeben, dass sich LI-Status gedndert hat
NI print_job_update // Bekanntgeben, dass sich Auftragsstatus geéndert
} NIEVENT;
typedef union {
int id; // ID der Komponente, die ihren Status geéndert hat
} NI _async_data;
typedef NETWORK_DRIVER *ND_PTR; // Zeiger auf ND-Client
typedef void NETWORK DRIVER::*ND METHOD PTR)
I/ Zeiger auf Client-Verfahren
(NI_EVENT, NI _async_data);
class NETWORK _INTERFACE{
protected:
INT32 return_code; // RC for OS operations
ID port_id; // Netzwerkanschluss initialisieren
Semaphore rpc - reply; // RPC-Antwort abgeschlossen
Semaphore rpc_free; // RPC-Mailbox frei
Semaphore event_reply; // asynchrones Ereignis empfangen
Semaphore event_free; // Mailbox fiir asynchrone Ereignisse frei
Mailbox event_mbox; // Ereignis-Mailbox
Mailbox rpc_mbox; // RPC-Mailbox
ND_PTR driver; // Treibermodul ruft uns

23/60

DE 697 35351 T2 2006.11.30

ND_METHOD_PTR driver_async_handler; // Zeiger auf async handler
IMAGER_CONFIG *iconfig; // Zeiger auf Belichterkonfigurationsobjekt
NETWORK INTERFACE(D, LI_INTERFACE *,
DEBUG _LEVELS,
IMAGER_CONFIG *);
virtual ~\NETWORK_INTERFACE(void);
LI INTERFACE *li_handle // Handle fiir LI-Schnittstelle
DEBUG_LEVELS debug_level; //Debug-Level fiir Modul
Param_Blk parameters; // Zeiger auf Parameter
LI async_data li_async_data; // Daten von LI-Ereignissen
public:
virtual Bool li_event handler(LI INTERFACE_EVENT, LI async_data);
virtual void set_async_func(ND_PTR, ND _METHOD_PTR);
virtual void set_debug_level(DEBUG_LEVELS level); //setze neuen Debug-Level
35

[0092] Ein Basisklassenprotokoll fir eine nach dem DICOM-Protokoll konfigurierte Netzwerkinterpreterkom-
ponente kann in C++ folgendermalfen definiert werden:

// DICOM-Schnittstellenmeldungstyp fiir RPCs
typedef struct {
DICOM_Command command;
// auszufiihrender DICOM-Befehl
DICOM_Response *response; // Zeiger auf Antwortobjekt
DICOM_Data data; // Meldungsdaten
} DICOM_Message;
class DICOM_INTERFACE : public TaskVStack, public
NETWORK INTERFACE,
public PrintServerInf, public SessionHandler {
private:
DICOM_Message *message; // Zeiger auf RPC-Client-Meldung
DICOM_Response *response; // Zeiger auf Antwortobjekt
DICOM_Data *data; // Meldungsdaten

24/60

DE 697 35351 T2 2006.11.30

INT32 return_code; // rpc-Return-Code
PrinterStatus currentPrStatus;

void execute(void);

void send_rpc(DICOM_Message *);

/I Meldung an Server-Thread senden

void ack_rpc(void); / RPC-Beendigung quittieren

public:

3

DICOM_INTERFACE(ID LI_INTERFACE *, DEBUG_LEVELS,
IMAGER_CONFIG *);

~DICOM_INTERFACE(void);

Bool li_event handler(LI INTERFACE_EVENT.,LI async data);

// Handler fiir Asynchrones Ereignis

class PrintServerInf : public BasePrintServer {

public:

// Constructor - Datenelemente initialisieren und

// Verbindung mit PrintServer-Prozess herstellen.
PrintServerInf(DICOM_INTERFACE*,IMAGER_CONFIG*);

// Destructor - Sitzung und dynamisch zugewiesenen Speicher aufrdumen
~PrintServerInf();

// Dieses Verfahren 6ffnet eine Filmsitzung am PrintServer und

// gibt einen Zeiger auf ein Objekt FilmSessionInf zurtick.
FilmSessionInf* openSession() { return openSession(String()); }
FilmSessionInf* openSession(const String& origld);

// Dieses Verfahren schlieBt eine Sitzung am PrintServer, worauf

// alle zuvor in der Sitzung gespeicherten Bilder und alle

/I offenen Filmboxes geldscht werden.

void closeSession();

// Dieses Verfahren holt die Statusinformationen eines Auftrags anhand dessen ID.
bool getJobStatus(JobStatus& status, ID jobld);

// Folgende Verfahren erméglichen einem Client die Bearbeitung von

/[Auftragen in der Print-Server-Warteschlange.

// Dieses Verfahren entfernt einen Auftrag aus der Server-Warteschlange.

25/60

DE 697 35351 T2 2006.11.30

bool cancel(ID jobld);
// Dieses Verfahren andert die Prioritét eines Auftrags in der Server-Warteschlange.
bool alterPriority(ID jobld, Priority p);
// Dieses Verfahren gibt ein Objekt zuriick, das Druckerstatusinformationen enthélt
bool getPrinterStatus(PrinterStatus& status);
// Dieses Verfahren weist den Server an, herunterzufahren.
void shutdown();
void setHostName(const String& name);
void setHostName(char* name);
protected:
void connect();
bool getPrintQueue(JobldArray& jobs, ID sessionld, const String& origld);
DICOM_INTERFACE* master;
IMAGER_CONFIG *m_config;
private:
FilmSessionInf* m_fs;
35
class SessionHandler {
friend class DICOM_INTERFACE;
public:
DICOM_INTERFACE* master;
ID m_sessionld;
ID m_fbld;
ID m_imgld;
LIST m_printJobs;
Bool m_contrastTest;
int m_images_acquired;
LSVR_Status m_acquire_status;
States m_state;
String hostName;
Bool m_contrastTestMode;
PARAMETERS m_liparams;
IMAGE *image_listfMAX_IMAGES_PER_PAGE];

26/60

DE 697 35351 T2 2006.11.30

IMAGE image list_storefMAX IMAGES_PER_PAGE];
IMAGE *raw_image listftMAX IMAGES_PER_PAGE];
IMAGE raw_image list_storelMAX IMAGES_PER PAGE];
SessionHandler(DICOM_INTERFACE* m);

virtual ~SessionHandler();

ID getSessionld();

ID getNextFilmBoxId() { return ++m_fbld; }

ID getNextImageld() { return ++m_imgld; }

Bool queryPrintJobs(ID jobld){ return m_printJobs.query(jobld); }
void mapJobStatus(JobStatus* js);

Bool handleContrastTestEvent(char* nid);

void printContrastTest(ID image);

LSVR _Status acquireAlllmageMemory(int rows, int cols);
void sessionClientHandler();

void openSessionHandler();

void closeSessionHandler();

void newFilmBoxHandler();

void printHandler();

void imageAllocateHandler();

void imageDataHandler();

void deleteImageHandler();

void filmAttrHandler();

void imageAttrHandler();

void associatelmageHandler();

void eraseImageHandler();

void eraseAlllmages();

void deleteFilmBoxHandler();

void getPrinterStatusHandler();

void getPrintQueue();

void getJobStatusHandler();

void cancelJobHandler();

void setPriorityHandler();

void nolmageHandler();

27/60

DE 697 35351 T2 2006.11.30

void errorHandler();
void cleanUpImages();

void updateParameters(BaseFilmSession *fs, BaseFilmBox *fb);

Das Ausgabeinterpreter-Basisklassenprotokoll

[0093] Die Netzwerkinterpreterkomponente 32 bildet tber einen Satz von Bebilderungsobjekten eine Schnitt-
stelle zur Ausgabeinterpreterkomponente 22. Die Bebilderungsobjekte dienen als Parameter fiir die RPCs und
enthalten alle verfligbaren Informationen beziiglich der Eigenschaften der Ausgabe-Bebilderungsvorrichtung
18 und des Bebilderungsprozesses. Die Netzwerkinterpreterkomponente 32 kann beliebige Teile der Informa-
tionen verwenden und den brigen Teil ignorieren. Es gibt sechs Definitionen fiir Bebilderungsobjekte, namlich
(1) ein Boxobjekt, (2) ein Formatobjekt, (3) ein Bildobjekt, (4) ein Testbildobjekt, 5) ein Stringobjekt und 6) eine
Vielzahl allgemeiner Bebilderungsparameterobjekte.

[0094] Ein Formatobjekt wird verwendet, um ein gesamtes Blatt an Bebilderungsmedien zu beschreiben, auf
denen die Ausgabe-Bebilderungsvorrichtung 18 ein Bild erzeugt. Das Formatobjekt enthalt Informationen be-
zuglich Filmtyp, Filmformat, Randfarbe, Randdichte usw. Die Eigenschaften des Formatobjekts kdnnen in C++
folgendermalRen definiert werden:

class FORMAT {

public:
FORMAT(FORMAT ID); // Constructor
FORMAT(FORMAT ID); // Constructor
void init(void); // Parameter auf Standardwerte initialisieren
FORMAT IDid; // Format, das dieser Box zugeordnet ist

TABLE bkgnd_color_table; // Hintergrund/Randfarben-Medientabelle
TABLE bkgnd color_mixing_table; // Hintergrund/Randfarben-Mischtabelle

LEVEL bw_border_level; // Schwarzweifirandstufe
COLOR color_brd_level; // Randfarbstufen

LEVEL bw_density max; // Schwarzweifl-Maximaldichte
FILM_TYPE film_type; // Art des verwendeten Films
FILM_TYPE film_type; /l Format des verwendeten Films

}:

[0095] Eine Box ist ein rechtwinkliger Bereich des Filmbogens, der zur Aufnahme eines Bildes vorgesehen
ist. Die Box hat zahlreiche Eigenschaften, wie beispielsweise Lage, GroRe, Kontrast, Farbe usw. Die Boxdefi-
nitionen sind einem bestimmten Format zugeordnet. Mehrere Boxen werden also in Verbindung mit einem be-

stimmten Format verwendet. Das folgende Beispiel in C++ beschreibt das Boxobjekt und dessen Eigenschaf-
ten:

28/60

DE 697 35351 T2 2006.11.30

class BOX {

public:
BOX(BOX ID id,FORMAT ID id); // Constructor
BOX(void); // Constructor
void init(void); // Parameter auf Standardwerte initialisieren
BOX _ID id; // Box-ID-Nr
FORMAT ID format _id // Box formatieren
TABLE beta_x1; // horizontale Achse Beta-Durchgang 1
TABLE beta yl; // vertikale Achse Beta-Durchgang 1
TABLE beta_x2; // horizontale Achse Beta-Durchgang 2
TABLE beta y2; // vertikale Achse Beta-Durchgang 2

TABLE color_media_table; // Farbmedientabelle

TABLE contrast_table; /I Schwarzweif3-Kontrasttabelle
TABLE color _contrast_table; // Farbkontrasttabelle

TABLE color_mixing_table; // Farbmischtabelle

FRAME frame; // Rahmen fiir Rand

LOCATION x_location; // horizontale Pixellage

LOCATION y_location; // vertikale Pixellage

Switch mirroring; /I Spiegelung ein- und ausschalten

Switch rotation; // Drehung ein- und ausschalten

OUTPUT _SIZE output_size x1; // X-Ausgabegrofle, Durchgang 1
OUTPUT _SIZE output_size yl; // Y-Ausgabegréfle, Durchgang 1
OUTPUT _SIZE output_size_x2; // X-AusgabegréBe, Durchgang 2
OUTPUT _SIZE output_size y2; // Y-AusgabegréBe, Durchgang 2

OFFSET window_x_offset; // Window X-Versatz zur Ecke

OFFSET window_y offset; // Window Y-Versatz zur Ecke

LENGTH window_x_length; // horizontale Linge des Fensters

LENGTH window y Length; // vertikale Lénge des Fensters

35

[0096] Ein Bild wird anhand von Bilddaten dargestellt, die digitale Bildwerte enthalten. Die Bilddaten werden
in einem Bildspeicher gespeichert, der der Ausgabe-Bebilderungsvorrichtung 18 zugeordnet ist. Das Bildobjekt
wird verwendet, um dem Bild bestimmte Eigenschaften zuzuordnen. Wie zuvor erwahnt, kénnen die Eigen-
schaften Pixellange, Pixelbreite, Pixeltiefe, Farbformat usw. umfassen. Beim Drucken wird ein Bild verwendet,

um die fiir das zu verwendende Format definierten Boxen auszufillen. Das folgende Beispiel in C++ beschreibt
das Bildobjekt und dessen Eigenschaften:

29/60

DE 697 35351 T2 2006.11.30

class IMAGE {

public:

};

IMAGE(void); /I Constructor

IMAGE(IMAGE 1D id); // Constructor

void init(void); // Parameter auf Standardwerte initialisieren
IMAGE _ID id; // ID-Nummer

COLOR_FORMAT mode; // Farbbildformat

LENGTH x_length; // horizontale Bildldnge in Pixel

LENGTH y_length; // vertikale Bildldnge in Pixel

DEPTH image_depth; // Tiefe des Bildes 8-12 Bits

DURATION timeout; // Timeout fiir dieses Bild erfassen

Switch permanent; // Bild wird fiir eine Zeit gehalten

[0097] Um Bilder zu symbolisieren, die fir Testzwecke verwendet werden, wird ein Testbildobjekt benutzt. Die
Bilder werden per Software erzeugt und haben andere Attribute als ein Bild. Das folgende Beispiel in C++ be-
schreibt das Testbildobjekt und dessen Eigenschaften:

class TEST_IMAGE {

public:

TEST _IMAGE(void); // Constructor

TEST IMAGE(IMAGE ID id); // Constructor

void init(void); // Parameter auf Standardwerte initialisieren
IMAGE 1D id // ID-Nummer

COLOR_FORMAT mode; // Farbbildformat

LENGTH x_length; // horizontale Bildldnge in Pixel
LENGTH y length; // vertikale Bildlinge in Pixel

DEPTH image depth; // Tiefe des Bildes 8-12 Bits
DURATION timeout; // Timeout fiir dieses Bild erfassen
TEST IMAGE_TYPE /I Art des Testmusters image_type;
LEVEL red density; // Konstante Dichte - Rotdichte;
LEVEL green_density; // Konstante Dichte - Griindichte;
LEVEL blue _density; // Konstante Dichte - Blaudichte;

3

[0098] Ein Stringobjekt wird benutzt, um ASCII-Text im Bildspeicher zu halten. Das Stringobjekt ermoglicht
zudem die Verwendung derartiger Parameter, wie Lange, Intensitat, Typ usw. Das folgende Beispiel in C++
beschreibt das Stringobjekt und dessen Eigenschaften:

30/60

DE 697 35351 T2 2006.11.30
class STRING {

public:
STRING(void); // Constructor
STRING(IMAGE 1D id); // Constructor
void init(void); // Parameter auf Standardwerte initialisieren
STRING_ID id; /1 String-1D
TEXT _TYPE type; /l Texttyp
char *text; // String

LEVEL bw_foregnd _intensity; // Schwarzweif3-Vordergrundstérke
LEVEL bw_backgnd intensity; // Schwarzwei3-Hintergrundstarke
COLOR color_foregnd intensity; // Farbvordergrundstérke
COLOR color_backgnd intensity; // Farbhintergrundstirke

LENGTH width; // Breite des Strings
LENGTH lead; // Zahl schwarzer Linien zwischen ASCII-Zeilen
35

[0099] Das Obijekt ,allgemeine Parameter" wird benutzt, um alle Prozesskonfigurationsparameter zu spei-
chern. Dieses Obijekt ist verwendbar, um die Parameter in dem Laserabbildungsgerat einzustellen oder um die
aktuellen Einstellungen der Parameter auszulesen. Beispiele einiger Parameter sind Standard-Betatabelle,
Standard-Farbkonstrast, Standardziel, Standard-Filmformat sowie -typ usw. Einige Parameter sind nur lesbar
und kénnen somit nicht eingestellt werden, wie beispielsweise die GroRe des verfigbaren Speichers, die ak-
tuelle Softwarerevision, die Gesamtzahl der in die Warteschlange eingestellten Prints usw. Das folgende Bei-
spiel in C++ beschreibt das Objekt ,allgemeine Parameter" und dessen Eigenschaften:

31/60

DE 697 35351 T2 2006.11.30

class PARAMETERS {

public:
PARAMETERS(void); // Constructor
void set_defaults(void); // Parameter auf Standardwerte initialisieren
DURATION acq_timeout; // Timeout 1..65535 Sekunden erfassen
TABLE def beta x1; // horizontale Achse Beta-Durchgang 1
TABLE def beta yl; // vertikale Achse Beta-Durchgang 1
TABLE def beta x2; // horizontale Achse Beta-Durchgang 2
TABLE def beta y2; // vertikale Achse Beta-Durchgang 2
LEVEL def bw_border; /I SchwarzweiBrandstufe
COLOR def color border; // Farbrandstufe
COLOR_FORMAT def cformat; //Bildformat fiir Standarderfassung
TABLE def bw contrast; // Standardkontrasttabelle in Schwarzweif3
TABLE def color _contrast; // Standardkontrasttabelle in Farbe
TABLE def color_mix; /I Standardmischtabelle in Farbe
LEVEL def max_density; // Standard-Maximaldichtewert

DEPTH def depth; // Standard-Bits je Pixel
DESTINATION def destination; // Standardziel fiir Druckbilder
LEVEL def bw_dmax; // Standardmaximaldichtewert fiir Schwarzweil3.

IMAGE_TYPE def image type; // Standard fiir akzeptablen Bildtyp

32/60

DE 697 35351 T2 2006.11.30

FILM_TYPE def film_type; // Standardmedien
FILM_SIZE def film size; // Standardmediengrof3e
LENGTH def_image xsize; // Standardbreite des Bildes in Pixel
LENGTH def image size; // Standardbreite des Bildes in Zeilen
Switch fixed formatting; // Schalter fiir feste Formatierung
FIXED FORMAT fixed format; // Feste Formatnummer

/**Nur lesbare Parameter**/

long int fixed_image pattern; // Bilderfassungsmuster

MEMORY memory; /I Speicherstatusstruktur

OP_MODE op_mode; // Betriebsmodus

RELEASE revision; /! Aktuelle Revision

SYSTEM system; // Bebilderungssystem des Laserbelichters

int total queued; /I Gesamte Drucke im System

int total _completed,; // Gesamte Drucke in aktuellen Auftrdgen abgeschlossen
int total_failed; // Gesamte Drucke in aktuellen Auftrigen fehlgeschlagen
K

[0100] Eine der Hauptaufgaben der Ausgabeinterpreterkomponente 22 besteht darin, den Status der Ausga-
be-Bebilderungsvorrichtung 18 mit der Client-Komponente, also der Netzwerkinterpreterkomponente 32, in
Beziehung zu setzen. Dieser Prozess erfolgt in zwei Stufen. Wenn die Ausgabeinterpreterkomponente 22 eine
Statusdnderung in der Ausgabe-Bebilderungsvorrichtung 18 erkennt, wird der Event-Handler in der Cli-
ent-Komponente direkt von der Ausgabeinterpreterkomponente gerufen. Ein Status-Ereignis wird an den
Event-Handler Ubergeben. Mdgliche Ereignisstati sind (1) FP_status_change, (2) PR_status_change, (3)
IMS_status_change, (4) JOB_status_change und (5) XFR_status_change. Die Ausgabetreiberkomponente 24
benachrichtigt den Client, also die Ausgabeinterpreterkomponente 22, tGber die vorstehenden Statusénderun-
gen, so dass die Netzwerkinterpreterkomponente das Laserabbildungsgerat nicht standig abzurufen braucht.

[0101] Der Client, also die Netzwerkinterpreterkomponente 32, ignoriert entweder die Statusanderung oder
fragt weitere Informationen an. Alle Statusinformationen sind in funf Statusobjekten enthalten. Es gibt ein Sta-
tusobjekt fur den Filmprozessor, den Drucker, das Bildverwaltungssystem, Auftrdge und Hintergrundauftrége
(Transfers). Jedes Statusobjekt weist ein Statusfeld auf, das einfach daraufhin geprift werden kann, ob War-
nungen oder Fehler vorhanden sind. Wenn Warnungen oder Fehler vorhanden sind, kann eine weitere Unter-
suchung der Warnstruktur oder der Fehlerstruktur erfolgen. Der Client kann nach Wahl nur die Informationen
verwenden, die er bendtigt. Das folgende Beispiel in C++ zeigt die Definition fir jedes Statusobjekt und die
darin enthaltenen Strukturen:

33/60

DE 697 35351 T2 2006.11.30

/**Filmprozessorstatus, Definition von Objekttypen und Klassen **/

class Film_Processor {

public:
Film_Processor(void); // Constructor
void clear(void); // Statusobjekt 16schen
int id; /1D
int Warming time; /I Aufwirmzeit
FP_Type type; /I Filmprozessortyp
FP_Status status; // Filmprozessorstatus

FP_Warnings warnings; // Aktuelle Warnungen im Filmprozessor

FP_Errors errors; /I Aktuelle Fehler im Filmprozessor
3
typedef enum {
Antares_FP, /I Antares-Filmprozessor
LT SE154 FP // LT-Filmprozessor
No FP, // Kein Filmprozessor angeschlossen
Spectrum_FP /I Spectrum-Filmprozessor
3 FP_Type;

typedef struct {

unsigned Busy : 1; // Prozessor im Clean-Up-Zustand oder beschéftigt mit Medien

unsigned NoFP : 1; // Kein Filmprozessor angeschlossen
unsigned OpenLoop : 1; // Keine Kalibrierung

unsigned Ready :1; // Fertig zur Filmverarbeitung
unsigned Warming : 1; // Aufwédrmen

unsigned Warnings: 1; // Warnungen vorhanden

unsigned Errors : 1; // Fehler vorhanden

} FP_Status;

34/60

DE 697 35351 T2 2006.11.30

typedef struct {
unsigned CheckChem : 1; // Chemikalien verschlechtern sich
unsigned Generic : 1; // Verschiedenes
unsigned HiOvf :1; // Ein oder mehrere Uberlauftanks werden voll
unsigned LoChem :1; // Ein oder mehrere Uberlauftanks werden leer
} FP_Warnings;
typedef struct {
unsigned FPDown : 1; // Prozessor nicht betriebsbereit
unsigned FullOvf: 1; // Ein oder mehrere Uberlauftanks sind voll
unsigned Generic : 1; // Verschiedenes
unsigned MediaJam : 1; // Medienstau im Filmprozessor
unsigned OutChem : 1; // Ein oder mehrere Uberlauftanks sind leer
} FP_Errors;
/**Bildmanagementsystemstatus, Definition von Objekttypen und Klassen **/

class Image Mgmnt System {

public:

Image Mgmnt_System(void); // Constructor

void clear(void); // Statusobjekt 16schen

IMS_status status; // Status des Bildmanagementsystems

IMS _errors errors; // aktuelle Fehler im Bildmanagementsystem
¥

typedef struct {
unsigned PowerUp : 1; // Erster Status seit hochfahren
unsigned Errors : 1; // Fehler im System vorhanden

} IMS_status;

typedef struct {
unsigned Badconfig : 1; //IMS falsch konfiguriert
unsigned BadTblEprom : 1; // Tabellen-EPROMS haben falsche Priifsumme
unsigned IMNVRamErr : 1; // Kein Fehler im fliichtigen RAM im Eingabemodul
unsigned IMSDown : 1; // IMS nicht betriebsbereit
unsigned OMNVRamErrl : 1; // Kein Fehler im fliichtigen RAM im Ausgabemodul 1
unsigned OMNVRamErr 2: 1; // Kein Fehler im fliichtigen RAM im Ausgabemodul 2
unsigned MemBIkErr : 1; // 10% oder mehr des Bildspeichers ist schlecht

35/60

} IMS_errors;

DE 697 35351 T2 2006.11.30

/**Druckerstatus, Definition von Objekttypen und Klassen **/

class Printer {
public:
Printer(void);

void clear(void);

// Constructor
/I Statusobjekt 16schen

int id; // Drucker-ID

int SheetsRemaining; // # Anzahl verbliebener Bogen
FILM_TYPE MediaType; // Art des eingelegten Films
FILM_SIZE MediaSize; // Format des eingelegten Films

int ImgPixels;
int ImgLines;
Quality quality;
PR _type type;
PR_status status;

/I Anzahl bebilderbarer Pixel
// Anzahl bebilderbarer Zeilen in Medien
/I Aktueller Qualitédtszustand
/I Druckertyp

// Druckerstatusmarken

PR_warnings warnings; // Aktuelle Warnungen im Drucker

PR_errors errors;
¥
typedef struct {

// Aktuelle Fehler im Drucker

unsigned Warnings: 1; // Warnungen im System vorhanden

unsigned Errors : 1;
} PR status;
typedef enum {
Draft,
Photo
} Quality;
typedef enum {
Spectrum PR,
Antares PR,
LT _SE154 PR,
No_ PR,
XL PR
} PR_type;

// Fehler im System vorhanden

// Spectrum-Drucker
// Antares-Drucker
// LT-Drucker
// Kein Drucker angeschlossen
// XL (Roadrunner) Drucker

36/60

DE 697 35351 T2 2006.11.30

typedef struct {
unsigned MediaLow : 1; // Medien gehen zur Neige (weniger als 20 Blatt).
unsigned Busy : 1; // Drucker weist voriibergehend ein Problem auf
unsigned PrCalib : 1; // Drucker erstellt einen Kalibrierungsbogen

} PR_warnings;

typedef struct {
unsigned BadCass : 1; // Medienkassette nicht betriebsbereit
unsigned CassErr : 1; // Kassettenfehler liegt vor
unsigned CassJam : 1; // Medienstau an der Kassette
unsigned CoverOpen : 1; // Eine der Klappen ist gedffnet
unsigned ExpJam :1; // Medienstau am Belichtungspunkt
unsigned MediaOut : 1; // Keine Medien im Drucker
unsigned NoCass : 1; // Keine Medienkassette im Drucker
unsigned PanelErr : 1; // Drucker-LCD-Bedienfeld nicht betriebsbereit
unsigned PrDown : 1; // Drucker nicht betriebsbereit
unsigned RecMagFull : 1; // Ausgabemagazin voll und muss geleert werden
unsigned RecMagMiss : 1; // Ausgabemagazin nicht im Drucker
unsigned ToExpJam :1; // Medienstau im Transport zum Belichtungspunkt
unsigned ToProcJam : 1; // Medienstau im Transport zum Filmprozessor

} PR _errors;

/**Druckerauftrége, Definition von Objekttypen und Klassen **/

class Job {

public:
Job(void); // Constructor
void clear(void); // Statusobjekt 16schen
int id; // Auftrags-ID
int PrintsComplete; // # Druckauftrige einwandfrei ausgefiihrt
int PrintsFailed; // # Druckauftrige nicht einwandfrei ausgefiihrt
int PrintsQueued; /I Anzahl zu druckender Druckauftrige
int FilmsComplete; // Anzahl einwandfrei gedruckter Bogen
int FilmsFailed; // Anzahl nicht einwandfrei gedruckter Bogen
int FilmsQueued,; // Anzahl von Druckauftrigen in Warteschlange
JOB_status status; /I Druckauftragsstatus

37/60

DE 697 35351 T2 2006.11.30

JOB _errors errors; /I Aktuelle Fehler im Druckauftrag
3
typedef struct {
unsigned Done : 1; /I Auftrag abgeschlossen
unsigned Killed : 1; /I Auftrag abgebrochen
unsigned Stopped : 1; // Auftrag angehalten
unsigned Wait : // Drucke in Warteschlange
unsigned Errors : 1; // Auftrag weist Fehler auf
} JOB_status
typedef struct {
unsigned Aborted : 1; // Abbruchbefehl ausgegeben
unsigned BadBand : 1; // Bilder nicht in einem Band
unsigned BadMedia : 1; // Keine Medien vorhanden
unsigned BadTable : 1; // Ungiiltige Tabelle angegeben
unsigned CrossPrtErr : 1; // Ungiiltige Konfiguration’
unsigned FPErr : 1; // Filmprozessor fehlerhaft
unsigned ImgAbut : 1; //Bilder stofen unzuldssig aneinander
unsigned IMSErr : 1; // Bilder stoBen unzuléssig aneinander
unsigned LinePixelErr : 1; / Zu viele Pixel
unsigned MaxBadCnt :1; // Zwei identische Fehler
unsigned MaxBandImg : 1; // maximale Bilder je Band
unsigned MaxHorlmg : 1; // maximale horizontale Bilder
unsigned MinBand :1; // Mindestzeilenzahl je Band unterschritten
unsigned Parity :1; // Paritétsfehler in einem Bild
unsigned PrErr : 1; // Drucker fehlerhaft
unsigned RecMagErr : 1; // Eingangsmagazin fehlt oder voll
unsigned WrongQual : 1; // Qualitit nicht verfiigbar
} JOB_errors;
/** Ubergabeauftragsstatus, Definition von Objekttypen und Klassen **/
class Xfr {

public:
Xfr(void); /I Constructor
void clear(void); // Statusobjekt 16schen

38/60

DE 697 35351 T2 2006.11.30

int id; // Auftrags-1D
Length X_size; // Horizontale Bildgrofle (falls Auftrag abgeschlossen)
Length Y _size; /Il Vertikale Bildgrofe (falls Auftrag abgeschlossen)

XFR _status status; /I Auftragsstatus
XFR_errors errors; // Aktuelle Fehler im Auftrag
35
typedef int Length;
typedef struct {
unsigned Wait : 1; /I Auftrag in Warteschlange
unsigned Done : 1; /I Auftrag abgeschlossen
unsigned Killed : 1; // Auftrag abgebrochen
unsigned Errors : 1; // Auftrag weist Fehler auf
} XFR_status
typedef struct {
unsigned Aborted : 1; // Abbruchbefehl ausgegeben
unsigned AcqErr : 1; // Erfassungsfehler
unsigned BadDepth : 1; // Angegebene Tiefe nicht einstellbar
unsigned BadMode :1; // Aktueller Modus nicht korrekt
unsigned ConnectErr : 1; // Verbindungsfehler
unsigned EibParamErr: 1; // Falscher Parameter in NVRAM
unsigned EibSrcErr : 1; // Falscher Quellenwert in NVRAM
unsigned EibTranErr : 1; // Fehler bei Ubersetzung der EIB-Parameter
unsigned FifoErr : 1; // FIFO-Uberlauf
unsigned MemBoundErr : 1; // AuBBerhalb der Grenzen des verfiigbaren Speichers
unsigned MemErr : 1; // Speicherfehler wihrend Speicherung
unsigned MemFull : 1; // Bildspeicher ist voll
unsigned NVRamErr : 1; // Verschiedene Fehler mit NVRAM
unsigned ParityErr : 1; // Paritéitsfehler
unsigned ResErr : 1; // Speicherung im reservierten Speicher fehlgeschlagen
unsigned SetUpErr : 1; // Konfigurationsfehler
unsigned SizeErr : 1, // BildgroBenfehler
unsigned TimeOut : 1; // System-Timeout wihrend Bildspeicherung
3 XFR_errors

[0102] Die Ausgabetreiberkomponente 24 stellt in diesem Ausflihrungsbeispiel flinfzehn Arten von RPCs be-
reit. Bei Verwendung der zuvor beschriebenen Bebilderungsobjekte und RPCs kann der Client die Ausga-
be-Bebilderungsvorrichtung 18 vollstandig betreiben. Es sei darauf hingewiesen, dass samtliche Parameter,

39/60

DE 697 35351 T2 2006.11.30

die in den vorstehend beschriebenen Bebilderungsobjekten enthalten sind, auf einen ,nichtzugewiesenen
Wert/unassigned value" initialisiert werden. Wenn die Parameter von dem Client nicht gedndert werden, igno-
riert die Ausgabetreiberkomponente 24 diese. Dieses Merkmal erméglicht dem Client, nur die Parameter zu
verwenden, die er bendtigt. Jeder von der Ausgabetreiberkomponente 24 bereitgestellte RPC wird nachste-
hend beschrieben. Im Unterschied dazu ist der zurlickgegebene Wert fir jeden der folgenden RPCs ein Laser
Imager Response Object des Typs LI_response, wie nachstehend ausfihrlicher beschrieben wird.

1. RPCs flir das Bedrucken von Medien

a. print Parameter: Typ:
copies (opt) int

[0103] Der vorstehende RPC initiiert einen allgemeinen Druckvorgang eines Laserabbildungsgerats, der als
Ausgabe-Bebilderungsvorrichtung 18 dient. Der vorstehende RPC ist zur Verwendung mit Festformaten aus-
gelegt. Das Format ist ein momentan gewahltes Festformat. "Copies" ist ein optionaler Parameter, der die An-
zahl der zu erstellenden Kopien oder Exemplare angibt. Die seit dem letzten Druckvorgang erfassten Bilder
werden fur den Druck verwendet.

b. print Parameter: Typ:
format int
image list LIST
copies (opt) int
density (opt) int

destination (opt) DESTINATION

[0104] Der vorstehende RPC initiiert einen Druck von dem Laserabbildungsgerat. Das Format ist die zu ver-
wendende Format-ID. Die Bildliste (image list) zeigt an, welche Bilder verwendet werden, um das Format zu
fullen. "Copies" ist ein optionaler Parameter, der die Anzahl der zu erstellenden Kopien oder Exemplare angibt.
Die Dichte ist eine optionale Ganzzahl, die verwendet wird, wenn ein Dichtetestfeld erwlinscht ist. Der Wert der
Ganzzahl entspricht einer Bild-ID. Das Ziel (destination) ist ein optionaler Parameter, der fiir die Ausgabe ein
anderes Ziel anstelle des Standardziels angibt.

c. print_test Parameter: Typ:
format int
image list LIST
dens_id IMAGE _ID
copies (opt) int

destination (opt) DESTINATION

[0105] Der vorstehende RPC initiiert einen Druck von dem Laserabbildungsgerat. Das Format ist die zu ver-
wendende Format-ID. Die Bildliste (image list) zeigt an, welche Bilder verwendet werden, um das Format zu
fullen. "Dens_id" ist eine Ganzzahl, die die Bild-ID eines Dichtetestfeldes darstellt. "Copies" ist ein optionaler
Parameter, der die Anzahl der zu erstellenden Kopien oder Exemplare angibt. Das Ziel (destination) ist ein op-
tionaler Parameter, der fir die Ausgabe ein anderes Ziel anstelle des Standardziels angibt.

d. abort Parameter: Type
jobID JOB _ID
[0106] Der vorstehende RPC bricht einen Auftrag mit der entsprechenden ID ab.

40/60

DE 697 35351 T2 2006.11.30

e. abort Parameter: Typ:
none nicht vorhanden

[0107] Der vorstehende RPC bricht alle gestarteten Auftrage ab.
2. RPC fur das Formatieren

a. define Parameter: Typ:

format object FORMAT

[0108] Der vorstehende RPC definiert ein Format mit den in dem FORMAT-Objekt aufgefundenen Parame-
tern. Alle Parameter, die gleich NOT_ASSIGNED sind, sind in der Definition nicht enthalten.
b. define Parameter: Typ:

box object BOX
[0109] Der vorstehende RPC definiert eine Box mit den in dem BOX-Objekt aufgefundenen Parametern. Alle
Parameter, die gleich NOT_ASSIGNED sind, sind in der Definition nicht enthalten.
c. modify Parameter: Typ:

box object BOX

[0110] Der vorstehende RPC modifiziert die Box, die der in dem BOX-Objekt angegebenen ID entspricht. Alle
Parameter, die in dem Boxobjekt gleich NOT_ASSIGNED sind, werden nicht modifiziert.

d. modify Parameter: Type:
box object BOX
x_shift LENGTH
y_shift LENGTH

[0111] Der vorstehende RPC modifiziert die Box, die der in dem BOX-Objekt angegebenen ID entspricht. Die
Lage der Box wird anhand der in x_shift und y_shift genannten Angaben verschoben. Alle Parameter, die in
dem Boxobjekt gleich NOT_ASSIGNED sind, werden nicht modifiziert.
e. modify Parameter: Typ:

format object FORMAT

[0112] Der vorstehende RPC modifiziert das Format, das der in dem BOX-Objekt angegebenen ID entspricht.
Alle Parameter, die in dem Formatobjekt gleich NOT_ASSIGNED sind, werden nicht modifiziert.
f. remove Parameter: Typ:
none nicht vorhanden
[0113] Der vorstehende RPC I6scht das zuletzt erfasste Bild.

g. remove Parameter: Type:
box object BOX
def (opt) Bool
all (opt) Bool

[0114] Der vorstehende RPC léscht die Box, die der ID des empfangenen BOX-Objekts entspricht. DEF ist
ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag zurlckgestellt und im Hin-

41/60

DE 697 35351 T2 2006.11.30

tergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE gesetzt. ALL ist ein optionaler
Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass alle definierten Boxen geléscht werden. Wenn ALL
nicht empfangen wird, wird ALL auf FALSE gesetzt.

h. remove Parameter: Type:
format object FORMAT
def (opt) Bool
all (opt) Bool

[0115] Der vorstehende RPC l6scht das Format, das der ID des empfangenen FORMAT-Objekts entspricht.
DEF ist ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag zuriickgestellt und
im Hintergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE gesetzt. ALL ist ein
optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass alle definierten Formate geldscht werden.
Wenn ALL nicht empfangen wird, wird ALL auf FALSE gesetzt.

i. remove Parameter: Typ:
image object IMAGE
def (opt) Bool
all (opt) Bool

[0116] Der vorstehende RPC |6scht das Bild, das der ID des empfangenen IMAGE-Objekts entspricht. DEF
ist ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag zurtickgestellt und im Hin-
tergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE gesetzt. ALL ist ein optionaler
Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass alle definierten Bilder geléscht werden. Wenn ALL nicht
empfangen wird, wird ALL auf FALSE gesetzt.
j- remove_all Parameter: Typ:

def (opt) Bool

[0117] Der vorstehende RPC I6scht alle Bilder, Boxen, Formate und Tabellen, die in dem Laserabbildungsge-
rat definiert sind. DEF ist ein optionaler Parameter, der, sofern auf TRUE gesetzt, bewirkt, dass der Auftrag
zurlickgestellt und im Hintergrund verarbeitet wird. Wenn DEF nicht empfangen wird, wird DEF auf FALSE ge-
setzt.
h. remove_fixed images Parameter: Typ:

none nicht vorhanden

[0118] Der vorstehende RPC Idscht alle Bilder, die Giber RPCs in Festformaten gespeichert wurden.
3. RPC zur Bildbearbeitung

a. store Parameter: Typ:
none nicht vorhanden

[0119] Dieser RPC wird ausschlieRlich mit Festformatierung verwendet. Dieser RPC legt das nachste Bild in
der nachst verfugbaren, festen Bildstelle ab. Die Stellen erstrecken sich von 1 bis N, wobei N formatspezifisch
ist.

b. store Parameter: Type:
id FIXED ID

[0120] Dieser RPC wird ausschlieRlich mit Festformatierung verwendet. Dieser RPC erfasst das nachste Bild
in der durch die ID angegebenen Stelle. Die Stellen erstrecken sich von 1 bis N, wobei N formatspezifisch ist.

42/60

DE 697 35351 T2 2006.11.30

c. store Parameter: Typ:
image IMAGE

[0121] Der vorstehende RPC erfasst das nachste Bild. Der zuriickgegebene Wert Gber die BildgréRe wird in
LI_response abgelegt.

d. store Parameter: Typ:
image TEST_IMAGE

[0122] Der vorstehende RPC erfasst das nachste Bild als Testmuster. Der zuriickgegebene Wert (iber die
BildgréRe wird in LI_response abgelegt.

e. store Parameter: Typ:
string STRING

[0123] Der vorstehende RPC speichert den Text und die ID im STRING-Objekt. Dadurch kann die Client-Kom-
ponente den Text jederzeit Uber die id abrufen. Der zuriickgegebene Wert Uber die Stringgrofle wird in
LI_response abgelegt.

f. transfer Parameter: Typ:
image IMAGE

[0124] Der vorstehende RPC lbertragt das nachste Bild als Hintergrundauftrag. Der zuriickgegebene Wert
bezlglich der BildgroRe ist verfligbar, wenn die Bildibertragung abgeschlossen ist.

g. reserve Parameter: Typ:

image IMAGE

[0125] Der vorstehende RPC weist genligend Bildspeicher zu, um das von IMAGE-Objekt beschriebene Bild
aufzubewahren.

4. RPC uber Prozesskonfiguration/Status

a. set Parameter: Typ:

parameter object PARAMETER

[0126] Der vorstehende RPC stellt die Bebilderungsparameter fur das Laserabbildungsgerat ein. Alle auf
NOT_ASSIGNED gesetzten Parameter bleiben unverandert.

5. Status-RPCs

a. show Parameter: Typ:

parameter object *PARAMETER

[0127] Der vorstehende RPC ruft die Bebilderungsparameter flir das Laserabbildungsgerat ab.

b. show_fixed Parameter: Typ:
parameter object *PARAMETER

[0128] Der vorstehende RPC ruft die Festformatierungs-Bebilderungsparameter fiir das Laserabbildungsge-
rat ab. Alle Gbrigen Elemente in dem Parameterobjekt bleiben unverandert.

43/60

DE 697 35351 T2 2006.11.30

c. show_mem Parameter: Typ:
parameter object *PARAMETER
[0129] Der vorstehende RPC ruft die Speicherbedingungen des Laserabbildungsgerats ab.

d. show Parameter: Typ:
image object *IMAGE

[0130] Der vorstehende RPC ruft die Ladnge und Breite des Bildes ab, dessen ID der in dem Bildobjekt ange-
gebenen ID entspricht. Alle Bildinformationen werden in dem Bildobjekt abgelegt.

e. show Parameter: Typ:
printer object *PRINTER

[0131] Der vorstehende RPC ruft den Status des Druckers ab, dessen ID der in dem Druckerobjekt angege-
benen ID entspricht. Alle Druckerinformationen werden in dem Druckerobjekt abgelegt.

f. show Parameter: Typ:
job object *JOB

[0132] Der vorstehende RPC ruft den Status des Auftrags ab, dessen ID der in dem Auftragsobjekt angege-
benen ID entspricht. Alle Auftragsinformationen werden in dem Auftragsobjekt abgelegt.

g. show Parameter: Typ:
printer object *XFR

[0133] Der vorstehende RPC ruft den Status des Ubertragungsauftrags ab, dessen ID der in dem Ubertra-
gungsauftragsobjekt angegebenen ID entspricht. Alle Ubertragungsauftragsinformationen werden in dem Auf-
tragsobjekt abgelegt.

h. show_formats Parameter: Typ:
string *char

[0134] Der vorstehende RPC ruft einen String der IDs der definierten Formate ab.

i. show_images Parameter: Typ:
string *char

[0135] Der vorstehende RPC ruft einen String der IDs der erfassten Bilder ab.

j. show con_tables Parameter: Typ:
string *char

[0136] Der vorstehende RPC ruft einen String der IDs der definierten Kontrasttabellen ab.

k. show_con_tables Parameter: Typ:
string *char

[0137] Der vorstehende RPC ruft einen String der IDs der definierten Farbkontrasttabellen ab.

44/60

DE 697 35351 T2 2006.11.30

1. set_debug level Parameter: Typ:
debug level DEBUG_LEVEL
Returns: Typ:

Driver return code DRIVER RC

[0138] Der vorstehende RPC ermdglicht es der Client-Komponente, den Debug-Level der Netzwerkinterpre-
terkomponente 32 einzustellen. Die Debug-Level sind NO_DEBUG, LOW_DEBUG, MEDIUM_DEBUG und
HIGH_DEBUG. Dieser Parameter betrifft die wahrend des Debuggings angezeigten Informationen.

[0139] Ein Vorteil der Schnittstelle zu der Ausgabeinterpreterkomponente 22 besteht darin, dass jeder RPC
ein ahnliches Objekt zuriickgibt. Dieses Objekt wird als Laserabbildungsgerate-Antwortobjekt (Laser Imager
Response Object) bezeichnet, wie zuvor erwahnt. Innerhalb des Laserabbildungsgerate-Antwortobjekts befin-
det sich eine Fulle von Informationen beziiglich des Ergebnisses des RPC. Allerdings verwendet der Client ggf.
nur die Informationen, die er bendtigt. Das Laserabbildungsgerate-Antwortobjekt setzt sich aus drei Hauptfel-
dern zusammen. Ein erstes Feld ist ein einfacher boolescher Wert mit dem Titel ,success" (Erfolg). Der boole-
sche Wert besagt, ob die dem RPC zugehdrige Anfrage erfolgreich war oder fehlgeschlagen ist. Diese Infor-
mationen erflllen die Anforderungen der meisten Client-Komponenten. Das zweite Feld, ,success_data" (Er-
folgsdaten), gibt Werte zurlck, die die Client-Komponente erwartet, wenn der Befehl erfolgreich war. Norma-
lerweise gibt es keine Informationen fir einen erfolgreichen Befehl. Ein Beispiel fir Informationen, die bei ei-
nem erfolgreichen Befehl zurlickgegeben werden, ware die Bildgrofie, die nach erfolgreicher Ausfihrung des
Bildspeicherbefehls zuriickgegeben wird. Das dritte Feld, ,errors" (Fehler), dient dazu, zu erlautern, warum der
RPC fehlgeschlagen ist. Dieses Feld ist ein Gesamt-Bit-Feld von Fehlern, die am Laser-Abbildungsgerat auf-
getreten sind. Auch dieses Feld ist nur glltig, wenn ,success" gleich ,false" ist.

[0140] Der nachfolgend aufgefiihrte Programmcode in C++ beschreibt das Laserabbildungsgerate-Antwort-
objekt. Die Klasse definiert die von dem Laser-Abbildungsgerat empfangene Antwort, nachdem ein Befehl aus-
gegeben worden ist. Wenn der Befehl erfolgreich ausgefiihrt worden ist, wird die Markierung SUCCESS auf
TRUE gesetzt. Alle Daten, die bei einem erfolgreichen Abschluss empfangen worden sind, werden in
Success_Data gespeichert. Wenn der Befehl nicht erfolgreich ausgefihrt war, wird die Markierung SUCCESS
auf FALSE gesetzt. Die Fehlerursache wird in der Struktur "failures” (Fehler) gespeichert.

45/60

DE 697 35351 T2 2006.11.30

class LI response {
friend SS_EXECUTIVE;
Command c¢md,; /!l SS-Befehl
public:
LI_response(void); // Constructor
Bool success; // Befehl erfolgreich ausgefiihrt
Success_Data success_data; // Nur giiltig bei erfolgreicher Ausfiihrung
Failures errors; // Falls Befehl fehlgeschlagen, Fehlerursache angeben
35
typedef struct {
unsigned AcqErr : 1; // Erfassungsfehler
unsigned AcqLockout :1; // Erfassung nicht versucht, nicht verfligbar
unsigned BadBoxId : 1; // Box-ID zur Modifikation nicht vorhanden
unsigned BadDepth : 1; // Pixeltiefenfehler
unsigned BadFmtld : 1; // Format-ID nicht vorhanden
unsigned BadPar : 1; // Falscher Parameter
unsigned BadCConTbl :1; // Falsche Farbkontrasttabelle
unsigned BadCMediaTbl : 1; // Falsche Farbmedientabelle
unsigned BadConTbl : 1; // Falsche Kontrasttabelle
unsigned BadCMixTbl : 1; // Falsche Farbmischtabelle

46/60

DE 697 35351 T2 2006.11.30

unsigned BadDensTest : 1; // Bild ist kein giiltiger Dichtetest
patch
unsigned BadDest : 1; // Ungiiltiges Ziel
unsigned BadImgld : 1; // Bild nicht gefunden
unsigned BadJobld : 1; // Auftrag nicht gefunden
unsigned BadMedia : 1; // Medientyp korrekt
unsigned BadMode : 1; // Falscher Eingabemodus (Farbe/Schwarzweil3)
unsigned BoxInUse : 1 // Box wird derzeit benutzt
unsigned Busy :1; // Modul fiihrt bereits Bildiibertragung aus
unsigned CConInUse : 1; // Farbkontrasttabelle wird derzeit benutzt
unsigned ConInUse : 1; // Kontrasttabelle wird derzeit benutzt
unsigned ConnectErr : 1; / Hardware-Verbindungsfehler
unsigned EibParamErr: 1; // EIB-Parameterfehler
unsigned EibSrcErr : 1; // Ungiiltige EIB-Quelle
unsigned EibTranErr : 1; // EIB-Ubertragungsparameter ungiiltig
unsigned Empty : 1; // Mbox ist derzeit leer
unsigned FifoErr : 1; // FIFO-Uberlauf
unsigned FmtFull : 1; // wiirde 255 Boxen in einem Format iiberschreiten
unsigned FmtInUse : 1; // Format wird derzeit benutzt
unsigned FmtOvrLap : 1; // Die Boxen in diesem Format iiberlagern sich
unsigned FmtOffSheet : 1; // Box in diesem Format passt nicht auf die Medien
unsigned FmtTMCon : 1; // Zu viele Kontrasttabellen in diesem Format
unsigned FmtTMCCon : 1; // Zu viele Farbverlaufstabellen in diesem Format
unsigned FmtTMCMix : 1; // Zu viele Farbmischtabellen in diesem Format
unsigned FmtTMCMedia : 1; // Zu viele Farbmedientabellen in diesem Format
unsigned FmtTMImgs : 1; // Zu viele Bilder in der Bildliste
unsigned Full : 1; // MBOX ist voll
unsigned InModInUse : 1; // Eingabemodul wird derzeit benutzt
unsigned Imglnuse : 1; // Bild wird derzeit benutzt
unsigned Imglnvalid : 1; // Bild noch nicht vollstindig gespeichert
unsigned JobDone : 1; // Auftrag bereits abgeschlossen
unsigned MagErr : 1; // VergréBerungsfehler
unsigned MaxFmts : 1; // Mehr als 255 Formate

47/60

DE 697 35351 T2 2006.11.30

unsigned MaxJobs : 1; // Maximale Zahl gleichzeitiger Auftrége wiirde liberschritten
unsigned MemBoundErr : 1; // Ungiiltige Bildspeicheradresse
unsigned MemErr : 1; // Speicherfehler wihrend des Speicherns
unsigned MemFull : 1; //Bildspeicher ist voll
unsigned MissPar : 1; // Fehlender Parameter
unsigned MovErr : 1; // Durch Verschiebung wiirde Boxlage negativ werden
unsigned NoMem : 1; // Nicht geniigend Speicher zur Ausfiihrung des Befehls
unsigned NVRamErr : 1; // Problem mit nicht fliichtigem Speicher
unsigned ParityErr 1: // Hardware-Paritétsfehler
unsigned PassErr : 1; // Doppelter Durchgang erforderlich, Modul mit einem Durch-
gang
unsigned QueueFull : 1; // Druckwarteschlange voll. Keine weiteren Auftrige méglich.
unsigned ResErr : 1; // BildgroBe entspricht nicht dem reservierten Speicher
unsigned SetUpErr : 1; // Anfrage entspricht nicht der Systemkonfiguration
unsigned SizeErr : 1; // Grofle im Img Header entspricht nicht der Bildgrofie
unsigned StoErr : 1; // Video- oder Digitalsignalfehler wihrend Erfassung
unsigned TimeOut : 1; // Bilderfassung konnte nicht abgeschlossen werden
unsigned TooLong : 1; // Meldung fiir die mbox zu lang
unsigned Unkillable : 1; // Auftrdge lassen sich nicht abbrechen
unsigned UnknownCmd : 1; // Unbekannter Befehl ausgegeben
unsigned WinErr : 1; // Angegebenes Fenster hat falsche Grofie
} Failures;

[0141] Die folgende Struktur enthalt Daten, die die Ausgabe-Bebilderungsvorrichtung 18 (das Laser-Abbil-
dungsgerat) zuriickgibt, wenn der Befehl einwandfrei ausgefiihrt wird. Diese Daten sind somit nur gtiltig, wenn
wahrend der Ausfihrung keine Fehler auftreten.

typedef struct {
ID id; // Platzhalter fiir eine Return-ID
LENGTH x_size; // Platzhalter fiir eine Bildgrofe
LENGTH vy _size; // Platzhalter fiir eine Bildgrofle
LIST list; // Platzhalter fiir eine ID-Liste

} Success_Data;

[0142] Die tatsachliche Basisklasse fiir die Ausgabetreiberkomponente 24 kann in C++ folgendermalen de-
finiert werden:

48/60

DE 697 35351 T2 2006.11.30

class LI_INTERFACE {

public:
LI_INTERFACE(PORT _ID new_id, OUTPUT INTERFACE *p); // Constructor
~LI_INTERFACE(void);
INT32 return_code; // Return-Code fiir OS-Operationen
DRIVER_RC out_driver_rc; // Return-Code von Ausgabetreiber
DEBUG_LEVELS debug_level; // Debug-Level fiir Modul
Semaphore rpc_reply; // RPC-Antwort abgeschlossen
Semaphore rpc_free; / RPC-Mailbox frei
Semaphore event reply; // Asynchrones Ereignis empfangen
Semaphore event_free // Mailbox fiir asynchrone Ereignisse frei
PORT _ID exec _id;

Mailbox rpc_mbox; // RPC-Mailbox

Mailbox event_mbox; // Ereignis-Mailbox
OUTPUT_INTERFACE *output_handle;

FE_PTR client; // Verwendendes Client-Modul

FE METHOD PTR client async handler; // Zeiger auf asynchronen Handler
virtual Bool output_ev_handler(enum IO_EVENT event) =0 // asynchr. Ereignis-Hand-
ler
virtual void set_async_func(FE_PTR,FE_METHOD_ PTR)=0; // ptr auf FE-Handler
setzen
/*¥** Laserbelichter-Client-Schnittstelle ***/
// Transparent-Grundbefehl
virtual LI_response send(char *); // Generischen Text senden
virtual LI_response receive(char *); // Generischen Text empfangen
// Druckbefehle
virtual LI_response print(int copies=1)=0; // Festformatdruck
virtual LI_response print(FORMAT _ID id,LIST *images,
int copies=1,DESTINATION d=Film_Processor _1)=0;
virtual LI response print_test(tFORMAT ID id,LIST *images,

49/60

DE 697 35351 T2 2006.11.30

IMAGE_ID dens_id int copies=1,
DESTINATION d=Film_Processor_1)=0;
virtual LI response abort(JOB_ID id)=0;
virtual LI_response abort(void)=0; //Abort all jobs
// Formatierungsbefehle
virtual LI_response define(BOX box)=0; // Box definieren
virtual LI_response define(FORMAT format)=0; // Format definieren
virtual LI response modify(BOX box)=0; // Box modifizieren
virtual LI_response modify(LENGTH X_SHIFT, LENGTH Y _SHIFT, BOX
box)=0;
virtual LI_response modify(FORMAT format)=0; // Format modifizieren
virtual LI response remove(FIXED_ID); // Bilder von einer Position verschieben
virtual LI_response remove(BOX box,Bool def=FALSE,Bool all=FALSE);
// Box 16schen
virtual LI_response remove(FORMAT format,Bool def=FALSE,Bool
all=FALSE);
virtual LI_response remove(BOX box,Bool def=FALSE,Bool all=FALSE);
virtual LI_response remove_fixed images(void); // Alle festen Bilder entfernen
virtual LI_response remove_all(Bool def=FALSE); // Alles 16schen
// Manipulationsbefehle
virtual LI_response reserve(IMAGE image)=0; // Speicher reservieren
virtual LI_response store(void)=0; // Néchstes Bild speichern
virtual LI_response store(FIXED_ID)=0; // Bild fiir eine Position speichern
virtual LI_response store(IMAGE image)=0; // Bild speichern
virtual LI_response store(TEST_IMAGE image)=0; // Testbild speichern
virtual LI_response store(STRING string)=0; // Testbild speichern
virtual LI_response transfer(IMAGE image)=0; // Bild iibertragen
// Mailbox-Befehle
virtual LI_response clear(MAILBOX mbox)=0; // Mailbox leeren
virtual LI_response receive(MAILBOX mbox,char *msg)=0;
// Meldung in eine Mailbox holen
virtual LI_response send(MAILBOX mbox,char *msg)=0;

// Meldung an eine Mailbox senden

50/60

DE 697 35351 T2 2006.11.30

// Prozesskonfiguration / Statusbefehle
virtual LI_response set(PARAMETERS ptr)=0; // Bebilderungsparameter einstellen
virtual LI_response show_fixed(PARAMETERS *);
virtual LI_response show_mem(PARAMETERS *ptr); // Bildspeicher zeigen
virtual LI_response show PARAMETERS *ptr)=0; // Bebilderungsparam. zeigen
virtual LI_response show(IMAGE *ptr)=0; // Bildinfo zeigen
virtual LI_response show(Film_Processor *ptr)=0; // Filmprozessorstatus zeigen
virtual LI_response show(Image Mgmnt_System *ptr)=0; // IMS-Status zeigen
virtual LI_response show(Printer *ptr)=0; // Druckerstatus zeigen
virtual LI_response show(Job *ptr)=0; // Auftragsstatus zeigen
virtual LI_response show(Xfr *ptr)=0; // Xfr-Auftragsstatus zeigen
virtual LI_response show_formats(char *ptr)=0; // String definierter Formate zeigen
virtual LI_response show_images(char *ptr)=0; // String definierter Bilder zeigen
virtual LI_response show_con_tables(char *ptr)=0; // String von Verlaufstabelle zeigen
virtual LI_response show_ccon_tables(char *ptr)=0; // String von Farbverlaufstabellen
zeigen
35
Ausgabetreiber-Basisklassenprotokoll

[0143] Die Ausgabetreiberkomponente 24 stellt fiinf RPCs flr die Ausgabeinterpreterkomponente 22 bereit.
Mit den fiinf RPCs kann die Ausgabeinterpreterkomponente 22 eine direkte Schnittstelle zu einer Ausgabe-Be-
bilderungsvorrichtung 18 bilden, beispielsweise einem Laser-Abbildungsgerat. Jede der finf RPCs wird nach-
folgend beschrieben:

1. xmit message Parameter: Typ:
message char *
Returns: Typ:

Driver return code DRIVER_RC

[0144] Der vorstehende RPC ubergibt der Ausgabetreiberkomponente 24 die Meldung, die Gber die Leitung
30 an die Netzwerk-Client 12 Ubertragen werden soll. Die Ausgabetreiberkomponente wickelt alle Anforderun-
gen fur die Kommunikation mit der Ausgabe-Bebilderungsvorrichtung 18 ab.

2. receive_message Parameter: Typ:
message char *
Returns: Typ:

Driver return code DRIVER_RC

[0145] Der vorstehende RPC ruft eine Meldung von der Ausgabetreiberkomponente ab, die von der Ausga-
be-Bebilderungsvorrichtung 18 gesendet worden ist. Die Ausgabetreiberkomponente wickelt auch hier alle An-
forderungen fiir die Kommunikation mit der Ausgabe-Bebilderungsvorrichtung ab.

51/60

DE 697 35351 T2 2006.11.30

3. set xmit timeout Parameter: Typ:
timeout int
Returns: Typ:

Driver return code DRIVER RC

[0146] Der vorstehende RPC setzt den Timeout-Wert, den die Ausgabetreiberkomponente verwenden sollte,
wenn sie Daten an die Ausgabe-Bebilderungsvorrichtung 18 sendet.

4. set_async_func Parameter: Typ:
client ptr FE _CLIENT PTR
method ptr FE_ METHOD_ PTR
Returns: Typ:

Driver return code DRIVER _PC

[0147] Der vorstehende RPC Ubergibt der Ausgabetreiberkomponente ein Handle an den asynchronen Hand-
ler der Client-Komponente, also der Ausgabetreiberkomponente 24. Der vorstehende RPC wird verwendet, um
die Client-Komponente Uber asynchrone Ereignisse zu informieren, die aufgetreten sind. Das einzige Ereignis
ist MSG_PENDING, welches darauf hinweist, dass eine Meldung vollstandig von der Ausgabe-Bebilderungs-
vorrichtung 18 empfangen wurde und firr die Ausgabeinterpreterkomponente bereit steht.

5. set debug level Parameter: Typ:
debug level DEBUG _LEVEL
Returns: Typ:

Driver return code DRIVER_RC

[0148] Der vorstehende RPC ermdglicht es der Client-Komponente, den Debug-Level fir die Ausgabetreiber-
komponente einzustellen. Die Debug-Level sind NO_DEBUG, LOW_DEBUG, MEDIUM_DEBUG und
HIGH_DEBUG. Dieser Parameter betrifft die wahrend des Debuggings angezeigten Informationen.

[0149] Wie zuvor erwahnt, gibt jeder RPC einen von drei Treiber-Riickgabecodes zurick: (1) RPC_OK, (2)
PORT_BUSY und (3) NO_MESSAGE. Die Treiber-Ruckgabecodes (Return-Codes) kdnnen in C++ folgender-
malen definiert werden:

// Return-Typen fiir I/O-Treiberschnittstelle
typedef enum {

RPC OK, // RPC wurde ausgegeben und quittiert

PORT BUSY, // RPC-Ubertragung fehlgeschlagen, Anschluss sendet bereits
NO_MESSAGE // RPC-Empfang fehlgeschlagen, keine Meldung anliegend
} DRIVER _RC;

[0150] Das tatsachliche Basisklassenprotokoll fir die Ausgabetreiberkomponente kann in C++ folgenderma-
Ren definiert werden:

52/60

DE 697 35351 T2 2006.11.30

class OUTPUT INTERFACE

{
public:

OUTPUT_INTERFACE(PORT _ID newport);

.about. OUTPUT _INTERFACE(void);

virtual DRIVER_RC xmit_message(char *message) = 0;
virtual DRIVER_RC receive_message(char *message) =0;
virtual DRIVER_RC set_xmit_timeout(int timeout) =0;
virtual DRIVER_RC set_async_func(CLIENT PTR,

CLIENT METHOD_PTR)=0; //
PORT_ID port; // Die ID dieses Anschlusses

[0151] Obwohl die Erfindung mit besonderem Bezug auf bevorzugte Ausflihrungsbeispiele bereits beschrie-
ben wurde, ist die Erfindung nicht darauf beschrénkt, sondern kann innerhalb des Geltungsbereichs Anderun-
gen und Abwandlungen unterzogen werden. Die Beschreibung und die verwendeten Beispiele sind daher nur
exemplarisch zu verstehen, wahrend Geltungsbereich und Umfang der Erfindung in den anhdngenden Anspri-
chen dargelegt sind.

Patentanspriiche

1. System zum Ubermitteln medizinischer Bildinformationen zwischen verschiedenen medizinischen Abbil-
dungsmodalitaten (12) und mindestens einem aus einer Vielzahl von unterschiedlichen Abbildungsgeraten
(18) Uber eine Netzwerk-Schnittstelle (28), mit:
einer Netzwerk-Ausfuhrungskomponente, die eine oder mehrere Netzwerk-Schnittstellenkomponenten (33) in-
stanziiert gemal einem ausgewahlten Netzwerk-Schnittstellenprotokoll aus einer Vielzahl von Netz-
werk-Schnittstellenprotokollen, wobei jede Netzwerk-Schnittstellenkomponente derart ausgebildet ist, dass sie
medizinische Bildinformationen von einer der medizinischen Abbildungsmodalitadten Uber die Netz-
werk-Schnittstelle empfangt, wobei die medizinischen Bildinformationen gemall dem ausgewahlten Netz-
werk-Schnittstellenprotokoll empfangen werden, wobei jedes Netzwerk-Schnittstellenprotokoll ausgewahlten
medizinischen Abbildungsmodalitaten speziell zugeordnet ist, und wobei zum Erzeugen erster Abbildungsan-
forderungen auf der Grundlage der empfangenen medizinischen Bildinformationen die ersten Abbildungsan-
forderungen gemal dem ausgewahlten Netzwerk-Schnittstellenprotokoll erzeugt werden;
einer oder mehreren Ausgabeschnittstellenkomponenten (16), von denen jede derart ausgebildet ist, dass sie
zweite Abbildungsanforderungen auf der Grundlage der ersten, von einer der Netzwerk-Schnittstellenkompo-
nenten erzeugten Abbildungsanforderungen erzeugt, wobei die zweiten Abbildungsanforderungen geman ei-
nem aus einer Vielzahl unterschiedlicher Ausgangsschnittstellenprotokolle erzeugt werden, wobei jedes der
Ausgangsschnittstellenprotokolle einem der Abbildungsgerate speziell zugeordnet ist, und wobei zum Uber-
mitteln der zweiten, von einer der Ausgangsschnittstellenkomponenten erzeugten Abbildungsanforderungen
zu einem der Abbildungsgerate die zweiten Abbildungsanforderungen gemaf dem einen der Ausgangsschnitt-
stellenprotokolle Gbermittelt werden; und
einer Schnittstellen-Ausfiihrungskomponente (20) zum Bilden einer oder mehrerer Ubermittlungsleitungen
(26), von denen jede Leitung eine oder mehrere medizinische Abbildungsmodalitaten (12) mit einer der Netz-
werk-Schnittstellenkomponenten (33) kommunikativ verbindet unter Verwendung des gleichen Netz-
werk-Schnittstellenprotokolls, einer der Ausgangsschnittstellenkomponenten (16) und eines der Abbildungs-
gerate (18), wodurch mehrere medizinische Abbildungsmodalitdten unter Verwendung des gleichen Netz-
werk-Schnittstellenprotokolls mit einem der Abbildungsgeréte ber eine einzelne Ubermittlungsleitung (26)
kommunizieren kdnnen.

2. System nach Anspruch 1, worin jede der Netzwerk-Schnittstellenkomponenten eine erste Schnittstelle
umfasst zum Ubermitteln der ersten Abbildungsanforderungen zu einer der Ausgangsschnittstellenkomponen-
ten gemal einem Basisklassenprotokoll, das generisch ist fur jede Netzwerk-Schnittstellenkomponente und
von jeder Ausgangsschnittstellenkomponente verstanden wird.

53/60

DE 697 35351 T2 2006.11.30

3. System nach Anspruch 2, worin das Basisklassenprotokoll gemaf einer objektorientierten Hierarchie
definiert ist.

4. System nach Anspruch 2, worin
jede Ausgangsschnittstellenkomponente derart ausgebildet ist, dass sie von einem der Abbildungsgerate erste
Antworten auf die zweiten Abbildungsanforderungen erhalt,
wobei die ersten Antworten empfangen werden gemaf einem der Ausgangsschnittstellenprotokolle, und wobei
zum Erzeugen zweiter Antworten auf der Grundlage der ersten Antworten die zweiten Antworten gemaf einem
der Ausgangsschnittstellenprotokolle erzeugt werden; und
jede Netzwerk-Schnittstellenkomponente derart ausgebildet ist, dass sie auf der Grundlage der zweiten, von
einer der Ausgangsschnittstellenkomponenten erzeugten Antworten dritte Antworten erzeugt, die gemaf ei-
nem der Netzwerk-Schnittstellenprotokolle erzeugt sind, und dass sie die dritten Antworten zu einer der medi-
zinischen Abbildungsmodalitaten Gbertragt, wobei die dritten Antworten gemaf einem der Netzwerk-Schnitt-
stellenprotokolle tibertragen werden; und
jede der von der Schnittstellenausfiihrungskomponente gebildeten Leitungen eine bidirektionale Leitung ist,
die eine oder mehrere medizinische Abbildungsmodalitaten, eine der Netzwerkschnittstellenkomponenten,
eine der Ausgangsschnittstellenkomponenten und eines der Abbildungsgerate zur bidirektionalen Kommuni-
kation zwischen den medizinischen Abbildungsmodalitdten und einem der Abbildungsgerate kommunikativ
verbindet.

5. System nach Anspruch 4, worin jede der Ausgangsschnittstellenkomponenten eine zweite Schnittstelle
umfasst zum Ubermitteln der zweiten Antworten zu einer der Netzwerk-Schnittstellenkomponenten geman ei-
nem zweiten Basisklassenprotokoll, das generisch ist fur jede Ausgangsschnittstellenkomponente und von je-
der der Netzwerkschnittstellenkomponenten verstanden wird.

6. System nach Anspruch 4, worin die Schnittstellenausfiihrungskomponente jede der Leitungen geman
einer Client/Server-Beziehung derart definiert, dass jede der Netzwerk-Schnittstellenkomponenten ein Client
einer der Ausgangsschnittstellenkomponenten ist und dass die Schnittstellenausflihrungskomponente ein Cli-
ent einer jeden Netzwerk-Schnittstellenkomponente ist.

7. System nach Anspruch 6, worin die Kommunikation zwischen den Netzwerk-Schnittstellenkomponenten
und den Ausgangsschnittstellenkomponenten von Verfahrensfernabrufen ausgefiihrt wird, die erzeugt werden
von den Netzwerk-Schnittstellenkomponenten und ausgefiihrt werden von den Ausgangsschnittstellenkompo-
nenten, und worin die Kommunikation zwischen den Schnittstellenausfiihrungskomponenten, den Netz-
werk-Schnittstellenkomponenten und den Ausgangsschnittstellenkomponenten von Verfahrensfernabrufen
durchgefiihrt werden, die erzeugt werden von der Schnittstellenausflihrungskomponente und ausgefiihrt von
den Netzwerk-Schnittstellenkomponenten.

8. Vorrichtung zum Verteilen medizinischer Informationen, die von Abbildungsmodalitaten (12) auf einem
Netzwerk Gbermittelbar sind, mit:
einem Netzwerkausflihrungsmittel (14) zum Erzeugen einer entsprechenden ersten Abbildungsanforderung in
Abhangigkeit vom Empfang einer Abbildungsanforderung von einer der Abbildungsmodalitaten;
einem Ausgabeschnittstellenmittel (16) zum Erzeugen einer entsprechenden zweiten Abbildungsanforderung
und zu deren Ubermittlung zu einem Abbildungsgerét (18) in Abhéngigkeit vom Empfang der entsprechenden
ersten Abbildungsanforderung von den Netzwerkausfihrungsmitteln; und
einem Schnittstellenausfiihrungsmittel (20) zum Instanziieren des Netzwerkausfiihrungsmittels gemag einem
von der Abbildungsmodalitat vorgegebenen Eingangsprotokoll und Instanziieren des Ausgangsschnittstellen-
mittels gemank einem vom Abbildungsgerat vorgegebenen Ausgangsprotokoll,
worin das Netzwerkausflihrungsmittel ein Netzwerkschnittstellenmittel instanziiert, welches umfasst:
einen Netzwerktreiber (30) gemal einem Netzwerktreiberprotokoll des Eingangsprotokolls zum Empfangen
der Abbildungsanforderung von der Abbildungsmodalitat; und
einen Netzwerkinterpreter (32) gemaf einem Netzwerkinterpreterprotokoll des Eingangsprotokolls zum Erzeu-
gen der entsprechenden ersten Abbildungsanforderung; und
worin das Schnittstellenausfihrungsmittel (20) eine oder mehrere Kommunikationsleitungen (26) bildet, von
denen jede eine oder mehrere der Abbildungsmodalitdten kommunikativ verbindet und wobei eines der Netz-
werkschnittstellenmittel (33) das gleiche Netzwerkschnittstellenprotokoll, eines der Ausgangsschnittstellenmit-
tel (16) und eines der Abbildungsgerate (18) verwendet, wodurch multiple, das gleiche Netzwerkschnittstellen-
protokoll verwendende Abbildungsmodalitaten mit einem der Abbildungsgerate Uber eine einzelne Kommuni-
kationsleitung (26) kommunizieren kénnen.

54/60

DE 697 35351 T2 2006.11.30

9. Vorrichtung nach Anspruch 8, worin das Ausgangsschnittstellenmittel umfasst:
einen Ausgangsinterpreter (22), der spezifisch ist fur ein Ausgangsinterpreterprotokoll des Ausgangsprotokolls
zum Empfangen der ersten Abbildungsanforderung von den Netzwerkausfiihrungsmitteln und zum Erzeugen
der entsprechenden zweiten Abbildungsanforderung; und
einen Ausgangstreiber (24), der spezifisch ist flr ein Ausgangstreiberprotokoll des Ausgangsprotokolls zum
Ubermitteln der entsprechenden zweiten Abbildungsanforderung zum Abbildungsgerét.

Es folgen 5 Blatt Zeichnungen

55/60

DE 697 35351 T2 2006.11.30

Anhangende Zeichnungen

1.

Bumyoruon |
-sBuruspyigog i
-aqebsny

81

-y JOqian
nt -aqgebsny

——

E &
ool ey
-aqebsny _ : oo

Y T

-

N 1o)0j0id
-JuslD-yiomzioN

WXL
N 110X0}0.id
=jJusi|O-Ni4eMZ}op
HPIEAN TN o

4 [19X030id
UsiID-IeMZIaN

ajusuoduwioy _
NX1t -sbuniynysne | MY L
-USIISPIULIS |
........... . /,;
—d 8qRa | 1830.1di0ju1 ; m“ \\Loﬁowuq
n -aqebsny -ogebsny “___ -sbuniynsny
3 iy -YioMzZjoN

NX L

PN

} [joXo30id
-JusliD-YiomzjaN

/

4

56/60

DE 697 35351 T2 2006.11.30

]
BunyyoiLion _

-sBuruspjigeg |

-agebsny ~

81

ve

-oqebsny

48qm@p4y | _ | isjeidisul

-aqebsny

)

¢c

ajusuoduwioy
-sBbuniynysne

-Usja)SPILYdS

)

0c

/

14"

|

¢ ‘b4

N aoxo.noko.
-sbuniynisny

N ljox0joid
-JuBlD-YioMZION

WXL

-iomzoN

v

N lfo3j030.id

-JuslD-yiomzjeN

L fjoxojoid
-sbunaynjsny
-yIoMzpoN

N

-

bi

! cl
85
I 1j0)030.1cf
JualD-yIemMz)aN
WXt
L 1/0X0}0id
JuslD-IeMZ)oN / 21

57/60

DE 697 35351 T2 2006.11.30

/Y
N e
~eqresy
jjoyojoid A -aqebsny \/
(-isqra -Wyd .v
-aqebsny
@:@w Hod-1eng _
- /'\.\\

Jjoxjojo.d
-1aq1al)

jioxoj01d -aqebsny
-iaqtal) -uossepsiseg

14

jjoxoj04d
-49ja1diavyui

-aqebsny
-uassepysiseg

LR I e I T T T T Sr i,

-aqebsny
sojajesed \l\l
1S LE on
L Joj0idsa3u1
' -Ydemziap

wEm:o&Ee.‘
-sbuniynsne

-Yi0MZ)oN

58/60

DE 697 35351 T2 2006.11.30

.W@ 145

I

 as)asdioul
“eMzieN
-1axoid

Jeraudioyu
MISMZ)ON
“Wo2oId

Jojaudiojul
-}ISAZJON
dl

7\

jjoxo04d

95 -uassepisiseg
-se104d18}U1
{ISMZIoN
8E
{foyjoj0ud jioxojoud
gg -uassepisiseg -uassepfsiseg
-laqia -sbunuynysne
-WIormzon -ISMZION
jjoyoyoid
\\ joxolaid -sbuniyny
. -sBuniyny “Snexiom

N V -snexiom -Z}JIN-WODIa
Bglell L e
spsmzieN L N\

Jaqia)

-IoMzioN 1eqgiai) -WOo2oId ...‘_. \\OXONO‘sQ
1 -ISMZ}oN — vh -sbuniyny
~i9X{01d \ ¥ -Snexiam

) oy “ZJON-1SYOId

0S 8y A%

59/60

DE 697 35351 T2 2006.11.30

ve

Y

Y

Bunyotiion
sbun.ispjiqgeg W
-oqebsny . X
i 81)
8¢c
i8qian ¢t 0€
-aqebsny \ \
/ A ioj0.1d103U) P 10q18.4)
/ yiomzjoN < ioMZIoN
\ A MY
|
&:m:oquf&Q% _
-1o)uteqebsny) !
L\
27 a)usuodwoysbuniynisnexiomziaN

/
174 K

T

s)usuodwoysbuniynisneus|fs)spiuyos

/

0c

60/60

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

