An artificial climbing tree assembly consisting of one or more artificial climbing trees will be constructed of a steel pipe or tubular framework, in segments or welded together, covered with molded segments having the outward appearance of a natural tree trunk texture. The trees will be attached to a base plate with a central support tower housing a safety belaying and repelling system. The unique safety incorporated into the invention is created by the inclination of the trees away from the top of the central support tower. A tether line attaches from the back of the climber to the top of the tree through a pulley system in the extension arm to the safety belaying and repelling system housed by the central support tower. The climbers are required to climb the face of the trees, where if they let go, they will fall away from the tree and will be slowly lowered by the safety belaying and repelling system to the foam-cushioned pad below. Varying degrees of climbing difficulty will be added to the trees by changing the textured surface, the shape of the tree trunks, and/or the inclination angle of the tree away from the top of the central support tower.
AROMATIC CLIMBING TREES AND SUPPORT SYSTEM

FIELD OF THE INVENTION

[0001] This invention relates to the field of sport climbing structures used for recreational and sport climbing. In particular, this invention relates to artificial climbing trees with a safety belaying and repelling system connected to a base platform with a central support structure. More specifically, this invention describes one or more artificial climbing trees in a variety of shapes and sizes with varying natural surface textures and appearance. The artificial climbing trees are adjacent to the central support structure and anchored on the base platform. The central support structure houses the safety belaying and repelling system with extension arms that extend over each artificial climbing tree. The artificial climbing trees incline away from the top of the central support structure.

BACKGROUND OF THE INVENTION

[0002] Sport climbing on artificial structures has evolved from the traditional outdoor sport of rock climbing, wherein climbers ascended natural boulders and rock faces. Sport climbing in gyms and recreation centers has gained a great deal of popularity because of its convenience and the new safety devices that have been developed to restrain and lower climbers from artificial rock structures. Climbing gyms are equipped with artificial walls, ceilings and caves designed to simulate natural rock features. The surface of these artificial rock structures is provided with handholds that the climber grabs, pulls on, and steps on in order to ascend or traverse between two points of the artificial rock surface. One detrimental feature of the rock walls is the barren and unsightly appearance of handholds all over the walls’ surface. While the handholds are necessary to climb the rock walls, they do not add to the natural appearance of the rock-like structure.

[0003] The inventor, combining the knowledge that young people love to climb trees with the fact that Polynesian people have climbed coconut palm trees for decades, has devised the invention of the artificial climbing tree and support system. This unique invention is accomplished in part by using the safety belaying and repelling system designed for bungee towers. The artificial tree-like structures will be constructed of a steel pipe or tubular framework, in segments or welded together, as an armature for the tree. The surface of the artificial climbing trees will consist of one or more molded segments that form around the steel pipe or tubular framework to give the natural appearance of a tree. Varying degrees of climbing difficulty will be added to the artificial climbing trees by changing the surface texture, the shape of the tree trunks, and/or the inclination of the trees away from the top of the central support structure. The recent development of more life-like artificial foliage will be used to add natural appearance to the trees. The central support structure will be covered by artificial foliage to appear as an ornamental trellis. A foam-cushioned pad covered with AstroTurf® will cover the base platform to give an attractive garden-like appearance. The artificial climbing trees will appear natural in every way, with no unsightly handholds or footgrips to aid climbers. Climber-activated audio devices that sound when the climbers reach the top of the tree, will be located at the top of each tree.

[0004] The unique safety incorporated into the invention is created by the inclination of the trees away from the top of the central support structure. A tether line extends from the back of the climber to the top of the tree through a pulley system located in the extension arm, to the safety belaying and repelling system within the central support structure. The climbers are required to clamp the face of the trees, where if they let go, they will fall away from the tree and will be slowly lowered by the belaying and repelling system to the foam-cushioned pad below.

[0005] Climbing trees is an entirely different process than climbing rocks. Climbing rocks involves gripping and pulling with the hands while stepping on objects with the feet. Climbing trees involves gripping and pulling with the hands and stepping on limbs when possible, combined with holding and squeezing with the legs, or in the case of palm trees, holding with the hands and pushing away from the trunk with the feet.

[0006] U.S. Pat. No. 5,076,574 of Raymond Johnson describes a portable, stable, motor-less rope climbing exercise machine comprising a stable support frame, a plurality of rope pulleys and rope guides mounted on the frame, an endless rope extending around the pulleys, and guides to form a path which includes a vertically extending rope climbing portion and a hydraulic braking assembly coupled to the pulley system, for controlling the rate of movement of the rope based upon the weight of the user when said user is climbing the rope.

[0007] This patent describes a rope climbing exercise machine and does not deal with the climbing of artificial trees or the use of any form of safety belaying or repelling system.

[0008] U.S. Pat. No. 5,092,587 of Eric R. Ulmer teaches of a system for providing a course layout to simulate rock climbing, comprising metal tracking, hand and foot holds, and means for securing the holds to the tracking. The tracking may be arranged in various directions and orientations and may be secured to both walls and ceilings. Three different types of holds are disclosed: the sliding plate hold, the hinge hold, and the jam hold. Each hold is designed to provide a means for grasping, supporting, or gaining leverage as a climber proceeds along the course layout. Further, each type of hold has means for attaching an artificial rock outcropping that additionally simulates conditions encountered in rock climbing. Thus, the invention helps to create certain physical characteristics of rock formations that one may encounter while rock climbing.

[0009] This patent deals with hand and foot holds and a metal tracking in a course layout to simulate rock climbing. The system has similarities to the rock climbing walls, but it neither involves climbing trees, nor describes the safety belaying and repelling system.

[0010] U.S. Pat. No. 5,125,877 of George Brewer discloses a simulated climbing wall comprised of a frame, at least two guide members rotatably attached at the top of the frame, and a chain structure, including a plurality of climbing wall panels, each wall panel having a removable surface panel, wherein each wall panel is flexibly attached to the next in a continuous chain. The chain structure is guided by the guide members that simulate a climbing wall that has an orientation with respect to vertical that corresponds to the
orientation of the guide members such that the pitch angle of the climbing wall is adjustable and such that the panels may be moved downwardly in a controlled manner as the climber climbs.

[0011] This invention is another sport climbing device that simulates climbing rock walls and does not let the climber ascend high enough to require the safety belaying and repelling system.

[0012] U.S. Pat. No. 5,254,058 of Francois Savigny additionally describes a modular rough surface of a climbing wall that is formed by an assembly of elementary panels having specific curved structures, and arranged in a plurality of levels. The projection of the different panels on the rear plane parallel to the fixed support gives identical projected surfaces in the form of squares, or any other inscribed polygon. The side edges of the panels comprise a first profile associated with a first level difference, and/or a second profile associated with a second level difference. Assembly of the panels is performed with consecutive edges of the same profiles and level differences.

[0013] This patent describes the unique construction of an artificial climbing wall with a modular surface. It neither deals with climbing of a variety of trees, nor describes the safety belaying and repelling system.

[0014] U.S. Pat. No. 5,256,116 of Donald Robinson tells of a climbing feature device for installation in or on a climbing surface that comprises a plurality of faces having different climbing features thereon, the climbing device being operable, when installed, to present different selectable faces at a climbing surface. The device may comprise a rotary hexagonal drum having different climbing features on at least some of its six surfaces, which may be presented at the climbing surface as required. On the hexagonal drum, one face could be blank in order to provide no climbing feature at that particular location on the climbing wall if required, with different climbing features on the other surfaces. It is advantageous if the device is designed so that each climbing feature, when presented, is extremely rigidly fixed so that there is no danger to the climber. Further as regards safety, the device is preferably designed to be failsafe, so that it is maintained in a rigidly fixed position should the device fail.

[0015] This patent deals with a climbing feature for installation on a climbing surface. It again neither deals with climbing of a variety of trees, nor describes the safety belaying and repelling system.

[0016] U.S. Pat. No. 6,402,663 B1 of Richard R. Popp discloses a climbing wall for simulating outdoor rock climbing activity. The climbing wall includes a front surface, a rear surface and an intermediate portion reaching between the front surface and the rear surface. The intermediate portion defines one or more openings that extend through the climbing wall. The openings are located in positions that allow a child to travel safely around on the climbing wall. The intermediate portion also includes a grip projecting outward from the front surface and preferably the rear surface of the climbing wall. The grips are designed to allow a child to maneuver safely around the climbing wall.

[0017] This is yet another patent dealing with a vertical climbing wall for simulating outdoor rock climbing activities.

[0018] U.S. Pat. No. 6,551,216 B2 of Brian George Rennex describes a rock-climbing structure consisting of one or more pliable climbing matrices held under tension and a plurality of rock-climbing/gymnastic holds attached to the pliable climbing matrices. In an embodiment of the invention, a climbing matrix is, for example, a net or sheet. The plurality of holds can be attached to the one or more pliable climbing matrices by, for example, clasp rods that clamp a matrix or by clamps that engage a cord of the matrix. In an embodiment of the invention, distances between each hold of the plurality of holds vary across a climbing matrix to create a varied climbing route. The holds can include, for example, a hold edge, a jib hold, a hold hole, a hold lip, a hold crack, or a hold boss.

[0019] This patent describes a rock climbing structure consisting of a pliable climbing matrix. Again, it neither deals with climbing a variety of trees, nor describes the safety belaying and repelling system.

[0020] None of the foregoing prior art teaches or suggests the particular unique application of a variety of artificial, inclined trees as the device used to climb by climbers in a commercial or recreational sport climbing activity, nor utilizes a safety belaying and repelling system therein.

[0021] In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments, and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.

SUMMARY OF THE INVENTION

[0022] The invention is advantageous in that it involves the creation of a new sport climbing structure.

[0023] Another advantage of the invention is that it involves the creation of a sport climbing structure that is attractive and may be used as a decoration advantage as well as a source of income.

[0024] A further advantage of the invention is that it involves the creation of a sport climbing structure that uses a variety of artificial trees as climbing devices.

[0025] And still another advantage of the invention is in the creation of a new sport climbing structure that incorporates the safety belaying and repelling system used with bungee towers.

[0026] A further advantage of the invention is the inclination of the trees out from the central support structure so that if the climber lets go, they will be safely lowered down and away from the tree trunk.

[0027] An even further advantage of the invention is the creation of a variety of surface textures for the tree trunks to increase or reduce the difficulty of climbing the trees.

[0028] And still another advantage of the invention is the ability to vary the inclination angle of the top of the trees away from the central support tower to increase or decrease the difficulty of climbing the trees.
A final advantage of the invention is the addition of the new and unique artificial climbing tree assembly to the vast number of commercial and recreational entertainment activities and devices.

These advantages of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages, and the specific advantages attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention.

The preferred embodiment of the invention consists of one or more palm trees of varying sizes. These trees will contain a decorative top section of artificial foliage with the trunk fabricated from a metal or composite pipe or tubing framework, in segments or joined together. One or more molded surface segments having a variety of surface textures will give a natural appearance of a palm tree trunk. The artificial climbing trees will have a safety belaying and repelling system housed by a central support structure, in this case, a tower with an extension arm. This safety belaying and repelling system will require climbers to wear a safety harness attached to a tether line that will extend over pulleys on the one extension arm to the inner region of the central support tower. The palm trees will be attached to a base platform by means of a mounting plate and anchor bolts. The central support tower will also be anchored to the base platform by conventional means. It must be understood that the tree mounting plates and the central support tower could be anchored permanently to concrete footings within a concrete slab and still remain within the scope of this patent. Additionally, the base platform can be equipped with extension legs for additional support or if the artificial climbing trees are used as portable units. The central support tower will be covered by artificial foliage so as to appear as an ornamental trellis. A foam-cushioned pad covered with Astroturf® will give the attractive garden-like appearance desired by covering the base platform. The palm trees will incline outwardly from the central support tower, and the metal or composite pipe or tubular framework will be rigidly connected to the extension arms. Varying degrees of climbing difficulty will be added to each artificial climbing tree by changing the textured surface, the shape of the trunk, and/or the inclination angle of the trunk away from the top of the central support tower.

It must also be fully understood that the safety belaying and repelling system could be incorporated into the design of the tree trunk pipe or tubing framework, eliminating the central support tower and the palm trees used as single or multiple units, and still remain within the scope of this patent.

The alternate embodiment of the artificial climbing tree will consist of one or more of a wide variety to trees to be used with limbs. The trees will have multiple limbs that contain artificial foliage on their ends. The multiple limbs can be added or removed to alter the degree of climbing difficulty of the trees. The trees will also contain a foam-cushioned pad covered with Astroturf® covering the base platform to give the most natural appearance possible. These artificial climbing trees will be constructed of a metal or composite pipe or tubular framework, in segments or joined together, covered with one or more molded surface segments having a wide variety of surface textures. The safety belaying and repelling system will be housed in the central support structure, in this case a tower with an extension arm, with the climbers using the safety harness attached to the tether line extending over the pulleys on the extension arm. The trees will incline outwardly away from the central support tower so that if the climber lets go of the tree, they will fall away from the tree and will be slowly lowered by the safety belaying and repelling system to the foam-cushioned pad below. The trees will be attached to a base platform by means of a mounting plate and anchor bolts. The central support tower will also be anchored to the base platform by conventional means. It must be understood that the tree mounting plates and the central support tower could be anchored permanently to concrete footings within a concrete slab and still remain within the scope of this patent.

With respect to the above description, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention, and together with the description, serve to explain the principles of this invention.

FIG. 1 depicts a perspective view of the preferred embodiment of the artificial climbing tree as two palm trees, with two climbers attempting to climb them.

FIG. 2 depicts a plan view of a typical artificial climbing tree assembly with a variety of sizes and locations for the extension arms extending from the central support structure to the palm trees.

FIG. 3 depicts a perspective view of a typical tree trunk with the internal pipe or tubular framework and a segment of the molded outer surface material.

FIG. 4 depicts a perspective view of an alternate embodiment of the artificial climbing tree with limbs and a single climber attempting to climb the tree.

There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, wherein similar parts of the invention are identified by like reference numerals, there is seen in FIG. 1 a perspective view of the preferred embodiment of the artificial climbing tree 10A shown as two palm trees 12, with two climbers 14 attempt-
The climbers 14 are restrained by a safety belaying and repelling system 16. The system includes a safety harness 18 worn by the climbers 14. The safety harness 18 is connected to a tether line 20, extends over pulleys 22 on the extension arm 24 to the safety belaying and repelling system 16 located in the inner region of the central support tower 26.

[0042] Referring now to FIG. 2, the extension arms 24 will extend out from the central support tower 26 in a variety of lengths and at varying locations depending upon the number of palm trees 12 used. The palm trees 12 used on the device will consist of a palm tree top section 28 of artificial foliage 30, and referring now to FIG. 3, with the tree trunk 32 fabricated from a steel pipe or tubing framework 34 in segments or welded together with one or more molded surface segments 36 having a textured surface 38 to give the natural appearance of a palm tree trunk 32. Varying degrees of climbing difficulty will be added to each tree by changing the textured surface 38, the shape of the tree trunk 32, and the inclination angle away from the top of the central support tower 26. As FIG. 1 illustrates, the palm trees 12 will be attached to the base platform 40 by means of a mounting plate 42 and anchor bolts 44. The central support tower 26 will additionally be anchored to the base platform 40 by conventional means. It must be understood that the mounting plate 42 and the central support tower 26 can be permanently anchored to concrete footings within a concrete slab and still remain within the scope of this patent. Additionally, the base platform 40 can be equipped with extension legs 48, shown in FIG. 1, for additional support or if the artificial climbing tree 10A is used as a portable unit. The central support tower 26 will also be covered by artificial foliage 46 so as to appear as an ornamental trellis. A foam-cushioned pad 50 covered with Astroturf 52 will give the attractive garden-like appearance desired by covering the base platform 40. The palm trees 12 will incline outwardly from the central support tower 26, and the metal or composite pipe or tubular framework 34 will be rigidly connected to the extension arms 24.

[0043] It must also be fully understood that the safety belaying and repelling system 16 could be incorporated into the design of the tree trunk 30 steel pipe or tubing framework 34, eliminating the central support tower 26 and the palm trees 12 used as single or multiple units, and still remain within the scope of this patent.

[0044] Referring now to FIG. 4, there is shown a perspective view of an alternate embodiment of an artificial climbing tree 10B with the tree 60 being one of a wide variety of trees to be used with tree limbs 62 and a climber 14 attempting to climb the tree 60. One or more trees 60 will have artificial foliage 64 on the ends of the tree limbs 62, and the foam-cushioned pad 50 covered with Astroturf 52 will cover the base platform 40 to give the most natural appearance possible. The trees 60 will be constructed of a steel pipe or tubular framework 34, in segments or welded together, covered with molded surface segments 36 having a wide variety of textured surfaces 38, as illustrated in FIG. 3. The alternative embodiment of the artificial climbing tree 10B will have the safety belaying and repelling system 16 housed by the central support tower 26 with the climber 14 using the safety harness 18 attached to the tether line 20 extending over the pulleys 22 on the extension arm 24. The trees 60 will incline outwardly away from the top of the central support tower 26, so that if the climber 14 lets go of the tree 60, they will fall away from the tree 60 and be slowly lowered by the safety belaying and repelling system 16 to the foam-cushioned pad below. The trees 60 and the central support tower 26 will be attached to the base platform 40, or may be permanently anchored to concrete footings in a slab.

[0045] The artificial climbing trees 10A and 10B shown in the drawings and described in detail herein, disclose arrangements of elements of particular construction and configuration for illustrating preferred and alternate embodiments of structure and method of operation of the present invention. It is to be understood however, that elements of different construction and configuration and other arrangements thereof, other than those illustrated and described herein, may be employed for providing the artificial climbing trees 10A and 10B in accordance with the spirit of this invention, and such changes, alternations, and modifications as would occur to those skilled in the art are considered to be within the scope of this invention as broadly defined in the appended claims.

[0046] Further, the purpose of the foregoing abstract is to enable the United States Patent and Trademark Office and the general public, especially scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to quickly determine from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to limit the scope of the invention in any regard.

What is claimed is:
1. An artificial climbing tree assembly and support system comprising:
 a) base means for supporting one or more artificial climbing trees, wherein said one or more artificial climbing trees are removably attached to said base means;
 b) a support structure coupled to said base means and adjacent to said one or more artificial climbing trees, which includes one or more extension arms extending to and supporting said one or more artificial climbing trees; and
 c) a safety belaying and repelling system housed by said support structure;
 whereby when a climber ascends and falls from said one or more artificial climbing trees, said safety belaying and repelling system safely decreases said climber’s rate of fall.

2. The artificial climbing tree assembly and support system according to claim 1, wherein said base means is a platform with adjustable legs.

3. The artificial climbing tree assembly and support system according to claim 1, wherein said base means is covered by cushioned padding.

4. The artificial climbing tree assembly and support system according to claim 3, wherein said base means is covered by Astroturf® or other artificial surface material.

5. The artificial climbing tree assembly and support system according to claim 1, wherein said one or more artificial climbing trees are configured to resemble palm trees.
6. The artificial climbing tree assembly and support system according to claim 1, wherein said one or more artificial climbing trees comprises:
 a) a tree trunk; and
 b) a decorative top section comprised of artificial foliage, wherein said decorative top section is located at the top of said tree trunk.
7. The artificial climbing tree assembly and support system according to claim 6, wherein said tree trunk comprises:
 a) a tubular framework; and
 b) one or more molded segments having a textured surface, wherein said one or more molded segments encompass said tubular framework.
8. The artificial climbing tree assembly and support system according to claim 7, wherein said tubular framework is comprised of joined together segments.
9. The artificial climbing tree assembly and support system according to claim 1, wherein said one or more artificial climbing trees contain multiple limbs.
10. The artificial climbing tree assembly and support system according to claim 9, wherein said multiple limbs are removably attached to said one or more artificial climbing trees.
11. The artificial climbing tree assembly and support system according to claim 10, wherein the ends of said multiple limbs contain artificial foliage.
12. The artificial climbing tree assembly and support system according to claim 1, wherein said artificial climbing trees incline away from the top of said support structure.
13. The artificial climbing tree assembly and support system according to claim 1, wherein said one or more artificial climbing trees contain one or more molded surface segments having a textured surface.
14. The artificial climbing tree assembly and support system according to claim 13, wherein said textured surface contains multiple protrusions of varied shapes and sizes for the purpose of altering the degree of climbing difficulty of said one or more artificial climbing trees.
15. The artificial climbing tree assembly and support system according to claim 1, wherein said artificial climbing trees are rigidly connected to said one or more extension arms of said support structure.
16. The artificial climbing tree assembly and support system according to claim 1, wherein said artificial climbing trees are rigidly connected to said one or more extension arms of said support structure.
17. The artificial climbing tree assembly and support system according to claim 1, wherein said one or more artificial climbing trees contain one or more molded surface segments having a textured surface.
18. The artificial climbing tree assembly and support system according to claim 1, wherein said support structure is a tower.
19. The artificial climbing tree assembly and support system according to claim 18, wherein said support structure is covered by artificial foliage.
20. The artificial climbing tree assembly and support system according to claim 1, wherein said support structure is centrally located on said base means.
21. The artificial climbing tree assembly and support system according to claim 1, wherein said support structure includes one or more adjustable extension arms.
22. The artificial climbing tree assembly and support system according to claim 1, wherein said safety belaying and repelling system comprises:
 a) a safety harness for securing a climber to said safety belaying and repelling system;
 b) a pulley system housed by said one or more extension arms for decreasing said climber's rate of fall from said one or more artificial climbing trees; and
 c) a tether line extending from the back of said climber to the top of said one or more artificial climbing trees, through said pulley system housed by said one or more extension arms, to said support structure;
 whereby when a climber falls from said one or more artificial climbing trees, said harness worn by said climber, in conjunction with said pulley system and said tether line, safely decrease said climber's rate of fall.
23. The artificial climbing tree assembly and support system according to claim 1 further comprising a climber-activated audio/visual device to indicate when a climber has ascended to the top of said one or more artificial climbing trees.
24. An artificial climbing tree assembly and support system comprising:
 a) base means for supporting one or more artificial climbing trees, wherein said one or more artificial climbing trees are removably attached to said base means; and
 b) a safety belaying and repelling system housed by said one or more artificial climbing trees;
 whereby when a climber ascends and falls from said one or more artificial climbing trees, said safety belaying and repelling system safely decreases said climber's rate of fall.
25. A method for making an artificial climbing tree assembly and support system comprising the steps of:
 a) assembling one or more artificial climbing trees;
 b) providing a base means for supporting said one or more artificial climbing trees;
 c) securing said one or more artificial climbing trees to said base means;
 d) providing a means for housing a safety belaying and repelling system, wherein said means is coupled to said base means and adjacent to said one or more artificial climbing trees;
 e) securing said one or more artificial climbing trees to said means for housing a safety belaying and repelling system; and
 f) installing a safety belaying and repelling system within said means for housing a safety belaying and repelling system.
26. The method for making an artificial climbing tree assembly and support system according to claim 25, wherein said step of assembling said one or more artificial climbing trees further comprises:
 a) joining a plurality of tubular segments together; and
b) covering said joined plurality of tubular segments with one or more surface segments containing a textured surface.

27. The method for making an artificial climbing tree assembly and support system according to claim 25, wherein said step of assembling said one or more artificial climbing trees includes covering a tubular segment with one or more surface segments containing a textured surface.

28. The method for making an artificial climbing tree assembly and support system according to claim 25, wherein said step of securing said one or more artificial climbing trees to said means for housing a safety belaying and repelling system includes inclining said one or more artificial climbing trees away from the top of said means for housing a safety belaying and repelling system.

29. The method for making an artificial climbing tree assembly and support system according to claim 25, further comprising the step of covering said base means with cushioned padding.

30. The method for making an artificial climbing tree assembly and support system according to claim 25, further comprising the step of covering said base means with Astroturf® or other artificial surface material.

* * * * *