发明名称
使用影响气道中的舌和软腭 / 腭垂的磁力
系统的设备、系统和方法

摘要
系统和方法阻止舌和软腭 / 腭垂在睡眠期间的后移，从而保持气道开放。所述系统和方法采用第一、第二和第三结构。使第一结构的尺寸和构型适于放置在舌之内或之上。使第二结构的尺寸和构型适于放置在软腭或腭垂区之内或之上。使第三结构的尺寸和构型适于以期望关系放置在第一和第二结构前的组织之内或之上。第一和第二结构中的每一个包括铁磁材料。第三结构包括通过吸引第一和第二铁磁材料这两者而与第一和第二铁磁材料两者进行磁相互作用的磁性材料，从而阻止舌和软腭 / 腭垂两者的后移。
1. 一种用于稳定舌和软腭或腭垂者的取向的系统，包含：
其尺寸和构型适于放置在舌之内或之上的第一结构，所述第一结构包括第一铁磁材料，
其尺寸和构型适于放置在软腭或腭垂区之内或之上的第二结构，所述第二结构包括第二铁磁材料，以及
其尺寸和构型适于以期望关系放置在所述第一和第二结构前部的组织之内或之上的第三结构，所述第三结构包括通过吸引所述第一和第二铁磁材料这两者而与所述第一和第二铁磁材料两者的磁相互作用的磁性材料，
其中，所述第一和第二铁磁材料中的至少一个响应于与所述第三结构的所述磁性材料的磁相互作用而在对应的所述第一和 / 或第二结构内部移动，或者
其中，所述第三结构的所述磁性材料响应于与所述第一和第二铁磁材料的磁相互作用而在所述第三结构内部移动。

2. 根据权利要求 1 所述的系统
其中，所述第一和第二铁磁材料中的至少一个包括未经磁化的材料。

3. 根据权利要求 1 所述的系统
其中，所述第一和第二铁磁材料中的至少一个包括含有多个未经磁化的材料的阵列。

4. 根据权利要求 1 所述的系统
其中，所述第一和第二铁磁材料中的至少一个包括经磁化的材料。

5. 根据权利要求 1 所述的系统
还包括其尺寸和构型适于放置在所述第一和第二结构中的至少一个对向的后咽壁之内或之上的至少一个附加结构，所述至少一个附加结构包括通过排斥所述第一和第二结构中的所述至少一个的所述经磁化的材料而与所述第一和第二结构中的所述至少一个的所述经磁化的材料进行磁相互作用的磁性材料。

6. 根据权利要求 1 所述的系统
其中，所述第一和第二铁磁材料中的至少一个包括含有多个经磁化的材料的阵列。

7. 根据权利要求 1 所述的系统
其中，所述第一和第二结构中的至少一个包括能够使对应的所述第一结构和 / 或所述第二结构弯曲的柔性托架。

8. 根据权利要求 1 所述的系统
其中，使所述第三结构的尺寸和构型适于放置在所述舌以及所述软腭或腭垂区前的口腔之内。

9. 根据权利要求 8 所述的系统
其中，所述第三结构包含其尺寸和构型适于套配在一个或多个牙之上的器具。

10. 根据权利要求 1 所述的系统
其中，使所述第三结构的尺寸和构型适于放置在所述舌和软腭前的口腔外的组织之内或之上。

11. 根据权利要求 10 所述的系统
其中，所述第三结构的尺寸和构型适于佩戴在颈和 / 或领和 / 或颚之上。

12. 根据权利要求 11 所述的系统
权利要求书

其中，所述第三结构包括能够选择性地在不期望发生与所述第一和第二铁磁材料的磁相互作用时释放所述第三结构而在期望发生所述磁相互作用时佩戴所述第三结构的托架。

13. 根据权利要求1所述的系统
其中，所述第一结构、所述第二结构和所述第三结构通过在所述磁性材料与所述第一铁磁材料之间以及所述磁性材料与所述第二铁磁材料之间产生吸引磁力而进行相互作用，所述磁力具有量值F_{m}，并且其中
$F_{m} = f(F_{g}, F_{b})$，

其中，F_{g}包含睡眠期间将所述舌和所述软腭或腭垂与气道的组织分开所需的力量，以及F_{b}包含吞咽或喝东西和/或讲话期间肌肉自然对所述舌和所述软腭或腭垂施加的力。

14. 根据权利要求13所述的系统
其中，F_{g}的量值$\leq F_{b}$的量值。

15. 根据权利要求13所述的系统
其中，F_{m}的量值$\geq F_{g}$的量值。

16. 根据权利要求13所述的系统
其中，F_{g}的量值$\leq F_{m}$的量值并且$F_{g} \leq F_{b}$的量值。

17. 根据权利要求1所述的系统
其中，所述第一结构包括将所述第一铁磁材料稳定在所述舌组织之内的系绳组件。

18. 根据权利要求1所述的系统
其中，所述第一结构包括将所述第一铁磁材料耦接至舌组织的系绳组件。

19. 根据权利要求1所述的系统
其中，使所述第一结构的尺寸和构型适于只在所述舌的一侧之上放置所述第一铁磁材料。

20. 根据权利要求19所述的系统
其中，所述第一结构包括其尺寸和构型适于占据所述舌的另一侧的托组件。

21. 根据权利要求20所述的系统
其中，所述托组件基本上没有铁磁材料。
使用影响上气道中的舌和软腭/腭垂的磁力系统的设备、系统和方法

[0001] 相关申请

技术领域
[0003] 本发明涉及对包括阻塞性睡眠呼吸暂停和打鼾的睡眠呼吸障碍进行治疗的设备、系统和方法。

背景技术
[0004] 1. 睡眠呼吸暂停的特征
[0005] 最早于1965年被描述的睡眠呼吸暂停是一种以睡眠期间呼吸道存在短暂中断（10秒或更长）为特征的呼吸障碍。睡眠呼吸暂停是一种常见但严重的，可能危及生命的状况，影响多达一千万九百万美国人。
[0006] 睡眠呼吸暂停有多种类型：中枢性和阻塞性。中枢性睡眠呼吸暂停（其相对少见）发生在例如由于脑干损伤或损害，大脑不能给呼吸肌发送适当的信号使之开始呼吸时。机械通气是确保继续呼吸唯一可利用的治疗方式。
[0007] 阻塞性睡眠呼吸暂停（OSA）更为常见。通常情况下，咽喉上部的肌肉保持气道开放，从而允许气流进入肺部。当软腭，舌根和腭垂（咽喉后部正中悬垂的小肉质组织）的肌肉松驰并下垂时，松驰的组织可以随着呼吸过程中气流通过所述组织而发生振动，从而导致打鼾。打鼾影响大约一半的男性和25%的女性（其中的大多数人年龄为50岁或以上）。
[0008] 在更严重的情况下，气道阻塞，从而使呼吸受力，甚至完全停止。在指定的某一晚上，不自觉的呼吸暂停或“呼吸暂停事件”发生的次数可能高达每小时 20 到 30 次或者更高。尽管并不是每个打鼾的人都会发生呼吸暂停状况，但是这些呼吸暂停几乎一直伴有呼吸暂停发作之间的打鼾现象。睡眠呼吸暂停的特征也可以表现为窒息感。

[0009] 吸入肺内的空气缺乏会导致血液中氧水平下降和二氧化碳水平升高。一旦发生呼吸暂停事件，熟睡者不能继续正常地呼吸功能并且血液中的氧饱和水平降低。大脑将感受到这种状况，并促使熟睡者挣扎着喘气。然后将重新开始呼吸，之后常常持续发生呼吸暂停事件。由于血压中突然补偿性摆动，因此存在对心脏和血管有潜在的损害效果。在每次事件时，熟睡者将部分情况下从睡眠中醒来，从而导致睡眠质量的大幅下降及相关联的白天疲劳。有恢复精力作用的深度睡眠不断被破坏，常常会导致清晨头痛，白天过度嗜睡、抑郁、焦虑以及学习和记忆困难。

[0010] 医学界已经认识到，在患有中度或重度阻塞性睡眠呼吸暂停的人群中，心脏病、高血压以及脑卒中的发病率增加。据估计，超过 50% 的睡眠呼吸暂停患者患有高血压；

[0011] 虽然所有人类和动物中有一些呼吸暂停事件是正常的，但是发生堵塞的频率将决定疾病的严重程度以及可能对健康造成的损害。当堵塞的发生率频发时，就应当采取矫正措施。

[0012] 11. 上气道的解剖结构

[0013] 如图 1 所示，上气道包括起始于鼻尖的鼻咽并延伸至喉的管道，所述喉由于容纳有声带因而也被称为发声盒（voice box）。咽（其在希腊语意思是“咽喉”）是上气道中从头部的口腔和鼻腔延伸到食道和喉的锥形通路。咽既用于呼吸功能又用于消化功能。在该器官的称之为咽壁的壁中既有环肌又有纵肌。环肌形成帮助将食物推入食道内并防止咽下空气的缩窄，而纵肌在吞咽过程中上提咽壁。

[0014] 咽包括三个主要部分。前部是鼻咽（鼻腔的后段）。鼻咽借助于称之为咽峡的通道连接第二区域（口腔）。口腔起始于口腔的后部并沿咽喉向下连续到会厌（覆盖通向肺的气道并保持食物引导到食道的皮瓣组织）。连接口腔和鼻腔的峡部能够使人们通过鼻或咽呼吸。第二区域是起始于会厌并向下通向食道的咽喉。其功能是调控空气通往肺和食物通往食道的通道。来自鼻腔的空气流入咽，而来自口腔的食物被送入咽下正后方的食道。会厌（叶状皮瓣）在功能上就像咽的盖，并在发生吞咽动作过程中控制空气和食物的通行。

[0015] 口腔是消化管的起始部分。椭圆形状的它包含两部分：口腔前庭和固有口腔。

[0016] 口腔前庭是外部以唇和颊界定而内部以牙龈和牙界定的、靠近侧比较小的部分。它通过裂或口孔与体相相通。口腔前庭接收腮腺唾液腺的分泌；当上下颌咬合时，口腔前庭与固有口腔之间借助智齿（第三磨牙）后方两侧的间隙以及相对的牙之间的狭窄裂缝相通。

[0017] 固有口腔包含舌，并在侧面和正面上以牙槽骨及其内所含的牙进行界定。它接收颌下唾液腺和舌下唾液腺的分泌。固有口腔与咽之间借助称之为咽峡的缩窄间隙相通。

[0018] 舌是一种可呈现各种形状和姿态的可移动肌性器官。舌具有附着于舌骨和下颌骨的相对固定的下部。舌的其余部分称之为舌体。舌本质上是大部分覆以黏膜的一团肌肉。舌中的肌肉不会孤立地发生动作。一些肌肉与一个独立动作的肌肉的各部分一道执行多个动作，从而产生不同的、有时是相反的运动。
[0019] 舌部分位于口腔中而部分位于咽中。注意时，它基本上占据整个口腔。舌的后部
划分出口腔的后边界。舌黏膜厚且可自由移动。
[0020] 舌参与咀嚼、品尝、发音和口腔清洁。它的两种主要功能是在讲话过程中形成单音
以及在吞咽时将食物挤压入咽。
[0021] 腭形成口腔（口）的拱形顶和鼻腔（鼻）的底。它将口腔与鼻腔和咽分隔开。•
腭包含两个区域—位于前部的硬腭和位于后部的软腭。
[0022] 硬腭是拱形的，并界定出舌在休息时所填充的空间。硬腭具有硬骨性骨骼，因而得名。
[0023] 软腭没有骨性骨骼，因而得名。软腭悬垂于硬腭的后边界。它向后和向下延伸为
弯曲的独立缘。该独立缘悬有扇形形的突起，称之为腭垂。从颅骨的底部产生的肌肉向下延
伸入软腭中。所述肌肉能够在吞咽过程中上提软腭，进而接触后咽壁。所述肌肉还能够使
软腭在吞咽过程中被向下拉，进而接触舌的后部。
[0024] 软腭因而非常有活力且可移动。当人吞咽时，软腭最初被拉紧，以使舌能够压紧它，
进而将食物挤到到的后部。之后，将软腭向后和向上上提到抵靠着咽壁，从而充当关闭
并防止食物进入鼻腔的阀。
[0025] III. 睡眠和上气道的解剖结构
[0026] 虽然所有沿该管道的组织都是动态的且都对呼吸循环做出响应，但是只有咽，特
别是鼻咽（处于软腭和咽壁的面积）和口咽（处于舌根和咽壁的面积）可完全塌陷。咽结
构和该区域内的各个解剖成分包括咽壁、舌根、具有腭垂的软腭以及会厌。
[0027] 上气道的横截面积随呼吸循环的各时相而变化。在吸气开始（时相 I）时，气道
开始扩张，然后在吸气的其余时间（时相 II）保持相对恒定。在呼气开始（时相 III）时，气
道开始扩张，达到最大直径，然后尺寸减小，使得在呼气末（时相 IV）气道处于其最窄情况，
对应于上气道扩张肌活性最差的时候，并且腔内正压最低。因此，上气道最有可能在呼气末
塌陷和闭合（参考：Schwab RJ,Goldberg AN.的Upper airway assessment radiographic
[0028] 睡眠的特征在于上气道扩张肌活性降低。对于患有阻塞性睡眠呼吸暂停（OSA）或
许患有包括称为阻塞性睡眠呼吸障碍（SDB）的实体疾病群中大多数的其他障碍的个体，
人们认为这一肌肉功能方面的变化使咽部变窄并塌陷。已经形成的理论认为 OSA 患者的这一
现象可能有两种病因。其中一种是，睡眠期间与非呼吸暂停患者相比患有呼吸暂停的这些
个体的气道扩张肌张力降低得更多（神经理论）。另一种是，所有的个体在睡眠中扩张肌活
性降低的都相同，但是呼吸暂停患者的咽在结构上更不稳定（解剖学理论）。实际上，这两
种理论可能都对 OSA 起到贡献作用，但是当前的研究似乎支持这样的论调，即 OSA 患者的咽
在结构上天生就狭窄且易塌陷。（参考：Isono S.Remmers J,Tanaka A Sho Y,Sato J,
Nishino T的Anatomy of pharynx in patients with obstructive sleep apnea and in
normal subjects.JAppl physiol 1997;82;1319-1326)。尽管这一现象常在诸如咽咽
水平[8ono]的特定部位处加重，但是闭合压力的研究[8ono]支持动态快速 MRI 成像，所述
MRI 成像显示出通常沿着咽的整个长度出现的变窄和塌陷。（参考：Schoeff FG,Schatz
CJ,Julien P,Silverman JM,Steinberg F,Foo TKF,Hopp ML,Westbrook PR 的Oclusion
and narrowing of the pharyngeal airway in obstructive sleep apnea:evaluation by

[0029] IV. 治疗选项

[0030] 迄今为止，处理沿着整个上气道塌陷的唯一手段是机械正压呼吸设备，例如持续气道正压（CPAP）机器。所有的其他手段，例如各种的手术程序和口腔矫治器，受其自身性质的影响，只能处理气道的特定部分（例如侧水平、舌根水平和舌骨水平），但是都未对咽壁部分进行处理。就可以解释为什么在控制 OSA 过程中 CPAP 的成功率大大高于手术和矫治器。尽管实质上在呼吸循环中气道夹板的 CPAP 很成功，但是它有一些非常明显的缺点。它穿戴和携带起来都很重，很难在社交层面上被接受，且很多人（例如因为气道塌陷，故鼻通气障和气道刺激）不能耐受。这些因素导致长期依从率相对较差。一项研究表

[0031] 明，65%的患者 6 个月内放弃了他们的 CPAP 治疗。

[0032] 目前对于 OSA 的其他治疗包括下颌舌骨肌前移术（GAP）和上下颌骨前移术（MMA）。这些治疗涉及创伤大的手术程序以及较长的恢复时间，从而对患者的吸引力相对较低。

[0033] 现在仍需要简单且成本高效的设备、系统和方法来减少或防止睡眠呼吸障碍事件。

发明内容

[0034] 本发明提供了用于阻止舌和软腭/腭垂在睡眠期间的后移，从而保持气道开放的系统和方法。

[0035] 本发明的一个方面提供的一种系统和方法包括其尺寸和构型适于放置在舌之内或之上的第一结构和其尺寸和构型适于放置在软腭或腭垂区之内或之上的第二结构。第一和第二结构中的每一个都包括可移动材料。所述系统和方法包括其尺寸和构型适于在期望的放置位置在第一和第二结构前的组织之内或之上的第三结构。第三结构包括通过吸引第一和第二可移动材料这两者与第一和第二可移动材料两者进行磁相互作用的磁性材料。

[0036] 在一个实施例中，使第三结构的尺寸和构型适于放置在舌和软腭或腭垂区前的口腔内。该位置中，第三结构可包含例如其尺寸和构型适于套配在一个或多个牙之上的器具。在该放置中，可以选择性地在不期望发生与第一和第二可移动材料的磁相互作用时释放第三结构，而在期望发生所述磁相互作用时作用于第三结构。

[0037] 在一个实施例中，使第三结构的尺寸和构型适于放置在舌和软腭前的口腔外侧的组织之内或之上。该位置中，使第三结构的尺寸和构型适于例如例如佩戴在领和/或颌和/或额之上。该位置中，可以选择性地在不期望发生与第一和第二可移动材料的磁相互作用时释放第三结构，而在期望发生所述磁相互作用时作用于第三结构。

[0038] 在一个实施例中，第一和第二可移动材料包括经磁化的材料。在该放置中，所述系统和方法还包括至少一个附加结构。使所述附加结构的尺寸和构型适于放置在第一和第二结构中的至少一个在面的后面组织区之内或之上。所述附加结构包括通过排斥第一和第二结构中的至少一个在面的磁化的材料而与第一和第二结构中的至少一个的磁化的材料进行磁相互作用的磁性材料。

附图说明

[0039] 图 1 是人类上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、
图 2 是口腔的解剖前视图，其中舌向前伸，以示出包括（在前）的硬腭和（在后的）软腭的上方。

图 3 是患有一种涉及软腭的睡眠呼吸暂停形式的人类解剖侧视图（其中各断面被部分切开并集中在一起），其示出了舌根、软腭以及腭垂如何斜靠着咽壁，从而实际上闭合气道，导致呼吸暂停事件。

图 4A 到 4D 以图解的方式示出了阻止发生图 3 所示的组织状况（涉及舌和咽壁的塌陷）的磁力系统的代表性实施例，其中一个图 4A 到 4C 显示了植入到舌各区之内的铁磁结构与气道外携带的（例如，位于颈部或颅顶上的）磁性结构进行的磁相互作用，而图 4B 到 4D 显示了植入到舌各区之内的铁磁结构与气道内携带的（例如，位于口腔之内的）磁性结构进行的磁相互作用。图 4E 和 4F 显示了提供附加排斥力以阻止舌塌陷的舌系统的替代实施例。

图 5A 和 5B 以图解的方式示出了阻止发生图 3 所示的组织状况（涉及软腭 / 腭垂和咽壁）的磁力系统的代表性实施例，其中一个图 5A 显示了植入到软腭 / 腭垂之内的铁磁结构与气道外携带的（例如，位于颈部或颅顶上的）磁性结构进行的磁相互作用，而图 5B 显示了植入到软腭 / 腭垂之内的铁磁结构与气道内携带的（例如，位于口腔之内的）磁性结构进行的磁相互作用。图 5C 和 5D 显示了提供附加排斥力以阻止软腭 / 腭垂塌陷的软腭系统的替代实施例。

图 6A 和 6B 以图解的方式示出了阻止发生图 3 所示的组织状况（涉及舌和软腭 / 腭垂和咽壁的塌陷）的磁力系统的代表性实施例，其中一个图 6A 显示了植入到舌和软腭 / 腭垂之内的铁磁结构与气道外携带的（例如，位于颈部或颅顶上的）磁性结构进行的磁相互作用，而图 6B 显示了植入到舌和软腭 / 腭垂之内的铁磁结构与气道内携带的（例如，位于口腔之内的）磁性结构进行的磁相互作用。图 6C 和 6D 显示了提供附加排斥力以阻止舌和软腭 / 腭垂塌陷的组合系统的替代实施例。

图 7A 到 7C 显示了其尺寸和构型适宜于佩戴在气道外的颈和 / 或颅顶上以便以图 4A、4C、5A 和 6A 所示的方式与气道内携带的（例如，位于舌和 / 或软腭 / 腭垂之内的或之上的）一个或多个磁性结构进行磁相互作用的磁性结构的代表性实施例。

图 8A 和 8B 显示了其尺寸和构型适宜于佩戴在气道外的颈周围以便以图 4A 到 4D 以及 5A 和 6A 所示的方式与气道内携带的（例如，位于舌和 / 或软腭 / 腭垂之内的或之上的）一个或多个铁磁结构进行磁相互作用的磁性结构的代表性实施例。

图 9A 到 9B 显示了其尺寸和构型适宜于佩戴在气道内（例如，位于口腔内的）以便以图 4B、4D、5B 和 6B 所示的方式与气道内携带的（例如，位于舌和 / 或软腭 / 腭垂之内的或之上的）铁磁结构进行磁相互作用的磁性结构的代表性实施例。

图 10 是作为图 4A 到 4D 或者 5A 或 5B 或 6A 或 6B 所示磁力系统的一部分的其尺寸和构型适宜于进行植入的铁磁材料的透视图。

图 11 是作为图 4A 到 4D 或者 5A 或 5B 或 6A 或 6B 所示磁力系统的一部分的位于托架上的其尺寸和构型适宜于进行植入的铁磁材料阵列的透视图。

图 12A 是人类上气道的解剖侧面图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、颈和颅，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌和咽壁的塌陷）的图 4A。
或 4C 所示类型的代表性磁力系统，所述磁力系统包含植入到舌各区之内、与气道外携带的（例如，位于刻和 / 或颚之上的）磁性结构进行相互作用的铁磁结构；

图 12B 是其尺寸和构型适于植入到舌各区之内且形成了图 12A 所示系统一部分的铁磁结构的透视图；

图 12C 和 12D 分别是其尺寸和构型适于佩戴在气道外（例如，位于刻和 / 或颚上）且形成了图 12A 所示系统一部分的磁性结构的透视图和侧视图；

图 12E 是口腔的解剖前视图，其示出了舌和硬腭及软腭，并进一步示出了图 12A 所示的磁力系统，其中位于舌之内的铁磁结构大体对称地横跨舌的中心线延伸，而佩戴在颚和 / 或颚之上的磁性结构包括位于口腔两侧之上的磁体，并且进一步示出了在该布置中阻止发生图 3 所示的组织状况（涉及舌柄着咽壁的塌陷）的磁吸引力；

图 12F 是口腔的解剖前视图，其示出了舌和硬腭及软腭，并进一步示出了图 12A 所示的磁力系统，其中位于舌之内的铁磁结构大体对称地横跨舌的中心线延伸，而佩戴在颚和 / 或颚之上的磁性结构包括仅位于口腔一侧之上之上的磁体，并且进一步示出了在该布置中阻止发生图 3 所示的组织状况（涉及舌柄着咽壁的塌陷）的磁吸引力；

图 12G 是人类上气道的剖解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、颚和颚，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌柄着咽壁的塌陷）的图 4B 或 4D 所示类型的代表性磁力系统，所述磁力系统包含植入到舌各区之内、与气道内携带的（例如，位于口腔内部的）磁性结构进行相互作用的铁磁结构；

图 12H 是口腔的解剖前视图，其示出了舌和硬腭及软腭，并进一步示出了图 12G 所示的磁力系统，其中位于舌之内的铁磁结构大体对称地横跨舌的中心线延伸，而佩戴在口腔内部的磁性结构包括位于口腔两侧之上的磁体，并且进一步示出了在该布置中阻止发生图 3 所示的组织状况（涉及舌柄着咽壁的塌陷）的磁吸引力；

图 13A 是人类上气道的解剖剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、颚和颚，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌柄着咽壁的塌陷）的图 4B 或 4D 所示类型的代表性磁力系统，所述磁力系统包含植入到舌各区之内、与气道内携带的（例如，位于口腔内部的）磁性结构进行相互作用的铁磁结构；

图 13B 是其尺寸和构型适于植入到舌各区之内且形成了图 13A 所示系统一部分的铁磁结构的透视图；

图 13C 是其尺寸和构型适于佩戴在气道内部（例如，位于口腔内部的牙之上）且形成了图 13A 所示系统一部分的磁性结构的透视图；

图 13D 是口腔的解剖前视图，其示出了舌和硬腭及软腭，并进一步示出了图 13A 所示的磁力系统，其中位于舌之内的铁磁结构大体对称地横跨舌的中心线延伸，而佩戴在口腔内部的牙之上的磁性结构包括位于口腔两侧之上的磁体，并且进一步示出了在该布置中阻止发生图 3 所示的组织状况（涉及舌柄着咽壁的塌陷）的磁吸引力；

图 14A 是人类上气道的剖解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、颚和颚，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌和硬腭 / 软腭结合着咽壁的塌陷）的图 6B 所示类型的代表性磁力系统，所述磁力系统包含植入到舌各区之内、与气道内携带的（例如，位于口腔之内的）磁性结构进行相互作用的铁磁结构；

图 14B 是其尺寸和构型适于植入到舌各区之内且形成了图 14A 所示系统一部分的
铁磁结构的透视图；
[0062] 图 14C 是其尺寸和构型适于佩戴在气道内部（例如，位于口腔内部的牙之上）且形成了图 14A 所示系统一部分的铁磁结构的透视图；
[0063] 图 14D 是口腔的解剖前视图，其示出了舌和软腭及软腭，并进一步示出了图 14A 所示的磁力系统，其中位于舌和软腭 / 舌垂之内的铁磁结构大体对称地横跨舌和软腭的中心线延伸，而佩戴在口腔内部的牙之上的磁性结构包括位于口腔两侧之上的磁体，并且进一步示出了在该布置中阻止发生图 3 所示的组织状况（涉及舌或着咽壁的塌陷）的磁吸引力；
[0064] 图 15 是示出了磁力对距离有多么敏感（曲线 SM）以及如何在舌和软腭 / 舌垂的正常解剖功能期间定义的规定工作空间内利用力与距离关系的敏感性来降低对磁力场的滴定（曲线 MM）的曲线图；
[0065] 图 16A 和 17A 是气道外部的额或领之上或者气道之内的牙之上携带的、与植入到舌或软腭 / 舌垂之内的铁磁结构相互作用的磁性结构图解视图，还示出了在该布置中如何通过在舌和软腭 / 舌垂的正常解剖功能期间定义的规定工作空间内对力与距离关系的敏感性进行滴定来调节磁吸引力；
[0066] 图 16B 和 17B 是气道外颈周围佩戴的、与植入到舌或软腭 / 舌垂之内的铁磁结构相互作用的磁性结构图解视图，还示出了在该布置中如何通过在舌和软腭 / 舌垂的正常解剖功能期间定义的规定工作空间内对力与距离关系的敏感性进行滴定来调节磁吸引力；
[0067] 图 18A 和 18B 是示出了图 16A/16B 和 17A/17B 所示类型的磁性结构的磁通线的有限元分析的图解表示，其示出如何通过在舌和软腭 / 舌垂的正常解剖功能期间定义的规定工作空间内对力与距离关系的敏感性进行滴定来调节磁吸引力；
[0068] 图 19 是人类上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、额和领，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌和软腭 / 舌垂着咽壁的塌陷）的图 4A 所示类型的代表性磁力系统，其中植入到一舌区之内的铁磁结构包括与气道外携带的（例如，位于额和 / 或领之上的）磁性结构相互作用的可移动铁磁材料；
[0069] 图 20A 和 20B 是人类上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、额和领，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌和软腭 / 舌垂着咽壁的塌陷）的图 4B 所示类型的代表性磁力系统，其中植入到一舌区之内的铁磁结构包括与气道内携带的（例如，位于口腔之上的）磁性结构相互作用的可移动铁磁材料；
[0070] 图 21A 是人类上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、额和领，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌和软腭 / 舌垂着咽壁的塌陷）的图 4A 所示类型的代表性磁力系统，其中植入到一舌区之内的铁磁结构包括与气道外携带的（例如，位于额和 / 或领之上的）磁性材料相互作用的可移动磁性材料；
[0071] 图 21B 到 21F 是其尺寸和构型适于佩戴在气道内部（例如，位于口腔内部的牙之上）且形成了图 21A 所示系统一部分的磁性结构的代表性实施例的透视图，所述磁性结构包括可移动磁性材料；
[0072] 图 22A 是人类上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口
咽、锁和颈，并进一步示出了阻止发生图3所示的组织状况（涉及舌和软腭/腭垂倚着咽壁的塌陷）的图5b所示类型的代表性磁力系统，其中植入到一软腭/腭垂区之内的铁磁结构与包括气道内携带的（例如，位于口腔内部的牙之上的）可移动磁性材料的磁性材料相互作用；

[0073] 图22b和22c是其尺寸和构型适于佩戴在气道内部（例如，位于口腔内部的牙之上的）且形成了图22a所示系统一部分的磁性结构的代表性实施例的透视图，所述磁性结构包括可移动磁性材料；

[0074] 图23a是上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、锁和颈，并进一步示出了阻止发生图3所示的组织状况（涉及舌和软腭/腭垂倚着咽壁的塌陷）的图4a所示类型的代表性磁力系统，其中植入到一舌区之内的铁磁结构包括与气道外携带的（例如，位于颈和/或颈之上的）磁性结构相互作用的可移动铁磁材料；

[0075] 图23b和23c是其尺寸和构型适于植入到一舌区之内且形成了图23a所示系统一部分的磁性结构的代表性实施例的透视图，所述磁性结构包括可移动磁性材料；

[0076] 图24a、24b和24c是可形成图19；图20a和20b；图21a到21f；图22a到22c；或图23a到23c所示系统一部分的具有各种几何形状和形式的可移动铁磁材料的代表性实施例；

[0077] 图25是口腔的解剖侧视图，其示出了舌和咽管，并进一步示出了植入到舌之内的铁磁结构，所述铁磁结构大体非对称地仅在舌的一侧之上延伸，该视图还示出了如图3所示的组织状况（涉及舌倚着咽壁的塌陷）；

[0078] 图26a，像图25所示的一样，是口腔的解剖侧视图，其示出了非对称地植入到舌之内的铁磁结构与气道内（例如，位于口腔内部的牙之上）在口腔两侧之上具有磁体的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力；

[0079] 图26b，像图25所示的一样，是口腔的解剖侧视图，其示出了非对称地植入到舌之内的铁磁结构与气道内（例如，位于口腔内部的牙之上）仅在口腔中相对于舌之内的非对称铁磁结构的一侧之上具有磁体的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力；

[0080] 图27，像图25所示的一样，是口腔的解剖侧视图，其示出了非对称地植入到舌之内的铁磁结构与所述铁磁结构相对的植入到咽壁之内的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁排斥力；

[0081] 图28是口腔的解剖侧视图，其示出了舌和咽管，并进一步示出了植入到舌之内的铁磁结构，其中所述铁磁结构大体非对称地仅在舌的一侧之上延伸，但是所述铁磁结构包括不含铁磁材料且延伸进入舌的相对侧面的附件，该视图还示出了如图3所示的组织状况（涉及舌倚着咽壁的塌陷）；

[0082] 图29a，像图28所示的一样，是口腔的解剖侧视图，其中非对称地植入到舌之内的具有非铁磁附件的铁磁结构与气道内（例如，位于口腔内部的牙之上）在口腔两侧之上具有磁体的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力；

[0083] 图29b，像图28所示的一样，是口腔的解剖侧视图，其中非对称地植入到舌之内的
具有非铁磁附件的铁磁结构与气道内（例如，位于口腔内部的牙之上）仅在口腔中相对于舌之内的非对称铁磁结构的一侧之上具有磁体的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力；

[0084] 图30，像图28所示的一样，是口腔的解剖俯视图，其中非对称地植入入舌之内的具有非铁磁附件的铁磁结构与所述铁磁结构相对的植入到咽壁之内的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁排斥力；

[0085] 图31A和31B分别是具有非铁磁附件的非对称铁磁结构的代表性实施例的透视图和顶视图，所述非对称铁磁结构包括非铁磁的轭型结构以进一步稳定所述结构并响应于气道内或外或者两者的磁性结构的磁相互作用而移动更多的组织；

[0086] 图31C是口腔的解剖俯视图，其示出了舌和咽管，并进一步示出了植入到舌之内的图31A和31B所示的铁磁结构，该视图还示出了如图3所示的组织状况（涉及舌倚着咽壁的塌陷）；

[0087] 图31D，像图31C所示的一样，是口腔的解剖俯视图，其中图31C所示的铁磁结构与气道内（例如，位于口腔内部的牙之上）仅在口腔中相对于舌之内的非对称铁磁结构的一侧之上具有磁体的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力；

[0088] 图32A和32B分别是具有磁极相反的相对两个臂区以及中间非磁性轭型结构用以进一步稳定所述结构并响应于气道内或外或者两者的磁性结构的磁相互作用而移动更多的组织的磁性结构的代表性实施例的透视图和顶视图；

[0089] 图33是口腔的解剖俯视图，其示出了舌和咽管，并进一步示出了植入到舌之内的图32A和32B所示的铁磁结构，该视图还示出了如图3所示的组织状况（涉及舌倚着咽壁的塌陷）；

[0090] 图34A和34B，像图33所示的一样，是口腔的解剖俯视图，其中图33所示的铁磁结构与气道内（例如，位于口腔内部的牙之上）仅在口腔一侧之上具有磁体的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力；

[0091] 图35，像图33所示的一样，是口腔的解剖俯视图，其中图33所示的铁磁结构与所述铁磁结构相对的植入到咽壁之内的磁性结构相互作用，并进一步示出了在该布置中阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）的磁吸引力和磁排斥力；

[0092] 图36是舌、软腭／腭垂和咽壁的解剖俯视图，其示出了力F_{a}和F_{b}的解析，以提供在夜间阻止睡眠期间舌倚着咽壁的塌陷，而不影响醒着或睡着时正常活动过程中讲话、吞咽或喝东西的最佳治疗力F_{m}；

[0093] 图37是舌、软腭／腭垂和咽壁的解剖俯视图，其示出了力F_{a}和F_{b}的解析，以提供在夜间阻止睡眠期间软腭／腭垂倚着咽壁的塌陷，而不影响醒着或睡着时正常活动过程中讲话、吞咽或喝东西的最佳治疗力F_{m}；

[0094] 图38是执行植入物力的比例缩放策略的图表；

[0095] 图39A和39B是人类上气道的解剖侧面剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、颚和颈，并进一步示出了阻止发生图3所示的组织状况（涉及舌倚着咽壁的塌陷）
的图 4C 所示类型的代表性磁性系统，所述磁性系统包含植入到舌更低、更下方区之内的与气道外携带的（例如，位于镫之上的）磁性结构相互作用的铁磁结构，所述铁磁结构包括（在图 39A）单个栓系栓固组件和（在图 39B）多个栓系栓固组件，以便将所述铁磁结构稳定成紧密靠近外部安置在镫的磁性结构；

图 39C 和 39D 是人类上气道的解剖侧面解剖视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、咽和颈，并进一步示出了阻止发生图 3 所示的组织状况（涉及舌倚着咽壁的塌陷）的图 40A 和 40B 所示类型的代表性栓系磁力系统，所述磁力系统包含植入到舌的更前方区域之内、与气道外携带的（例如，位于镫之上的）磁性结构相互作用的铁磁结构，所述铁磁结构包括（在图 39C）单个栓系栓固组件和（在图 39D）多个栓系栓固组件，以便将所述铁磁结构稳定成紧密靠近外部安置在镫的磁性结构；

图 39E 是代表性栓系栓固组件的透视图，其包括折叠以进行植入并在植入部位内原地展开的伞状栓固件；

图 39F 是代表性栓系栓固组件的透视图，其可进行调整和锁定以便对张力进行调整和控制；

图 40A 到 40C 示出了植入到舌前部或后前区之内或下颌舌骨肌之内，靠近外部磁性结构（例如，口腔内部携带的口含件或者放置在镫之上或之下或颈周的外部托架）的铁磁结构的代表性实施例；

图 41A 和 41B 示出了包含一个或多个铁磁结构的设备，所述铁磁结构附着至一个或多个其尺寸和构型适于在负荷下以规定的方式发生变形并在卸除负荷时恢复初始形状的弹性部件。

具体实施方式

本说明书公开了多种使用磁吸引力来维持气道通畅的磁性植入物和外部设备、系统以及方法。例如，本发明的多个方面应用于需要对机体（例如机体内部的通道）之内和/或周围的组织塌陷进行限制的程序。体现本发明特征的设备、系统和方法还适合于基于组织的应用的设备、系统和方法结合使用。所述设备、系统和方法特别适于治疗包括睡眠呼吸暂停的睡眠障碍性呼吸。为此，将在此背景下描述所述设备、系统和方法。尽管如此，仍应当领会到所公开的设备、系统和方法可应用于治疗身体中其他部位处不一定与睡眠障碍相关的功能紊乱。

I. 舌和软腭

A. 解剖结构

图 2 显示了口腔的解剖视图，其中舌向前伸。图 2 显示了舌和上腭，即如前所述并如图 1 所示的腭。图 2 显示了同样在前面已经描述过的腭的两个部分，即，（在前面的）硬腭和（在后面的）软腭。

硬腭在前面和侧面以牙槽弓和齿龈为界，而在后面以软腭为界。由骨外膜和口腔黏膜构成的密实结构覆盖硬腭。线性中缝沿着硬腭的中线延伸。

软腭是从硬腭后边界悬垂下来的可移动皱襞，并在口和咽之间形成不完整的分界线（隔膜）。软腭包括包裹肌肉纤维的黏膜、腱膜、脉管、神经、腺样体组织和黏液腺。

当软腭松弛下垂时，前面是凹的并沿着与上腭相同的线前行。软腭的后面表面凸
起，并成为覆盖鼻腔底部的黏膜的延续。软腭的上缘附接于硬腭；两侧成为咽的一部分；而下缘游离。下垂从而分隔前和咽的下缘被称为腭帆。下缘的中央有小的乳头状突起称腭垂。腭垂的两侧向下有两对腭弓。这两对腭弓称为舌腭弓（前方的一对腭弓）和咽腭弓（后方的一对腭弓）。腭肌膜是给肌肉提供支撑及使软腭强健的由细且坚固的纤维填充的薄层。
[0109] 舌位于口腔底上方。就人类而言，舌是一种进行各种各样运动的器官，部分原因在于它参与包括讲话、吃东西和吞咽的各种各样的活动。当人醒着时，舌通常往上和前的位置运动。当人睡着时，舌的肌肉松弛，而舌能往更大范围的方向运动。可以发生以转动方式侧向、后向、前向、顺侧、后侧，或其任意组合的这一运动。
[0110] 在吃东西和吞咽的过程中，腭垂防止食物进入鼻咽，而软腭的肌肉将食物向下推入咽中。舌可以与其他结构一起运动（即，舌与咽壁结合在一起，或者舌与腭结合在一起），或者独立于其他结构运动（即，舌运动而腭、咽壁或会厌不运动）。
[0111] B. 舌 / 软腭和睡眠呼吸暂停
[0112] 当气道阻塞时发生睡眠呼吸暂停；当气道部分阻塞时发生呼吸不足。睡眠呼吸暂停有很多形式；气道闭合可以发生于气道分布的许多解剖结构处，包括舌、软腭、会厌和咽的任意组合。舌，可以相对于咽壁塌陷，或者舌根和咽壁这两者可以同时塌陷。同样地，软腭 / 腭垂可以相对于咽壁和 / 或舌垂，或者软腭 / 腭垂和 / 或舌和 / 或咽壁可以同时塌陷。这样，通过防止舌、咽壁、软腭 / 腭垂单独塌陷，和 / 或防止舌根、咽壁和 / 或软腭 / 腭垂中的一个或多个同时塌陷可以治疗睡眠呼吸暂停。
[0113] 图 1 是正常患者上气道系统的解剖侧视图，其示出了鼻腔、口腔、舌、硬腭、软腭、口咽、颊和颈。图 3 显示了具有睡觉呼吸暂停（同时涉及舌、咽壁和软腭 / 腭垂）的患者的解剖侧视图。如图 3 所示，舌根、软腭和腭垂靠在咽壁，因而有效地关闭了气道。结果会发生呼吸暂停发作。
[0114] II. 磁吸引力系统
[0115] A. 概述
[0116] 1. 阻止舌的塌陷（舌系统）
[0117] 图 4A 到 4D 以图解的方式示出了（至少部分地）阻止图 3 所示的组织状况（涉及舌咀嚼咽壁的塌陷）的磁力系统 10a 的代表性实施例。这一系统 10a 在其各个实施例中简称为舌系统。舌系统 10a 包括一个磁性结构 12 和一个磁性结构 14，用以在所述两个结构之间产生磁吸引力，所述磁吸引力将舌维持在远离后咽壁并留有间距的位置，如图 4A, 4B, 4C 和 4D 所示出的那样。磁力场阻止舌在睡眠期间的后移，从而保持气道开放。避免了呼吸暂停发作。
[0118] 在图 4A 和 4B 所示的代表性实施例中，磁性结构 12 位于舌之内或之上。更具体地，磁性结构 12 可以位于舌的前区或后区。在图 4A 中，与磁性结构 12 相互作用的磁性结构 14 位于气道外（例如，位于颊之上），而在图 4B 中，所述磁性结构 14 位于气道内部（例如，位于口腔之内）。
[0119] 在图 4C 和 4D 所示的代表性实施例中，磁性结构 12 位于下颌骨和舌骨之间的大体区域之内，要么是位于舌骨肌（例如，下颌骨舌骨肌、颊舌骨肌或茎突舌骨肌或二腹肌的舌骨上肌中的一个或多个）之内或之上，要么是位于皮肤之下。在图 4C 中，与磁性结构 12 相互作用的磁性结构 14 位于气道外（例如，位于颊之上），而在图 4D 中，所述磁性结构 14
位于气道内部（例如，位于口腔之内）。

【0120】2. 阻止软腭的塌陷（软腭系统）

【0121】图5A和5B以图解的方式示出了（至少部分地）阻止图3所示的组织状况（涉及软腭/腭垂者着咽壁的塌陷）的磁力系统10b的代表性实例。这一系统10b在其各个实施例中简称为软腭系统。软腭系统10b包括一个磁性结构12和一个磁性结构14，用以产生磁力场，所述磁力场将软腭/腭垂维持在远离后咽壁并留有间距的位置，如图5A和5B所示出的那样。所述磁力场阻止软腭/腭垂在睡眠期间的后移，从而保持气道开放。避免了呼吸暂停发作。

【0122】在图5A和5B所示的代表性实施例中，磁性结构12位于软腭/腭垂之内或之上。在图5A中，与磁性结构12相互作用的磁性结构14位于气道外（例如，位于颊之上），而在图5B中，所述磁性结构14位于气道内部（例如，位于口腔之内）。

【0123】3. 阻止舌和软腭的塌陷（组合系统）

【0124】图6A和6B以图解的方式示出了（至少部分地）阻止图3所示的组织状况（涉及舌和软腭/腭垂者着咽壁的塌陷）的磁力系统10c的代表性实施例。这一系统10c在其各个实施例中简称为组合系统。组合系统10c包括两个磁性结构12a和12b以及一个磁性结构14，用以在所述两者之间产生磁力，所述磁力将舌和软腭/腭垂两者维持在远离后咽壁并留有间距的位置，如图6A和6B所示出的那样。磁力场阻止舌和软腭/腭垂两者在睡眠期间的后移，从而保持气道开放。避免了呼吸暂停发作。

【0125】在图6A和6B所示的代表性实施例中，磁性结构12a位于软腭/腭垂之内或之上，而磁性结构12b位于舌的后部（背部）之内或之上。在图6A中，与磁性结构12a和12b相互作用的磁性结构14位于气道外（例如，位于颊之上），而在图6B中，所述磁性结构14位于气道内部（例如，位于口腔之内）。应当领会到，磁性结构12b或者可以以图6A和6B中的假想线所示的方式（即以前面在图4C和4D中所示的方式）位于下颌骨和舌骨之间的大体区域之内，要么是位于舌骨肌（例如，诸如下颌舌骨肌、颌舌骨肌、或竖舌舌骨肌或二腹肌的舌骨上肌中的一个或多个）之内或之上，要么是位于皮肤之下。

【0126】B. 铁磁材料的放置

【0127】磁力系统10a、10b和10c可以具有各种各样的构造。在所示的布置中，所有的所述力系统10a、10b和10c在其基本的形式中包括两个结构12和14。将一个结构12放置在相对可移动并（在塌陷未收到限制的情况下）易于塌陷的组织之内或之上。将另一结构14放置在（相对而言）相对于塌陷方向不可移动的组织之内或之上。

【0128】结构12和14包含铁磁材料。使结构12和14的铁磁材料的尺寸、选择和布置适于通过在结构12和14之间产生磁力而进行磁相互作用。所述磁力包括朝着位于相对不可移动的组织之内或之上的结构14的吸引磁性吸引位于可移动组织之内或之上的结构12的至少一个矢量或分量。由此阻止可能导致呼吸暂停或阻塞性呼吸不足或者使相对不可移动的组织变窄的后移或其他运动。

【0129】1. 第一结构

【0130】将第一结构12内置在气道之内治疗靶向的相对可移动的组织之内或之上。在舌系统10a（图4A到4D）中，靶向组织是舌组织，具体而言是咽壁对面的舌后部（舌根）处或附近的组织（图4A和4B），或者位于下颌骨和舌骨之间的大体区域之内，要么是位于舌骨肌
（例如，下颌舌骨肌、颜舌骨肌或二腹肌）之内或之上要么是位于皮肤之下的组织（图4C和4D）。在软腭系统10b（图5A和5B）中，靶向组织是气道中咽壁对面的软腭/腭垂。在组合系统10c（图6A和6B）中，靶向组织既是非组织，（或者可选地，位于下颌骨和舌骨之间的大体区域之内，要么是位于舌骨肌（例如，下颌舌骨肌、颜舌骨肌或二腹肌）之内或之上要么是位于皮肤之下）又是气道中咽壁对面的软腭/腭垂。

[0131] 由于其是内部放置，期望将铁磁结构12的尺寸和构型适于相对长时间地放置或植入到组织之内。

[0132] 2. 第二结构

[0133] 如上所述，可以将第二结构14要么外置在气道外相对不可移动的组织之内或之上，要么内置于气道内相对不可移动的组织之内或之上。将结构14放置成通过在结构12和14上的铁磁材料之间产生磁力使之与结构12进行磁相互作用，所述磁力包括朝着位于相对不可移动的组织之内或之上的结构14的方向磁性吸引位于可移动组织之内或之上的结构12的至少一个矢量或分量。

[0134] 在气系统10a（图4A到4D）中，两个铁磁结构12和14之间的磁吸引力阻止舌向着后咽壁的方向的后移或其他运动。在软腭系统10b（图5A和5B）中，两个铁磁结构12和一个铁磁结构14之间的磁吸引力阻止软腭/腭垂朝着后咽壁的方向的后移或其他运动。在组合系统10c（图6A和6B）中，两个铁磁结构12和铁磁结构14之间的磁吸引力阻止舌和软腭/腭垂朝着后咽壁的方向的后移。在所有的系统10a, 10b和10c中，所述磁力整体或部分地防止发生图3所示的气道闭塞的组织状况。如图4A到4D, 5A和5B以及6A和6B所示，第一铁磁结构12和第二铁磁结构14之间的磁力用于保持睡眠期间气道开放（即使通畅）。

[0135] 由于其的放置，期望将铁磁结构14的尺寸和构型可移除，从而可将其临时放置成与更永久的铁磁结构12相关联，随后在需要时从关联中将其移除。这样，当期望（例如，在睡眠期间）存在磁力场时，可将铁磁结构14放置成与内部的铁磁结构12相关联，并可在其他时间将其移除。可移除的结构14还具有易于精确定位（即，增加或降低所述力以优化所述系统的性能）的优势。该磁铁可以通过医生或用户变换具有各种强度的不同铁磁材料和/或通过调整可移除结构14相对于内部结构12的相对位置或距离来实现。

[0136] a. 外部放置

[0137] 在图4A、4C、5A和6A中，所示的第二结构14被外置在气道外相对不可移动的组织之内。更具体地，在图4A、4C、5A和6A中，所示的第二结构14被外置于在颌或下颌之上或之下。有可能有多种方式将结构14放置在该位置。

[0138] 例如，如图7A所示，可以将外部铁磁结构14的形状、尺寸和构型适于作为通过（例如）包括套在头上的带32的头带固定在下颌骨关节水平的托架28。如后面将要详细描述的那样，托架28包括由一个或多个铁磁材料26组成的阵列，将所述阵列定位并布置成吸引位于舌/软腭/腭垂或两者之内和之上的内部结构12之内的铁磁材料。

[0139] 或者，如图7B所示，可以将具有外部铁磁结构14的托架28的形状适于包括套在颌上，以进一步加强稳定性和舒适性的杯状托34。在这一布置中，头带32附接至位于下颌骨关节水平处的托架28，并且附接至杯状托34，从而有助于使头带的位置稳定。

[0140] 如图7C所示，可以使托架28的形状、尺寸和构型适于作为包括延伸部分的颌部杯状
托34，所述延伸部分在舌下面的颊部延伸测得的最小距离（例如，至少4cm）。在这一布置中，所述延伸部分携带至少一个铁磁材料26，所述铁磁材料26与位于舌之内或之上的内部结构12之内的铁磁材料相互作用。在该实施例中，头帽带32可以套在头并附接至所述颈杯状托起其位于颈处的延伸部分。该实施例在治疗目的上以阻止舌的后移为主要目标时特别有用。

[0141] 在替代布带中，可以将第二结构14放置在颈周围。如图8A所示，第二结构14包括托架28，而所述托架包括具有一个或多个铁磁材料26的阵列。托架28包括颈圈38，其用于对铁磁材料18进行定位和取向，以便吸引位于舌、软腭/腭垂或者两者之内或之上的内部结构12之内的铁磁材料。

[0142] 在图8B所示的实施例中，套在颈上的颈圈的前部高于套在头后方的后部。该结构设计颈的水平并且用于使头向后倾斜和提升颈来使颈得到延伸。图8C所示的实施例中模拟了CPR期间实现的颈延伸。所述延伸可将力学增强加入到磁场中，从而有助于维持或进一步打开气道。

[0143] 使用外部磁性设备的优势包括：(1) 可以使用与植入或贴附于口中佩戴的矫治器相比更大且更强的磁体；(2) 外部装置易于移除，从而使得只有在患者希望睡觉时，非在吃东西或讲话过程中才有递送所述力的需要，从而使用力对这些活动的影响最小；以及(3) 无需手术介人就可改变磁力的量和方向。这可通过调节磁体的类型和尺寸并改变磁体在外部设备中的位置来实现。

[0144] 内部放置

[0145] 或者，第二结构14可被内置在气道内，例如口腔内部靠近第一结构12（其期望被放置在舌和/或软腭/腭垂之内或之上）的相对不可移动的组织内或之上。例如（如图9A、9B、9C和9E所示），可以将第二结构14的形状、尺寸和结构适合在口内套在下牙的内或外缘或者覆盖上下牙前顶的多个位置上，所述第二结构还包含通常在舌的上方或下面对准的磁性材料。所述结构原则上还可放置在下牙之上。

[0146] 例如，在图9A中，第二磁磁结构14包括采取沿下牙内缘套配的口含件40的形式的托架28。如下面将要详细描述的那样，托架28携带由一个或多个铁磁材料26组成的阵列。在所示的实施例中，口含件40以恰当的方式（例如，如图所示的钩件42）附接至下牙。

[0147] 图9B示出了替代的布置。在该布置中，第二铁磁结构14包括采取以恰当方式（例如，如图所示的两个钩件42）沿下牙外缘套配的口含件40的形式的托架28。如下面将要详细描述的那样，托架28携带由一个或多个铁磁材料26组成的阵列。

[0148] 图9C示出了另一替代布置。在该布置中，第二铁磁结构14包括采取通过模制成套配并覆盖下牙而预先成型的口含件40的形式的托架28。如下面将要详细描述的那样，托架28携带由一个或多个铁磁材料26组成的阵列。

[0149] 图9D和9E是图9C所示类型的口含件40的其他替代实施例，所述口含件套配在下牙上。在图9D和9E中，口含件40包括由所述牙向中间延伸到口腔中的一个或多个突起部43。在图9D中，所述一个或多个突起部延伸到舌上方。在图9E中，所述一个或多个突起部43’延伸到舌下方。所述突起部携带由一个或多个铁磁材料26组成的阵列。照这样，将所述铁磁材料26放置成与舌之内的第一结构12中的铁磁材料26紧密上位对准（图9D）或
下位对准（图9E），和/或与软腭/腭垂之内的第一结构12中的铁磁材料26下位对准。

[0150] 还构想出相对于图9A到9D所示的口含件40的替代实施例，其中托架28套配在上牙之上。

[0151] 图9A、9B、9C、9D和9E中各种口含件40的构型和放置位置上将第二铁磁结构14的铁磁材料26定位成相对紧密地靠近于舌和/或软腭/腭垂之内的上的铁磁结构12。所述靠近增大了实现期望治疗效果所必需的气道内磁场的量值。这样，当与颈圈、头帽或其他位置的外部第二磁性结构相比时，所述的靠近使在结构12和14中利用相对更小的铁磁材料成为可能。

[0152] 4. 铁磁结构的构型

[0153] 如图10所示，在其基本的形式中，磁力系统10的磁性结构12和14的每一个包含至少一个铁磁材料。磁性结构12的（一个或多个）铁磁材料将用附图标记16来标识，磁性结构14的（一个或多个）铁磁材料将用附图标记18来标识。将第一结构12的铁磁材料16放置在舌向组织区（舌和/或软腭/腭垂）之内或之上。将第二结构14的铁磁材料18放置在颊、下颌处，沿着下牙的内缘或外缘（或在下牙的上面）、沿着上牙的内缘或外缘（或在上牙的下方）。将形成所述力系统10a、10b和10c的磁性结构12和14的铁磁材料16和18放置在磁相互作用并使舌和/或软腭/腭垂稳定，从而阻止睡眠期间气道之内舌和/或软腭/腭垂与咽壁之间组织上塌陷。

[0154] 1. 磁极的取向

[0155] 每个铁磁材料16和18可以包括永磁体。永磁体可以被认为是一种表现出一旦被磁化就能阻止外部去磁力的材料。即，为了去除永磁体的剩余磁性，需要高的外部磁场。换句话说，永磁体拥有非常高的内部磁性，内部磁性是对其阻止去磁的度量。

[0156] 永磁体拥有极性相反的两极。所述两极是外部磁场最强的磁体区域（一般在磁体的末端）。相对于地球的磁极，如果磁体自由转动，则一个极将指向地球的磁北极，因而称之为磁体的北极，其在附图中用N来指示，或者另外称之为N极。相反的一极称之为磁体的南极，其在附图中用S指示或者另外称之为S极。

[0157] 根据物理定律，极性相同的两极（N-N或S-S）磁力相互排斥。相反，极性不同的两极（N-S或S-N）磁力相互吸引。这样，集成有永磁体的结构12和14在结构12和14的相同两极（N-N或S-S）取向于彼此相对时相互排斥，同样地，在结构12和14的相反两极（N-S或S-N）取向于彼此相对时相互吸引。磁吸引力或磁排斥力的量值取决于磁体的强度以及两极间的距离。

[0158] 已知的永磁体材料的示例包括钕铁硼（NdFeB）合金、铝镍钴（AlNiCo）合金以及钐钴（SmCo）。可以使用电磁体（电流流过导线圈时）来代替永磁体。

[0159] 在分别于图4A到4D、5A和5B以及6A和6B所示的磁力系统10a、10b和10c中，将磁性材料16和18取向成使得相反两极（N-S或S-N）通常横跨下颌或横跨舌组织彼此面对。这样，认为第一磁性结构12和第二磁性结构14具有相反的极性。结构12和14将通过在其间产生磁力进行磁相互作用。所述磁力的性质为描述方便通常简称为“吸引”磁力，这是因为其涉及极性不同的磁极之间的相互作用。然而，当领会到，在结构12和14之间产生的磁力可以包括扭力（即，倾向于使舌位于舌和/或软腭/腭垂的更易移动的组织之内的内部结构12围绕轴旋转的力或力矩），和/或偏心力（即，倾向于使舌位于舌和/或软...
腭 / 舌垂内的内部结构 12 向左或向右偏移的基本处于横向方向或从一侧向另一侧的方向上的力，或此外取于撤向的可移动组织区），或者两个或更多吸引力、扭力和偏心力的组合。这种磁力的一个或多个可共同防止舌和 / 或软腭（取于撤向的可移动组织区）在向后方向上移动以及闭合、阻塞或限制咽管或气道。吸引系统的其中一个显著优势是其能够在治疗 OSA 中降低或消除排斥磁性系统中所见的相当大且可能带来问题的偏心力和扭力。

【0160】应当领会到，位于更易移动的腭向组织区之内的结构 12 可以包括本身未被磁化的铁磁材料 16，但是尽管如此，其仍受到位于不易移动的腭向组织区之内的经磁化的结构 14 上的铁磁材料 18 的吸引。因此，结构 12 的（一个或多个）铁磁材料 16 可以包含未磁化的材料，例如铁片，在其上结构 14 的经磁化的铁磁材料 18 施加吸引磁力。在本说明书中所用的术语“磁化”材料因此不限于展示出磁性能的物质（即，被磁化的物质），还包括由本身未被磁化但可被另一磁化物质所吸引的材料制成的物质。

【0161】2. 磁性结构

【0162】如前面所述那样，第一结构 12 的铁磁材料 16 可以是经磁化的或未经磁化地。然而，其期望被永久磁化，因而将其描述为“有磁性的”。将磁性材料 16 放置在气道内组织之内或之上。术语放置在“之内或之上”意味着可以将磁性材料 16 放置在表面组织之上或植入组织内。为了长久舒适，期望将材料 16 植入组织内。在所示的实施例中，腭向组织可以包括舌区、软腭 / 舌垂区或者两者。

【0163】如前所述所述，第二结构 14 的磁性材料 18 同样期望被永久磁化，因而将其描述为“有磁性的”。将磁性材料 18 放置在气道外部位于颚或下颚下方，或者在气道内部沿着下牙的内缘或外缘，位于下牙的上面或者舌的上面或下面。如前所述，当位于外部时，期望在独立套配的窥带或颈圈中安置或携带磁性材料 18。当位于气道内部时，期望套在下牙上的口腔口含件中安置或携带磁性材料 18。如上所述，磁性材料 18 可以在外部定位于下颚的下方，或者在内部沿着下牙的内缘或外缘，位于下牙的上面、舌的上面或下面，以便与放置在舌区、软腭 / 舌垂区或者两者的组织之上或者植入到舌区、软腭 / 舌垂区或者两者的组织之内的材料 16 进行磁性相互作用。

【0164】永磁材料 16 和 18 的每个可以以多种方式进行构造并且采取多种形式，例如圆柱形、方形、矩形或其他多边形。给定的内部部件（植入物）12 或外部部件 14 的给定磁性材料 16 或 18 可以包含具有给定期望的极向的单个或离散的磁源。例如，给定的磁性材料 16 或 18 可以包含单个永磁体，如图 10 所示。同样可以使用粘结永磁体。粘结磁体可以是柔性的或刚性的，并可以包括在例如橡胶、聚乙烯、环氧树脂、聚氯乙烯、硅树脂、橡胶或尼龙的柔性的或刚性的衬底上粘结有粉末状 NdFeB、Ferrite 或 SmCo 永磁体材料。粘结磁体的形可以通过挤压、模压成型、注塑成型、压延或印刷来实现。粘结磁体能够实现独特的柔性的设计，以及其他方式难以实现的持久高耐受形状。

【0165】或者，可以将多个永磁材料 16 或 18 定位成如在支撑托架 24 之上作为整体携带的阵列 22 那样进行放置，或者以其他方式直接链接在一起，如图 11 所示。例如，托架 24 可以包括由例如聚合物或纤维或织物或非铁金属材料制成的编织、成形或模制的结构。像磁性材料 16/18 自身一样，阵列 22 为了植入预期的组织区（对于第一结构 12 而言）或者与外部或内部组织相关联地进行放置（对于第二结构 14 而言）可以具有各种各样的形状、尺寸和结构。
在图11所示的布置中，将磁性材料16/18放置在具有N极和S极通向相同方向的托架24上。在图11中，用箭头示出了N极取向，而S极取向于相反方向。照这样，可以在托架24上针对作为整体的取向而言对由具有相似磁性取向（即，极性）的同永磁体16/18组成的阵列22进行装配。

关于第一结构12，可以将多个永磁材料（或受磁性材料吸引的未被磁化的材料）合并到柔性或顺性阵列22中，并可将所述多个永磁材料16作为整体携带于支撑托架24之上（如图11所示）以便植入组织中。关于第二结构14（在图7A到7C；图8A和8B；以及图9A到9E所示的布置中），可以将多个永磁材料18合并到在支撑托架28之上作为整体所携带的更加刚性的阵列26中。支撑托架28可以单独与头颅关联以将其稳定地放置在颈之上或之下（图7A到7C），与颈椎关联以将其稳定地放置在颈椎周围（图8A和8B）。或与颈椎关联以将其稳定地放置在口腔内（图9A到9E）。像磁性材料16/18自身一样，所述阵列26可以具有各种各样的形状、尺寸和构型。

在任一布置中（单个如图10所示或者如图11所示的阵列上），在放置在组织之内或之上，或者分别放置具有选定保护材料20或30的稳定设备（头颅、颈椎或口含件）之前，期望对磁性材料16或18进行涂覆、镀层、包覆或沉积处理。选择保护材料20/30以提供抗腐蚀和生物相容性的界面，从而防止磁性材料16/18与身体组织或体液相互作用。还期望选择保护材料20/30以形成耐用的组织界面，从而使系统部件有长寿，进而阻止结构疲劳和/或故障。

为了提供这些期望的物理和生理优势所选定的保护材料20及其应用的材料16同样期望被选择成避免给予结构12皮肤施加额外的硬度，从而通过植入到组织中来完善其优选的放置。然而，关于结构14（并不期望将其用于植入），材料18上所使用的保护材料30可以是并且期望被选择成使其增加结构14的硬度，从而使相对柔性结构12和相对不可移动且柔性较差的结构14之间的吸力最大。材料18和16之间的吸力越有效，铁磁材料16和18的尺寸就越小，从而结构12和14可以更轻并更加舒适。

保护材料20/30可从已知用于提供期望的生物相容性、抗腐蚀和耐久性的多种类型的材料中进行选择。例如，保护材料20/30可以包含镀在、沉积在或其他方式涂覆在磁性材料16/18上的钛或其他金属材料。作为另一示例，保护材料20/30可以包含聚对二甲苯涂层。作为其他示例，保护材料20/30可以包含硅酮聚合物、无毒环氧树脂、医用聚氨酯或U.V.固化医用丙烯酸酯共聚物。保护材料20/0还合并有抗凝血剂和或抗生素和或组织内生长启动子。

D. 磁性结构的代表性系统

1. 舌系统

图12A示出了图4A中所示类型的代表性舌系统10a。系统10a包括如前所述以比较相似的吸引取向布置的磁性材料16和18。在图12A中，舌系统10a包括第一磁性植入物12，其包括尺寸和构型适于植入到舌之内的如图11所示类型的第一磁性阵列22。舌系统10a还包括第二磁性部件14，其包括如图11所示类型的同样的第二磁性阵列26，但进一步被合并到图7C所示类型的颊下方的取向中。

如图12B所示，第一结构12的阵列22包括托架24，在所述托架24上布置由磁性材料16组成的阵列22（其期望包括一个或多个永磁体）。如图12A和12B所示，托架24沿
纵向轴的形状具有比其宽度大得多的长度。将纵向形状的阵列 22 的尺寸和构型适于分别沿着舌和气道从前到后的轴线进行植入。如图 12A 和 12B 所示，阵列 22 的纵向轴沿舌中缝延伸。

【0175】如图 12C 所示，结构中的阵列 26 包括托架 28，在所述托架 28 上布置有磁性材料 18 组成的阵列 26 （同样为永磁体）。托架 28 包括图 7C 所示的弧形托架。在图 12C 中，阵列 26 是马蹄形的（但是预想有很多其他的布置）。将马蹄形阵列 26 放置在颊和下颌下方。可以领会到，通过将阵列 26 放置成与颈项（如图 8A 和 8B 所示）相联或或者通过将所述阵列放置成与佩戴于口腔内的口含件（如图 9A 到 9E 所示）相关联，可以实现磁性材料 18 比较相似或相同的取向。

【0176】如图 12C 所示，磁性材料 18 的马蹄形阵列沿着口腔的整个弯曲解剖结构从后到前前进。所述阵列包括后磁区 18a（位于舌的相对两侧上）、前磁区 18c（位于沿着口腔的弯曲前区）以及中间磁区 18b（位于舌的相对两侧上的口腔前区和后区之间）。图 12D 示出了马蹄形阵列的替代实施例。在该实施例中，将磁性材料 18 放置在颈 18a、18b 和 18c 之下，并邻近颈 18d。

【0177】如图 12E 所示，当被植入时，将第一植入物 12 的磁性材料 16 的磁极取向为大体与气道内壁的尖部部分 14 的磁性材料 18 的相反磁极相一致，在口含件阵列的情形中，横跨下颌或横跨舌组织大体对准成 N-S 极或 S-N 极。结果，磁性外部部件 14 通过吸引磁性舌部植入物 12（如图 12E 中所用的尖头 A 所指示的）进行相互作用。由于植入物 12 和结构 14 之间的吸引力，舌组织在睡眠期间不会发生倚着咽管的塌陷，从而气道保持通畅。然而，被呼吸的暂停的患者醒着时，所述力可被吞咽、讲话、咳嗽、打喷嚏等所克服。可替换地，人体为了睡眠而放置并佩戴外置磁体 18，从而在睡眠期间能够有更高、更好的治疗力，所述外置磁体 18 易于被移除以便在白天期间允许正常的吞咽和讲话功能。

【0178】在替代布置中，如图 12F 所示，磁性材料 18 的阵列并不是对称地沿着口腔的整个弯曲解剖结构从后到前前进。相反，所述阵列包括仅沿着舌一侧非对称的后磁区 18a、前磁区 18c 以及中间磁区 18b。在该布置中，作为对植入到舌之内的植入物 12 与由颈、颈或牙携带的单侧磁性结构 14 之间的吸引磁力的响应，舌距离磁体 18 最远一侧的气道将打开。舌的一侧将不再倚着咽管塌陷，并将防止呼吸暂停发作。

【0179】在又一替代实施例中，如图 12G 和 12H 所示，将舌部植入物 12’ 对准成与口含件结构 / 外部部件 14 平行的布置。舌部植入物 12’ 与所述外部部件之间的磁吸引力在前向方向上推动舌。该特定实施例能够产生比前面各实施例更大的力，这是因为舌部植入物与所述口含件结构之间的距离更短。

【0180】2. 软腭系统

【0181】图 13A 示出了图 5B 所示类型的代表性软腭系统 10b。系统 10b 包括如前所述所吸引取向布置的磁性材料 16 和 18。在图 13A 中，软腭系统 10b 包括第一磁性植入物 12，其包括尺寸和构型适于植入到软腭中的图 11 所示类型的第一磁性阵列 22。软腭系统 10b 还包括第二磁性部件 14，其包括图 11 所示类型同样的第二磁性阵列 26，但进一步被合并到图 9B 所示类型成的口含件取向（放置在下牙的外侧）中。

【0182】如图 13B 所示，第一结构 12 的阵列 22 包括托架 24，在所述托架 24 上布置由铁磁材料 16 组成的阵列 22（其期望包括一个或多个永磁体）。如图 13A 和 13B 所示，托架 24 具有沿着纵轴的形状。将纵向形状的阵列 22 的尺寸和构型适于分别沿着软腭和气道的从前
到后的轴线进行植入。如图 13A 和 13B 所示，阵列 22 的纵轴沿软腭或腭垂的中线延伸。

【0183】如图 13C 所示，第二结构 14 的阵列 26 包括托架 28，在所述托架 28 上布置有磁性材料 18 的阵列 26（同样为永磁体）。托架 28 包括图 9B 所示的口含件。在图 13C 中，阵列 26 是马蹄形的以符合下牙的轮廓。可以领到，通过将阵列 26 放置成与头帽（如图 7A 和 7B 所示）或颈支架（如图 7C 所示）或颈件（如图 8A 和 8B 所示）相关联，或者通过将所述阵列放置成与佩戴于口腔内的其他口含件（如图 9A 及 9C 到 9E 所示）相关联，可以实现并稳定磁性材料 18 的相同取向。

【0184】如图 13D 所示，当被植入时，将第一植入物 12 的磁性材料 16 的磁极取向为大体与气道对侧的外部部件 14 的磁性材料 18 的相反磁相对准，即，在颈支架或颈件阵列的情形中，横跨舌组织或横跨下颌大体对准成 N-S 极或 S-N 极。结果，磁性外部部件 14 通过吸引磁性软腭植入物 12（如图 13D 中吸引箭头 A 所指示的）进行相互作用。

【0185】由于植入物 12 和结构 14 之间的吸引力，软腭在睡眠期间不会发生倚着咽管的塌陷，从而气道保持通畅。然而，当呼吸暂停的患者醒时，所述力可被吞咽、讲话、咳嗽、打喷嚏等所克服。可替代地，仅为了睡眠而定位并佩戴口腔磁体 18，从而在睡眠期间能够有更高、更好的治疗力，所述口腔磁体 18 易于被移除以便在白天期间允许正常的吞咽和讲话功能。

【0186】3. 组合系统

【0187】图 14A 显示出了图 6B 所示类型的代表性组合系统 10c。系统 10c 包括如前所述以吸引取向布置的铁磁材料 16 和 18。在图 14A 中，组合系统 10c 包括一对第一磁性植入物 12a 和 12b。每个植入物 12a 和 12b 包括尺寸和构型分别适于植入到舌和软腭中的、图 11 所示类型的铁磁性阵列 22。组合系统 10c 还包括第二磁性部件 14，其包括图 11 所示类型的同样的第二磁性阵列 26，但进一步被合并到图 9B 所示类型的口含件取向（放置在下牙的外侧）中。

【0188】如图 14A 和 14B 所示，第一结构 12a 和 12b 的阵列 22 每一个都包括托架 24，在所述托架 24 上布置由铁磁材料 16 组成的对应阵列 22（其期望包括一个或多个磁体）。如图 14A 和 14B 所示，每个结构 12a 和 12b 的托架 24 具有沿着纵轴的形状。将结构 12b 的纵向形状的阵列 22 的尺寸和构型适于沿着舌的从前到后的轴线进行植入。将结构 12a 的纵向形状的阵列 22 的尺寸和构型适于沿着软腭的从前到后的轴线进行植入。

【0189】如图 14C 所示，第二结构 14 的阵列 26 包括托架 28，在所述托架 28 上布置由磁性材料 18 组成的阵列 26（同样为永磁体）。托架 28 包括图 9B 所示的口含件。在图 14C 中，阵列 26 是马蹄形的以符合下牙的轮廓。可以领到，通过将阵列 26 放置成与头帽（如图 7A 和 7B 所示）、颈支架（如图 7C 所示）或颈件（如图 8A 和 8B 所示）相关联，或者通过将所述阵列放置成与佩戴于口腔内的其他口含件（如图 9A 及 9C 到 9E 所示）相关联，可以实现并稳定磁性材料 18 的相同取向。

【0190】如图 14D 所示，当被植入时，两个植入物 12a 和 12b 的磁性材料 16 通常受到外部部件 14 的磁性材料 18 的吸引（如图 14D 中吸引箭头 A 所指示的）。由于植入物 12a 和 12b 中的每一个与结构 14 之间的吸引力 A，舌和软腭在睡眠期间阻止倚着咽管的塌陷，从而气道保持通畅。然而，当呼吸暂停的患者醒时，所述力可被吞咽、讲话、咳嗽、打喷嚏等所克服。可替代地，仅为了睡眠而放置并佩戴口腔磁体 18，从而在睡眠期间能够有更高、更好的
治疗力，所述口腔磁体 18 易于被移除以便在白天期间允许正常的吞咽和讲话功能。[0191] 如所述的各种磁力系统 10a、10b 和 10c 提供对睡眠呼吸暂停的优越、成本高效的治疗。放置在舌、软腭或腭垂之内或之上的铁磁结构 12 连同其配对的铁磁结构 14 具有良好的耐受性并且与装备 CPAP 相比明显更加舒适和用户友好，并且与其他创伤高的手术治疗选项相比有可能更受支持。磁性系统 10a、10b 和 10c 给予精密但易于使用的设计，可根据具体解剖和生理要求，使其尺寸、构型和磁性定适于满足患者个体的需要，后面还将对此作出详细描述。

[0192] III. 对动态组织区中力与距离关系的力进行调节

[0193] A. 概述

[0194] 在图 12A 到 12E，13A 到 13D，以及 14A 到 14D 所示的系统 10a、10b 和 10c 中，期望将磁性组件 12 和 14 彼此对准成垂直横跨下颌或横跨舌组织，以生成吸引磁力场。实际上，磁性材料 16 和 18 之间几乎没有理论上“完美”的磁对准。这是由于气道内舌和软腭的动态性质决定的。舌与软腭之间的距离和取向，以及舌和软腭中的每一个与下颌之间的距离和取向由于不同患者的解剖结构变化性以及睡眠期间与醒时时间内舌和软腭的恒定运动而变化。气道内的这些组织结构之间几乎没有几何上“完美”的平行关系。此外，当睡眠期间舌或软腭以转动方式侧向、后向、前向、侧向、侧尾、或其任意组合运动时，所述运动可以明显改变从一个时刻到另一时刻吸引磁性材料 16 和 18 之间的取向和对准。

[0195] 横跨植入物（或磁体，或任何其他物质）的力中的变化可以表现为扭矩，且存在于任何并未处于完美对准的磁性系统中。所有系统中都存在扭矩，不论是吸引还是排斥；当磁体并未处于“完美”对准（此时增加了角度或位置的不准确）时，扭矩将取向于校正磁体的对准，即，所述磁体将朝着使吸引力最大的对准旋转。希望将各磁体完美地对准或处于可能存在的最大吸引状态，换句话说，希望将各磁体最好对准成 N 极对 S 极。

[0196] 放置在气道中可移动解剖结构之内或之上的磁性结构即使有也很少以这样的方式进行取向，即能够获得理论上“完美”或理想的 N-S 或 S-N 吸引磁极对准。磁性材料的对准很少是理论上“完美”或理想的，并且它常遭受连续的变化。通过理解并控制磁性系统中所固有的扭矩，可以为了本文所描述的治疗目的而有效地操纵所述扭矩。

[0197] B. 设计考虑

[0198] 任何涉及舌和/或软腭的磁性吸引系统都期望考虑并平衡至少三个考虑因素。一个考虑因素是解剖上的 - (i) 由于个体上呼吸道解剖结构和舌相对于软腭的自然运动以及舌或软腭对于下颌的相对运动，因而舌与软腭之间以及舌和软腭中的每一个与下颌之间存在变化的距离以及缺少完美的平行对准。其他两个考虑因素是物理上的 - (ii) 以彼此最期望的取向放置植入物的能力；以及 (iii) 同样必须考虑吸引磁体间的距离以及所产生的力，即，系统保持相对短的距离并提供在偏移位置处施加力的系统。

[0199] 在其他结构（诸如舌、软腭或腭垂）相对于下颌移动时期望应当将给定的舌或软腭吸引结构维持在最大吸引的位置上。例如，应当领会到，睡眠期间舌将经历相对于下颌的各种各样的运动和角度取向变化。

[0200] 给定的舌或软腭结构期望包括如下特征，即将植入物维持在使其在所有角度对准下都接近最大吸引状态并改变关于下颌遇到的正常和异常距离，但仍应当允许睡眠期间执行自然身体功能，例如吞咽。
C. 经滴定的磁阵列

磁力大体上与磁性结构间距离的平方成反比。因此，磁力对距离非常敏感。磁性吸引结构间距离的微小增加因而会导致所述结构间磁力的显著减少。图 15 中的曲线 SM 的斜率展示出由于平行于反比关系，因而两个单磁体结构（如图 10 所示）之间磁力场的量值（y 轴）随着它们之间的距离（x 轴）相对的小增加有如何显著的减少。

将舌和/或软腭的正常解剖功能期间所述系统 10a、10b 和 10c 中的磁性结构 12 和 14 之间距离的范围简称为“工作范围”。据认为，在所述系统 10a、10b 和 10c 的背景下，工作范围位于大约 3cm 到 4cm 的范围内。对于给定的系统 10a、10b 和 10c，期望磁性结构 12 和 14 的尺寸和构型使得将磁力场的量值和通量分布设计或选择成，使得至少在工作范围的边界内对由于结构 12 和 14 之间距离的变化而产生的磁力变化进行调节。至少在工作范围的边界内，滴定的磁力场提供磁力场随距离的变化，所述变化呈现出量值小于图 15 中曲线 SM 的斜率的斜率。再有，在工作范围的边界内，磁力场的斜率相当大地减少，从而降低了力-距离关系的灵敏度。在图 12A 到 12D：13A 到 13D；以及 14A 到 14D 所示的系统 10a、10b 和 10c 中，期望磁性结构 14 的尺寸和构型适于提供一个或多个加方向，使得不管在正常执行身体功能过程中舌、软腭或腭垂是否存在相对运动磁性结构 14 都能保持相对恒定的磁场以及与内部结构 12 的吸引力。

在正常执行身体功能期间，结构 12 和 14 的质心之间的间距将在介于距离 δ_1 (单位为厘米)（此时结构 12 和 14 的质心被放置成相距最远）与距离 δ_2 (单位为厘米)（此时结构 12 和 14 的质心被放置成最接近）之间的工作范围内变化。在距离 δ_1 与 δ_2 处，磁力系统将分别产生磁力 F_1 (单位为公) 与 F_2 (单位为公)，所述磁力将大体分别与工作范围对应的远距离和近距离的平方成反正比，即 $(1/\delta_1^2)$ 与 $(1/\delta_2^2)$。期望磁性结构 12 和 14 相互的尺寸和构型使得由于工作范围内外磁性结构 12 和 14 间距离的变化而产生的磁力变化保持如下关系：

$$(F_1/F_2) \leq (\delta_1^2/\delta_2^2)$$

照这样，不管在正常执行身体功能过程中舌、软腭或腭垂是否存在工作范围内的相对运动，磁性结构 14 都能保持相对恒定的磁场以及与内部结构 12 的吸引力。

为了实现这一目标，所述系统 10a、10b 和 10c 期望包括具有与图 11 所示相类似的磁体阵列的磁性结构 12 和 14。磁性材料 16 和 18 的阵列在期望的工作范围内提供更均匀分布的磁场以及与内部结构 12 的吸引力。磁性材料 16 和 18 的阵列同样有可能控制结构 16 和 18 之间磁场的量值和分布，以便在工作范围内调节力-距离关系的灵敏度。可以使用磁性材料 16 和 18 的更大、更小或不同的阵列来滴定与内部结构 12 和外部磁体 14 的均匀吸引力。

例如，图 16A 和 16B 所示的磁性结构 14 包括这样的磁体阵列，所述磁体阵列包含具有不同极性的空间位置有区别的磁区 18a、18b 和 18c。将磁区 18a、18b 和 18c 的尺寸和构型适于与植入的磁性结构 12 关联使用，以形成舌系统 10a 或软腭系统 10b 或组合系统 10c。在图 16A 和 16B 中，磁性结构 12 还包括植入到舌、或软腭 / 腭垂、或者舌和软腭 / 腭垂两者中的磁区 16a、16b 和 16c 的阵列。

如图 16A 和 16B 所示，空间位置有区别的磁区 16a、16b 和 16c 的每一个可以包括单个磁体或布置在托架上的各个具有公共极性的各磁体的阵列 (如图 11 所示)。可以将空
间位置有区别的磁性材料 16a、16b 和 16c 的列阵的尺寸和构型适于沿着口腔的弯曲解剖结构从后到前前进。

[0210] 所述结构 14 包括后磁区 18a（位于舌的相对两侧上）、前磁区 18c（位于沿着口腔的弯曲前区）以及中间磁区 18b（位于舌的相对两侧上的口腔前区和后区之间）。将图 16A 所示的磁区 18a、18b 和 18c 的列阵的尺寸和构型适于特别在额面置或口含件构型中使用。所述口含件构型已经在前面讨论过并在图 7A 到 7C 以及图 9A 到 9E 中示出。将图 16B 所示的磁区 18a、18b 和 18c 的列阵的尺寸和构型适于特别在颌颈件构型中使用，所述颈件构型已经在前面讨论过并在图 8A 和 8B 示出。

[0211] 如图 16A 和 16B 所示，头颅、额额状体、口含件或颈件中的磁区 18a、18b 和 18c 的各 N 极难以既相对于彼此又相对于植入到气道内舌和 / 或软腭 / 颈垂中的磁性材料 16 的各 S 极相互取向。磁区 18a、18b 和 18c 的各 N 极的相互不同的取向提供了在工作范围内调节磁性材料 16 和 18 之间的力与距离关系的磁敏感度的模型磁场力。

[0212] 更具体地，如图 16A 和 16B 所示，空间位置有区别的磁区 18a、18b 和 18c 的各 N 极的取向从后到前相对于磁区 16a、16b 和 16c 的各 S 极有变化。如图 16A 和 16B 所示，前磁区 18c（跨越口腔的前部）在与磁区 16a、16b 和 16c 的各 S 极的对应关系中，具有朝向口腔指向的 N 极取向。由于所述区域 18c 是弯曲的以符合口腔前部的弯曲解剖结构，因此磁区 18c 的 N 极取向以类似的方式进行变化，从而总是朝向指向磁区 16a、16b 和 16c 的 S 极。结构 14 的前磁区 18c 与结构 12 的前磁区 16a、16b 和 16c 之间的 N-S 取向在口腔的前区中产生吸引磁场（吸引箭头 A）。吸引磁场 A 阻止舌和 / 或软腭 / 颈垂的后移，这是期望的治疗目标。

[0213] 结构 14 的后磁区 18a（位于口腔后部的舌的相对两侧上）具有朝向口腔的 N 极取向。磁区 18a 因而呈现出通常与磁区 16a、16b 和 16c（其位于舌和 / 或软腭 / 颈垂的后部）的各 N 极具有面对关系取向的 N 极。结构 14 的后磁区 18a 与结构 12 的后磁区 16a、16b 和 16c 之间的 N-S 取向在口腔的后区产生排斥磁场（排斥箭头 R）。各列阵的通量相互作用产生指向前部的力，所述力在植入物中侧-侧向方向上良好对准的情况下相对稳定。

[0214] 在该布置中，结构 14 的中间磁体区域 18b（沿着口腔两侧介于舌的相对两侧上的后磁区和前磁区 18a 和 18c 之间）具有朝向前磁区 18c 的 N 极取向。并置在口腔前区中的吸引磁区和口腔后区中的排斥磁区之间，磁区内中间磁区 18b 的直接通量的 N 极取向介于前磁区 18c（其吸引位于口腔前区的舌和 / 或软腭 / 颈垂）与后磁区 18a（其排斥位于口腔后区的舌和 / 或软腭 / 颈垂）之间，而不会对舌和 / 或软腭施加使之明显不稳定的作用移力。磁区 18a、18b 和 18c 已经具有尺寸和构型适于在植入物结构 12 期望处于的工作范围内产生相对恒定的磁通量或相对恒定的磁通量梯度。

[0215] 图 16A 和 16B 所示的各磁区 18a、18b 和 18c 可以具有各种构型。例如，图 17A 和 17B 是对包含七个独立永磁体 18（1）到 18（7）的磁性阵列的示例，已经对所述永磁体的各 N 极进行了标记。与图 16A 类似，图 17A 针对的是额面置或口含件结构。与图 16B 类似，图 17B 针对的是颈件结构。

[0216] 磁体 18（1）和 18（7）的每一个包括后磁区 18a。磁体 18（3）、18（4）和 18（5）共同包括前磁区 18c。磁体 18（2）和 18（6）的每一个包括中间磁区 18b。如图 17A 和 17B 所示，通过改变各磁体自身的方向可以操纵所述各磁区。
[0217] 图 15 示出了如刚才描述的图 16A/B 和图 17A/B 中所示的阵列 12 和 14 之间的力与距离的关系（曲线 MM）。图 15 中的曲线 MM 的斜率展示出两个阵列 12 和 14 之间磁力场的量值（x 轴）在工作范围（x轴）的边界内如何没有显著降低。曲线 MM 进一步展示出所述斜率在工作范围的边界内变得充分小。

[0218] 图 18A 是示出了图 16A/B 和图 17A/B 所示类型的磁性阵列的通量方向线的有限元分析的图解表示。图 18B 是示出了这些磁性阵列 16a/16b/16c 以及 18(1) 到 18(7) 的磁场力分布的有限元分析的另一图解表示。如图 18B 所示，所述阵列生成沉淀的磁场 F1/F2/F3，其具有在 3cm 到 4cm 的工作范围内生成相对恒定力 F3 的力。该相对恒定的磁场力 F3 使植入到舌、软腭或颈骨之内的结构 12 能够由于正常功能而改变其在工作范围内的位置，而不会明显损失相对于结构 14 的吸引磁力。

[0219] D. 槽系的磁性结构

[0220] 图 39A 和 39C 示出了靠近如前所述的磁性结构 14（例如，口腔内部携带的口含件或者放置在颊之上或之下或颈周围的外部托架）的、植入到舌前区之内的栓系铁磁结构 120 的代表性实施例。为了说明起见，图 39A 示出了从外部佩戴于颊下方的磁性结构 14，而在图 39C 中，磁性结构 14 是颊状状的一部分。如图 39A 和 39C 所见，铁磁结构 120 包括分别植入到舌下方或舌前区的组织中的一个或多个永磁体或铁磁材料。使用中，舌中的铁磁结构 120 与磁性结构 14 进行磁相互作用。将铁磁结构 120 和磁性结构 14 布置成处于吸引取向，以便向前拉动舌和/或阻止舌以其他方法塞塞气道的方式的后移。

[0221] 由于铁磁结构 120 相对靠近磁性结构 14，因而使所述磁力场的量值最大。此外，为了在存在相对强的磁力场的情况下阻止铁磁结构 120 在组织内的偏移，铁磁结构 120 还包括配置系统 122。磁性系统 122 包括非磁性固定或磁固定结构 124，通过带、缝线或其他附接器件 126 将所述磁固定结构 124 撤系于铁磁结构 120 上。磁性系统 122 的存在能防止由于与磁性结构 14 的磁相互作用所造成的铁磁结构 120 在组织内的偏移。此外，所述磁固定系统在向前的方向上拉动后部的舌组织，以防止舌的塌陷。磁性系统 122 还用于将铁磁结构 120 稳定在相对大的、柔软组织块（例如舌）之内。

[0223] 附接器件 126 将铁磁结构 120 联接或拴系于固定或磁固定结构 124 上。附接器件 126 可以包括通常为非弹性的材料，例如不可吸收的缝合材料，其他编织生物相容性系带或织物，或无纺布聚合物条带（诸如尼龙或乙烯）或者生物相容性金属材料（例如镍钛合金（Nitinol®））。附接器件 126 可以包括具有允许组织向内生长的穿孔的生物相容性杆，并且还以包括从所述杆展开的倒钩或钩件，以进一步稳定所拴系的铁磁结构。可替代地（如图 39F 所示），附接器件 126 的尺寸和构型可以适于通过或穿过磁固定结构 124 中的开孔 144，
并（例如）使用缝合锁 146 或打结锁定在绷紧状态的位置。这一布置能够在最初的植入期间或者在最初的植入之后或者在这两段时期调整并控制植入物内部的绷紧度。

[0224] 在替代实施例中，附接器件 126 可以包括更加弹性的材料，以提供患者的依从性并增强患者的舒适度。例如，当吞咽时，舌在向后的方向上移动，而弹性可防止从睡眠中觉醒，并进一步避免铁磁结构 120 的偏移。锥固结构 124 期望比附接器件 126 宽，由此植入的铁磁结构 120 与近旁的磁性结构 14 进行磁相互作用期间，为植入的铁磁结构 120 提供阻止拉动通过所植入的组织区从所植入的组织区中拉出的理想阻力。

[0225] 如图 39B、39D、39E 和 39F 所示，铁磁结构 120 可以通过对应的附接器件 126 个别地栓系于两个或更多的锥固结构 124。

[0226] 在该布置中，通过磁性结构 14′（例如，如前述所述位于头帽或口含件之上）产生与植入到舌的尾侧前段（前部）中或舌下方的栓系的铁磁结构 120 相互作用的磁场来实现期望的生理反应（阻止气道组织塌陷）。植入的铁磁结构 120 具有与磁性结构 14 的磁取向相反的磁取向。相反的磁取向之间的磁力产生吸引力。由于吸引力的作用，朝着口腔前部的方向将舌向前拉，以防止舌根处气道的堵塞。

[0227] 附接于磁性结构 120 的系绳用于有效地将结构 120 的移动或运动传递到舌根（阻塞部位）。系绳的用途被设计成避免这样的情况，即位于舌内的定位通过应用外部磁体 14 而移动的磁体向前移动，但所述移动并不转化为咽壁处舌根的移动。

[0228] E. 前舌 / 舌骨肌磁性结构

[0229] 图 40A 显示出植入到舌前区或尾侧前区中，或者植入到一个或多个诸如舌骨上肌的舌骨肌（例如，下颌舌骨肌和 / 或颧舌骨肌和 / 或茎突舌骨肌和 / 或二腹肌）中，且靠近前述结构 14（例如，口腔内携带的口含件或放置在颚上或下方或者部位的外部托架）的铁磁结构 120 的代表性实施例。为了说明起见，图 40A 显示出从外部佩戴于颚下方的结构 14，然而，结构 14 可以包含套在口腔内的牙之上或位于口腔前庭中的可移除口器矫治器。如图 40A 所见，铁磁结构 120 包括分别植入到颚下组织或舌前区组织中的一个或多个永磁体或铁磁材料 16。使用中，舌内的铁磁结构 120 与结构 14 磁相互作用。将铁磁结构 120 和结构 14 布置成处于吸引取向上，以向前拉舌和 / 或阻止舌以其他方法堵塞气道的方式的后移。

[0230] 在图 40B 所示的替代实施例中，前置的铁磁结构 16 的尺寸比后置的铁磁结构小。后置的铁磁结构 16 更大是因为铁磁结构 120 在后侧比在前侧需要施加更强的力，以使舌避免塌陷并封闭气道。此外，铁磁结构 120 的后端还含有开孔 121，通过所述开孔将所述结构附接或锥固到舌骨上。如图 40C 所示，另一替代实施例包含一侧光滑的铁磁结构 120，同时所嵌入的铁磁结构从相对一侧突出。

[0231] 如图 40A 到 40C 所见，由于铁磁结构 120 相对紧密地靠近结构 14，以及由铁磁结构 120 所覆盖的面积，因而使磁力场的量值最大。

[0232] 在该布置中，通过结构 14（例如，如前所述在头帽或口含件上）产生与植入到舌的尾侧前段（前部）中或舌下方的铁磁结构 120 相互作用的磁场来实现期望的生理反应（阻止气道组织塌陷）。植入的铁磁结构 120 具有与磁性结构 14 的磁取向相反的磁取向。相反的磁取向之间的磁力产生吸引力。由于吸引力的作用，朝着口腔前部的方向将舌向前拉，以防止舌根处气道的堵塞。
IV. 动态组织区的其他代表性磁性结构

A. 自定心的磁性结构

图 19 以图解的方式示出了包含两个磁性结构 12 和 14 的磁性系统。如前所述，所述结构的尺寸和构型适于在所述两个结构之间产生磁相互作用的互相对准的取向放装置于隔膜的组织区之内或之上。根据所述两个结构 12 和 14 的极性，所述磁相互作用可以包含所述两个结构之间用以阻止所述两个组织区彼此远离运动的磁吸引力，或者所述两个结构之间用以阻止所述两个组织区彼此相向运动的磁排斥力，或者这些及其他力的组合。

如前所述，除非结构 12 和 14 以理论上理想的方式对准，否则磁相互作用将促使最容易移动的结构（在图 19 中，结构 12）寻找与最不容易移动的结构（在图 19 中，结构 14）对准成最接近理论上理想的位置。在这些情况下，结构 12 和 14 对准得更好，磁力损失得更少并且最容易移动的结构经受的扭矩更小。从解剖和手术角度的实际来讲，理论上难以实现并维持组织之内或之上所携带的磁性结构的理想对准。考虑到这一困难，由于未对准，手术植入的磁性系统可能浪费一些或大部分的预期磁力。

在图 20A 所示的系统中，结构 12 或 14 中的至少一个包含自定心的磁性结构 130。自定心的磁性结构 130 包含至少一个装入胶囊或容器 134 内的可移动磁体 132。相对于胶囊或容器 134 而言，可移动磁体 132 的形状的构型和尺寸适于使可移动磁体 132 响应于与另一个结构 14 未对准的磁相互作用而在胶囊或容器 134 的边缘内部自由地平移或移动。例如，如图 20A 所示，当自定心的结构 130 与另一个结构 14 之间发生未对准时，位于自定心的结构 130 之内的可移动磁体 132 将在胶囊或容器 134 的边缘内部平移或移动（如图 20B 所示）以寻找相对于另一个结构 14 理论上理想的对准。随着相关组织取向动态变化，可移动磁体 132 还将在胶囊或容器 134 的边缘内部平移或移动以保持与所述另一个结构可能的最佳对准。胶囊或容器 134 的边缘提供了开放空间区域 136，其中所述可移动磁体可相对不受阻碍地进行操控以寻找与所述另一个结构可能的最佳对准。在图 20A 和 20B 中，为了说明起见，示出了舌系统 10a。如图 20A 和 20B 所示，舌系统 10a 包含与内部磁阵列 14 相互作用的自定心的磁性舌插入物 130。

如图 21A 所示，自定心的磁性结构 130 可以包含图像上描述的那样磁性结构 14，所述磁性结构 14 的尺寸和构型适于放置在气道外组织之内或之上，所述磁性结构 14 例如包含佩戴在颌之上的或颈周之下的托架。在该布置中，拟将自定心的磁性结构放置成与其尺寸和构型适于放置在气道组织之内或之上的（例如，位于舌、软腭/腭垂或者两者之上的）另一磁性结构 12 相关联。自定心的磁性结构与另一结构 12 一起形成如前所述的系统 10a、10b 或 10c。在图 21A 中，为了说明起见，示出了舌系统 10a。如图 21A 所示，舌系统 10a 包含与自定心的外部磁性结构 130 相互作用的舌部插入物 12。

如图 21B 所示，自定心的磁性结构 130 包含托架 26，所述托架 26 包括至少一个收纳至少一个可移动磁体 132 的胶囊 134。在图 21B 所示的实施例中，为了说明起见，将胶囊 134 划分成两个空间分离区带 Z1 和 Z2，每个区带收纳至少一个可移动磁体 132（通常对应于图 12C 所示的后区 18a 和中间区 18b）。在该布置中，最靠前的磁区（图 12C 中的区 18c）可以包含一个或多个不可移动的磁体，反之亦然。在图 12C 所示的实施例中，为了说明起见，将胶囊 134 划分成三个分离区带 Z1、Z2 和 Z3（通常类似图 12C 中的区 18a、18b 和 18c），每个区带收纳至少一个可移动磁体 132。也可将区带 Z1、Z2 和 Z3 视为分离的胶囊 134。如
图21B和21C所示，每个区带或胶囊可以含有多个与所述区带或胶囊的可利用体积成比例的更小的可移动磁体，从而能够使可移动磁体自由移动并将胶囊内的所述磁体与另一个结构12对准。分离区带Z1、Z2和Z3或胶囊134将可移动磁体132保持在空间区内，使得可移动磁体132不会聚集在一个位置上。使每个区带Z1、Z2和Z3或胶囊134的尺寸和构型适应一个或多个可移动磁体132在其边界内的可允许、限定和可控的运动。可替代地，如图21D所示，任意或所有区带Z1、Z2和Z3或胶囊134可以含有单个更大的可移动磁体132。

[0240] 如图21E和21F所示，自定心的磁性结构130可以包括使用时其中心基本位于舌下的单个区带或胶囊。区带或胶囊134可以容纳单个更小的可移动磁体132（如图21E所示）或在基本位于舌下的位于中央的区带或胶囊124中多于一个的更小的可移动磁体132（如图21F所示）。

[0241] 由于拟将图21A到21F所示的自定心的磁性结构130放置在外部组织上，因此所述区或胶囊的内部体积相对较大（与拟将植入到组织之内的结构中的胶囊相比），从而为其所收纳的可移动磁体提供了相对大的运动自由。

[0242] 可替代地，如图22A所示，可以将自定心的磁性结构130的尺寸和构型适于放置在口腔内，例如如已描述的在下或上牙的内侧、外侧或顶端。在该布置中，拟将自定心的磁性结构130放置成与所述尺寸和构型适于放置在气道内部的组织之内或之上（例如，位于舌、软腭/腭垂或两者之上的）另一磁性结构（如图22A中，磁性结构12）相联。自定心的磁性结构与另一结构12一起形成如前所述的系统10a、10b或10c。在图22A中，为了说明起见示出了软腭系统10b。图22A中的软腭系统10b包含与自定心的内部磁性结构130相互作用的软腭植入物12。

[0244] 如图23A所示，自定心的磁性结构130可以包含类似于前面描述的磁性结构12，将所述磁性结构12的尺寸和构型适于放置在气道内侧的组织之内或之上，所述磁性结构12例如包含如已经描述过的放置在舌和/或软腭/腭垂之内或之上的托架。在该布置中，拟将自定心的磁性结构130放置成与所述尺寸和构型适于被放置在气道外组织之内或之上的（位于颚或颈之上的）或气道内组织之内或之上的（位于下牙之上的）另一磁性结构14相关联。自定心的磁性结构与另一结构12一起形成如前所述的系统10a、10b或10c。在图23A
中，为了说明起见示出了舌系统 10a。图 23A 中的舌系统 10a 包含与外部磁性结构 14 相互作用的自定心的舌部植入物结构 130。在该布置中，自定心的舌植入结构 130 与外部结构 14 之间的相互作用在舌上产生扭矩。应变换到，其他结构 14 还可包含图 21A/B/C/D/E/F 所示类型的自定心的外部结构或者图 22A/B/C 所示类型的自定心的内部结构。

[0247] B. 偏心磁性结构

[0248] 舌横向两侧上的组织由于其降低的厚度，因而与沿着舌的中心线的组织相比更容易移动。这样，仅设置在舌一侧的组织之内或之上的磁性结构可以有效地排斥相应定位于咽壁之内或之上的磁性植入物。

[0249] 图 25 列示了足以引起呼吸暂停发作的塌陷的咽管的截面，其与图 3 的一样但是从另一透视角度示出的。图 25 还示出了具有植入的磁性结构 70 的舌。磁性舌部结构 70 包含至少两个取向于基本垂直于舌的中心线的相同方向上的磁体 16。如在图 25 中所见，磁性舌部结构 70 的位置大体垂直于舌中缝并且相对于舌中缝偏移中心。即，如图 25 中的实施例示出的那样，结构 70 的全部占据了沿着中缝的舌的一侧。基本上结构 70 中没有任何一部分跨越中缝延伸到舌的对侧。

[0250] 图 26A/26B/26C/26D/26E/26F/26G/26H/26I/26J/26K/26L/26M/26N/26O 所示类型的磁性舌部结构 70 与图 12C/E 所示类型的外部磁性结构 14 之间的相互作用而形成舌的新位置（与图 25 相比）。所述偏心磁性舌部结构 70 和所述外部磁性结构 14 共同形成舌系统 10a 的实施例。图 26A 中的偏心结构 70 和结构 14 之间的磁吸引力将偏心结构 70 朝着咽壁的方向向前拉，从而打开咽部气道的一侧达到足以防止呼吸暂停发作的程度。
【0251】图26B示出了由于偏心磁性舌部结构70与图12F所示类型的外部磁性结构14之间的相互作用而形成舌的新位置（与图25相比），所述偏心磁性舌部结构70和所述外部磁性结构14形成舌系统10a的另一实施例。图26B中的偏心结构70与结构14之间的磁吸引力将偏心磁性结构70朝着相对于偏心磁性结构70的位置的舌对侧的方向拉，从而打开咽部气道的一侧达到足以防止呼吸暂停发作的程度。

【0252】图27示出了由于偏心磁性舌部结构70与放置在舌中植入偏心磁性结构70区域的面的后咽壁之内或之上的内部磁性结构14′之间的相互作用而形成舌的新位置（与图25相比）。内部磁性结构14′携带一个或多个磁体18，所述磁体18面向气道的极性与偏心磁性结构70的极性相同。偏心磁性结构70与咽壁结构14进行排斥方式的磁相互作用。图27中的偏心结构70与结构14之间的磁排斥力将磁性舌部结构70朝着嘴的方向向前推，从而打开咽壁的一侧达到足以防止呼吸暂停发作的程度。

【0253】C．船型磁性结构

【0254】图28示出了足以引起呼吸暂停发作的塌陷的咽管的截面，其与图3的一样但是是从另一透视角度示出的。图28还示出了具有植入的船型磁性结构72的舌。磁性结构72包含携带至少两个磁体16的第一区域或臂74，所述磁体16取向于舌的中心线横向的方向。如图28所见，臂74中的磁体18的位置相对于舌中缝偏离中心并且大体垂直于舌中缝，这跟前面关于图25所描述的一样。然而，与图25所示实施例不同的是，磁性结构72包括横跨中缝延伸到舌对侧的第二区域或臂76。所述区域或臂76没有或基本没有磁体，从而基本上没有磁体占据舌的这一区域。

【0255】无磁体区域或臂76（其延伸到舌未被磁体16占据的位置）充当舵。图28所示类型的船型磁性结构72是图25所示偏心磁性结构70的变体。船76的存在来用于与图25所示的偏心结构70相比移动更多的软组织，并且进一步在使用期间稳定结构72。

【0256】图29A示出了由于船型磁性结构72与图12C和12E所示类型的外部磁性结构14之间的相互作用而形成舌的新位置（与图28相比），所述船型磁性结构72和所述外部磁性结构14共同形成舌系统10a的实施例。图29A中的船型结构72和结构14之间的磁吸引力将舌部结构72的磁性部分朝着嘴的方向向前拉。这是因为结构72的磁体16具有面向口腔前方（前部）的S极，而结构14的磁体18具有面向口腔向内的相反N极，反之亦然。基本上没有磁体的舵部分76并未受到磁吸引，而仍然被植入于横跨中缝位于舌的另一侧上的组织中。结果，结构72将关于所述舵部分76朝着外部磁性结构14的方向枢转。舵部分76的额外表面积将在枢转的方向上拉动更多的组织，并还将用作给予结构72整体稳定性的组织锚固。所述磁相互作用打开咽部气道的一侧达到足以防止呼吸暂停发作的程度。

【0257】图29B示出了由于船型磁性结构72与图12F所示类型的外部磁性结构14之间的相互作用而形成舌的新位置（与图25相比），所述船型磁性结构72和所述外部磁性结构14形成舌系统10a的另一实施例。图29B中的船型结构72与结构14之间的磁吸引力将舌部结构72的船型磁性部分的磁性部分76朝着相对于结构72的磁性部分的位置的舌对侧的方向拉。这是因为结构72的磁体16具有面向口腔前方（前部）的S极，而结构14的磁体18具有面向口腔向内的相反N极，反之亦然。基本上没有磁体的舵部分76并未受到磁吸引，而仍然被植入于横跨中缝位于舌的另一侧上的组织中。结果，结构72将关于舵部
分76朝着外部磁场结构14的方向枢转。舵部分76的额外表面面积将在枢转的方向上拉动更多的组织，并还将用作给予结构72整体稳定性的组织锚固器。所述磁相互作用打开咽部气道的一侧达到足以防止呼吸暂停发作的程度。

【0259】图30示出了由于舵型磁性结构72与放置在舌中植入舵型磁性结构72区域的对面的后咽壁之内或之上的内部磁性结构14之间的相互作用而形成舌的新位置（与图28相比）。内部磁性结构14带一个或多个磁体18，所述磁体18面向气道的极性与舵型磁性结构72的极性相同。舵型磁性结构72与咽壁结构14进行排斥方式的磁性相互作用。图30中的舵型结构72与结构14之间的磁排斥力将舌部结构72朝着嘴的方向向前推。这是因为结构72的磁体16具有面向气道的N极，而结构14的磁体18同样具有面向气道的N极，反之亦然。基本上没有磁体的舵部分76并未受到磁吸引，而仍然被植入于横跨中缝位于舌的另一侧上的组织中。结果，结构72将关于舵部分76远离内部磁性结构14枢转。舵部分76的额外表面面积将在枢转的方向上推动更多的组织，并还将用作给予结构72整体稳定性的组织锚固器。所述磁相互作用打开咽部气道的一侧达到足以防止呼吸暂停发作的程度。

【0260】舵型磁性结构72的舵部分可以具有各种尺寸和构型。例如，如图31A/C所示，结构72的主体78可以包括舵部分76，通过提供以期望角度（例如，45°到90°）从所述舵部分76向外凸出的附件92（参见图31A和31B）增加了所述舵部分76的表面积。即（参见图31A和31B），假设所述结构的主体部分78沿纵向84展开，附件92的轴82以距纵向84一定的角度展开。附件92在磁场方向上给整个植入物更大的深度。一般而言，由于增加的表面积和质量，具有更大深度的磁性植入物对组织施加更大的力。这样，附件92用来施加更大的力并稳定所述植入物。附加地，附件92还携带嵌入式磁性源，在这种情形中所述附件还将使磁性结构12和与之相 granting相互作用的外部磁性结构14之间的距离减少。

【0261】如图31C和31D所示，当被植入时，磁性植入物72的位置期望以舌中缝为中心，并且所述主体的纵向84在舌中缝的横向延伸，而舵附件92的轴82大体平行于舌中缝延伸。如图31C所示，舌中缝将植入物72分成两个部分。在舌中缝的一侧88上，结构70携带至少两个磁体16。在舌中缝的另一侧86上，存在具有附件92的舵部分76，期望所述舵部分76没有或基本没有磁性材料。如图31D所示，所述部分76及附件92充当舵，以便由于植入物的携带磁体一侧88与前述类型的另一磁性结构之间的磁吸引和/或排斥而有助于移动更多的舌组织。

【0262】图32A和32B示出了其尺寸和构型适于放置在舌中的舵型磁性结构98的替代实施例。在该实施例中，舵型磁性结构98包含具有纵向104的主体100。主体100包含携带由一个或多个磁体16(1)组成的第一列阵列的第一区域106以及携带由一个或多个磁体16(2)组成的第二列阵列的第二区域108。如图32A和32B所示，第一列阵列16(1)中各磁体的极性一般与第二列阵列16(2)的极性相反。主体100还包含介于第一区域106和第二区域108之间且具有以距纵向104一定角度凸出的轴102的中间舵附件112。期望舵附件112没有或基本没有磁体。在所示实施例中（参见图32A和32B），第一列阵列16(1)的磁体具有面向舵附件112方向的N极，而第二列阵列16(2)的磁体具有面向舵附件112方向S极。

【0263】图33示出了足以引起呼吸暂停发作的塌陷的咽管的截面，其与图3的一样但是从另一透视角度示出的。图33还示出了植入到舌中的图32A/B所示舵型结构98。如图33所
见，主体 100 以其大体横切舌中缝延伸的纵轴 104 进行植入，其中第一区域 106 位于舌中缝的一侧而第二区域 108 位于舌中缝的对侧。舵附件 112 占据于第一区域和第二区域之间舌中缝，并且舵附件 112 的轴 102 大体平行于舌中缝延伸。

【0263】图 34A 示出了由于图 32A/B 所示的舵型结构 98 与图 12C/E 所示类型的外部磁性结构 14 之间的相互作用而形成舌的新位置（与图 33 相比），所述舵型结构 98 和所述外部磁性结构 14 共同形成舌系统 10a 的实施例。结构 14 携带磁体 18，所述磁体 18 面向口腔的极性与第二阵列 16(2) 各磁体的极性相反而与第一阵列 16(1) 各磁体的极性相同。在所示实施例中，磁体 18 具有面向口腔的 N 极。结果，结构 14 与第二阵列 16(2) 之间产生磁吸引力，而结构 14 与第一阵列 16(1) 之间产生磁排斥力。所述吸引力将结构 98 的第二部分 108 朝着嘴的前方向前拉，而所述排斥力将结构 98 的第一部分 106 朝着咽喉的方向向后推。基本上没有磁体的舵附件 112 不受磁吸引或排斥，但仍然被植入于位于舌的相对两侧之间舌中缝区域的组织中。所述舵稳定不同磁相互作用的推与拉。所述磁相互作用打开咽喉气道的一侧达到足以防止呼吸暂停发作的程度。

【0264】图 34B 示出了由于图 32A/B 所示的舵型结构与图 12E 所示类型的外部磁性结构 14 之间的相互作用而形成舌的新位置（与图 33 相比），所述舵型结构和所述外部磁性结构 14 形成舌系统的另一实施例。结构 14 只在被第一阵列 16(1) 占据的舌一侧上携带磁体 18。磁体 18 面向口腔的极性与第一阵列 16(1) 各磁体的极性相同而与第二阵列 16(2) 各磁体的极性相反。所述吸引力将结构 98 的第二部分 108 朝着舌的对侧方向拉，而所述排斥力将所述结构的第一部分 106 朝着咽喉的方向向后推。基本上没有磁体的舵附件 112 不受磁吸引或排斥，但仍然被植入于位于舌的相对两侧之间舌中缝区域的组织中。结果，当结构 98 的第一部分 106 将转远离外部磁性结构 14 时，结构 98 的第二部分 108 将朝着外部磁性结构 14 的方向枢转。舵附件 112 稳定不同磁相互作用的推与拉。所述磁相互作用打开咽喉气道的一侧达到足以防止呼吸暂停发作的程度。

【0265】图 35 示出了由于图 32A/B 所示的舵型结构与放置在舌中植入所述结构的第一阵列区域的对面的后咽喉之内或之上的外部磁性结构 14 之间的相互作用而形成舌的新位置（与图 33 相比）。外部磁性结构 14 携带一个或多个磁体 18，所述磁体 18 面向气道的极性与第二阵列 16(2) 的磁体相同而与第一阵列 16(1) 的磁体相反。结果，结构 14 与第二阵列 16(2) 之间产生磁排斥力，而结构 14 与第一阵列 16(1) 之间产生磁吸引力。所述排斥力将结构 98 的第二部分 108 朝着口腔的方向推，而所述吸引力将所述结构的第一部分 106 朝着咽喉的方向向后拉。基本上没有磁体的舵附件 112 不受磁吸引或排斥，但仍然被植入于位于舌的相对两侧之间舌中缝区域的组织中。结果，当结构 98 的第一部分 106 朝着内部磁性结构 14 的方向枢转时，结构 98 的第二部分 108 将枢转远离内部磁性结构 14。舵附件 112 稳定不同磁相互作用的推与拉，并在枢转方向上拉组织。所述磁相互作用打开咽喉气道的一侧达到足以防止呼吸暂停发作的程度。

【0266】D. 具有弹性部件的铁磁体

【0267】在替代实施例中，在舌、软腭或咽喉中使用的可植入铁磁结构 136 可以包含耦接至一个或多个弹性部件 104 的铁磁材料 108，如图 41A 和 41B 所示。将耦接至铁磁材料 138 的弹性部件的尺寸和构型适于以预定的方式在负荷下变形，并当解除负荷时恢复到初始形状。如图 41A 和 41B 所示，弹性部件 140 包含弹簧。
弹性部件 140 的弹簧形式可以变化。例如其可以包含螺旋拉伸或压缩弹簧，其中以类似螺纹的盘绕方式缠绕金属丝，如图 41A 所示。可替代地，弹性部件 140 可以包含板弹簧，所述板弹簧包含固定的板元。仍然可替代地，弹性部件 140 可以包含由围绕铁磁材料 138 盘绕的扁平条带或金属丝制成的平面涡卷弹簧。仍然可替代地，弹性部件 140 可以包含扭杆弹簧。

铁磁材料 138 期望包含一个或多个永磁体。铁磁材料 138 的形状不一定是图 41A 所示的圆柱形。也可以使用其他的尺寸、形状和构型，包括立方体、椎体、四面体以及各种多面体。

如图 41A 所示，弹性部件 140 可以由金属或聚合物（期望是刚性聚合材料）制成。弹性部件 140 可以包含多片或者包含由多个弹性部件组成的结构。就弹簧形式而言，弹性部件 140 的形状不一定是螺旋状的（如图 41A 所示），而是可以使用能够在负荷下变形的其他构造。设置成弹簧形式的弹性部件 140 可以类似或具有多个围绕铁磁材料 138 四周所附接的弹簧或弹性部件的扁平弹簧。通过为修改螺距、圈数、厚度以及弹簧“锥”的整体角度，同样可以将弹簧形式的弹性部件 140 调整为所需任何量的力。

如图 41B 所示，弹簧形式的弹性部件 140 的结构有可能用作模块器，所述模块器能够通过扭Bring 将铁磁材料 138 附接到软组织中。这样，弹簧形式的弹性部件 140 的存在可以消除对为将所述结构 136 附接到软组织而使用缝线的需要。同样可将弹簧形式的弹性部件 140 固定（例如，像骨螺钉一样）到骨性结构，并且在该布置中，弹簧形式的弹性部件 140 同样用作铁磁结构 138 的栓系设备。无论采用何种形式，都可以将弹性部件 140 嵌入或涂布上硅基质或软材料，如铁磁材料 138 的那样。铁磁材料 136 上存在弹性部件可帮助稳定合并铁磁植入物的系统扭矩。稳定所述扭矩可带来对铁磁植入物更多的可预测性。

在某些情形中，上述的舌系统、软腭系统和组合系统的替代实施例

在某些情形中，上述的舌系统、软腭系统和组合系统的替代实施例不能提供足以保持气道通畅的磁吸引力。在这些情况下，相应的系统期望包括至少一个相互作用以提供磁力的附加结构，所述磁力对所述磁吸引力进行补充进而保持气道通畅。

舌系统的替换舌系统

图 4E 和 4F 说明了提供补充磁力以进一步阻止舌塌陷的舌系统的替代实施例。这些图 4E 和 4F 所示的代表性实施例中，如前所述的那样，磁性结构 12 位于舌之内或之上。具体地，磁性结构 12 可位于舌的前组织而或后组织。在图 4E 中，磁性结构 12 与其吸引进行相互作用的（如前所述的）磁性结构 14 位于气道外（例如，位于颚之上），而在图 4D 中，所述磁性结构 14 位于气道内（例如，位于口腔之内）。

此外，如图 4E 和 4F 所示，为了提供补充磁力以进一步阻止舌塌陷，所述舌系统包括位于后咽壁之内或之上、一般与位于舌之内或之上的磁性结构 12 相对的磁性结构 15。磁性结构 15 携带至少一个磁性材料 19，所述磁性材料 19 通过与结构 12 进行磁相互作用生成包括至少一个矢量或分量的磁力，所述矢量或分量磁排斥位于舌的可移动组织之内或之上的结构 12，使之远离位于咽壁的相对不可移动组织之内或之上的结构 15。在所述实施例中，结构 15 的磁性材料 19 的极性与其横跨气道所面对的磁性结构 12 的极性相同。因而，磁性结构 15 与气道对面的磁性结构 12 通过排斥而进行相互作用。当部气道中磁性结构 15 与磁性结构 12 之间的排斥磁相互作用用来在睡眠期间使舌稳定并阻止舌倚着咽壁的塌陷。
陷。后部气道中结构 12 和 15 之间的排斥磁相互作用对前部气道中结构 12 和 14 之间的吸引磁相互作用进行补充，所述吸引磁相互作用同样用来阻止舌朝着后咽壁的方向后移或其他运动。补充磁力整体或部分地防止出现图 3 所示的气道堵塞的组织状况。第一铁磁结构 12 和第二铁磁结构 14 之间的磁力外加上铁磁结构 12 和 15 之间的磁力共同用来保持睡眠期间的气道开放（即，通畅）。

[0277] 2. 补充的软腭系统

[0278] 图 5C 和 5D 示出了提供补充磁力以进一步阻止软腭 / 舌垂塌陷的软腭系统的替代实施例。在图 5C 和 5D 所示的代表性实施例中，如前所述的那样，磁性结构 12 位于软腭 / 舌垂内或之上。在图 5C 中，磁性结构 12 与其吸引进行相互作用的（如前所述的）磁性结构 14 位于气道外（例如，位于颊之）上；而在图 5D 中，所述磁性结构 14 位于气道内（例如，位于口腔之内）。

[0279] 此外，如图 5C 和 5D 所示，为了提供补充磁力以进一步阻止软腭 / 舌垂的塌陷，所述软腭系统包括位于后咽壁之内或之上、一般与位于软腭 / 舌垂之内或之上的磁性结构 12 相对的磁性结构 15。磁性结构 15 携带至少一个磁性材料 19。所述磁性材料 19 通过与结构 12 进行磁相互作用生成包括至少一个矢量或分量的磁力，所述矢量或分量磁排斥位于软腭 / 舌垂的可移动组织之内或之上的结构 12，使之远离位于咽壁的相对不可移动组织之内或之上的结构 15。在所示实施例中，结构 15 的磁性材料 19 的极性与其横跨气道所面对的磁性结构 12 的极性相同。因而，磁性结构 15 与气道对的磁性结构 12 通过排斥而进行相互作用。位于咽壁之内或之上的磁性结构 15 与位于软腭 / 舌垂之内或之上的磁性结构 12 之间的排斥磁相互作用用来在睡眠期间使软腭 / 舌垂稳定并阻止软腭 / 舌垂减着咽壁的塌陷。后部气道中结构 12 和 15 之间的排斥磁相互作用对前部气道中结构 12 和 14 之间的吸引磁相互作用进行补充，所述吸引磁相互作用同样用来阻止软腭 / 舌垂朝着后咽壁的方向后移或其他运动。补充磁力整体或部分地防止出现图 3 所示的气道堵塞的组织状况。第一铁磁结构 12 和第二铁磁结构 14 之间的磁力外加上铁磁结构 12a/12b 和 15a/15b 之间的磁力共同用来保持睡眠期间的气道开放（即，通畅）。

[0280] 3. 补充的组合系统

[0281] 图 6C 和 6D 示出了提供补充磁力以进一步阻止舌和软腭 / 舌垂塌陷的组合系统的替代实施例。在图 6C 和 6D 所示的代表性实施例中，如前所述的那样，磁性结构 12b 位于舌之内或之上，而磁性结构 12a 位于软腭 / 舌垂之内或之上。更具体地，磁性结构 12b 可位于舌的前区或后区。在图 6C 中，磁性结构 12a 和 12b 与其吸引进行相互作用的（如前所述的）磁性结构 14 位于气道外（例如，位于颊之上），而在图 6D 中，所述磁性结构 14 位于气道内（例如，位于口腔之内）。

[0282] 此外，如图 6C 和 6D 所示，为了提供补充磁力以进一步阻止舌和软腭 / 舌垂的塌陷，所述组合系统包括磁性结构 15a 和磁性结构 15b。磁性结构 15a 位于后咽壁之内或之上，一般与位于软腭 / 舌垂之内或之上的磁性结构 12a 相对。磁性结构 15b 位于后咽壁之内或之上，一般与位于舌之内或之上的磁性结构 12b 相对。结构 15a 和 15b 的每个都携带至少一个磁性材料 19，所述磁性材料 19 通过与相关的结构（分别为 12a 和 12b）进行磁相互作用生成至少一个矢量或分量的磁力，所述矢量或分量磁排斥位于软腭 / 舌垂或舌的可移动组织之内或之上的对应结构 12a 和 12b，使之远离位于咽壁的相对不可移动组织
之内或之上的结构15。在所示实施例中，结构15的磁性材料19的极性与其横跨气道所面对的磁性结构（分别为12a和12b）的极性相同。因而，磁性结构15a和15b与气道对面的磁性结构（分别为12a和12b）通过排斥而进行相互作用。位于咽壁之内或之上的磁性结构15a与位于软腭/腭垂之内或之上的磁性结构12a之间的排斥磁相互作用用来在睡眠期间使软腭/腭垂稳定并阻止软腭/腭垂倚靠咽壁的塌陷。同样地，位于咽壁之内或之上的磁性结构15b与位于舌之内或之上的磁性结构12b之间的排斥磁相互作用用来在睡眠期间使舌稳定并阻止舌倚靠咽壁的塌陷。后部气道中结构12a/12b和15a/15b之间的排斥磁相互作用对前部气道中结构12a/12b和14之间的吸引磁相互作用进行补充，所述吸引磁相互作用同样用来阻止软腭/腭垂和/或舌倚着后咽壁的后移或其他运动。补磁力整体或部分的防止出现图3所示的气道堵塞的组织状况。第一铁磁结构12和第二铁磁结构14之间的磁力外加上铁磁结构12a/12b和15a/15b之间的磁力共同用来保持睡眠期间的气道开放（即，通畅）。

[0283] V.保持气道通畅所需的力

[0284] 图36和37以图解的方式示出，对于给定的个体，可以对使舌组织（图36）或软腭/腭垂组织（图37）与后咽壁保持分开所需的力分配量值。借助所述力能够在呼吸暂停发作期间阻止气道塌陷。该力（在图36和37中标示为F分）可以通过对给定个体的物理测量来获得，或者它以尸体研究期间取得的测量为基础，或者可以根据大量个体的一般解剖结构考虑因素或这些及其他考虑因素的组合来凭经验选择所述力。[[0285]](#)

[0285] 对于给定的个体，同样可以对平衡力（在图36和37中标示为F自）分配量值。所述平衡力表示为了使在正常气道功能期间能够进行吞咽、咀嚼或者讲话，自然的肌肉活动对舌（图36）或软腭/腭垂（图37）施加的力。力F自还可以通过对给定个体的物理测量来获得，或者可以根据大量个体的一般解剖结构考虑因素或这些及其他考虑因素的组合来凭经验选择所述力。[[0286]](#)

[0286] 如图36和37所示，给定系统10产生的磁力（F磁）可表达为F分和F自的函数，或者F磁=f(F分, F自)。所述磁力可包含吸引力（即，在舌或软腭/腭垂与佩戴于额或颈上或者口腔内的牙之上的吸引磁性结构之间的基本为前后方向的力）、排斥力（即，在舌中的磁排斥结构与后咽壁之间的基本为前后方向的力）和/或扭力（即，倾向于使舌或软腭/腭垂围绕轴旋转的力或力矩）和/或偏心力（即，倾向于使舌或软腭/腭垂向左或向右偏移的基本为横向或从一侧到另一侧方向的力），或者这些力中的两个或更多的组合。磁力F磁根据期望的治疗效果，使舌与后咽壁之间（图36）或者腭垂与后咽壁之间（图37）或者其组合保持分开。[[0287]](#)

[0287] 所述函数期望加入F分≤F磁的条件，使得F磁能克服F分以保存正常的气道功能。实际上，F磁是为了解决有效的OSA治疗所使用的，F分不应超过的力的数值的上限。所述函数还期望加入F自≥F磁的条件，使得舌与后咽壁之间保持期望的分离。在系统只在夜间启动的情形中，F自在量值上将必须更大，这是因为睡眠期间一定能够继续的活动只有吞咽和咳喉，与讲话相比所述活动需要更大的力。[[0288]](#)

[0288] 所述函数解析F分和F自以便当系统启动时，提供最佳的治疗力，使其在晚上阻止睡眠期间舌或软腭/腭垂倚靠咽壁的塌陷，却不影响正常活动期间的讲话、吞咽或喝东西。[[0289]](#)

[0289] 所述函数还期望包括耐受因子ΔTol，这考虑了由于个体产生对F磁的耐受，因而F
在植入后会伴随着时间而增加。由于个体训练自己在存在F_{bs}的情况下的吞咽或讲话期间施加更大的力以保持正常的声道功能，因此F_{bs}在植入后随着时间而增加。受耐因子 A To1 的性质可以对给定个体的物理测量来确定，或者可以根据大量个体的单独解剖结构考虑因素或这些及其他考虑因素的组合来凭经验选择所述受耐因子。

此外，在达到舌的F_{bs}的绝对值量（无论相对于咽壁，还是相对于腭垂，或是相对于两者）时，已经发现舌的F_{bs}具有两个分量。第一分量是在前后方向上产生的，防止舌向上落在后咽壁或腭垂上的期望治疗力F_{x}。第二分量是由于磁力在舌部植入物的边缘处中断而施加的不期望的偏心侧向负荷力F_{y}。已经发现，由于有磁性的舌部植入物在边缘处开始不与其他磁性结构（位于颈或颈之下或位于舌之上的或位于腭垂内的）对准，舌部植入物边缘处的磁体开始扭转，以试图改变其自身的取向达到期望的更具吸引的布置。这会使舌部植入物发生扭转或翻转。偏心侧向负荷力F_{y}是这些边缘不连续的结果，其使舌横向，即，向一边移动（解剖结构上在四侧中三侧上锚固的软腭 / 腭垂与基本上只在后侧上锚固的舌相比明显更能阻止侧向负荷力）。

如果不调节边缘不连续，则期望的治疗力量值F_{x}不期望地使舌横向移动。通过设计其他磁性结构，例如，如图16A/B所示的那样，通过使所述结构的后区和中区的磁场方向相对于前区的磁场方向成一定角度，可以稳定并控制边缘不连续的量值，即，F_{y}的量值。此外，通过以前所述方式（例如，通过存在如图28到35所示的舵或通过使用图21到23所示的移动磁体）使舌部植入物稳定，同样可以抵消F_{y}的不稳定效果。

图38所示那样的植入物力的比例缩放策略是以对这些考虑因素的评价为基础的。在图38中，A 处指示出在前后方向上对舌施加为了实现期望治疗效果所必需的力的量值（即，F_{bs}）。如前面所述的，这是进行组织与后咽壁或腭垂或者两者分离开、进而在吸气暂停发作期间阻止气道塌陷的力。力F_{bs}（同样示于图36中）可以通过物理测量获得，或者根据大量个体的一般解剖结构考虑因素或这些及其他考虑因素的组合来凭经验选择。

在图38中，B 处指示出响应于外部侧向负荷而近中部侧偏的给定舌的阻抗力（F_{bs}）的量值。F_{bs}的量值可以通过对给定个体的物理测量来获得，或者可以根据个体研究得到，或者可以根据大量个体的单独解剖结构考虑因素或这些及其他考虑因素的组合来凭经验选择。在图38中，将F_{bs}（B）的量值表达为F_{bs}（A）的百分比。即，在y轴上，F_{bs}（A）表达为100%，而F_{bs}（B）表达为60%。F_{bs}与F_{bs}之间的特定关系可以基于解剖结构的考虑因素而变化。

在图38中，C 指示出给定吸引磁性结构（位于颈或颈之上或者位于舌之上的或者位于腭垂之内，或者其组合）所产生的前后力F_{z}的量值。如图38由C的斜率所示，F_{z}的量值将随着吸引磁性结构与舌部植入物之间的距离以及随着舌部植入物自身的特定结构特征和稳定性而变化。

在图38中，D 指示由给定咽部植入物产生的侧向负荷力F_{y}的量值。如前所述，D 的斜率和量值将根据咽部植入物或腭部植入物的设计，特别是关于边缘不连续的调节而变化。D 的斜率和量值同样取决于舌部植入物自身的特定结构特征和稳定性。

对于给定的影响舌的磁力系统而言，F_{z}的量值相对于F_{y}的量值表示植入物比例缩放因子（F_{比例}）。F_{比例}可以表达为F_{z}与F_{y}的比；即F_{比例} = F_{z} / F_{y}。对于给定的影响舌的磁力系统，F_{比例}的量值指示出所述系统有可能实现期望的治疗效果而不会使
舌偏离中心。
【0297】已经发现，对于给定的影响舌的磁力系统而言，期望的是 $F_{\text{比例}} \geq 1$。对于给定的影响舌的磁力系统而言，$F_{\text{比例}} < 1$ 指示出将出现舌偏离中心的情况，这将偏离期望的治疗效果。$F_{\text{比例}} < 1$ 指示出应当降低或调节（位于颌或颈之上或者位于牙之上的）吸引磁性结构的边缘不连续，和 / 或保证使舌部植入物稳定的手段。

【0298】图 38 同样有助于植入物的力的比例缩放策略。C 和 D 与 A 和 B 交叉点限定出用于影响舌的磁力系统的最佳操作区域 E。在区域 E 中，$F(z)$ 处于或高于实现期望治疗效果的量值，而 $F(y)$ 则不会处于将发生侧向负荷（即，使舌偏离中心）的量值。

【0299】实验上，已经确定使用影响舌的磁力系统在尸体上使气道开放可能需要的力 $F_{\text{震}}$ 不超过 1000g。据认为，磁性舌部植入物系统需要大约 2 到大约 750g 的力以保持气道通畅。更具体地，大约 5 到大约 600g 范围内的力被认为在对位于颌或颈之上或位于牙之上的其他磁性结构的边缘不连续进行控制和使舌部植入物本身稳定两方向提供了期望的治疗优势。

【0300】人们还认为，用于影响唇的磁力系统的 $F_{\text{震}}$ 同样不应超过 1000g。更具体地，据认为，对于影响唇的磁力系统，大约 3 到大约 800g 的力 $F_{\text{震}}$ 将提供治疗优势，而不是气道的正常功能产生不利影响。

【0301】VI. 结论

【0302】虽然本公开对于本领域技术人员实施本发明而言是详细确切的，但是本文所公开的物理实施例只是例举说明本发明，而本发明可以实施为其他的具体结构。虽然已经描述了优选的实施例，但是在不脱离于权利要求书限定的本发明的情况下，可以对细节进行改动。

【0303】本发明的上述实施例只是对其原理进行描述，而非进行限定。相反，本发明的范围应当由权利要求书及其等价物的范围进行确定。
图17B
图20B

图21A
图36

图37
图 38

图中各区域的标注如下：

- A - \(F_{分} \)
- B - \(F_{止} \)
- C - \(F_z \)
- D - \(F_y \)
- E - \(\frac{F_z}{F_y} \geq 1 \)

图中还标注了所需的力（%）轴。