(12) STANDARD PATENT (11) Application No. AU 2005200328 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(74)

(56)

Title
Tag-based schema for distributing update metadata in an update distribution system

International Patent Classification(s)

GOG6F 7/00 (2006.01) GO6F 15/16 (2006.01)
GOG6F 9/44 (2006.01) HO4L 12/00 (2006.01)
GOG6F 9/445 (2006.01) HO4L 29/00 (2006.01)
GO6F 11/00 (2006.01) HO4L 29/08 (2006.01)

GO6F 13/00 (2006.01)
Application No: 2005200328 (22) Date of Filing: 2005.01.27

Priority Data

Number (32) Date (33) Country
10799440 2004.03.12 us
Publication Date: 2005.09.29

Publication Journal Date: 2005.09.29
Accepted Journal Date: 2009.06.11

Applicant(s)
Microsoft Corporation

Inventor(s)

Khang, Seong Kook;Averbuch, Aaron H.;Fisher, Jeanette R.;Marl, Dennis Craig;Menzies,
Derek P.;Shepard, Marc;Dehghan, David B.

Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art
US6199204
US2003088684

27 Jan 2005

%)
|
N
S 5
)
&\
Ve
)
)
&\
10

ABSTRACT OF THE DISCLOSURE

A tag-based structure for communicating software update metadata information to
client computers and to update service nodes is presented. An update metadata file includes:
an identifier tag including a software update identifier that uniquely identifies the software
update; zero or more general properties tags that carry general property information relating
the software update; zero or more localized properties tags that carry localized property
information organized according to language; zero or more relationship tags that identify
dependency relationships the current software update, as described in the update metadata,
has with other software updates; zero or more applicability rules tags that carry information
for determining the applicability of the software update to a client computer; zero or more
files tags that carry information relating to the software update's payload files; and handler
specific data tags that carry information directed to the software handler for installing the

software update.

SOFTWARE
PROVIDER

100

-

114
116
=

——— o —— — — e e — —

UPDATE
SERVICE
NODE
I 118
v
!
|
|
|
|
!
|
|
!
|
/
/

o0
Aﬂlu / \
S " “
S L |
IIIIIIIIIII 7 |
_
\ \ !
|
<3 !
mmE i
N 8 _
358 [V “
S Uﬂ _
A]
TM@E N !
T “
RWMN 4/7 __
o !
~ |
- I
J

N e e e e e e e e e e —————— e — — -

SO00C Uef LC 8CE00CTSO0C

Fig. 1.

e e e - — e - ——

o)

T

27 Jan 2005

2005200328

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street,Melboumne, 3000, Australia

INVENTION TITLE:

Tag-based schema for distributing update metadata in an update distribution system

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

AN
-
-
Q\
=
=
o0
—

2005200328

10

15

20

25

PAOPER\SPMA2INIS 2N 2R 20nd spa doc-$/1K/ 21009

-1-

FIELD

The present invention relates to software and computer networks, and in particular,
the present invention relates to a tag-based schema for distributing update metadata in an
update distribution system.

BACKGROUND

Nearly all commercially available software products undergo a continual revision
process 1o repair or update features of the software. Each revision of a software product
frequently requires adding new files, replacing existing files with newer revisions, deleting
obsolete files, or various combinations of these actions. This process of replacing older
files, adding new files, and deleting obsolete files of a software product will be referred to
hereafter as "updating the product,”" and the data collection, including binary files, data
files, update instructions, metadata, and the like, used in updating the product will be
referred to hereafter more simply as an "update.”

Once a software provider has created an update for a software product, either to fix
a problem, enhance security, or add new features, the software provider will want to make
that update widely available to its customer base. Quite often, such as when the update is
directed at correcting a flaw in the product or addressing a critical security issue, the
software provider will want that update installed on the customers' computers as soon as
possible. Indeed, most software providers have a business incentive to distribute software
updates to their customers as quickly and as trouble-free as possible.

The computer industry has experienced an explosive growth in the number of
computers connccted to networks, and in particular, to the Internet. Due to this explosive
growth, and due to the communication abilities available through a connection to the
Internet, the Internet has become an important and integral channel for software providers
to distribute updates to their customers. In fact, the Internet has become the primary
distribution channel for many software providers to provide software updates to their
customers. It is often in the best interest of software providers to distribute software
updates over the Internet, as electronic update distribution over the Internet reduces their

overall costs

1

27 Jan 2005

2005200328

10

15

20

25

30

and enables customers to obtain the software updates as soon as they are available. More
and more frequently, these software updates are conducted automatically over the Internet,
without any user intervention.

While the Internet is now commonly used as a conduit for distributing software
updates from software providers, several issues frequently arise. Two such issues include
(1) efficiency relating to the wupdate distribution infrastructure/resources, and
(2) administrative control over the distribution and installation of software updates.

In regard to efficiency of the distribution resources, networks, including the Internet,
possess only a finite amount of communication resources, often referred to as bandwidth. A
finite amount of communication bandwidth frequently results in bottlenecks, especially in
regard to software updates for popular software products, such as Microsoft Corporation's
Windows® family of operating systems and related productivity products. Such bottlenecks
exist even when software updates are made available on multiple download locations
distributed throughout the Internet. One reason that such bottlenecks occur is the
unstructured access model made available by the Internet. For example, if a first user at
computer A requests the latest download of a software product, the download passes through
the first user's independent service provider (ISP). Furthermore, the request is treated as a
single, individualized access, meaning that the request is treated independent of, and
unrelated to, any other network traffic and/or request. As such, if a second user at computer
B, who also happens to have the same ISP, requests the same download as the first user, the
request from the second user is also treated as a single, individualized access. In this
example, the same download will be transmitted over the same infrastructure twice, because
each request was treated in isolation. Clearly, if the number of users increases substantially,
the finite communication bandwidth will become a bottleneck. In this example, which is
quite common, it would have been much more efficient if the download could have been
cached at a local location, and each user request satisfied from the local cache.

With regard to control of distribution, many organizations, especially large
organizations, have legitimate reasons to control the distribution of updates to their
computers. For example, unfortunately some updates have or introduce flaws, frequently

referred to as bugs, that "break” features of a software product. These broken features may

2-

25 May 2009

2005200328

25-05-'09 16:48 FROM-Davies Collison Cave +61392542778 T-143 PB@B5/@8826 F-156

10

15

20

25

30

PADPERSPMAAMISIHIBIR 3id 1PRAoC-DINSTNG

-3

be insignificant, but all too often they can disrupt a business's mission-critical features. As
a business cannot afford lo lose its mission-critical features, a responsible business will
first evaluate and test ecach software update within a controlled environment for some
period of time prior to releasing the update to the remainder of their computers. This
evaluation period permits the organization 1o validate whether an update will adversely -
affect a mission-critical feature. Only after it has been satisfactorily determined that an
update will not bring down any mission critical feature is the updaie permitted to be
distributed to the remainder of the organization's computers, Clearly, most organizations
must exercise control over the installation of software updates on their computers.

Another reason that a business or an organization often needs to control distribution
of software updates is to ensure consistency among the computers in the organization. It is
very important for information service departments to have a standardized, target platform
upon which all computers operate, whether it is for a word processor or an 0p€ratiﬁg
system. Without a standard, software and computer maintenance may be unnecessarily
complex and difficult.

Still another reason that local control is important is for billing purposes. In large
organizations, it is often inefficient to individually install software on a computer, or to
individuvally maintain licenses for a particular software product for each computer in the
organization. Instead, a single site license permits an organization to run a software
product on numerous computers. Thus, an organization may be required to report the
number of computers running a product under the site license, or may need to limit the
number of computers running a product under a site license. All of these reasons often
require local control over software update distribution,

It is desired to address one or more of the above-identified difficulties by providing
a computer-implemented method for communicé.ting update metadata corresponding to a

software update to a client computer, or to at least provide a useful alternative.

SUMMARY
In accordance with the present invention there is provided a computer-implemented
method for communicating update metadata corresponding to a software update to a client

computer, the method comprising:

COMS 1D No: ARCS-235872 Received by IP Australia; Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

25 May 2009———

2005200328

25-B5-'03 10:48 FROM-Davies Collison Cawve +£1392542770 T-143 PBB@6/B026 F-156

10

15

20

25

30

PLOPERISPAMINIOS 032K Ird k. - 47342000

4.

with a computer, receiving a synchronization request from a client computer for
information regarding a software update corresponding to a software product; and
responsive to the synchronization request:
determining whether a software update is available for the software product;
generating a tag-based data structure storing metadata corresponding to a
software update available for installation on the client computer, the tag-based data
structure comprisging:

a tag-based identifier clement storing metadata that uniquely
identifies the software update;

a relationship element storing metadata identifying relationships the
software update has to other software updates, the relationship element including bundle
information that identifies a plurality of software updates that must be installed
coextensively, wherein the plurality of software updates are joined together with Boolean
operators into a logical statement, such that evaluation of the logical statement determines
the suitability of the plurality of software updates for installation on the client computer;
and

at least one additional element of the following tag-based elements:

a property element storing metadata identifying general properties
relating to the software update including update handler information identifying an update
handler for installing the identified software update on the client computer;

a localized property element storing metadata identifying language
specific information directed to a computer user relating to the software update;

a rule element storing metadata identifying rules for determining the
applicability of the software update 1o a client computer:

a file element storing metadata identifying the identified software
update’s payload and information relating to the software update's payload; and

a handler element storing metadata identifying information for
executing the update handler identified in the property elements for installing the identified
software update on the client computer; and

providing the tag-based data structure to the client computer.

COMS D No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

25 May 2009

2005200328

265-@5-"89 10:48 FROM-Davies Collison Cave +A1352542770

10

15

20

25

FIOPER\SFIMIONSZINILE 3rg spa.doc-25M5/20009

The present invention also provides a computer-implemented method for
comnimicating update metadata corresponding to a software update to a client computer,
comprising:

with a computer, receiving a synchronization request from a client computer for
information regarding a software update corresponding to a software product; and

responsive to the synchronization request:

determining whether a software update is available for the software product;

generating a tag-based data structure storing mefadata corresponding to a
software update available for installation on the client computer, wherein the tag-based
elements are text-based elements, the tag-based data structure comprising:

an identifier element that uniquely identifies the software update;

a relationship element storing relationships the software update has
to other sofiware updates, the relationship element including bundle information that
identifies a plurality of software updates that must be installed coextensively, wherein the
plurality of software updates are joined together with Boolean operators into a logical
statement, such that evaluation of the logical statement determines the suitability of the
plurality of software updates for installation on the client computer; and

at least one additional element of the following elements:

a property element storing general properties relating to the software
update including update handler information identifying an update handler for installing
the identified software update on the client computer;

a file element identifying the identified software update's payload
and information describing to the software update's payload; and

a handler element storing information for executing the update

handler identified in the property elements for installing the identified software update on

the client computer; and
providing the tag-based data structure to the client computer.

COMS ID No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

T-143 PBBB7/0026 F-156

25-@5-'@9 18:48 FROM-Davies Gollison Cave - +61352542776 T-143 PBRGS/0026 F-156

PIOPARSHMZO0I IR 39 SPAAR2 SRS

-6

BRIET DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention are hereinafter described, by way

of example only, with reference to the accompanying drawings, wherein;

25 May 2009

FIGURE 1 is a pictorial diagram of an exemplary update distribution system;

5 FIGURE 2 is a block diagram illustrating exemplary logical components of an
update service node;

FIGURE 3 is a block diagram illustrating exemplary logical components of a root
update scrvice node;

FIGURES 4A and 4B are block diagrams illustrating an exemplary exchange

2005200328

10 between a parent update service node and a child update service node in providing a

software update from the parent update service node to the child wpdate service node;

FIGURE 5 is a flow diagram illustrating an exemplary routine executed on a child

update service node to periodically obtain updates from its parent update service node;

COMS ID No: ARCS-235872 Received by IP Australia; Time (H:m) 10:50 Date (Y-M-d) 2009-05-25
T

25 May 2009

2005200328

25-05-"08S 10:43 FROM-Davies Collison Cave +61392542770 T-143 PORA@S/BO26 F-156

PADFGEOSFATQIMSZINSZR 318 290, 005-2 SN2009

-7 -

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

COMS ID No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

18 May 2009

2005200328

15

("2
[l

PAOPER\SPMUUNIS 200324 Ind spa.doc-3/ 187209

FIGURE 6 is a flow diagram of an exemplary subroutine suitable for use in the
exemplary routine of FIGURE 5 for obtaining an update catalog from a parent update
service node;

FIGURE 7 is a flow diagram of an exemplary subroutine suitable for use in the
exemplary routine of FIGURE S for obtaining a software update from a parent update
service node;

FIGURE 8 is a flow diagram of an exemplary routine for processing an update
request from a child update service node; and

FIGURE 9 is a block diagram illustrating portions of an exemplary XML-based
update metadata schema defining the contents of an update metadata file.

DETAILED DESCRIPTION

An exemplary update distribution system 100, organized in a hierarchical fashion,
for distributing software updates, as shown in FIGURE 1, has at the "top" of the update
distribution system 100, a root update service node 102. Software providers, such as
software provider 110, distribute their software updates through the update distribution
system 100 by submitting the updates to the root update service node 102. Software
providers, such as software provider 110, may submit their software updates to the root
update service node 102 through a network, such as the Internet 108.

A hierarchical update distribution system, such as the exemplary update
distribution system 100, will likely include at least one other update service node in
addition to the root update service node 102. As illustrated in FIGURE 1, the exemplary
update distribution system 100 includes root update service node 102 and two additional
update service nodes: update service node 104 and update service node 106. Each
hierarchical update distribution system is organized in a tree-like structure underneath the
root update service node 102. In other words, each update service node in an update
distribution system has zero or more child update service nodes. Thus, while the
exemplary update distribution system 100 shows that each parent update service node, i.e.,
the root update service node 102 and update service node 104, have only one child, in
other embodiments there are zero or two or more children. Furthermore, with the
exception of the root update service node 102, each update service node in an update

distribution system has onec parent update service node. Accordingly, as shown in

AN
-
-
Q\
=
=
o0
—

2005200328

10

15

20

25

30

PAYOPERVSPMA2005 2001328 2nd spa doc-$/1872009

-8A -

FIGURE 1, update service node 104 is a child node to the root update service node 102,
and update service node 106 is a child node to update service node 104. As can be seen,
each update service node, with the exception of the root update service node 102, can be
both a child update service node and a parent update service node.

As illustrated in the exemplary update distribution system 100, the root update
service node 102 communicates with update service node 104 through a communication
network, such as the Internet 108. Each update service node in an update distribution
system need only be able to communicate with its parent and/or children through some
communication network. Thus, while update service node 104 communicates with its
parent, root update service node 102, through the Internet 108, it may alternatively
communicate with its child update service nodes, such as update service node 106, via a
local area network 124.

Also shown in FIGURE 1, update service node 106 resides within a
sub-network 126 of the local area network 124. As an example, local area network 124
may correspond 1o an organization's general corporate network, and update service
node 104 represents the corporation's link to the update distribution system 100, via its
connection to its parent, root update service node 102. Further, sub-network 126 may
correspond to an identifiable group of computers within the corporate network, such as a
test/evaluation group, a remotely located office, or a mission critical group. As will be
described in greater detail below, according to aspects of the present invention, an
administrator on update service node 104 is able to control the distribution of updates to
update service node 106, and ultimately to client computers.

It should be appreciated that each update service node, including both the root
update service node 102 and update service nodes 104 and 106, is configured to distribute
software updates to both child update service nodes as well as client computers. As shown
in FIGURE 1, the exemplary update distribution system 100 includes client
computers 112-122. Each update service node, including the root update service node 102,
distributes updates to child update service nodes and client computers according to local
configuration information. According to one embodiment, an administrator defines groups
and associates update distribution rules with those groups. Each update service node has at

least one distribution group.

18 May 2009

2005200328

10

15

20

30

PAOPER\SPM2NIS20032K 2nd spa doc-S/1R72008

-8B -

As an example to illustrate how the update distribution system operates, assume
that local area network 124 corresponds to a business organization's corporate network.
According to at least one embodiment of the present invention, an administrator, on update
service node 104, may define multiple distribution groups for the corporate network 124,
including an evaluation group, corresponding to the sub-network 126 including update
service node 106 and client computers 120 and 122, for evaluating the suitability of an
update for the general corporate network 124, as well as a general corporate group
including the update service node 104 and client computers 114-118.

With regard to the evaluation group, the administrator includes the update service
node 106 as a member, and associates rules with that group such that updates are
immediately distributed to the evaluation group's members as they become available.
Alternatively, with regard to the general corporate group, the administrator adds client
computers 114-118, and associates a rule such that updates are only distributed to the
general corporate group members if specifically authorized by the administrator. Assume
also that an administrator for child update service node 106 creates a default group
consisting of the client computers 120 and 122 in the evaluation sub-network 126, to which
any new software update may be immediately distributed.

Continuing the above example, a software provider 110 submits a software update
to the root update service node 102. According to rules established at the root update
service node 102, the update is eventually distributed to the corporate update service
node 104. Upon receiving the update, per the rules established by the administrator, the
corporate update service node 104 distributes the update to the members of the evaluation
group (defined as only the child update service node 106), but withholds the update from
the general corporate group pending specific authorization to distribute the update to that
group.

Continuing the above example, upon receiving the update, the evaluation update
service node 106 processes the update with respect to each defined group. In this example,
the evaluation update service node 106 has only one group. However, as previously
mentioned, in an actual implementation, there may be multiple groups defined, each with a
unique set of associated distribution rules. For this example, the evaluation update service

node 106 immediately makes the update available for distribution to client computers 120

18 May 2009

2005200328

15

PAOPER\SPM0052003 28 2nd spa doc- 5/ 1X2(09

-8C -

and 122. Client computers 120 and 122 may now be updated and the evaluation
period/process may begin.

Still continuing the above example, when the administrator on the corporate update
service node 104 is sufficiently satisfied that the update is suitable for distribution over the
entire corporate network 124, the administrator then explicitly authorizes the update to be
distributed to the members of the general corporate group. The corporate update service
node 104 correspondingly makes the update available to client computers 114-118. It
should be understood that the evaluation update service node 106 may also be included in
the general corporate group. However, because the evaluation update service node 106 has
already been updated, no additional update-related action is needed for distributing the
update to the evaluation sub-network 126.

As can be seen by the above example, embodiments of the present invention offer
significant benefits in terms of local distribution control and download efficiency. In
addition to the above-described aspects of local distribution control, significant savings in
communication bandwidth are also realized. For example, while the exemplary corporate

network 124

27 Jan 2005

2005200328

10

15

20

25

illustrated in FIGURE 1 includes five client computers, the software provider's update was
downloaded from the root update service node 102 to the corporate update service node 104
only one time. Clearly then, as the number of client computers serviced by an update service
node increases, the communication bandwidth usage between a parent update service node
and a client update service node remains constant, thereby substantially reducing the amount
of communication bandwidth that would otherwise be used. Additionally, the update
distribution system is both extensible and scalable. The update distribution system is
extensible in at least two ways: any number of child update service nodes may be added to a
parent update service node, and child update service nodes may also be a parent update
service node. Each sub-tree of the update distribution system may therefore be tailored to
meet individual needs.

FIGURE 2 is a block diagram illustrating exemplary logical components of an update
service node 200, such as the corporate update service node 104 (FIGURE 1) or the
evaluation update service node 106 (FIGURE 1), formed in accordance with aspects of the
present invention. As shown in FIGURE 2, an update service node 200 includes an update
web service 202, a client update module 204, a child update module 206, and a reporting
module 208. The exemplary update service node 200 also includes an authentication/
authorization module 210, an administration application programming interface (API) 212,
an update content store 214, an administration user interface 218, and an update information
store 216.

The update web service 202 provides a common set of Web services through which
client computers, child update service nodes, and a parent update service node can
communicate with an update service node. For example, with reference to FIGURE 1, in
order for the child/evaluation update service node 106 to obtain a software update from the
parent/corporate update service node 104, the client communicates through the parent's
update web service 202. Similarly, when a parent update service node, such as root update
service node 102, has information, including updates, to communicate to its child update
service node 104, the parent update service node communicates through the child’s update

web service 202.

.

27 Jan 2005

2005200328

10

15

20

25

30

The client update module 204 handles communications between a client computer
and the update service node 200 in regard to updates and update information stored on the
update service node. The update-related communications include, but are not limited to,
distributing updates in response to client requests and providing a list of available software
products and associated updates for the client computer. The client update module 204 is
also responsible for determining whether a client computer is authorized to obtain a
particular update according to associated distribution rules, and responds to a client computer
with the update-related information that the client computer is authorized to access.

The child update module 206 handles update-related communications between a
parent update service node and its child update service nodes. The update-related
communications include, but are not limited to, identifying lists of software products and
associated updates available to a child update service node, as well as responding to update
requests from a child update service node. The downstream update module 206 is
responsible for determining whether a child update service node is authorized to obtain a
particular update according to associated distribution rules, and responds to a child update
service node with the update-related information that the child update service node is
authorized to access.

The reporting module 208 generates update-related reports, such as which groups
have or have not received a particular update, which client computers have or have not
downloaded/installed an update, what updates are available on the update service node, and
the like. These reports may be used internally, such as by an administrator, and also
submitted to the parent update service node, via the parent's update service interface 202. As
described above, it is often necessary for corporations to determine which client computers
have a particular update installed, such as for billing purposes or for maintenance purposes.
Information/reports generated by the reporting module 208 may be the basis of these reports.

The authentication/authorization module 210 is responsible for authenticating, i.c.,
determining the identity of, a particular client computer or child update service node, and
determining whether a client computer or child update service node is authorized to access
available updates at the update service node 200. To those client computers and child update

service nodes that are authenticated and authorized to access updates on an update service

-10-

27 Jan 2005

2005200328

10

15

20

25

30

node, the authentication/authorization module 210 1ssues an authorization token that must be
used in conjunction with obtaining updates. The issuance and use of an authorization token
1s described in greater detail below in regard to FIGURES 4A and 4B.

The administration API 212 represents the application interface through which
control of the update service node 200 is exercised, and through which updates ultimately are
stored and distributed. When the update web service 202 receives various update-related
requests from client computers and child update service nodes, these requests are ultimately
broken into calls into the administration API 212, either directly or indirectly through the
chent update module 204 and the child update module 206. In conjunction with the
administration user interface 218 or some other program installed on the update service
node 200 suitably configured to use the administration API 212, an administrator ultimately
controls all aspects of the update process for that update service node, as well as any child
update service nodes and client computers.

Through the administration user interface 218, administrators may configure and
maintain an update service node 200, via the administration API212. Thus, through the
administration user interface 218, an administrator creates, modifies, and deletes groups, as
well as associating rules for each group. Furthermore, using the administration user
interface 218, an administrator establishes to which group a client computer or child update
service node belongs. Through the administration user interface 218, an administrator may
also explicitly authorize the distribution of updates to client computers or child update
service nodes, configure the update service node 200 to periodically query its parent update
service node for new updates, configure reporting parameters and view internal reports, and
the like. As mentioned above, while the administration user interface 218 permits an
administrator to exercise control over aspects of the update service node 200, another
application residing on the update service node 200, suitably adapted to operate with the
administration API 212, may be used instead of the administration user interface 218.

As mentioned above, according to one embodiment of the present invention, an
update service node 200 includes both an update content store 214 and an update information
store 216. The update content store 214 stores the actual files representing the software

updates, such as binaries and patch files. In contrast, the update information store 216 stores

-11-

18 May 2009

2005200328

10

15

20

25

30

PAOPER\SPMU00S2(NI2K 2nd spa.doc- 5/ 1K/ 2K

-12-

information and metadata corresponding to the updates available on the update service
node 200, including the update files stored in the update content store 214. According to
one embodiment, the update content store 214 and the update information store 216 are
both relational databases. While the exemplary update service node 200 is shown as
having two data stores, in at least one alternative embodiment, both the update content
store 214 and the update information store 216 may be combined in a single information
store.

In embodiments of the present invention, a software update may be presented as
being "available" on an update service node 200 to client computers and child update
service nodes even though the update is not stored physically in the update content
store 214. More particularly, rather than immediately downloading and storing the actual
update files on an update service node 200, a link referencing the update files on the parent
update service node or elsewhere, may instead be stored on the update service node. Thus,
if a client computer requests the update, or a child update service node requests the actual
update, the update is then brought down from the parent update service node and stored in
the update content store 214, in preparation for delivering it to the client computer or child
update service node. Those skilled in the art will recognize this type of update access is
referred to as just-in-time downloading. In this manner, an "available" update, need not be
distributed over the various network channels until it is actually requested. According to
aspects of the present invention, an administrator of an update service node 200 may
selectively determine whether to obtain software updates in a just-in-time manner.

While the above description of FIGURE 2 illustrates various components of an
exemplary update service module 200, it should be appreciated that other components of
an update service module may also exist. Furthermore, the above described components
should be understood to be logical components, not necessarily actual components. In an
actual implementation, the above identified components may be combined together and/or
with other components according to implementation determinations. Additionally, it
should be appreciated that while an update service node 200 may be viewed as a server
computer on a network, in an actual implementation, an update service node may be
implemented on any number of types of computing devices. For example, each update

service node 200 may be

27 Jan 2005

2005200328

(9}

10

15

20

25

30

implemented and/or installed on a single stand-alone computer system or, alternatively, on a
distributed computing system comprising multiple computing devices.

FIGURE 3 1s a block diagram illustrating exemplary logical components of a root
update service node 300, such as the root update service node 102 illustrated in FIGURE 1,
formed in accordance with aspects. of the present invention. Similar to the logical
components of an update service node 200 (FIGURE 2), a root update service node 300
includes an update web service202, a child wupdate module206, and an
authentication/authorization module 210. Additionally, an exemplary root update service
node 300 also includes an administration API 212, an update content store 214, and an
update information store 216. Optionally, the root update service node 300 may also include
a client update module 204, a reporting module 208, and an administration user
interface 218.

The client update module 204 is an optional component for a root update service
node 300 depending on whether the root update service node provides software updates
directly to client computers. For example, with reference to FIGURE 1, root update service
node 102 would include the optional client update module 204 as the root update service
node that directly services client computer 112. However, if a root update service node 300
were not to directly service client computers, the client update module 204 could be omitted.

The reporting module 208 is optional for a root update service node 300 because a
root update service node has no parent update service node to whom update reports are
provided. However, to the extent that update reports are desirable to the root update service
node's administrator, the reporting module 208 may be optionally included.

In addition to comprising the logical components included in an update service
node 200 (FIGURE 2), the root update service node 300 also includes a software provider
interface 302. The software provider interface 302 provides the communication interface by
which a software provider 110 (FIGURE 1) submits software updates directly to the root
update service node 300, and indirectly to the exemplary update distribution system 100.

Similar to the update service node 200 of FIGURE 2, the above description of
FIGURE 3 illustrates various components of an exemplary root update service module 300.

However, i1t should be appreciated that other components of a root update service module

-13-

27 Jan 2005

2005200328

10

15

20

25

30

may also exist. Furthermore, the above described components should be understood to be
logical components, not necessarily actual compbnents. In an actual implementation, the
above identified components may be combined together and/or with other components
according to implementation determinations. Additionally, it should be appreciated that
while a root update service node 200 may be viewed as a server computer on a network, in
an actual implementation, an update service node may be implemented on any number of
computing devices. For example, the root update service node 300 may be implemented
and/or installed on a single stand-alone computer system or, alternatively, on a distributed
computing system comprising.multiple computing devices.

In order to better understand how an update is distributed from the root update service
node throughout an update distribution system 100, an illustration of an exemplary exchange
between a parent update service node and a child update service node is warranted.
FIGURE 4 is a block diagram illustrating an exemplary exchange 400 between a parent
update service node 402 and a child update service node 404 in propagating a software
update from the parent update service node to the child update service node, in accordance
with aspects of the present invention. As can be seen, the exemplary diagram 400 is divided
in half, the left half of which corresponds to actions and events of the parent update service
node 402, and the right half corresponding to actions and events of the child update service
node 404.

For purposes of discussion with regard to FIGURE 4, it should be further understood
that the parent update service node 402 may or may not be the root update service node in the
update distribution system 100. Additionally, for purposes of this discussion, it is assumed
that the parent update service node 402 has been configured by an administrator such that the
child update service node 404 may not receive software updates unless explicitly authorized
to do so by the administrator.

As shown in the exemplary exchange 400, beginning at event 406, the parent update
service node 402 receives a software update from a software provider 110, either directly, if
the parent update service node is the root update service node 102, or indirectly through the
update distribution system 100. At some point after the parent update service node 402

receives the software update from the software provider 110, the child update service

-14-

27 Jan 2005

2005200328

10

15

20

25

30

node 404 begins a process for obtaining software updates from the parent update service
node.

According to one embodiment, a child update service node 404 can be configured to
automatically obtain the software updates available from a parent update service node 202 on
a periodic basis. More particularly, an administrator, via the administration user
interface 218, may selectively configure the child update service node 404 to automatically
obtain the latest software updates available on thev parent update service node 402 on a
periodic basis. As one example, an administrator may configure the child update service
node 404 to obtain the latest software updates from its parent update service node 402 on a
daily and/or hourly basis, as well as specify the time-of-day that the automatic update
process is to commence. Other periodic schedules and criteria may also be utilized.
Similarly, an administrator may manually initiate the update process through the
administration user interface 218.

To begin the updating process, at event 408 the child update service node 404
authenticates and authorizes itself with the parent update service node 402. Authenticating
and authorizing with the parent update service node 402 provides an element of control over
the distribution of software updates, limiting update distribution to authorized update service
nodes. Authenticating and authorizing techniques are well known in the art, any number of
which may be employed to authenticate and authorize a child update service node 404 with
the parent update service node 402. The present invention is not restricted to any one
technique.

After properly authenticating and authorizing with the parent update service
node 402, at event 410 the parent update service node 402 returns an authorization token to
the child update service node 404. According to one embodiment, an authorization token is a
time sensitive token providing the child update service.node 404 authorization to conduct
further update activities with the parent update service node for a limited amount of time.
Thus, 1if the child update service node 404 is not properly authenticated and authorized with
the parent update service node, no authorization token is returned and the child update
service node is unable to perform any other update-related activities except authentication

and authorization. Similarly, after the update token has expired, the child update service

-15-

18 May 2009

2005200328

15

20

25

P AOPER\SPMA2UNS2(WIN2K Ind spa doc-$/ 1K/ M1

-16 -

node 404 is unable to perform any further update-related activities with the parent update
service node 402 except reauthentication and reauthorization.

After receiving the authorization token, at event 412 the child update service
node 404 submits a request to the parent update service node for a product update catalog
along with the authorization token. A product update catalog represents a listing, or table
of contents, of software products for which the parent update service node 402 distributes
software updates.

According to embodiments of the present invention, a child update service
node 404 is not required to propagate all software updates available on its parent update
service node 402. For example, with reference to the exemplary update distribution system
of FIGURE 1, the corporate update service node 104 may have site licenses to only a
fraction of software products available on the root update service node 102. Accordingly,
it would be unnecessary for the corporate update service node 104 to obtain all software
updates available at the root update service node 102, as most would never be used.
Accordingly, an administrator on an update service node may selectively establish which
software product updates will be available on the update service node.

According to embodiments of the present invention, the update product catalog,
obtained from a parent update service node 402, identifies all software products for which
updates are available, whether or not the child update service node 404 is configured to
distribute updates for each product. However, according to an alternative aspect of the
present invention, the update product catalog, obtained from a parent update service
node 402, identifies only those software products for which the requesting child update
service node is configured to distribute updates. For example, limiting which software
products are listed in the product update catalog may be determined according to the group
or groups to which the child update service node 404 belongs.

At event 414, the parent update service node 402 rcturns a product update catalog
to the child update service node 404. At event 416, the child update service node 404
selects those products from the product update catalog for which the latest updates are
currently desired. It should be noted that even though the product update catalog may list
only those software products that the child update service node 404 distributes, the child

update service

]

-

27 Jan 2005

2005200328

10

15

20

25

node may be configured to obtain updates for different software products at different times or
on different periodic schedules.

At event 418, the child update service node 404 submits an update synchronization
request, along with the authorization token, identifying the selected products for whose
updates the child update service node is currently seeking. Included in the synchronization
request 1s information identifying the latest update available for a product on the child update
service node 404. Information identifying the latest update for a product is hereafter referred
to as an "update anchor." Update anchors for each software product are typically stored in
the update information store 216 (FIGURE 2). In one embodiment, an update anchor
includes a revision number and a date associated with the revision number.

In response to the update synchronization request, at event 420 the parent update
service node 402 determines which, if any, new updates are available for the child update
service node 404. As mentioned above, this determination is based on the specific rules
associated with particular software updates and the group or groups of which a child update
service node 404 is a member, as well as the update anchor. For this example, as previously
mentioned, the previously received software update was explicitly not authorized for the
child update service node 404. Therefore, the software update received at event 406 is not
determined to be "available" to the child update service node 404. Accordingly, at event 422
an update list is returned to the child update service node 404 without identifying the
software update received at event 406. According to aspects of the present invention, the
update list identifies all of the updates "available" on the parent update service node 402
according to the synchronization request. In one embodiment, the update list identifies each
"available" update information by a unique identifier associated with an update.

At event 424, because the update list is empty, i.e.,, no updates are currently
"available” on the parent update service node 402, the update process of the child update
service node 404 simply delays, or sleeps, for a predetermined amount of time. According to
the current example, during this delay period, at event 426, an administrator at the parent
update service node 402 authorizes the software update, received at event 406, to be

distributed to the child update service node 404.

-17-

18 May 2009

2005200328

10

15

20

25

30

PAOPERSPMAINISHNIA2R 2nd spa doc-5/1RI2NY

- 18 -

At event 428 (FIGURE 4B), the child update service node 404 again begins the
automatic update process by authenticating and authorizing itself with the parent update
service node 402. In response, at event 430, the parent update service node 402 returns an
authorization token to the child update service node 404.

At event 432, the child update service node 404 submits a request, along with the
authorization token, to the parent update service node 402 for a product update catalog. At
event 434, the parent update service node 402 returns the product update catalog to the
child update service node 404. At event 436, the child update service node 404 selects the
products for the update catalog for which updates are desired. At event 438, the child
update service node 404 submits the update synchronization request identifying those
selected products with the authorization token.

Because the child update service node 404 has been authorized to obtain the
software update previously received at event 406, at event 440 the parent update service
node 402 determines that the sofiware update is "available" for the child update service
node and includes corresponding update information in the update list. Thereafter, at
event 442, the parent update service node 402 returns the update list, now identifying the
software update received at event 406, to the child update service node 404.

With an update list identifying an "available” update on the parent update service
node 402, the child update service node 404 now has the information necessary to obtain
the software update. According to at least one embodiment of the present invention, a
child update service node 404 obtains the software update from the parent update service
node 402 in two parts: obtaining update metadata, and obtaining the update content or
files, hereafter referred to as the update payload. As will be described in greater detail
below, the update metadata describes pertinent aspects of the software update, including,
but not limited to: an update identifier that uniquely identifies the update, revision number
information associated with the software update, whether the software update should be
considered a priority, language specific information, relationships to other software
updates, location of the update payload for downloading purposes, installation handler
routines, and the like.

Some of the reasons that it is often beneficial to download the entire software

update in two parts, i.e., the update metadata and the update payload, is that the update

18 May 2009

2005200328

10

20

PAOPERISPMAZOOS2NALR 2nd spa doc- 571K 21

-19 -

payload is often substantially larger than the update metadata, and the update payload is
not always immediately nceded, i.e., needed for installation on a client computer, if it is
ever needed. Thus, according to at least one embodiment of the present invention, the
update payload is downloaded separately from the update metadata and only when needed.
Those skilled in the art will recognize this downloading technique as lazy downloading, or
alternatively as just-in-time downloading. According to embodiments of the present
invention, an administrator may configure an update service node to obtain the update
payload in a just-in-time fashion, or immediately upon obtaining the update metadata.
Furthermore, in at least one alternative embodiment, both update metadata and the update
payload may be downloaded jointly.

As shown in FIGURE 4B, with an update identified in the update list, at event 444,
the child update service node 404 requests the update metadata for the "available” software
update according to its unique identifier in the update list. As with most other
communication exchanges with the parent update service node 402, the update request is
submitted with the authorization token. It should be noted that while in the illustrated
example, all updatc metadata is downloaded in one access, according to alternative aspects
of the present invention (not shown), the update metadata may be downloaded in more
than one access. For example, in a first access, only elements of the update metadata to are
necessary to determine whether a software update is applicable and/or desirable is first
downloaded, such as applicability rules and dependencies upon other software updates.
Then, after it is determined that an update is applicable and/or desirable, the remainder of
the update metadata may be obtained. In response, at event 446 the parent update service
node 402 returns the update metadata for the software update child update service
node 404, which in turn stores the update metadata into the update information store 216.

Optionally, at event 448, the child update service node 404 submits a request to
download the update payload from the parent update service node 402. In response, at
event 450, the parent update service node 402 returns the update payload to the child
update service node 404, which in turn stores it in the update content store 214. In an
alternative embodiment, the child update service node 404 downloads the update payload
from a storage location, which may not be the parent update service node 402, from a

location specified in the update metadata.

18 May 2009

2005200328

PAOPER\SPM\21K15 2003 2% 2nd spa doc-8/1R2009

220 -

Because update activity has now occurred on the child update service node 404, at
event 452, the child update service node generates and submits an update report to the
parent update service node 402 outlining the update activities that have just recently
occurred. Thereafter, the child update service node 404 again delays until the next time
that the update process is scheduled to run (not shown).

Those skilled in the art will appreciate that the above described events are for
illustration purposes, and reflect one particular exemplary set of events and circumstances.
Clearly, other events may also occur according to specific details and circumstances which
will cause some variation to the above described events. Additionally, it should be
understood that while the child update service node 404 is obtaining the latest "available"
software updates from the parent update service node 402, the child update service node
may simultaneously be processing update requests from its child update service nodes.

FIGURE S is a flow diagram illustrating an exemplary routine 500 executed on a
child update service node, such as the corporate update service node 104 of FIGURE 1, for
periodically obtaining updates from its parent update service node. Beginning at
block 502, the child update service node obtains a synchronized update list of "available"
updates from the parent update service node. Obtaining a synchronized update list of
"available" updates from the parent update service node is described below with regard to
FIGURE 6.

FIGURE 6 is a flow diagram of an exemplary subroutine 600, suitable for use in
the exemplary routine 500 of FIGURE 5, for obtaining a synchronized update list of
"available" updates from a parent update service node. Beginning at block 602, as
previously discussed with regard to FIGURES 4A and 4B, the child update service node
authenticates and authorizes itself with the parent update service node and, in response to
proper authentication and authorization, receives an authorization token. At block 604, in
conjunction with the authorization token, the child update service node establishes
communication parameters with the parent update service node. Establishing
communication parameters permits the parent and child update service nodes to properly

establish a common basis that both the

27 Jan 2005

2005200328

10

15

20

25

30

parent and child understand. The communication parameters include, but are not limited to:
communication update protocols or versions; product groupings; and the like.

After having established communication parameters with the parent update service
node, at block 606, the child update service node obtains a product update catalog describing
software products for which the parent update service node provides/distributes updates. At
block 608, the child update service node selects those software product updates for which
updates are currently sought. At block 610, the child update service node submits an update
synchronization request to the parent update service node, including both the authorization
token and an "anchor" associated with the selected software products identifying the current
revision and updates already on the child update service node.

In response to the update synchronization request, at block 612, the child update
service node obtains an update list from the parent update service node, synchronized
according to the software updates "available" on the parent update service node according to
what is currently stored on the child update service node. As mentioned above, the update
list identifies, by a unique identifier, those software updates on the parent update service
node that are "available” to the child update service node. Thereafter, the exemplary
subroutine 600 terminates.

With reference again to FIGURE 5, after having obtained a synchronized update list
from the parent update service node, at decision block 504, a determination is made as to
whether any software updates are currently "available" for downloading from the parent
update service node. This determination is made according to whether there are any update
identifiers listed in the synchronized update list. If no software updates are currently
“available" for downloading, the exemplary routine 500 proceeds to delay block 510, where
the exemplary routine delays/sleeps until the next update period occurs. Alternatively, if
there are updates "available" for downloading from the parent update service node, at
block 506, the child update service node obtains the updates from the parent update service
node. Obtaining "available" updates from the parent update service node is described below
with regard to FIGURE 7.

FIGURE 7 is a flow diagram of an exemplary subroutine 700, suitable for use in the

exemplary routine 500 of FIGURE 5, for obtaining "available" software updates from a

21-

27 Jan 2005

2005200328

10

15

20

25

30

parent update service node. Beginning at block 702, a first update identifier in the update list
1s selected. At block 704, the child update service node obtains the update metadata
corresponding to the selected update identifier from the parent update service node and stores
it in the update information store 216.

According to one embodiment, at block 706, the child update service node obtains the
update payload corresponding to the selected update identifier from the parent update service
node, and stores the update payload in the update content store 212. Optionally, the update
content need not be immediately downloaded to the child update service node. As
previously mentioned, a child update service node may be selectively configured to
download updates from a parent update service node in a just-in-time fashion. According to
this optional treatment, as illustrated in FIGURE 7, rather than proceeding from block 704 to
block 706, the exemplary subroutine 700 optionally proceeds from block 704 to decision
block 708. _

At decision block 708, after having obtained the update metadata for the selected
update identifier, and optionally the update payload, a determination is made as to whether
there are any additional update identifiers in the update list. If there are additional update
identifiers, at block 710, the next update identifier in the update list is selected, and the
subroutine 700 returns to block 704 for additional processing. The routine 700 continues
until, at decision block 708, it is determined that there are no more update identifiers in the
update list, whereupon the exemplary subroutine 700 terminates.

Returning again to FIGURE 5, after having obtained the "available” updates from the
parent update service node, at block 508, the child update service node reports the update
activities to the parent update service node. Thereafter, at delay block 510, the exemplary
routine 500 delays/sleeps for a predetermined amount of time until the next update period,
and then proceeds to block 502 to repeat the above-identified update procedures.

As illustrated in FIGURE 5, at decision block 504, even when no updates are
"available" on a parent update service node, a child update service node may be optionally
configured to report its update activities to the parent update service node. According to this
alternative configuration, when there are no updates available, the exemplary routine 500

may proceed to block 508 to report the update activities.

22

27 Jan 2005

2005200328

10

15

20

25

30

FIGURE 8 is a flow diagram of an exemplary routine 800, implemented on a parent
update service node, for generating a synchronized update list identifying "available" updates
in response to an update synchronization request from a child update service node.
Beginning at block 802, the parent update service node receives an update synchronization
request from a child update service node for an update list identifying "available" updates.
At block 804, the first software product identified in the update synchronization request is
selected.

At decision block 806, a determination is made as to whether there are any available
updates for the identified software product. This determination is made according to
metadata for the software product stored in the update information store 216, according to
the update anchor provided by the child update service node, and according to distribution
rules associated with the group to which the child update service node belongs. According to
this determination, if there are updates "available," at block 808, unique update identifiers
associated with the "available" updates are written into an update list. After having written
unique update identifiers for "available” updates into the update list, at decision block 810, a
determination is made as to whether there are any more additional software products
identified in the update synchronization request. If there are additional update software
products in the update synchronization request, at block 814, the parent update service node
selects the next software product identified in the update synchronization request, and returns
to decision block 806 for determining whether there are "available" updates for the selected
software product. Alternatively, if there are not more software products identified in the
update synchronization request, at block 814, the update list is returned to the child update
service node. Thereafter, the exemplary subroutine 800 terminates.

As previously mentioned, the update metadata describes pertinent aspects of a
software update. In fact, many of these aspects are as important to the software update as the
update payload itself. For example, if the update metadata for a first software update
indicates that a prior software update must be installed as a prerequisite, and that prior
software update is not currently installed according to administrator decisions, it would be of
no value to download the update payload of the first software update. Consequently, by not

downloading the update payload of the first software update, significant communication

23

27 Jan 2005

2005200328

W

10

15

20

25

bandwidth may be preserved. Of course, those skilled in the art will recognize that this is
Jjust one example of how the update metadata provides important and pertinent information
relating to a software update.

While update metadata may be transmitted in a file of any format, according to
aspects of the present invention, the update metadata corresponding to a software update is
described and contained in a tag-based file, such as an extensible markup language (XML)
file. Any suitable tag-based file format may be used that allows for customizable tags that
describe and contain data. Tag-based files, such as files based on XML or hypertext markup
language (HTML), for describing and containing information are well known in the art. As
is further known in the art, the contents of a tag-based XML file are frequently determined
according to a definition file, called a schema. This update metadata is used both by child
update service nodes, and also by client computers.

In an actual embodiment of the present invention, update metadata for a software
update is contained in an XML-based file conforming to an update metadata schema.
FIGURE 9 is a block diagram illustrating portions of an exemplary XML-based update
metadata schema 900 defining the contents of an update metadata file. In particular, the
exemplary update metadata schema 900 defines an Update 902 as comprising the following
elements: an Updateldentity element 904, Properties elements 906;
LocalizedPropertiesCollection elements 908; Relationships elements 910; ApplicabilityRules
elements 912; Files elements 914; and HandlerSpecificData elements 916. In regard to
elements 906-916, a suitable update metadata file may include zero or more of these
elements, as per the tag qualifier "minOccurs="0"" 918. In contrast, an update metadata file
must include one Updateldentity element 902. According to the illustrated metadata
schema 900, each update element in an update metadata file, if present, must appear
according to the above described order.

As previously mentioned, each software update is assigned a unique identifier.
According to aspects of the present invention, the Updateldentity element 902 includes this
unique identifier, as well as other information to identify the software update, such as a

revision number also associated with the software update.

4.

7]

27 Jan 2005

2005200328

(9]

10

15

20

25

30

The Properties element 904 provides information relating to the software update
including, but not limited to: a language, i.e., English, Spanish, French, etc., to which the
software update has been localized; information suggesting the impact the update will likely
have on a computing system during installation, e.g., minimal, high impact, may or will
require rebooting of the computing system, and the like; the type of software to be updated
by the software update, such as a system driver or a software application; an importance
rating corresponding to the importance of the software update to the software provider; a
related security bulletin from the software provider; and an update handler identification for
identifying an update handler for the software update. As can be seen from the various types
of properties listed above, there may be zero or more Properties elements 904 in an update
metadata file.

The LocalizedPropertiesCollection element 906 provides language specific
information relating to the software update such as, but not limited to: an update title; a
description of the software update intended for display to a computer user; release notes from
the software provider; end user license agreements and related information; user direction for
uninstalling the software update; and the like. According to aspects of the present invention,
the localized properties are grouped according to a language. For example, while the
LocalizedPropertiesCollection element 906 may include multiple pieces of information,
English versions of the above information would be grouped together, and Spanish versions
would similarly be grouped. As will the Properties element 904 above, there may be zero or
more LocalizedPropertiesCollection elements 906 in an update metadata file.

The Relationships element 908 provides information regarding relationships the
present software update has to other software updates. Examples of these relationships
include, but are not limited to prerequisite software updates, supercedence software updates,
and bundled software updates. A prerequisite software update relationship indicates that
another software update, identified by its unique update identifier, must be installed on a
client computer system prior to installing the present software update. Multiple prerequisite
relationships may be joined with boolean operators, such as logical operators AND and OR,
into logical statements such that the evaluation of the logical statements determines the

suitability of the software update for installation on a client computer.

-25-

R

27 Jan 2005

2005200328

10

15

20

25

A bundled software update identifies a plurality of software updates that are to be
installed together. As one example, a bundled application may indicate an interdependency
between the present software update and other software updates, such that all updates
identified in the bundle, identified by their unique update identifier, must be installed if any
are installed on a computer system. As with prerequisite software updates above, elements
of a bundled software update may be joined with boolean operators to form logical
statements for evaluating the suitability of the bundled software update for installation on a
client computer. In contrast, a supercedence software update identifies other software
updates that have been superceded by the present software update. As with the Properties
element 904 above, there may be zero or more Relationships elements 908 in an update
metadata file.

The ApplicabilityRules element 912 provides rules or tests for determining whether a
software update is applicable and/or appropriate for installation on a computing system.
While similar in some regards to the relationships of the Relationships element 908,
ApplicabilityRules element 912 tests conditions on the computing system that may or may
not relate specifically to another software update. As with most other elements identified
above, there may be zero or more ApplicabilityRules elements 912 in an update metadata
file.

The Files element 914 identifies the files, i.e., the update payload, associated with the
software update, as well as information relating those files. This additional information
includes, but is not limited to: whether there is one or many files in the update payload; a
location from where the files may be obtained; the size of the files; the file name; the file
creation date; and the like. Those skilled in the art will readily recognize that a single
software update may be installed on a client computer in multiple ways. As one example, the
same software update may be installed by modifying portions of existing files with a patch,
or alternatively, by simply replacing the existing files with newer versions. Thus, according
to aspects of the present invention, the update payload of a Files element 914 may include or
reference: a patch for existing files, replacement files, or both a patch and replacement files.

There may be zero or more Files elements 914 in an update metadata file.

-26-

a

27 Jan 2005

2005200328

W

10

15

20

25

Updates may be provided in a variety of formats, such as delta patches which
describe areas of a file that are to be rewritten with the delta patch information, executable
files, replacement files, and the like. Each of these types of updates requires a specific
update handler in order to carry out the software update on the computing system.
Accordingly, the HandlerSpecificData element 916 provides a location in the update
metadata file for including handler specific data/information. For example, this information
may include, but is not limited to, a directory in which the handler should execute, command
line arguments to a handler, actions to take if some aspects of the installation fail, actions to
take 1if the installation succeeds, and the like. An update metadata file may include zero or
more HandlerSpecificData elements 916.

While various embodiments and aspects of the present invention have been illustrated
and described, including the preferred embodiment, it will be appreciated that various
changes can be made therein without departing from the spirit and scope of the invention.
For example, while the present invention has been described as delivering software updates
through an update distribution system over a communication network, update metadata, as
well as update payloads, may be delivered from an update service node to a client computer

on a computer-readable medium, such as a compact disk or a floppy disk.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise”, and variations such as "comprises" or "comprising”,
will be understood to imply the inclusion of a stated integer or step or group of integers or

steps but not the exclusion of any other integer or step or group of integers or steps.
The reference to any prior art in this specification is not, and should not be taken as,

an acknowledgement or any form of suggestion that that prior art forms part of the common

general knowledge in Australia.

27-

25 May 2009

2005200328

25-85-'B9 10:49 FROM-Davies Collison Cave +61392542776 T-143 PO@A18/0B26 F-156

10

15

20

25

PAOPEROSFMMA 200328 Ind spaaoc-Zsarsgmiv

7R -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method for communicating update metadata
cotresponding to a software update to a client computer, the method comprising:
with a computer, receiving a synchronization request from a client computer for
information regarding a software update correspt)nding to 4 software product; and
responsive to the synchronization request:
determining whether a software update is available for the software product;
generating a tag-based data structure storing metadata corresponding to a
software update available for installation on the client computer, the tag-based data
structure comprising:

a tapg-based identifier element storing metadata that uniquely
identifies the software update;

a relationship element storing metadata identifying relationships the
software update has to other sofiware updates, the rclainnship element including bundle
information that identifies a plurality of software updates that must be installed
coextensively, wherein the plurality of software updates are joined together with Boolean
operators into a logical statement, such that evaluation of the logical statement determines
the suitability of the plurality of software updates for installation on the client computer;
and

at least one additional element of the following tag-based elements:

a property element storing metadata identifying general properties
relating to the software update including update handler information identifying an update
handler for installing the identified software update on the client computer;

a localized property element storing metadata identifying language

specific information directed to a computer user relating to the software update;

COMS ID No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

25 May 2009

2005200328

25-05-"09 18:49 FROM-Davies Collison Cave +61392542770 T-143 PO011/0826 F-156

PAORERISFMOODSNOIZY Jrd s dos-250 54K

220 _

a rule element storing metadata identifying rules for determining the
applicability 6f the software update to a client computer;
a file clement storing metadata idemiifying the identified software
update’s payload and information relating to the software update's payload; and
5 a handler element storing metadata identifying information for
executing the update handler identified in the property elements for installing the identified
softwarc update on the client computer; and

providing the tag-based data structure to the client computer.

2. The method of Claim 1, wherein the tag-based elements in the tag-based
data structure are arranged in the tag-based data structure such that the identifier element is
located in the tag-based data structure before property ¢lements, property elements are
located in the tag-based data structure before localized property elements, localized
property clements are located in the tag-based data structure before relationship elements,
relationship elements are located in the tag-based data structure before rule elements, rule
elements are located in the tag-based data structure before file elements, and file elements

are located in the tag-based data structure before handler elements.

3. A computer-implemented method for communicating update metadata
corresponding to a software update to a client computer, comprising:
with a computer, receiving a synchronization request from a client computer for
information regarding a software update corresponding to a software product; and
responsive to the synchronization request:
determining whether a software update is available for the software product;
generating a tag-based data structure storing metadata corresponding to a
software update available for installation on the client computer, wherein the tag-based
clements are text-based elements, the tag-based data structure comprising:

an identifier element that uniquely identifies the software update;

COMS ID No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

25-@5-"09 1@:49 FROM-Davies Collison Cave +6139254277@ T-149 P@@12/00826 F-156

FAOPERSFIMZAOS 003N 3ra 5 d0C-23M05/2000

N
- -30 -
-
@\

>\ .
§ a relationship element storing relationships the software update has
A to other software updates, the relationship element including bundle information that
N identifies a plurality of sofiware updates that must be installed coextensively, wherein the
o0 plurality of software updates are joined together with Boolean operators into a logical
g 5 statement, such that evaluation of the logical statement determines the suitability of the
8 plurality of software updates for installation on the client computer; and
5,\13 at least one additional clement of the following elements:
) a property element storing general properties relating to the software
@\

update including update handler information identifying an update handler for installing
the identified software update on the client computer;

a file elemem identifying the identified software update's payload
and information describing to the software update's payload; and

a handler element storing information for executing the update
handler identified in the property elements for installing the identified software update on
the client computer; and

providing the tag-based data structure to the client computer.

4. The method of any one of Claims 1 to 3, wherein the tag-based data

structure is an XML data structure.

5. The method of any one of Claims 1 to 4, wherein the identifier element
includes a unique identifier that uniquely identifies the software update, and a revision

number associated with the sofiware update,

6. "The method of any one of Claims 1 to 5, wherein the relationship element
includes prerequisite information that identifies another sofiware update that must be

installed before the identified software update is installed.

COMS ID No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

25 May 2009

2005200328

25-05-"83 1@8:43 FROM-Davies Collison Cave +61392542770 T-143 PBB13/0026 F-156

10

15

20

PAOPER\SPMAI03260032% 3rd ipa.doc-Tamscmiv

-31-

7. The method of Claim 6, wherein the relationship element further includes
information identifying a plurality of software updates joined together with Boolean
operators into a logical statement, such that the evaluation of the iogical statement

determines the suitability of the identified software update for installation on the client

computer,

8. The method of any one of Claims 1 to 7, wherein the relationship element
includes supersedence information that identifies at least one other software update that is

superseded by the identified software update.

9. The methed of any one of Claims 1 to 8, wherein the relationship element
includes prerequisite information that identifies other software updates that must be
installed before the identified software update is installed, bundle information that
identifies a plurality of software updates that must be installed coextensively, and
supersedence information that identifies at least one other software update that is

superseded by the identified software update.

10. The method of any one of Claims 1 to 9, wherein the file element includes
information identifying the software update's payload for patching existing files on the

client computer,

11 The method of any one of Claims 1 to 10, wherein the file element includes

information identifying the software update's payload for replacing existing files on the

client computer,

12. The method of Claim 10 or 11, wherein the file element further includes
information identifying the software update's payload for parching existing files on the

client computer and replacing existing files on the client computer.

COMS ID No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

25 May 2009

o0
o\
o)
-
-
N\
R
-
-
Q\

25-05-"09 10:49 FROM-Davies Collison Cave +61392542778 T-143 P@@14/8026 F-156

PADPERISPMAKIS2M1326 20d S d00-25A1S12INTS

-32-
13. A computer-implemented method for communicating update metadata
corresponding to a software update to a client computer, substantially as hereinbefore

described with reference to the accompanying drawings.

5 14, A computer-readable storage medium having stored thereon program

instructions for executing the method of any one of claims 1 to 13,

COMS 1D No: ARCS-235872 Received by IP Australia: Time (H:m) 10:50 Date (Y-M-d) 2009-05-25

SOFTWARE
PROVIDER

100

-

——— o —— — — e e — —

UPDATE
SERVICE
NODE
I 118
\ / g
/
/

o0
g e /
D |]
™~ I I
~ L |
IIIIIIIIIII 7 |
I
\ \ !
I
3] !
mmE i
TR P !
REIE “
S Uﬂ _
Al !
TM@E N !
T “
RWMN 4/7 __
o I
~ I
— i
/

N e e e e e e e e e e —————— e — — -

S00C Uelt /¢ 820025002

1g.1.

e e e - — e - ——

YA

NOILYIWYOANI 3Lvadn w__,_ww%%:o
912 . pLe
TINAOW
o &wwwv«%&bﬁw\w IdV NOILVYLSININGY NOILVZINOHILNY
S /NOILVOILINAHIAVY
N
104 A% 012
TINAOW TINAOW
dTNAONW INILIOdTY ALVAdN ATIHD ALVAdN INTITO
802 902 0z
ADIAYAS M ALV AN
- 202
002

S00C Uelt /¢ 820025002

€81

NOLLYWHOANI 2Lvadn M_ww% n_wdo
TOVAYTINI
YAAIA0Yd TIVMLIOS
Z0€
912 b
(TVNOILdO) TAINAON
< AOVAHTINI §ASN IdV NOILVILSININGY NOILVZINOHILNV
S NOILLVYISININGY /NOILVILINTHLAY
oy
gLz rAR4 0L
(TVNOILdO) TTNAOW «Mm\,\ﬁ%ﬂ%\
T1NAON ONILIOITY ALVAdN ATIHD radon
802 902 ¥0Z
AIAYIS FIM ALVAdN
- ¢
202
00€

S00C Uelt /¢ 820025002

4/10

Vst 4
| dIHO ¥04 31vadNn 3ZI90H1LNY
(3718VIVAY $31vadN ON) AV13d m azy
AMV A.mll 1S1731vadn NyuNL3y
m ey
m S31vddn F18VIIVAY 1S31Vv1 ININY313a
NOILVZINOYHONAS 31vadn 1S3N03y llw_uv 0Zp
|
mn.wv i
O01VLVI WOYd S10NA0¥d 193138 "
oLp Awlu O01VLYD J1vadn 1ONAoyd N¥N13Y
901V.LVYD 31vadn 10Ndo¥d LS3N03Y _ bl
AR 4 AJHI N3IXOL NOILVOILNIHLNY NYNL3IY
SS30JV I1vAdn IFZIHOHLNY/ILVYIILNIHLINY I.|4“|V nobrv
va m 31vQdN I¥VYMLIOS IAIFOIY
m a0y
3AON 3JIAY3S J31vadn d1iHO | JAON 3JIAYFS F1vadn INIHVYd
o — or
00v

S00C Uelt /¢ 820025002

1d0d3d 31vadn LINgns

Y

A} 4

‘gt 31

(TYNOILdO) QYO1AVd 31VAdN 1S3INDIY

A|v
2147

V1ivavi3W 31vddn 1S3N03Y

<
<
v

5/10

NOILVZINOYHONAS 31vAdNn 1S3N03y

©
™
<

O01VLVI WOY4 S10NA0dd 10313

©
o™
<

©01VLVvD 31vddn 1ONdodd 1S3N03Y

N

194

SS30JV I1vAdN FZIYOHLNVY/3LVIILNIHINY

e 0}

[A4

S00C Uelt /¢ 820025002

AQVOIAVd 31vAdn NYN1L3Y

0Sv
V1VAV13N 31vadnN NdNL3d

*144

1I1S731vadn NdN13yd
[A4%
S3Lvddn 319VI1IVAY 1S3 LV INING3 L3
(1) 44
O01V1VvO 31vAdN 10NA0YHd NdNL3Y
vey
N3XOL NOILVOILNIHLINY NYNL3IY
ocy

2005200328 27 Jan 2005

6/10

(START }

y

500

502

<_>

OBTAIN SYNCHRONIZED

UPDATE LIST FROM PARENT

(FIG. 6)

ANY UPDATES
AVAILABLE?

NO

OBTAIN AVAILABLE
UPDATE(S) FROM PARENT
(FIG. 7)

l

508

C_)

REPORT UPDATE
ACTIVITIES TO PARENT

7/10
600
602

(_>

2005200328 27 Jan 2005

AUTHENTICATE AND AUTHORIZE
WITH PARENT

l 5

ESTABLISH COMMUNICATION
PARAMETERS WITH PARENT

l 3

OBTAIN PRODUCT UPDATE
CATALOG FROM PARENT

l >

SELECT SOFTWARE PRODUCTS

l i

SUBMIT SYNCHRONIZATION REQUEST

l S

OBTAIN UPDATE LIST IDENTIFYING
AVAILABLE UPDATES FROM PARENT

END

Fig.é.

2005200328 27 Jan 2005

8/10

START

702

C)

SELECT FIRST UPDATE
IDENTIFIER IN UPDATE LIST

700

P

OBTAIN UPDATE METADATA

——» CORRESPONDING TO SELECTED

UPDATE IDENTIFIER

F— ™
|
|

P8

OBTAIN UPDATE PAYLOAD
CORRESPONDING TO SELECTED
UPDATE IDENTIFIER

|
OPTIONAL
|

SELECT NEXT UPDATE

IDENTIFIER IN UPDATE LIST

END

Fig.7.

2005200328 27 Jan 2005

9/10

800

802 y—~'

RECEIVE UPDATE
SYNCHRONIZATION REQUEST
FROM CHILD

y S

SELECT FIRST PRODUCT
IDENTIFIED IN REQUEST

808
806
ANY <—> WRITE UPDATE IDENTIFIER
PDATES AVAILABL OF "AVAILABLE" UPDATES

FOR SELECTED FOR PRODUCT INTO UPDATE

PRODUCT? LIST
812
PgJOVII)’ %OTIEN RETURN UPDATE LIST
REQUEST? TO CHILD

814

SELECT NEXT PRODUCT

IN REQUEST

Fig.8.

631

10/10

86

oom\h\

. <eudyss />

AG&MB%@AQEOO\V
<®ouenbas />

</ uw0u=$aINOOQUTW

weregoryroadsaoTpuel pdn,=odX; wBlegoryrtoadsasTpureH, =oweu Jusw™TI»___ 916

A\ 10 n=SINOOQUTW :me..n.manﬂw:"wgu. uSOTTd ,,=Sweu UGW-EUHQSFO
</ w0u=SINnOOQUTW

wSeTngi3rrTqeor1ddy: pdn,=adX3 wSOTnIL3TTTqRoTTddY, =9ureu JuWSTIN____ ~ZLl6

</ u0.=SINdDoUTW wnSdrysuotjersy:pdn,=odi3 uSdrIysuotrjeray, =ouweu IUBWOTOX 6
</ w0u=SanooQuTu nUoT3D9TT00saT3x9doagpazTTecoT: pdn,,=adky

wUOT3OaTTODS®T3I9doagpaz T Te00T , —~oueu Jusu™Ta>™__~ Q06

</ uwQu=sanoooutw ,sat3xodoxqg:pdn,=odX3 uS9T3a9doxg,=sureu JusuweTdX Q06

</ w&3T3usprsiepdn:pdn,=odX3 ,L3T3uUspreojepdn,=oweu IUSWRTSR 06

<3ousanbas>

C06—_ " ~Xu93epdpn,=sueu sdirxsTdwod>
</ uwo3epdn:pdn,=adX3 ,e3epdn,=sweu JUBWOTO>

<uwPe®TFTTENDUN, =] neFoquIoIa3nqrIiae wPOTITTEND, =3 TneIOoqUIOI3USWSTD
:mwmhammmm\NH\NOON\WSmE\Eoo.uwomouUﬂE.mmﬁwzum\\“muuazuun“maﬁax
:wumvmb\wﬁ\woow\mﬁmﬁ\ﬁoo.MMOmOHOﬂE.mmswaom\\”muuzzuvmﬂnmcﬂsx
wBUSYDSTHX/T00Z /B30 " gM" mmm/ /: A3y, =suTux
:mumva\NH\Noow\mﬁmE\Eoo.uwowonoﬂa.mmawnom\\"muunzumommmwamzuwmumu 'uRYOS>

<é w8-dLN.=butpoous ,Q°T,=uoTszoA Tumx¢>

S00C Uelt /¢ 820025002

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

