
(12) STANDARD PATENT (11) Application No. AU 2005200328 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Tag-based schema for distributing update metadata in an update distribution system

(51) International Patent Classification(s)
G06F 7/00 (2006.01) G06F 15/16 (2006.01)
G06F 9/44 (2006.01) H04L 12/00 (2006.01)
G06F 9/445 (2006.01) H04L 29/00 (2006.01)
G06F 11/00 (2006.01) H04L 29/08 (2006.01)
G06F 13/00 (2006.01)

(21) Application No: 2005200328 (22) Date of Filing: 2005.01.27

(30) Priority Data

(31) Number (32) Date (33) Country
10799440 2004.03.12 US

(43) Publication Date: 2005.09.29
(43) Publication Journal Date: 2005.09.29
(44) Accepted Journal Date: 2009.06.11

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Khang, Seong Kook;Averbuch, Aaron H.;Fisher, Jeanette R.;Marl, Dennis Craig;Menzies,
Derek P.;Shepard, Marc;Dehghan, David B.

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
US6199204
US2003088684

ABSTRACT OF THE DISCLOSURE

A tag-based structure for communicating software update metadata information to

client computers and to update service nodes is presented. An update metadata file includes:

an identifier tag including a software update identifier that uniquely identifies the software

5 update; zero or more general properties tags that carry general property information relating

the software update; zero or more localized properties tags that carry localized property

information organized according to language; zero or more relationship tags that identify

dependency relationships the current software update, as described in the update metadata,

has with other software updates; zero or more applicability rules tags that carry information

10 for determining the applicability of the software update to a client computer; zero or more

files tags that carry information relating to the software update's payload files; and handler

specific data tags that carry information directed to the software handler for installing the

software update.

1/10

102
100

ROOT
UPDATE 108
SERVICE

NODE
110

112 ''-SOFTWARE
INTERNET PROVIDER

UPDA TE
SER VICE

NODE

1241

126---------

C) 104 11 4
- - - - - -- - - -118 116

UPDA TE
SER VICE
NODE

106 -- ~--~--------------
120 16122

Fig.1.

AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
I Nicholson Street,Melbourne, 3000, Australia

INVENTION TITLE:

Tag-based schema for distributing update metadata in an update distribution system

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

P30PER\SPM\2I -521-22nds pdoc-5/X/2-9

FIELD

The present invention relates to software and computer networks, and in particular,

the present invention relates to a tag-based schema for distributing update metadata in an

update distribution system.

5 BACKGROUND

Nearly all commercially available software products undergo a continual revision

process to repair or update features of the software. Each revision of a software product

frequently requires adding new files, replacing existing files with newer revisions, deleting

obsolete files, or various combinations of these actions. This process of replacing older

10 files, adding new files, and deleting obsolete files of a software product will be referred to

hereafter as "updating the product," and the data collection, including binary files, data

files, update instructions, metadata, and the like, used in updating the product will be

referred to hereafter more simply as an "update."

Once a software provider has created an update for a software product, either to fix

15 a problem, enhance security, or add new features, the software provider will want to make

that update widely available to its customer base. Quite often, such as when the update is

directed at correcting a flaw in the product or addressing a critical security issue, the

software provider will want that update installed on the customers' computers as soon as

possible. Indeed, most software providers have a business incentive to distribute software

20 updates to their customers as quickly and as trouble-free as possible.

The computer industry has experienced an explosive growth in the number of

computers connected to networks, and in particular, to the Internet. Due to this explosive

growth, and due to the communication abilities available through a connection to the

Internet, the Internet has become an important and integral channel for software providers

25 to distribute updates to their customers. In fact, the Internet has become the primary

distribution channel for many software providers to provide software updates to their

customers. It is often in the best interest of software providers to distribute software

updates over the Internet, as electronic update distribution over the Internet reduces their

overall costs

and enables customers to obtain the software updates as soon as they are available. More

and more frequently, these software updates are conducted automatically over the Internet,

without any user intervention.

While the Internet is now commonly used as a conduit for distributing software

5 updates from software providers, several issues frequently arise. Two such issues include

(1) efficiency relating to the update distribution infrastructure/resources, and

(2) administrative control over the distribution and installation of software updates.

In regard to efficiency of the distribution resources, networks, including the Internet,

possess only a finite amount of communication resources, often referred to as bandwidth. A

10 finite amount of communication bandwidth frequently results in bottlenecks, especially in

regard to software updates for popular software products, such as Microsoft Corporation's

Windows@ family of operating systems and related productivity products. Such bottlenecks

exist even when software updates are made available on multiple download locations

distributed throughout the Internet. One reason that such bottlenecks occur is the

15 unstructured access model made available by the Internet. For example, if a first user at

computer A requests the latest download of a software product, the download passes through

the first user's independent service provider (ISP). Furthermore, the request is treated as a

single, individualized access, meaning that the request is treated independent of, and

unrelated to, any other network traffic and/or request. As such, if a second user at computer

20 B, who also happens to have the same ISP, requests the same download as the first user, the

request from the second user is also treated as a single, individualized access. In this

example, the same download will be transmitted over the same infrastructure twice, because

each request was treated in isolation. Clearly, if the number of users increases substantially,

the finite communication bandwidth will become a bottleneck. In this example, which is

25 quite common, it would have been much more efficient if the download could have been

cached at a local location, and each user request satisfied from the local cache.

With regard to control of distribution, many organizations, especially large

organizations, have legitimate reasons to control the distribution of updates to their

computers. For example, unfortunately some updates have or introduce flaws, frequently

30 referred to as bugs, that "break" features of a software product. These broken features may

-2-

P:30PERESPhMUuslnS i d eel..23mAirimu

-3

be insignificant, but all too often they can disrupt a business's mission-critical features. As
a business cannot afford to lose its mission-critical features, a responsible business will
first evaluate and test each software update within a controlled environment for some
period of time prior to releasing the update to the remainder of their computers. This

5 evaluation period permits the organization to validate whether an update will adversely

affect a mission-critical feature. Only after it has been satisfactorily determined that an

update will not bring down any mission critical feature is the update permitted to be

distributed to the remainder of the organization's computers. Clearly, most organizations

must exercise control over the installation of software updates on their computers.

10 Another reason that a business or an organization often needs to control distribution

of software updates is to ensure consistency among the computers in the organization. It is

very important for information service departments to have a standardized, target platform

upon which all computers operate, whether it is for a word processor or an operating

system. Without a standard, software and computer maintenance may be unnecessarily

15 complex and difficult.

Still another reason that local control is important is for billing purposes, In large

organizations, it is often inefficient to individually install software on a computer, or to

individually maintain licenses for a particular software product for each computer in the

organization. Instead, a single site license permits an organization to run a software
20 product on numerous computers. Thus, an organization may be required to report the

number of computers running a product under the site license, or may need to limit the
number of computers running a product under a site license. All of these reasons often
require local control over software update distribution.

It is desired to address one or more of the above-identified difficulties by providing

25 a computer-implemented method for communicating update metadata corresponding to a
software update to a client computer, or to at least provide a useful alternative.

SUMMARY

In accordance with the present invention there is provided a computer-implemented

30 method for communicating update metadata corresponding to a software update to a client
computer, the method comprising:

PXCPERiSPhklU OEMS F& 3ns.) X iI/sy

-4

with a computer, receiving a synchronization request from a client computer for
information regarding a software update corresponding to a software product; and

responsive to the synchronization request:

determining whether a software update is available for the software product;
5 generating a tag-based data structure storing metadata corresponding to a

software update available for installation on the client computer, the tag-based data
structure comprising:

a tag-based identifier element storing metadata that uniquely
identifies the software update;

10 a relationship element storing metadata identifying relationships the
software update has to other software updates, the relationship element including bundle
information that identifies a plurality of software updates that must be installed
coextensively, wherein the plurality of software updates are joined together with Boolean
operators into a logical statement, such that evaluation of the logical statement determines

15 the suitability of the plurality of software updates for installation on the client computer;
and

at least one additional element of the following tag-based elements:
a property element storing metadata identifying general properties

relating to the software update including update handler information identifying an update
20 handler for installing the identified software update on the client computer;

a localized property element storing metadata identifying language
specific information directed to a computer user relating to the software update;

a rule element storing metadata identifying rules for determining the
applicability of the software update to a client computer;

25 a file element storing metadata identifying the identified software
update's payload and information relating to the software update's payload; and

a handler element storing rnetadata identifying information for
executing the update handler identified in the property elements for installing the identified
software update on the client computer; and

30 providing the tag-based data structure to the client computer.

'-5

The present invention also provides a computer-implemented method for

communicating update metadata corresponding to a software update to a client computer,

comprising:

with a computer, receiving a synchronization request from a client computer for

5 information regarding a software update corresponding to a software product; and

responsive to the synchronization request:

determining whether a software update is available for the software product;

generating a tag-based data structure storing metadata corresponding to a

software update available for installation on the client computer, wherein the tag-based

10 elements are text-based elements, the tag-based data structure comprising:

an identifier element that uniquely identifies the software update;

a relationship element storing relationships the software update has

to other software updates, the relationship element including bundle information that

identifies a plurality of software updates that must be installed coextensively, wherein the

15 plurality of software updates are joined together with Boolean operators into a logical

statement, such that evaluation of the logical statement determines the suitability of the

plurality of software updates for installation on the client computer; and

at least one additional element of the following elements:

a property element storing general properties relating to the software

20 update including update handler information identifying an update handler for installing

the identified software update on the client computer;

a file element identifying the identified software update's payload

and information describing to the software update's payload; and

a handler element storing information for executing the update

25 handler identified in the property elements for installing the identified software update on
the client computer; and

providing the tag-based data structure to the client computer.

-6

BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the present invention are hereinafter described, by way

of example only, with reference to the accompanying drawings, wherein:
FIGURE 1 is a pictorial diagram of an exemplary update distribution system;

5 FIGURE 2 is a block diagram illustrating exemplary logical components of an
update service node;

FIGURE 3 is a block diagram illustrating exemplary logical components of a root
update service node;

FIGURES 4A and 413 are block diagrams illustrating an exemplary exchange
10 between a parent update service node and a child update service node in providing a

software update from the parent update service node to the child update service node;
FIGURE 5 is a flow diagram illustrating an exemplary routine executed on a child

update service node to periodically obtain updates from its parent update service node;

-7S

TIS PAGE HlAS BEEN LE-FT INTENTIONALLY BLANK

P.\OPER\SPM\2OS23()12 2nd spa doc-5lI/2X)9

FIGURE 6 is a flow diagram of an exemplary subroutine suitable for use in the

exemplary routine of FIGURE 5 for obtaining an update catalog from a parent update

service node;

FIGURE 7 is a flow diagram of an exemplary subroutine suitable for use in the

5 exemplary routine of FIGURE 5 for obtaining a software update from a parent update

service node;

FIGURE 8 is a flow diagram of an exemplary routine for processing an update

request from a child update service node; and

FIGURE 9 is a block diagram illustrating portions of an exemplary XML-based

10 update metadata schema defining the contents of an update metadata file.

DETAILED DESCRIPTION

An exemplary update distribution system 100, organized in a hierarchical fashion,

for distributing software updates, as shown in FIGURE 1, has at the "top" of the update

distribution system 100, a root update service node 102. Software providers, such as

15 software provider 110, distribute their software updates through the update distribution

system 100 by submitting the updates to the root update service node 102. Software

providers, such as software provider 110, may submit their software updates to the root

update service node 102 through a network, such as the Internet 108.

A hierarchical update distribution system, such as the exemplary update

20 distribution system 100, will likely include at least one other update service node in

addition to the root update service node 102. As illustrated in FIGURE 1, the exemplary

update distribution system 100 includes root update service node 102 and two additional

update service nodes: update service node 104 and update service node 106. Each

hierarchical update distribution system is organized in a tree-like structure underneath the

25 root update service node 102. In other words, each update service node in an update

distribution system has zero or more child update service nodes. Thus, while the

exemplary update distribution system 100 shows that each parent update service node, i.e.,

the root update service node 102 and update service node 104, have only one child, in

other embodiments there are zero or two or more children. Furthermore, with the

30 exception of the root update service node 102, each update service node in an update

distribution system has one parent update service node. Accordingly, as shown in

P:\OPER\SPM\2 A520032K 2nd spa doc-5/I82&9

-8A

FIGURE 1, update service node 104 is a child node to the root update service node 102,

and update service node 106 is a child node to update service node 104. As can be seen,

each update service node, with the exception of the root update service node 102, can be

both a child update service node and a parent update service node.

5 As illustrated in the exemplary update distribution system 100, the root update

service node 102 communicates with update service node 104 through a communication

network, such as the Internet 108. Each update service node in an update distribution

system need only be able to communicate with its parent and/or children through some

communication network. Thus, while update service node 104 communicates with its

10 parent, root update service node 102, through the Internet 108, it may alternatively

communicate with its child update service nodes, such as update service node 106, via a

local area network 124.

Also shown in FIGURE 1, update service node 106 resides within a

sub-network 126 of the local area network 124. As an example, local area network 124

15 may correspond to an organization's general corporate network, and update service

node 104 represents the corporation's link to the update distribution system 100, via its

connection to its parent, root update service node 102. Further, sub-network 126 may

correspond to an identifiable group of computers within the corporate network, such as a

test/evaluation group, a remotely located office, or a mission critical group. As will be

20 described in greater detail below, according to aspects of the present invention, an

administrator on update service node 104 is able to control the distribution of updates to

update service node 106, and ultimately to client computers.

It should be appreciated that each update service node, including both the root

update service node 102 and update service nodes 104 and 106, is configured to distribute

25 software updates to both child update service nodes as well as client computers. As shown

in FIGURE 1, the exemplary update distribution system 100 includes client

computers 112-122. Each update service node, including the root update service node 102,

distributes updates to child update service nodes and client computers according to local

configuration information. According to one embodiment, an administrator defines groups

30 and associates update distribution rules with those groups. Each update service node has at

least one distribution group.

P;\OIERSPM\252IX02X 2nd spa doc-5/ I /2(X9

- 8B

As an example to illustrate how the update distribution system operates, assume

that local area network 124 corresponds to a business organization's corporate network.

According to at least one embodiment of the present invention, an administrator, on update

service node 104, may define multiple distribution groups for the corporate network 124,

5 including an evaluation group, corresponding to the sub-network 126 including update

service node 106 and client computers 120 and 122, for evaluating the suitability of an

update for the general corporate network 124, as well as a general corporate group

including the update service node 104 and client computers 114-118.

With regard to the evaluation group, the administrator includes the update service

10 node 106 as a member, and associates rules with that group such that updates are

immediately distributed to the evaluation group's members as they become available.

Alternatively, with regard to the general corporate group, the administrator adds client

computers 114-118, and associates a rule such that updates are only distributed to the

general corporate group members if specifically authorized by the administrator. Assume

15 also that an administrator for child update service node 106 creates a default group

consisting of the client computers 120 and 122 in the evaluation sub-network 126, to which

any new software update may be immediately distributed.

Continuing the above example, a software provider 110 submits a software update

to the root update service node 102. According to rules established at the root update

20 service node 102, the update is eventually distributed to the corporate update service

node 104. Upon receiving the update, per the rules established by the administrator, the

corporate update service node 104 distributes the update to the members of the evaluation

group (defined as only the child update service node 106), but withholds the update from

the general corporate group pending specific authorization to distribute the update to that

25 group.

Continuing the above example, upon receiving the update, the evaluation update

service node 106 processes the update with respect to each defined group. In this example,

the evaluation update service node 106 has only one group. However, as previously

mentioned, in an actual implementation, there may be multiple groups defined, each with a

30 unique set of associated distribution rules. For this example, the evaluation update service

node 106 immediately makes the update available for distribution to client computers 120

P kOPERSPM252NM329 2nd spa doc./l/2109

-8C

and 122. Client computers 120 and 122 may now be updated and the evaluation

period/process may begin.

Still continuing the above example, when the administrator on the corporate update

service node 104 is sufficiently satisfied that the update is suitable for distribution over the

5 entire corporate network 124, the administrator then explicitly authorizes the update to be

distributed to the members of the general corporate group. The corporate update service

node 104 correspondingly makes the update available to client computers 114-118. It

should be understood that the evaluation update service node 106 may also be included in

the general corporate group. However, because the evaluation update service node 106 has

10 already been updated, no additional update-related action is needed for distributing the

update to the evaluation sub-network 126.

As can be seen by the above example, embodiments of the present invention offer

significant benefits in terms of local distribution control and download efficiency. In

addition to the above-described aspects of local distribution control, significant savings in

15 communication bandwidth are also realized. For example, while the exemplary corporate

network 124

illustrated in FIGURE 1 includes five client computers, the software provider's update was

downloaded from the root update service node 102 to the corporate update service node 104

only one time. Clearly then, as the number of client computers serviced by an update service

node increases, the communication bandwidth usage between a parent update service node

5 and a client update service node remains constant, thereby substantially reducing the amount

of communication bandwidth that would otherwise be used. Additionally, the update

distribution system is both extensible and scalable. The update distribution system is

extensible in at least two ways: any number of child update service nodes may be added to a

parent update service node, and child update service nodes may also be a parent update

10 service node. Each sub-tree of the update distribution system may therefore be tailored to

meet individual needs.

FIGURE 2 is a block diagram illustrating exemplary logical components of an update

service node 200, such as the corporate update service node 104 (FIGURE 1) or the

evaluation update service node 106 (FIGURE 1), formed in accordance with aspects of the

15 present invention. As shown in FIGURE 2, an update service node 200 includes an update

web service 202, a client update module 204, a child update module 206, and a reporting

module 208. The exemplary update service node 200 also includes an authentication/

authorization module 210, an administration application programming interface (API) 212,
an update content store 214, an administration user interface 218, and an update information

20 store 216.

The update web service 202 provides a common set of Web services through which

client computers, child update service nodes, and a parent update service node can

communicate with an update service node. For example, with reference to FIGURE 1, in

order for the child/evaluation update service node 106 to obtain a software update from the

25 parent/corporate update service node 104, the client communicates through the parent's

update web service 202. Similarly, when a parent update service node, such as root update

service node 102, has information, including updates, to communicate to its child update

service node 104, the parent update service node communicates through the child's update

web service 202.

-9-

The client update module 204 handles communications between a client computer

and the update service node 200 in regard to updates and update information stored on the

update service node. The update-related communications include, but are not limited to,

distributing updates in response to client requests and providing a list of available software

5 products and associated updates for the client computer. The client update module 204 is

also responsible for determining whether a client computer is authorized to obtain a

particular update according to associated distribution rules, and responds to a client computer

with the update-related information that the client computer is authorized to access.

The child update module 206 handles update-related communications between a

10 parent update service node and its child update service nodes. The update-related

communications include, but are not limited to, identifying lists of software products and

associated updates available to a child update service node, as well as responding to update

requests from a child update service node. The downstream update module 206 is

responsible for determining whether a child update service node is authorized to obtain a

15 particular update according to associated distribution rules, and responds to a child update

service node with the update-related information that the child update service node is

authorized to access.

The reporting module 208 generates update-related reports, such as which groups

have or have not received a particular update, which client computers have or have not

20 downloaded/installed an update, what updates are available on the update service node, and

the like. These reports may be used internally, such as by an administrator, and also

submitted to the parent update service node, via the parent's update service interface 202. As

described above, it is often necessary for corporations to determine which client computers

have a particular update installed, such as for billing purposes or for maintenance purposes.

25 Information/reports generated by the reporting module 208 may be the basis of these reports.

The authentication/authorization module 210 is responsible for authenticating, i.e.,

determining the identity of, a particular client computer or child update service node, and

determining whether a client computer or child update service node is authorized to access

available updates at the update service node 200. To those client computers and child update

30 service nodes that are authenticated and authorized to access updates on an update service

-10-

node, the authentication/authorization module 210 issues an authorization token that must be

used in conjunction with obtaining updates. The issuance and use of an authorization token

is described in greater detail below in regard to FIGURES 4A and 4B.

The administration API 212 represents the application interface through which

5 control of the update service node 200 is exercised, and through which updates ultimately are

stored and distributed. When the update web service 202 receives various update-related

requests from client computers and child update service nodes, these requests are ultimately

broken into calls into the administration API 212, either directly or indirectly through the

client update module 204 and the child update module 206. In conjunction with the

10 administration user interface 218 or some other program installed on the update service

node 200 suitably configured to use the administration API 212, an administrator ultimately

controls all aspects of the update process for that update service node, as well as any child

update service nodes and client computers.

Through the administration user interface 218, administrators may configure and

15 maintain an update service node 200, via the administration API 212. Thus, through the

administration user interface 218, an administrator creates, modifies, and deletes groups, as

well as associating rules for each group. Furthermore, using the administration user

interface 218, an administrator establishes to which group a client computer or child update

service node belongs. Through the administration user interface 218, an administrator may

20 also explicitly authorize the distribution of updates to client computers or child update

service nodes, configure the update service node 200 to periodically query its parent update

service node for new updates, configure reporting parameters and view internal reports, and

the like. As mentioned above, while the administration user interface 218 permits an

administrator to exercise control over aspects of the update service node 200, another

25 application residing on the update service node 200, suitably adapted to operate with the

administration API 212, may be used instead of the administration user interface 218.

As mentioned above, according to one embodiment of the present invention, an

update service node 200 includes both an update content store 214 and an update information

store 216. The update content store 214 stores the actual files representing the software

30 updates, such as binaries and patch files. In contrast, the update information store 216 stores

-11-

P \OPE SPM\2002M 2nd pdc-. //2

-12

information and metadata corresponding to the updates available on the update service

node 200, including the update files stored in the update content store 214. According to

one embodiment, the update content store 214 and the update information store 216 are

both relational databases. While the exemplary update service node 200 is shown as

5 having two data stores, in at least one alternative embodiment, both the update content

store 214 and the update information store 216 may be combined in a single information

store.

In embodiments of the present invention, a software update may be presented as

being "available" on an update service node 200 to client computers and child update

10 service nodes even though the update is not stored physically in the update content

store 214. More particularly, rather than immediately downloading and storing the actual

update files on an update service node 200, a link referencing the update files on the parent

update service node or elsewhere, may instead be stored on the update service node. Thus,

if a client computer requests the update, or a child update service node requests the actual

15 update, the update is then brought down from the parent update service node and stored in

the update content store 214, in preparation for delivering it to the client computer or child

update service node. Those skilled in the art will recognize this type of update access is

referred to as just-in-time downloading. In this manner, an "available" update, need not be

distributed over the various network channels until it is actually requested. According to

20 aspects of the present invention, an administrator of an update service node 200 may

selectively determine whether to obtain software updates in a just-in-time manner.

While the above description of FIGURE 2 illustrates various components of an

exemplary update service module 200, it should be appreciated that other components of

an update service module may also exist. Furthermore, the above described components

25 should be understood to be logical components, not necessarily actual components. In an

actual implementation, the above identified components may be combined together and/or

with other components according to implementation determinations. Additionally, it

should be appreciated that while an update service node 200 may be viewed as a server

computer on a network, in an actual implementation, an update service node may be

30 implemented on any number of types of computing devices. For example, each update

service node 200 may be

implemented and/or installed on a single stand-alone computer system or, alternatively, on a

distributed computing system comprising multiple computing devices.

FIGURE 3 is a block diagram illustrating exemplary logical components of a root

update service node 300, such as the root update service node 102 illustrated in FIGURE 1,

5 formed in accordance with aspects of the present invention. Similar to the logical

components of an update service node 200 (FIGURE 2), a root update service node 300

includes an update web service 202, a child update module 206, and an

authentication/authorization module 210. Additionally, an exemplary root update service

node 300 also includes an administration API 212, an update content store 214, and an

10 update information store 216. Optionally, the root update service node 300 may also include

a client update module 204, a reporting module 208, and an administration user

interface 218.

The client update module 204 is an optional component for a root update service

node 300 depending on whether the root update service node provides software updates

15 directly to client computers. For example, with reference to FIGURE 1, root update service

node 102 would include the optional client update module 204 as the root update service

node that directly services client computer 112. However, if a root update service node 300

were not to directly service client computers, the client update module 204 could be omitted.

The reporting module 208 is optional for a root update service node 300 because a

20 root update service node has no parent update service node to whom update reports are

provided. However, to the extent that update reports are desirable to the root update service

node's administrator, the reporting module 208 may be optionally included.

In addition to comprising the logical components included in an update service

node 200 (FIGURE 2), the root update service node 300 also includes a software provider

25 interface 302. The software provider interface 302 provides the communication interface by

which a software provider 110 (FIGURE 1) submits software updates directly to the root

update service node 300, and indirectly to the exemplary update distribution system 100.

Similar to the update service node 200 of FIGURE 2, the above description of

FIGURE 3 illustrates various components of an exemplary root update service module 300.

30 However, it should be appreciated that other components of a root update service module

-13-

may also exist. Furthermore, the above described components should be understood to be

logical components, not necessarily actual components. In an actual implementation, the

above identified components may be combined together and/or with other components

according to implementation determinations. Additionally, it should be appreciated that

5 while a root update service node 200 may be viewed as a server computer on a network, in

an actual implementation, an update service node may be implemented on any number of

computing devices. For example, the root update service node 300 may be implemented

and/or installed on a single stand-alone computer system or, alternatively, on a distributed

computing system comprisingmultiple computing devices.

10 In order to better understand how an update is distributed from the root update service

node throughout an update distribution system 100, an illustration of an exemplary exchange

between a parent update service node and a child update service node is warranted.

FIGURE 4 is a block diagram illustrating an exemplary exchange 400 between a parent

update service node 402 and a child update service node 404 in propagating a software

15 update from the parent update service node to the child update service node, in accordance

with aspects of the present invention. As can be seen, the exemplary diagram 400 is divided

in half, the left half of which corresponds to actions and events of the parent update service

node 402, and the right half corresponding to actions and events of the child update service

node 404.

20 For purposes of discussion with regard to FIGURE 4, it should be further understood

that the parent update service node 402 may or may not be the root update service node in the

update distribution system 100. Additionally, for purposes of this discussion, it is assumed

that the parent update service node 402 has been configured by an administrator such that the

child update service node 404 may not receive software updates unless explicitly authorized

25 to do so by the administrator.

As shown in the exemplary exchange 400, beginning at event 406, the parent update

service node 402 receives a software update from a software provider 110, either directly, if

the parent update service node is the root update service node 102, or indirectly through the

update distribution system 100. At some point after the parent update service node 402

30 receives the software update from the software provider 110, the child update service

-14-

node 404 begins a process for obtaining software updates from the parent update service

node.

According to one embodiment, a child update service node 404 can be configured to

automatically obtain the software updates available from a parent update service node 202 on

5 a periodic basis. More particularly, an administrator, via the administration user

interface 218, may selectively configure the child update service node 404 to automatically

obtain the latest software updates available on the parent update service node 402 on a

periodic basis. As one example, an administrator may configure the child update service

node 404 to obtain the latest software updates from its parent update service node 402 on a

10 daily and/or hourly basis, as well as specify the time-of-day that the automatic update

process is to commence. Other periodic schedules and criteria may also be utilized.

Similarly, an administrator may manually initiate the update process through the

administration user interface 218.

To begin the updating process, at event 408 the child update service node 404

15 authenticates and authorizes itself with the parent update service node 402. Authenticating

and authorizing with the parent update service node 402 provides an element of control over

the distribution of software updates, limiting update distribution to authorized update service

nodes. Authenticating and authorizing techniques are well known in the art, any number of

which may be employed to authenticate and authorize a child update service node 404 with

20 the parent update service node 402. The present invention is not restricted to any one

technique.

After properly authenticating and authorizing with the parent update service

node 402, at event 410 the parent update service node 402 returns an authorization token to

the child update service node 404. According to one embodiment, an authorization token is a

25 time sensitive token providing the child update service. node 404 authorization to conduct

further update activities with the parent update service node for a limited amount of time.

Thus, if the child update service node 404 is not properly authenticated and authorized with

the parent update service node, no authorization token is returned and the child update

service node is unable to perform any other update-related activities except authentication

30 and authorization. Similarly, after the update token has expired, the child update service

-15-

P \OPER\SPM\ 4) 2 # 2nd p 1

- 16

node 404 is unable to perform any further update-related activities with the parent update

service node 402 except reauthentication and reauthorization.

After receiving the authorization token, at event 412 the child update service

node 404 submits a request to the parent update service node for a product update catalog

5 along with the authorization token. A product update catalog represents a listing, or table

of contents, of software products for which the parent update service node 402 distributes

software updates.

According to embodiments of the present invention, a child update service

node 404 is not required to propagate all software updates available on its parent update

10 service node 402. For example, with reference to the exemplary update distribution system

of FIGURE 1, the corporate update service node 104 may have site licenses to only a

fraction of software products available on the root update service node 102. Accordingly,

it would be unnecessary for the corporate update service node 104 to obtain all software

updates available at the root update service node 102, as most would never be used.

15 Accordingly, an administrator on an update service node may selectively establish which

software product updates will be available on the update service node.

According to embodiments of the present invention, the update product catalog,

obtained from a parent update service node 402, identifies all software products for which

updates are available, whether or not the child update service node 404 is configured to

20 distribute updates for each product. However, according to an alternative aspect of the

present invention, the update product catalog, obtained from a parent update service

node 402, identifies only those software products for which the requesting child update

service node is configured to distribute updates. For example, limiting which software

products are listed in the product update catalog may be determined according to the group

25 or groups to which the child update service node 404 belongs.

At event 414, the parent update service node 402 returns a product update catalog

to the child update service node 404. At event 416, the child update service node 404

selects those products from the product update catalog for which the latest updates are

currently desired. It should be noted that even though the product update catalog may list

30 only those software products that the child update service node 404 distributes, the child

update service

node may be configured to obtain updates for different software products at different times or

on different periodic schedules.

At event 418, the child update service node 404 submits an update synchronization

request, along with the authorization token, identifying the selected products for whose

5 updates the child update service node is currently seeking. Included in the synchronization

request is information identifying the latest update available for a product on the child update

service node 404. Information identifying the latest update for a product is hereafter referred

to as an "update anchor." Update anchors for each software product are typically stored in

the update information store 216 (FIGURE 2). In one embodiment, an update anchor

10 includes a revision number and a date associated with the revision number.

In response to the update synchronization request, at event 420 the parent update

service node 402 determines which, if any, new updates are available for the child update

service node 404. As mentioned above, this determination is based on the specific rules

associated with particular software updates and the group or groups of which a child update

15 service node 404 is a member, as well as the update anchor. For this example, as previously

mentioned, the previously received software update was explicitly not authorized for the

child update service node 404. Therefore, the software update received at event 406 is not

determined to be "available" to the child update service node 404. Accordingly, at event 422

an update list is returned to the child update service node 404 without identifying the

20 software update received at event 406. According to aspects of the present invention, the

update list identifies all of the updates "available" on the parent update service node 402

according to the synchronization request. In one embodiment, the update list identifies each

"available" update information by a unique identifier associated with an update.

At event 424, because the update list is empty, i.e., no updates are currently

25 "available" on the parent update service node 402, the update process of the child update

service node 404 simply delays, or sleeps, for a predetermined amount of time. According to

the current example, during this delay period, at event 426, an administrator at the parent

update service node 402 authorizes the software update, received at event 406, to be

distributed to the child update service node 404.

-17-

PAOPER\SPN21K)52M12K 2nd w doc-5/I/219

- 18

At event 428 (FIGURE 4B), the child update service node 404 again begins the

automatic update process by authenticating and authorizing itself with the parent update

service node 402. In response, at event 430, the parent update service node 402 returns an

authorization token to the child update service node 404.

5 At event 432, the child update service node 404 submits a request, along with the

authorization token, to the parent update service node 402 for a product update catalog. At

event 434, the parent update service node 402 returns the product update catalog to the

child update service node 404. At event 436, the child update service node 404 selects the

products for the update catalog for which updates are desired. At event 438, the child

10 update service node 404 submits the update synchronization request identifying those

selected products with the authorization token.

Because the child update service node 404 has been authorized to obtain the

software update previously received at event 406, at event 440 the parent update service

node 402 determines that the software update is "available" for the child update service

15 node and includes corresponding update information in the update list. Thereafter, at

event 442, the parent update service node 402 returns the update list, now identifying the

software update received at event 406, to the child update service node 404.

With an update list identifying an "available" update on the parent update service

node 402, the child update service node 404 now has the information necessary to obtain

20 the software update. According to at least one embodiment of the present invention, a

child update service node 404 obtains the software update from the parent update service

node 402 in two parts: obtaining update metadata, and obtaining the update content or

files, hereafter referred to as the update payload. As will be described in greater detail

below, the update metadata describes pertinent aspects of the software update, including,

25 but not limited to: an update identifier that uniquely identifies the update, revision number

information associated with the software update, whether the software update should be

considered a priority, language specific information, relationships to other software

updates, location of the update payload for downloading purposes, installation handler

routines, and the like.

30 Some of the reasons that it is often beneficial to download the entire software

update in two parts, i.e., the update metadata and the update payload, is that the update

PQOPER\SPM\2052-2X2d s doc-5/ /21I

- 19

payload is often substantially larger than the update metadata, and the update payload is

not always immediately needed, i.e., needed for installation on a client computer, if it is

ever needed. Thus, according to at least one embodiment of the present invention, the

update payload is downloaded separately from the update metadata and only when needed.

5 Those skilled in the art will recognize this downloading technique as lazy downloading, or

alternatively as just-in-time downloading. According to embodiments of the present

invention, an administrator may configure an update service node to obtain the update

payload in a just-in-time fashion, or immediately upon obtaining the update metadata.

Furthermore, in at least one alternative embodiment, both update metadata and the update

10 payload may be downloaded jointly.

As shown in FIGURE 4B, with an update identified in the update list, at event 444,

the child update service node 404 requests the update metadata for the "available" software

update according to its unique identifier in the update list. As with most other

communication exchanges with the parent update service node 402, the update request is

15 submitted with the authorization token. It should be noted that while in the illustrated

example, all update metadata is downloaded in one access, according to alternative aspects

of the present invention (not shown), the update metadata may be downloaded in more

than one access. For example, in a first access, only elements of the update metadata to are

necessary to determine whether a software update is applicable and/or desirable is first

20 downloaded, such as applicability rules and dependencies upon other software updates.

Then, after it is determined that an update is applicable and/or desirable, the remainder of

the update metadata may be obtained. In response, at event 446 the parent update service

node 402 returns the update metadata for the software update child update service

node 404, which in turn stores the update metadata into the update information store 216.

25 Optionally, at event 448, the child update service node 404 submits a request to

download the update payload from the parent update service node 402. In response, at

event 450, the parent update service node 402 returns the update payload to the child

update service node 404, which in turn stores it in the update content store 214. In an

alternative embodiment, the child update service node 404 downloads the update payload

30 from a storage location, which may not be the parent update service node 402, from a

location specified in the update metadata.

P:\OPER\PM\23S2(2 2nds padoc-5/I X/2-9

- 20

Because update activity has now occurred on the child update service node 404, at

event 452, the child update service node generates and submits an update report to the

parent update service node 402 outlining the update activities that have just recently

occurred. Thereafter, the child update service node 404 again delays until the next time

5 that the update process is scheduled to run (not shown).

Those skilled in the art will appreciate that the above described events are for

illustration purposes, and reflect one particular exemplary set of events and circumstances.

Clearly, other events may also occur according to specific details and circumstances which

will cause some variation to the above described events. Additionally, it should be

10 understood that while the child update service node 404 is obtaining the latest "available"

software updates from the parent update service node 402, the child update service node

may simultaneously be processing update requests from its child update service nodes.

FIGURE 5 is a flow diagram illustrating an exemplary routine 500 executed on a

child update service node, such as the corporate update service node 104 of FIGURE 1, for

15 periodically obtaining updates from its parent update service node. Beginning at

block 502, the child update service node obtains a synchronized update list of "available"

updates from the parent update service node. Obtaining a synchronized update list of

"available" updates from the parent update service node is described below with regard to

FIGURE 6.

20 FIGURE 6 is a flow diagram of an exemplary subroutine 600, suitable for use in

the exemplary routine 500 of FIGURE 5, for obtaining a synchronized update list of

"available" updates from a parent update service node. Beginning at block 602, as

previously discussed with regard to FIGURES 4A and 4B, the child update service node

authenticates and authorizes itself with the parent update service node and, in response to

25 proper authentication and authorization, receives an authorization token. At block 604, in

conjunction with the authorization token, the child update service node establishes

communication parameters with the parent update service node. Establishing

communication parameters permits the parent and child update service nodes to properly

establish a common basis that both the

parent and child understand. The communication parameters include, but are not limited to:

communication update protocols or versions; product groupings; and the like.

After having established communication parameters with the parent update service

node, at block 606, the child update service node obtains a product update catalog describing

5 software products for which the parent update service node provides/distributes updates. At

block 608, the child update service node selects those software product updates for which

updates are currently sought. At block 610, the child update service node submits an update

synchronization request to the parent update service node, including both the authorization

token and an "anchor" associated with the selected software products identifying the current

10 revision and updates already on the child update service node.

In response to the update synchronization request, at block 612, the child update

service node obtains an update list from the parent update service node, synchronized

according to the software updates "available" on the parent update service node according to

what is currently stored on the child update service node. As mentioned above, the update

15 list identifies, by a unique identifier, those software updates on the parent update service

node that are "available" to the child update service node. Thereafter, the exemplary

subroutine 600 terminates.

With reference again to FIGURE 5, after having obtained a synchronized update list

from the parent update service node, at decision block 504, a determination is made as to

20 whether any software updates are currently "available" for downloading from the parent

update service node. This determination is made according to whether there are any update

identifiers listed in the synchronized update list. If no software updates are currently

"available" for downloading, the exemplary routine 500 proceeds to delay block 510, where

the exemplary routine delays/sleeps until the next update period occurs. Alternatively, if

25 there are updates "available" for downloading from the parent update service node, at

block 506, the child update service node obtains the updates from the parent update service

node. Obtaining "available" updates from the parent update service node is described below

with regard to FIGURE 7.

FIGURE 7 is a flow diagram of an exemplary subroutine 700, suitable for use in the

30 exemplary routine 500 of FIGURE 5, for obtaining "available" software updates from a

-21-

parent update service node. Beginning at block 702, a first update identifier in the update list

is selected. At block 704, the child update service node obtains the update metadata

corresponding to the selected update identifier from the parent update service node and stores

it in the update information store 216.

5 According to one embodiment, at block 706, the child update service node obtains the

update payload corresponding to the selected update identifier from the parent update service

node, and stores the update payload in the update content store 212. Optionally, the update

content need not be immediately downloaded to the child update service node. As

previously mentioned, a child update service node may be selectively configured to

10 download updates from a parent update service node in a just-in-time fashion. According to

this optional treatment, as illustrated in FIGURE 7, rather than proceeding from block 704 to

block 706, the exemplary subroutine 700 optionally proceeds from block 704 to decision

block 708.

At decision block 708, after having obtained the update metadata for the selected

15 update identifier, and optionally the update payload, a determination is made as to whether

there are any additional update identifiers in the update list. If there are additional update

identifiers, at block 710, the next update identifier in the update list is selected, and the

subroutine 700 returns to block 704 for additional processing. The routine 700 continues

until, at decision block 708, it is determined that there are no more update identifiers in the

20 update list, whereupon the exemplary subroutine 700 terminates.

Returning again to FIGURE 5, after having obtained the "available" updates from the

parent update service node, at block 508, the child update service node reports the update

activities to the parent update service node. Thereafter, at delay block 510, the exemplary

routine 500 delays/sleeps for a predetermined amount of time until the next update period,

25 and then proceeds to block 502 to repeat the above-identified update procedures.

As illustrated in FIGURE 5, at decision block 504, even when no updates are

"available" on a parent update service node, a child update service node may be optionally

configured to report its update activities to the parent update service node. According to this

alternative configuration, when there are no updates available, the exemplary routine 500

30 may proceed to block 508 to report the update activities.

-22-

FIGURE 8 is a flow diagram of an exemplary routine 800, implemented on a parent

update service node, for generating a synchronized update list identifying "available" updates

in response to an update synchronization request from a child update service node.

Beginning at block 802, the parent update service node receives an update synchronization

5 request from a child update service node for an update list identifying "available" updates.

At block 804, the first software product identified in the update synchronization request is

selected.

At decision block 806, a determination is made as to whether there are any available

updates for the identified software product. This determination is made according to

10 metadata for the software product stored in the update information store 216, according to

the update anchor provided by the child update service node, and according to distribution

rules associated with the group to which the child update service node belongs. According to

this determination, if there are updates "available," at block 808, unique update identifiers

associated with the "available" updates are written into an update list. After having written

15 unique update identifiers for "available" updates into the update list, at decision block 810, a

determination is made as to whether there are any more additional software products

identified in the update synchronization request. If there are additional update software

products in the update synchronization request, at block 814, the parent update service node

selects the next software product identified in the update synchronization request, and returns

20 to decision block 806 for determining whether there are "available" updates for the selected

software product. Alternatively, if there are not more software products identified in the

update synchronization request, at block 814, the update list is returned to the child update

service node. Thereafter, the exemplary subroutine 800 terminates.

As previously mentioned, the update metadata describes pertinent aspects of a

25 software update. In fact, many of these aspects are as important to the software update as the

update payload itself. For example, if the update metadata for a first software update

indicates that a prior software update must be installed as a prerequisite, and that prior

software update is not currently installed according to administrator decisions, it would be of

no value to download the update payload of the first software update. Consequently, by not

30 downloading the update payload of the first software update, significant communication

-23-

bandwidth may be preserved. Of course, those skilled in the art will recognize that this is

just one example of how the update metadata provides important and pertinent information

relating to a software update.

While update metadata may be transmitted in a file of any format, according to

5 aspects of the present invention, the update metadata corresponding to a software update is

described and contained in a tag-based file, such as an extensible markup language (XML)

file. Any suitable tag-based file format may be used that allows for customizable tags that

describe and contain data. Tag-based files, such as files based on XML or hypertext markup

language (HTML), for describing and containing information are well known in the art. As

10 is further known in the art, the contents of a tag-based XML file are frequently determined

according to a definition file, called a schema. This update metadata is used both by child

update service nodes, and also by client computers.

In an actual embodiment of the present invention, update metadata for a software

update is contained in an XML-based file conforming to an update metadata schema.

15 FIGURE 9 is a block diagram illustrating portions of an exemplary XML-based update

metadata schema 900 defining the contents of an update metadata file. In particular, the

exemplary update metadata schema 900 defines an Update 902 as comprising the following

elements: an UpdateIdentity element 904; Properties elements 906;

LocalizedPropertiesCollection elements 908; Relationships elements 910; ApplicabilityRules

20 elements 912; Files elements 914; and HandlerSpecificData elements 916. In regard to

elements 906-916, a suitable update metadata file may include zero or more of these

elements, as per the tag qualifier "minOccurs="O"" 918. In contrast, an update metadata file

must include one UpdateIdentity element 902. According to the illustrated metadata

schema 900, each update element in an update metadata file, if present, must appear

25 according to the above described order.

As previously mentioned, each software update is assigned a unique identifier.

According to aspects of the present invention, the UpdateIdentity element 902 includes this

unique identifier, as well as other information to identify the software update, such as a

revision number also associated with the software update.

-24-

The Properties element 904 provides information relating to the software update

including, but not limited to: a language, i.e., English, Spanish, French, etc., to which the

software update has been localized; information suggesting the impact the update will likely

have on a computing system during installation, e.g., minimal, high impact, may or will

5 require rebooting of the computing system, and the like; the type of software to be updated

by the software update, such as a system driver or a software application; an importance

rating corresponding to the importance of the software update to the software provider; a

related security bulletin from the software provider; and an update handler identification for

identifying an update handler for the software update. As can be seen from the various types

10 of properties listed above, there may be zero or more Properties elements 904 in an update

metadata file.

The LocalizedPropertiesCollection element 906 provides language specific

information relating to the software update such as, but not limited to: an update title; a

description of the software update intended for display to a computer user; release notes from

15 the software provider; end user license agreements and related information; user direction for

uninstalling the software update; and the like. According to aspects of the present invention,

the localized properties are grouped according to a language. For example, while the

LocalizedPropertiesCollection element 906 may include multiple pieces of information,

English versions of the above information would be grouped together, and Spanish versions

20 would similarly be grouped. As will the Properties element 904 above, there may be zero or

more LocalizedPropertiesCollection elements 906 in an update metadata file.

The Relationships element 908 provides information regarding relationships the

present software update has to other software updates. Examples of these relationships

include, but are not limited to prerequisite software updates, supercedence software updates,

25 and bundled software updates. A prerequisite software update relationship indicates that

another software update, identified by its unique update identifier, must be installed on a

client computer system prior to installing the present software update. Multiple prerequisite

relationships may be joined with boolean operators, such as logical operators AND and OR,

into logical statements such that the evaluation of the logical statements determines the

30 suitability of the software update for installation on a client computer.

-25-

A bundled software update identifies a plurality of software updates that are to be

installed together. As one example, a bundled application may indicate an interdependency

between the present software update and other software updates, such that all updates

identified in the bundle, identified by their unique update identifier, must be installed if any

5 are installed on a computer system. As with prerequisite software updates above, elements

of a bundled software update may be joined with boolean operators to form logical

statements for evaluating the suitability of the bundled software update for installation on a

client computer. In contrast, a supercedence software update identifies other software

updates that have been superceded by the present software update. As with the Properties

10 element 904 above, there may be zero or more Relationships elements 908 in an update

metadata file.

The ApplicabilityRules element 912 provides rules or tests for determining whether a

software update is applicable and/or appropriate for installation on a computing system.

While similar in some regards to the relationships of the Relationships element 908,
15 ApplicabilityRules element 912 tests conditions on the computing system that may or may

not relate specifically to another software update. As with most other elements identified

above, there may be zero or more ApplicabilityRules elements 912 in an update metadata

file.

The Files element 914 identifies the files, i.e., the update payload, associated with the

20 software update, as well as information relating those files. This additional information

includes, but is not limited to: whether there is one or many files in the update payload; a

location from where the files may be obtained; the size of the files; the file name; the file

creation date; and the like. Those skilled in the art will readily recognize that a single

software update may be installed on a client computer in multiple ways. As one example, the

25 same software update may be installed by modifying portions of existing files with a patch,

or alternatively, by simply replacing the existing files with newer versions. Thus, according

to aspects of the present invention, the update payload of a Files element 914 may include or

reference: a patch for existing files, replacement files, or both a patch and replacement files.

There may be zero or more Files elements 914 in an update metadata file.

-26-

Updates may be provided in a variety of formats, such as delta patches which

describe areas of a file that are to be rewritten with the delta patch information, executable

files, replacement files, and the like. Each of these types of updates requires a specific

update handler in order to carry out the software update on the computing system.

5 Accordingly, the HandlerSpecificData element 916 provides a location in the update

metadata file for including handler specific data/information. For example, this information

may include, but is not limited to, a directory in which the handler should execute, command

line arguments to a handler, actions to take if some aspects of the installation fail, actions to

take if the installation succeeds, and the like. An update metadata file may include zero or

10 more HandlerSpecificData elements 916.

While various embodiments and aspects of the present invention have been illustrated

and described, including the preferred embodiment, it will be appreciated that various

changes can be made therein without departing from the spirit and scope of the invention.

For example, while the present invention has been described as delivering software updates

15 through an update distribution system over a communication network, update metadata, as

well as update payloads, may be delivered from an update service node to a client computer

on a computer-readable medium, such as a compact disk or a floppy disk.

Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" or "comprising",

20 will be understood to imply the inclusion of a stated integer or step or group of integers or

steps but not the exclusion of any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be taken as,

an acknowledgement or any form of suggestion that that prior art forms part of the common

25 general knowledge in Australia.

-27-

-28

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method for communicating update metadata

corresponding to a software update to a client computer, the method comprising:

5 with a computer, receiving a synchronization request from a client computer for

information regarding a software update corresponding to a software product; and

responsive to the synchronization request:

determining whether a software update is available for the software product;

generating a tag-based data structure storing metadata corresponding to a

10 software update available for installation on the client computer, the tag-based data

structure comprising:

a tag-based identifier element storing metadata that uniquely

identifies the software update;

a relationship element storing metadata identifying relationships the

15 software update has to other software updates, the relationship element including bundle

information that identifies a plurality of software updates that must be installed

coextensively, wherein the plurality of software updates are joined together with Boolean

operators into a logical statement, such that evaluation of the logical statement determines

the suitability of the plurality of software updates for installation on the client computer;

20 and

at least one additional element of the following tag-based elements:

a property element storing metadata identifying general properties

relating to the software update including update handler information identifying an update
handler for installing the identified software update on the client computer;

25 a localized property element storing metadata identifying language

specific information directed to a computer user relating to the software update;

fOl RISYtM2nM td spado4-25Msno9

-29

a rule element storing metadata identifying rules for determining the

applicability of the software update to a client computer;

a file element storing metadata identifying the identified software

update's payload and information relating to the software update's payload; and

5 a handler element storing metadata identifying information for

executing the update handler identified in the property elements for installing the identified

software update on the client computer; and

providing the tag-based data structure to the client computer.

2. The method of Claim 1, wherein the tag-based elements in the tag-based

10 data structure are arranged in the tag-based data structure such that the identifier element is

located in the tag-based data structure before property elements, property elements are

located in the tag-based data structure before localized property elements, localized

property elements are located in the tag-based data structure before relationship elements,

relationship elements are located in the tag-based data structure before rule elements, rule

15 elements are located in the tag-based data structure before file elements, and file elements

are located in the tag-based data structure before handler elements.

3. A computer-implemented method for communicating update metadata

corresponding to a software update to a client computer, comprising:

with a computer, receiving a synchronization request from a client computer for

20 information regarding a software update corresponding to a software product; and

responsive to the synchronization request:

determining whether a software update is available for the software product;

generating a tag-based data structure storing metadata corresponding to a

software update available for installation on the client computer, wherein the tag-based

25 elements are text-based elements, the tag-based data structure comprising:

an identifier element that uniquely identifies the software update;

-30

a relationship element storing relationships the software update has

to other software updates, the relationship element including bundle information that

identifies a plurality of software updates that must be installed coextensively, wherein the

plurality of software updates are joined together with 'Boolean operators into a logical

5 statement, such that evaluation of the logical statement determines the suitability of the

plurality of software updates for installation on the client computer; and

at least one additional clement of the following elements:

a property element storing general properties relating to the software

update including update handler information identifying an update handler for installing

10 the identified software update on the client computer;

a file element identifying the identified software update's payload

and information describing to the software update's payload; and

a handler element storing information for executing the update

handler identified in the property elements for installing the identified software update on

15 the client computer; and

providing the tag-based data structure to the client computer.

4. The method of any one of Claims 1 to 3, wherein the tag-based data

structure is an XML data structure.

5. The method of any one of Claims I to 4, wherein the identifier element

20 includes a unique identifier that uniquely identifies the software update, and a revision

number associated with the software update.

6. The method of any one of Claims 1 to 5, wherein the relationship element

includes prerequisite information that identifies another software update that must be

installed before the identified software update is installed.

PAPESMPM2,032,)nhspx.doc.2um l

-31

7. The method of Claim 6, wherein the relationship element further includes

information identifying a plurality of software updates joined together with Boolean

operators into a logical statement, such that the evaluation of the logical statement

determines the suitability of the identified software update for installation on the client

5 computer.

8. The method of any one of Claims 1 to 7, wherein the relationship element

includes supersedence information that identifies at least one other software update that is

superseded by the identified software update.

9. The method of any one of Claims 1 to 8, wherein the relationship element

10 includes prerequisite information that identifies other software updates that must be

installed before the identified software update is installed, bundle information that

identifies a plurality of software updates that must be installed coextensively, and

supersedence information that identifies at least one other software update that is

superseded by the identified software update.

15 10. The method of any one of Claims I to 9, wherein the file element includes

information identifying the software update's payload for patching existing files on the

client computer.

11. The method of any one of Claims 1 to 10, wherein the file element includes

information identifying the software update's payload for replacing existing files on the

20 client computer,

12. The method of Claim 10 or 11, wherein the file element further includes

information identifying the software update's payload for patching existing files on the

client computer and replacing existing files on the client computer.

P DPER'SrM .jS2NpM322 3. Spkd.25ISQJArJ

-32

13. A computer-implemented method for communicating update metadata

corresponding to a software update to a client computer, substantially as hereinbefore

described with reference to the accompanying drawings.

5 14. A computer-readable storage medium having stored thereon program

instructions for executing the method of any one of claims 1 to 13.

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

20
05

20
03

28

 2
7

Ja
n

20
05

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

