wo 20177222784 A1 I 00000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 December 2017 (28.12.2017)

(10) International Publication Number

WO 2017/222784 Al

WIPO I PCT

(51) International Patent Classification:

GOG6F 11/10 (2006.01)

(21) International Application Number:

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,

PCT/US2017/035713 KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME, MG,
(22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
02 June 2017 (02.06.2017) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
- . SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available). ARIPO (BW, GH,
15/192,981 24 June 2016 (24.06.2016) US GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
. UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant: QU{&LCOMM IN(?ORPORATED [US/US]; TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
A”leN: Interpatlonal ¥P Aflmlmstranon, 5775 Morehouse EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Drive, San Diego, California 92121-1714 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM.
(72) Inventor: PLONDKE, Erich James; QUALCOMM IN- TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,

74

CORPORATED, 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US).

Agent: CICCOZZI, John L. et al.; Muncy, Geissler, Olds
& Lowe, P.C., 4000 Legato Road, Suite 310, Fairfax, Vir-

KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a

ginia 22033 (US).

(81) Designated States (unless otherwise indicated, for every

patent (Rule 4.17(i1))
as to the applicant'’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

kind of national protection available). AE, AG, AL, AM,

(54) Title: PARITY FOR INSTRUCTION PACKETS

100,

AN

150

156

PROCESSOR

i STORAGL/
MLEMORY NETWORK

154

108
INSTRUCTION CACITE

| T T T
| | |
10267 102¢

Cache ling

102a 102d

|- 104
110

PROCESSOR

114
PARITY CHECK

112

EXECUTION
PIPELINE

I{ I]g E§1E§2 e \ﬁ‘B

FIG. |

(57) Abstract: Systems and method of error checking for instructions method of
error checking for instructions include an assembler for creating an instruction
packet with one or more instructions, determining if a parity of the instruction
packet matches a predesignated parity, and if the parity of the instruction pack-
et does not match the predesignated parity, using a bit of the instruction packet
to change parity of the instruction packet to match the predesignated parity. The
instruction packet with the predesignated parity is stored in a memory, and may
eventually be retrieved by a processor for execution. If there is an etror in the in-
struction packet retrieved from the memory, the error is detected based on com-
paring the parity of the instruction packet to the predesignated parity.

[Continued on next page]

WO 20177222784 A1 | NI/ 0 0 ORI

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2017/222784 PCT/US2017/035713

[0001]

[0002]

[0003]

[0004]

[0005]

PARITY FOR INSTRUCTION PACKETS

Field of Disclosure
Disclosed aspects relate to instruction processing in a processing system. More
specifically, exemplary aspects relate to the use of parity bits for detecting errors in

instruction packets.

Background

In a conventional architecture of a processor, the processor can receive one or more
instructions in a processing cycle, from a storage location such as an instruction cache
or main memory. In each processing cycle, the processor can execute one or more
instructions in parallel in one or more execution units. Bit flips or errors can occur in
any instruction of the one or more instructions, in any of the stages or components
involved in the instruction’s lifecycle, such as storage, transfer, execution, etc. of the
instruction.

For example, the storage locations such as caches or main memory can be implemented
using technology such as static random access memory (SRAM), double data rate
(DDR) memory, etc., which may be prone to errors. Bit flips can also be introduced in
the various network buses and wires involved in transferring the instruction from the
storage locations to the processor’s execution units. Furthermore, the execution units
may also contribute to logic errors while operating on the instruction.

Adding error checks in each stage of the instruction’s lifecycle may be expensive and in
some cases, impractical. For example, adding parity information to each cache line of
an instruction cache or each storage location in main memory/DDR may be expensive,
and even if errors in the storage locations can be detected (and in some cases,
corrected), bit flips may be introduced downstream in the processing of the instruction.
Furthermore, it may not be possible to add error checking mechanisms for each of the
buses which transport the instruction, or for each execution unit which operates on the
instruction. Therefore, pinpointing the source of an error may be difficult, and if the
errors are left unchecked, the errors can result in various exceptions or system faults.
Accordingly, there is a corresponding need for effective error checking mechanisms

which can provide an end-to-end solution for errors introduced in any stage of an

WO 2017/222784 PCT/US2017/035713

[0006]

[0007]

[0008]

instruction’s lifecycle and in any component storage locations or transport between
storage locations for the instruction.

SUMMARY
Exemplary aspects of the invention are directed to systems and methods for error
checking for instructions. An assembler creates an instruction packet with one or more
instructions, determines if a parity of the instruction packet matches a predesignated
parity, and if the parity of the instruction packet does not match the predesignated
parity, uses a bit of the instruction packet to change parity of the instruction packet to
match the predesignated parity. The instruction packet with the predesignated parity is
stored in a memory, and may eventually be retrieved by a processor for execution. If
there is an error in the instruction packet retrieved from the memory, the error is
detected based on comparing the parity of the instruction packet to the predesignated
parity. In this manner, end-to-end error checking capability is provided for the
instruction packet.
Accordingly, an exemplary aspect is directed to a method of error checking for
instructions, the method comprising: creating an instruction packet with one or more
instructions, determining if a parity of the instruction packet matches a predesignated
parity, and if the parity of the instruction packet does not match the predesignated
parity, using a bit of the instruction packet to change parity of the instruction packet to
match the predesignated parity. The instruction packet with the predesignated parity is
stored in a memory, and if there is an error in the instruction packet retrieved from the
memory, the error is determined based on comparing the parity of the instruction packet
to the predesignated parity.
Another exemplary aspect is directed to an apparatus comprising a processor configured
to create an instruction packet with one or more instructions, determine if a parity of the
instruction packet matches a predesignated parity, and if the parity of the instruction
packet does not match the predesignated parity, use a bit of the instruction packet to
change parity of the instruction packet to match the predesignated parity. A memory is
configured to store the instruction packet with the predesignated parity and if there is an
error in the instruction packet retrieved from the memory, the error is determined based
on comparing the parity of the instruction packet to the predesignated parity in a parity

check block of the processor.

WO 2017/222784 PCT/US2017/035713

[0009]

[0010]

[0011]

[0012]
[0013]
[0014]

[0015]

Yet another exemplary aspect is directed to an apparatus comprising: means for creating
an instruction packet with one or more instructions, means for determining if a parity of
the instruction packet matches a predesignated parity, and if the parity of the instruction
packet does not match the predesignated parity, means for using a bit of the instruction
packet to change parity of the instruction packet to match the predesignated parity. The
apparatus further comprises means for storing the instruction packet with the
predesignated parity, and if there is an error in the instruction packet retrieved from the
memory, means for determining the error based on a comparison of the parity of the
instruction packet to the predesignated parity.

Yet another exemplary aspect is directed to a non-transitory computer readable storage
medium comprising code, which, when executed by a processor, causes the processor to
perform a method of error checking for instructions, the non-transitory computer
readable storage medium comprising code for creating an instruction packet with one or
more instructions, code for determining if a parity of the instruction packet matches a
predesignated parity, if the parity of the instruction packet does not match the
predesignated parity, code for using a bit of the instruction packet to change parity of
the instruction packet to match the predesignated parity, and code for storing the
instruction packet with the predesignated parity in a memory. The non-transitory
computer readable storage medium further comprises code for determining if there is an
error in the instruction packet retrieved from the memory, based on comparing the

parity of the instruction packet to the predesignated parity.

BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of aspects of the
invention and are provided solely for illustration of the aspects and not limitation
thereof.
FIG. 1 illustrates a processing system according to an aspect of this disclosure.
FIG. 2 illustrates example instruction packets according aspects of this disclosure.
FIG. 3 illustrates a method of error checking for instructions according to an aspect of
this disclosure.
FIG. 4 illustrates an exemplary computing device, in which an aspect of the disclosure

may be advantageously employed.

WO 2017/222784 PCT/US2017/035713

[0016]

[0017]

[0018]

[0019]

DETAILED DESCRIPTION
Aspects of the invention are disclosed in the following description and related drawings
directed to specific aspects of the invention. Alternate aspects may be devised without
departing from the scope of the invention. Additionally, well-known elements of the
invention will not be described in detail or will be omitted so as not to obscure the
relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or
illustration.” Any aspect described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects. Likewise, the term “aspects
of the invention™ does not require that all aspects of the invention include the discussed
feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular aspects only and
is not intended to be limiting of aspects of the invention. As used herein, the singular
forms "a", "an" and "the" are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further understood that the terms
"comprises", "comprising,", "includes" and/or "including", when used herein, specify
the presence of stated features, integers, steps, operations, elements, and/or components,
but do not preclude the presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups thereof.
Further, many aspects are described in terms of sequences of actions to be performed
by, for example, elements of a computing device. It will be recognized that various
actions described herein can be performed by specific circuits (e.g., application specific
integrated circuits (ASICs)), by program instructions being executed by one or more
processors, or by a combination of both. Additionally, these sequence of actions
described herein can be considered to be embodied entirely within any form of
computer readable storage medium having stored therein a corresponding set of
computer instructions that upon execution would cause an associated processor to
perform the functionality described herein. Thus, the various aspects of the invention
may be embodied in a number of different forms, all of which have been contemplated

to be within the scope of the claimed subject matter. In addition, for each of the aspects

WO 2017/222784 PCT/US2017/035713

[0020]

[0021]

[0022]

described herein, the corresponding form of any such aspects may be described herein
as, for example, “logic configured to” perform the described action.

In exemplary aspects of this disclosure, mechanisms for error checks for instructions
may be built in to the instructions themselves, (wherein it is recognized that
conventional instructions do not have error checking capabilities such as parity bits built
in or encoded in the instructions). For example, considering an instruction packet which
comprises a group or block of one or more instructions, there is a high likelihood of
there being some unused bits in the instruction packet. The unused bits may be
architecturally reserved bits, unused bits in portions of an instruction word or cache line
which are not used up by the block of instructions, bit patterns which may be ignored by
hardware/execution units, etc. One or more of the unused bits in an instruction packet
can be used for the purposes of error detection in exemplary aspects. For example, an
unused bit may be repurposed as a parity bit (e.g., by an assembler) i.e., changed to
make up the parity of the instruction packet to match a predesignated parity, e.g., odd or
even. The instruction packet may then be stored in memory (e.g., main memory such as
DDR, Flash memory, random access memory (RAM), etc.), and subsequently supplied
to an instruction cache, for example, from which the instruction packet may be retrieved
for execution by a processor. If the parity of the instruction packet does not match the
predesignated parity (e.g., as detected by hardware) at any point in the above processes,
then it may be determined that the instruction packet has an error.

Based on the parity created from an unused bit in the above manner, if an error is
detected in an instruction packet (i.e. parity of the instruction packet does not match the
predesignated parity), then various courses of action are possible. In some cases, the
instruction packet may be marked as having an error and be recorded for future analysis
or recovery.

In some cases, even if an instruction packet does not have unused bits, it may still be
possible to incorporate a parity bit in the instruction packet according to exemplary
aspects. For example, an instruction packet may comprise instructions in the form of a
Very Long Instruction Word (VLIW) as known in the art, wherein, two or more
instructions are provided together as a VLIW packet. The two or more instructions in
VLIW packet are designed to be executed in parallel. If there are one or more unused

bits in the VLIW packet, then an unused bit of the one or more unused bits may be used

WO 2017/222784 PCT/US2017/035713

[0023]

[0024]

[0025]

[0026]

to change the VLIW packet’s parity to the predesignated or expected parity (e.g., odd or
even). However, if there are no unused bits, but if there are less than the maximum
number of instructions that are possible to be grouped into a single VLIW packet, then a
no-operation (NOP) field (i.e., a dummy instruction which is not executed) can be
added to the VLIW packet, and a bit of the NOP field can be used as a parity bit. Other
architecturally reserved fields, such as bit patterns which may designate the end of a
VLIW packet, for example, can also be used for creating a parity bit in cases where
unused bit fields are not readily available.

The above and other exemplary aspects will now be discussed with reference to the
figures below. The example of a VLIW packet will be used to explain some exemplary
aspects, but it will be understood that aspects of this disclosure can be easily extended
to any other instruction format for an instruction packet comprising one or more
instructions.

With reference now to FIG. 1, a schematic representation of an exemplary processing
system 100 is illustrated. As shown, processing system 100 can include processor 150
which can comprise assembler 152 used for creating parity in instruction packets
according to aspects of this disclosure. Assembler 152 may be implemented in software
and used for assembling instructions to be executed by a processor such as processor
110. Although processor 150 and processor 110 have been shown separately, this is
merely for the sake of illustration, and in various implementations, processors 150 and
110 may be the same processor or processing unit which executes an assembler as well
as comprises execution units for downstream execution of instructions generated by the
assembler.

As shown, instructions and/or instruction packets generated by assembler 152 may pass
through intermediate networks/storage media (generally identified by the reference
numeral 154) and be stored in memory 156, which may be a main memory (e.g., DDR),
Flash memory, RAM, etc. From memory 156, instructions may be provided to
instruction cache 108 (e.g., based on various demand-based fetches, prefetches, or
combinations thereof, as known in the art).

Processor 110 is shown to be coupled to instruction cache 108. Processor 110 may be
configured to receive instructions from instruction cache 108 and execute the

instructions using, for example, execution pipeline 112. One or more other caches such

WO 2017/222784 PCT/US2017/035713

[0027]

[0028]

[0029]

as a data cache, level 2 (L2) caches, etc., as known in the art, may also be present in
processing system 100, but these have also not been illustrated, for the sake of
simplicity.

In processor 110, execution pipeline 112 is shown, which may include one or more
pipelined stages, representatively illustrated as: an instruction fetch (IF) stage, an
instruction decode (ID) stage, one or more execution (EX1, EX2, etc.) stages, and a
write back (WB) stage. Skilled persons will recognize numerous modifications and
additions to execution pipeline 112, as known in the art.

In one aspect, instruction cache 108 can comprise several cache lines, of which cache
line 102 has been representatively shown. Cache line 102 can comprise one or more
instructions or an instruction packet formed by one or more instructions. It will be
understood that more than one instructions or instruction packets, or combinations
thereof can be included in a single cache line; and moreover, an instruction or an
instruction packet may span more than one cache lines. However, the various
arrangements of instructions and/or instruction packets in one or more cache lines have
not been exhaustively described for the sake of simplicity of disclosure, keeping in
mind that disclosed aspects are applicable to the various possible arrangements of
instructions and/or instruction packets in one or more cache lines. As shown, cache line
102 includes a set of instructions 102a-d, which can be VLIW instructions. Instructions
102a-d can occupy lanes A-D respectively, wherein execution pipeline 112 may be
configured to execute one instruction at a time, or in the case of VLIW instructions, act
on two or more instructions in two or more lanes A-D simultaneously or in parallel.
Instructions 102a-d may be provided to execution pipeline 112 through various
interconnections and buses which are collectively represented as bus 104 in FIG. 1.

As can be appreciated, bit errors or bit flips can arise in any instruction of instructions
102a-d, wherein these errors may arise in their storage location, e.g., in instruction
cache 108; in their transport, e.g., on bus 104; or during their execution in execution
pipeline 112. The collective parity of a VLIW packet comprising instructions 102a-d is
expected to match a predesignated parity (e.g., odd or even parity). In an exemplary
aspect, if the collective parity of the VLIW packet comprising instructions 102a-d did
not originally match the predesignated parity, then the parity of the VLIW packet may

have been changed (e.g., by assembler 152 or other software) to match the

WO 2017/222784 PCT/US2017/035713

[0030]

[0031]

predesignated parity (e.g., odd or even parity) by using unused bits. Various examples
of such unused bits which can be used for changing the parity of the VLIW packet to
match the predesignated parity in this manner, will be explained with reference to FIG.
2.

In FIG. 1, the block designated as parity check 114 may be provided to check if the
parity of the VLIW packet deviates from the predesignated parity. As shown, the
instructions 102a-d of the VLIW packet may be supplied from any one of the stages of
execution unit to parity check 114 for various implementations. If the parity of the
VLIW packet deviates from the predesignated parity, then parity check 114 may trigger
an error. As may be understood by one skilled in the art, when using a single bit for
parity, a single bit error may be detected. Thus, parity check 114 may include logic for
detecting a single bit error based on parity of instructions supplied, for example, from
execution unit 112. Similar parity checking logic can be added to any other component
or stage of processing system 100 to check for parity and errors, if any, at any point in
the lifecycle of instructions such as instructions 102a-d. Although not discussed in
detail herein, it is possible to extend the above aspects of error checking for single bit
errors to more complex error detection and, in some cases, error correction (e.g., by
implementing error correction code (ECC)) which can detect and in some cases, also
correct errors in more than one bit. Such complex error detection and correction
techniques may be applicable to cases where multiple unused bits are found within an
instruction packet and used by assembler 152 for creating ECC bits, for example.

With reference now to FIG. 2, an instruction packet designated by the reference numeral
200 is shown to comprise instructions 102a-d of cache line 102. Instruction packet 200
can be a VLIW packet as discussed above in some examples. FIG. 2 shows examples
where bits of instruction packet 200 (e.g., unused bits or reserved bits repurposed as
parity bits) can be used for parity. For instruction packet 200, assembler 152 may
determine, if the parity of instruction packet 200 is already the predesignated parity
(e.g., even or odd), and if so, store instruction packet 200 in memory 156, for example,
without further modifications for parity. If the parity of instruction 200 is not the
predesignated parity, then assembler 152 may use a bit of instruction packet 200 (e.g.,
an unused bit or a reserved field repurposed for designating parity) as a parity bit to

make up the parity of instruction packet 200 to match the predesignated parity and store

WO 2017/222784 PCT/US2017/035713

[0032]

[0033]

[0034]

[0035]

instruction packet 200 with the expected parity in memory 156. At any point where
instruction packet 200 is tested for error correctness downstream (e.g., in parity check
114), if the parity of instruction 200 does not match the predesignated parity, then
instruction packet 200 is determined to have an error.

If an error is determined in this manner, the error may be logged for future analysis, or
an exception can be generated. Corrective actions following such error determination
are not explained in detail in this disclosure, and any suitable action may be pursued. It
will be appreciated that unused bits of instruction packet 200 which are used for parity
may be ignored anyway (since they are unused), and so any modifications to these
unused bits for making up the parity of instruction packet 200, would not affect the
normal operation/execution of instructions 102a-d of instruction packet 200.

Several examples of bits of instruction packet 200 which may be used for parity will
now be discussed. In one example, one of the instructions, e.g., instruction 102a may
have one or more unused bits. For example, instruction 102a may have an encoding
which does not require all bits available in the instruction space (e.g., 16 or 32 bits)
available to instruction 102a. Bit 202 may be such an unused bit in instruction 102a.
Assembler 152 may modify an unused bit to make the parity of instruction packet 200
match the predesignated parity if the parity of instruction packet 200 does not already
match the predesignated parity.

In another example, assembler 152 may be able to take advantage of a reserved field for
use as a parity bit. In this regard, unused encodings of instructions may be repurposed
for use as a parity bit. For example, if there are three flavors of an instruction e.g., three
flavors of a shift instruction, such as a logical shift right, an arithmetic shift right, and a
shift left, then these three flavors may be distinguished based on three different
encodings (e.g., “007”, “01”, and “10” of a 2-bit field in an operation code for shift
instructions); but only one of these encodings have a “1” in the left or most significant
bit position of the 2-bit field, which means that the right or least significant bit position
of the 2-bit field may be repurposed for use in parity, when the most significant bit
position is “17.

In another example, the assembler may realize that none of the instructions selected to
form an instruction packet may have unused bits which may be used for parity. In such

a case, the assembler may introduce a no-operation (NOP) as one of the instructions.

WO 2017/222784 PCT/US2017/035713

[0036]

[0037]

[0038]

10

The NOP may be a dummy instruction which does not get executed. As shown,
instruction 102¢ may be created as NOP 204 in one example, where all bits of
instruction 102¢ are essentially unused. Thus, any of the bits of instruction 102¢ can be
used for parity in this case.

In some examples, encodings specific to VLIW packet formats, e.g., for designating
size of instructions, number of instructions, instruction boundaries, etc., of instructions
of a VLIW packet may be used by assembler 152 for creating a parity bit. Considering
the representation of instruction packet 200 designated as VLIW packet 200a in FIG. 2,
in the field for instruction 102a may be a prefix comprising information related to the
instructions which follow, e.g., instructions 1-3 in the fields for instructions 102b-d.
The prefix may include information to convey the number of following instructions in
VLIW packet 200a, corresponding instruction lengths of instructions 1-3, etc., but may
not require all available bits of instruction 102a to convey this information. Therefore,
assembler 152 may be able to use one or more bits of the prefix for parity designation of
VLIW packet 200a.

In the representation of instruction packet 200 as VLIW packet 200b, a different style of
encoding is shown, wherein fields 204a-d of corresponding instructions 102a-d are used
to indicate whether VLIW packet 200b keeps going (“K” for fields 204a-d), i.e.,
instructions of VLIW packet 200b are to follow the corresponding instruction, or
whether VLIW packet 200b stops (“S” for field 204d). If two bits are available for each
of these fields 204a-d, but in the above example, one bit may be sufficient to distinguish
between the two possibilities (e.g., “K” or “S™), the other bit of one or more of fields
204a-d may be used by assembler 152 for parity designation of VLIW packet 200b.
Accordingly, it is seen that assembler 152 may use any one or more of the above
options or combinations or variations thereof for creating a parity bit from an unused bit
or repurposing a bit of instruction packet 200 for designating parity of instruction
packet 200. Therefore, it will be appreciated that aspects include various methods for
performing the processes, functions and/or algorithms disclosed herein. For example,
as illustrated in FIG. 3, an aspect can include a method 300 of error checking for
instructions (e.g., performed by assembler 152 for execution of the instructions in

processor 110).

WO 2017/222784 PCT/US2017/035713

[0039]

[0040]

[0041]

[0042]

[0043]

[0044]

11

As shown, Block 302 can comprise creating an instruction packet with one or more
instructions (e.g., creating instruction packet 200 comprising instructions 102a-d in
assembler 152, wherein assembler 152 may be executed by the same processor 110 or
by a different processor 150, without limitation, and wherein instruction packet 200
may be a VLIW packet).

In Block 304, method 300 can comprise determining if a parity of the instruction packet
matches a predesignated parity (e.g., assembler 152 can determine if parity of
instruction packet 200 matches a predesignated even or odd parity).

If in Block 304, it is determined that the parity of the instruction packet does not match
the predesignated parity, then in Block 306, using a bit of the instruction packet to
change parity of the instruction packet to match the predesignated parity. For example,
assembler 152 may use a bit of instruction packet 200 (e.g., an unused bit, a bit of a
NOP field, a reserved bit, etc.) as a parity bit to change parity of the instruction packet
to match the predesignated parity.

In Block 308, the instruction packet is stored, e.g., in memory 156, with a parity which
matches the predesignated parity (either after performing the step in Block 306, or by
skipping Block 306 and reaching Block 308 from Block 304 if it is determined that the
parity of the instruction packet already matches the predesignated parity).

From Block 308, method 300 may involve subsequent stages of storing instruction
packet 200 in instruction cache 108, for example, and from there, being fetched,
decoded, and executed in execution pipeline 112 of processor 110, for example. In any
of these stages, parity of instruction packet 200 may be checked (e.g., by parity check
114 for IF, ID, EX1, EX2, WB, etc., stages of execution pipeline 112 of processor 110).
If the parity does not match the predesignated parity, then an error is determined, which
may be logged for future analysis, or an exception can be generated. Any appropriate
corrective actions (beyond the scope of this disclosure) may also be implemented if an
error is determined.

Referring now to FIG. 4, a block diagram of a computing device that is configured
according to exemplary aspects is depicted and generally designated 400. Computing
device 400 includes processor 110 of FIG. 1. In exemplary aspects, processor 110 may
execute an assembler such as assembler 152 and be configured to perform method 300

of FIG. 3. Processor 110 may be communicatively coupled to memory 156, with

WO 2017/222784 PCT/US2017/035713

[0045]

[0046]

[0047]

[0048]

12

instruction cache 108 representatively shown in between memory 156 and processor
110, as discussed with reference to FIG. 1. Execution pipeline 112 and parity check
114 are also shown in processor 110, although the details of execution pipeline 112
shown in FIG. 1 have been omitted from this view for the sake of clarity. Instruction
packet 200 is shown in instruction cache, and may belong to cache line 102. Various
other details, such as one or more caches and other interconnections which may be
present between processor 110 and memory 156 have also not been illustrated in FIG. 4
for the sake of simplicity.

In some aspects, computing device 400 of FIG. 4 may be configured as a wireless
communication device, such as a mobile device or user terminal. Thus, in some aspects,
FIG. 4 may include some optional blocks showed with dashed lines. For example,
computing device 400 may optionally include display 428 and display controller 426,
with display controller 426 coupled to processor 110 and to display 428; coder/decoder
(CODEC) 434 (e.g., an audio and/or voice CODEC) coupled to processor 110; speaker
436 and microphone 438 coupled to CODEC 434; and wireless controller 440 (which
may include a modem) coupled to wireless antenna 442 and to processor 110.

In a particular aspect, where one or more of these optional blocks are present, processor
110, display controller 426, memory 432, CODEC 434, and wireless controller 440 can
be included in a system-in-package or system-on-chip device 422. Input device 430,
power supply 444, display 428, input device 430, speaker 436, microphone 438,
wireless antenna 442, and power supply 444 may be external to system-on-chip device
422 and may be coupled to a component of system-on-chip device 422, such as an
interface or a controller.

It should be noted that although FIG. 4 depicts a computing device (which may be used
for wireless communications in some aspects, as noted above), processor 110 and
memory 432 may also be integrated into a set top box, a music player, a video player, an
entertainment unit, a navigation device, a personal digital assistant (PDA), a fixed
location data unit, a computer, a laptop, a tablet, a communications device, a mobile
phone, a server, or other similar devices.

Those of skill in the art will appreciate that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,

instructions, commands, information, signals, bits, symbols, and chips that may be

WO 2017/222784 PCT/US2017/035713

[0049]

[0050]

[0051]

[0052]

13

referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

Further, those of skill in the art will appreciate that the various illustrative logical
blocks, modules, circuits, and algorithm steps described in connection with the aspects
disclosed herein may be implemented as electronic hardware, computer software, or
combinations of both. To clearly illustrate this interchangeability of hardware and
software, various illustrative components, blocks, modules, circuits, and steps have been
described above generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement the
described functionality in varying ways for each particular application, but such
implementation decisions should not be interpreted as causing a departure from the
scope of the present invention.

The methods, sequences and/or algorithms described in connection with the aspects
disclosed herein may be embodied directly in hardware, in a software module executed
by a processor, or in a combination of the two. A software module may reside in RAM
memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers,
hard disk, a removable disk, a CD-ROM, or any other form of storage medium known
in the art. An exemplary storage medium is coupled to the processor such that the
processor can read information from, and write information to, the storage medium. In
the alternative, the storage medium may be integral to the processor.

Accordingly, an aspect of the invention can include a computer readable media
embodying a method for error detection in instruction packets using parity bits.
Accordingly, the invention is not limited to illustrated examples and any means for
performing the functionality described herein are included in aspects of the invention.
While the foregoing disclosure shows illustrative aspects of the invention, it should be
noted that various changes and modifications could be made herein without departing
from the scope of the invention as defined by the appended claims. The functions, steps
and/or actions of the method claims in accordance with the aspects of the invention

described herein need not be performed in any particular order. Furthermore, although

WO 2017/222784 PCT/US2017/035713

14

elements of the invention may be described or claimed in the singular, the plural is

contemplated unless limitation to the singular is explicitly stated.

WO 2017/222784 PCT/US2017/035713

15
CLAIMS
WHAT IS CLAIMED IS:
1. A method of error checking for instructions, the method comprising:

creating an instruction packet with one or more instructions;

determining if a parity of the instruction packet matches a predesignated parity;

if the parity of the instruction packet does not match the predesignated parity,
using a bit of the instruction packet to change parity of the instruction packet to match
the predesignated parity; and

storing the instruction packet with the predesignated parity in a memory.

2. The method of claim 1, further comprising determining if there is an error in the
instruction packet retrieved from the memory, based on comparing the parity of the

instruction packet to the predesignated parity.

3. The method of claim 2, further comprising determining there is an error in the

instruction packet and generating an exception.

4. The method of claim 2, further comprising determining there is an error in the

instruction packet and recording the error for analysis in a debugger.

5. The method of claim 2, comprising determining there is an error in the

instruction packet during execution of the instruction packet in a processor.

6. The method of claim 1, wherein the instruction packet is a very long instruction
word (VLIW) packet.
7. The method of claim 6, further comprising determining that the VLIW packet

comprises less than a maximum possible number of instructions, inserting a no-
operation (NOP) field in the VLIW packet, and using a bit of the NOP field as the bit of

the instruction packet to change parity of the instruction packet.

WO 2017/222784 PCT/US2017/035713

16

8. The method of claim 1, wherein the bit belongs to a field of the VLIW packet,

the field used for conveying information related to instructions of the VLIW packet.

9. The method of claim 1, wherein the bit is an unused bit of the instruction packet.

10. The method of claim 1, wherein the predesignated parity is one of an odd parity

or an even parity.

11. An apparatus comprising:
a processor configured to:
create an instruction packet with one or more instructions;
determine if a parity of the instruction packet matches a
predesignated parity; and
if the parity of the instruction packet does not match the
predesignated parity, use a bit of the instruction packet to change parity
of the instruction packet to match the predesignated parity; and

a memory configured to store the instruction packet with the predesignated

parity.

12. The apparatus of claim 11, wherein a parity check block of the processor is
configured to determine if there is an error in the instruction packet retrieved from the
memory, based on a comparison of the parity of the instruction packet to the

predesignated parity.

13. The apparatus of claim 12, wherein the processor is further configured to

generate an exception if an error is detected.

14. The apparatus of claim 12, wherein the processor is further configured to record

the instruction packet for future analysis in a debugger if an error is detected.

15. The apparatus of claim 11, wherein the instruction packet is a very long

instruction word (VLIW) packet.

WO 2017/222784 PCT/US2017/035713

17

16. The apparatus of claim 15, wherein the assembler is configured to determine that
the VLIW packet comprises less than a maximum possible number of instructions, and
insert a no-operation (NOP) field in the VLIW packet, wherein a bit of the NOP field is
used as the bit of the instruction packet to match the predesignated parity.

17. The apparatus of claim 11, wherein the parity bit belongs to a field of the VLIW
packet, the field used for conveying information related to instructions of the VLIW

packet.

18. The apparatus of claim 11, wherein the parity bit is an unused bit of the

instruction packet.

19. The apparatus of claim 11, wherein the predesignated parity is one of an odd

parity or an even parity.

20. The apparatus of claim 10 integrated into a device selected from the group
consisting of a set top box, music player, video player, entertainment unit, navigation
device, communications device, personal digital assistant (PDA), fixed location data

unit, and a computer.

21. An apparatus comprising:

means for creating an instruction packet with one or more instructions;

means for determining if a parity of the instruction packet matches a
predesignated parity; and

if the parity of the instruction packet does not match the predesignated parity,
means for using a bit of the instruction packet to change parity of the instruction packet
to match the predesignated parity; and

means for storing the instruction packet with the predesignated parity.

WO 2017/222784 PCT/US2017/035713

18

22. The apparatus of claim 21, further comprising means for determining if there is
an error in the instruction packet retrieved from the means for storing, based on a

comparison of the parity of the instruction packet to the predesignated parity.

23. The apparatus of claim 22, further comprising means for generating an exception

if an error 1s detected.

24, The apparatus of claim 21, wherein the predesignated parity is one of an odd

parity or an even parity.

25. A non-transitory computer readable storage medium comprising code, which,
when executed by a processor, causes the processor to perform a method of error
checking for instructions, the non-transitory computer readable storage medium
comprising:

code for creating an instruction packet with one or more instructions;

code for determining if a parity of the instruction packet matches a
predesignated parity;

if the parity of the instruction packet does not match the predesignated parity,
code for using a bit of the instruction packet to change parity of the instruction packet to
match the predesignated parity; and

code for storing the instruction packet with the predesignated parity in a

memory.

26. The non-transitory computer readable storage medium of claim 25, further
comprising code for determining if there is an error in the instruction packet retrieved
from the memory, based on comparing the parity of the instruction packet to the

predesignated parity.

27. The non-transitory computer readable storage medium of claim 26, further
comprising code for determining there is an error in the instruction packet and code for

generating an exception.

WO 2017/222784 PCT/US2017/035713

19

28. The non-transitory computer readable storage medium of claim 26, further
comprising code for determining there is an error in the instruction packet and code for

recording the error for analysis in a debugger.

29. The non-transitory computer readable storage medium of claim 25, wherein the

bit is an unused bit of the instruction packet.

30. The non-transitory computer readable storage medium of claim 25, wherein the

predesignated parity is one of an odd parity or an even parity.

WO 2017/222784 PCT/US2017/035713

1/4

AN 150

100

156
PROCESSOR
152

STORAGE/

MEMORY NETWORK

ASSEMBLER

154

v 108
INSTRUCTION CACHE

102

I | |
I I | Cache line

102a - 1026”7 102¢ - 102d -

104
110

PROCESSOR

114

PARITY CHECK

i A

112

EXECUTION
PIPELINE

> Wy O

Té Ig E§1E§2 """" \JB

FIG. 1

WO 2017/222784 PCT/US2017/035713

2/4

200
\'\ 202 |<_204_’|

1022 7 1026”7 102¢~ 102d 7

VLIW packet
200a

AW

I | |
prefix | Instrl | Instr2 | Instr2
102a - 102t 102¢” 102d -

VLIW packet
200b

AW

~204a ~204b ~204c ~204d

| |
Instr K| Instr K: Instr K| Instr |S
102a 7 100”7 102¢” 102d 7

FIG. 2

WO 2017/222784 PCT/US2017/035713

3/4

300

AW

/3 02

Creating an instruction packet with one or more instructions

Does a parity of the instruction packet match a predesignated parity?

/3 06

Use a bit of the instruction packet to change parity of the instruction packet
to match the predesignated parity

/308

Store the instruction packet with the predesignated parity

FIG. 3

PCT/US2017/035713

WO 2017/222784

4/4

00¥

AT1ddNS ¥ 'DIA
MIMOd
b
| |
_ -——————
_ - < < ANOHJOMOIN _
L — — L — — —_——
i | v
0dd00
ANITHdId] | s
NOILNDIXH | “l - |_ MAIVAIS “
| I L e — —
zil
] ocr-
per
MOFHD
AINEVd
p11- | Tyamioumnoo | |
01— L wmumqlmm;w _ |
Ot _
oz | | | ______ _
| gHOVO || ¥gTI0¥INOD | _
Aoy | | NOUOTHISHI AOSSAIOUd | Avidsia_ | |
951~ 801 or1 oty | _
| I
} T I
ol T A
\\ dDIATA LNdNI | _Avidsia | l ﬂ_. A
sy~ 8T cry

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/035713

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6Fl11/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figure 1

X US 7 302 619 B1 (TOMPKINS JOSEPH [US] ET 1-30
AL) 27 November 2007 (2007-11-27)
column 1, Tine 49 - column 7, line 19;

US 2008/256419 Al (WOJEWODA IGOR [US] ET
AL) 16 October 2008 (2008-10-16)
page 2, paragraph 16-19; claims 13,15;

1-30

figures 1,3

6 May 2008 (2008-05-06)
column 1, lines 7-12

figures 1,4,5

column 6, Tine 7 - column 7, line 39
column 11, Tine 14 - column 12, line 23;

X US 7 370 230 Bl (FLAKE LANCE [US]) 1-30

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 October 2017

Date of mailing of the international search report

26/10/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bauer, Regine

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/035713
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7302619 Bl 27-11-2007 NONE
US 2008256419 Al 16-10-2008 CN 101657797 A 24-02-2010
EP 2147377 Al 27-01-2010
KR 20100015775 A 12-02-2010
TW 200907662 A 16-02-2009
US 2008256419 Al 16-10-2008
WO 2008127984 Al 23-10-2008
UsS 7370230 Bl 06-05-2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

