
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT 0

(11) Application No. AU
FFICE

2009204319 B2

(54) Title
Multiple dimensioned database architecture

(51) International Patent Classification(s)
G06F 17/30 (2006.01)

(21) Application No: 2009204319 (22) Date of Filing: 2009.01.06

(87) WIPO No: W009/089190

(30) Priority Data

(31) Number
11/970,251

(32) Date
2008.01.07

(33) Country
US

(43)
(44)

Publication Date:
Accepted Journal Date:

2009.07.16
2012.07.26

(71) Applicant(s)
Ori Herrnstadt

(72) Inventor(s)
Herrnstadt, Ori

(74) Agent / Attorney
Patent Attorney Services, 26 Ellingworth Parade, Box Hill, VIC, 3128

(56) Related Art
US5819251 A
US5864842 A
US7080081 B2
US7287022 B2
US7321907 B2
US7734581 B2
US2007/0033212 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 July 2009 (16.07.2009)

(10) International Publication Number

PCT
WO 2009/089190 A3

(51) International Patent Classification:
G06F17/30 (2006.01)

(21) International Application Number:
PCT/US2009/030169

(22) International Filing Date:
6 January 2009 (06.01.2009)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/970,251 7 January 2008 (07.01.2008) US

(71) Applicant and
(72) Inventor for all designated States except US): HERRN-

STADT, Ori [IL/US]; 87 Waltham Street, #1, Boston,
MA 02118 (US).

(74) Agent: HERBSTER, George, A.; 40 Beach Street, Suite
303, Manchester, MA 01944 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

[Continued on next page]

= (54) Title: MULTIPLE DIMENSIONED DATABASE ARCHITECTURE

W
O

 20
09

/0
89

19
0

A
3

100

FIG. 6

(57) Abstract: A database management system stores data
form a plurality of logical tables as independent copies in
different format. In one specific example the system orga­
nizes tables into table groups and de-normalizes the table
in each table group. It also organizes data in a second for­
mat including vertical column containers that store ah the
data for one attribute, there being one column container
for each table and each attribute within that table. The re­
ceipt of a query causes the system to develop a query plan
that can interact with either or both, ofthe container sets.

WO 2009/089190 A3

(88) Date of publication of the international search report:
27 August 2009

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

MULTIPLE DIMENSIONED DATABASE ARCHITECTURE
pescription

Technical Field
[0001] The present invention relates generally to

information processing systems, and, more specifically, to
computer”implemented databases and database management
systems iDBMSj that facilitate the storage of data in and the
retrieval of data from a database.
Background Art

[0002] Early simple database structures comprised a single
file or table of multiple rows, or tuples, and columns.
This format was particularly helpful when each row was
unique; that is, no data was redundant. However, databases
quickly became more complex. They began to include
information in which each row was not unique. For example,
consider a database containing information about authors
and the books they write. If an author had written multiple
books, each row in a sirsple database schema would include the
author's name and cue book's identification. So if an
author wrote "n" books, the table would include "n" rows;
and the author's name would appear in each of the "n" rows.

[0003] This repetition of the same value, such as the
author's name, in multiple rows is characterized as
"redundancy." Redundancy introduces certain problems. For
example, storing redundant data consumes memory
unnecessarily, and at the time memory was limited and
expensive. That issue has become minimized over time.
However, a problem that has not been minimized involves
updates that change data and the need to maintain
consistent data. If a database includes the authors and
their addresses and one author's address changes, it is
necessary to change that address in the record for each

WO 2009/089190 PCT/US2009/030169

/

5

10

IS

20

25

30

book that author wrote. If the update process is
interrupted for any reason, some of that author's
addresses might be changed and others might not. The
resulting data would be inconsistent. Maintaining data
consistency is a necessity with current databases.

[0004] Relational database management systems (RDBMS or
"relational models"} then were developed. These systems
still serve as the basis for state of the art database
management systems (DBMS). Introduced in the 1970s, the
relational model pioneered data independence, supported by a
formal algebra and an associated declarative query language
known as Structured Query Language ("SQL"). In this
language an "SQL query" or "query" is the primary tool for
interacting with the data in the various tables.

[0005] Generally an RDBMS system stores data according to a
relational storage schema in tables. Each table is stored as
a sequential set of rows in data storage facilities, such
as disks, main-memory and other memory. Many systems also
implement indexes as additional data structures to enable
fast random access to a specific row or rows. An index
encodes a column or several columns (the key of the index) in
a way that facilitates navigation to rows based on a key
value. Each index entails an added cost of constructing and
maintaining the index data structure if the data changes.
The user, however, is presented with a non-redundant view
of the data as tables and is generally unaware of this and
other underlying redundancy.

[0006] Two other concepts also emerged during this
development, namely: "normalization" and "relationships".
"Normalisation" minimises redundancy by dividing the data
into multiple tables. In the foregoing example, normalizing
the single redundant author-book table produces individual

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

author and book tables. The author tabl e includes the
information, about each author one time; the book table,
information about each book one time,

[0007] FIG. 1 discloses, in logical form, a simple
normalized database 30 that records information about each
author and book and information about each of a plurality of
customers, their orders and the books associated with each
order. The organisation of this information will include
analysis of the data information to define a "normalised"
database with individual, tables. One or more individual
tables may be related. For example and for purposes of
explanation assume, a database architect analyses this data
in FIG. 1 and arbitrarily defines three groups of related
tables, such as an Author group 31, a Customer group 32 and a
State group 33. The author group 31 contains all the
information about authors and their books and includes an
Author table 34 and a Book table 35. The customer group 32
relates to customers and their orders and includes a
Customer table 36, an Order table 37 and an Item, table 40.
The State group 33 relates to state information and
includes a State table 41. As will be apparent, the State
group could comprise multiple tables, and the Item table 40
could be a member of the .Author group 31,

[0008] Although FIG. 1 depicts relationships among these
individual tables, the relationships are not explicitly
defined. Rather, primary and foreign keys provide the
ίητοινιοϋοη from, which relationships can be defined. There
are many field naming conventions, particularly with respect
to naming primary and foreign keys. This discussion assumes
that the prefix "fk" is added to the primary key name in
one table to form the foreign key name in another related
table, In this specific example, the Author table 34

WO 2009/089190 PCT/US2009/030169

4

5

10

15

20

25

30

includes an AUTHOR!D primary key field; the Book table 35,
an fkAUTHORlD foreign key field. Such a relationship is
generally described as a one-to-many relationship because the
same foreign key in multiple rows of the Book table 35 are
related to each author. That is, a single, or "one," author
is linked to one or more, e.g.,
"many", books the author has written. A link 42 in FIG.
1 represents at a logical level the relationship that
the AUTHORTD and fkAUTHORlD fields define.

[0009] The Customer group 32 in FIG. 1 includes similar
one-to-many relationships defined by link 43 and link 46. Two
links 44 and 45 define relationships between tables in
different groups. The link 44 links a table in the Author
group 31 to a table the Customer group 32. Specifioaliy,
the Item table 4 0 has fkORDERID and fkBOOKID foreign keys.
The fkORDERID foreign key links one item to one order. The
fkBOOKID foreign key links one item to one book. The link
45 defines the relationship between the Customer table 36
and the State table 41 with the fkSTATEID field in the
Customer table 36 linking to the STATEID field in the State
table 41.

[0010] Khile FUG. 1 depicts each table with some
representative fields, also called "attributes," FXG. 2
depicts the tables in a datasheet view with rows, columns
and representative data. Each table has a primary key; some
have a foreign key. More specifically, the Author table 34
contains the AUTHORTD primary key plus attributes for an
author's last name, first name, birth date and optional
contact information. The Book table 35 the BOOKTD primary
key, the fkAUTHORlD foreign key and attributes for the
title, list price (LIST), publication date (PUBLISHED) and
description. It is assumed tor purposes of this discussion

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

that each book is written by only one author. The
organization of the remaining tables and attributes will be
apparent to those of ordinary skill in the art.

[0011] An SQL query requests information from a database and
creates a "resultset" of the requested information. A
"resultset" is an object that holds a copy of data in
memory and is disconnected from the data source. The most
common SQL query or command retrieves data and is
performed with a declarative SELECT keyword and several
optional keywords and clauses, including FROM, WHERE, GROUP
BY, HAVING, and ORDER BY clauses. The response to any query
must retrieve each identified table individually from
different file locations and then match the corresponding
rows from the different tables according to the
relationship.

[0012] The contents of the WHERE clause explicitly define
each relationship that is relevant to the request and
provides "de-normalization" inf ormation that serves as the
basis for a "join" operation. The WHERE clause specifically
defines the tables to be joined and the fields or
attributes that provide the relationship. For example, a
WHERE clause that is to define the relationship between
the Author and Book tables 34 and 35 will identify the
Author table 34 and the AUTHORID primary key and the Book
table 35 and the fkAUTHORID foreign key. That is, the
execution of that WHERE clause joins the two tables using
the AUTHORID primary key and the fkAUTHORID foreign key to
reproduce the original data where each row would include the
author's information and one book identification. A query
response must process one join operation for each
relationship that needs to be resolved.
[0013] ft is difficult to execute join operations

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

6

efficiently. Such inefficiencies are tolerable in
relatively small databases, such as shown. in FIGS. I and 2.
However, real databases are becoming increasingly complex. A
customer entity may include many levels of information
including orders, items, addresses, phones, interaction
history and links to other family members. Normalisation
places each level of information in a dedicated table. The
relationships that exist when a database has many tables
with a complex relationship increase the number of joins.
The cumulative effect of join operation inefficiencies in
databases of a sice and complexity that are orders of
magnitude greater than databases such as shown in FIGS. 1
and 2 can not be tolerated.
[0014] Normally a database is stored and processed in data
storage facilities comprising disks, main-memory, cache and
other memory individually or in combination. Each such
memory has latency character!sties. Generally "latency" is
the time that elapses between a request for data and the
beginning of the actual data transfer. Disk delays, for
example have three components, namely: seek time, rotational
latency, and transfer rate. Seek time is a measure of the
time required for the disk heads to move to the disk
cylinder being accessed. Rotational latency is a measure of
the time required for a specific disk block to reach under
the disk head, and transfer rate ("bandwidth"} is a
measure of the rate at which date passes under the disk
head. For sequential accesses, the determination of seek and
rotation times need only occur for the first data block.
[0015] Over time disk and memory bandwidth improvements have
enabled very efficient sequential accesses, for both read
and write operations. However, disk and memory latency
times have not improved correspondingly, making random

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

access very inefficient. The dramatic improvement in
bandwidth compared with latencies means that sequential
access is becoming much "cheaper” than random accesses,
Moreover, the performance advantage of sequential over
random access is increasing exponentially over time. Access
to individual tables may require extensive random disk and
memory accesses, particularly during join operations.
Accessing all parts of a customer entity, each residing in a
separate row in disparate tables, requires a large number of
random accesses. This further increases the difficulty in
efficiently executing join operations, as well as other
query operations .

[0016] SQL queries are used in two groups of database
interaction applications, namely: OLTP (OnLine Transaction
Processing) and OLAP (Online Analytical Processing)
originally called DSS ίDecision Support System)
applications. OLTP applications process online
transactions. Information associated with such
transactions can be efficiently added to or retrieved from
single table, such as any one of those shown in FIG. 1 using
conventional storage schema. However, as entities span more
and more tables the added cost of join operations and
random accesses makes such queries increasingly inefficient.

[0017] For small databases with simple relationships, OLAP
application requests for information can be processed with
reasonable efficiency. In complex databases, OLAP
applications search, retrieve and aggregate data from only a
few columns within tables containing many rows. Each table
must be fully scanned for any dimension that is not indexed
or any aggregate that is not pre-calculated. Consequently
it is unlikely that any analytical query to a relatively

WO 2009/089190 PCT/US2009/030169

A

5

10

15

20

25

30

complex relational· database will produce a result dataset in
any reasonable time.

[0018] For example, FIG. 3A depicts an OLTP query SO that
seeks to list the title and sale price for each book ordered
by a given customer. A SELECT clause 51 defines a final
result dataset for the first and last names of the selected
customer from the Customer table 36, the book title from the
Book table 35 and the sale price from the Item table 40 with
one row for each item.

[0019] A FROM clause 52 identifies each table to be
accessed during the execution of the SQL query 50. In this
specific example, the tables are the Customer, Order, Item
and Book tables 36, 37, 40 and 35, respectively.

[0020] A WHERE clause 53 identifies the rows to be retrieved
from each table and establishes the joins. In this example,
a first condition 54 requires the CUSTOMERID value in the
Customer table 36 to be equal to the value in the
fkCUSTOMERID field in the Order table 37. Conditions 55 and
56 establish similar relationships and joins between the
QRDERID field in the Order table 37 and the value in the
fkOEDERIQ field in the Item table 40 and between the BOOKID
value in the Book table 35 and the fkBOOKID field in the
Item table 40. A final condition 57 establishes the criteria
that the CUSTOMER!!; field in the Customer table 36 be equal
to "20".

[0021] As known and shown logically in FIG. 4, a data
processing system 58 responds to the receipt of an SQL query
50 to produce a final resultset by parsing, optimising and
executing the SQL query. A query parser 59 uses the
information in a data dictionary 60 to convert each SQL
query into a series of SQL classes. A query optimizer 61
generates a query plan in response to the SQL query and

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

9

information from the query parser 59 and the data
dictionary 60, An execution unit 62 processes the query plan
and information from the data dictionary 60 and a data store
63 to produce a resultset.

[0022] Generally speaking a data dictionary comprises
■meta
data with definitions and representations of data
elements. Within the context of a DBMS, a data dictionary
is a set of tables and views and holds information
concerning the definition of data elements, user names,
rows and privileges, schema objects, integrity constraints,
stored procedures and triggers, general database structure
and space allocation inforxration. In this embodiment,
the data dictionary 60 in FIG. 4 includes a set 64 of
table entries. Each table entry in the set 64 includes a
set 65 of attribute or field definitions, Each definition
in the set 65 contains a set 66 of properties for each
attribute or field,

[0023] A change log 67 facilitates the durability of all
data insert, delete and update operations. As known, a
change log, such as the change log 67, records any changes
in any class of non-volatile storage devices such as disk or
optical drives.

[0024] A database system may operate in any processing
system and use any number of computers, processes, threads
and the like. Each application may be replicated or
instantiated multiple times to satisfy performance or other
considerations. Moreover, different systems may process SQL
queries in different ways. FIG. 3B depicts one such query
plan 70 for the SQL query 50 in FIG. 3A; and FIGS. 3C and 3D
depict the interim and final result sets that will be
produced when the execution unit 62 processes the query plan

WO 2009/089190 PCT/US2009/030169

5

10

IS

20

25

30

70. Referring to Figs. 3B and 3C together, initially step
71 will define a first interim resultset 71A comprising the
record in the Customer table 36 whose CUSTOMERXD value is
"20". This first resultset, in this particular example, will
contain only one record from the Customer table 36. As will
be apparent, such a selection could be made in response to
name information, in this example customer Adam Apple, to
obtain the CUSTOMSRID value.

[0025] Step 72 represents a first join operation wherein the
Order table 37 will be scanned to identify any orders
corresponding to the CUSTCMERXD = 20. Thus, step 72 produces
a second interim resultset 72A that will contain each record
from Order table 37 that relates to Adam Apple, along with
the customer data.
[0026] A second join operation 7 3 uses the ORDERID primary

key value in the interim resultset 72A and the fkORDERlD
value in Item table 40 to identify those items which Adam
Apple has placed an order. A third resultset 73A will be
produced. A third join operation 74 will combine those rows
to produce a resultset in step 73 with the corresponding books
from the Book table 35 through the fkBOOKlD foreign key
value in the resultset of step 73A and the BOOKID primary
key value in the Book table 35 to produce a fourth resultset
74A. A projection operation 75 will convert this fourth
resultset 74A into a final resultset 75A which includes
the customer's first and last names and the selling price
and title for each book .Adam .Apple purchased as defined by
the SQL query 50.

[0027] Although the desired outcome for the SQL query 50 in
FIG. 3A is relatively simple, the system must access four
different tables and process three join operations to re­
assemble the customer entity and extract corresponding book

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

11

titles. .Additionally each part of the customer entity
resides in a different table such that every order and
every item must foe accessed individually by means of
inefficient random access.

[0028] As an example of a more analytical query, FIG. 5A
depicts an SQL query 80 for obtaining an average cash
discount on the books by state assuming that the book price
and the item price differ. The SQL query 80 includes a
SELECT statement 81 that identifies the two elements, namely:
the state code and a calculated cash discount value. The
discount value is established as the cash difference between
the list book price recorded by the LIST attribute of the
Book table 35 of BIG. 2 and the actual sale price recorded
in by SALE attribute in the Item table 40. In. this
particular SQL query a FROM statement 82 identifies the
Customer table 36, the Order table 37, the Book table 35
and the State table 41. The WHERE statement 83 establishes
four conditions thereby to establish the appropriate
relationships in the same manner as described with respect
to FIG. 3A. The GROUPS'/ statement 84 directs the process
to multiple columns to be grouped. This enables aggregate
functions to be performed on multiple columns with one
command. The final resultset produces a two-column report.
One column contains a state name; the other, an average cash
discount for all sales to customers in that state.

[0029] FIG. SB depicts a process analogous to that shown in
FIG. 5B for processing the SQL query 80 in FIG. 5A. In this
example, the WHERE clause defines four joins that are
necessary to produce the desired result. More specifically,
a query plan
90 initially will identify the Customer table 36. A first
join operation 91 will respond to a first element of the

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

12

WERE clause S3 iu FIG. 5A to join the Customer table 36
and the Order table 37 on the CustomerlD value. A second
join operation 92 will join the data set produced by the
operation
91 with the Item table 40. A third join operation 93 then
will produce a resultset based upon the output of the join
operation 92 and the corresponding values from the Book
table 35. A final join operation 94 will combine the
resultset produced the join operation 9 3 and the data in
the State table 41. A projection operation 95 will, generate
the values for the state code, the book price and the item
price. An aggregation operation 96 will generate the average
of the discount price on the basis of the state codes and
produce a resultset at 97. As will be apparent, once the
query plan 90 is constructed, the execution unit 62 will
process the query plan 90 and generates the specified
resultsets.

[0030] Although the desired outcome for the SQL query 80 in
FIG. 5A operates on only three columns and seems
relatively simple, the system must process four join
operations because the required data resides in five
individual tables. Even a relatively efficient
implementation of join operations can require
significant system resources. As the size of the tables
increases, join implementation also suffers. When large
numbers of join operations must be handled, processing
delays Increase, sometimes to unacceptable levels.
Notwithstanding these issues, most databases continue
to store data in normalised tables that closely follow
the relational logical data model, as multiple related
tables consisting of sequential rows and attribute
columns. The logical relationships between the tables do

WO 2009/089190 PCT/US2009/030169

13

5

10

15

20

25

30

not generally affect the way the data is actually stored
in the tables. The database system must execute joins
to establish a relationship for all the tables and
require a large number of random accesses to match
related parts.
[0031] Another approach for storing the data in various
tables such as those shown in FIGS. 1 and 2 recognises the
foregoing problems and proposes to store database tables
by vertically positioning all columns of the table.
This optimizes the data for retrieval when processing
OLAF applications. For example, U. S. Patent ho.
5,791,229 (19981 to French discloses such a storage schema.
This system uses a conventional logical relational
database management system table such as shown in FIG. 1.
Rather, rather than store the data in a conventional row
structure, as shown in FIG. 2 of this specification, the
system only stores data in columns by attribute name. Each
column comprises a plurality of cells (i.e., a column
value for a particular record) which are arranged on a
data page in a contiguous fashion. In the content of FIG.
1 of this disclosure, each of the fables 34 through 37, 40
and 41 would be stored in a column configuration.
[0032] In response to a query that system analyzes only

those columns of data which are of interest and uses an
optimizer to select the join order of the tables. The
system does not retrieve row-based data pages consisting
of information which is largely not of interest to the query.
The retrieved column-based pages will contain mostly, if not
completely, the information of interest to the query. This
allows greater block I/O transfers and consequently faster
execution of OLAF type queries. The execution of each join
operation may be improved, as only the data in the primary

WO 2009/089190 PCT/US2009/030169

”5 ■< A,

5

10

15

20

25

30

key and foreign key columns needs to be retrieved and
joined. However, all columns need to be joined. Thus, the
number of join operations grows according to the number of
attributes, rather then the number of tables. Column-based
systems work well only for low project!vity and low
selectivity queries. Put another way, these systems are
adapted for queries where only a few attributes are
projected, and where the data from a large percentage of the
rows is used. Executing a query that accesses many attributes
per table would be highly inefficient, as it would be
necessary to execute many joins for all the attributes in
same table. Therefore, processing of even the simplest OLTP
query will be highly inefficient. For example retrieving
just one row from the customer table 36 in FIGS. 1 and 2
requires fetching seven attribute values, each located in
different column,

[0033] U. S. Patent No. 7,024,414 (2006) to San et al. also
discloses the storage of column data. This system parses
table data into columns of values. Each column is formatted
into a data stream for transfer to a storage device as a
continuous strip of data. Both single-column and multiple-
column storage structures are disclosed. Each column is
stored as a data stream as a continuous strip of compressed
data without regard to a page size for the storage device,

[0034] These approaches offer benefits by optimizing storage
for query processing with respect to usage patterns, such
as OiAP applications that access a few complete columns of
many rows. However, they handle OLTP queries
inefficiently. Moreover, in order to assemble a single
complete entity, each attribute must be retrieved from a
separate binary table by way of random access. So systems that
use horizontal storage schema handle OLAP queries

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

15

inefficiently while systems that use vertical storage schema
handle OLTP queries inefficiently.

(0035] An article titled "Weaving Relations for Cache
Performance" (Ailamaki et al,, Rroc. 27ί:· VLDB Conf., Rome,
2001s describes still another alternative data storage
schema. In a conventional N-ary Storage Model {NSM; rows of
a data table are spread across pages in memory. The
described Partition Attributes Across (PAX) system converts
the data in each page into vertical partitions to improve
cache utilisation and performance. However, the row
formatted data is lost; there is only one copy of the data.
To reconstruct a row one needs to perform "mini-joins" among
vertical partitions within the page containing the row.
Mini-joins incur minimal costs because it does not have to
look beyond one page. A query response requires the system
to scan each page, and fetch, or retrieve, the vertical
partition for each attribute the query defines. The rows or
records that satisfy the conditions are identified and
reconstructed. While this article describes performance
enhancements due to this variation, any such system still must
process all the joins that would be processed with a database
stored according to the NSM schema. Additionally processing
a single attribute still requires fetching and processing
the complete set of pages in which rows of the data table
exist.
[0036] One proposed approach to lower the cost of join

operations is to answer queries using previously defined
materialized views, rather than using the base tables. A
materialized view represents a pre-computed query result
that is stored as a concrete table, and may be updated from
the original base tables from time to time. U. S. Patent No.
6,510,422 (2003) to Galindo-Legaria et al., U. S, Patent No,

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

6,850,933 {2005} to Larson et al., and U. S. Patent No.
6,199,063 (2001) to Colby et al. disclose similar approaches
to the use of materialised views for answering queries, also
known as the "view-utilization" problem. That is, the
approach is to reduce the number of required join operations
to answer a given query by processing materialised views
already stored in a joined format. U. S. Patent ho.
6, 356,889 (2002) to Lohman et a/., and U. S, Patent No.
7,191,169 (2007) to Tao, present several approaches to the
related "view-selection" problem where a set of views to be
materialized is chosen such that the cost of evaluating a
given set of queries is minimized and such that the views
remain within a pre-defined storage space constraint. The
materialized, views approach can cat join operation costs for
these joins that are materialized.
However, this comes at a great cost of determining,
maintaining and storing the set of views and limits its
application to only the most resource intensive queries.
Furthermore, because materialized views store data in a
highly un-normalized form, they tend to consume a large
amount of storage space making the problem even more acute.

[0037] Another article titled "A Case for Fractured Mirrors"
(Ramamurthy et al., Proc. 28“· VLBB Conf., Hong Kong, 2002)
describes a database mirroring storage schema in which data
is stored in accordance with both the NSM' model and a
Decomposition Storage Model (DSM). Two disks are mirrored.
In one approach a first disk stores the primary copy of
data in the NSM format; the second, disk stores the primary
copy of data according to the DSM format. In another
approach fragments of the data are stored across the two
physical mirrors to achieve better load balancing between
the two copies. For example, if the system includes data

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

stored as NSM and DSM models, a first mirrored disk might
store a first fragment NSM0 from the NSM model and a
second fragment DSM1 from the DSM model. Conversely, the
second mirrored disk would store a first fragment DSM0 from
the DSM model and a second fragment NSM1
from the NSM model. While this system provides a duplicate
copy of each storage fragment, its primary goal is to
incorporate a mirroring schema that replaces other raid
mirroring schemas, and where different schemas are used
for different purposes (one for OLAP type loads and the
other for OLTP loads). This system must also process all the
joins that would foe processed with a database stored
according to the NSM schema,
[0038] What is needed is a database management system that
produces high throughput for complex databases and that
optimises the response to both OLTP and OLAP queries and
can handle increasingly complex requests for
information, increasingly complex data models, and
increasingly large quantities of data. What Is also
needed is a database management system that minimises
the processing of joins, maximizes sequential access and
minimises random access operations in memory,
particularly disk memory, while maintaining two complete
copies of the data.
Disclosure of Invention

[0039] Therefore it is an object of this invention to
provide a database management system and methodology
that provides high throughput,

[0040] Another object of this invention is to provide a
database management system and methodology that stores
table data ;i.n two dimensions or storage schemata for
optimising performance and throughput,

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

[0041] Yet another object of this invention is to provide a
database management system and met.hodol.ogy by which table
data is stored in data structures organised along two
dimensions.

[0042] Yet still another object of this invention is to
provide a database management system and methodology by
which table data is stored in two; data sets each of which
is organized in a different manner thereby to enable
sequential access for a particular usage pattern.

[0043] Still yet another object of this invention is to
provide a database management system and methodology in which
a first copy of data is stored in a modified row format and
another copy of the data is stored in a column format.

[0044] Yet still another object of this invention is to
provide a database management system and methodology by which
a conventional query is converted into a query plan that
determines whether to access a copy of the data in a
modified row format or a copy of the data in a column
format.

[0045] Still yet another object of this invention is to
provide a database management system and methodology in which
a copy of data is stored in a modified row format that
embeds jcnn information.
Best Mode for Carrying Out the Invention
[0046] In accordance with a first aspect of this invention a

database management system includes database storage for
data of a logical database model comprising at least one
table group wherein each table group includes one root table
and at least one other table related thereto and wherein
each logical table is characterized as having columns of
attributes and rows of data. The database storage comprises
first and second data stores. The first data store

WO 2009/089190 PCT/US2009/030169

19

5

10

15

20

25

30

positions all the data in the database in a plurality of
memory locations in a first dimension wherein each of the
plurality memory locations includes all the data from one row
of a root table and all the related data from the other tables
in that table group relevant data that one root fable row.
This storage schema allows sequential access to all the
data in that root table row and its related rows in the
other related tables. The second data store positions ail
the data in the database in a plurality of memory locations
in a second dimension wherein each memory location includes
all the data from one of the attributes in the database and
all the corresponding values thereby to allow sequential
access to the data in each attribute.
[0047] In accordance with another aspect of this invention,
data structures are generated for data contained in a
logical database model with tables in different
relationships and a data dictionary. Table groups are
formed from the tables in the logical database based upon
the data in the data dictionary including, for each table
group, a root table and tables related thereto. A first
data store unit is created for all table groups in which the
data for the database is stored in a first dimension wherein
each of a plurality of memory locations includes all the data
from one row of the root table and relevant data from the
related tables thereby to allow sequential access to all the
data in that root table row and related table row. A second
data store unit is created for storing the data in the
database in a plurality of memory locations in a second
dimension wherein each memory location includes all the data
from an attribute in the database and all the corresponding
values thereby to allow sequential access to the data in
each attribute memory location.

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

[0048] In. accordance with yet another aspect of this
invention a query is made to a logical, database with root
and related tables in different relationships and a data
dictionary that identifies each table and a table group for
that table in the database. Each of the tables includes
attributes in columns and data in rows. A first data store
unit stores the data in the database in a first dimension
wherein each of a plurality of memory locations includes
all the data from one row of the root table and relevant
data from the related tables. A second data store unit
stores the data in the database in a plurality of memory
locations in a second dimension wherein each memory
location includes all the data from one of the attributes
in the database and all the corresponding values. In
response to the query the table groups and the tables in
the query are identified. Parsing the query compares the
tables in the table group as provided by the data dictionary
to the identified query tables. A list of attributes in the
query is extracted that are contained in tables that are
common to the database and to the query. This information
enables the identification of one of a plurality of
processing options. During processing under the selected
option an intermediate resultset is obtained that satisfies
those portions of the query that related to the table group,
A final resultset is obtained by combining the intermediate
resultsets.
Brief Description of the Drawings

[0049] The appended claims particularly point out and
distinctly claim the subject matter of this invention. The
various objects, advantages and novel features of this
invention will be more fully apparent from a reading of the
following detailed description in conjunction with the

WO 2009/089190 PCT/US2009/030169

21

5

10

15

20

25

30

accompanying drawings in which like reference numerals refer
to like parts, and. in which:

[0050] FIG. 1 depicts a typical relationship diagram of the
prior art for a sample database including author,
book, customer, order, item and state tables;

[0051] FIG. 2 presents prior art data sheet views for each
of the tables of FIG. 1 with some representative data;

[0052] FIG. 3A depicts a specific SQL query for
retrieving
data of interest from 'the system represented in FIGS. 1 and
2; FIG. 38 depicts a query plan by which a prior art system
interprets that command; and FIGS, 3C and 3D
collectively depict intermediate resultsets and a final
resultset produced during the execution of the query plan
of FIG. lb;

[0053] FIG. 1 is a functional block diagram that discloses a
typical arrangement of system units for implementing a
database according to the prior art;

[0054] FIG. 5A depicts another specific SQL query for
retrieving data of interest from the system represented in
FIGS. 1 and 2; and FIG. 5B depicts a prior art query plan
for the SQL query of FIG. SA;

[0055] FIG. 6 is a functional block diagram that discloses
one embodiment of system units for implementing this
invention;

[0056] FIG. 7 is a logical depiction of a storage schema
for
a database in a first dimension in accordance with this
invention;

[0057] FIG. 3 is a logical depiction of a storage schema for
a database in a second dimension in. accordance with
this invention;

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

[0058] FIG. 9 is a functional block diagram that discloses a
data dictionary that is generated during the use of
this invention;

[0059] FIGS. 10A and 108 are flow diagrams of a process for
producing storage schemata of FIGS. 7 and 8;

[0060] FIGS. 11A through HE are state diagrams that are
useful in understanding the precess of FIGS. IGA and 1QB;

[0061] FIGS. 12 through 12F collectively disclose an
implementation of the storage schema in FIG. 7 with the
data shown in FIG. 2;

[0062] FIG- 13 discloses an implementation of the storage
schema of FIG. 8 with the data shown in FIG. 2;

[0063] FrGS. r4, r4A, r4B and 14G depict a process for
developing and executing a query plan that is useful in.
the database manager of this invention;

[0064] FIG. ISA depicts a query plan developed by the method
of FIG. 14 for the query of FIG. 3A; and FIG. 15B depicts
various resultsets that will be generated during the
execution of the query of FIG. 3A;

[0065] FiG. 16 depicts a query plan developed by the method
of FIG. 14 for the query of FIG. 5A;

[0066] FIG. 17 is a flow chart for a updating a database;
[0067] FIG.18 is an XML document that represents an

alternative for producing the storage schemata of
this invention; and

[0068] FIG. IS is an XML document that represents actual
data from the database cf Fig. 2 organised according to
the information in FIG. 18.

Description of Illustrative Embodiments
[0069] The foregoing description of the organization and

operation of prior art database management systems will
assist in understanding this invention and the advantages

WO 2009/089190 PCT/US2009/030169

5

10

IS

20

25

30

23

thereof. This invention can best be understood by first
describing a logical representation of the basic
architecture and storage schemata and then by describing
schemata for a specific database and the process by which a
query is processed. More specifically, FIGS. 6 through HE
present such a system at a logical level. FIGS. 12A
through 13 depict a specific implementation of first and
second storage schemata incorporating the data in FIG, 2.
FIGS. 11 through 16 depict the process by which the system
converts SQL queries shown in FIG. 3A into query plans. A
description of a process for updating information in the
database and alternate XML implementations follow in FIGS.
17 through 19.

Basic Architecture
[0070] FIG. 6 is a functional block diagram of one

implementation of a database management system 100
incorporating this invention. At this basic level the
system 100 is similar to the system in FIG. 4 and
includes, as components, a query parser 101, a data
dictionary 102, a query processor 103 and a change log 105.
As will become apparent, the specific implementation of each
of these system components will vary with a specific
implementation of this invention. Unlike the system in FIG.
4, in this embodiment the query processor 103 interacts with
a first dimension data store unit 106, a second dimension
data store unit 107 or both according to a query plan that
the query processor 103 develops. Each of the first and
second dimension data store units 106 and 107 stores all the
data, but according to different storage schemata.
Consequently, the invention provides data redundancy by
maintaining two copies of the data, albeit according to
different storage schemata.

WO 2009/089190 PCT/US2009/030169

■η ■<

5

10

15

20

25

30

First Dimension Data Store Unit 106
[0071] The first dimension data store unit 106 stores data

in a "horizontal" schema such that data is easily accessed.
As shown in FIG. 7, data in the first or "horizontal"
storage container is characterized by granularity ranked
.from "container" as the coarsest through "cluster" and
"cluster row" to "attribute" as the finest. Each of these
terms and phrases has a correspondence to some portion of
the logical database shown in FIGS. 1 and 2. A "cluster row"
corresponds to one row in a logical table and contains all
the data in that row. A "cluster" contains related cluster
rows. A "container" contains all the clusters for a given
table group.

[0072] As applied to the logical representation in FIG. I,
FIG. 7 depicts a first container 110 for an "author cluster"
corresponding to the author table group 31 in FIG, 2. A
second container ill stores a "customer cluster" comprising
data from table group 32 including the Customer table 36, the
Order table 37 and the Item table 40. A third container
112 stores a "State cluster" comprising data from the table
group 33 including the State table 41.
[0073] In the container 110, a cluster 113 contains a set

114 of one or more related cluster rows 115. A single
cluster row contains air the attributes and values
corresponding to one row in a corresponding table. In each
cluster, the first cluster row is taken from, a "root table"
which, for purposes of understanding of this invention, is a
table in which the data is independent of data in other
tables. In the implementation of the logical database of
FIG. 1, the Author table 34, the Customer table 36 and the
State table II are "root tables."

[0074] Each cluster row is stored in successive, or

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

25

contiguous, storage locations of sequential memory, such as
a direct access physical storage device. Preferably, and
for reasons that will become apparent later, each cluster
should also be stored contiguously to maximize performance
by obtaining several points of a result that are located
adjacent to each other in one sequential reading operation.
In some situations, it will be beneficial to store all the
clusters in a container in contiguous storage locations.
However, a cluster row, a cluster or a container need not
be stored in that manner provided an attendant degradation in
performance is acceptable.

[0075] Still referring to FIG. 7, each cluster row, such as
the cluster row 115, includes a header 116 and a body 117.
Each header includes information that describes the contents
of the following body. In this specific implementation,
each header includes a cluster Row Identifier {RID) field
120, a Cluster identifier (C1D) field 121, a Row Type field
122, an Attribute Bitmap field 123 and an Attribute Value
Position Vectors field 124.
[0076] In combination, as by concatenation a cluster Row

Identifier {RID} field 120 along with a Row Type field 122,
the fields uniquely identify a row in the specified container
for a table group. A Cluster Identifier (CID) 121 field
uniquely identifies a cluster in a container. Specifically
the Row Type field 122 identifies a specific table and the
order of the RID values corresponds to the order of the rows
in that table. Typically the RID value for any table is the
table row number. When an auto-increment single attribute
primary key is available in a table, the RID field 120 may
store that primary key value for that particular row. Dor
other primary key implementations, the RID field 120 may be
implemented by an independent counter as a pseudo column

WO 2009/089190 PCT/US2009/030169

26

5

10

15

20

25

30

added to the table.

[0077] For the database of FIG. 1, it is assumed
that each
of the tables has an auto-increment primary key that is used
as the RID. The CID field 121 typically corresponds to the
value in the RID field 120 for the corresponding row in the
root table. As a result, the first row in a cluster has
identical values in the RID field 120 and the CID field
121. However, any arbitrary value system can provide a
unique identifier for both the RID field 120 and the CID
field 121.

[0078] The Row Type field 122 defines the nature of the
source of data for the body 117. That is, if the data for a
cluster row is from a table, the Row Type field 122
identifies the specific table to which the object
corresponds. Other Row Type values could identify an XML
documented node, a picture, a DDA segment, "blobs" or other
row types.

[0079] The Attribute Bitmap field 123 indicates whether each
attribute in the cluster row contains data or a null value.

[0080] Data in the Attribute Value Position Vector field
124
points to attribute values in the body 117, such as
Attribute Value A 125, Attribute Value 3 126 and Attribute
Value C 127. If the data in a cluster row is stored
sequentially, a vector may be defined by an address or an
offset from a reference address -

[0081] This structure of the data in the first dimension
data store 106 provides a major advantage. Specifically,
all the records in a table group are stored in a
relationship without redundancy without requiring the
system to execute a join operation to obtain data from a

WO 2009/089190 PCT/US2009/030169

& f

5

10

15

20

25

30

specific table group. For example, an author cluster will
contain an author cluster row with the author*· s last name,
first name, birthdate and contact information. The EID and
C1D fields 120 and 121 contain the primary key for the
corresponding author. The next cluster row will have the
same value in the CIO field 121, but a new value in the EID
field 120 and will store the fkAuthorXD value,
title, list price, publication date and description for
one book written by that author. The cluster will contain
an additional cluster row for each, additi.onal book, tint author
has written. Sack additional cluster row will contain the
same
value in the CID field 121, but a unique value in the EID
field 120. It is these EID and CID fields 120 and 121 that
allow data to be stored according to the implicit
relationships shown in FIG. I and ready access to all the
information about an author and his or her books without
having to execute a join operation.
[0082] As will become apparent, if a table in FIG. 1 has an
"auto-increment" type of primary key, the primary key
value also identifies the table row. Consequently, the EID
value 129 corresponds directly to the primary key value; that
is, the RID attribute 120 is equivalent to the primary key
attribute. Therefore, it is not necessary to store primary
key values in the foody 117 of any cluster row 115. If the
primary key and EID values are not the same, e.g., the
primary key is an email address and not used as the EID, the
primary key attribute is stored in the body 117.
Second Dimension Data Store Unit 107
[0083] Now referring to FIG. 8, the second dimension data
store unit 107 also comprises containers. In specific
implementation these are "column containers." There is

WO 2009/089190 PCT/US2009/030169

28

5

10

15

20

25

30

one column container for each table-attribute combination
stored according to the storage schema of FIG. 3.

[0084] Each column container 130 includes a header 1.31 with
a column name field 132, a column type field 133, a data
type field 134 and an additional indexes field 135. The
column name field 1.32 uniquely identifies the column
container. One identification method conprises a
concatenation of a table name and an attribute. For example,
AUTHOR: LAS TN AGE in the column name field 132 distinguishes it
from another column for another attribute, even with the
same field name, I.e., a CUSTOMER:LASTNAME column
container. The data dictionary 102 in FIG. 6 contains this
information.

[0085] The column type field 133 indicates the structure of
the data for that field. Examples of various constructs
include fixed-length or variable-length fields and. fixed-
length code tables. The data dictionary 102 in FiG. 6
contains this information. Still referring to FIG. 8, the
data type field 134 also uses data dictionary information
to identify the nature of the data which, in turn,
identifies the nature of storage for that field. Normally
all the values in a column will, be of the same data, type
allowing for very efficient compression. Stings and long
integers are examples of data types. The additional
indexes field 135 identifies what indexes exist for that
attribute, and an attribute may have no indexes, one index or
several, indices. For example a date data field may have one
index optimized for retrieving ranges of dates and another
index optimized for finding a specific date.

[0086] For a column with an attribute of "gender" or the
like where the range of values is relatively small, a code
table 137 indicates each code and its meaning. In a

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

gender code table, for example, a "0" may indicate a male and
a "1", a female. An attribute stride position vector 140 is
normally used with variable-length data types. Each
location in the vector is a direct or indirect pointer to
the actual data. A column data field 141 contains the data
according to the format defined in the header 131.

[0087] A major feature of a column container is its
capability of being optimized for sequential access by
contiguously storing the set of values of each attribute as
a column. That is, string data can be stored in. one
configuration while code data can be stored in another
configuration for improving access. Another advantage of
the column container is the ability to store the data in a
column container in a highly compressed format.
Specifically the column type field 133 defines different
structures of the data, each designed to accommodate certain
data types as well as certain characteristics of the data in
the column. For example a sparse column of fined length
data could utilize a column type field 133 defining a
construct that includes a BITMAP to identify which rows
contain non-NULL values, as well as a column data field
141 that stores only non-NULL values for these rows.

[0088] Collectively the column containers in the second
dimension data store unit 10? provide a copy of the
database that is independent of the copy in the first
dimension data store unit 106. That is, rather then
retrieving specific rows based on a certain criteria like an
index in the prior art, a column is designed to efficiently
retrieve a vertical section of an original table that can be
processed as part of a query's resuitset.

[0089] As previously stated, the RID field for a table

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

identifies a row in that table. The column structure
requires that the RID always identify a corresponding column
position. That is, if the RID for the root table in the
Customer-Order-Itern group is "20”, the 20th row in each
column container associated with the Customer table must
correspond to the data in the 20th row of the Customer
table. Consequently, if the RID attribute 120 is
equivalent to the primary bey attribute, it is not
necessary to create a container for the primary key. If the
primary key and RID values are not the same, the primary key
attribute is stored in a corresponding column container.
Dor the database of FIG. I, the second dimension data
store unit 107 includes twenty-two columns, not twenty-eight
coluais because each table in FIG. 2 has an auto-increment
primary key that is used as the RID,

Forming a Database
[0090] As previously stated, SQL is a well-known and popular

standard that provides database architects with a
familiar interface to the front end of a database
management system. Any implementation of a back end that
stores the data and processes queries must be
transparent to the database
architect. This invention provides such transparency whereby
a database architect can interact with the database
management system with conventional SQL queries while the
front and back ends define and populate the database according
to the schemata shown in FIGS. 7 and 8 thereby to achieve
better throughput and response, as will be demonstrated.

[0091] Like the prior art, a database architect interacts
with a database management system incorporating this
invention by defining tables and attributes. Foreign and
primary keys define relationships among tables as shown in

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

the logical diagram of FIG. 1. As a logical database, such
as the database in FIG. 1, is defined er updated, processes
known in the art construct or update a data dictionary and
update the data in the tables. in accordance with one
implementation of this invention, a data dictionary, such as
the data dictionary 102 in FIG. 9, receives the same basic
metadata as was shown in FIG. 1. The tables and attributes
are identified, such as shewn in the dictionary metadata
portion 34D associated with the author table 34.

[0092] This invention also requires additional information
that identifies "table groups", and, for each table group,
its "root table" and relationships among the tables in that
table group. This information facilitates the physical
storage of a logical database such as shown in FIG. 1
according to the respective schemata of the first and
second dimension data store units 106 and 107 of FIG. 6.
FIGS, 9, 10A, 108 and 1IA through HE depict a process that
transforms the logical tables of FIG. I into these diverse
storage schemata.

[0093] Looking first at FIG. 10A, a process 151 begins at
step 152 any time a table, relationship or attribute in the
relational model is created, deleted or updated; i.e., an
"update event." A subroutine 153 defines table groups in
response to information in the data dictionary 102 according
to the steps shown in FIG. I0B, Referring now to FIG. 10R
that depicts the subroutine 153 in. greater detail, after
step 154 retrieves the relational data model from the
dictionary 102 in FIG. 9, step 155 constructs a directional
graph such as shown in FIG. 11A using known methods and the
information in the data dictionary of FIG. 9 including the
relationships associated with primary and foreign keys.
[0094] In this graph the "tables" are equated to "nodes";

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

and "links," to "directional edges". Nodes in FIGS. HA
through HE are identified by the reference numerals for
their corresponding tables in FIG. 1 with an "N" suffix;
and directional edges, by the reference numerals for the
corresponding links in FIG. 1 with an "£" suffix. For
example, the author table 34 in FIG. 1 becomes an author
node 34N while the link 42 becomes a directional edge 42E.
After identifying the nodes, directional edges are defined
as extending from a primary key to a foreign key. For
example, in FIG. 11Ά the directional edge 42E extends from
the author node 34E with its AUTHORID attribute to the book
node 35N as the book table 35 contains the fkAUTHORTD
foreign key.
[0095] Next step 156 deletes any lookup edges, such as
the directional edge 45E, now shown as a dashed line in FIG.
1IB. A lookup edge is characterized by a high average
cardinality between a lookup table, such as the state table
41 and a non-lookup table, such as the customer table 36. A
lookup table is a reference table containing key attribute
values that can be linked to other data and do not change
frequently.

[0096] Thereafter, step 156 defines "root nodes". "Root
nodes" are defined as nodes which, after any leading lookup
edges have been deleted, have no edges directed at them.
In this example, step 156 defines three root nodes, namely:
the author node 34F, the customer node 36N and the state
node 4IE.

[0097] Step 157 orders the root nodes by their
"importance".
Typically "importance" depends upon an expected or measured
update access frequency for each table group. In the
structure shown in the graph of FIG, 11B it is assumed, for

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

purposes of this explanation, that the customer node 36N will
have the most activity; the author node 34N, the next level
of activity; and the state node 4IN, the least activity.
Step 160 selects the most important root node and is an entry
into a loop comprising steps 161 through 164 that processes
each root node and other associated nodes and directional
edges .

[0098] Step 161 follows the directional edges to ail the
connected nodes to create a table group definition and
"defining relationships". A "defining relationship"
corresponds to a directional edge followed during the
formation of each group. As will become evident later, each
defining relationship also corresponds to a join that is
eliminated from further processing by virtue of the
construction of the table group when processed in accordance
with FIG. 10A.

[0099] During a first iteration, step 161 begins at the
customer node 36N and follows the directional edge 13E to
the order node 37N and the directional edge 4 6E to the item
node 4ON, Step 161 then terminates because the only
directional edge, i.e., the directional edge 43E, associated
with the itera node 10N points toward the item node 40N. The
identified nodes define a grouping, or "table group", for
their corresponding tables. In this case, the customer
node 36N, the order node 37K and the item node 4ON define a
customer table group 165 including the corresponding
customer, order and item tables 36, 37 and 40, respectively.
The directional edges 43E and 46E establish the two
defining relationships, namely:

(1) fkCUSTOMERID-CUSTObER:CNSIOiERID stored in
the properties of the Order table 37D in FIG.
9, and

WO 2009/089190 PCT/US2009/030169

-ο ■<

5

10

15

20

25

30

{2} fkORDERID-OREDER.ORDERID stored in the
Item table 4 0D,

The nodes and directional edges associated with this
table group are then removed from the graph as represented
by the dashed lines in FIG. 11C. Thus after step 162 is
completed during the first iteration, only the author,
book and state table nodes 34N, 3SN and 4 IN remain in the
graph.

[0100] As additional root nodes exist, step 163 transfers
control to step 164 to select the next root node in order of
importance in step 164, i.e., the author root node 34N.
During the second iteration step 161 starts at the author
root node 34N and follows the directional edge 42E to the
book node 35N in this example. The directional· edge 43E no
longer points to any other node, the item table 4ON having
been removed from the graph during the formation of the
first, or customer, group 165. Thus when this iteration
completes, the directional graph appears as shown in FIG.
HD, The author node 34N and book node 35N now define a
second or author croup 166 as shown in HD that contains
the author fable 34 and the book table 35 with a
fkAUTHORTD-AUTHOR.AUTHORID defining relationship. Only the
state root node 41N remains.

[0101] During a third iteration step 164 selects the state
node 41N, As the state node 41N stands alone, step 161
creates a third table or state group 16? that only includes
the state table 41 as defined by the state node 4IN as shown
in FIG. HE. As there are no remaining directional edges,
there are no defining relationships. Step 163 in FIG. 10B
then diverts to step 165 that passes the information shown
in FIG. HE, specifically the definition of the customer
group, author group and state group, to the remainder of the

WO 2009/089190 PCT/US2009/030169

-p. £-

5

10

15

20

25

30

procedure in FIG. 10A.
[0102] If the order of importance determination in step

157 of FIG. 103 were changed, the table group definitions
would change. For example, if step 157 were to determine
that the author table was the most important root node, the
first iteration of the loop in FIG. 10B would produce a an
author group with the author node 34b, the directional edge
42E, the book node 35N, the directional edge 44E and the item
node 40b. Corresponding defining relationships would be
generated. A next iteration would define the customer table
group with the customer node 36N, the directional edge 48F
and the order node 27b and a single defining relationship.
Ihe determination of the order of the root nodes is not
critical. If the order of importance proves not to be
optimal, the order could be manually or be automatically
adjusted in response to accumulated statistical information.

[0103] Next, control passes back to FIG. 10A whereupon steps
170 through 174, that form a series of nested loops,
systematically process the information obtained by subroutine
153. During multiple iterations the nested loops generate
containers for each of the first and second dimension data
store units 106 and 107 in FIG. 6 implementing the data
structures of FIGS. 7 and 8. For the specific example of
FIG. 1, a container is formed in the unit 106 for each table
group and, in the unit 107, a container for each table and
attribute in that table. Specifically step 170 determines
whether any more table groups need to be processed.
Initially ail the table groups have to be processed, so one
is selected. The order is not important.

[0104] Step 171 creates a new horizontal container data
structure for that group using corresponding metadata
including the information stored with the attributes, like

WO 2009/089190 PCT/US2009/030169

JO

5

10

15

20

25

30

"length," and the defined relationships- That is, step 171
produces data structures, like the data structures of the
author container 110, the customer container ill and the
state container 112 shown in FIG. 7.

[0105] Next the system processes tables and their
attributes. Step 172 determines whether any more tables in
the group need processing. If not, control passes back to
step 170, If there are more tables, step 173 determines
whether any more attributes in that table need to be
processed, if not, control transfers back to step 172. if
there are, then step 171 creates a new column container
data structure for each attribute in that table, each
container having a data structure such as shown in FIG. 8.
As previously indicated, for the logical database shown in
FIG. 1, the system will create four column containers for
the author table 34, five, for each of the book table and
customer tables 35 and 36, three, for the order table 37
and item table 40 and two, for the state table 41.

[0106] The foregoing description of Figs. IDA and 103 is
particularly directed to the creation of a database. As will
be apparent to those skilled in the art the process 151 can
be adapted, in whole or in part, to handle any changes in
relationships or the addition, deletion or modification of
tables and the addition, deletion or modification of
attributes .
[0107] It will now be helpful to describe the specific

implementation of the storage schema in the containers for
the first dimension data store 106 in FIG. 6 for the
database of FIGS. 1 and 2 in accordance with this
invention. FIG. 12 presents the overall logical
organisation of the data store unit 106 with its stored
containers 110, ill and 112 produced by step 171 in FIG.

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

10A after successive iterations as previously described.
The author container 110 includes one cluster for each
author. In the specific implementation for the data in
FIG. 2, a cluster 180 stores information about the author Sam
Jones; the cluster 181, Barbara Smith.

[0108] Each cluster has one or more cluster rows. In this
example, each cluster includes an author cluster row and
two book cluster rows. In the specific application and in
accordance with the graph of FIG. IIS, the author cluster
180 includes an author cluster row 182, a book cluster row
183 and a second book cluster row 184, there being one book
cluster row for each book in the database by that
particular author. The cluster 181 for Barbara Smith also
includes an author cluster row 185 and two book cluster rows
186 and 187,

[0109] Although FIGS. Ϊ2Α and 12B depict the details of
both clusters, the following description is centered on the
cluster 180 in FIG. 12A. The author cluster row 182 includes
an RID field, a GIB field, a cluster row type, an attribute
bitmap, a pointer to the attributes listed as being present
in the cluster row, all as shown in FIG. 7. The text in the
upper portion of each cluster row is for purposes of
explanation only. Only the data in the lower portion is
stored. In this cluster row 182, the RID and CID values
are the same, designating a root cluster row corresponding
to one row in the root author table 31 in FIG. 2. For this
author, the cluster row is in the 200th row of the
corresponding column in the column container. In this
example, all the attributes have values, so all the
attribute bitmaps have "1" values. The pointer (FTR) field
points directly or indirectly to the values for each of the
four attributes that the attribute bitmap identifies. As

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

previously described, the primary key attribute is not
present in the body of the cluster row because it is used
as the RID value and, along with cluster row type field, it
defines a unique table and row.

[0110] Each of the cluster rows 182 and 183 has a different
RID value that corresponds to a unique value for the book
in the book table 35 or author table group 165. The CID
field includes the same value as in the CID field in the
author cluster row 182. This establishes the book as being
associated with the author. The PTR field points to the
values for each of the five attributes that the attribute
bitmap identifies .

[0111] Each of the cluster rows 185, 186 and 187 for the
cluster 181 in FIG. 12B has a similar structure to the
corresponding cluster rows 182, 183 and 184 in FIG. 12A.
There is one difference that highlights another feature of
this invention. According to the data in FIG. 2, Adam Apple
has provided contact information; Barbara Smith has not. In
the prior art, Barbara Smith's contact attribute would be
stored in a "null field". As shown, the "Contact" entry in
the attribute bitmap 190 in the cluster 182 contains a "1"
and the Contact attribute 191 contains data. In the cluster
row 185, the contact entry 192 in the attribute bitmap
contains a "0", and no memory space is allocated for the
Contact attribute as represented by the dashed lines at
193. This feature eliminates the need for storing and
processing a null value for the Contact attribute 193. As
apparent this feature contributes to a reduction in storage
space and simplifies the data architect's formation of SQL
queries ,

[0112] FIGS. 12C, 12D and 12E present the storage

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

implementation for the customer table group 165 in the
container 111 that includes data from the customer, order
and item tables 36, 37 and 40 in FIGS. 1 and 2. As shown
in FIG. 12 the customer container Ill includes one cluster
for each customer. In the specific implementation for the
data in FIG. 2, a cluster 194 stores information about Adam
Apple; the cluster 195, about Bonnie Bird.

[0113] Looking at FIGS. 12C and 12D as a representative
example, the cluster 194 includes a customer cluster row
200 and two order duster rows 201. and 202 corresponding
to two orders by Adam Apple. Each of the order clusters is
followed by item cluster rows. Specifically order cluster
row 201 is followed by two item cluster rows 203 and 204
while order duster row 202 is followed by a single item
cluster row 205. The storage for the cluster 195 for Bonnie
Bird follows this organization. As Bonnie Bird has placed
one order for one book, the cluster 195 contains a customer
duster row 206, an order duster 207 and a item cluster
208.

[0114] As the state table group in the container 16? has
only one fable, the storage appears as shown in FIG. 12F
wherein the container 167 stores one state cluster for each
state, two state dusters 210 and 211 being shown. As FIG.
HE includes only one node in the state table group, each
cluster is formed by a single cluster row.

[0115] As previously indicated, the second dimension data
store 107 in FIG. 6 stores one container for each table-
attribute combination derived from the logical database in
FIG. 1. If the RID field contains the primary key value, no
column need be stored for the primary key attribute.

[0116] Each container stores a header and data. In the

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

40

following discussion "header" and "data" are used to define
a specific field, such as the header field, or the
information contained in that field as the context shall
admit. FIG. 13 depicts three instantiations of column
containers for the database of FIGS. 1 and 2 having the
general structure as FIG. 3. Still referring to FIG. 13,
each of the containers includes a "header" and "data"
section. That is, a container 220 includes a "header" 223
and "data" 224; a container 221, a header 225 with an
attribute stride position vector 226, such as the rector
140 shown in FIG. 3, and data 227; the container 222, a
header 230 with a code table 231 and data 232.

£0117] The header in each column container includes a
unique identification and information about the
characteristics of the data. In these instantiations the
unique identification includes a concatenation of the table
name and the name of an attribute in that table. For
example, the identification for column container 220 is
BOOK LIST. Thus column 22 0 contains the list price for ail
the books in the Booh table 35. Each of the containers 221
and 222 represent the LastName and Gender attributes in the
Customer table 36 and are identified uniquely by
CUST^hRSTKAMS and CUSTJSENDER, respectively.

[0118] The portion of each header defining data
characteristics uses information from the data dictionary
in FIG. 9 based upon initial selections that the data
architect makes. The container 220 defines fixed-length
long-integer data; container 221, variable-length string
data; and container 222, fixed-length code table with
string data.
[0119] In this implementation, the primary key for a table

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

41

is assumed to be a auto-increment counter so the counter
value identifies each row in that table in succession. For
example, the value "17.00" in the data 224 of the container
220 refers to row number "1" in that table, in this
embodiment there is essentially a counter associated with
each table that identifies a particular row in that table.
[0120] It is a necessity that, any implementation requires

that the order of data in any column container be in the
same sequence as the other column containers of the same
table, in each row in a column container for 01: attribute
for the same table uses the primary key as a pointer for
the data in that row. The use of this form of
identification is independent of the data in a container.
For exarsple, the container 221 could include multiple rows
with a common last name like "JONES". Each instance of the
last name will have a unique identifier; i.e., the primary
key value for the Customer table 36.

Qu e r y.P roce s s1ng
[01213 The interaction among the query processor 103, the

first and second data store units 106 and 107 in FIG. 6 and
the data dictionary 102 in FIG. 9 in response to a query is
now described with reference to an iterative routine 240 in
FIG. 11 for constructing a query plan. The query processor
103 first identifies ail the table groups involved in the
query at step 241. Then an iterative process comprising
steps and subroutines 242 through 245 selects an identified
table group at 242. The query parser 101 initially uses
information from the query and the database to identify
which tables in that table group are relevant to the
analysis, bent an optimising stage, in subroutine 244
determines how much of the database will be accessed for the
selected table group and processed to obtain intermediate

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

42

result set with all the data that satisfies the query
criteria for that table group. When step 245 determines
that all the relevant table groups have been analysed, a
join/proeess stage 246 combines the individual intermediate
result sets into a formal result set that contains the
inforination the query requested.

[0122] FIG. 14B discloses the steps by which the parsing
stage 101 determines the relevant tables,

[0123] Specifically, step 250 draws a first graph of the
selected table group using the root node and defining
relationship edges from the data dictionary thus to provide
a graph, like the graph of the Customer table group 165 in
FIG, 11C, containing the Customer node 36b, the Order node
37N and the item node 4 ON and the corresponding directional
edges 13E and 46S.

[0124] Step 251 draws a corresponding second graph based
upon the information in the query, such as shown in. Tables
1 and 2 below. In the case of the Customer table group, step
251 uses the Customer table Tl, the Order table T2 and the
Item table T3 and the join predicates 54 and 55 in the
query.
[0125] In more detail, assuming that the query in FIG. 3A

includes tables "Tl" and attributes "Aj" where "i" and "j"
denote a number such that Ti and Aj designate a table and an
attribute in each table, step 251 could identify the tables
and attributes that form the query as follows:

WO 2009/089190 PCT/US2009/030169

43

5

10

15

20

25

30

TABLE 1
QUERY IDENTIFICATIONS

MNEMQN1 DEFINITION ATTRIBUTES
k.

MNEMONIC DEFINITION
e i CUSTOMER TABLE Al tblCustomer.FirstName
T2 ORDER TABLE A.2 tblCustomer.LastNsme
T3 ITEM TABLE A3 tblBook. Title
T4 BOOK TABLE A 4 tbllteru Sale

AS tbl Cu s toner. CustomerID
Au tblOrder.fkCustomerlD
A7 tblOrder. OrderID
A8 tbiltem.fkOrderID
AS tblBook.BookID
A10 tbiltem.fkBooklD

[0126] Attributes Al through A4 are taken from the
"Select" statement 51 in FIG, 3A; tables II through 14 from
the "From" statement 52; and attributes A5 through A10 from
the lines 54 through 57 of the "Where" statement 53 that
define the predicates. Line 57 in the "Where" statement
53 is a "selectivity" predicate. The join predicates from
lines 54 through 56 are represented as:

TABLE 2
JOIN PREDICATE IDENTIFICATIONS

Join predicate 54 TI.A5—T2,A6
.Join predicate 55 12 .A7::=13. A3
Join predicate 56 T4.A9:=T3. A10

[0127] Step 252 then analyses the graphs to determine which
tables and relationships are common to both graphs. Put
another way, step 252 identifies those tables within the
table group that are involved in the query and that are
joined using the defining relationships in the data

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

44

dictionary 102. The analysis of the Custoater table group 165
in this example identifies all three of the tables in the
Customer table group for retrieval. As the data for the set
of tables in the table group can be retrieved from the
corresponding cluster container with its pre-joined
clusters, there is no need for inter-table group join
operations to define the relationship for the individual
tables in the Customer table group. It is possible that some
tables will not overlap or will not be connected to another
table in the table group, in which case, connected tables
form subgroups that are processed independently.
[0128] In FIG. 14B step 253 extracts a list of all the

attributes (OT ATT] to foe accessed by the query and that are
included in one of the overlapped rabies (OT) and that are
not primary keys that also serve as an RID for a given cluster
in a container. Conceptually, the extracted list of
attributes represent the set of columns that should be
accessed in order to produce the resultset for this table
group using the second dimension data store unit 107. In
the case of the Customer table group, the number of listed
attributes iOTAATT) identifies all the accessed attributes
in the Customer table 36, the Order table 37 and the Item
table 40. Referring to Table 1, the list would include each
of the attributes Α1-Ά4, as well as A6, A8 and A10. As each
of the attributes A5 and A7 is a primary key used as an
RID, they are not included. Attribute A9 is not included
because it belongs to another table group.

[0129] The selection of a processing method for the table
group begins after the actions of step 253 have completed
with an estimation of selectivity and the percentage of the
data in the table group that will be accessed. How
referring to FIG. 14B, in step 254 the system estimates the

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

45

selectivity for non-join predicates that involve an attribute
in the extracted list of step 253. In one approach the
system examines the designated column container or
containers for the attribute or attributes in a non-join
predicate. Then it estimates a percentage determined by
the number of rows expected to be selected to the total
number of rows in the column container. When there are
multiple non-join predicates the results are combined
statistically to obtain an overall selectivity estimate. A
simple approach is merely to multiply the estimated
selectivity for each of the filtered attributes in one
table. Selectivity can vary from "0" for a high
selectivity to "1" for low selectivity, a "1" indicating
that all the rows associated with the attribute will be
involved. The overall selectivity tends to indicate the
number of root table rows or clusters that will be
accessed. Stated differently, the overall selectivity value
indicates the percentage of the total number of clusters
needed to be accessed in the current table group.

[0130] When the overall selectivity has been determined in
step 254, step 255 calculates a percentage cf total
information (PIE). The PTE value tends to indicate the
percentage out of the total amount of data in the container
of the table group that needs to be accessed. It is
calculated as follows:

P/P. (£S77A7d.7ED_hEL£C77W7T) * Ο T _ d 7' 7'...

;TOTAl_ AΠΒ/Β(/ΪΕΡ _ 77V _ 07'

[0131] In the case of the query of FIG. 3A and referring to
Table 1 above, 01 ATI~:7 and OT~:22. If there is no
selectivity, PIE-0.58. As selectivity increases, the PIE

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

46

decreases approaching zero as in the case of FIG. 3Ά where
only one customer is selected by the non-join predicate 57.

[01323 Step 258 compares the PIR value with a threshold.
The threshold is set according to a number of factors and
processes that are well-known in the art. Examples of the
factors to be considered include table group size, disk
latency and bandwidth, memory latency and bandwidth. The
estimation of join operation cost is an example of a
process. Typically these processes statistically analyse
system operations over a period of time and periodically
perform the analysis of steps 253 through 255. For
example, the threshold could be calculated as the percent
of data from the table group that could be read sequentially
during one random operation. If the bandwidth allows reading
30% of the clusters in the container for a selected table
group in the same time it would take to perform one random
read, the threshold for the table group could be set at
70%. This value could then be adjusted manually and/or
automatically based upon the available statistics.

[0133] The optimising stage 214 uses the number of
attributes in the extracted list and the PIR value as
initial criteria for selecting one of several options. In
this embodiment there are five options. If there is only a
single attribute in the extracted list, step 256 diverts to
step 257 to process a first option. As there is only one
attribute, only a single vertical container needs to be
scanned. Step 25? then produces an intermediate result set
for that table group.
If there are more than one attributes, step 258 examines

the PIR value. If the PIR value is greater than the
preset threshold, step 258 transfers control to step 259
representing a second option. Specifically, this decision

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

47

indicates that a high percentage of the clusters in
corresponding container 110 of FIG. 7 needs to be scanned to
obtain a resultset and that a scan of all the clusters in
the table group container will provide the best result.
Step 25 9 performs that task by sequentially scanning the
cluster rows ;i.n the container and obtains a resultset based
on the information in that table group. The output of step
259 is therefore an intermediate resultset with rows of
data for the table group that satisfy that portion of the
given query.
[01343 As the selectivity increases or the ratio of

attributes OT ATT/OT decreases, the PIR value will fall
below the threshold. Step 258 diverts to step 260 that
executes any relevant non-join predicates im the query
thereby to filter the corresponding vertical columns. It
returns an intermediate resultset as a bitmap representing
the rows that are to be accessed in each relevant table.
[0135] Step 261 analyses the results of step 260 and

statistically analyses the cost of several alternatives,
three such alternatives are shown in FIG. 14B and represent
third through fifth options. "Costs" in the context of
this invention are estimates of the time required to
complete an operation. The estimates for a sequential scan
of a cluster or a vertical column in memory is the time to
read that data. If the cluster or vertical column is only
on a disk, the time depends on the time to reach a first
location plus the time to process each of the sequential,
values for that attribute. For random operations, such as
involved with Option 4, will include the time for each
access to the attributes.
[0136] Specifically, Option 3 calculates a cost of

sequentially scanning all. the data in the horizontal

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

48

container 110 for the table group. Option 4 calculates a
cost of sequentially scanning the data in each vertical
column container corresponding to the extracted list of
attributes obtained in step 253, joining these columns.
Option 5 calculates cost of a random retrieval of clusters
from the horizontal container 110.

[0137] Step 262 selects the option with the lowest
cost of all the options provided by step 261 including the
three options. Other options might also foe considered.

[0138] In this embodiment step 263 immediately
begins to define an intermediate resultset. This is
particularly advantageous in a multi-processing system
because information from step 262 can immediately begin
operation and, if there are multiple table groups, the
function of step 263 can be directed to different processing
systems for parallel processing. Other alternatives can be
used. For example, the data from step 262 corresponds to a
step in a query plan. These steps can be buffered. Then
the system can process the information for each table group
sequentially as disclosed in the query plan.
[0139] This ends the analysis of the table group selected
at step 242 in FIG. 14. In the specific query of FIG. 3Ά,
step 245 in FIG. 14 returns control to step 242 to select the
second table group, for example, the Author table group that
includes the Author table 34, the Book table 35 and the
link 42, When step 252 in. FIG. 14a overlaps these graphs,
only the Book table remains and the only attribute of
interests is the TITLE Attribute. There are no non-join
predicates for this table group, so step 254 does no
filtering. As a result the Fix value calculated in 255 is
less than preset threshold and OT_ATT=d. so control again
transfers from, step 258 to step 260.

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

4 9

[0140] As there are no non-join predicates associated with
the vertical, columns, the result .identifies each title in
the Book table. In this case the analysis in step 261
selects Option 3 whereby the Book:Title vertical column is
scanned. Once executed, the resuitset from this scan will
include all the book titles and hence produce an
intermediate resultset of all the books.

[0141] When all the table groups have been precessed, step
245 passes control to subroutine 246 that provides a final
resultset by means of the join,/process procedure 246 to
analyse the collected data and complete the query plan.

[0142] Referring to FIG. 11C, step 261 determines whether
more than one resultset is left in the set that has been
generated by the procedure of FIG. 143. If two or more
resultsets are left, step 264 transfers to step 265 that
selects the smallest remaining resultset; that is, the
resultset with the fewest number of rows. Step 267 executes
a join with the nest smaller resultset to which it has a
join predicate. The combined resultset replaces the
joined resultsets. When there is only one resultset left,
final processing operations, e.g. sort, aggregate, are
performed to complete the query.

[0143] Fith specific respect to the query in FIG. 3A, the
smallest resultset is the resultset for the Customer table
group because the query identifies a specific customer.
Processing this information is equivalent to steps 271 and
272 in FIG. ISA,. The intermediate resultset will identify
the specific customer, each order that customer has placed
and for each order the item or items that have been
purchased as shown by resultset 272Ά with one row for each
item and columns for all the attributes from the Customer
table 36, the Order table 37 and the item table 10

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

including the fkBOOKID foreign key. The next resultset that
results from joining the resultset 272A with the book title
resultset 273A from step 273 is a join operation 27 4 that
produces a resultset 27 4A. Step 275 produces a projection
275A that contains all the attributes in the SELECT clause.
The results are displayed by step 276.

[0144] The advantages of this system can be appreciated by
comparing the query plans of FIGS. 3B and ISA. with this
invention, initial step 271 includes all the clusters in the
Customer container. Selection of the value with
CustomerII>20 in step 272 by Option 4 provides the first
interim resultset 27 2A. No join operations have occurred,
whereas in FIG. 3B two joins are required to produce a
comparable resultset. The join 274 is executed as in the
corresponding join in step 74 in FIG. 3B to produce a second
interim resultset 274A, except that only the required title
column is processed rather than the full Book table. As
mentioned before the RID values for the Book table are
equivalent to the primary key BOOKID. Therefore, because the
order of the Book-Title in the column container corresponds
to the RID values, it can logically be considered a two
column table, where the first column is the BOOKID
attribute and the second the TITLE attribute. As the
fkBOOKID value in each row in the first interim resultset
272A corresponds to the primary key in the Book table, the
system executes a conventional join based upon the linkage
between, the fkBOOKID field in each item wifi· a BOOKID
primary key in the Book table. More specifically, the join
operation 27 4 obtains the fkBOOKID value from each row in the
first interim resultset 272A, and accesses the book data 273A
for that. BOOKID value to provide the corresponding TITLE.

[0145] However, the join operation in step 274 processes

WO 2009/089190 PCT/US2009/030169

51

5

10

15

20

25

30

only the TITLE attribute column 273 from the book table,
rather then having to extract the TITLE attribute from the
full book table 35 including all five other attributes, as in
step 74 in Erg. 33. Only a fifth of the data volume is thus
processed, thereby reducing costs by reducing data transfer
times as well, as random accesses thereby permitting faster
operation. As will be apparent after comparing Figs. 30 and
15B, this invention has reduced the number of resultsets from
five to three because the three joins required by the query
plan in Fig. 3B reduce to one join operation in the query
plan of Fig. 15A.

[0146] The query in FIG. 5A follows a similar path with
respect to FIG. 14. Step 241 identifies all three table
groups involved in the query, namely the Customer-Order-1,tem
table group, the Author-Book table group and the State table
group. Assuming step 242 selects the Customer-Group-Item
table group first, the graphs of steps 250 and 251 again will
be identical thereby identifying' the Customer table, the Order
table and the Item table to be overlapped. Referring te
FIG. 14B, the attributes selected in the query are the
Customer ID and the fkSTATEID field. As there are no non­
join predicates, no filtering occurs. So in the first
iteration step 253 extracts a list of seven attributes,
namely:

ild tbl HEM. SALE,
(2 j tbICUSTOMER.CUSTOMERID,
(3 } tbiORDER.fkCUSTOMFRlD
(4} tblITEM ,fkBOOKID
(5} tbiORDER,ORDER1D
(6) tb1ITEM.fkORDERID
(7} tbICUSTOMER.fESTATEId

[0147] Thus (2) and (5} are attributes used as RID values,

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

52

and there are 5 of the attributes in the table group that
are not used as an RID, so PIR ~ 1 * 5/11, a P1R value
that generally will be greater than the threshold. Step 258
diverts to step 259 that elects the second option to
generate the customer-order-item table group resultset
using a sequential scan of the customer horizontal
container.
[0148] In the next iteration step 292 selects the author

book table group and again defines the Book table as being
the only table of interest. Then step 253 extracts a list
comprising tlfoBOOR.BOOKID and tblBOOK.LXST so there is only
one non-primary key attribute not used as an BID, so BIB :::: 1*
1/9. [0149] On the third iteration step 242 selects the
State code. Step 253 extracts the list of two attributes,
namely: the tbISTATS.STATECODE and tbiSTATE.STATEID
attributes. In this case, BIB -= I *' 1/2.
[0150] With no selectivity, PIR values for each of the
analyses is 0.5 for the State table group analysis, 0.11
for the Customer table group and 0.45 for the Author table
group. Assuming the threshold is set at about 0.4 analysis
of the customer-order-item group produces a resultset with
values for the CUSTQMERTD, fkCUSTQMERlD, ORDERTD, fkBOOKID
ADD fkSTATEID attributes. This resultset will have a number
of rows equaling the total number of items in the Item
table.
[0151] The PIR value for the Author table group is less
then the threshold and step 260 has no impact as no non­
join predicates are associated with the Book table,
therefore step 261 selects Option 3 by identifying a scan
of the vertical column container for LIST price attribute
each of which will, again identify all the books in the Book
table, Similarly, the state code resultset will foe computed

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

53

from the vertical column container for the STATECODE
attribute, which will logically include the values for the
STATEID and STATECODE and will contain one row for each
state.
[0152] FIG. 16 depicts a query plan 280 for the query in
FIG. 5A developed In accordance with this invention. Step
281 produces a result set from the tbiSTATE.STATECODE
vertical container. Step 282 represents the scanning of
all the clusters in the Customer-Order-Item container that
produces a resultset 283 that includes the fkSTATFlD
attribute from the Customer table, the fkBOOKID attribute
from the Item table and the SALE attribute from the Item
table. A join operation 284
produces a resultset in. which each row of the projection
of step 283 includes a state code.

[0153] Next, the system uses step 285 to retrieve the
tblBOQK.LIST vertical container with its implicit BOOKID
attribute. Step 286 joins with the fkBOOKID attribute of
the Item table in the intermediary resultset of step 284.
Step 287 converts the resultset to one including the state
code, price and sale attributes. Step 268, like step 68 in
FIG. SB, provides the aggregate based on the state code
and generates the results of step 26 9.

[0154] As a comparison, processing the query shown in FIG.
5A using the prior art methods of FIG. 5B requires four join
operations, In accordance with this invention and as shown
in FIG. 16, this number is reduced to two join operations that
are further enhanced by the use of column containers where
appropriate to minimise the volume of data fetched and the
number of random accesses.

[0155] These examples allow an understanding of the

WO 2009/089190 PCT/US2009/030169

z44

5

10

15

20

25

30

advantage in using multiple data store units. Prior art
methods retrieve rows of a table structure or filter a
column using a predicate. However, join operations must still
foe performed. In order to filter a column that is not indexed
a full table needs to be scanned. A system including this
invention stores multiple copies of the data. In this
specific example one copy in a horizontal data store unit
stores related rows clustered together thereby eliminating
inner-table-group join costs and random accesses to the
different rows. It is possible to store columns sequentially
in the second data store unit making the retrieval of
specific columns highly efficient. These approaches combine
in a unit, such as a cluster as much related data as possible
for any action by a query to optimize the query processing.
As the sice of the data, complexity of data model, and
intricacy of queries increase, the advantages inherent in
this design allow progressively more efficient
implement at i on s.
Sa t aba s e Upda t e s

[0156] This invention uses a straight-forward method
for updating the database in a response to an update
event. As shown in FIG. 17 a routine 290 processes each
update event. Initially data associated with each update
query is stored in the change log 105 in FIG. 6. Step 291
retrieves a change log entry that requires a data change and
is designated as "data change x". Step 292 checks its
validity. Step 293 determines whether the change is valid.
If it is not, control transfers to a roil back routine 284
that terminates any further updates.

[0157] If the data change is valid, step 293
transfers to step 295 to select either the first dimension
data store unit 106 or the second dimension data store unit

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

55

107. Step 296 applies the data change to the selected data
store unit. The process again is similar to that in the
prior art except the step 296 varies depending upon. the
data store selected. That is, if the first dimension data
store 106 is selected and this represents new data, such as a
new customer;, step 296 must form the cluster for that
customer including the customer order item and any item
entries .
[0158] If the change is not applied successfully, step 300

transfers control to the roll back routine 294. if it is
successful, step 301 determines whether any additional data
store units are to be updated. Thus, if this is the end of
the first iteration of the loop comprising steps 295 through
301, control transfers back to step 295 to select the
second dimension data store unit 107. in this case the
data is applied hy being added to the end of each
appropriate column container. Again, if the change to the
second dimension data store unit 107 is successful, step 300
transfers back to step 301.
[0159] If this is the second iteration, step 301 transfers

control to step 302 to determine whether any additional
changes remain in the data change log 105. Once all the data
changes have been successfully completed, step 303 commits
changes and terminates the process 290.

XML Schema
[0160] A database system incorporating this invention is

easily adapted for the storage and retrieval of XML data,
and in particular to XML data that is based on a known XML
data model, also known as an XML Schema or XSD, Fig, 18
discloses such an XML Schema for the customer-order-item
table group 165 in Fig. 9. As will become apparent, the XML
schema defines all the information, associated with the

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

customer, including attributes, orders, and items, and may
be directly extracted from the data dictionary 102 in Fig.9
with no mapping necessary.

[0161] A "Customer Container" element 310, corresponding to
the container 110 in Fig. 7 is followed by a customer
element 313, an order element 315 and an item element 317
corresponding to the customer table 36D, order table 370
and item table 40D in Fig. 9 respectively along with their
respective attributes. The order of elements in the XML
schema follows that defined in the data dictionary 102 in
Fig.9 using root tables and defining relationships. More
specifically, the system identifies and establishes the
structure by including a reference to the Customer table at
313. This is followed by a series of element name operations
314, and 319 to define the attributes for the Customer table
36 in FIG. 1, Next the system identifies the Order table at
315 and establishes the various elements 316 corresponding
to the attributes for the Order table 37 in FIG. 1.
Following statements 317 define the Item table and its
attributes 313, As will be apparent to those skilled in
the art, the XML Schema in Fig.18 is readily adapted to
handle, in whole or in part, any changes in relationships,
the addition, deletion or modification of tables and the
addition deletion or modification of attributes.

[0162] FIG. 19 depicts a sample of the date in FIG. 2 for
the customer-order-item table group according to the XML
schema of Fig. IS. Specifreally, FIG. 13 discloses such XML
data 194A that corresponds to the horizontal cluster for
ADAM' APPLE 194 in Fig. 12 as shown in detail in FIGS. 12C
and 12D. A block 200A corresponds to cluster row 200 in
cluster 194 that contains customer data; in this case the
customer is Adam Apple, Following that is another block Ξ01Α.

WO 2009/089190 PCT/US2009/030169

•-W I

5

10

IS

20

25

30

that identifies an order, corresponding to cluster row 201.
Blocks 203A and. 204A identify two items that belong tc the
order in 201A.
[0163] In this case, and as shewn in FIG. 1.2, Adam Apple has

two orders. Therefore block 202A identifies the second
order and block 205A identifies the single item related to
this second order. The XML data for the Customer cluster
Bonnie Bird 1S5A, which corresponds to the Cluster 195,
follows, and la shown by reference only. Thus the XML data
in Fig.19 is equivalent to the data in the container 110
containing all customer clusters. Similarly, other table
groups are represented using XML Schema and XML data
documents derived from the information in the data
dictionary 150 and the data in the horizontal containers.

[01643 Conversely, given an XML schema, the corresponding
data model 150 and data structures for the data store units
can be constructed, in such a case the stop 153 in Fig. 10A
becomes redundant as the grouping hierarchy is pre-defined
as part of the XML schema. Therefore the algorithm in
Fig.lOB, traced in Figs. 11A-E, would not be required. An
XML schema defines a structure that can be directly defined
in clusters. Therefore, XML data can be loaded directly into
the clusters as they contain equivalent structures. At
runtime, XML queries posed to the system are processed
internally using the methodologies developed for SQL
queries, and using both data store units, and the results
returned as XML data.
[01653 la summary, a database management system constructed

in accordance with this invention is compatible with
conventional logical table diagrams organized with columns
that define attributes and rows that store values, links
between related primary and foreign keys and queries,

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

typically SQL queries as shown, for example, in FIG. 1.
The database management system processes each query to
transfer data to or from the different storage units as
shown, for example, in FIG. 6. A first storage unit stores
the complete database according to a first schema; the
second, a second schema. Thus, in accordance the objectives
of this invention, the database has redundant copies of the
database, albeit in accordance with different schema.

[0166] Transferring data with the first storage unit
includes the converting the logical tables in the model,
like the diagram shown in FIG. 1, into table groups. Each
table group will include a root table and an array of other
logical tables linked directly or indirectly to the root
table as shown, for example, in FIGS. 1GB and 11A through
HE. The first storage unit stores the data according to
one usage pattern in a container as shown, for example, in
FIG. 7. Each container includes at least one identified
cluster for each row in the corresponding root table and all
the rows of the array
of tables that are joined directly or indirectly to the
root table for that table group. Data in. each cluster
includes one or more cluster rows that store the data from
the row of the root logical table and all the data from the
other logical tables in the table group that are linked to
the data in the root table row. The second storage unit
stores data according to a second usage pattern in a
plurality of column containers as shown, for example, in.
FIG. 8. There is one column container for each combination
of a table and one of its attributes.
[0167] The data in each cluster row is stored sequentially
in the first storage unit and the attribute values In each
column container for the corresponding column in a logical

WO 2009/089190 PCT/US2009/030169

5

10

15

20

25

30

table are stored sequentially. Sequentially storing data
according to schemata, such as those disclosed herein,
provides two advantages. The data in the first storage
unit is optimised for transferring data based upon a first
usage pattern represented by OLTP queries, particularly where
access will be limited, to a single row or limited number of
rows in the root table. The data in the second storage unit
is optimised for transferring data based upon a second
usage pattern as associated with OLAF queries that normally
select only a few columns. Storing data sequentially,
rather than randomly, improves throughput because selected
data can be retrieved sequentially.
[0168] The database management system also includes a
plurality of procedures for retrieving a resultset as
shown, for example, in FIGS. 14 through 14C. A control
selects one of a plurality of procedures that maximises the
receipt of the resultset based upon the requested
information for each table group and the estimated
proportion of the table group that will be accessed. This
improves throughput by minimising the time
required to process a query to obtain a final resultset.
Of all the join operations represented in the logical
database, only the joins between resultsets for each table
group are required. This greatly reduces the number of
join operations and further improves response times and
throughput.
[0169] Other features of this invention provide

additional throughput advantages. For example, the exact
sequence as would be represented in a query plan is
determined dynamically during the processing of the query.
As shown in FIG. 14B, processing to obtain resultsets
begins immediately upon completion of the analysis for

WO 2009/089190 PCT/US2009/030169

60

5

10

15

20

each table group. As shown in FIG. 14C, returned
intermediate resultsets are ordered by sire.
This optimizes the execution of those joins that
establish relationships with different table groups.

[0170] The database management system also is adapted to
handle highly complex logical database representations and
is adapted to interface with standard query languages, such as
SQL queries. In addition and as shown in FIGS. 18 and 19,
the system also interfaces with XML to define the data
structures and data changes.

[0171] This invention has been disclosed in terms of certain
embodiments. Xt will be apparent that many modifications
can be made to the disclosed apparatus without departing
from the invention. For example, the disclosure describes
the data structures for two specific storage units. This
invention is equally applicable to other data structures.
As will apparent to those skilled in the art, the response
to an event that requires a change in the data structure for
each or both of the storage units can be modified. The
disclosure of the response to an SQL query can be modified
to provide different internal processing and changes in the
sequence in which the individual queries are processed and
in the modification of retrieval options by addition,
deletion or modification of one or more options.

27. Feb. 20 1 2 9:03 Patent Attorney Services No. 2286 P. 7

20
09

20
43

19

27
 F

eb
 20

12 61

5 CLAIMS

1, A database management apparatus comprising:

A) a first data store that stores, in a plurality of first memory units, a copy of the data

of a logical database model according to a first physical layout, the logical database model

comprising at least one table group, wherein each table group includes one root table and at least

10 one other table distinct from the root table and related thereto, each table in the table group being

characterized as having columns of attributes and rows of data, wherein each of the plurality of

first memory units includes, as a first composite entity, all the data from at least one row of a root

table and all related rows of data from the at least one other table related thereto such that rows

from multiple distinct tables of the table group are inherently linked and stored in the first

15 memory unit as the first composite entity, the first physical layout providing sequential access, as

the first composite entity, to all the data in that root table row and the related data from the at

least one other table in response to a queiy of a first type, the sequential access taking place

without individual random accesses to the root table and the at least one other table related

thereto, thereby eliminating a need to process a join operation each time such relationship is

20 accessed, and

B) a second data store that stores, in a plurality of second memoty units, a redundant

copy of the data of the logical database model according to a second physical layout wherein

each second memory location includes all data from at least one of the attributes and all the

corresponding values of that attribute, the second physical layout providing sequential access, as

25 a set of columns, to the data in each attribute in response to a query of a second type; and

C) a data dictionary populated with information from the logical database model that

identifies relationships among the tables in different ones of the table groups.

2. The database management apparatus as recited in claim 1 wherein each of the

30 memory units in the first and second data store comprises contiguous memoty locations,

3, The database management apparatus as recited in claim 1 wherein the data for

each table group is stored in a container including clusters and cluster rows and wherein:

COMS ID No: ARCS-358200 Received by IP Australia: Time (H:m) 10:14 Date (Y-M-d) 2012-02-27

27. Feb. 20 1 2 9:03 Patent Attorney Services No. 2286 P. 8

20
09

20
43

19

27
 F

eb
 2

01
2 62

5 i) a cluster row comprises a header with a cluster row identification and a body for

data for each row in the tables in the table group,

ii) a cluster comprises cluster rows for one row in the root table and corresponding

rows in each related table in the table group, and

iii) a container comprises all the clusters for the table group.

10

4. The database management apparatus as recited in claim 3 wherein the cluster row

identification includes an identifier for the cluster and the corresponding table in the table group.

5. The database management apparatus as recited in claim 4 wherein each table

15 includes a unique identifier for each row therein and each cluster identifier comprises the value

of the unique identifier for the root table and each cluster row identifier comprises the unique

identifier for the row in the table.

6. The database management apparatus as recited in claim 4 wherein each header

20 additionally identifies the table in the logical database model associated with a cluster row.

7. The database management apparatus as recited in claim 4 wherein each header

additionally includes an attribute identifier for identifying each attribute in a cluster row and

whether the attribute is present in that cluster row,

25

8. The database management apparatus as recited in claim 4 wherein each header

additionally includes a pointer to attribute values in the body of the cluster row.

9. The database management apparatus as recited in claim 4 wherein the information

30 in each cluster row is stored in contiguous memory locations.

10. The database management apparatus as recited in claim 9 wherein the information

in each cluster is stored in contiguous memory locations,

COMS ID No: ARCS-358200 Received by IP Australia: Time (H:m) 10:14 Date (Y-M-d) 2012-02-27

27. Feb. 20 1 2 9:04 Patent Attorney Services No. 2286 P. 9

20
09

20
43

19

27
 F

eb
 2

01
2 63

5 11. The database management apparatus as recited in claim 10 wherein the

information in each container is stored in contiguous memory locations,

12. The database management apparatus as recited in claim 2 wherein second data

store comprises a column container for each combination of a table and attribute, each column

10 container comprising a header and column data.

13. The database management apparatus as recited in claim 12 wherein each header

includes an identification of a logical table and one attribute therein.

15 14. The database management apparatus as recited in claim 13 wherein the container

identification is a concatenation of a table name and the name of the attribute.

15. The database management apparatus as recited in claim 13 wherein each header

additionally includes a column type value that identifies the structure of the data for that attribute

20

16. The database management apparatus as recited in claim 15 wherein the column

type value identifies a code table and the header additionally includes a code table field that

identifies the values for each code,

25 17. The database management apparatus as recited in claim 13 wherein the column

type value identifies a value having variable length, the header additionally including an attribute

stride position vector having pointers to the locations of the column data.

18. The database management apparatus as recited in claim 13 wherein each header

30 additionally includes a data type field that indicates a characteristic of the data values in the

column container.

19. The database management apparatus as recited in claim 13 wherein each header

additionally includes an attribute stride position vector that points to certain locations in the

COMS ID No: ARCS-358200 Received by IP Australia: Time (H:m) 10:14 Date (Y-M-d) 2012-02-27

27. Feb. 20 1 2 9:04 Patent Attorney Services No. 2286 Ρ. 1

20
09

20
43

19

27
 F

eb
 20

12

64

5 column data.

20, A method for generating a data structures for data contained in a logical database

with tables in different relationships and a data dictionary, the method comprising:

A) forming table groups from the tables in the logical database based on the data in

10 the data dictionary including, for each table group, a root table and one or more tables related

thereto, at least one table in the table group having a column structure that differs from the

column structure of another table in the table group, the data dictionary populated with

information from the logical database that identifies relationships among the tables in different

ones of the table groups,

15 B) creating, for each table group, a data store unit for storing the data for the logical

database in a first physical layout wherein each of a plurality of first memory units includes, as a

composite entity, all the data from one row of the root table and relevant rows of data from the

related tables such that rows from multiple distinct tables of the table group are stored in the first

memory unit as the composite entity, the composite entity being adapted for sequential access

20 without individual random accesses to the root table and the relevant rows of data from the

related tables or any associated join operation, and

C) creating, for each table and attribute in the table group, another data store unit for

storing a redundant copy of the data of the logical database in a plurality of second memory units

in a second physical layout wherein each second memory unit includes all the data from an

25 attribute in the database and all the corresponding values of that attribute,

21. A method for responding to a query to a logical database with root and related

tables in different relationships and a data dictionary that identifies each table and a table group

for that table in the database, the data dictionary populated with information from the logical

30 database that identifies relationships among the tables in different ones of the table groups,

wherein each of the tables includes attributes in columns and data in rows, comprising;

storing a copy of the data in a plurality of first memory units according to a first physical

layout wherein each first memory unit includes, as a composite entity, all the data from at least

one row of a root table together with all related data from the one or more other tables related

COMS ID No: ARCS-358200 Received by IP Australia: Time (H:m) 10:14 Date (Y-M-d) 2012-02-27

27. Feb. 20 1 2 9:04 Patent Attorney Services No. 2286 P. 1

20
09

20
43

19

27
 F

eb
 20

12

65

5 thereto such that rows from multiple distinct tables of the table group are stored in the first

memory unit as the composite entity, the composite entity being adapted for sequential access

without individual random accesses to the root table and the relevant rows of data from the

related tables or any associated join operation;

storing a redundant copy of the data in a plurality of second memory units according to a

10 second physical layout wherein each second memory unit includes all the data from at least one

of the attributes together with all the corresponding values of that attribute; and

responding to the query, for each table group, according to the following sub-steps:

A) identifying table groups and the tables in the query,

B) parsing the query by comparing the tables in the table group as provided by the

15 data dictionary to the identified query tables,

C) extracting a list of attributes in the query that are contained in tables that are

common to the database and to the query,

D) identifying one of a plurality of processing options in response to the extracted list

of attributes, and

20 E) processing the selected option to obtain the data in an intermediate resultset from

the database that satisfies those portions of the query that related to the table group, and

F) combining the intermediate resultsets to obtain a final resultset that satisfies the

query.

25 22. A computer program product comprising tangible machine-readable program

instructions executable by a processor to perform a method of managing data grouped according

to a logical database model, the logical database model associated with a data dictionary and

comprising at least one table group, each table group including one root table and one or more

other tables distinct from the root table and related thereto, each table in the table group having

30 columns of attributes and rows of data, at least one table in the table group having a column

structure that differs from the column structure of another table in the table group, the data

dictionary populated with information from the logical database model that identifies

relationships among the tables in different ones of the table groups, the method comprising:

COMS ID No: ARCS-358200 Received by IP Australia: Time (H:m) 10:14 Date (Y-M-d) 2012-02-27

27. Feb. 20 1 2 9:04 Patent Attorney Services No. 2286 P. 12

20
09

20
43

19

27
 F

eb
 2

01
2 66

5 storing a copy of the data in a plurality of first memory units according to a first physical

layout wherein each first memory unit includes, as a composite entity, all the data from at least

one row of a root table together with all related rows of data from the one or more other tables

related thereto such that rows from multiple distinct tables of the table group are stored in the

first memory unit as the composite entity; and

10 responsive to a query of a first type, sequentially accessing and providing, as the

composite entity, all the data in a row of the root table together with all related data from the one

or more other tables related thereto;

the sequential accessing and providing step taking place in response to the query without

individual random accesses to the root table and the one or more other tables or any associated

15 join operation;

storing a redundant copy of the data in a plurality of second memory units according to a

second physical layout wherein each second memory unit includes all the data from at least one

of the attributes together with all the corresponding values of that attribute; and

responsive to a query of a second type, sequentially accessing and providing, as a set of

20 columns, the data in each attribute.

COMS ID No: ARCS-358200 Received by IP Australia: Time (H:m) 10:14 Date (Y-M-d) 2012-02-27

WO 2009/089190 PCT/US2009/030169

1/38

οΜ

ST
AT

EI
D

ST
AT

EC
OD

E
ST

AT
EN

AM
E

CL

>rn

“λ

OR
DE

RI
D

fk
CU

ST
OM

ER
ID

OR
DE

RD
AT

E
ST

AT
US

PK LL

-γη

γίm

g

,5 IT
EM

ID
fk

OR
DE

RI
D

fk
BO

OK
ID

SA
LE

PK FK LL,

M
OT

M
Jt

r

BO
OK

ID
fk

AU
TH

OR
ID

TI
TL

E
LI

ST
PU

BL
IS

HE
D ·

DE
SC

RI
PT

IO
N

Q- LL

ΓΗ

Q LU LU g

2
o
il

— Η in
< LA

S
FI

R

CL

η£ οCQ (_) \-»ΓΟ

WO 2009/089190 PCT/US2009/030169

2/38

30

AUTHOR TABLE _ _________________ __ 34·
AUTHORID LASTNAME FIRSTNAME BIRTHDATE CONTACT

200 JONES SAM 5/3/1938 XXX
245 . SMITH BARBARA 12/13/1939

BOOK TABLE
/35

BOO KID fkAUTHORID TITLE LIST PUBLISHED DESCRIPTION
1 200 TITLE-99 $17.00 10/28/1980 FICTION
2 245 TITLE-20 $20.00 4/5/1968 BIOGRAPHY
3 200 TITLE-35 $76.00 5/6/1978 NEWS
4 245 TITLE-1 $46.00 4/5/1968 FICTION

>31

J

CUSTOMER TABLE
ICUSTOMERID LASTNAME FIRSTNAME | BIRTHDATE GENDER fkSTATE
i 20 APPLE ADAM 1/20/1965 M 12
L....21 BIRD ' BONNIE 4/10/1974 F 26

36'sORDER TABLE
1 ORDERID fkCUSTOMERIDl ORDERDATE STATUS
! 100 20 12/14/2006 OPEN
ί 101 21·· ■ 4/6/2006 DELIVERED
1 102 20 5/6/2007 BACKORDER

ITEM TABLE
iTEMID fkORDERID MOO KID SALE
4013 102 X $13.60
4100 100 4 $36.80
4101 101 2 $16.00
4102 100 3 $66.00

STATE TABLE 41
STATEID STATECODE NAME _ J

12 FL FLORIDA
26 MA MASSACHUSETTS

40

37
j

FIG, 2
PFIQFART

•33

PCT/US2009/030169
WO 2009/089190

3/38

WO 2009/089190 PCT/US2009/030169

4/38

tbiCUSTOMER
F/a ss

PRIOR ART
36

WO 2009/089190
PCT/US2009/030169

5/38

m

L
31VJP0 64ΐ—!

yaaN3D s

3±vaHiyia

1/
20

/1
96

5

swvNisyu

AD
AM

awvNisn

AP
PL

E

aiyswoisra o
Γ4

L
snivis

§
a.
O BA

CK
O

R
DE

R
.

aivayaayo
nJ

t-K
rj
tH

5/
6/

20
07

aiysayo 8
T-H

ΓΜO
t«4

3JLV19U ΓΜΊ—! CM
tH

43aN3D s 2

3j.vasu.yia

u*i
o
σ>τ—i
O'f\l
rH 1/

20
/1

96
5

awvNisyu § AD
AM

3WVN1SV3

1 AP
PL

E 1
AP

PL
E

aiy3wo±sro o
Γ\ί

o
64

Μ
ft.§

PR
IO

R
AR

T

31VS
o
co

m
-w-

8
ID

$1
3.

60
ai>ioog>u 'tf- m 5—1

aiW3±i
8
Ύ—i
hf-

cm
o
1—) 40

13

sruvis

N
3dO

I

§
CL
o BA

CK
O

RD
ER

.

sivayaayo
Γ4

1—i
Γ4rH

r?

5—1
64τΗ

5/
6/

20
07

araayo
o
o

o
ov—i

Γ4
O

3.ms>u Γ4
t—1 64

tH
ΓΜ
t—1

y3QN3D X s 5_

3±vaH±yia

1/
20

/1
96

5 i
1/

20
/1

96
5 i

1/
20

/1
96

5

awwsyis

AD
AM

 1

2
9 AD

AM

3WVN1SV1

| AP
PL

E 1
| AP

PL
E |

AP
PL

E

aiy3woisno o
Γ4

o
Γ4

o
64

WO 2009/089190 PCT/US2009/030169

6/38

NOiidiiDsaa

FI
C

TI
O

N
 1

LN
EW

Sl
FI

C
TI

O
N

aaHsnand

1 4/5
/1

96
8 |

| 5/6
/1

97
8 |

10
/2

8/
19

80

isn
o
o
$
4A

o
o
MD

-tn- $1
7.

00

aim

ϊ—i
LLJ

un
CO

TI
TL

E-
99

aidOHinwd
LO
•Φ
ΓΜ

§
CM

g
- CM

31VS
oco
MD
ro
-tn-

g

8
•tn- $1

3.
60

ai>ioos>u ro rd

aiwaii
g
rd

CM
CD
■t—i
•Φ 40

13

snivis

O
P

EN
 1

O
P

EN
BA

CK
O

R
DE

R

aivauaato

MD
g
ΓΜ

rd

ΓΜ
r—1

θ

rd

nJ
rd

5/
6/

20
07

anaa-do g
rd

g
rd

CM
CD
rd

31V1S1J CM
rd

CM
r-d

CM
rd

daaN3D 21 2 χ

aivamaia

lh
MD
cn
rd

o
ΓΜ
rd

LO
MD
cn
rd
o'
CM

rd 1/
20

/1
96

5

awvNisyid Q
< AD

AM

AD
AM

awvNisyi

AP
PL

E
AP

PL
E

AP
PL

E

araawoisra o o
ΓΜ

CD
CM

Κί
h,
z

aim

1 TIT
LE

-1
 1 LO

ro
UJ

cn
cn
ώ

aivs
§

MD
ro
-tn-

I $66
.0

0 g

ro
rd
-tn·

3WVN±S'dId
2
<
Q
<

2
<
Q
<

2
<
Q
<

awvNisvi
LU
_J
CL
CL
<

LU
_J
CL
CL
<

UJ
_J
CL
CL
<

a
52 1

WO 2009/089190
PCT/US2009/030169

7/38

WO 2009/089190
PCT/US2009/030169

8/38

00 CO

Ο
co

ΓΗ
03 00

Ο
U
tn
(—t
o

£

LL?

<
cn
Z
LXJ
t

3
0

0
0
£Q
X
4->
‘σί

LU
Q
O
o
LU
s

ω
LU

£

b
LU
_i
LU
tn

<

Q
.—ϊ
Cd
LU

LU
H
< Z
s E

o
o
00
_Q

LU
fc
X)

Q
Cd
O

X4->

qF
LU

b

Ξ3
0
Xi

Z
o
CZ

0
0 „
εχ 2

O£
UJ Q
Q rt
Ck
is

I!
Q §

Qi H
LU ±2

8

ω
0
u
di
LU

o
O

o
Η 0
W O
0 CQ

LU
Cd
LU
I

LU

Cd r-

Q c:
£±
o

LU

cd
LU
z
o
b

§
es

I

is u

Ή

s s

LU LU
Q H
cd <C
Pb

cd
LU
Q
cd
O

X

LU
Q
O
0
LU

I

LU

5
ω

τί x
4—·
>”
03

Q.
0
0
cd
0

LU
b

ω
x

WO 2009/089190
PCT/US2009/030169

9/38

tbiCUSTOMER tbiORDER FIG.5R
PRIOR ART

37

WO 2009/089190 PCT/US2009/030169

10/38

100

FIG 6

WO 2009/089190 PCT/US2009/030169

11/38

112

111

CLUSTER

CLUSTER

106

110
y

CLUSTER R0w4-7

CLUSTER ROW

CLUSTER ROW

115

HEADER

BODY

ROW ID (RID)

CLUSTER ID (CID)

ROW TYPE

ATTRIBUTE BITMAP

ATTRIBUTE VALUES
POSITION VECTOR

116

117

u

CLUSTER

X
\

114
T

113

FIG. 7

ATTRIBUTE VALUE A

ATTRIBUTE VALUE B

ATTRIBUTE VALUE C

120J
121

122

123

124

y125

126

127

WO 2009/089190 PCT/US2009/030169

12/38

107

COLUMN NAME

COLUMN TYPE
131
k.

137

.140

141
V

HEADER DATA TYPE

132
J
133

J
134

CODE TABLE

ATTRIBUTE STRIDE
POSITION VECTOR

ADDITIONAL
INDEXES

135
1

COLUMN DATA.

FIG.8

130^

WO 2009/089190 PCT/US2009/030169

13/38

[GROUP STATE

[[TABLE STATE
[(ROOT)

_____ L_
[GROUP GUSTOMER-0RDER-ΪΤΕΜ””

TABLE ITEM
DEFINING RELATIONSHIP: fkORDERID=ORDER.ORDERID

. RELATIONSHIP: fkBOOKID=BOOK.BOOKID
TABLE ORDER
DEFINING RELATIONSHIP fkCUSTOMERID=CUSTOMER.CUSTOMERID

ί TABLE CUSTOMER
[(ROOT)
[RELATIONSHIP; fkSTATEID=STATE.STATEID

GROUP AUTHOR-BOOK ’

TABLE BOOK
DEFINING RELATIONSHIP fkAUTHORID=AUTHOR.AUTHORID

TABLEALJTHOR ’ ' ~ ~~
(ROOT) ______

FIELD CONTACT
FIELD BIRTHDATE '

FIELD FIRSTNAME

FIELD LASTNAME

FIELD AUTHORID

PROPERTY VALUE

DATATYPE INTEGER

LENGTH 4

PRIMARY KEY TRUE

... ...

FIG.9

PCT/US2009/030169

14/38
WO 2009/089190

152
c UPDATE EVENT

1
PROCESS DATA FROM THE DATA DICTIONARY TO

PRODUCE TABLE GROUPS
(FIG.10B)

L i -7Π'I

153

ANY MORE XNO
/TABLE GROUPS?/

YEsY

CREATE A NEW HORIZONTAL CONTAINER FOR
TABLE GROUP

171

X Y2

CREATE A NEW VERTICAL COLUMN CONTAINER
FOR ATTRIBUTE

174

END J

FIG.1QA

PCT/US2009/030169

15/38

WO 2009/089190

FIG.IOB

WO 2009/089190 PCT/US2009/030169

16/38

36N

40 N

41 [\jz "\ T

FIS-. ISA

WO 2009/089190 PCT/US2009/030169

17/38

FIG, 2 IB

WO 2009/089190 PCT/US2009/030169

18/38

FIG, lie

PCT/US2009/030169WO 2009/089190

19/38

FIG, 110

PCT/US2009/030169WO 2009/089190

20/38

X-
THIRD GROUP:
STATE

J
Π \ 41N

{ STATE ■

/

FI& HE

167

WO 2009/089190 PCT/US2009/030169

21/38

CONTAINER 110-FIGS. 12A, 12B

CLUSTER: AUTHOR=SAM JONES

CLUSTER ROW
AUTHOR

CLUSTER ROW
BOOK

CLUSTER ROW
BOOK

180

182 -183 -184

CLUSTER:AUTHOR=BARBARA SMITH

CLUSTER ROW
AUTHOR

L

CLUSTER ROW
BOOK

CLUSTER ROW
BOOK

181

-185 -186 -187

CONTAINER 111 - FIGS. 12C, 12D, 12E

CLUSTER: CUSTOM ER= ADAM APPLE

CLUSTER ROW
CUSTOMER

CLUSTER ROW
ORDER

CLUSTER ROW
ITEM

CLUSTER ROW
ITEM

CLUSTER ROW
ORDER

CLUSTER ROW
ITEM

''K—200 ^-201 ^-203 ^-204 ^202 ^-205

CLUSTER: CUSTOMER=BONNIE BIRD -194

CLUSTER ROW
CUSTOMER

CLUSTER ROW
ORDER

CLUSTER ROW
ITEM

195

-206 -207 -208

CLUSTER: STATE=FLORIDA

CLUSTER ROW
AUTHOR

CONTAINER 112 -- FIG. 12F

210
CLUSTER:STATE=MASSACHUSETTS

CLUSTER ROW
AUTHOR

211

F/a 12

PCT/US2009/030169
WO 2009/089190

22/38

AU
TH

OR
 C

LU
ST

ER
 R

OW
 18

2

PCT/US2009/030169WO 2009/089190

23/38
AU

TH
OR

 C
LU

ST
ER

 - B
AR

BA
RA

 S
M

IT
H

F1
&

 12
B

PCT/US2009/030169
WO 2009/089190

24/38

FI
G

.J
2C

PCT/US2009/030169
WO 2009/089190

25/38

O
RD

ER
. C

LU
ST

ER
 R

OW
 2

02

PCT/US2009/030169
WO 2009/089190

26/38

CU
ST

O
M

ER
 C

LU
ST

ER
 R

OW
 20

6

PCT/US2009/030169
WO 2009/089190

27/38

ST
AT

E
CL

US
TE

R
RO

W
 2

10

PCT/US2009/030169
WO 2009/089190

28/38

ο

in
r\i

I

ΓΌΓΜfN
r\jΓΜ

OΓΜC\I

WO 2009/089190 PCT/US2009/030169

29/38

FI&14

PCT/US2009/030169WO 2009/089190

30/38

I

FIG.14A

PCT/US2009/030169WO 2009/089190

31/38

WO 2009/089190 PCT/US2009/030169

32/38

FIG.14C

PCT/US2009/030169
WO 2009/089190

33/38

270

FIG.15A

PCT/US2009/030169
WO 2009/089190

34/38

σ\ o LA
σι CM CA I1

31111 lil lil
—J LE

- LU
-J

j—
P

1 ti
t

TI
T fc

H

-is
fM

,ai>iooa is
M

ίΝ

is
fM

mur·
□ IVO

o
co
o
co
GV $6

6.
00

$1
3.

60

aixooan 'Φ CA t4

0IW3U ■
O
O
t4
XT

CMO
1*4
■Φ

CAt-4
o
PC

snivis
2
LU
ο-
Ο

2
LU
Cl
o BA

CK
 ’

O
R

DE
R

aiwaayo

to
o
o
CM
S
t4
S
t4

kO
o
o
CM
S
t4
CMτ—1 5/

6/
20

07

anscrao o
O
t4

Oo
1-4

CMO
t4

31V1STJ cm CM--4 CM

ysaNaD S X z

3ivaHi‘aia

LA
ID
στi—i
o
cm

r—i

LA
cO
cnI-)
o
CM
1-4 1/

20
/1

96
5

3WVN1SHI3
c
<
Q
<

X
<
Q
< AD

AM

awvwisn

i AP
PL

E 1
1 AP

PL
E 1

AP
PL

E

answoisno o
CM

o
CM

o
CM

31111

! TU
LE

-l 1 LA
CA
ώ
—i
H
H

ο
οi
LU_!
£
H

31VS
o
co
to
ca
■&Γ

o
o
LD

-GV

o
LO
CA
S-

awoau 'φ CA ■r—i

CHW31I
o
ot—i
•φ

CM
O t—i
PC

CA
1-4
o
A-

snivis
2
LU
Q_
o

2
LU
CL
o BA

C
K

O
RD

ER

siwaayo

LU
o

CM

t4
CM t—)

Ό
O

CM
“Φ
i-4

CM
r—i

o
CM
S'
S

arasayo
o
o
r—i

o
ot4

CM
O
1-4

31V1£>U CM
T—1

CM
T“5

CM
i-4

LSaN33 X X 2

sivaHiyia

LA
LO
στ
i-4
O'
CM
1-4

LA
LO
στ
τ4

O
CM
v4 1/

20
/1

96
5

3WVN1SHI3
X
<
Q
<

Σ
<
Q
<

X
<
Q
<

3WVN1SV1
LU
-J
CL
CL
<

LU
-J
CL
CL
<

LU
_J
CL
Q-
<

araawoisnc o
CM

O
CM

o
CM

SS
ΓΜ

L
31111

T“i
i

LUu
fc

f-

LA
CA
LjJ
_J
H
p

στ
στ
ώ
jij
μ

31VS
o
co
o
CA
GV

o
o
Ο
00
GV

ο
ο
CA
r-4
GV

31aIVN1SHI3
z
<
Q
<

X
§

<

Σ
g

<

3WVN1SV1
LU
-J
0-
CL
<

LU
—J
CL
£L
<

LU
—J
CL
CL
<

WO 2009/089190 PCT/US2009/030169

35/38

280

FIG.16

WO 2009/089190 PCT/US2009/030169

36/38

290

Μ

FIG.17

PCT/US2009/030169

37/38

WO 2009/089190

<?xml version="1.0" encoding="ISO-8859-l"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

310
<xs:element name="CustomerContainer" type="CustomerList'7>^_y

311
<xs:complexType name="CustomerList">^/
<xs:sequence>
<xs:element name="Customer" minOccurs="0" maxOccurs= "unbounded"

<xs:complexType>
<xs sequence >

314-

316 <

<xs:element name="LastName" type="xs:string"/>
<xs:element name="FirstName" type="xs:string7>
<xs:e!ement name="BirthDate" type="xs:date"/>
<xs:element name-'Gender" type="xs:string"/>
<xs:element name="fkState" type="xs:positiveInteger"/> 315
<xs:element name="Order" minOccurs="0" maxOccurs="unbounded">^_y

< xs: com pi sxType >
<xs:sequence>
<xs:element name="QrderID" type="xs:positiveInteger"/>
<xs:element name="fkCustomerID" type="xs:positiveInteger"/>
<xs:element name="OrderDate" type="xs:date"/>
<xs:element name="Status" type="xs:string"/> 317

C <xs:e!ement name-'Item" minOccurs="0" maxOccurs="unbounded">«__/
<xs:compiexType>
<xs:sequence>

318 V <xs:element name="ItemID" type="xs:positiveInteger"/>
<xs:e!ement name="fkOrderID" type="xs:positiveInteger"/>
<xs:element name="fkBookID" type="xs:positiveInteger"/>
<xs:element name="Sale" type="xs:decimal"/>

£ </xs: sequence >
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:eiement>

319 </xs:sequence>
V__^<xs:attribute name="CustomerID" type="xs:positivelnteger" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:comp!exType>

</xs:schema>

FIG, 18

http://www.w3.org/2001/XMLSchema

PCT/US2009/030169

38/38

WO 2009/089190

<?xml version="1.0" encoding="ISO-8859-l"?>

cCustomerContainer xmlns:xsi="http://www.w3,org/2001/XMLSchema">

200A<

201A-

<Customer CustomerID="20">
<LastName>APPLE</LastName>
<FirstName>ADAM</FirstName>
<BirthDate>1965-01-20</BirthDate>
<Gender> M </Gender>
<fkState> 12</fkState>
<Order>
<OrderID>100</OrderID>
< fkCusto merlD > 20 < /f kCustomeri D >
<OrderDate>2006-12-14</OrderDate>
<Status>OPEN</Status>

r <Item>

203A<

194A<

204A<

<ItsmID>4100</ItemID>
<fkOrderID> 100</rkOrderID>
<fkBookID>300102</fkBookID>
<Sale>36.80</Saie>

. </Item>
<Item>

<ItemID>4102</ItemID>
<fkOrderID>100</fkOrderID>
< fkBooklD > 250004</fkBookI D >
<Sale>66.00</Sale>

</Item>
</Order>
<Order>

<OrderID>102</OrderID>
<fkCustomerID>20</fkCustomerID>
<QrderDate>2Q07-Q5-06</OrderDate>
<Status>BACK ORDER</Status>

r <Item>
i . <ItemID>4013</ItemID>
/ <fkOrderID>102</fkOrderID>

<fkBookID>100600</fkBookID>
<Sale>13.60</Sale>

L </Item>
</Order>

</Customer>

195A

< Customer CustomerID="2r’>
< ... >

</Customer>

</CustomerContainer> FIG. 19

http://www.w3%2Corg/2001/XMLSchema

