wo 2014/108175 A1 [N I AP0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

17 July 2014 (17.07.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/108175 A1l

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
HO4L 29/12 (2006.01)

International Application Number:
PCT/EP2013/050256

International Filing Date:

9 January 2013 (09.01.2013)
Filing Language: English
Publication Language: English

Applicant: TELEFONAKTIEBOLAGET L M ERIC-
SSON (PUBL) [SE/SE]; S-164 83 Stockholm (SE).

Inventors: TONZETIC, Tomislav; Jaruscica 11, 10020
Zagreb (HR). MATAUSIC, Ivica; Cerje Samoborsko 21D,
10430 Samobor (HR).

Agents: NEUERBURG, Gerhard et al.; Ericsson Allee 1,
52134 Herzogenrath (DE).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: A METHOD OF AND A PROCESSING DEVICE HANDLING A PROTOCOL ADDRESS IN A NETWORK

network id Sid=3 Eid=4 Hid=7
} |
169.123 0011 00100 0000111
0011001000000111
network part host id part
10101001.01111011 00110010.00000111

(57) Abstract: The invention relates to a method
of handling a protocol address (IP_x) in a net-

l work (10). The network comprises a number of

10101001.01111011.00110010.000001 11

protocol address
169.123.050.007

FIG. 2

K servers (12). A server is uniquely identified in
the network by a server identifier (Sid x). A
server houses a maximum number of L units
(14). A unit comprises one hardware address
(MACx) to connect to the network and a unit
identifier (Eid_x) which uniquely identifies the
unit in the server. A unit hosts a maximum num-
ber of M hosts (16). Each host on a unit com-
prises a local host identifier (Hid x) uniquely
identifying the host on the unit. A unit (14) gen-
erates a protocol address (IP_x) for a host on the
unit based on the local host identifier (Hid_x) of
the host, the unit identifier (Eid_x) of the unit
and the server identitier (Sid_x) associated with
the unit and assigns the protocol address to the
host (16).

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

A method of and a processing device handling a protocol address in

a network.

TECHNICAL FIELD
The invention relates to the field of networktechnologies, and
in particular, to a method of and a devicehandling a protocol address in a

network.

BACKGROUND

The Address Resolution Protocol (ARP) is a very important
part of Internet Protocol (IP) networking. ARP is a OSI Layer 2 (Data-
Link) protocol used to map Media Access Control (MAC) addresses to IP
addresses. All hosts on a local area network or private network are
located by their IP address.ARP is the protocol used to associate the IP
address to a MAC address.

Before a host can communicate with any other host in the
network, the host must have the MAC address for that other host. In
TCP/IP networks, the MAC address of an interface can be queried knowing
the IP address using the Address Resolution Protocol (ARP) for Internet
Protocol Version 4 (IPv4) or the Neighbor Discovery Protocol (NDP) for
IPv6. Therefore, the hosts sendsout (broadcasts) an ARP packet. The ARP
packet contains a simple question: What is the MAC address
corresponding to IP address 10.5.5.17 The host that has been configured
to use the IP address responds with an ARP packet containing its MAC
address.In this way, ARP is used to translate IPv4-addresses (OSI layer 3)
into MAC addresses (OSI layer 2).

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

The ARP software running on a device with a MAC address
maintains a table of translations between IP addresses and MAC
addresses. This table is normally built dynamically. When ARP receives a
request to translate an IP address to a MAC address, it checks for the IP
address in its table. If the IP address is found, it returns the MAC address
linked with the IP address in its ARP table. If the IP address is not found in
the ARP table, ARP broadcast a packet to every host on the network. The
packet contains the IP address for which an MAC address is sought. If a
receiving host identifies the IP address as its own, it responds by sending
its MAC address back to the requesting host. The MAC address and
associated IP address in the response is then cached in the ARP table.

ARP table lookup time is important for certain applications to
be able to connect as fast as possible. If an IP address is not present in
the ARP table, the ARP software has to request for the MAC address over
the network. This will cost time and thus performance in setting up a
connection.

For example, a large private network within one Virtual Local
Area Network (VLAN) has 10000 hosts inside the network. Some of the
hosts share the same network interface hardware forming the physical
layer and thus have the same MAC address. Furthermore, all hosts in the
network could communicate all other hosts in the network. However,
before a connection can be established between hosts, the MAC addresses
has to be known. A host obtains its IP address from a network manager
service on request. Consequently, each host needs to maintain its own
ARP table. The ARP table will have 10000-1 entries linking the IP address
to the MAC address. Such a table could be built dynamically in the way
described above. However, this will result in a lot of ARP requests over
network the obtain the MAC address of corresponding hosts.

Furthermore, it will take some time to search through the ARP table to

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

retrieve if already present in the ARP table the MAC address corresponding
to a IP address or the detect that the IP-MAC pair is not present in the
ARP table. If an application has a requirement on the number of
connections per second, this would be hard to fulfil.

At start-up of the network, the ARP tables of the hosts could
be populated prior to any exchange of data with other hosts. In this initial
phase, when the ARP table is populated, there will be a broadcast storm.
This means that with a network comprising N hosts there will be N*(N-1)
ARP-requests that would sent out to the network. Theoretically, assuming
that the size of an ARP-packet is 28 bytes, there could be a burst of about
2*28*10000*10000 bytes over the network to populate the ARP tables for
all hosts in the network.

Given the facts above a straightforward implementation of
ARP caching is not an option for large private networks.

Furthermore, in some pseudo wire cases (like ATM over IP, or
TDM over IP), emulated protocol requires delivery of the first data sent
over the newly established connection. In such cases, there is need that
the ARP table is fully populated before any data exchange takes place
between host over the network. A fully populated ARP-table allows to set-

up a connection between hosts without losing the first IP-packet.

SUMMARY
It is an object of the invention to provide an improved,
method of and deviceof handling protocol addresses, i.e. IP-addresses,
andto obviate at least one of the disadvantageous, described above.
According to a first aspect of the invention, there is provided a
method of handling a protocol address in a network. The network
comprises a number of K servers. A server is a network entity or node for

housing a maximum number of L processing units. Each server is

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

4

uniquely identified in the network by a server identifier. Eachprocessing
unit comprises at least one hardware address to connect to the network. A
unit identifier assigned to a processing unit uniquely identifies the unit in
the server. Aprocessing unit is configured to host a maximum number of
M hosts. Each host on a unit comprises a local host identifier which
uniquely identifies the host on the processing unit. Aprocessing unit
generates a protocol address for a host on the unit based on the local host
identifier of the host, the unit identifier of the unit and the server identifier
associated with the processing unit, i.e. the server identifier of the
network entity housing the processing unit. Subsequently, the unit
assigns the protocol address to the host.

The method is based on the concept that the protocol
addresses are not given more or less randomly to hosts in the network but
in a structured way. A rule is applied to generate the protocol address of
a host. By using a rule it is possible to assign protocol addresses to hosts
running on the same unit which have some similarity or are in the same
range. Some similarity means that only some bits, for example least
significant bits (LSB), of the protocol address differ. Furthermore, when
the rule defines a unique relationship between protocol address at one
side and server identifier, unit identifier and host identifier at the other
side, it is possible to derive from a protocol address in an IP message, the
server and unit of the host associated with the protocol address. As all
hosts on the same unit have the same hardware address or MAC address,
only one ARP request have to be sent by a first unit to a second unit to
obtain the MAC address of the second unit and a process running on the
first unit could generate the protocol address-hardware address pair for all
other hosts on the secondunit by using the rule. This enables reducing
the amount of ARP requests over the network to populate the ARP table at

start-up of the network.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

In anembodiment ofthe method,the protocol address
comprises a network part and a host identifier part. The server identifier
associated with a host is represented by a first parameter having k-bits,
wherein k is a positive integer for which holds that 2*>K. The unit
identifier associated with a host is represented by a second parameter
having I-bits, wherein | is a positive integer for which holds that 2'2L. The
local host identifier is represented by a third parameter having m-bits,
wherein m is a positive integer for which holds that 2™=M. The host
identifier part is obtained by concatenation of the bits of the first
parameter, second parameter and the third parameter. These features
provide a simple implementation of a rule.

In a further embodiment, the host identifier part comprises H-
bits and k + | + m < H. These features ensure that for each host a unique
protocol address could be generated.

In an embodiment, a server defines a segment of the network
and the first parameter corresponds to the bits of the host identifier part
of the protocol address defining the segment in the network. These
features allow to use a router or switching unit in the node or server to
connect the server to the network. All the processing units coupled to the
switching unit in the server will be in the same sub-net. Consequently all
hosts in the server will be in the same sub-net. In this embodiment the
sub-net bits correspond to the server identifier.

In an embodiment of the method, a first unit generates a
protocol address for a first host with a predefined local host identifier on a
second unit. The protocol address is based on the predefined local host
identifier of the first host, the unit identifier of the second unit and the
server identifier associated with the second unit and first host.
Furthermore, the first unit sends a request to the first host with the

protocol address to send the hardware address of the second unitwhich

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

hosts the first host. The second unit sends a response comprising the
hardware address of the second unit in response to the request.
Subsequently, the first unit retrieves the hardware address of the second
unit from the response and stores the relation between the protocol
address of the first host and the hardware address of the second unit in a
database of the first unit. The database corresponds to the ARP table
which defines the relationship between an IP address and the MAC
address. As one or more hosts could by hosted by one processing unit or
board and a processing unit comprises one interface to the network and
thus one MAC address, the rule to generate a protocol address also
provides a way to address each processing unit in the network only one
time by generating a protocol address for a host with a particular host
identification hosted by a processing unit in a server of the network.

In a further embodiment, at least one most significant bit of
the first parameter defines the number of bits of the first, second and
third parameter. This feature allows to use at least two rules to generate
protocol addresses. This could be advantageous in large private network
if there is need to use at least two different types of processing units in
the network. For example, an old type capable of hosting up to 4 hosts
and a new type capable of hosting up to 64 hosts. This feature enables to
replace partially servers housing old processing units with servers housing
new processing units. Only, the algorithm to generate the protocol
address has to be replace to allow the old processing units to generate
protocol addresses in accordance to the two or more rules.

In an embodiment, the storing step comprises generating an
index address with a predefined length by concatenation of at least the
bits of the first parameter and the bits of the second parameter.
Subsequently the hardware address of the second unit is linked to the

index address in the database. These features allows reducing the

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

number of entries in the ARP table when all possible IP address en MAC
address combinations have to retrieved from the ARP table. A reduced
ARP table has the advantageous that it requires a less complex memory to
store the table. In an alternative embodiment, the index address is
obtained by concatenation of the network part, the bits of the first
parameter, the bits of the second parameter and optionally at least one
padding bit.

In a further embodiment, for all other hosts on the second
unit the first unit generates a protocol address for another host on the
second unit. The protocol address is based on the local host identifier of
the another host, the unit identifier of the second unit and the server
identifier associated with the second unit and the another host. The first
unit stores the relation between the protocol address of the another host
hosted by the second unit and the hardware address of the second unit
retrieved in the previous retrieving step. These features allows to fully
populate an ARP table with a reduced number of ARP requests.

In an embodiment of the method, a process of the first unit
receives a request from a host on the first unit to provide the hardware
address associated with a protocol address. The process of the first unit
processes the protocol address to obtain an index address. The process of
the first unit retrieves from the database the hardware address associated
with the protocol address with use of the index address. Finally, the
process of the first unit sends the retrieved hardware address to the host
on the first unit. These features enable to use a reduced ARP table to
obtain the MAC address of any hosts from the reduced ARP table.

In a further embodiment, the process deduces the number of
bits of the first, second and third parameter in dependence of at least one
bit of the protocol address, retrieves the first and second parameter from

the protocol address, and generates the index address having a

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

8

predefined length by concatenation of at least the bits of the first
parameter and the bits of the second parameter. In a further
embodiment, the index address is obtained by concatenation of the
network part of the protocol address, the bits of the first parameter and
the bits of the second parameter and optionally at least one padding bit.
These features enable to use in one private network two or more types of
servers each housinga different type of processing units. By using at least
one bit of the protocol address to identify to type of processing units in a
server, it is possible to apply two or more rules to retrieve the index
address from the protocol address.

In a further embodiment of the method, when the hardware
address could not be retrieved from the database, the process of the first
unit sends to a remote host having the protocol address a request to send
its hardware address. The remote host having the protocol address sends
a response comprising the hardware address of the host in response to
the request. The process of the first unit retrieves the hardware address
from the response and stores the relation between the protocol address of
the remote host and the hardware address of the second unit hosting the

remote host in a database (204) of the first unit.

According to a second aspect, there is provided aprocessing
device comprising a processor, an Input/Output deviceto connect to the
network system, a database and a data storagecomprising instructions,
which when executed by the processor, cause the processing device to
generate a protocol address for a host on the processing device based on
a local host identifier of the host, the unit identifier of the processing
device and the server identifier associated with the processing device; and

to assign the protocol address to the host.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

In a further embodiment, the instructions, which when
executed by the processing device cause the processing device to
generate a protocol address for a first host with a predefined local host
identifier on a second unit based on a predefined local host identifier of
the first host, a unit identifier of the second unit and a server identifier
associated with the second unit, to send a request to the first host with
the predefined local host identifier to send a response comprising its
hardware address, to retrieve the hardware address from the response
from the second unit; and to store the relation between the protocol
address of the first host and the hardware address of the second unit in a
database of the processing device.

In an alternative embodiment, the instructions, which when
executed by the processing device cause the processing device to receive
a request from a local host to provide the hardware address associated
with a protocol address, to process the protocol address to obtain an index
address; to retrieve from the database the hardware address with use of
the index address, and to send the retrieved hardware address to the local
host.

Other features and advantages will become apparent from the
following detailed description, taken in conjunction with the accompanying
drawings which illustrate, by way of example, various features of

embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects, properties and advantages will be
explained hereinafter based on the following description with reference to
the drawings, wherein like reference numerals denote like or comparable

parts, and in which:

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

10

Fig. 1 is a block diagram showingschematically a network
architecture with hosts running on units;

Fig. 2shows schematically a rule to generate a protocol
address;

Fig. 3 is a block diagram showing a first embodiment of a
process running on a processing unit in a server;

Fig. 4is a block diagram showing a second embodiment of a
process running on a processing unit in a server;

Fig. 5 shows schematically a rule to generate an index
address from a protocol address; and,

Fig. 6 is a block diagram illustrating a processing unit.

DETAILED DESCRIPTION

Fig. 1 showsschematically a network architecture suitable for
applying the invention. A network 10 is shown in the internet. The
network could also be a separated and concealed network. The network
could belong to one operator or to a group of operators jointly owned.
The network has a single network operation and management (O&M)
service.The network 10 comprises four nodes. In the remainder of the
description node will be referred to as a server 12. A server is a network
entity for housing a number of 0-N switching/routing units and a number
of 0-N processing units. In Fig. 1, a server 12 comprises one switching
unit 20 and L processing units 14.A switching unit 20 is a computer
networking device inside a server that links network segments or network
devices. A switching/routing unit receives a message from any device
connected to it and then transmits the message only to the device for
which the message was meant. A switching unit 20 connects a processing

unit 14 in a server 12 to the other processing units 14 in the server and to

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

11

other servers 12. The switching units 20 are used to divide the network in
sub-networks. This means that messages between hosts on the same
server will not be transmitted to any of the other servers in the network.

A processing unit 14 is a piece of equipment inside a server of
the network. It is characterized that it has one physical Ethernet
connection and one media access control (MAC1,--- MAC8) address. The
MAC address is the hardware address of the connection. The processing
unit 14 could be in the form of a processing board in the server. The
processing unit is suitable to host a number of 1 — M hosts 16. Each host
16 has at least one internet protocol (IP) address. Thus the processing
unit 14 has at least 1 - M IP addresses. Applications run on the
processing unit and are hosted by one of the hosts 16. An application
may request a connection to a certain destination having a IP address for
which an IP/MAC address pair has to be resolved before the connection is
set-up. To obtain the MAC address associated with a particular IP
address, a host 16 on a processing unit 14 requests the ARP process 18
running on the processing unit 14 to provide the MAC address. From Fig.
1 is clear that all hosts 16 (Hid_1, --- , Hid_M) on a processing unit 14
share the same MAC address.

Each server 12 in the network is uniquely identified by a
server identifier (Sid_1,---,Sid_4). Each processing unit 14 in a server 12
is uniquely identified by a unit identifier or equipment identifier (Eid_1, ---
, Eid_L). Furthermore, each host 16 on a processing unit 14 is uniquely
identified by a local host identifier (Hid_1, --- , Hid_M). Depending on the
implementation, the server identifier could also be the sub-network
identity which marks one segment of the same virtual local area network
(VLAN). In this case Sid_xmarks the Ethernet switch board identity of a
switching unit 20 having number x, Eid_x marks uniquely an equipment

board with Ethernet connectivity within one VLAN segment having number

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

12

x and Hid_x marks uniquely IP host with number x within an equipment
board.

In the network of Fig. 1, all hosts in will receive a protocol
address which is based on the local host identifier Hid_x of the host, the
unit identifier Eid_x of the unit hosting the host and the server identifier
Sid_x of the server unit housing the processing unit hosting the host
Hid_x. Fig. 2 shows an exemplary embodiment on generating the
protocol address in case the internet protocol is IPv4. IPv4 uses 32-bit
addresses. The 32-bits could be represented by four bytes. The protocol
address comprises a network part of 16 bits and a host id part of 16 bits.
The network part is a fixed part identifying the network. This part is
identical for all hosts in the network. The host id part could be used to
uniquely identify hosts in the network. This means that 2!*=65536
protocol addresses are available to be assigned to hosts.

In the network of Fig. 1, a hosts could be identified uniquely
by three parameters: a first parameter Sid associated with the server
identifier (Sid_x), a second parameter Eid associated with the unit
identifier (Eid_x) and a third parameter Hid associated with the host
identifier (Hid_x). These three parameters will be used in a rule or
algorithm to generate the host id part of the protocol address.

In general, if the network comprises K servers, the value of
the first parameter Sid could be represented by k-bits, k being a positive
integer for which holds that 2*>K.If the maximum number of processing
units in a server of the network is L, the value of the second parameter
Eid could be represented by I-bits, | being a positive integer for which
holds that 2'>L. If the maximum number of hosts on a processing unit in
the network is M, the value of the third parameter Hid could be
represented by m-bits, m being a positive integer for which holds that
2M=M,

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

13

In an embodiment of a rule to generate the protocol address
of a host, the host id part is obtained by concatenation of the bits of the
first parameter, the second parameter and the third parameter.The same
rule should be applied to assign protocol addresses to all hosts running on
a processing unit of a server in the network. A unique protocol address
could be obtained if the sum of the number of bits to represent the first
parameter, the second parameter and the third parameter is smaller or
equal than the length of the host identifier part of the protocol address.
Thus k + | + m < H, wherein H is the length in bits of the host identifier
part and k, | and m are the number of bits to represent the first, second
and third parameter respectively.

Fig. 2 is an example assuming that network could comprise up
to 16 servers, a server could contain up to 32 processing units and a
processing unit could host up to 128 hosts. In this case the value of the
first parameter Sid could be represented by 4 bits, the value of the second
parameter Eid could be represented by 5 bits and the value of the third
parameter Hid could be represented by 7 bits. In the example of Fig. 2,
a host with Hid value 7 on a processing unit with Eid value 4 wherein the
processing unit is in a server with Sid value 3, the first parameter Sid will
be represented by the following bits 0011, the second parameter Eid will
be represented by the bits 00100 and the third parameter Hid will be
represented by the bits 0000111. Concatenation of the bits of the three
parameters results in the 16-bit sequence: 0011001100000011. This 16-
bit form the host identifier part of the protocol address. The host
identifier part is subsequently combined with the network part
10101001.01111011 in binary representation and 169.123 in dotted
decimal representation. By applying the rule a protocol address for IPv4
169.123.050.007 is obtained. This protocol address is subsequently
assigned to the host with Hid=3, Eid=4 and Sid=3.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

14

The assignment of protocol addresses according to a rule as
described above has some advantages. As all hosts on a processing unit
have the same hardware address, i.e. the same MAC address, only one
ARP request has to be broadcast by an ARP process maintaining the ARP
table on a processing unit to populate the ARP table for all other hosts on
the processing unit hosting the host for which the ARP request was send.
By means of the rule, the ARP process could generate to protocol
addresses for all other hosts in the same processing unit and storing
subsequently the relationship between protocol addresses and hardware
address in the ARP table.

Fig. 3 is a block diagram showing a first embodiment of a
process 18 running on a processing unit in a server. This process 18 is
configured to perform the address resolution protocol ARP for IPv4
devices. All processing units in the network use the same rule or
algorithm to generate protocol addresses. By means of the first
embodiment is explained how in initial phase of a processing unit in the
network, the ARP table 32 is populated by populating function 30.

The populating function 30 uses three variables Sid, Eid and
Hid corresponding the first, second and third parameter described before.
In this way, the function 30 could address all hosts in the network. For all
possible values of the first variable Sid and second variable Eid, function
30 generates a protocol address for a host with a predefined local host
identifier Hid value. The predefined local host identifier has for example a
value 1. Based on the values of variables Sid, Eid and Hid=1 the function
30 generates a protocol address. This protocol address belongs to a host
on a second processing unit in the network. After generation of the
protocol address, the function 30 of the ARP routine 18 running on a
processing unit broadcasts an ARP request. The host onthe second

processing unit having the generated protocol address will recognize that

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

15

the ARP request and responds back to the processing unit which has send
the ARP request an ARP response. The ARP response comprises both the
protocol address, i.e. IP address, and the hardware address, i.e. MAC
address, associated with the host generating the response. The
populating function 30 receives the ARP response and stores the relation
between protocol address and hardware addressin the ARP table 32.

The ARP table 32 could have the format of a conventional ARP
table. In this case, the ARP table comprises for each host in the network
an entry specifying the relation between protocol address and hardware
address. A conventional ARP routine could than access the ARP table to
obtain the hardware address associate with a protocol address. With such
an ARP table, the populating function 30 is configured to store after
receipt of the ARP response the relation between protocol address and
hardware address of all possible hosts running on the same processing
unit in the ARP table. For this, the function uses again the rule to
generate for all other hosts on the same processing unit the corresponding
protocol address and to store the relation between protocol address and
hardware address in the ARP table. Thus, given the parameters used in
the description with reference to Fig. 2, wherein a processing unit could
comprise up to 128 hosts, after receipt of an ARP response and storage of
the association between protocol address and hardware address in the
ARP response, the populating function generates the protocol addresses
for the other 127 possible hosts on the processing unit and stores for each
of the 127 protocol addresses the associations between the protocol
address and the hardware address retrieved from the ARP response in the
ARP table. Connection 36 between the populating function 30 and the
ARP table 32 indicates the storage of the association between protocol

address and hardware address in the ARP table.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

16

In the way described above before any communication takes
place between hosts in the network a fully populated ARP table is
generated. If such an ARP table is available, there is no need to broadcast
any ARP request before a connection is set-up between two hosts in the
network.

Fig. 3 shows further with dotted lines that the ARP routine 18
comprises a resolver function 34. At set-up of a connection with another
host, a host which is hosted on the same processing unit as the ARP
routine is running, could request the ARP routine to supply the hardware
address MACx associated with the protocol address IP_x of the another
host. Reference numeral 38 indicates data that is sent to the ARP table
32 and reference numeral 37 indicates the hardware address that is sent
back to the resolver function 34 in response to the data 38. In case the
ARP table is a fully populated ARP table, which means that all possible
protocol addresses have an entry in the ARP table, the data 38
corresponds to the protocol address or at least the host identifier part of
the protocol address.

An advantage of applying a rule to generate the protocol
address and the knowledge thatall hosts on the same processing unit have
the hardware address of the processing unit is that the ARP table needs
only one entry to enable a resolver function 34 to obtain the hardware
address associated with all the hosts on the processing unit. Now an
index address is used to address the processing unit hosting a host having
a particular protocol address. The index address is derived from the
protocol address of a host. Both the populating function 30 and the
resolver function 34 will then be able to derive the index address from
the protocol address. The rule assures that all protocol addresses of hosts

hosted by the same processing unit have the same index address.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

17

Fig. 5 shows schematically an embodiment of a rule to
generate an index address from a protocol address. In this embodiment,
the rule is based on the rule to generated the protocol address is
described before with reference to Fig. 2. Assume we have IPv4 protocol
address 169.123.050.007 in dotted decimal format. The first two
numbers 169.123 correspond to the network part of the protocol address
and the last two numbers correspond to the host identifier part of the
protocol address. Furthermore, it is known according to the applied rule
to generate the protocol address that the host identifier part is obtained
by concatenation of the bits representing three parameters Sid, Eid and
Hid. The value of Sid corresponds to the server identifier of the server
housing the processing unit hosting the host having the protocol address,
the value of Eid corresponds to the unit identifier of the processing unit
hosting the host having the protocol address and Hid is the host identifier
which uniquely identifies the host on the processing unit. Furthermore
according to the rule, the parameter Sid comprises 4 bits, the parameter
Eid comprises 5 bits and the parameter Hid comprises 7 bits. Fig. 5
illustrates how from the value 050.007 in dotted decimal format the
values of the three parameters Sid, Eid and Hid are derived.
Subsequently, the values of the parameter Sid and Eid are used to obtain
the index address. In Fig. 5, the index address is obtained by
concatenation of the network part of the protocol address, the parameter
Sid and the parameter Eid. Optionally, at least one padding bit is used to
extend the index address to a bit length which is suitable to address the
memory of the processing unit in which the ARP table is stored. Fig. 5
shows an embodiment wherein the bit values of parameter Hid are
replaced by default values. In this way the value 0000111 of parameter
Hid is replaced by a value 0000001.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

18

Fig. 5 shows two embodiments two obtain the index address.
In the first embodiment, the bits of the protocol address corresponding to
parameter Hid are removed from the protocol address to obtain the index
address. In the second embodiment, the bits of the protocol address
corresponding to the parameter Hid are replace by default bit values to
obtain the index address. In the given example wherein a processing unit
could host 128 hosts, the method described above allows reducing the
number of entries of the ARP table with a factor 128. These two
embodiments reduces the memory needed to store the ARP table and the
time to obtain the hardware address from the ARP table.

Fig. 4 shows an embodiment of an ARP routine which makes
use of the advantages of a reduced ARP table. In this embodiment, the
ARP routine does not have the populating function as shown in Fig. 3.
Now, at start-up of the processing unit the ARP table 42, is empty. When
a local host would like to setup a connection with another host in the
network, the host request the ARP routine to provide the hardware
address of the another host by submitting the protocol address IP_x to the
resolver function 44 of the ARP routine 18. The resolver function 44
derives the index address from the protocol address as described above
and uses the index address to retrieve the hardware address MACx from
the ARP table 42. If an entry corresponding to the index address is
present in the ARP table 42, the resolver function reads the MACx from
the ARP table 42 and responds to the local host by supplying the MACx to
the host.

If an entry corresponding to the index address is not present
in the ARP table, the resolver function 44 will broadcast an ARP request.
In response to the ARP request, the host having the protocol address in
the ARP request will respond by submitting an ARP response to the

resolver function 44 sending the ARP request. The ARP response

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

19

comprises both the protocol address and hardware address of the host
sending the ARP response. After receipt of the ARP response, the resolver
function retrieves the protocol address and hardware address from the
response, derives the index address from the protocol address.
Subsequently the resolver function 44 stores the hardware address at a
location having the index address. Furthermore, in response to the ARP
response the resolver function 44 supplies the hardware address in the
ARP response to the local host requesting to resolve the hardware address
associated with protocol address IP_x.

The embodiment of Fig. 4 reduces the ARP table size and the
amount of ARP request over the network by a factor which is defined by
the number of hosts on a processing unit in the network.

Referring to Fig. 6, there is illustrated a block diagram of
exemplary components of a processing unit 14 shown if Fig. 1. The
processing unit 14 can be any piece of equipment inside a node or server
of a network on which the functionality described above is implemented.
The processing unit could be a switching/router unit or processor board.
As illustrated in Fig. 6, the processing unit 14 comprises a processor 610,
a data storage 620, an Input/Output unit 630 and an database 640. The
data storage 620, which could be any suitable memory to store
data,comprises instructions that, when executed by the processor 610
cause the unit 14 to perform the actions described before. The I/O unit
630 is configured to provide an Ethernet connection and comprises one
hardware address in the form of a MAC address. The I/O unit allows
hosts hosted on the processing unit to communicated with other hosts on
other processing units in the network. The database 640 is configured to
store the relationship between a protocol address of a host hosted by a
piece of hardware comprising a hardware address and the hardware

address of said piece of hardware. The database 640 provides a

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

20

functionality which is comparable with the ARP table in current Ethernet
devices.

It might be possible that the network comprises servers of a
first type which houses up to 32 processing units, which units are capable
of hosting 16 hosts and servers of a second type which houses up to 8
processing units, which unit are capable of hosting 256 hosts. A network
comprising only the first type of servers would need up to 128 servers to
provide a network with 2!® hosts. A network comprising only the second
type of servers would need up to 32 servers to provide a network with 21°
hosts. When applying a simple rule as described above, which could be
used for both type of servers, the number of servers would be limited to 8
servers. Eight bits would be needed for parameter Hid, as a processing
unit in the network could host up to 256 host. Five bits are needed for
parameter Eid, as a server could host up to 32 processing units. Given
that the Host identifier part of the protocol address comprises 16 bits, the
number of bits available for parameter Sid is limited to 16-8-5=3 bit,
which corresponds to 8 servers. Such a simple rule would limit the
maximum number of hosts in the network significantly and would hinder a
provider of the network to replace gradually old servers of the first type by
new servers of the second type.

To overcome this problem a second embodiment of a more
complex rule is described below. In this rule, the value of the server
identifier Sid_x and the bit value of the most significant bit (MSB) of the
host identifier part of the protocol address determines the type of server
and consequently the rule that should be applied for said type of server.
In the exemplary embodiment a most significant bit with a value ‘1’
indicates a server of the first type and a most significant bit with a value
‘0’ indicate a server of the second type. This means that, for the servers

of the first type a rule could be applied which uses five bits for parameter

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

21

Eid to address up to 32 processing units in the first type of servers and
which uses 4 bits to address up to 16 hosts hosted by one processing unit
in the server of the first type. As a result of this 16-5-4=7 bits are
available for the parameter Sid. However, the MSB has a predefined value
‘1’, which means that 6 bits could be used to address uniquely a server of
the first type in the network. This means that the network could comprise
up to 64 servers of the first type in the network. The 64 servers could
host in total 64*32*16=32768 hosts.

Similarly, for the servers of the second type a rule could be
applied which uses three bits for parameter Eid to address up to 8
processing units in the second type of servers and which uses 8 bits to
address up to 256 hosts hosted by one processing unit in the server of the
second type. As a result of this 16-3-8=5 bits are available for the
parameter Sid. However, the MSB has a predefined value ‘0’, which
means that 4 bits could be used to address uniquely a server of the
second type in the network. This means that the network could comprise
up to 16 servers of the second type in the network. The 16 servers could
host in total 16*8*256=32768 hosts.

To apply the more complex rule in the resolver function, the
resolver function as described above has to be adapted to check first the
MSB of the host identifier part of the protocol address. Based on the
value of the MSB the resolver function knows the number of bits of the
parameters Sid, Eid and Hid that have been used to generate the protocol
address. This knowledge enables the resolver function to generate the
correct index address.In case the index address has the length of the
protocol address or the host identifier part of the protocol address, the
resolver has to replace the bits representing the host identifier of a host in
the host identifier part by a predefined value or sequence of bits

corresponding to the applied rule. However if the bit-length of index

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

22

address is shorter than the bit-length of the protocol address or the host
identifier part of the protocol address, the resolver function has to be
configured to generate an index address for both types of servers with an
equal bit-length. The total number of bits of the parameters Sid and Eid
for the servers of the first type in the protocol address is 7 + 5 = 12 bits.
The total number of bits of the parameters Sid and Eid for the servers of
the second type in the protocol address is 5 + 3 = 8 bits. Consequently,
four predefined padding bits have to be added after the sequence of bits
obtained by concatenation of the parameters Sid and Eid to obtain a
unique index address with a length of 12 bits for all processing units in the
network.

To apply the more complex rule in the populating function, the
populating function has the know that the server identification values 0 -
15 are used to address the 16 servers of the second type and the server
identification values 65 - 127 are used to address the 64 servers of the
first type. Furthermore, when the populating function generates a
reduced ARP table with only one entry in the table for each processing
unit, the populating function has to be adapted to generate index address
with a fixed length for both type of servers. This could be done in the way
described in the previous paragraph.

This more complex rule allows an operator of the network to
replace gradually servers of the first type by servers of the servers of the
second type with the ability to provide a network with a large amount of
hosts. Furthermore, the more complex rule allows to reduce the size of
the ARP table defining all relationships between protocol addresses and
hardware addresses of the hosts in the network and the amount of ARP
requests needed to populate the ARP table.

In the exemplary embodiment described above, the host

identifier part is obtained by concatenation of the bits of first parameter

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

23

Sid, the bits of second parameter Eid and finally the bits of third
parameter Hid. It is also possible to concatenate the bits of the three
parameters in another order. In that case, the MSBs of the host identifier
part of the hosts in a server differ and the server does not form a kind of
subnet wherein all hosts of the server have an protocol address in the
same subnet.

It should be noted that the exemplary embodiments are
described in relation to Address Resolution Protocol required in the
Internet Protocol Version 4 (IPv4). It might be clear that the
embodiments could easily be adapted to be suitable for the Neighbor
Discovery Protocol (NDP) for IPv6.

The present invention and its exemplary embodiment can be
realized in many ways. For example, one embodiment includes a
computer-readable medium or a computer program product having
computer readable code stored thereon that are executable by a processor
of apiece of equipment inside a node of a private network, such as a
processor board, to perform the method of the exemplary embodiments
as previously described.

The invention provides a mechanism which reduces the search
time through the ARP table. As the ARP table could be fully populated
prior to any communication between hosts in the network, the ARP table
could be implemented as a lookup table in a memory. By just one read
operation the MAC address corresponding to an IP address could be
retrieved from the ARP table. This is very useful when a requirement on
high connection setup rate is present.

In addition, there is provided a method to populate the ARP
table for an internal or private VLAN before any socket connection is
requested. Later, when an application connects to a socket and starts

sending data, no IP packets will be dropped due to the absence of the link

10

WO 2014/108175 PCT/EP2013/050256

24

between an IP address and corresponding MAC address in the ARP table,
which ARP table could be a reduced ARP table.

Furthermore, there is provided a method which minimizes the
ARP table size and the number of ARP requests sent to the network.
Consequently, less memory is needed for the ARP table and a potential
ARP broadcast storm is avoided on the network.

While the invention has been described in terms of several
embodiments, it is contemplated that alternatives, modifications,
permutations and equivalents thereof will become apparent to those
skilled in the art upon reading the specification and upon study of the
drawings.The invention is not limited to the illustrated embodiments.

Changes can be made without departing from the idea of the invention.

%k 3k K ok ok ko k

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

25

CLAIMS:

1. A method of handling a protocol address (IP_x) in a network
(10), the network comprising a number of K servers (12), a server is
uniquely identified in the network by a server identifier (Sid_x), aserver
comprising a maximum number of Lunits (14), a unit comprises one
hardware address (MACx) to connect to the network and a unit identifier
(Eid_x), the unit identifier uniquely identifying the unit in the server, a unit
hosts a maximum number of M hosts (16), each host on a unit comprising
a local host identifier (Hid_x) uniquely identifying the host on the unit; the
method comprises:

- a unit (14) generating a protocol address (IP_x) for a host on the unit
based on the local host identifier (Hid_x) of the host, the unit identifier
(Eid_x) of the unit and the serveridentifier (Sid_x) associated with the
unit; and,

- the unit (14) assigning the protocol address to the host (16).

2. The method according to claim 1, wherein the protocol
address comprises a network part and a host identifier part, a server
identifier (Sid_x) is represented by a first parameter having k-bits, k being
a positive integer for which holds that 22K, a unit identifier (Eid_x) is
represented by a second parameter having I-bits, | being a positive integer
for which holds that 2'zL, a local host identifier (Hid_x) is represented by a
third parameter having m-bits, m being a positive integer for which holds
that 2™2M, and the host identifier part is obtained by concatenation of the

bits of the first parameter, the second parameter and the third parameter.

3. The method according to claim 2, wherein the host identifier

part comprises H-bits and k + | + m < H.

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

26

4, The method according to any of the claims 2 - 3, wherein a
server defines a segment of the network and the first parameter
corresponds to the bits of the host identifier part of the protocol address

defining the segment in the network.

5. The method according to any of the claims 2 - 4, the method
further comprises the steps:

- a first unit generating a protocol address (IP_x) for a first host with a
predefined local host identifier on a second unit based on the predefined
local host identifier (Hid_1) of the first host, the unit identifier (Eid_x) of
the second unit and the server identifier (Sid_x) associated with the
second unit;

- the first unit sending a request to the first host with the protocol address
(IP_x) to send its hardware address (MACX);

- the second unit sending a response comprising the hardware address
(MACX) of the second unit in response to the request; and,

- the first unit retrieving the hardware address (MACx) of the second unit
from the response; and,

-the first unit storing the relation between the protocol address (IP_x) of
the first host and the hardware address (MACx) of the second unit in a
database (204) of the first unit.

6. The method according to claim 5, wherein at least one most
significant bit of the first parameter defines the number of bits of the first,

second and third parameter.

7. The method according to claim 5 or 6, wherein the storing

step comprises:

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

27

- generating an index address with a predefined length by concatenation
of at least the bits of the first parameter and the bits of the second
parameter;

- linking hardware address of the second unit to the index address.

8. The method according to claim 5 or 6, wherein the method
further comprises for all other hosts on the second unit the steps:

- the first unit generating a protocol address (IP_x) for another host on
the second unit based on the local host identifier (Hid_x) of the another
host, the unit identifier (Eid_x) of the second unit and the server identifier
(Sid_x) associated with the second unit;

- the first unit storing the relation between the protocol address (IP_x) of
the another host and the hardware address (MACx) of the second unit

retrieved in the previous retrieving step.

0. The method according to any of the claims 2 - 8, wherein the
method further comprises:

- a process (44) of the first unit receiving a request from a host on the
first unit to provide the hardware address associated with a protocol
address;

- the process of the first unit processing the protocol address to obtain an
index address;

- the process of the first unit retrieving from the database the hardware
address with use of the index address; and,

- the process of the first unit sending the retrieved hardware address to

the host on the first unit.

10. The method according to claim 9, wherein the processing step

comprises:

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

28

- deducingthe number of bits of the first, second and third parameter in
dependence of at least one bit of the protocol address;

- retrieving the first and second parameter from the protocol address;

- generating the index address having a predefined length by
concatenation of at least the bits of the first parameter and the bits of the

second parameter.

11. The method according to claim 9 or 10, wherein the method
further comprises:

when the hardware address could not be retrieved from the database:

- the process (44) of the first unit sending to a remote host having the
protocol address a request to send its hardware address (MACX);

- a remote host having the protocol address sending a response
comprising the hardware address (MACx) of the host in response to the
request; and,

- the process of the first unit retrieving the hardware address from the
response; and,

- the process of first unit storing the relation between the protocol address
(IP_x) of the remote host and the hardware address (MACx) of a second

unit hosting the remote host in a database (204) of the first unit.

12. A processing device (14) comprising a processor (610), an
Input/Output device (630) to connect to the network system, a database
(640) and a data storage (620) comprising instructions, which when
executed by the processor (610), cause the processing device(14) to:

- generate a protocol address (IP_x) for a host (16) on the processing
device based on a local host identifier (Hid_x) of the host, the unit
identifier (Eid_x) of the processing device and the server identifier (Sid_x)

associated with the processing device; and,

10

15

20

25

WO 2014/108175 PCT/EP2013/050256

29

- assign the protocol address to the host (16).

13. The processing device according to claim 12, wherein the
instructions, which when executed by the processing device cause the
processing device to:

- generate a protocol address (IP_x) for a first host with a predefined local
host identifier on a second unit based on a predefined local host identifier
(Hid_1) of the first host, a unit identifier (Eid_x) of the second unit and a
server identifier (Sid_x) associated with the second unit;

- send a request to the first host with the protocol address (IP-x) to send
In a response its hardware address (MACx);

- retrieve the hardware address of the second unit from the response;
and,

- store the relation between the protocol address (IP_x) of the first host
and the hardware address (MACx) of the second unit in a database (640)

of the processing device.

14. The processing device according to claim 12, wherein the
instructions, which when executed by the processing device cause the
processing device to:

- receive a request from a local host to provide the hardware address
associated with a protocol address;

- process the protocol address to obtain an index address;

- retrieve from the database the hardware address with use of the index
address; and,

- send the retrieved hardware address to the local host.

%k 3k K ok ok ko k

PCT/EP2013/050256

WO 2014/108175

1/3

L "OId

ol

0c /
wn Hun nn Hun
WPIH W PH WPIH WPIH L
1SOH LSOH o 1SOH 1SOH | T~ g}
1] wic [} H
" ' Z|® : "
: : m|Zz - - L~ 91
L PIH LPH 2tm LPIH L P T
1SOH 1SOH “- 1SOH 1SOH
7P s P - - 7P L P %
8OV E 1OV E v pIs £ PS [90WW E SOV E, T~ gl
=X—IXE
13IN-8NS 13IN-E9NS x4
13N-8NS 13IN-Gns -
=X—XE
oy [duv] i o | B RS |50s [awv] ipg 28]
L PIH L PH LPIH L PIH
1SOH 1SOH [l 924 1SOH 1SOH
wic
' I i <|® i ———— '
" " 0|z “ "
W PIH WPH niA WPH W PIH
1SOH 1SOH 1SOH 1SOH
Hun Hun Hun nn
HHOMLIN
13N LNI

SUBSTITUTE SHEET (RULE 26)

WO 2014/108175

2/3

network id Sid=3 Eid=4 Hid=7
¢ | |
169.123 0011 00100 0000111
0011001000000111
network part host id part
10101001.01111011 00110010.00000111

10101001.01111011.00110010.00000111

protocol address
169.123.050.007

18 ARP
\ P lat ARP request
opulator
30 —1 P ARP response
l_\-‘ 36
32 —}—_] Cache table
38 \\ 5 — 37
1P_x 34
MAC Resolver T
X e
18
™~ |ARP
Cache table
a2 —T |
173
e
3 3
el
£
IP_x ARP request
Resolver
MACx ARP response
44

SUBSTITUTE SHEET (RULE 26)

PCT/EP2013/050256

WO 2014/108175 PCT/EP2013/050256

protocol address
169.123.050.007

10101001.01111011.00110010.00000111

network part host id part
10101001.01111011 00110010.00000111

0011001000000111

Sid Eid Hid
0011 00100 0000111

‘ / 0000001

index address

FIG. 5

14\

620
~—{4 Memory

610 640
~_|- Processor |

FIG. 6

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/050256

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/12
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

paragraph [0024]

figures 3,5a,5c

ET AL) 11 August 2005 (2005-08-11)

paragraph [0041] - paragraph [0064]
paragraph [0071] - paragraph [0118]
paragraph [0127] - paragraph [0145]

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011/282979 Al (BOWER III FRED A [US] 1-14

ET AL) 17 November 2011 (2011-11-17)

paragraph [0008]

paragraph [0026] - paragraph [0031]

paragraph [0042] - paragraph [0043]

figures 1,3
A US 2005/174998 Al (VESTERINEN SEPPO [FI] 1-14

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 September 2013

Date of mailing of the international search report

25/09/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Tous Fajardo, Juan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/050256
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2004/083293 Al (CHEN DONG [US] ET AL) 1-14
29 April 2004 (2004-04-29)
abstract

paragraph [0008] - paragraph [0013]
paragraph [0027]
figure 4

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2013/050256
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011282979 Al 17-11-2011 NONE
US 2005174998 Al 11-08-2005 AT 550853 T 15-04-2012
EP 1714445 Al 25-10-2006
US 2005174998 Al 11-08-2005
WO 2005076540 Al 18-08-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report
	Page 36 - wo-search-report

