

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
5 July 2007 (05.07.2007)

PCT

(10) International Publication Number
WO 2007/073845 A2

(51) International Patent Classification:

CI2N 9/18 (2006.01) *CI2P 41/00* (2006.01)
CI2N 15/52 (2006.01) *CI2P 7/02* (2006.01)

Manuela [AT/AT]; Kleegasse 8, A-8042 Werndorf (AT).
ZENZMAIER, Christoph [AT/AT]; Freisingstrosse 8, A-6020 Innsbruck (AT).

(21) International Application Number:

PCT/EP2006/011832

(74) Agent: **DI. LINDINGER, Ingrid**; DSM Fine Chemicals Austria Nfg GmbH & Co KG, St. Peter-Strasse 25, A-4021 Linz (AT).

(22) International Filing Date:

8 December 2006 (08.12.2006)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language:

English

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL POLYPEPTIDE HAVING ESTERASE ACTIVITY AND RECOMBINANT ESTERASE AND USE THEREOF

(57) Abstract: Polypeptide and recombinant protein having esterase activity which exhibit the amino acid sequence SEQ. ID. No. 1 and the use thereof.

Novel polypeptide having esterase activity and recombinant esterase and use thereof

The invention relates to a novel polypeptide having esterase activity, especially having 2-alkyl-5-halopent-4-enecarboxylesterase activity, and to an enzymatically active recombinant protein having esterase activity and to the use thereof for resolving racemates of 2-alkyl-5-halopent-4-enecarboxylic ester enantiomer mixtures.

Enantiomerically enriched 2-alkyl-5-halopent-4-enecarboxylic acids and their esters are valuable intermediates for preparing pharmaceuticals, such as, for instance, for delta-amino-gamma-hydroxy-omega-arylalkanecarboxamides, which have renin-inhibiting properties and can be used as antihypertensive agents in pharmaceutical preparations.

Esterases are generally employed in the resolution of racemates and asymmetrization.

However, only very few esterases suitable for preparing chiral compounds are commercially available.

The use of esterase extracts from pig liver is known on the preparative scale. Pig liver esterase (PLE) was isolated long ago from natural sources, and its activity has also been known for a long time (Simonds, J.P. (1919) Amer. J. Physiol. 48, 141; Bamann, E. et al. (1934) Hoppe-Seyler Z. 229, 15; Falconer J.S. and Taylor, D.B. (1946) Biochem. J. 40, 831-834).

Various studies have also already been carried out in order to characterize PLE (Heymann, E. and Junge, W. (1979) Eur. J. Biochem. 95, 509-518; Lehner, R. and Verger, T. (1997) Biochemistry 36, 1861-1868).

It has further been possible to show, for example in WO 01/09079, that esterase extracts from pig liver can selectively hydrolyze the (R) enantiomer of methyl 5-chloro-2-(1-methylethyl)-4-pentenoate.

However, the use of such esterase extracts from natural sources, such as pig liver, is associated with disadvantages.

In the first place, the qualities of the different batches vary and thus make it difficult to optimize industrial processes. Secondly, the use of animal resources in the manufacture of pharmaceutical products is undesired because the presence of viruses and prions cannot always be precluded.

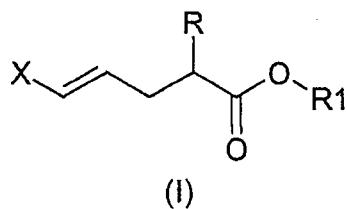
10 For these reasons there is a need to produce recombinant pig liver esterases of standardized quality in microorganisms.

The cloning of putative esterase genes is described for example in FEBS Lett. (1991), 293, 37-41. The first 15 functional expression of an active pig liver esterase enzyme was described for the first time in WO 02/48322.

WO 2004/055177 describes the preparation of further recombinant esterases by site directed mutagenesis of the recombinant pig liver esterase of seq. ID No. 1 20 (rPLE) -- from WO 02/48322. As is evident from the description of WO 2004/055177 and from the article authored by the same inventors in Protein Engineering, 16, 1139-1145, 2003, the modifications of the rPLE sequence from WO 02/48322 were chosen so that a 25 recombinant intestinal pig esterase (PICE) disclosed in David et al., (1998) Eur. J. Biochem. 257, 142-148, is obtained.

The resolution of racemic 2-alkyl-5-halopent-4-enecarboxylic esters is not described in any of these 30 articles.

However, since the need for esterases which have the desired stereoselective activity for 2-alkyl-5-halopent-4-enecarboxylic esters and which can easily be 35 prepared biotechnologically is not met, it was an object of the present invention to provide a corresponding novel recombinant esterase.


In an attempt to isolate and to clone the gene described in FEBS Lett. (1991), 293, 37-41 and WO 02/48322 for known pig liver esterase (PLE) as cDNA starting from mRNA from pig liver, a second, novel 5 esterase sequence was found in addition to the known PLE sequence. Following expression of the two sequences, in which the corresponding proteins or esterases, namely the known rPLE and a novel, recombinant "alternative" esterase (rAPLE), was 10 prepared, it unexpectedly emerged that only the rAPLE is capable of selective resolution of racemic 2-alkyl-5-halopent-4-enecarboxylic esters.

It was thus possible to achieve the object of the 15 present invention by a novel polypeptide having esterase activity and a novel recombinant esterase (rAPLE), whose amino acid sequence differs in 21 of a total of 548 amino acids from the known PLE sequence. The novel rAPLE differs in the amino acid sequence also 20 from the known pig intestinal carboxylesterase (PICE) in 12 of a total of 548 amino acids. However, PICE is found in the pig intestinal tract.

The present invention accordingly relates to a 25 polypeptide having esterase activity, which comprises the amino acid sequence SEQ. ID. No. 1.

The present invention further relates to a novel recombinant protein having esterase activity, which 30 comprises the amino acid sequence SEQ. ID. No. 1.

The polypeptide and the recombinant rAPLE of the invention have the ability to resolve stereoselectively racemic 2-alkyl-5-halopent-4-enecarboxylic esters of 35 the formula (I)

in which R is a C₁-C₆-alkyl radical, R₁ is C₁-C₄-alkyl and X is chlorine, bromine or iodine.

5 The polypeptide of the invention having esterase activity, and the novel recombinant esterase rAPLE differ, as stated above, in 21 of a total of 548 amino acids of the known sequence disclosed in FEBS Lett. (1991), 293, 37-41 and in 12 of a total of 548 amino acids from the known PICE protein disclosed in David et al., (1998) Eur. J. Biochem. 257, 142-148.

10 The sequence of the protein of the novel rAPLE of the invention differs in the following amino acid positions from the known sequence of the PLE protein:

APLE	Position	PLE
Glu	73	Asp
Ile	75	Val
Gly	76	Val
Gly	77	Glu
Leu	80	Thr
Arg	87	Gly
Ile	92	Thr
Pro	93	Leu
Val	129	Leu
Ser	133	Pro
Thr	134	Met
Leu	138	Val
Ala	139	Val
Phe	234	Leu
Ala	236	Val
Gly	237	Ala

Phe	286	Leu
Ala	287	Thr
Leu	290	Phe
Pro	294	Gln
Thr	302	Pro

The protein of the invention and the novel recombinant rAPLE may moreover be in the form of a modified sequence as shown in SEQ ID No 1, which can be obtained 5 for example by usual modifications such as, for instance, exchange, deletion or attachment of amino acid(s) in the sequence at the N or C terminus, such as, for instance, GluAlaGluAla from the α factor signal sequence, or by fusion to other proteins.

10 The invention also further includes muteins having modifications within the protein sequence of the enzyme of the invention having the appropriate activity, in particular on 2-alkyl-5-halopent-4-enecarboxylic esters. Muteins can be obtained for example by 15 modifications of the DNA which codes for the enzyme of the invention, by known mutagenesis techniques (random mutagenesis, site-directed mutagenesis, directed evolution, gene shuffling etc.) so that the DNA codes for an enzyme which differs at least by one amino acid 20 from the enzyme of the invention, and subsequent expression of the modified DNA in a suitable host cell. The invention thus also includes modified DNA sequences 25 as shown in SEQ ID. No 1, obtained by the mutations, deletions, extensions, fusions described above, and which code for enzymes having the desired esterase activity.

Esterase activity, especially 2-alkyl-5-halopent-4-ene-carboxylesterase activity, is defined in this 30 connection as the ability to resolve racemates of 2-alkyl-5-halopent-4-enecarboxylic esters of the formula (I).

The polypeptide of the invention and the recombinant rAPLE can be prepared as described below:

Firstly, mRNA is isolated from pig liver using a 5 suitable kit, and then the cDNA is generated by reverse transcription based on the mRNA extract.

Subsequently, specific PCR primers based on the sequence of the known pig liver esterase gene of GenBank accession No. X63323 (Matsushima et al., 1991) 10 is prepared, followed by amplification and cloning.

These specific primers are:

Primer 1: 5'-CAGAATT~~C~~ATGGCTATC**GGGCAGCCAGCCTCGC**-3'

Primer 2: 5'-CCGGAATT~~C~~AGC**CTCCCCTTCACAGCTCAG**-3'

15 This part of the primers which comprises the appropriate nucleotide sequences coding for the PLE protein and which is obligatorily present in the primers is in bold script.

20 The other sequence part of the primers comprises for example information for cleavage sites for restriction endonucleases (in italics) or sequence elements which are important for expression. This part may vary in the preparation of the rAPLE of the invention.

25 Amplification then takes place with primers 1 and 2 by prior art PCR methods.

The PCR product is subsequently used to prepare by prior art methods expression constructs for heterologous expression of the encoded rAPLE protein in 30 suitable host organisms. This preferably entails the PCR product being initially cloned into suitable plasmid vectors.

35 The recombinant plasmids obtained in this way are then transformed into a suitable host, for example *Escherichia coli*. Inserts of several resulting clones are then sequenced.

Unexpectedly, 2 groups of recombinant clones with different sequences were identified therein, one being

100% identical to the expected sequence for PLE according to Matsushima et al., (1991) FEBS Lett. 293, 37-41, and a novel nucleotide sequence as shown in SEQ. ID. No. 2 (APLE sequence) which leads after 5 expression to the amino acid sequence SEQ. ID. No. 1 of the invention.

The present invention further relates to a nucleic acid or nucleotide sequence which codes for the polypeptide 10 of the invention and the recombinant esterase rAPLE.

For example, such a nucleic acid has the nucleotide sequence shown in SEQ. ID. No. 2.

The invention also relates further to nucleotide sequences which include a nucleotide sequence which 15 codes for the polypeptide of the invention and the recombinant esterase rAPLE, or comprises the nucleotide sequence shown in SEQ. ID. No. 2.

A further possibility is to prepare appropriate 20 oligonucleotides corresponding to nucleic acid sequences according to the present invention which code for the esterase of the invention by standardized synthetic techniques, for example with use of automated DNA synthesizers.

25 The purely synthetic preparation of the nucleic acid sequences which code for the esterase of the invention is particularly advantageous for use in the production of pharmaceuticals or their intermediates, because enzymes are thus not obtained from animal sources.

30

Expression of the two sequences found (PLE and APLE sequences) then takes place.

The known pig liver esterase (PLE, Swiss-Prot ID Q29550) comprises an N-terminal signal sequence and a

35 C-terminal ER retention signal, the last 4 amino acids HAEI.

In order to express the known PLE and the novel APLE, vectors in which the sequences are introduced into suitable expression systems constructed. These

expression constructs are then transformed into suitable host cells.

Suitable host cells in this connection are for example microorganisms, animal cell lines and plants.

5 Both prokaryotic and eukaryotic microorganisms can be employed. Preferred prokarytic hosts (bacteria) are *Escherichia coli*, and strains from the genera *Bacillus* (e.g. *B.subtilis*, *B.licheniformis*, *B.amyloliquefaciens*), *Pseudomonas* (e.g. *P.fluorescens*,
10 *P.putida*), or *Streptomyces* (e.g. *S.lividans*, *S.tendae*)
Eukaryotic microorganisms are preferred, and fungi are particularly preferred. Examples thereof are *Saccharomyces cerevisiae*, *Pichia pastoris*, *Kluyveromyces lactis* or *Aspergillus* sp..
15 Expression may be secretory or intracellular and both inducible and constitutive.

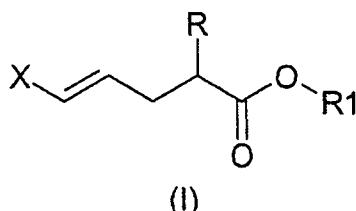
For bacterial expression a choice of species-specific signals can be obtained, a.o. as commercially available strains and vectors for protein expression (e.g. 20 provided by companies like Invitrogen, Novagen, New England Biolabs), that allow inducible or constitutive expression, intracellular and secretory localization of the target protein; in addition, technology to enable or promote the correct folding of proteins in order to 25 result in soluble and active protein may be applied.

The proteins are preferably expressed in a secretory manner, in which case vectors in which the sequences of PLE and APLE are linked N-terminally to the α factor signal sequence of *S. cerevisiae* are preferably 30 constructed.

It is further possible to prepare constructs in which the C-terminal tetrapeptide HAEI, which serves as ER retention signal as described for example in Hardwick et al., (1990) EMBO J. 9, 623-630, is additionally 35 deleted.

A further preferred expression is inducible expression of constructs with or without ER retention signal.

Unexpectedly, constructs having the ER retention signal can also be expressed and lead to an rAPLE which is

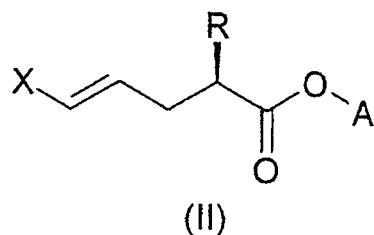

capable of selective resolution of racemic 2-alkyl-5-halopent-4-enecarboxylic esters.

5 The amino acid sequence of the novel esterase rAPLE which is derived from the nucleotide sequence of the APLE gene is depicted in SEQ ID No. 1.

10 It has unexpectedly been possible to find that the novel polypeptide or the rAPLE protein is able, in contrast to the known rPLE, in each case obtained by expression of the DNA segments coding for APLE and PLE, respectively, for example in *P. pastoris* cells, to resolve racemic 2-alkyl-5-halopent-4-enecarboxylic esters stereoselectively.

15

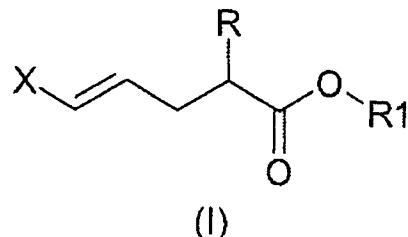
The invention accordingly further relates to the use of the polypeptide having esterase activity and of the recombinant esterase (rAPLE) of the invention, which have at least 80% identity to the sequence shown in 20 SEQ ID No. 1, for resolving racemates of 2-alkyl-5-halopent-4-enecarboxylic esters of the formula (I)



25 in which R is a C₁-C₆-alkyl radical, R₁ is C₁-C₄-alkyl and X is chlorine, bromine or iodine.

The polypeptide having esterase activity and the recombinant esterase (rAPLE) of the invention 30 preferably have at least 90%, particularly preferably at least 98%, identity to the sequence of the protein shown in SEQ ID No. 1. It is also possible to employ polypeptide having an esterase activity or the recombinant esterase (rAPLE) of the invention with 35 modified DNA sequences shown in SEQ ID. No. 1, obtained

by usual modifications such as, for instance, mutations, deletions, extensions, fusions, which code for enzymes having the desired esterase activity.


5 In this connection, enantiomerically enriched 2-alkyl-5-halopent-4-enecarboxylic acids or their esters of the formula (II)

10

in which R is a C₁-C₆-alkyl radical, A is equal to H, R₁, where R₁ may be C₁-C₄-alkyl, or R₂, where R₂ is an alkyl group, but is not equal to R₁, and X is chlorine, bromine or iodine, are obtained by an enantiomeric

15 mixture of a 2-alkyl-5-halopent-4-enecarboxylic ester of the formula (I)

20 in which R, R₁ and X are as defined above, being converted by means of the polypeptide of the invention or of the rAPLE of the invention in the presence of water or an alcohol of the formula R₂OH, where R₂ is an alkyl group which is not equal to R₁, as 25 nucleophile, and

a) either the remaining enantiomerically enriched 2-alkyl-5-halopent-4-enecarboxylic ester of the formula (II) with A equal to R₁ being isolated or
 b) if an alcohol is employed as nucleophile, the 30 resulting enantiomerically enriched 2-alkyl-5-

halopent-4-enecarboxylic ester of the formula (II) with A equal to R₂ being isolated, or

5 c) if water is employed as nucleophile, the resulting 2-alkyl-5-halopent-4-enecarboxylic acid of the formula (II) with A equal to H being isolated.

R in the formula (II) is a C₁-C₆-alkyl radical such as, for instance, methyl, ethyl, n- and i-propyl, n-, i- and t-butyl, pentyl and hexyl.

10 C₁-C₄-Alkyl radicals are preferred, and the i-propyl radical is particularly preferred.

A is H, R₁, where R₁ is a C₁-C₄-alkyl radical, preferably a C₁-C₂-alkyl radical and particularly preferably a methyl radical, or R₂, where R₂ is an alkyl radical which is not equal to R₁. R₂ is particularly 15 preferably a C₁-C₆-alkyl radical.

X is chlorine, bromine or iodine, preferably chlorine.

20 Enantiomerically enriched compounds mean in this connection those which exhibit an enantiomeric excess (ee) of >80%, preferably of >90% and particularly preferably of >97%.

25 The enzyme of the invention can moreover be used in any form. For example as dispersion, as solution, immobilized, as crude enzyme, as enzyme which has been obtained from its source by a combination of known purification methods, as whole cells (where appropriate immobilized and/or permeabilized) which have the 30 required enzymatic activity (naturally or through genetic modifications) or in a lysate of such cells.

The reaction temperature for the conversion of the invention is normally between 0 and 90°C, preferably 35 between 10 and 60°C. The pH of the reaction solution is between 4 and 11, preferably between 6 and 9.

The choice of the solvent depends on the nucleophile employed.

If, for example, water is the nucleophile, solvents which can be employed are water, a mixture of water with a water-miscible solvent, for example with an alcohol such as, for instance, methanol, ethanol, 5 isopropanol, t-butanol, etc., dioxane, tetrahydrofuran, acetone or dimethyl sulfoxide or a two-phase system of water and of a water-immiscible solvent, for example an aromatic compound such as, for instance, toluene, xylene, etc., an alkane such as, for instance, hexane, 10 heptane, cyclohexane, etc., ether such as, for instance, diisopropyl ether, methyl t-butyl ether, etc. If the nucleophile is an alcohol, the solvent preferably employed is the alcohol R_2OH where R_2 is an alkyl group which is not, however, equal to R_1 . 15 However, it is also possible to use mixtures of the alcohol with an organic solvent such as, for instance, tetrahydrofuran, heptane, toluene, hexane, CH_3CN , methyl t-butyl ether etc.

20 After the enzymatically catalyzed racemate resolution has taken place, the desired final product is isolated. This may be either the remaining enantiomerically enriched 2-alkyl-5-halopent-4-enecarboxylic ester of the formula (II) with A equal to R_1 , or if water is the 25 nucleophile the enantiomerically enriched 2-alkyl-5-halopent-4-enecarboxylic acid of the formula (II) with A equal to H which has formed, or if the alcohol is the nucleophile the enantiomerically enriched 2-alkyl-5-halopent-4-enecarboxylic ester of the formula (II) with 30 A equal to R_2 .

The isolation can take place for example by conventional methods such as, for instance, extraction, crystallization, column chromatography, distillation, etc. 35 The method of the invention results in the corresponding acids or esters of the formula (I) in theoretical yields of up to 98% yield and with an e.e. of up to >99%.

Example 1: mRNA isolation and generation of cDNA

0.7 g of liver from a freshly slaughtered pig, obtained from a local abattoir, was frozen in liquid nitrogen 5 and homogenized with a mortar, and the liberated mRNA was isolated or extracted using the Fast Track mRNA extraction kit 2.0 (Invitrogen, Carlsbad, Calif., USA) in accordance with the statements made by the manufacturer (Fast Track 2.0 kit manual; version J; 10 082301; 25-0099). The extraction afforded a total amount of 12.9 µg of mRNA.

0.26 µg of this mRNA was then used as template for generating cDNA using the SuperScript III First-Strand synthesis system for RT-PCR according to the 15 manufacturer's statements.

Example 2: Amplification and cloning of cDNA fragments from pig liver

20 Specific primers based on the sequence of the pig liver esterase gene of GenBank accession No. X63323 (Matsushima et al., 1991) were prepared:

Primer 1: 5'-CAGAATT~~C~~ATGGCTATCGGGCAGCCAGCCTCGC-3' (SEQ ID. No. 3)

Primer 2: 5'-CCGGAATT~~C~~AGCCTCCC~~T~~T~~C~~ACAGCTCAG -3' (SEQ ID No. 4)

25 Bases homologous to the known PLE sequence are in bold script. Recognition sequences for restriction endonucleases are italicized for emphasis.

The amplification took place in a 50 µl mixture with 1 U of Phusion DNA polymerase (Finnzymes, Espoo, Finland), with 500 ng of cDNA as template, 20 µmol each 30 of primer 1 and 2, 5 µl of a dNTP mix (2 mM each), all in 1xPhusion HF buffer in accordance with 'Phusion High-Fidelity DNA Polymerase' manual (Finnzymes), starting with a 30 second denaturation step at 98°C, followed by 30 cycles (10 sec 98°C, 20 sec 68°C, 1 min 35 72°C) for amplification and a final incubation at 70°C for 8 min to prepare complete products.

This PCR resulted in a DNA fragment with a size of 1.8 kb (found by agarose gel electrophoresis).

This PCR product was then purified using the Qiaquick kit (Qiagen, Hilden, Germany) in accordance with the manual included.

About 0.1 μ g of the purified PCR product was cut with 5 the restriction endonuclease EcoRI and cloned into the plasmid vectors pHILZ and pHIL-D2 via the EcoRI cleavage sites.

The vectors were then transformed into TOP10 electrocompetent cells prepared in accordance with 10 'Current Protocols in Molecular Biology'.

Inserts of several resulting clones were sequenced using the 'Dye Deoxy Terminator Cycle Sequencing' kit (Applied Biosystems Inc., Forster City, Calif., USA).

Two sequences were identified thereby, one 15 corresponding 100% to the expected sequence published by Matsushima et al., (1991) FEBS Lett. 293, 37-41, and the other sequence corresponding to SEQ ID No. 2.

Example 3: Introduction of the α factor signal sequence 20 and variations of the C-terminal end.

In order to enable secretory expression of the known protein PLE and the protein rAPLE of the invention, vectors in which the sequence of PLE and APLE was 25 connected N-terminally to the α factor start sequence of the cloning vector pPICZ α (Invitrogen) were constructed. In addition, constructs in which the C-terminal tetrapeptide HAEI was deleted were prepared.

30 PCR I: The EcoRIalpha1/alphaPLE2 primer pair was used to amplify the α factor signal sequence of the cloning vector pPICZ α (Invitrogen). The PCR was carried out in a 50 μ l mixture (2 ng of template, 0.5 μ M of each primer, 0.2 mM dNTPs, 1 U of the Phusion DNA polymerase 35 (Finnzymes) all in 1xPhusion HF buffer in accordance with the 'Phusion High-Fidelity DNA Polymerase' manual (Finnzymes)).

Denaturation at 95°C for 3 minutes was followed by amplification in 30 cycles (30 sec 95°C, 30 sec 57°C, 15 sec 72°C) and a final step at 72°C for 7 min.

5 PCR II: The PLE and APLE sequences were amplified from pHILZ plasmids using either the PLEalpha1/EcoRIPLE+ER2 primer pair or the PLEalpha1/EcoRIPLE2 (deletion of the C-terminal HAEL tetrapeptide) primer pair.

10 These PCRs were again carried out in 50 µl mixtures (2 ng of template, 0.5 µM of each primer, 0.2 mM dNTPs, 1 U of the Phusion DNA polymerase (Finnzymes) all in 1×Phusion HF buffer in accordance with the 'Phusion High-Fidelity DNA Polymerase' Manual (Finnzymes)).

15 A denaturation at 95°C for 3 minutes was followed by amplification in 30 cycles (30 sec 95°C, 30 sec 57°C, 15 sec 72°C) and a final step at 72°C for 7 min.

20 PCR III: 3 µl of the products from PCR I and PCR II were used to combine these two products by primerless PCR.

The extension was carried out in a 45 µl mixture with 0.2 mM dNTPs, 1 U of the Phusion DNA polymerase (Finnzymes) all in 1×Phusion HF buffer.

25 The reaction mixture was heated at 95°C for 3 minutes and then 10 cycles with 30 sec at 95°C and 45 sec at 72°C were carried out. To amplify these overlapping extension products, 5 µl of primer mix (3 µl of water, 1 µl of 5 µM EcoRIalpha1 primer and 1 µl of 5 µM EcoRIPLE+ER2 or EcoRIPLE2 primer) were added. The 30 products were amplified with 20 PCR cycles (30 sec 95°C, 30 sec 57°C, 1 min 72°C) and a single temperature stop at 72°C for 7 min.

Primer sequences:

EcoRIalpha1: 5'-TCTTCGAAGAATTACCGAT**GAGATTC**CTCAATTTCAG-3'
(SEQ ID No. 5)

alphaPLE2: 5'-GAGGCTGGCTGCCAG**CTTCAGCCTCT**TTTCTCG-3'
(SEQ ID No. 6)

PLEalpha1: 5'-AGAGAGGCTGAAG**CTGGCAGCCAGCCTCGCCG**-3'
(SEQ ID No. 7)

EcoRIPLE+ER2: 5'-ATGGTACCGAATT**CTCACAGCTCAGCATG**CTTATCTTG-3'
(SEQ ID No. 8)

EcoRIPLE2: 5'-ATGGTACCGAATT**CTCACTTATCTTGGGTGGCTT**TTTG-3'
(SEQ ID No. 9)

Regions with homology to the templates in bold,
recognition sequences for restriction endonucleases in
5 italics.

**Example 4: Construction of expression constructs for
the heterologous expression of pig liver esterases in
*Pichia pastoris***

10

The overlapping extension PCR products from example 3
were purified using the Qiaquick kit (Qiagen, Hilden,
Germany) in accordance with the manual included. About
0.1 µg of the purified PCR products was cut using the
15 EcoRI restriction endonuclease and cloned via the EcoRI
cleavage site into the plasmid vector pGAPZ A
(Invitrogen).

Correct orientation of the insert in relation to the
promoters was checked with the aid of control
20 cleavages, for example with NcoI.

In each case, a clone with correctly oriented insert
was selected, sequenced and preserved.

The corresponding plasmids were named as follows:

Plasmids which contained the known PLE sequence as
25 disclosed in Matsushima et al., (1991) FEBS Lett. 293,
37-41, were called pGAPZ A PLE-ER (the HAEI
tetrapeptide was deleted) and pGAPZ A PLE+ER (HAEI
tetrapeptide still present).

Plasmids derived from the novel APLE sequence were
30 called pGAPZ A APLE-ER (the HAEI tetrapeptide was

deleted) and pGAPZ A APLE-ER (HAEI tetrapeptide still present).

5 **Example 5: Constitutive expression of pig liver esterases in *Pichia pastoris***

The plasmids pGAPZ A PLE-ER, pGAPZ A PLE+ER, pGAPZ A APLE-ER and pGAPZ A APLE+ER were transformed into 10 *P. pastoris* X-33. The transformation took place in accordance with the instructions of the protocol for the *Pichia* Expressions kit from Invitrogen. The transformants were selected on YPD plates (1% yeast extract, 2% peptone, 2% D-glucose, 2% agar) which contained 100 mg/l zeocin. 52 zeocin-resistant clones 15 were streaked onto YPD plates with 100 mg/l zeocin and preserved in 15% glycerol.

20 **Example 6: Qualitative analysis of the esterase activity**

P. pastoris transformants were cultured on YPD plates with 100 mg/l zeocin at 30°C for 48 h. The cells were lifted onto Whatman 541 hardened ashless 70 mmØ filters and air-dried. The filters were incubated with a 25 solution of 6 mg of α-naphthyl acetate (Sigma, dissolved in 500 µl of acetone), 2.5 mg of tetrazotized o-dianisidine (Fast Blue Salt BN, Sigma, dissolved in 125 µl of water) and 5 ml of 0.1 M potassium phosphate buffer, pH 7, in order to visualize the esterase 30 activity by a color reaction.

Activities were detected in all transformants which had integrated one of the 4 plasmids pGAPZ A PLE-ER, pGAPZ A PLE+ER, pGAPZ A APLE-ER and pGAPZ A APLE+ER. This proves the expression of functional proteins having 35 esterase activity. As a check, a clone with integrated empty vector was also tested in the same way. In this case, no significant esterase activity was visible in the comparable reaction period.

Example 7: Stereoselective esterase activity in relation to methyl 5-chloro-2-(1-methylethyl)-4-pentenoate

5 *P. pastoris* transformants as described in example 6 were cultured on YPD plates with 100 mg/l zeocin at 30°C for 48 h. The cells were lifted onto Whatman 541 hardened ashless 70 mmØ filters and air-dried. The filters were incubated either with substrate solution A 10 (100 µl of racemic methyl 5-chloro-2-(1-methylethyl)-4-pentenoate, 200 µl of 0.1 M potassium phosphate buffer, pH 8; 150 µl of 10 mg/ml phenol red; 450 µl of DMSO; 650 µl of H₂O) or with substrate solution B (identical to solution A but employing methyl (2S,4E)-5-chloro-2-15 (1-methylethyl)-4-pentenoate instead of the racemate).

Owing to the specific esterase activity on the substrates, the liberation of acid on hydrolysis of the ester substrate results in a pH decrease which in turn leads to a change in the color of the phenol red indicator to yellow. 20

It emerged from this that transformants containing the plasmid pGAPZ A APLE-ER gave signals (yellow coloration around the colony) after incubation for 3 to 4 hours if they were tested on substrate solution A, whereas no 25 significant conversion could be found with substrate solution B (figure 1).

Transformants obtained with the plasmids pGAPZ A PLE-ER or pGAPZ A PLE+ER showed no reaction with substrate solutions A or B under the same conditions.

30 This showed that the recombinant rAPLE has a substrate specificity different from recombinant rPLE and that hydrolysis of methyl 5-chloro-2-(1-methylethyl)-4-pentenoate using rAPLE takes place stereoselectively for the (R) enantiomer.

35

Example 8: SDS polyacrylamide gel electrophoresis

10 µl of a 2× SDS sample buffer (125 mM Tris-HCl, pH 6.8; 4% SDS, 20% glycerol, 5% β-mercaptoethanol, 0.05%

bromophenol blue) were added to 10 μ l of commercially available pig liver esterase or 10 μ l of the 60-fold concentrated (Centricon Ultrafiltrations-Spin Columns, from Sartorius) supernatants of the *P. pastoris* cultures (72 h at 100 rpm and 28°C in 250 ml of YPD medium in 2 l Erlenmeyer flasks with baffles) which contained either the plasmid pGAPZ A APLE-ER or an empty pGAPZ A plasmid (control strain).

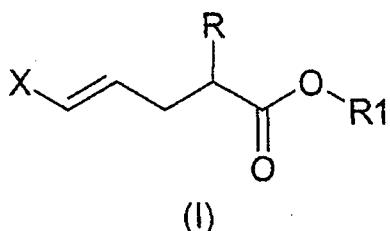
After the samples had been heated at 95°C for 5 minutes, the proteins were separated on a 12.5% polyacrylamide gel (4% stacking gel) and stained with Coomassie Brilliant Blue R250 for detection. The SDS-PAGE shows a protein band with the expected size for rAPLE (~60 kDa) in the yeast strain having the pGAPZ A APLE plasmid, but not in the control strain (figure 2). The commercially available pig liver esterase which was also analyzed for comparison showed two protein bands in the same size range (arrow in figure 2).

20 **Example 9: Induced expression of pig liver esterases with the AOX1 promoter**

The plasmids pGAPZ A PLE-ER, pGAPZ A PLE+ER, pGAPZ A APLE-ER and pGAPZ A APLE+ER were cut with the restriction endonuclease XhoI, and the respective fragments coding for APLE and PLE proteins, with or without ER retention signal, were cloned via the XhoI cleavage site into the pPIC9 vector (Invitrogen). Correct orientation of the fragments in relation to the AOX1 promoter was checked by means of control cuts with the restriction endonuclease NcoI. The vectors having the AOX1 promoter were named, in analogy to the plasmids named in example 4, pPIC9 PLE-ER, pPIC9 PLE+ER, pPIC9 APLE-ER and pPIC9 APLE+ER, linearized with SalI and transformed into *P. pastoris* KM71. Transformation and selection for His prototrophy took place in accordance with the instructions of the Pichia expression kit from Invitrogen. Selected transformants and the KM71 strain were cultured on complete medium in

accordance with the *Pichia* expression kit from Invitrogen overnight and induced with 1% methanol for 48 h. The resulting cultures were analyzed by means of the qualitative pH-shift assay described in example 7, 5 testing 2 μ l of the cultures in the mixtures in each case. Expression under the control of the inducible AOX1 promoter led to very much higher, by comparison with the situation described for constitutive expression in example 7, rAPLE enzymic activities in 10 relation to racemic methyl 5-chloro-2-(1-methylethyl)-4-pentenoate. The phenyl red color change (red to yellow) was detectable after only a few minutes (figure 3). Unexpectedly, the rAPLE activity was independent of the presence of the ER retention signal 15 HAEEL at the C terminus, i.e. even cells which expressed rAPLE with ER retention signal showed activity. By contrast, yeast strains for producing rPLE had no activity in relation to racemic methyl 5-chloro-2-(1-methylethyl)-4-pentenoate.

Claims


1. A polypeptide having esterase activity and exhibiting the amino acid sequence SEQ. ID. No. 1.

5

2. A recombinant protein having esterase activity and exhibiting the amino acid sequence SEQ. ID. No. 1.

10

3. A polypeptide or recombinant protein which exhibits at least 80% identity to the amino acid sequence shown in SEQ ID No. 1 and has activity for racemate resolution of 2-alkyl-5-halopent-4-enecarboxylic esters of the formula (I)

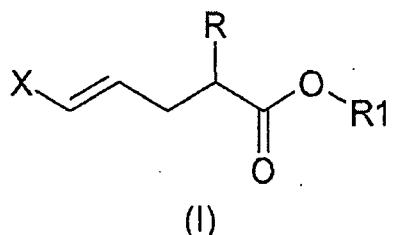
15

in which R is a C₁-C₆-alkyl radical, R₁ is C₁-C₄-alkyl and X is chlorine, bromine or iodine.

20

4. A polypeptide or recombinant protein having esterase activity as claimed in any of claims 1-3, which exhibits an amino acid sequence modified by usual modifications from the group of mutation, deletion, insertion, extension and/or fusion.

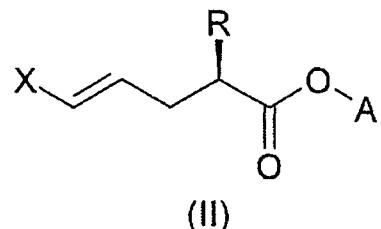
25


5. A nucleotide sequence which codes for a polypeptide as claimed in claim 1 or a recombinant protein as claimed in claim 2.

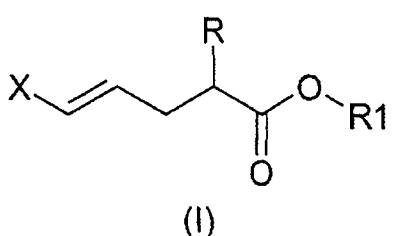
30

6. A nucleotide sequence which has the sequence shown in SEQ ID No. 2.

7. A nucleotide sequence which comprises a nucleotide sequence as claimed in claim 5 or 6.


8. The use of a polypeptide or of a recombinant protein as claimed in claim 1, 2, 3 or 4 for racemic resolution of 2-alkyl-5-halopent-4-ene-carboxylic esters of the formula (I)

10 in which R is a C₁-C₆-alkyl radical, R₁ is C₁-C₄-alkyl and X is chlorine, bromine or iodine.

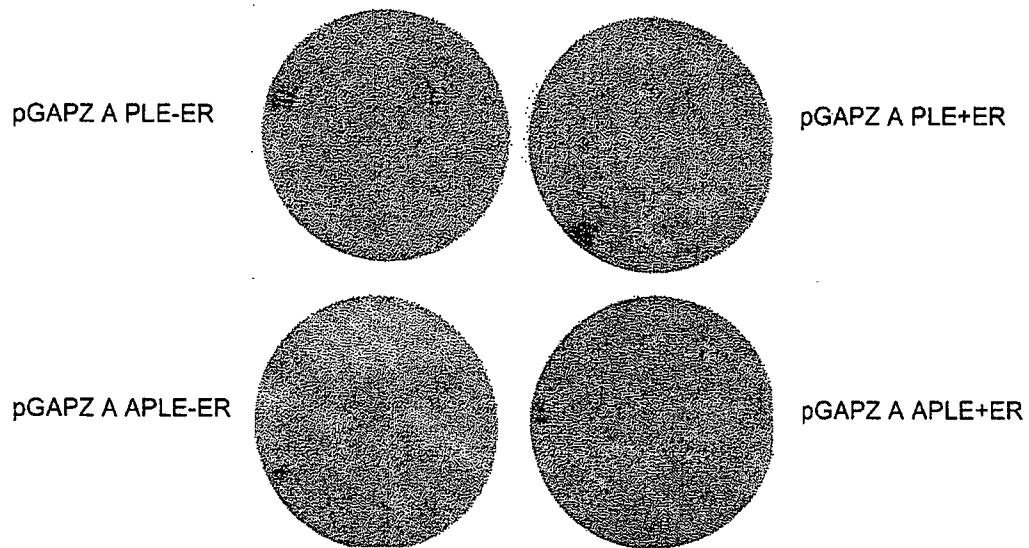

9. A method for preparing enantiomerically enriched 2-alkyl-5-halopent-4-ene-carboxylic acids or esters thereof of the formula (II)

15

20 in which R is a C₁-C₆-alkyl radical, A is equal to H, R₁, where R₁ may be C₁-C₄-alkyl, or R₂, where R₂ is an alkyl group, but is not equal to R₁, and X is chlorine, bromine or iodine, which comprises a mixture of enantiomers of a 2-alkyl-5-halopent-4-ene-carboxylic ester of the formula (I)

25

in which R, R₁ and X are as defined above,
being converted by means of a polypeptide or a
recombinant esterase as claimed in claim 1, 2, 3
or 4 in the presence of water or an alcohol of the
5 formula R₂OH, where R₂ is an alkyl group which is
not equal to R₁, as nucleophile, and


10 a) either the remaining enantiomerically enriched
2-alkyl-5-halopent-4-enecarboxylic ester of the
formula (II) with A equal to R₁ being isolated
or

15 b) if an alcohol is employed as nucleophile, the
resulting enantiomerically enriched 2-alkyl-5-
halopent-4-enecarboxylic ester of the formula
(II) with A equal to R₂ being isolated, or

c) if water is employed as nucleophile, the
resulting 2-alkyl-5-halopent-4-enecarboxylic
acid of the formula (II) with A equal to H
being isolated.

Figure 1: Stereoselective esterase activity on methyl 5-chloro-2-(1-methylethyl)-4-pentenoate

A: Activity on the racemic substrate: *P. pastoris* X-33 transformants

B: Activity on the racemic substrate vs. (S) enantiomer

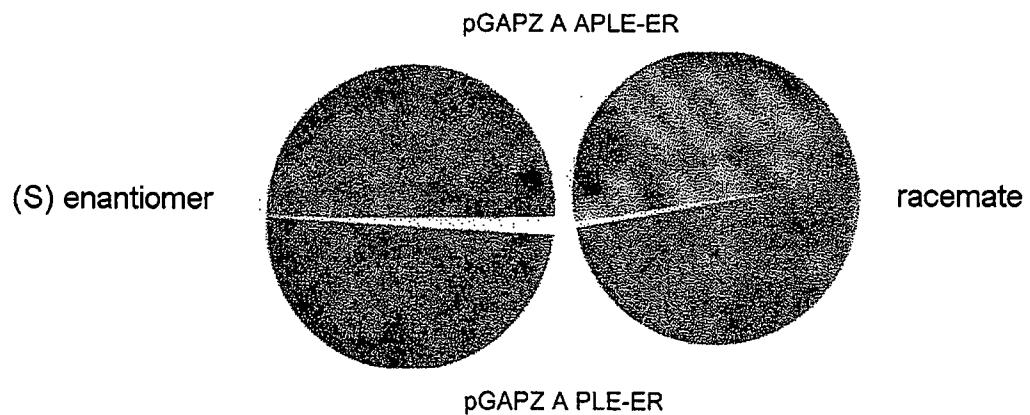
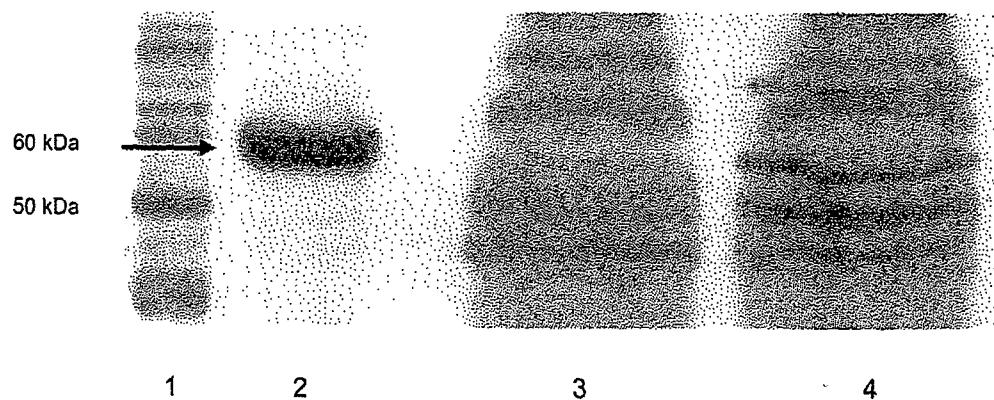
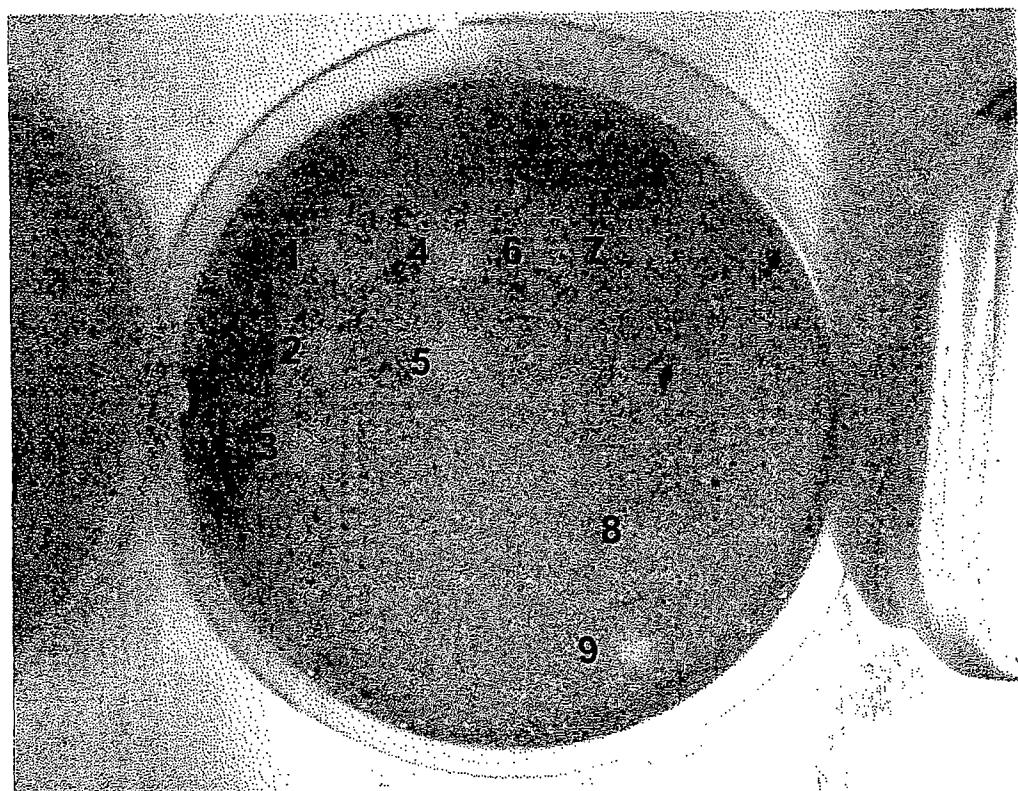




Figure 2: SDS-PAGE of recombinant APLE

- 1: Page Ruler Protein Ladder (Fermentas)
- 2: Commercially available PLE
- 3: *P. pastoris* X-33 with integrated pGAPZ A (control strain)
- 4: *P. pastoris* X-33 with integrated pGAPZ A APLE-ER

Figure 3: Induced expression of pig liver esterases with the AOX1 promoter

- 1: *P. pastoris* KM71 with integrated pPIC9 APLE-ER
- 2: *P. pastoris* KM71 with integrated pPIC9 APLE-ER
- 3: *P. pastoris* KM71 with integrated pPIC9 APLE-ER
- 4: *P. pastoris* KM71 with integrated pPIC9 APLE+ER
- 5: *P. pastoris* KM71 with integrated pPIC9 APLE+ER
- 6: *P. pastoris* KM71 with integrated pPIC9 PLE-ER
- 7: *P. pastoris* KM71 with integrated pPIC9 PLE+ER
- 8: *P. pastoris* KM71
- 9: Commercially available PLE

SEQ ID NO 1

Protein sequence of rAPLE

GQPASPPVDTAQGRVLGKYVSLEGIAQPVAVFLGVPFAKPPGLSLRFAPPQPAEPWSFKNTTSYPPMCCQEIPI
GGQMLSDFLFTNRKERLIPFSEDCLYNTYTPADLTKRGRPLVMVWIHGGGLVVGASTYDGLALAHENVVVA
IQYRLGIWGFNSTGDEHSRGNWGHLDQVALHWVQENIANFGGDPGSVTFGESAGGESVSVLVLSPLAKNLFHR
AISESGVAFTAGLVRKDMKAAAKQIAVLAGCKTTSAVFVHCLRQKSEDELLDLTLKMKFALDLHGDPRESHPF
LTTVVDGVLPLKMPEEILAEEKDFNTVPYIYGINKQEFGWLLPTMMGFPLSEGKLDQKTATSLWKSYPIANIPEE
LTPVATDKYLGTTDDPVKKKDLFLDLMGDDVVFVGPSVTVARQHRDAGAPTYMYEFQYRPSFSSDKPKTVIGDHG
DEIFSVFGPLLKGDAPEEEVSLSKTVMKFWANFARSGNPNGEGLPHWPMDQEEGYLQIGVNTQAAKRLKGEEV
AFWNDDLSKEAKKPPKIKHAEL

SEQ ID No 2:

Nucleotide sequence of rAPLE

gggcggccag cctcgccgccc tgggtgtggac actgccccagg gcccgagtccct gggggaaatgc
gtcagtttag aaggcctggc acagccggtg cccgttcccg tggggagtccc ttggccaaatg
ccccctctcg gatcctttag gtttgcctccg cccgagccctg cagaaccatg gagcttcgttg
aagaacacca cctcctaccc tcccatgtgc tgccaaagagc caattgggggg acagatgtctc
tcagatctat ttaccaacag aaaggagagg ctcattccgg agtttctga agactgtctc
tacctaata tttacacccc tgctgacactg acaaagaggg gcagactgccc ggtgatgggg
tggatccacg gaggaggtct ggtggggc ggggcttcca cctatgatgg actggccctc
gctgcgcatg aaaacgtgtt ggtggggc atccagttacc gcctgggcat ctggggatcc
ttcagcacag gggacaaaca cagccggggc aactggggc acttggacca ggtggccgca
ctgcaactggg tccaggagaa catgcaccaatc tttggaggcg acccaggctc tggtgaccatc
tttggagatc cagcaggagg gggaaagtgtc tctgttctgg tgggtctcc ctggccaaatg
aacctcttcc accgggcccatt ctctgagatgt gggtggccct tcactgttgg cctgggttgg
aaggacatga aggctgcagc taagcaaatt ggtgttctt ctgggtgtaa aaccaccacc
tcggctgtct ttgttcaactg cctgcgcccagg aagtcggagg acgagctttt ggacttaacg
ctgaagatga aatttttgc tcttgattttt catggagacc ccagagagag ccattccctc
ctgaccactg tggtgatgg agtgctgtc cccaaagatgc ctgaagagat tctggctgaa
aaggatttca acactgtccc ctacatgtg ggaatcaaca agcaagagtt tgctggctt
ctgccaacga tgatgggctt cccctctctt gaaaggccatc cccatcgctt
tcactcctgt ggaagtctta ccccatcgctt actgacaagt atttgggggg gacagacgac
actgacaatg atttgggggg gacagacgac ttcgtatgggggg atgtgggttt tgggtgtccca
ttgatgggggg atgtgggttt tgggtgtccca gcaaggagcccc ccacccatcgat
gcaggagcccc ccacccatcgat gtagtgggttt aaacccaaaga cggtgatcggtt ggaccacggg
aaacccaaaga cggtgatcggtt ggaccacggg tctgttaaaatg gcgatcccccc agaaagaggag
tggggccaaatg ttgctcgccag tggaaacccca tggcccaatgggggggggggggggggggggggggg
tacgaccagg aagaagggtt ctttccatcgatc ggtgttccca aatgggggggggggggggggggggggggg
aaaggtgaag aagtggccctt ctggaaacgtat cccatcgatc ggtgttccca
ccaaagataaa aqcatqctqa qctqta

SEQ ID. No. 3: Primer 1

5'-CAGAATTCATGGCTATGGGCAGCCAGCCTCGC-3'

SEQ ID No. 4: Primer 2

5'-CCGAATTAGCCTCCCTTCACAGCTCAG -3'

SEQ ID No. 5: EcoRIalpha1

5'-TCTTCGAAGAATTACGATGAGATTCCTTCAATTTACTGC-3'

SEQ ID No. 6: alphaPLE2

5'-GAGGCTGGCTGCCAGCTTCAGCCTCTTTCTCG-3'

SEQ ID No. 7: PLEalpha1

5'-AGAGAGGCTGAAGCTGGCAGCCAGCCTCGCCG-3'

SEQ ID No. 8: EcoRIPLE+ER2

5'-ATGGTACCGAATTCTCACAGCTCAGCATGCTTATCTTG-3'

SEQ ID No. 9: EcoRIPLE2

5'-ATGGTACCGAATTCTCACTTATCTGGTGGCTTCTTG-3'

SEQUENCE LISTING

<110> DSM Fine Chemicals Austria Nfg GmbH & Co KG
<120> Novel polypeptide having esterase activity and recombinant esterase and use thereof
<130> O.Z.1302a
<160> 9
<170> PatentIn version 3.3
<210> 1
<211> 548
<212> PRT
<213> Artificial
<220>
<223> rAPLE
<400> 1

Gly Gln Pro Ala Ser Pro Pro Val Val Asp Thr Ala Gln Gly Arg Val
1 5 10 15

Leu Gly Lys Tyr Val Ser Leu Glu Gly Leu Ala Gln Pro Val Ala Val
20 25 30

Phe Leu Gly Val Pro Phe Ala Lys Pro Pro Leu Gly Ser Leu Arg Phe
35 40 45

Ala Pro Pro Gln Pro Ala Glu Pro Trp Ser Phe Val Lys Asn Thr Thr
50 55 60

Ser Tyr Pro Pro Met Cys Cys Gln Glu Pro Ile Gly Gly Gln Met Leu
65 70 75 80

Ser Asp Leu Phe Thr Asn Arg Lys Glu Arg Leu Ile Pro Glu Phe Ser
85 90 95

Glu Asp Cys Leu Tyr Leu Asn Ile Tyr Thr Pro Ala Asp Leu Thr Lys
100 105 110

Arg Gly Arg Leu Pro Val Met Val Trp Ile His Gly Gly Gly Leu Val
115 120 125

Val Gly Gly Ala Ser Thr Tyr Asp Gly Leu Ala Leu Ala Ala His Glu
130 135 140

Asn Val Val Val Ala Ile Gln Tyr Arg Leu Gly Ile Trp Gly Phe
145 150 155 160

Phe Ser Thr Gly Asp Glu His Ser Arg Gly Asn Trp Gly His Leu Asp
165 170 175

Gln Val Ala Ala Leu His Trp Val Gln Glu Asn Ile Ala Asn Phe Gly
180 185 190

Gly Asp Pro Gly Ser Val Thr Ile Phe Gly Glu Ser Ala Gly Gly Glu
195 200 205

Ser Val Ser Val Leu Val Leu Ser Pro Leu Ala Lys Asn Leu Phe His
210 215 220

Arg Ala Ile Ser Glu Ser Gly Val Ala Phe Thr Ala Gly Leu Val Arg
225 230 235 240

Lys Asp Met Lys Ala Ala Ala Lys Gln Ile Ala Val Leu Ala Gly Cys
245 250 255

Lys Thr Thr Ser Ala Val Phe Val His Cys Leu Arg Gln Lys Ser
260 265 270

Glu Asp Glu Leu Leu Asp Leu Thr Leu Lys Met Lys Phe Phe Ala Leu
275 280 285

Asp Leu His Gly Asp Pro Arg Glu Ser His Pro Phe Leu Thr Thr Val
290 295 300

Val Asp Gly Val Leu Leu Pro Lys Met Pro Glu Glu Ile Leu Ala Glu
305 310 315 320

Lys Asp Phe Asn Thr Val Pro Tyr Ile Val Gly Ile Asn Lys Gln Glu
325 330 335

Phe Gly Trp Leu Leu Pro Thr Met Met Gly Phe Pro Leu Ser Glu Gly
340 345 350

Lys Leu Asp Gln Lys Thr Ala Thr Ser Leu Leu Trp Lys Ser Tyr Pro
355 360 365

Ile Ala Asn Ile Pro Glu Glu Leu Thr Pro Val Ala Thr Asp Lys Tyr
370 375 380

Leu Gly Gly Thr Asp Asp Pro Val Lys Lys Lys Asp Leu Phe Leu Asp
385 390 395 400

Leu Met Gly Asp Val Val Phe Gly Val Pro Ser Val Thr Val Ala Arg
 405 410 415

Gln His Arg Asp Ala Gly Ala Pro Thr Tyr Met Tyr Glu Phe Gln Tyr
 420 425 430

Arg Pro Ser Phe Ser Ser Asp Lys Lys Pro Lys Thr Val Ile Gly Asp
 435 440 445

His Gly Asp Glu Ile Phe Ser Val Phe Gly Phe Pro Leu Leu Lys Gly
 450 455 460

Asp Ala Pro Glu Glu Glu Val Ser Leu Ser Lys Thr Val Met Lys Phe
 465 470 475 480

Trp Ala Asn Phe Ala Arg Ser Gly Asn Pro Asn Gly Glu Gly Leu Pro
 485 490 495

His Trp Pro Met Tyr Asp Gln Glu Glu Gly Tyr Leu Gln Ile Gly Val
 500 505 510

Asn Thr Gln Ala Ala Lys Arg Leu Lys Gly Glu Glu Val Ala Phe Trp
 515 520 525

Asn Asp Leu Leu Ser Lys Glu Ala Ala Lys Lys Pro Pro Lys Ile Lys
 530 535 540

His Ala Glu Leu
 545

<210> 2
 <211> 1647
 <212> DNA
 <213> Artificial

<220>
 <223> rAPLE

<400> 2
 gggcagccag cctcgccgccc tgggtggac actgcccagg gcccggatcct gggggatc 60
 gtcagcttag aaggcctggc acagccggtg gcccgtttcc tgggagtcgg ttttgc 120
 ccccccctctcg gatccttgag gtttgcctcg ccgcagcctg cagaaccatg gagttcgtg 180
 aagaacacca cctcctaccc tcccatgtgc tgccaaagagc caattggggg acagatgctc 240
 tcagatctat ttaccaacag aaaggagagg ctcattccgg agtttctga agactgtctc 300
 tacctaaata tttacacccc tgctgacctg acaaagaggg gcagactgcc ggtgatgg 360

tggatccacg	gaggaggct	ggtggtggc	ggggcttcca	cctatgtatgg	actggccctc	420
gctgcgcatg	aaaacgtgg	ggtggtggcc	atccagtacc	gcctggcat	ctggggattc	480
ttcagcacag	gggacgaaca	cagccgggc	aactggggtc	acttggacca	ggtggccgca	540
ctgcactggg	tccaggagaa	catcgccaa	tttggaggcg	acccaggctc	tgtgaccatc	600
tttggagagt	cagcaggagg	ggaaagtgtc	tctgttctg	tgttgtctcc	cttggccaag	660
aacctttcc	accgggccc	ctctgagagt	ggcgtggcct	tcactgctgg	cctggtcagg	720
aaggacatga	aggctgcagc	taagcaaatt	gctgtcctt	ctgggtgtaa	aaccaccacc	780
tcggctgtct	ttgttca	cctgcgccag	aagtccggagg	acgagctctt	ggacttaacg	840
ctgaagatga	aattttcgc	tcttgattt	catggagacc	ccagagagag	ccatcccttc	900
ctgaccactg	tggtggatgg	agtgcgtctg	cccaagatgc	ctgaagagat	tctggctgaa	960
aaggatttca	acactgtccc	ctacatcg	ggaatcaaca	agcaagagtt	tggctggctt	1020
ctgccaacga	tgtgggctt	ccccctct	gaaggcaagc	tggaccagaa	gacggccacg	1080
tcactcctgt	ggaagtcc	ccccatcg	aacatccct	aggaactgac	tccagtggcc	1140
actgacaagt	atttgggggg	gacagacgac	cccgtaaaa	agaaagacct	gttcctggac	1200
ttgatggggg	atgtgggtt	tggtgcc	tctgtgacgg	tggccgtca	acacagagat	1260
gcaggagccc	ccacctacat	gtatgagtt	cagtatcg	caagttctc	atcggacaag	1320
aaacccaaga	cggtgatcg	ggaccacggg	gatgagatct	tctccgtctt	tggtttcca	1380
ctgttaaaag	gcgtatcccc	agaagaggag	gtcagtctca	gcaagacggt	gatgaaattc	1440
tggccaact	ttgctcg	tggAACCCC	aatggggagg	ggctgcccc	ttggccgatg	1500
tacgaccagg	aagaaggta	cttcagatc	ggcgtcaaca	cccaggcagc	caagaggctg	1560
aaaggtgaag	aagtggc	ctggaacgat	ctcctgtcca	aggaggcagc	aaagaagcca	1620
cccaagataa	agcatgctga	gctgtga				1647

<210> 3
 <211> 33
 <212> DNA
 <213> Artificial

<220>
 <223> primer

<400> 3
 cagaattcat ggctatcg

<210> 4
 <211> 30
 <212> DNA

<213> Artificial

<220>

<223> primer

<400> 4

ccggaattca gcctccctt cacagctcag

30

<210> 5

<211> 43

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 5

tcttcgaaga attcacgatg agatttcctt caattttac tgc

43

<210> 6

<211> 36

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 6

gaggctggct gcccagcttc agcctctctt ttctcg

36

<210> 7

<211> 33

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 7

agagaggctg aagctgggca gccagcctcg ccg

33

<210> 8

<211> 39

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 8

atggtaccga attctcacag ctcagcatgc tttatcttg

39

<210> 9

<211> 40

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 9

atggtaccga attctcactt tatcttgggt ggcttcttg

40