Fig. 1
Title: method for producing high-quality feedstock for a steam cracking process.

Description

The present invention relates to a method for producing high-quality feedstock for a steam cracking process.

ExxonMobil's extraction process EXOL relates to a process for removing the undesirable aromatics and polar components of a lube feedstock from the desirable paraffinic and naphthenic components. The oil feed, either vacuum distillates or deasphaltered oils, enters the bottom of the treater while the NMP (N-methyl-2-pyrrolidone) solvent, containing a carefully controlled amount of water, enters the top of the treater and counter currently contacts the rising raffinate solution. The oil-rich phase leaving the top of the treater contains the raffinate product saturated with solvent. The heavier extract solution phase exits the bottom of the treater carrying the extracted aromatics and polar components. The solvent is recovered through either gas or steam stripping.

In an article of Mohsen Nouri in Korean J. Chem. Eng., 30(9), 1700-1709 (2013), "Evaluation of solvent dearomatization effect in heavy feedstock thermal cracking to light olefin: An optimization study" the effect of aromatic extraction of heavy feedstock in thermal cracking was studied. N-methylpyrrolidone as the solvent performing dearomatization of feedstock was at different temperature and molar solvent to oil ratios. Yields of ethylene and propylene increased by more than 10%, while the liquid products with five or more carbon atoms decreased by 13% on average on dearomatization. This is assigned to higher content of naphthenes in raffinate, which is easier to crack to produce light olefin. Further content of aromatics in the untreated feed leads to forming heavy liquid products and higher coke formation.

EP 0 697 455 relates to a process for the preparation of a hydrowax from hydrocarbon oil fractions heavier than flashed distillates, which hydrowax can be suitably applied as a feedstock in steam cracking processes for producing lower olefins, particularly ethylene. More in detail, the process according to EP 0 697 455 for producing a hydrowax comprises the steps of hydrocracking a blend obtained by blending at least one distillate fraction and a deasphaltered oil (DAO), separating from the hydrocracker effluent a fraction of which at least 90% by weight has a boiling point
of 370 °C or higher (the 370+ fraction), and separating the 370+ fraction in a top-
fraction and a bottom-fraction at an effective outpoint below 600 °C, thus yielding
the hydrowax as the top-fraction.

US patent No. 5,107,056 relates to a method for separating naphthenes
from aliphatic hydrocarbon-rich feed streams containing mixtures of naphthenes with
paraffins comprising the steps of contacting the aliphatic hydrocarbon-rich feed stream
with one side of a nonselective, porous partition barrier membrane while
simultaneously contacting the other side of the partition barrier membrane with a polar
solvent, in the absence of a pressure differential across the membrane, to thereby
selectively permeate the naphthenic hydrocarbon through the porous partition barrier
in response to the polar solvent present on the permeate side of said membrane.

WO201 5000846 in the name of the present applicant relates to a method
of producing aromatics and light olefins from a hydrocarbon feedstock comprising the
steps of subjecting the hydrocarbon feedstock to a solvent extraction process in a
solvent extraction unit; separating from the solvent extracted hydrocarbon feedstock
obtained a raffinate fraction comprising paraffins and a fraction comprising aromatics
and naphthenes; converting said fraction comprising aromatics and naphthenes in a
hydrocracking unit and separating into a high content aromatics fraction and a stream
high in light paraffins; converting said raffinate fraction in a steam cracking unit into
light olefins.

WO201 5000843 in the name of the present applicant relates to a
process for increasing the production of a light olefin hydrocarbon compound from a
hydrocarbon feedstock, comprising the following steps of feeding a hydrocarbon
feedstock into a reaction area for ringopening operating at a temperature range of 300-
500 °C and a pressure range of 2-10 MPa, separating reaction products, which are
generated from said reaction area, into an overhead stream and a side stream; feeding
the side stream to a gasoline hydrocracker (GHC) unit operating at a temperature
range of 300-580 °C and a pressure range of 0,3-5 MPa, wherein said gasoline
hydrocracker (GHC) unit is operated at a temperature higher than said ring opening
reaction area, and wherein said gasoline hydrocracker (GHC) unit is operated at a
pressure lower than said ring opening reaction area, separating reaction products of
the GHC into an overhead gas stream, comprising C2-C4 paraffins, hydrogen and
methane and a stream comprising aromatic hydrocarbon compounds and non-
aromatic hydrocarbon compounds, and feeding the overhead gas stream from the
gasoline hydrocracker (GHC) unit into a steam cracker unit.

GB 2 040 306 relates to a process for the extraction of aromatic
colloids from gas-oil, comprising introducing to a liquid-liquid contactor a stream
of gas-oil and contacting the stream with a substantially immiscible stream comprising
a selective solvent for the aromatic constituents of the gas-oil and withdrawing from
the contactor a liquid stream comprising solvent and aromatic constituents extracted
from the gas-oil, and a liquid stream comprising the gas-oil freed from at least a portion
of its aromatic constituents. The solvent is selective also for the organic sulphur
constituents of the gas-oil and the liquid stream comprising the gas-oil freed from at
least a portion of its aromatic constituents is also freed from at least a portion of the
organic sulphur constituents.

GB 1 248 814 relates to a process for obtaining improved production of
olefins for aromatic-containing hydrocarbon feeds boiling in the gas oil range, which
comprises treating the feed to selectively remove aromatic compounds and feeding
the treated feed, i.e. raffinate, to a hydrocarbon cracking zone. This British document
instructs that the removal, i.e. separation, of aromatics from petroleum distillates
boiling in the gas oil range while retaining paraffinic and naphthenic compounds in
the feed can be accomplished by solvent extraction.

Thermal steam cracking is a known method for producing lower olefins,
particularly ethene and propene. It is a strongly endothermic process and basically
involves heating a hydrocarbon oil feed to a sufficiently high temperature for cracking
reactions to occur followed by rapid cooling of the reactor effluent and fractionation of
this effluent into the different products. A steam cracker, also commonly referred to as
an ethene cracker, usually consists of a hot section and a cold section. The hot section
consists of cracking furnaces, a cooling section and a primary fractionator for
separating the effluent. Steam is introduced into the cracking furnace to dilute the feed.
This is favorable for the final olefin yield, while the added steam also suppresses the
deposition of coke in said furnace. In the cold section the cracked gas is further
separated into the various end products among which are pure ethene and propene.

The direct use of heavy fractions in a thermal steam cracking process
as either main raw feedstock or an alternative feed (by its own or co-fed) is limited in
the downstream equipment and recovery units. Heavier liquid feeds produce lower
ethylene and propylene, though less desirable byproduct yield, such as fuel oil increase through cracking these feeds. Employing a pretreatment process before the steam cracking is indispensable to improving heavy fractions quality, wherein several treatments such as extracting aromatic, visbreaking, hydrotreating, hydrocracking, two-stage cracking can upgrade heavy fractions.

The present invention is directed to a pre-treatment of a feed before further processing the feed to a steam cracking operation.

The present invention thus relates to a method for producing high-quality feedstock for a steam cracking process, said method comprising the following steps:

i) providing an aromatics and naphthenes containing hydrocarbon feedstock;

ii) contacting said hydrocarbon feedstock with a solvent at a dosage effective to remove aromatics and naphthenes from said feedstock forming a refined feedstock and one or more aromatics and naphthenes containing streams;

iii) processing said refined feedstock in a steam cracking process.

According to such a method a solvent extraction process produces a paraffin-rich stream, which provides enhanced olefin yields in a steam cracker unit compared to a process in which untreated hydrocarbon feedstock is used. In a preferred embodiment the refined feedstock, i.e. the raffinate or the feed to be processed in the steam cracking process, has a specific composition, namely the aromatics content is in the range of 0-5%wt and the naphthenes content is in the range of 0-25%wt, based on the total weight of the feed. The composition of the extract, i.e. the aromatics and naphthenes containing streams, would depend on the composition of the feedstock fed to the solvent extraction unit in step ii) but basically the part of the feedstock that it's not recovered as raffinate it is recovered as extract.

The present inventors assume that according to an embodiment of the present invention the raffinate is completely depleted in aromatics but some monoaromatics molecules with long paraffinic branches might not be extracted and therefore resulting in an upper value in the range of aromatic content (5%wt). The monoaromatics content in VGO is usually below 10% so an extraction efficiency of at least 50% is a fair assumption. The naphthenic levels stated above are based in a correlation between Viscosity Index and composition obtained by NMR spectroscopy for a series of base oils (most of them hydrotreated to a certain extent). Within the
range of solvent extraction conditions (solvent/oil ratio and extraction temperatures) as will be described later in the present description, a range of 15-25%wt of naphthenes in the raffinate could be expected. The lower range of 0% as mentioned before refers to an embodiment for covering very paraffinic feedstocks that might have not been covered in the correlation with hydrotreated samples (those would be more naphthenic in nature that untreated VGOs which are a part of the present invention).

In an embodiment wherein the aromatic/naphthenic level is higher than mentioned above is that the extent of the benefit in liquid steam cracking yields would be less, so less ethylene + propylene and more pyoil would be produced. The extent of the effect for different raffinate compositions / steam cracker feedstocks has been shown in the examples described later in the present description.

In a preferred embodiment step ii) comprises two sub steps, namely a step iia) comprising separation of aromatics from said hydrocarbon feedstock of step i) thereby forming a naphthenes containing intermediate stream and an aromatics containing stream and a step iib) comprising separation of naphthenes from said intermediate stream thereby forming a naphthenes containing stream and said refined feedstock.

According to such an embodiment the refined feedstock, i.e. the raffinate or the feed to be processed in the steam cracking process, has a specific composition, namely the aromatics content is in the range of 0-2%wt and the naphthenes content is in the range of 0-10%wt. The naphthenes containing stream has a specific composition, namely the aromatics content is in the range of 0-10%wt the naphthenes content is in the range of 50-100%wt, and the paraffins content is in the range of 0-40% wt. The aromatics containing stream has a specific composition, namely the aromatics content is in the range of 60-100%wt, the naphthenes content is in the range of 0-40%wt, and the paraffins content is in the range of 0-20wt%. The composition of the naphthenes containing intermediate stream has an aromatics content in the range of 0-25%wt, a naphthenes content in the range of 10-50%wt, and a paraffins content in the range of 40-100%wt. All percentages are based on the total weight of the relevant stream concerned.

According to another preferred embodiment step ii) comprises simultaneously removal of aromatics and naphthenes from said feedstock forming a refined feedstock.
The preferred hydrocarbon feedstock has a boiling range in a range of 300-550 °C. Preferably, the feedstock is rich in paraffins to maximize the yield to steam cracker. An example of such a preferred feedstock is a hydrocarbon feedstock originating from a paraffinic crude oil.

In case of using a hydrocarbon feedstock originating from a paraffinic crude oil step ii) is preferably carried out at within a temperature range of 85 to 125 °C and a solvent dosage within the range of 250 to 450 percent. And step iia) preferably comprises a temperature range of 50 to 125 °C, more preferably within a range of 60 to 85 °C and a solvent dosage within a range of 50 to 450 percent, preferably 100 to 340 percent. Prior to the introduction to the steam cracker, an additional solvent recovery unit could be used to minimize the amount of solvent entering the furnaces and minimize the solvent losses.

An example of such a preferred feedstock is a hydrocarbon feedstock originating from a naphthenic crude oil, especially a hydrocarbon feedstock having a boiling range in a range of 300-550 °C. More preferably, a paraffinic feedstock because that will give the highest yields in ethylene per ton feed.

In case of using a hydrocarbon feedstock originating from a naphthenic crude oil step ii) is preferably carried out at within a temperature range of 65 to 95 °C and a solvent dosage within the range of 150 to 300 percent. And step iia) preferably comprises a temperature range of 10 to 95 °C, more preferably 20 to 65 °C, and a solvent dosage within a range of 50 to 300 percent, preferably 75 to 200 percent.

In a preferred embodiment present step iib) comprises a membrane extraction process. In such a membrane extraction process the feed stream is passed along one side of a porous, non-selective partition barrier membrane, for example an ultrafiltration membrane, made of ceramic, sintered glass or metal, or of a polymeric material such as polyethylene, polypropylene, Teflon, cellulose, nylon, etc. Its pore size is preferably in the range 100 to 5000 Angstrom.

According to another embodiment of the present method for producing high-quality feedstock for a steam cracking process step iii) further comprises applying a step of removing traces of solvent from said refined feedstock before processing said refined feedstock in a steam cracking process.

The present method further comprises recovering solvent from said one or more aromatics and naphthenes containing streams forming a recovered solvent
stream and one or more streams rich in aromatics and naphthenes, wherein said one or more streams rich in aromatics and naphthenes are further processed in refinery process units, such as hydrocracking processes, carbon black production processes, or direct blending into fuels. Another preferred use of said one or more streams rich in aromatics and naphthenes is as a quench oil material in liquid steam crackers.

The solvent used in the present method for producing high-quality feedstock for a steam cracking process is preferably chosen from the group of n-methyl-2-pyrrolidone, furfural and phenol and mixtures thereof, including the presence of cosolvents, such as water.

The present invention will now be illustrated by way of examples and figures.

Figure 1 shows an embodiment of the present method for producing high-quality feedstock for a steam cracking process.

Figure 2 shows another embodiment of the present method for producing high-quality feedstock for a steam cracking process.

Figure 1 shows a process 10 for producing high-quality feedstock for a steam cracking process. A hydrocarbon feedstock 1 is passed into a solvent extraction unit 5, where it is separated into a bottom stream 2 and a top stream 4. Bottom stream 2 comprises aromatics, naphthenes and solvent, top stream 4 comprises paraffins.

Bottom stream 2 is passed into solvent recovery unit 6, where it is separated into a stream 7 rich in aromatics and naphthenes. The solvent 3 thus recovered is recycled to solvent extraction unit 5. Top stream 4 is passed into steam cracking unit 8 for producing a stream 9 comprising olefins and BTX (benzene, toluene and xylenes). Figure 1 relates to the one-step process, i.e. the simultaneously removal of aromatics and naphthenes from feed 1. In an embodiment the aromatics content of stream 4 (raffinate) is in the range of 0-5%wt and naphthenes in the range of 0-25%wt. The composition of stream 7 (extract) would depend on the composition of the feedstock fed to the solvent extraction unit but basically the part of the feedstock that it’s not recovered as raffinate it is recovered as extract.

Figure 2 shows a process 20 for producing high-quality feedstock for a steam cracking process. A hydrocarbon feedstock 21 is passed into a first solvent extraction unit 15, where it is separated into a bottom stream 12 and a top stream 11. Bottom stream 12 comprises aromatics and solvent, top stream 11 comprises
naphthenes and paraffins. Bottom stream 12 is passed into first solvent recovery unit 16, where it is separated into a stream 17 rich in aromatics. The solvent 13 thus recovered is recycled to first solvent extraction unit 15. Top stream 11 is passed into a second solvent extraction unit 23 where it is separated into a bottom stream 22 and a top stream 27. Bottom stream 22 comprises naphthenes and solvent, top stream 27 comprises paraffins. Bottom stream 22 is passed into second solvent recovery unit 24, where it is separated into a stream 25 rich in naphthenes. The solvent 26 thus recovered is recycled to second solvent extraction unit 23. Top stream 27 is passed into steam cracking unit 18 for producing a stream 19 comprising olefins and BTX (benzene, toluene and xylenes). The naphthenic compounds containing stream 25 can be sent to several process units, such as steam cracker furnaces, steam cracker quench system and sold as naphthenic lube stock. In an embodiment the aromatics content of stream 27 (steam cracker feedstock) is in the range of 0-2%wt and naphthenes in the range of 0-10%wt. For stream 25 (naphthenic-rich stream) the aromatics content is in the range of 0-1%wt, naphthenes in the range of 50-100%wt, paraffins in the range of 0-40%wt. For stream 17 (aromatic-rich stream) the aromatics content is in the range of 60-100%wt, naphthenes in the range of 0-40%wt, paraffins in the range of 0-20%. For stream 11 (feed to second solvent-extraction process) the aromatics content is in the range of 0-25%wt, naphthenes in the range of 10-50%wt, paraffins in the range of 40-100%.

Figure 2 relates to the two-step process, i.e. a step comprising separation of aromatics from the hydrocarbon feedstock thereby forming an intermediate stream and a step comprising separation of naphthenes from the intermediate stream. The inventors assume that the purity of the paraffinic stream originated in Figure 2 is higher than the one created in Figure 1.

In addition, the embodiment shown in Figure 2 comprises two separate solvent recovery units, namely first solvent recovery unit 16 and second solvent recovery unit 24. However, in a preferred embodiment (not shown) these solvent recovery units could be combined into a single unit.

In addition the processing scheme according to Figure 2 allows for the independent production of paraffins and naphthenes. Cracking conditions in steam cracker furnaces could be tuned for optimal yields for each stream. This is not possible when sending paraffins together with naphthenes to the furnaces.
The present inventors found that in the process as shown in figure 1 the lighter the molecules, i.e. the composition of top stream 4, the better the steam cracker yields will be. In the process as shown in figure 2, naphthenes could be used as quenching material that would act as hydrogen donor and minimize the condensation reactions happening in this part of the steam cracking process. Moreover, since the temperature of this stream will be in the order of 150-200 °C, it can constitute a comparable or even better quenching material than the typically used aromatic-rich streams.

Thus, the apparatus used in the present method can comprise a single extraction zone or multiple extraction zones equipped with shed rows or other stationary devices to encourage contacting, orifice mixers, or efficient stirring devices, such as mechanical agitators, jets of restricted internal diameter, turbo mixers and the like. The operation may be conducted as a batch wise or as a continuous-type operation with the latter operation being preferred. A particularly preferred operational configuration comprises continuous countercurrent extraction. It is important to note that the equipment employed in the operation of the extraction process is not critical to the overall efficiency of the extraction and can comprise rotating disc contactors, centrifugal contactors, countercurrent packed bed extraction columns, countercurrent tray contactors and the like.

Examples

Following the processing scheme shown in Figure 1 different types of steam cracker feedstocks have been produced starting from vacuum gasoil (VGO) depending on the degree of separation in the solvent extraction process. Starting from Arab Light VGO (properties shown in Table 1) six different feedstocks could be generated:

VG01: Full VGO
VG02: Dearomatized VGO (not containing aromatics)
VG03: Paraffinic VGO (not containing aromatics or naphthenes)
VG04: Feed containing all paraffins and 20% of naphthenes present in VGO
VG05: Feed containing all paraffins and all mono-ring naphthenes present in VGO
VG06: Feed containing all paraffins and 20% of lighter naphthenes present in VGO
Table 1. Arab Light VGO composition

<table>
<thead>
<tr>
<th></th>
<th>%wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffins</td>
<td>31.4</td>
</tr>
<tr>
<td>Total Naphthenes</td>
<td>12.6</td>
</tr>
<tr>
<td>Mononaphthenes</td>
<td>9.8</td>
</tr>
<tr>
<td>Aromatics</td>
<td>56.0</td>
</tr>
</tbody>
</table>

Apart from full VGO (identified as VG01) and solvent-extracted VGOs (identified as VG02-VG06), two unconverted oil streams (UC01 and UC02) were also provided as feedstocks for comparative examples.

Table 2 shows that the main difference between these two streams lies on their different hydrogen content (UC01 = 14.3 %wt. and UC02 = 13.7%wt). Hydrotreatment/hydrocracking is the conventional way to enable the processing of vacuum distillates in a steam cracker.

Table 2. Unconverted oil properties

<table>
<thead>
<tr>
<th>Property</th>
<th>UC01</th>
<th>UC02</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-content wt.%</td>
<td>14.3</td>
<td>13.7</td>
</tr>
<tr>
<td>Specific gravity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBP °C</td>
<td>342</td>
<td>342</td>
</tr>
<tr>
<td>10% °C</td>
<td>367</td>
<td>367</td>
</tr>
<tr>
<td>30% °C</td>
<td>402</td>
<td>402</td>
</tr>
<tr>
<td>50% °C</td>
<td>429</td>
<td>429</td>
</tr>
<tr>
<td>70% °C</td>
<td>461</td>
<td>461</td>
</tr>
<tr>
<td>90% °C</td>
<td>516</td>
<td>516</td>
</tr>
<tr>
<td>FBP °C</td>
<td>579</td>
<td>579</td>
</tr>
</tbody>
</table>

Once-through steam cracker yields (in %wt. for all different feeds) are presented in Table 3. These yields have been estimated using Spyro software using
the following characteristics: feed rate = 30 ton/h, Coil Outlet Temperature (COT) = 775 °C, Steam/Oil ratio = 0.75 w/w, Coil Outlet Pressure (COP) = 1.7 bara.

Table 3. Once-through steam cracker yields in %wt.

<table>
<thead>
<tr>
<th></th>
<th>VG01</th>
<th>VG02</th>
<th>VG03</th>
<th>VG04</th>
<th>VG05</th>
<th>VG06</th>
<th>UC01</th>
<th>UC02</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>CH₄</td>
<td>5.8</td>
<td>7.3</td>
<td>7.0</td>
<td>7.1</td>
<td>7.3</td>
<td>7.0</td>
<td>7.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Ethylene</td>
<td>17.8</td>
<td>26.7</td>
<td>29.2</td>
<td>28.6</td>
<td>27.3</td>
<td>28.6</td>
<td>26.3</td>
<td>24.6</td>
</tr>
<tr>
<td>Ethane</td>
<td>2.3</td>
<td>4.0</td>
<td>4.3</td>
<td>4.2</td>
<td>4.1</td>
<td>4.3</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Propylene</td>
<td>12.6</td>
<td>18.7</td>
<td>19.5</td>
<td>19.3</td>
<td>19.3</td>
<td>19.3</td>
<td>17.7</td>
<td>16.9</td>
</tr>
<tr>
<td>Butadiene</td>
<td>4.2</td>
<td>7.1</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>6.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Isobutene</td>
<td>1.8</td>
<td>2.4</td>
<td>2.1</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.9</td>
<td>3.3</td>
<td>2.6</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.1</td>
<td>1.7</td>
<td>1.1</td>
<td>1.3</td>
<td>1.5</td>
<td>1.3</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>C9+</td>
<td>37.7</td>
<td>4.6</td>
<td>2.9</td>
<td>3.3</td>
<td>3.2</td>
<td>3.3</td>
<td>9.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Propylene</td>
<td>30.4</td>
<td>45.4</td>
<td>48.7</td>
<td>47.9</td>
<td>46.4</td>
<td>47.9</td>
<td>44.0</td>
<td>41.5</td>
</tr>
<tr>
<td>Ethylene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

In the above examples VG02 is a completely aromatic-depleted raffinate but with all naphthenes, VG03 is a completely aromatic and naphthenic-depleted raffinate and VG04-6 show the effect of still having some naphthenes in the feed to the steam cracker: VG04 = 8%wt naphthenes; VG05 = 17%wt naphthenes; VG06 = 3%wt naphthenes). The present inventors found that the raffinate composition is partially determined by the efficiency of the solvent extraction process and the economic trade-offs: higher temperatures and higher solvent/oil ratios will lower the aromatics and naphthenes content but the higher the energy consumption. These ranges of aromatic and naphthenic content are different than those shown by the discussed prior art references, i.e. Nouri et al. (Arom = 19% and Naph = 28%) and GB 1 248 814 ("raffinate contains all paraffins & cycloparaffins of the gas oil" and "extract contains..."
71% of the aromatics contained in the gas oil so a considerable amount of aromatics are still in raffinate).
From Table 3, it can be seen that dearomatization of VGO (VG02) enhances the propylene and ethylene yields by 50% compared to processing full VGO (VG01) while reducing the production of C9-plus components by 88%. Subsequent removal of all naphthenes (VG03) provides a further increase of propylene and ethylene yields to 48.7% (3.3% more than VG02) reducing even more the C9-plus production.

All solvent-extracted VGOs show better ethylene and propylene yields than unconverted oils with the advantage of not requiring hydrogen or capital-intensive hydroprocessing units.
Claims

1. A method for producing high-quality feedstock for a steam cracking process, said method comprising the following steps:
 i) providing an aromatics and naphthenes containing hydrocarbon feedstock;
 ii) contacting said hydrocarbon feedstock with a solvent at a dosage effective to remove aromatics and naphthenes from said feedstock forming a refined feedstock and one or more aromatics and naphthenes containing streams;
 iii) processing said refined feedstock in a steam cracking process.

2. The method according to claim 1, wherein step ii) comprises two substeps, namely a step iia) comprising separation of aromatics from said hydrocarbon feedstock of step i) thereby forming a naphthenes containing intermediate stream and an aromatics containing stream, and a step iib) comprising separation of naphthenes from said intermediate stream thereby forming a naphthenes containing stream and said refined feedstock.

3. The method according to claim 1, wherein step ii) comprises simultaneously removal of aromatics and naphthenes from said feedstock forming a refined feedstock.

4. The method according to any one of the preceding claims, wherein said hydrocarbon feedstock has a boiling range in a range of 300-550 °C.

5. The method according to claim 4, wherein said hydrocarbon feedstock originates from a paraffinic crude oil.

6. The method according to any one of the claims 3-5, wherein step ii) is carried out at within a temperature range of 85 to 125 °C and a solvent dosage within the range of 250 to 450 percent.

7. The method according to claim 4, wherein said hydrocarbon feedstock originates from a naphthenic crude oil.

8. The method according to claims 3 and 7, wherein step ii) is carried out at within a temperature range of 65 to 95 °C and a solvent dosage within the range of 150 to 300 percent.
9. The method according to claims 1-2 and 5, wherein step iia) comprises a temperature range of 50 to 125 °C, preferably within a range of 60 to 85 °C and a solvent dosage within a range of 50 to 450 percent, preferably 100 to 340 percent.

10. The method according to claims 1-2 and 7, wherein step iia) comprises a temperature range of 10 to 95 °C, preferably 20 to 65 °C, and a solvent dosage within a range of 50 to 300 percent, preferably 75 to 200 percent.

11. The method according to any one of the preceding claims, wherein step iii) further comprises applying a step of removing traces of solvent from said refined feedstock before processing said refined feedstock in a steam cracking process.

12. The method according to any one of the preceding claims, further comprising recovering solvent from said one or more aromatics and naphthenes containing streams forming a recovered solvent stream and one or more streams rich in aromatics and naphthenes.

13. The method according to claim 12, wherein said one or more streams rich in aromatics and naphthenes are further processed in refinery process units, such as hydrocracking processes, carbon black production processes, or direct blending into fuels or as a quench oil material in liquid steam crackers.

14. The method according to any one of the preceding claims, wherein said solvent is chosen from the group of n-methyl-2-pyrrolidone, furfural and phenol and mixtures thereof, including the presence of cosolvents.

15. The method according to any one of the preceding claims, wherein the concentration of aromatics in said refined feedstock to be processed in a steam cracking process is in a range of 0-5 %wt, preferably 0-2 %wt, on basis of the weight of said refined feedstock.

16. The method according to any one of the preceding claims, wherein the concentration of naphthenes in said refined feedstock to be processed in a steam cracking process is in a range of 0-25 %wt, preferably 0-10 %wt, on basis of the weight of said refined feedstock.

17. The method according to any one of the claims 2-16, wherein the composition of said aromatics containing stream comprises an aromatics content in the range of 60-100%wt, a naphthenes content in the range of 0-40%wt, and a paraffins content in the range of 0-20%wt.
18. The method according to any one of the claims 2-17, wherein the composition of said naphthenes containing stream comprises an aromatics content in the range of 0-10%wt, a naphthenes content in the range of 50-100%wt, and a paraffins content in the range of 0-40%.

19. The method according to any one of the claims 2-18, wherein the composition of said intermediate stream comprises an aromatics content in the range of 0-25%wt, a naphthenes content in the range of 10-50%wt, and a paraffins content in the range of 40-100%wt.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C10G53/06 C10G55/04

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C10G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search

23 January 2017

Date of mailing of the international search report

01/02/2017

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer

Pardo Torre, J

Form PCT/ISA/210 (second sheet) (April 2005)
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2015/000846 Al (SAUDI BASIC IND CORP [SA]; SABIC GLOBAL TECHNOLOGIES BV [NL]; WARD AND) 8 January 2015 (2015-01-08) claim 1 figure 1 page 12, lines 17-19 page 22, line 8 - page 23, line 4</td>
<td>1-19</td>
</tr>
<tr>
<td>X</td>
<td>WO 2015/000843 Al (SAUDI BASIC IND CORP [SA]; SABIC GLOBAL TECHNOLOGIES BV [NL]; OPRIJS A) 8 January 2015 (2015-01-08) claims 1-2, 4, 6, 20 figure 1</td>
<td>1-19</td>
</tr>
<tr>
<td>X</td>
<td>GB 2 040 306 A (RTL CONTACTOR HOLDING SA) 28 August 1980 (1980-08-28) claims 1-11 figure 1 page 1, line 118 - page 2, line 15</td>
<td>1, 3, 11, 12, 14</td>
</tr>
<tr>
<td>X</td>
<td>GB 1 248 814 A (STONE & WEBSTER ENG CORP [US]) 6 October 1971 (1971-10-06) claim 1 figure 1 page 1, lines 75-90, 114-117 page 2, lines 71-78</td>
<td>1, 11, 12, 14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2015000846 A1</td>
<td>08-01-2015</td>
<td>CN 105452423 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201690128 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016526595 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20160027045 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 112015091660 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016369190 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015000846 A1</td>
</tr>
<tr>
<td>WO 2015000843 A1</td>
<td>08-01-2015</td>
<td>CN 105473691 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201690119 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016523307 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20160029812 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201509589R A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017009157 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015000843 A1</td>
</tr>
<tr>
<td>GB 2040306 A</td>
<td>28-08-1980</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 1248814 A</td>
<td>06-10-1971</td>
<td>BE 732502 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 928331 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1922665 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 366788 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1600622 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1248814 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 6906863 A</td>
</tr>
</tbody>
</table>