
G. K. COOKE.
FLUID MEASURING FAUCET.
APPLICATION FILED MAR. 18, 1906.

UNITED STATES PATENT OFFICE.

GEORGE KISSAM COOKE, OF NEW YORK, N. Y.

FLUID-MEASURING FAUCET.

No. 824,095.

Specification of Letters Patent.

Patented June 26, 1906.

Application filed March 18, 1905. Serial No. 250,730.

To all whom it may concern:

Beit known that I, GEORGE KISSAM COOKE, a citizen of the United States, residing at No. 216 Fulton street, Jamaica, in the city of New York, State of New York, have invented certain new and useful Improvements in Fluid-Measuring Faucets, of which the following is a specification.

My invention relates to fluid-measuring 10 faucets; and the object of the invention is to provide a faucet which may be set to measure a quantity of fluid into equal portions and which may be set to measure different quantities,

as desired, from air-tight vessels.

Referring to the drawings which form part of this specification, Figure 1 indicates a faucet of this character attached to a bottle, both of which are shown by vertical sectional views. Fig. 2 indicates the outlet from the 20 faucet by an inverted plan view and shows a section on line O O, Fig. 1.

A indicates a reservoir for holding the

fluid.

B indicates a glass into which fluid from

25 the vessel A is to be drawn.

C indicates a cork which fits the opening in the reservoir A, and said cork is provided with a central cylindrical opening C', into which the upper part of the faucet-casing D

30 is fitted snugly to insure an air-tight joint between said cork and casing. The casing D is provided at its upper end with openings D', through which the fluid may flow from the reservoir A into the conduit D2 to the lower end of the casing, where further flow is prevented by the valve E, which fits a valve-seat E' in the lower end of the easing D. The valve E is mounted on a tube F, which extends entirely through the casing D and projects into the reservoir A at its upper end and below the end of the casing at its lower end. Secured to the tube F is an abutment-flange f, which forms an abutment for the lower end of the spring G, the upper end of which abuts against the under side of the top of the casing D. This spring is sufficiently compressed to insure the tight seating of the valve E. The extreme lower end of the tube F is split for a short distance verti-50 cally, and a tapered thread is cut thereon and a nut H is fitted thereto, so that the split portion F' of the tube F may be compressed by the nut H, and thereby firmly hold the rod I, which fits slidingly within said tube, as 55 shown. Fastened to the nut H at either side

ward and upward, as shown, and attached thereto are gage-stops K, which are adapted to slide on the rods J and be secured thereto at any desired height thereon by the set-60 screws K'. These rods may be dispensed with, if desired, and also the nut H, as will be explained more fully hereinafter, where it is desired to use the device on small bottles, &c., which may be easily handled. At the bot- 65 tom of the casing D is located a cross-piece D3, provided with an opening at its center D4, which supports the tube F and holds it central in the casing.

Above the upper end of the casing D is a 70 ring L, which is fitted to the tube F, and a thumb-nut L', the point of which passes through a hole in the tube F and holds the gage-rod I. This illustrates the fact that the gage-rod I may be held from a position above 75

the casing D or below the same.

On the extreme lower end of the gage-rod I is usually placed a soft-rubber pad I' to prevent injury to the glass.

Having thus described the parts, I will 80

now describe the operation of the device.

Assuming that the fluid in the reservoir A is at the height illustrated by the line x x and the device placed in position relative to the glass B, as illustrated, the fluid would flow 85 into the casing D and down to the valve E, where it would be held by the valve E. By pressing upward on the glass B or allowing the weight of the device to rest on the limitgages K K or the gage-rod I the valve E 90 would be forced open against the pressure of the spring G, and the fluid would flow from the faucet into the glass until it filled it up to the height indicated by the dotted line OO. which is the extreme bottom of the casing D, 95 when no more fluid would flow, for the reason that the water would form a seal and prevent the air from entering the casing and reservoir to replace the fluid withdrawn, and therefore by adjusting the limit-gages K K or the 100 rod I, whichever may be preferred, to the proper height relative to the glass B, a definite amount of fluid may be drawn from the reservoir, and when the fluid ceases to flow and the glass is lowered relative to the faucet 105 the spring will close the faucet-valve and prevent further flow therefrom. In case it is desired to prevent a person from changing the amount of fluid that would be delivered into a glass of a given diameter, the screw L' would be used to hold the rod I and the rod thereof are wire rods J, which extend out- could not be changed relative to the casing

without removing the faucet from the reser-If it was desired to adjust the rod at will, the screw L' would be withdrawn from engagement with the rod I, and the rod I 5 could be held by the nut H in any desired position.

When the stops K K are used to limit the amount of fluid to be drawn from the reservoir, the rod I may be entirely removed, if 10 desired, and thereby the air may flow into the reservoir through the tube F, and thus allow the fluid to flow more freely than is the case when the air must flow through the fluid through the casing D. It is for this reason 15 that the tube F is preferably made long enough to reach near the top of the reservoir, so that when the rod I is not used the air is conducted directly above the surface of the fluid in the reservoir. It will be understood 20 from the foregoing that the tube F can be cut off just above the ring L and the device still work properly. It will also be understood that when the diameter of the glass is known the faucet may be adjusted so that a definite 25 amount of fluid may be measured into the glass.

The device is especially adapted to measuring medicine, syrups for soda-fountains, spirits, &c., and its compact and simple mech-30 anism renders it an article of great utility.

Having thus described my invention, what I claim as new, and desire to secure by Letters Patent, is-

1. A faucet comprising a casing having an 35 outlet, a valve within said casing, means whereby said valve may be operated, adjustable means connected with said valve for gaging the depth of said outlet in a receptacle when the latter is used in conjunction with 40 the faucet.

2. A faucet comprising a casing provided with an outlet, a valve located in said casing and controlling the outlet, adjustable means coöperative with said valve whereby a pre-45 determined quantity of fluid may be discharged therethrough when used with a receptacle of predetermined capacity and thereafter no further fluid will be discharged whether the valve remains open or closed, 50 until after the receptacle into which the fluid is drawn is removed, and whereby the removal of said receptacle will allow the valve to close.

3. A faucet comprising a casing, a tube, a 55 valve within said casing mounted on said tube, said tube extending from the lower end of said casing through said valve and projecting above the same and means for moving said tube relative to said casing; substantially as 60 described.

4. A faucet comprising a casing, a valve in said casing, a tube passing through said valve and means whereby said valve and tube may be moved relative to said casing; substan-65 tially as described.

5. A faucet comprising a casing, a tube, a valve mounted on said tube, said valve being controlled by means of said tube, means for normally holding said valve closed, and means adjustably connected to said tube 70 whereby said tube may be moved by a cup or receptacle.

6. A faucet comprising a casing having a conduit therein, a valve controlling said conduit, a tube supported in said casing and 75 adapted to operate said valve when moved relative to said casing, a rod, and means for adjusting said rod relative to said tube.

7. A faucet comprising a casing having a conduit in said casing, a tube which extends 80 through said casing, a valve mounted thereon and adapted to be operated thereby, means for limiting the movement of said tube and upwardly-extending gage-rods connected to said tube; substantially as described.

8. A faucet comprising a casing having a conduit therein, a tube extending through said casing, a valve controlled by said tube, a rod adapted to slide in said tube and project below the same and means for holding 90 said rod to said tube; substantially as described.

9. A faucet comprising a casing having a conduit therein, a valve controlling said conduit, a tube extending through said valve 95 and casing and adapted to control the movement of said valve, a cork or similar packing surrounding said casing and adapted to form a tight joint between said casing and any receptacle for the purpose of uniting said casing 100 to said receptacle; substantially as described.

10. A faucet comprising a casing having a bell-shaped outlet, a valve controlling said outlet, a tube extending through said casing whereby air may be conducted through said 105

tube; substantially as described.

11. A faucet comprising a valve, a casing having an outlet of enlarged area relative to said valve, means whereby said valve may be operated and means for controlling the depth 110 of the outlet in a receptacle, said means comprising upwardly-extending members adapted to engage with a fluid-receptacle and the movement of which serves to operate said valve; substantially as described.

12. A faucet comprising a casing adapted to be held in a fluid-reservoir, and provided with a bell-shaped outlet, a valve located directly above said outlet, a tube extending through said casing adapted to convey air 120 therethrough and means for operating said

valve; substantially as described.

13. A faucet comprising a casing provided with an outlet, a valve controlling said outlet, a tube extending through said casing adapt- 125 ed to convey air therethrough, means for operating said valve and means for adjusting the depth of the outlet in the receptacle in which the fluid is drawn; substantially as described.

130

14. A faucet comprising a casing provided with an outlet, a valve in said casing, a tube passing through said valve, means whereby said valve and tube may be moved relative to said casing, and means for limiting the depth of said outlet in a receptacle and thereby gaging the amount of fluid dispensed.

In testimony whereof I, George Kissam

COOKE, have signed my name to this specification in the presence of two subscribing 10 witnesses.

GEORGE KISSAM COOKE

Witnesses:

FRANK M. ASHLEY, N. C. MILLER.