<table>
<thead>
<tr>
<th>(51) Classification internationale des brevets</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08G 63/688, C11D 3/37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(11) Numéro de publication internationale:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 95/32997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(21) Numéro de la demande internationale:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT/FR95/00658</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(22) Date de dépôt international:</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 mai 1995 (19.05.95)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(30) Données relatives à la priorité:</th>
</tr>
</thead>
<tbody>
<tr>
<td>94/06525 30 mai 1994 (30.05.94) FR</td>
</tr>
<tr>
<td>94/10857 12 septembre 1994 (12.09.94)FR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(71) Déposant (pour tous les États désignés sauf US):</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHONE-POULENCE CHIMIE [FR/FR]; 25, quai Paul-Doumer, F-92408 Courbevoie Cédex (FR).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(72) Inventeurs/et</th>
</tr>
</thead>
<tbody>
<tr>
<td>(US seulement):</td>
</tr>
<tr>
<td>DAVID, Claire [FR/FR]; 6, rue Friant, F-75014 Paris (FR).</td>
</tr>
<tr>
<td>FLEURY, Etienne [FR/FR]; 26, rue Taillépied, F-69540 Irigny (FR).</td>
</tr>
<tr>
<td>GIRARDEAU, Yvette [FR/FR]; 65, montée de la Sarre, Fontaines-Saint-Martin, F-69270 Fontaines-sur-Saône (FR).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(74) Mandataire:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRE, Madeleine-France; Rhône-Poulenc Chimie, Direction de la Propriété Industrielle, 25, quai Paul-Doumer, F-92408 Courbevoie Cédex (FR).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(81) États désignés:</th>
</tr>
</thead>
</table>

Publié
Àvec rapport de recherche internationale.
Avant l'expiration du délai prévu pour la modification des revendications, sera publiée si de telles modifications sont reçues.

(54) Title: NOVEL SULFONATED POLYESTERS AS FINISHING AGENTS IN DETERGENT, RINSING, SOFTENING AND TEXTILE TREATMENT COMPOSITIONS

(54) Titre: NOUVEAUX POLYESTERS SULFONÉS ET LEUR UTILISATION COMME AGENTS ANTI-SALISSURE DANS LES COMPOSITIONS DÉTERGENTES, DE RINÇAGE, D'ADOUCISSAGE ET DE TRAITEMENT DES TEXTILES

(57) Abstract

Novel sulfonated hydrodispersible or hydrosoluble polyesters with a molecular weight less than 20,000, having a sulphur content by weight of about 0.5-10 % and a hydroxyl function content, expressed in OH/kg polymer equivalent, greater than 0.2. The polyesters of the invention can be used as finishing or anti-redeposition agents and optionally as detergent agents in rinsing, softening or finishing compositions for washing with or without pretreatment, rinsing or softening or finishing textiles, especially polyester-based textiles.

(57) Abrégé

Nouveaux polyesters sulfonés hydrodispersables ou hydrosolubles de masse moléculaire en nombre inférieur à 20000, présentant une teneur pondérale en soufre de l'ordre de 0,5 à 10 % et une teneur en fonctions hydroxyles exprimée en équivalent OH/kg de polymère supérieure à 0,2. Ils peuvent être utilisés comme agents anti-salissure et/ou anti-redéposition et éventuellement détériorants dans des compositions détergentes, dans des compositions de rinçage, d'adoucissage ou de traitement anti-salissure, pour le lavage avec ou sans prétraitement, le rinçage, l'adoucissement ou le traitement anti-salissure de textiles, notamment à base de polyesters.
UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Autriche</th>
<th>GB</th>
<th>Royaume-Uni</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australie</td>
<td>GE</td>
<td>Géorgie</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>GN</td>
<td>Guinée</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>GR</td>
<td>Grèce</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hongrie</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>IE</td>
<td>Irlande</td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
<td>IT</td>
<td>Italie</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>JP</td>
<td>Japon</td>
</tr>
<tr>
<td>BY</td>
<td>Biélorussie</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kirghizistan</td>
</tr>
<tr>
<td>CF</td>
<td>République centrafricaine</td>
<td>KP</td>
<td>République populaire démocratique de Corée</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>République de Corée</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CN</td>
<td>Chine</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CS</td>
<td>Tchécoslovaquie</td>
<td>LV</td>
<td>Lettonie</td>
</tr>
<tr>
<td>CZ</td>
<td>République tchèque</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne</td>
<td>MD</td>
<td>République de Moldavie</td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ES</td>
<td>Espagne</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FI</td>
<td>Finlande</td>
<td>MN</td>
<td>Mongolie</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Pays-Bas</td>
<td>NO</td>
<td>Norvège</td>
</tr>
<tr>
<td>NZ</td>
<td>Nouvelle-Zélande</td>
<td>PL</td>
<td>Pologne</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Roumanie</td>
</tr>
<tr>
<td>RU</td>
<td>Fédération de Russie</td>
<td>SD</td>
<td>Soudan</td>
</tr>
<tr>
<td>SE</td>
<td>Suède</td>
<td>SI</td>
<td>Slovénie</td>
</tr>
<tr>
<td>SK</td>
<td>Slovaquie</td>
<td>SN</td>
<td>Sénégal</td>
</tr>
<tr>
<td>TD</td>
<td>Tchad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadjikistan</td>
<td>TT</td>
<td>Trinidad-et-Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>US</td>
<td>États-Unis d'Amérique</td>
</tr>
<tr>
<td>UZ</td>
<td>Ouzbékistan</td>
<td>VN</td>
<td>Viêt Nam</td>
</tr>
</tbody>
</table>
NOUVEAUX POLYESTERS SULFONES ET LEUR UTILISATION COMME AGENTS ANTI-SALISSURE DANS LES COMPOSITIONS DETERGENTES, DE RINCAGE, D'ADOUCISSAGE ET DE TRAITEMENT DES TEXTILES

La présente invention a pour objet de nouveaux polyesters sulfonés hydrodispersables ou hydrosolubles, leur procédé de préparation et leur utilisation comme agent anti-salissure et/ou anti-redéposition et éventuellement détergent dans des compositions détergentes, dans des compositions de rinçage, d'adoucissage ou de traitement antissalissure ("finishing"), pour le lavage avec ou sans prétraitement, le rinçage, l'adoucissage ou le traitement antissalissure de textiles, notamment à base de polyesters.

Selon l'invention, il s'agit de polyesters sulfonés hydrodispersables ou hydrosolubles caractérisés en ce qu'ils sont susceptibles d'être obtenus par estérisation et/ou transestérisation et polycondensation d'une composition monomère à base :

- d'un monomère diacide non sulfoné (A) constituée d'au moins un acide ou anhydride dicarboxylique choisi parmi les acides ou anhydrides tétréphtalique, isophthalique et 2,6 naphtalène dicarboxylique, ou leurs diesters, en quantité correspondant à un rapport molaire (A) / (A)+(SA) de l'ordre de 95/100 à 60/100, de préférence de l'ordre de 93/100 à 65/100

- d'un monomère diacide sulfoné (SA) constituée d'au moins un acide ou anhydride dicarboxylique aromatique sulfoné ou aliphatique sulfoné, ou leurs diesters, en quantité correspondant à un rapport molaire (SA) / (A)+(SA) de l'ordre de 5/100 à 40/100, de préférence de l'ordre de 7/100 à 35/100

jusqu'à 50% molaire, de préférence jusqu'à 30% molaire, de la quantité de monomère diacide non sulfoné (A) et/ou de monomère diacide sulfoné (SA) pouvant être remplacée par un monomère diacide hydroxylé (HA) constituée d'au moins un acide ou anhydride dicarboxylique aromatique ou aliphatique hydroxylé ou un diester dudit acide dicarboxylique aromatique ou aliphatique hydroxylé

- et d'un monomère polyol (P) constituée d'au moins un polyol choisi parmi l'éthylène glycol, propylène glycol, diéthylène glycol, dipropylène glycol, glycérol, le 1,2,4 butane triol et le 1,2,3 butane triol, selon une quantité correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre de fonctions ou d'équivalents fonctions COOH des monomères diacides (A)+(SA)+(HA) de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3

en ce que le monomère diacide sulfoné (SA) est constitué d'au moins un acide ou anhydride dicarboxylique aromatique sulfoné ou d'un mélange d'acides ou anhydrides

FEUILLE DE REMPLACEMENT (RÈGLE 26)
aromatique(s) sulfoné(s) et d'acides ou anhydrides aliphatique(s) sulfoné(s), ou leurs
diesters, lorsque le monomère polyl (P) ne contient pas de polyl différent d'un glycol
ou lorsque le monomère diacide hydroxylé (HA) est absent
et en ce que lesdits polyesters sulfonés présentent
une masse moléculaire en nombre inférieure à 20 000,
une teneur pondérale en soufre de l’ordre de 0,5 à 10%, de préférence de l’ordre de
1,2 à 8%
et une teneur en fonctions hydroxyles exprimée en équivalent OH / kg de polymère
supérieure à 0,2.

Les teneurs en fonctions hydroxyles sont estimées par RMN du proton ; la mesure
est réalisée dans le diméthylsulfoxide.
Les masses moléculaires en nombre sont mesurées par chromatographie par
perméation de gel, dans le diméthylacétamide contenant 10⁻² N de LiBr, à 25°C. Les
résultats sont exprimés en équivalents polystyrène.
L’entité élémentaire considérée dans la définition de la mole de monomère (A),
(SA) ou (HA) est la fonction COOH dans le cas des diacides ou l’équivalent fonction
COOH dans le cas des anhydrides ou des diesters.
Le monomère diacide non sulfoné (A) est de préférence constitué par 50 à 100%
molaire, tout particulièrement de 70 à 90% molaire, d’acide ou anhydride téréphtalique
ou d’un de ses diesters inférieurs (de méthyle, éthyle, propyle, isopropyle, butyle) et de
0 à 50% molaire, tout particulièrement de 10 à 30% molaire, d’acide ou anhydride
isophthalique et/ou d’acide ou anhydride 2,6-naphtalène dicarboxylique ou d’un de leurs
diesters inférieurs (de méthyle, éthyle, propyle, isopropyle, butyle) ; les diesters
préférentiels sont ceux de méthyle.
Peuvent en outre être présentes dans le monomère diacide non sulfoné (A), des
quantités mineures de diacides aromatiques autres que ceux mentionnés ci-dessus, tels
que l’acide orthophthalique, les acides anthracène, 1,8-naphtalène, 1,4-naphtalène,
biphenyl, dicarboxyliques, ou de diacides aliphatiques tels que les acides adipique,
glutarique, succinique, triméthyladipique, pimélique, azelaïque, sebacique, suberique,
itaconique, maleïque ... sous forme acide, anhydride ou diesters inférieurs (de méthyle,
éthyle, propyle, isopropyle, butyle).
Le monomère diacide sulfoné (SA) présente au moins un groupe acide sulfonique,
de préférence sous la forme d’un sulfonate de métal alcalin (de sodium de préférence),
et deux fonctions acides ou équivalents fonctions acides (c’est-à-dire une fonction
anhydride ou deux fonctions esters) fixées sur un ou plusieurs cycles aromatiques,
lorsqu’il s’agit d’acides ou anhydrides dicarboxyliques aromatiques ou de leurs diesters,
or sur la chaîne aliphatique, lorsqu’il s’agit d’acides ou anhydrides dicarboxyliques
aliphatiques ou de leurs diesters.
Parmi les monomères diacides sulfonés (SA), on peut citer les acides ou anhydrides
dicarboxyliques sulfonés aromatiques tels que les acides ou anhydrides sulfo-
isophthaliques, sulfo-téréphtaliques, sulfo-orthophthaliques, les acides ou anhydrides
sulfo-4 naphtalène dicarboxylique-2,7, les sulfo-bis(hydroxycarbonyl)-4,4’
diphénylsulfones, les acides ou anhydrides sulfo-diphényl-dicarboxyliques, les sulfo-bis(hydroxycarboxyl)-4,4'-diphénylméthanes, les acides ou anhydrides sulfo-phénoxy-5 isophtaliques, ou leurs diesters inférieurs (de méthyle, éthyle, propyle, isopropyle, butyle), et les acides ou anhydrides dicarboxyliques sulfonés aliphatiques sulfonés tels que les acides ou anhydrides sulfo-succiniques ou leurs diesters inférieurs (de méthyle, éthyle, propyle, isopropyle, butyle). Les monomères diacides sulfonés (SA) préférentiels sont les acides ou anhydrides sulfo-isophtaliques et sulfo-succiniques et leurs diesters de méthyle, et tout particulièrement le sodio-oxysulfonyle-5 isophtalate de diméthyle.

Le monomère diacide hydroxylé (HA) présente au moins un groupe hydroxyle fixé
sur un ou plusieurs cycles aromatiques, lorsqu'il s'agit d'un monomère aromatique, ou sur la chaîne aliphatique, lorsqu'il s'agit d'un monomère aliphatique.

Parmi les monomères diacides hydroxylés (HA) on peut citer les acides ou anhydrides hydroxy-5 isophtalique, hydroxy-4 isophtalique, hydroxy-4 phtalique, hydroxy-2 méthylsuccinique, hydroxyméthylglutarique, hydroxyglutarique ..., ou leurs diesters inférieurs (de méthyle, éthyle, propyle, isopropyle, butyle).

Le monomère polyol (P) préférentiellement mis en œuvre est le monoéthylène glycol et/ou le glycérol.

Lesdits polyesters sulfonés hydrosolubles et/ou hydrodispersables peuvent être obtenus par les procédés usuels d'estérisation et/ou transestérisation et polycondensation, par exemple par réaction d'estérisation et/ou transestérisation, en présence d'un catalyseur d'estérisation / transestérisation, du monomère polyol (P) avec les différents monomères diacides, chaque diacide étant sous la forme acide, anhydride ou sous la forme d'un de ses diesters, et polycondensation des esters de polyols à pression réduite, en présence d'un catalyseur de polycondensation.

Selon un mode préférentiel de préparation, lesdits polyesters sulfonés hydrosolubles et/ou hydrodispersables sont obtenus en réalisant les étapes successives suivantes :

- une étape de transestérisation (interéchange) entre d'une part le monomère diacide sulfoné (SA), sous forme de diester, et de 50 à 100% molaire, tout particulièrement de 30 à 90% molaire de la quantité totale du monomère diacide non sulfoné (A), sous forme de diester, et d'autre part une quantité de monomère polyol (P) correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre d'équivalents fonctions COOH desdits monomères (A) et (SA) sous forme diesters de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3,0

- une étape éventuelle d'estérisation entre l'éventuelle quantité restante du monomère diacide non sulfoné (A), sous forme diacide ou anhydride, et une quantité de monomère polyol (P), correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre de fonctions COOH du monomère diacide non sulfoné
(A) sous forme diacide ou anhydride de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3,0
- une étape de polycondensation.

Les diesters des acides dicarboxyliques non sulfonés (A) et sulfonés (SA) mis en oeuvre à l'étape de transesterification (interchange), sont de préférence des diesters méthyliques.

L'étape d'interchange est effectuée à une température supérieure ou égale à 130°C, de préférence de l'ordre de 140 à 220°C et tout particulièrement de l'ordre de 180 à 220°C ; à cette température le méthanol (cas préférentiel des diesters méthyliques) formé est éliminé du milieu réactionnel de préférence par distillation. Cette opération d'interchange est de préférence réalisée en présence d'un catalyseur de transesterification métallique, notamment d'un carboxylate métallique, tel que l'acétate de manganèse, l'acétate de zinc, l'acétate de cobalt ou l'acétate de calcium, ou d'un titanate organique ou minéral, tel que le titanate de butyle, le titanate de nitrilo-2,2',2''-triéthyle (ou aminotériéthanolate de titan) ou le titanate de calcium. Les catalyseurs préférés sont les titanates organiques ; ils sont mis en oeuvre en quantités de l'ordre d'au moins 0,001% en poids exprimé en titane, de préférence de l'ordre de 0,002% à 0,02% en poids de titane par rapport au poids de réactifs présents.

La durée de l'opération d'interchange est de 1 à 4 heures ; elle est généralement de l'ordre de 2 à 3 heures.

Lorsque plus de 90% de la quantité théorique de méthanol a été distillée, le polyol excédentaire est éliminé en portant la température du milieu réactionnel à 230°C.

L'opération d'estérisation est réalisée par ajout dans le milieu réactionnel, de la fraction restante du monomère diacide non sulfoné (A), sous forme diacide, et du monomère polyol (P), préalablement mis en suspension, à une température correspondant à celle de la fin de la température d'interchange ; la période d'introduction est de l'ordre de 1 heure.

Cette opération d'estérisation est réalisée à une température de l'ordre de 230 à 280°C, de préférence de l'ordre de 250 à 260°C, en présence d'un catalyseur du même type que celui de transesterification ; les catalyseurs préférés sont les titanates organiques ; ils sont mis en oeuvre en quantités de l'ordre d'au moins 0,001% en poids exprimé en titane, de préférence de l'ordre de 0,002% à 0,02% en poids de titane par rapport au poids de réactifs introduits à l'étape d'estérisation ; la réaction s'effectue avec élimination d'eau qui est soutirée du réacteur en même temps que le polyol en excès.

L'opération de polycondensation est de préférence réalisée à une température de l'ordre de 230 à 280°C, de préférence de l'ordre de 240 à 260°C, dans un autre réacteur préalablement porté à cette température et progressivement mis sous vide jusqu'à une
pression qui peut aller jusqu'à 10 Pa ; une réduction de pression jusqu'à 10 millibar environ dure de l'ordre de 40 minutes.

L'opération de polycondensation se déroule avec élimination de molécules de polyol, cette opération est stoppée lorsque le couple moteur de l'arbre d'agitation indique une valeur équivalente à environ 0,5 à 5 mètres.newton pour une température de 250°C de la masse réactionnelle et une vitesse d'agitation de 80 tours / minute d'un mobile en forme d'ancre dans un réacteur de 7,5 litres ; le couplesmètre utilisé est de type KYOWA, dont la gamme de mesure est comprise entre 0 et 100 mètres.newton.

Le vide est ensuite cassé à l'azote, et le polymère est coulé dans une lingotière ; après refroidissement, le polymère est broyé.

Les polyester sulfoné préférentiels sont susceptibles d'être obtenus à partir
- d'acide téréphthalique (A1), sous forme de diester (de préférence de méthyle), et d'acide isophthalique (A2) sous forme de diacide ou d'anhydride, ou d'acide téréphthalique (A1) sous forme de diester (de préférence de méthyle), et d'un acide téréphthalique hydroxylé ou isophthalique hydroxyté (HA), sous forme de diacide ou d'anhydride, éventuellement en mélange avec de l'acide isophthalique (A2), sous forme de diacide ou d'anhydride, selon un rapport molaire (A1)/(A1)+(A2), (A1)/(A1)+(HA) ou (A1)/(A1)+(HA)+(A2) de l'ordre de 100/100 à 50/100, de préférence de l'ordre de 90/100 à 70/100 [en tant que monomère (A) ou monomères (A) et (HA)]
- d'acide sulfoisophthalique, sous forme de diester (de préférence de méthyle) [en tant que monomère (SA)]
- de monoéthylène glycol et/ou de glycérol [en tant que monomère polyol (P)]

Ils peuvent être préparés selon le procédé préférentiel ci-dessus décrit, par réalisation des étapes successives suivantes :
- une étape de transesterification (interchange) entre d'une part le diester (de préférence de méthyle) de l'acide téréphthalique (A1) et le diester (de préférence de méthyle) de l'acide sulfoisophthalique (SA) et d'autre part du monoéthylène glycol et/ou du glycérol (P), le rapport nombre de fonctions OH de (P) / nombre d'équivalents fonctions COOH de (A1)+(SA) étant de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3
- une étape d'estérification entre l'acide isophthalique (A2) et/ou l'acide hydroxy iso- ou tere-phaltalique (HA) et d'autre part du monoéthylène glycol et/ou du glycérol (P), le rapport nombre de fonctions OH de (P) / nombre de fonctions COOH de (A2)+/ou (HA) étant de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3
- une étape de polycondensation.
Les polyesters sulfonés faisant l'objet de l'invention, sont tout particulièrement intéressant comme agents anti-salissures et/ou anti-redéposition et éventuellement détergents dans des compositions détergents, dans des compositions de ringage, d'adoucissage ou de traitement antissalissure ("finishing"), pour le lavage avec ou sans prétraitement, le ringage, l'adoucissage ou le traitement antissalissure de textiles, notamment à base de polyesters.

La présente invention a également pour objet les compositions détergents renfermant de l'ordre de 0,01 à 10%, de préférence de l'ordre de 0,1% à 5% et tout particulièrement de l'ordre de 0,2 à 3%, par rapport au poids desdites compositions, desdits polyesters sulfonés faisant l'objet de l'invention.

Un autre objet de l'invention consiste en l'utilisation, en tant qu'agents anti-salissures dans des compositions détergents pour le lavage d'articles textiles notamment à base de fibres polyesters, de polyesters sulfonés hydrodispersables ou hydrosolubles susceptibles d'être obtenus par estérisation et/ou tranestérisation et polycondensation d'une composition monomère à base :

- d'un monomère diacide non sulfoné (A) constitué d'au moins un acide ou anhydride dicarboxylique choisi parmi les acides ou anhydrides téréphtalique, isophthalique et 2,6 naphtalène dicarboxylique, ou leurs diesters, en quantité correspondant à un rapport molaire (A) / (A)+(SA) de l'ordre de 95/100 à 60/100, de préférence de l'ordre de 93/100 à 65/100

- d'un monomère diacide sulfoné (SA) constitué d'au moins un acide ou anhydride dicarboxylique aromatique sulfoné ou aliphatique sulfoné, ou leurs diesters, en quantité correspondant à un rapport molaire (SA) / (A)+(SA) de l'ordre de 5/100 à 40/100, de préférence de l'ordre de 7/100 à 35/100

jusqu'à 50% molaire, de préférence jusqu'à 30% molaire, de la quantité de monomère diacide non sulfoné (A) et/ou de monomère diacide sulfoné (SA) pouvant être remplacée par un monomère diacide hydroxylé (HA) constitué d'au moins un acide ou anhydride dicarboxylique aromatique ou aliphatique hydroxylé ou un diester dudit acide dicarboxylique aromatique ou aliphatique hydroxylé

- et d'un monomère polyol (P) constitué d'au moins un polyol choisi parmi l'éthylène glycol, le propylène glycol, le diéthylène glycol, le dipropylène glycol, le glycérol, le 1,2,4 butane triol et le 1,2,3 butane triol, selon une quantité correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre de fonctions ou d'équivalents fonctions COOH des monomères diacides (A)+(SA)+(HA) de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3

lesdits polyesters sulfonés présentant
. une masse moléculaire en nombre inférieure à 20 000,
une teneur pondérale en soufre de l'ordre de 0,5 à 10%, de préférence de l'ordre de 1,2 à 8%.

et une teneur en fonctions hydroxyles exprimée en équivalent OH / kg de polymère supérieure à 0,2.

Des exemples de monomères (A), (SA), (HA) et (P) ont déjà été mentionnés ci-dessus ; les conditions opérationnelles de préparation desdits polyesters sulfonés sont celles ou équivalentes à celles également décrites ci-dessus.

Des compositions détergents pour le lavage d'articles textiles, notamment à base de fibres polyesters, particulièrement intéressantes au niveau de leurs propriétés écotoxicologiques, sont celles renfermant :

- de l'ordre de 0,01 à 10% en poids, de préférence de l'ordre de 0,1 à 5% en poids, tout particulièrement de l'ordre de 0,2 à 3% en poids d'un agent antialissure polyester sulfoné hydrodispersable ou hydrosoluble ci-dessus décrit

- et de l'ordre de 3 à 40% en poids, de préférence de l'ordre de 5 à 35% en poids d'au moins un agent tensio-actif anionique choisi parmi les sulfates d'alcools aliphatiques saturés en C₅-C₂₄ éventuellement condensés avec environ 0,5 à 30 moles d'oxyde d'éthylène,

pas plus de 5% en poids de ladite composition détergente pouvant être constituée d'un autre type d'agent tensio-actif anionique aux propriétés écotoxicologiques moins intéressantes, tel que les alkylbenzènesulfonates en C₁₋C₁₈.

Parmi les sulfates d'alcools éventuellement éthoxylés pouvant être mis en œuvre, on peut mentionner les sulfates d'alcools non éthoxylés en C₈-C₁₈ (de préférence en C₁₀-C₁₅), les sulfates d'alcools gras en C₅-C₁₃ (de préférence en C₁₀-C₁₃) condensés avec environ 1 à 30 (de préférence 1 à 10 moles) d'oxyde d'éthylène, les sulfates d'alcools gras en C₁₄-C₂₀ (de préférence en C₁₄-C₁₈) condensés avec environ 4 à 30 moles (de préférence 4 à 10 moles) d'oxyde d'éthylène.

A côté desdits polyesters sulfonés de l'invention, peuvent être présents dans les compositions détergents d'autres additifs du type de ceux décrits ci-après.

- AGENTS TENSIO-ACTIFS, en quantités correspondant à environ 3-40% en poids par rapport à la composition détergente, agents tensio-actifs tels que agents tensio-actifs anioniques.

- les alkylesters sulfonates de formule R-CH(SO₃M)-COOR’, où R représente un radical alkyle en C₈₋₂₀, de préférence en C₁₀₋C₁₆, R’ un radical alkyle en C₁₋C₆, de préférence en C₁₋C₃, et M un cation alcalin (sodium, potassium, lithium), ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium ...) ou dérivé d’une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...). On peut citer tout particulièrement les méthyl ester sulfonates dont les radical R est en C₁₄₋C₁₆ ;
les alkylsulfates de formule \(\text{ROSO}_3\text{M} \), où \(\text{R} \) représente un radical alkylique ou hydroxyalkyle en \(\text{C}_5\text{-C}_{24} \), de préférence en \(\text{C}_{10}\text{-C}_{18} \), \(\text{M} \) représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant en moyenne de 0,5 à 30 motifs, de préférence de 0,5 à 10 motifs OE et/ou OP ;

les alkylamides sulfates de formule \(\text{RCONHR'\text{ROSO}_3\text{M}} \) où \(\text{R} \) représente un radical alkylique en \(\text{C}_2\text{-C}_{22} \), de préférence en \(\text{C}_6\text{-C}_{20} \), \(\text{R'} \) un radical alkylique en \(\text{C}_2\text{-C}_3 \), \(\text{M} \) représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant en moyenne de 0,5 à 60 motifs OE et/ou OP ;

les sels d'acides gras saturés ou insaturés en \(\text{C}_8\text{-C}_{24} \), de préférence en \(\text{C}_{14}\text{-C}_{20} \), les alkybenzènesulfonates en \(\text{C}_9\text{-C}_{20} \), les alkylsulfonates primaires ou secondaires en \(\text{C}_8\text{-C}_{22} \), les alkyglycérol sulfonates, les acides polycarboxyliques sulfonés décrits dans GB-A-1 082 179, les sulfonates de paraffine, les N-acyl N-alkyltaurates, les alkylyphosphates, les iséthionates, les alkylsuccinonates les alkylsulfosuccinates, les monoesters ou diesters de sulfosuccinates, les N-acyl sarcosinates, les sulfates d'alkylglycosides, les poléthoxycarboxylates le cation étant un métal alcalin (sodium, potassium, lithium), un reste ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium ...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...) ;

agents tensio-actifs non-ioniques
- les alkylphénols poloxyalkylénés (polyéthoxyéthylénés, polyoxypropylénés, poloxybutylénés) dont le substituant alkylique est en \(\text{C}_6\text{-C}_{12} \) et contenant de 5 à 25 motifs oxyalkylénés ; à titre d'exemple, on peut citer les TRITON X-45, X-114, X-100 ou X-102 commercialisés par Rohm & Haas Cy. ;
- les glucosamides, glucamide, glycérolamide ;
- les alcéols aliphatiques en \(\text{C}_8\text{-C}_{22} \) polyoxyalkylénés contenant de 1 à 25 motifs oxyalkylénés (oxyéthylène, oxypropyliène) ; à titre d'exemple, on peut citer les TERGITOL 15-S-9, TERGITOL 24-L-6 NMW commercialisés par Union Carbide Corp., NEODOL 45-9, NEODOL 23-65, NEODOL 45-7, NEODOL 45-4 commercialisés par Shell Chemical Cy., KYRO EOB commercialisé par The Procter & Gamble Cy. ;
- les produits résultant de la condensation de l'oxyde d'éthylène le composé résultant de la condensation de l'oxyde de propylène avec le propylène glycol, tels les PLURONIC commercialisés par BASF ;
- les produits résultant de la condensation de l'oxyde d'éthylène le composé résultant de la condensation de l'oxyde de propylène avec l'éthylènediamine, tels les TETRONIC commercialisés par BASF ;
. les oxydes d'amines tels que les oxydes d'alkyl C_{10}-C_{18} diméthylamines, les oxydes d'alkoxy C_{8}-C_{22} éthyl dihydroxy éthylamines ;
. les alkylpolyglycosides décrits dans US-A-4 565 647 ;
. les amides d'acides gras en C_{8}-C_{20}

5 . les acides gras éthoxylés
. les amides gras éthoxylés
. les amines éthoxylées

agents tensio-actifs cationiques
. les halogénures d'alkyldiméthylammonium

10 agents tensio-actifs amphotères et zwitterioniques
. les alkylidiméthylbétaines, les alkylamidodiméthylbétaines, les alkyltriméthylsulfobétaines, les produits de condensation d'acides gras et d'hydrolysats de protéines
. les alkylamphoacétates ou alkylamphodiacétates dont le groupe alkyle contient de 6 à 20 atomes de carbone.

- ADJUVANTS AMELIORANT LES PROPRIÉTÉS DES AGENTS TENSIO-ACTIFS (AGENTS "BUILDERS"), en quantités correspondant à environ 5-50%, de préférence à environ 5-30% en poids pour les formules détergentes liquides, ou à environ 10-80%, de préférence 15-50% en poids pour les formules détergentes en poudres, agents builders tels que

adjuvants ("builders") inorganiques
. les polyphosphates (tripolyphosphates, pyrophosphates, orthophosphates, hexaméthaphosphates) de métaux alcalins, d'ammonium ou d'alcanolamines
. les tetraborates ou les précursore de borates

25 . les silicates, en particulier ceux présentant un rapport SiO_{2}/Na_{2}O de l'ordre de 1,6/1 à 3,2/1 et les silicates lamellaires décrits dans US-A-4 664 839
. les carbonates (bicarbonates, sesquicarbonates) alcalins ou alcalino-terreux
. les cogranulés de silicates hydratés de métaux alcalins et de carbonates de métaux alcalins (sodium ou de potassium) riches en atomes de silicium sous forme Q2 ou Q3, décrits dans EP-A-488 868
. les aminosilicates cristallins ou amorphes de métaux alcalins (sodium, potassium) ou d'ammonium, tels que les zéolithes A, P, X ... ; la zéolithe A de taille de particules de l'ordre de 0,1-10 micromètres est préférée

adjuvants ("builders") organiques

30 . les polyphosphonates hydrosolubles (éthane 1-hydroxy-1, 1-diphosphonates, sels de méthylène diphosphonates ...)
. les sels hydrosolubles de polymères ou de copolymères carboxyliques ou leurs sels hydrosolubles tels que
les ethers polycarboxylates (acide oxydisuccinique et ses sels, tartrate monosuccinique acide et ses sels, tartrate disuccinique acide et ses sels
les ethers hydroxypropolycarboxylates
l'acide citrique et ses sels, l'acide mellitique, l'acide succinique et leurs sels
les sels d'acides polyacétiques (éthylénediaminetetraacétates, nitrilotriacétates, N-(2 hydroxyéthyl)-nitrilodiacétates)
les acides alky C5-C20 succiniques et leurs sels(2-dodécénylsuccinates, lauryl succinates,)
les esters polyacétals carboxyliques
l'acide polyaaspartique, l'acide polyglutamique et leurs sels
les polyimides dérivés de la polycondensation de l'acide aspartique et/ou de l'acide glutamique
les dérivés polycarboxyméthylés de l'acide glutamique ou d'autres acides aminés
- AGENTS DE BLANCHIMENT, en quantités d'environ 0,1-20%, de préférence environ 1-10% en poids, éventuellement associés à des ACTIVATEURS DE BLANCHIMENT, en quantités d'environ 0,1-60%, de préférence d'environ 0,5-40% en poids, agents et activateurs tels que
agents de blanchiment
les perborates tels que le perborate de sodium monohydraté ou tétrahydraté
les composés peroxygénés tels que le carbonate de sodium peroxyhydraté, le pyrophosphate peroxyhydraté, l'urée peroxyhydratée, le peroxyde de sodium, le persulfate de deodium
de préférence associés à un activateur de blanchiment générant in situ dans le milieu lessiviel, un peroxyacide carboxylique ; parmi ces activateurs, on peut mentionner, la
tetraacétylethylène diamine, la tetraacétyle méthylène diamine, la tetraacétyle glycoluryl, le
p-acétoxybenzène sulfonate de sodium, le pentaacétyle glucose, l'octaacétyle lactose ...
les acides percarboniques et leurs sels (appelés "percarbonates") tels que le
monoperoxyphthalate de magnésium hexahydraté, le métachloroperbenzoate de
magnésium, l'acide 4-nonylamino-4-oxoperoxybutyrique, l'acide 6-nonylamino-6-
oxoperoxyacproïque, l'acide diperoxydiodécanedioïque, le nonylamide de l'acide
peroxysuccinique, l' acide dényldiperoxysuccinique.
Ces agents peuvent être associés à au moins un des agents anti-salissures ou anti-
redéposition mentionnés ci-après.
Peuvent également être mentionnés des agents de blanchiments non oxygénés,
agissant par photoactivation en présence d'oxygène, agents tels que les phthalocyanines
d'aluminium et/ou de zinc sulfonées
- AGENTS ANTI-SALISSURES autres, en quantités d'environ 0,01-10%, de préférence environ 0,1-5%, et tout particulièrement de l'ordre de 0,2-3% en poids, agents tels que
les dérivés cellulosiques tels que les hydroxyéthers de cellulose, la méthylcellulose, l'éthylcellulose, l'hydroxypropyl méthylcellulose, l'hydroxybutyl méthylcellulose
les alcools polyvinylènes
les oligomères polyesters sulfonés obtenus par sulfonation d'un oligomère dérivé de de l'alcool allylique éthoxylé, du diméthyltéréphtalate et du 1,2 propylène diol, présentant de 1 à 4 groupes sulfonés (US-A-4 968 451)
- AGENTS ANTI-REDEPOSITION autres, en quantités d'environ 0,01-10% en poids pour une composition détergente en poudre, d'environ 0,01-5%en poids pour une composition détergente liquide, agents tels que
- la carboxyméthylcellulose
- les oligomères polyesters sulfonés obtenus par condensation de l'acide isophthalique, du sulfosuccinate de diméthyle et de diéthylène glycol (FR-A-2 236 926)
- les polyvinylpyrrolidones
- AGENTS CHELATANTS du fer et du magnésium, en quantités de l'ordre de 0,1-10%, de préférence de l'ordre de 0,1-3% en poids, agents tels que
- les aminocarboxylates tels que les éthylènediaminetéraacétates, hydroxyéthyl éthylènediaminetriacétates, nitritriacétates
- les aminophosphonates tels que les nitritriés(méthylène phosphonates)
- les composés aromatiques polyfonctionnels tels que les dihydroxydisulfobenzènes
- AGENTS DISPERSANTS POLYMERIQUES, en quantité de l'ordre de 0,1-7% en poids, pour contrôler la dureté en calcium et magnésium, agents tels que
. les sels hydrolysables d'acides polycarboxyliques de masse moléculaire de l'ordre de 2000 à 100 000, obtenus par polymérisation ou copolymérisation d'acides carboxyliques éthyléniquement insaturés tels que acide acrylique, acide ou anhydride maleique, acide fumarique, acide itaconique, acide aconitique, acide mesaconique, acide citraconique, acide méthylénemalonique, et tout particulièrement les polycrylates de masse moléculaire de l'ordre de 2 000 à 10 000 (US-A-3 308 067), les copolymères d'acide acrylique et d'anhydride maleique de masse moléculaire de l'ordre de 5 000 à 75 000 (EP-A-66 915)

. les polyéthylèneglycols de masse moléculaire de l'ordre de 1000 à 50 000

- AGENTS DE FLUORESCENCE (BRIGHTENERS), en quantité d'environ 0,05-1,2% en poids, agents tels que
les dérivés de stilbène, pyrazoline, coumarine, acide fumarique, acide cinnamique, azoles, méthinecyanines, thiophènes ... (*The production and application of fluorescent brightening agents* - M. Zahradnik, publié par John Wiley & Sons, New York-1982)

- AGENTS SUPPRESSEURS DE MOUSSES, en quantités pouvant aller jusqu'à 5% en poids, agents tels que
les acides gras monocarboxyliques en C10-C24 ou leurs sels alcalins, d'ammonium ou alcanolamines, les triglycérides d'acides gras
les hydrocarbures saturés ou insaturés aliphatiques, alicycliques, aromatiques ou hétérocycliques, tels que les paraffines, les cires
les N-alkylaminotriazines
les monostéarylphosphates, les monostéaryl alcool phosphates
les huiles ou résines polyorganosiloxyanes éventuellement combinées avec des particules de silice

- AGENTS ADOUCISSANTS, en quantités d'environ 0,5-10% en poids, agents tels que les argiles
- ENZYMES en quantité pouvant aller jusqu'à 5mg en poids, de préférence de l'ordre de 0,05-3mg d'enzyme active /g de composition détergente, enzymes telles que
- AUTRES ADDITIFS tels que
. des alcools (méthanol, éthanol, propanol, isopropanol, propanediol, éthylène glycol, glycérine)
des agents tampons
. des parfums
. des pigments

Les exemples suivants sont donnés à titre illustratif.
Exemple 1

Préparation d'un polyester sulfoné

Dans un réacteur en acier inoxydable de 7,5 litres, muni d'un agitateur à ancre tournant à 80 tours/mn relié à un couplemètre KYOWA, d'une double enveloppe pour la circulation d'un liquide caloporteur et d'une colonne de distillation régulée par une électrovanne, on introduit :

- 12,17 moles de terephthalate de diméthyle (2363 g)
- 1,99 mole d'isophthalate de diméthyl-5 sulfonate de sodium (590 g)
- 40,16 moles d'éthylène glycol (2493 g)
- 54 ppm (en poids) de titane sous forme d'orthotitanate de butyle

Le mélange est préchauffé à 130°C.

Il est ensuite porté jusqu'à une température de 220°C en environ 130 minutes, pour distiller plus de 90% de la quantité théorique de méthanol.

Le mélange réactionnel est ensuite porté à 230°C en 30 minutes. Lorsque la masse réactionnelle a atteint 230°C, on commence l'introduction d'une suspension contenant :

- 2,99 moles d'acide isophthalique (497 g)
- 8,00 moles d'éthylène glycol (497 g)

Cette introduction est réalisée sur une période de 60 minutes tout en maintenant la masse réactionnelle à 230°C.

Le chauffage est ensuite poursuivi pour amener la masse réactionnelle à une température de 250°C en 60 minutes.

Pendant la période d'introduction du mélange d'acide isophthalique et d'éthylène glycol et la période de chauffage jusqu'à 250°C, on distille un mélange d'eau et d'éthylène glycol sans rétrogradation.

Le mélange réactionnel est ensuite transféré dans un autoclave préchauffé à 250°C, puis mis sous pression réduite pour atteindre une valeur de 10 millibar en 38 minutes, ce qui correspond à un couple moteur de 3 m.N.

La masse réactionnelle est alors coulée ; après refroidissement, on obtient un polyester dispersable dans l'eau présentant les caractéristiques suivantes :

- masse moléculaire en nombre = 10480
- taux de fonctions sulfonates : 11,6% molaire
- taux de fonctions OH : 0,48 eq/kg
Exemple 2

Préparation d'un polyester sulfoné

On répète dans les mêmes conditions opératoires, les étapes décrites à l'exemple 1 en mettant en œuvre

5
- 7,99 moles de terephthalate de diméthyle (1551g)
- 5,38 mole d'isophthalate de diméthyl-5 sulfonate de sodium (1594g)
- 37,5 moles d'éthylène glycol (2325g)
- 54 ppm (en poids) de titane sous forme d'orthotitanate de butyle (1,34g)

suivi de l'introduction à 230°C d'une suspension de

10
- 2,00 moles d'acide isophtalique (332,6g)
- 5,36 moles d'éthylène glycol (332,8g)

La masse réactionnelle est coulée lorsque le couple moteur est de 3 m.N , ce qui correspond dans ce cas à une pression réduite de 100 millibar

On obtient un polyester dispersable dans l'eau de caractéristiques suivantes :

15
- masse moléculaire en nombre = 9100
- taux de fonctions sulfonates : 35% molaire
- taux de fonctions OH : 0,39 eq/kg

Exemple 3

Préparation d'un polyester sulfoné

On répète dans les mêmes conditions opératoires, les étapes décrites à l'exemple 1 en mettant en œuvre

25
- 9,04 moles de terephthalate de diméthyle (1736g)
- 1,46 mole d'isophthalate de diméthyl-5 sulfonate de sodium (433g)
- 29,4 moles d'éthylène glycol (1825g)
- 54 ppm (en poids) de titane sous forme d'aminotriéthanolate de titane (1,34g)

suivi de l'introduction à 230°C d'une suspension de

30
- 2,40 moles d'acide hydroxyisophtalique (400g)
- 19,33 moles d'éthylène glycol (1200g)

La masse réactionnelle est coulée lorsque le couple moteur est de 3 m.N , ce qui correspond dans ce cas à une pression réduite de 13 millibar

On obtient un polyester dispersable dans l'eau de caractéristiques suivantes :

35
- masse moléculaire moyenne en nombre = 13310
- taux de fonctions sulfonates : 11,3% molaire
- taux de fonctions OH : 0,54 eq/kg
Exemple 4
Préparation d'un polyester sulfoné
On répète dans les mêmes conditions opératoires, les étapes décrites à l'exemple 1 en mettant en œuvre

5
- 12,17 moles de terephthalate de diméthyle (2363 g)
- 1,99 mole d'isophthalate de diméthyl-5 sulfonate de sodium (590 g)
- 40,16 moles d'éthylène glycol (2493 g)
- 54 ppm (en poids) de titane sousforme d'orthotitanate de butyle suivie de l'introduction à 230°C d'une suspension de

10
- 2,99 moles d'acide isophtalique (497 g)
- 2,99 moles de glycérol (275 g)
- 5,01 moles d'éthylène glycol (261 g)

La masse réactionnelle est coulée lorsque le couple moteur est de 3 m.N, ce qui correspond dans ce cas à une pression réduite de 13 millibar

15 On obtient un polyester dispersable dans l'eau de caractéristiques suivantes :
- masse moléculaire moyenne en nombre = 12130
- taux de fonctions sulfonates : 11,6% molaire
- taux de fonctions OH : 0,41 eq/kg

Exemple 5
Formulation d'une composition détergente lave-linge

<table>
<thead>
<tr>
<th>Composition de la lessive</th>
<th>parties en poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>- zéolithe 4A</td>
<td>25</td>
</tr>
<tr>
<td>- carbonate léger</td>
<td>15</td>
</tr>
<tr>
<td>- disilicate R2A</td>
<td>5</td>
</tr>
<tr>
<td>- copolymère acrylique/maleique SOKALAN CP5 (BASF)</td>
<td>5</td>
</tr>
<tr>
<td>- sulfate de Na</td>
<td>10,7</td>
</tr>
<tr>
<td>- carboxyméthylcellulose</td>
<td>1</td>
</tr>
<tr>
<td>- perborate monohydraté</td>
<td>15</td>
</tr>
<tr>
<td>- tetraacétyléthylénédiamine</td>
<td>5</td>
</tr>
<tr>
<td>- dodécylbenzènesulfonate linéaire</td>
<td>6</td>
</tr>
<tr>
<td>- SYNERPERONIC A3 (alcool gras en C12-C15 éthoxylé à 3 OE)</td>
<td>3</td>
</tr>
<tr>
<td>- SYNERPERONIC A9 (alcool gras en C12-C15 éthoxylé à 9 OE)</td>
<td>9</td>
</tr>
<tr>
<td>- enzyme Esperase 4,0 T</td>
<td>0,3</td>
</tr>
<tr>
<td>- agent antisolissures</td>
<td></td>
</tr>
</tbody>
</table>
Exemple 6

PROPRIETES ANTISALISSURES

Les polymères antisalissures testés sont introduits dans la composition détergente de l'exemple 5, à raison de 1% en poids de matière active de polymère.

Test

Prélavage :

Des carrés en polyester ou polyester/coton (65/35) de dimension 10x10 cm, sont prélavés dans un TERGOTOMETRE pendant 20 minutes à 40°C, avec la formule lessiviale contenant 1% en poids de matière active de polymère testé ; l'eau utilisée présente une dureté de 30° HT ; la quantité de lessive mise en oeuvre est de 5g pour 1 litre d'eau. Les carrés de tissus sont ensuite rinçés 3 fois pendant 5 minutes à l'eau froide (14°C), puis séchés par deux passages sous glaceuse.

Tachage :

On dépose 4 gouttes d'huile moteur de vidange sur 6 des carrés prélavés, et, afin d'assurer une bonne fixation de la tache, on place les tissus dans une étuve à 60°C pendant 1 heure. Pour permettre une bonne reproductibilité des résultats, les tissus sont lavés dans les 24 heures.

Lavage :

On effectue le lavage dans les mêmes conditions que le prélavage (à 40°C pendant 20 minutes, à l'aide de 5g de lessive contenant 1% de matière active de polymère antisalissure pour 1 litre d'eau de 30°HT, puis 3 rinçages de 5 minutes à l'eau froide et 2 séchages sous glaceuse)

Evaluation

La réflectance des tissus avant et après lavage est mesurée à l'aide du colorimètre DR. LANGE/LUCI 100.

L'efficacité du polymère testé en tant qu'agent antisalissure, est appréciée par le % d'élimination des taches calculées par la formule

\[E \text{ en } % = 100 \times \frac{(R3-R2)}{(R1-R2)} \]

R1 représentant la réflectance avant lavage du tissu non sali
R2 représentant la réflectance, avant lavage, du tissu sali
R3 représentant la réflectance, après lavage, du tissu sali

Pour chaque produit testé, on calcule la moyenne du % d'élimination des taches.

Les résultats obtenus sont donnés dans le tableau 1 suivant
<table>
<thead>
<tr>
<th>polymère</th>
<th>E en %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>celui de l'exemple 1</td>
<td>63</td>
</tr>
<tr>
<td>celui de l'exemple 2</td>
<td>80</td>
</tr>
<tr>
<td>celui de l'exemple 3</td>
<td>50</td>
</tr>
<tr>
<td>GEROL PS 32*</td>
<td>13</td>
</tr>
</tbody>
</table>

* polyester sulfoné hydrodispersable contenant 11,62% molaire de fonctions sulfonates et de masse moléculaire moyenne en nombre de 25000, commercialisé par RHONE-POULENC

5

Exemple 7

PROPRIÉTÉS DE DETERGENCE PRIMAIRE

Des éprouvettes des tissus standards fabriqués par le CFT (Center for test materials) suivants

- coton sébum 10D
- polyester / coton (65/35) sébum 20D
- polyester sébum 30D

Éprouvettes de dimension 10x10 cm, sont lavées dans un TERGOTOMETRE pendant 20 minutes à 40°C, avec la formule lessiviale ci-dessus à laquelle est ajouté 1% en poids de matière active polymère ; l'eau utilisée présente une dureté de 30°HT.

Les tissus sont ensuite rincés 3 fois pendant 5 minutes et séchés sous glaceuse.

On mesure la réflectance des éprouvettes à l’aide d’un réflectomètre XENOCOLOR (DR LANGE), avant lavage, ainsi qu’après lavage et séchage, selon le système "L", "a" et "b" (échelle du noir au blanc, du vert au rouge et du bleu au jaune).

La valeur ΔE est calculée pour chaque type de tissu en faisant la somme géométrique des écarts de couleur ΔL, Δa et Δb avant et après lavage sur les tissus salis, soit

\[ΔE = (ΔL^2 + Δa^2 + Δb^2)^{1/2} \]

Les résultats obtenus figurent dans le tableau suivant

<table>
<thead>
<tr>
<th>polymère</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>celui de l'exemple 1</td>
<td>42</td>
</tr>
<tr>
<td>celui de l'exemple 2</td>
<td>51,3</td>
</tr>
<tr>
<td>celui de l'exemple 3</td>
<td>43,6</td>
</tr>
<tr>
<td>GEROL PS 32</td>
<td>46,2</td>
</tr>
</tbody>
</table>
Exemple 8

Formulation d'une composition détergente lave-linge

<table>
<thead>
<tr>
<th>Composition de la lessive</th>
<th>parties en poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>- zéolithe 4A</td>
<td>25</td>
</tr>
<tr>
<td>- carbonate léger</td>
<td>15</td>
</tr>
<tr>
<td>- disilicate R2A</td>
<td>5</td>
</tr>
<tr>
<td>- copolymère acrylique/maleique SOKALAN CP5 (BASF)</td>
<td>5</td>
</tr>
<tr>
<td>- sulfate de Na</td>
<td>5,7</td>
</tr>
<tr>
<td>- carboxyméthylcellulose</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>- perborate monohydraté</td>
<td>15</td>
</tr>
<tr>
<td>- tetracétyléthylénediamine</td>
<td>5</td>
</tr>
<tr>
<td>- lauryléthersulfate éthoxylé (1 motif oxyéthylène)</td>
<td>10</td>
</tr>
<tr>
<td>- SYNPERONIC A3 (alcool gras en C12-C15 éthoxylé à 3 OE)</td>
<td>3</td>
</tr>
<tr>
<td>- SYNPERONIC A9 (alcool gras en C12-C15 éthoxylé à 9 OE)</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>- enzyme Esperase 4,0 T</td>
<td>0,3</td>
</tr>
<tr>
<td>- polymère antisalissure de l'exemple 2</td>
<td>1</td>
</tr>
</tbody>
</table>

On répète le test décrit à l'exemple 6 ; la moyenne du % d'élimination des taches E est de 75%.

Exemple 9

Formulation d'une composition détergente lave-linge

<table>
<thead>
<tr>
<th>Composition de la lessive</th>
<th>parties en poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>- zéolithe 4A</td>
<td>25</td>
</tr>
<tr>
<td>- carbonate léger</td>
<td>15</td>
</tr>
<tr>
<td>- disilicate R2A</td>
<td>5</td>
</tr>
<tr>
<td>- copolymère acrylique/maleique SOKALAN CP5 (BASF)</td>
<td>5</td>
</tr>
<tr>
<td>- sulfate de Na</td>
<td>5,7</td>
</tr>
<tr>
<td>- carboxyméthylcellulose</td>
<td>1</td>
</tr>
<tr>
<td>- perborate monohydraté</td>
<td>15</td>
</tr>
<tr>
<td>- tetracétyléthylénediamine</td>
<td>5</td>
</tr>
<tr>
<td>- lauryléthersulfate éthoxylé (2 motifs oxyéthylène)</td>
<td>10</td>
</tr>
<tr>
<td>- SYNPERONIC A3 (alcool gras en C12-C15 éthoxylé à 3 OE)</td>
<td>3</td>
</tr>
<tr>
<td>- SYNPERONIC A9 (alcool gras en C12-C15 éthoxylé à 9 OE)</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>- enzyme Esperase 4,0 T</td>
<td>0,3</td>
</tr>
<tr>
<td>- polymère antisalissure de l'exemple 2</td>
<td>1</td>
</tr>
</tbody>
</table>

On répète le test décrit à l'exemple 6 ; la moyenne du % d'élimination des taches E est de 71%.
REVENDICATIONS

1) Polyesters sulfonés hydrodispersables ou hydrosolubles caractérisés en ce qu'ils sont susceptibles d'être obtenus par estérisation et/ou transestérisation et polycondensation d'une composition monomère à base :

- d'un monomère diacide non sulfoné (A) constitué d'au moins un acide ou anhydride dicarboxylique choisi parmi les acides ou anhydrides téréphtalique, isophthalique et 2,6 naphtalène dicarboxylique, ou leurs diesters, en quantité correspondant à un rapport molaire (A) / (A)+(SA) de l'ordre de 95/100 à 60/100, de préférence de l'ordre de 93/100 à 65/100

- d'un monomère diacide sulfoné (SA) constitué d'au moins un acide ou anhydride dicarboxylique aromatique sulfoné ou aliphatique sulfoné, ou leurs diesters, en quantité correspondant à un rapport molaire (SA) / (A)+(SA) de l'ordre de 5/100 à 40/100, de préférence de l'ordre de 7/100 à 35/100

jusqu'à 50% molaire, de préférence jusqu'à 30% molaire, de la quantité de monomère diacide non sulfoné (A) et/ou de monomère diacide sulfoné (SA) pouvant être remplacée par un monomère diacide hydroxylé (HA) constitué d'au moins un acide ou anhydride dicarboxylique aromatique ou aliphatique hydroxylé ou un diester dudit acide dicarboxylique aromatique ou aliphatique hydroxylé

- et d'un monomère polyol (P) constitué d'au moins un polyol choisi parmi l'éthylène glycol, le propylène glycol, le diéthylène glycol, le dipropylène glycol, le glycérol, le 1,2,4 butane triol et le 1,2,3 butane triol, selon une quantité correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre de fonctions ou d'équivalents fonctions COOH des monomères diacides (A)+(SA)+(HA) de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3

en ce que le monomère diacide sulfoné (SA) est constitué d'au moins un acide ou anhydride dicarboxylique aromatique sulfoné ou d'un mélange d'acides ou anhydrides aromatique(s) sulfoné(s) et d'acides ou anhydrides aliphatique(s) sulfoné(s), ou leurs diesters, lorsque le monomère polyol (P) ne contient pas de polyol différent d'un glycol ou lorsque le monomère diacide hydroxylé (HA) est absent

et en ce que lesdits polyesters sulfonés présentent

- une masse moléculaire en nombre inférieure à 20 000,
- une teneur pondérale en soufre de l'ordre de 0,5 à 10%, de préférence de l'ordre de

1,2 à 8%
- et une teneur en fonctions hydroxyles exprimée en équivalent OH / kg de polymère supérieure à 0,2 .
2) Polyesteres selon la revendication 1), caractérisés en ce que le monomère diacide non sulfoné (A) est constitué par 50 à 100% molaire d'acide ou anhydride tétréphtalique ou d'un de ses diesters inférieurs et de 0 à 50% d'acide ou anhydride isophtalique et/ou d'acide ou anhydride 2,6-naphtalène dicarboxylique, ou d'un de leurs diesters inférieurs.

3) Polyesteres selon la revendication 1) ou 2), caractérisés en ce que le monomère sulfoné (SA), est choisi parmi les acides ou anhydrides sulfo-isophtaliques, sulfotéréphtaliques, sulfo-orthophtaliques, les acides ou anhydrides sulfo-4 naphtalène dicarboxylique-2,7, les sulfo-bis(hydroxycarboxyl)-4,4' diphénylsulfones, les acides ou anhydrides sulfo-diphényl-dicarboxyliques, les sulfo-bis(hydroxycarboxyl)-4,4' diphényléthanes, les acides ou anhydrides sulfo-phénoxy-5 isophtaliques, les acides ou anhydrides sulfo-succiniques, ou leurs diesters inférieurs.

4) Polyesteres selon l'une quelconque des revendications 1) à 3), caractérisés en ce que le monomère diacide hydroxylé (HA) est choisi parmi les acides ou anhydrides hydroxy-5 isophtalique, hydroxy-4 isophtalique, hydroxy-4 phtalique, hydroxy-2 méthylsucinique, hydroxyméthylglutarique, hydroxyglutarique, ou leurs diesters inférieurs.

5) Polyesteres selon l'une quelconque des revendications 1) à 4), caractérisés en ce que le monomère polyol (P) est le monoéthylène glycol et/ou le glycérol.

6) Polyesteres selon l'une quelconque des revendications précédentes, caractérisés en ce qu'ils sont susceptibles d'être obtenus à partir
 - d'acide tétréphtalique (A1), sous forme de diester (de préférence de méthyle), et d'acide isophtalique (A2) sous forme de diacide ou d'anhydride, ou d'acide tétréphtalique (A1) sous forme de diester (de préférence de méthyle), et d'un acide tétréphtalique hydroxylé ou isophtalique hydroxylé (HA), sous forme de diacide ou d'anhydride, éventuellement en mélange avec de l'acide isophtalique (A2), sous forme de diacide ou d'anhydride, selon un rapport molaire (A1)/(A1)+(A2), (A1)/(A1)+(HA) ou (A1)/(A1)+(HA)+(A2) de l'ordre de 100/100 à 50/100, de préférence de l'ordre de 90/100 à 70/100
 - d'acide sulfoisophtalique, sous forme de diester (de préférence de méthyle)
 - de monoéthylène glycol et/ou de glycérol.
7) Procédé de préparation des polyesters faisant l'objet de l'une quelconque des revendications précédentes, caractérisé en ce qu'on réalise les étapes successives suivantes :

- une étape de transestérification (interéchange) entre d'une part le monomère diacide sulfoné (SA), sous forme de diester, et de 50 à 100% molaire, tout particulièrement de 30 à 90% molaire de la quantité totale du monomère diacide non sulfoné (A), sous forme de diester, et d'autre part une quantité de monomère polyol (P) correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre d'équivalents fonctions COOH desdits monomères (A) et (SA) sous forme diesters de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3,0

- une étape éventuelle d'estérification entre l'éventuelle quantité restante du monomère diacide non sulfoné (A), sous forme diacide ou anhydride, et une quantité de monomère polyol (P), correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre de fonctions COOH du monomère diacide non sulfoné (A) sous forme diacide ou anhydride de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3,0

- une étape de polycondensation l'opération de polycondensation se déroulant avec élimination de molécules de polyol, et étant stoppée lorsque le couple moteur de l'arbre d'agitation indique une valeur équivalente à environ 0,5 à 5 mètres newton pour une vitesse d'agitation de 80 tours / minute d'un mobile en forme d'ancre dans un réacteur de 7,5 litres et une température de 250°C de la masse réactionnelle.

8) Compositions détergentes contenant de l'ordre de 0,01% à 10% en poids des polyesters faisant l'objet de l'une quelconque des revendications 1) à 6), par rapport au poids desdites compositions.

9) Utilisation, en tant qu'agents anti-salissures dans des compositions détergentes, de polyesters sulfonés hydrodispersables ou hydrosolubles susceptibles d'être obtenus par estérification et/ou transestérification et polycondensation d'une composition monomère à base :

- d'un monomère diacide non sulfoné (A) constitué d'au moins un acide ou anhydride dicarboxylique choisi parmi les acides ou anhydrides téréphtalique, isophthalique et 2,6 naphtalène dicarboxylique, ou leurs diesters, en quantité correspondant à un rapport molaire (A) / (A)+(SA) de l'ordre de 95/100 à 60/100, de préférence de l'ordre de 93/100 à 65/100
- d'un monomère diacide sulfoné (SA) constitué d'au moins un acide ou anhydride dicarboxylique aromatique sulfoné ou aliphatique sulfoné, ou leurs diesters, en quantité correspondant à un rapport molaire (SA) / (A)+SA) de l'ordre de 5/100 à 40/100, de préférence de l'ordre de 7/100 à 35/100 jusqu'à 50% molaire, de préférence jusqu'à 30% molaire, de la quantité de monomère diacide non sulfoné (A) et/ou de monomère diacide sulfoné (SA) pouvant être remplacée par un monomère diacide hydroxylé (HA) constitué d'au moins un acide ou anhydride dicarboxylique aromatique ou aliphatique hydroxylé ou un diester dudit acide dicarboxylique aromatique ou aliphatique hydroxylé

- et d'un monomère polyol (P) constitué d'au moins un polyol choisi parmi l'éthylène glycol, le propylène glycol, le diéthylène glycol, le dipropylène glycol, le glycérol, le 1,2,4 butane triol et le 1,2,3 butane triol, selon une quantité correspondant à un rapport nombre de fonctions OH du monomère polyol (P) / nombre de fonctions ou d'équivalents fonctions COOH des monomères diacides (A)+SA)+(HA) de l'ordre de 1,05 à 4, de préférence de l'ordre de 1,1 à 3,5, et tout particulièrement de l'ordre de 1,8 à 3

lesdits polyesters sulfonés présentant
- une masse moléculaire en nombre inférieure à 20 000,
- une teneur pondérale en soufre de l'ordre de 0,5 à 10%, de préférence de l'ordre de 1,2 à 8%
- et une teneur en fonctions hydroxyles exprimée en équivalent OH / kg de polymère supérieure à 0,2.

10) Utilisation selon la revendication 9), caractérisée en ce que le monomère diacide non sulfoné (A) est constitué par 50 à 100% molaire d'acide ou anhydride tétréphtalique ou d'un de ses diesters inférieurs et de 0 à 50% d'acide ou anhydride isophthalique et/ou d'acide ou anhydride 2,6-naphtalène dicarboxylique, ou d'un de leurs diesters inférieurs.

30 11) Utilisation selon la revendication 9) ou 10), caractérisée en ce que le monomère sulfoné (SA), est choisi parmi les acides ou anhydrides sulfo-isophthaliques, sulfo-tétréphtaliques, sulfo-orthophthaliques, les acides ou anhydrides sulfo-4 naphtalène dicarboxylique-2,7, les sulfo-bis(hydroxy carbonyl)-4,4' diphénylsulfones, les acides ou anhydrides sulfo-diphényl-dicarboxyliques, les sulfo-bis(hydroxy carbonyl)-4,4' diphénylméthanes, les acides ou anhydrides sulfo-phénoxy-5 isophthaliques, les acides ou anhydrides sulfo-succiniques, ou leurs diesters inférieurs.
12) Utilisation selon l'une quelconque des revendications 9) à 11), caractérisée en ce que le monomère diacide hydroxylé (HA) est choisi parmi les acides ou anhydrides hydroxy-5 isophtalique, hydroxy-4 isophtalique, hydroxy-4 phthalique, hydroxy-2 méthylsuccinique, hydroxyméthylglutarique, hydroxyglutarique, ou leurs diesters inférieurs.

13) Utilisation selon l'une quelconque des revendications 9) à 12), caractérisée en ce que le monomère polyol (P) est le monoéthylène glycol et/ou le glycérol.

14) Utilisation selon l'une quelconque des revendications 9) à 13), caractérisée en ce lesdits lesdits polyesters sulfonés hydrodissolubles ou hydrodispersables sont susceptibles d'être obtenus à partir
 - d'acide tétréphthalique (A1), sous forme de diester (de préférence de méthyle), et d'acide isophtalique (A2) sous forme de diacide ou d'anhydride, ou d'acide tétréphthalique (A1) sous forme de diester (de préférence de méthyle), et d'un acide tétréphthalique hydroxylé ou isophtalique hydroxylé (HA), sous forme de diacide ou d'anhydride, éventuellement en mélange avec de l'acide isophtalique (A2), sous forme de diacide ou d'anhydride, selon un rapport molaire (A1)/(A1)+(A2), (A1)/(A1)+(HA) ou (A1)/(A1)+(HA)+(A2) de l'ordre de 100/100 à 50/100, de préférence de l'ordre de 90/100 à 70/100
 - d'acide sulfoisophtalique, sous forme de diester (de préférence de méthyle)
 - de monoéthylène glycol et/ou de glycérol.

15) Compositions détergentes pour le lavage d'articles textiles, notamment à base de fibres polyesters, caractérisées en ce qu'elles renferment :
 - de l'ordre de 0,01 à 10% en poids, de préférence de l'ordre de 0,1 à 5% en poids, tout particulièrement de l'ordre de 0,2 à 3% en poids d'un agent antisoluure polyester sulfoné hydrodispersable ou hydrodissoluble dont l'utilisation fait l'objet de l'une quelconque des revendications 9) à 14)
 - et de l'ordre de 3 à 40% en poids, de préférence de l'ordre de 5 à 35% en poids d'au moins un agent tensio-actif anionique choisi parmi les sulfates d'alcools aliphatiques saturés en C₅-C₄ enjoyablement condensés avec environ 0,5 à 30 moles d'oxyde d'éthylène,
 - pas plus de 5% en poids de ladite composition détergente pouvant être constituée d'un autre type d'agent tensio-actif anionique aux propriétés écotoxicologiques moins intéressantes, tel que les alkylbenzènesulfonates en C₁-C₁₈.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C08G63/688 C11D3/37

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C08G C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP,A,0 029 620 (AGFA-GEVAERT) 3 June 1981 see page 8, line 18 - page 9, line 11; claims 1-4</td>
<td>1-3,5-7</td>
</tr>
<tr>
<td>X</td>
<td>EP,A,0 364 331 (EASTMAN KODAK COMPANY) 18 April 1990 see claims 1-7</td>
<td>1-3,5-7</td>
</tr>
<tr>
<td>X</td>
<td>CH,A,529 806 (INVENTA AG FÜR FORSCHUNG UND PATENTVERWERTUNG) 15 December 1972 * claim, sub-claim; example 1 *</td>
<td>1-3,5-7</td>
</tr>
<tr>
<td>X</td>
<td>EP,A,0 033 783 (NATIONAL STARCH AND CHEMICAL CORPORATION) 19 August 1981 see claims 1-7</td>
<td>1-3,5-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

| Patent family members are listed in annex. |

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the priority date of another application (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Date of the actual completion of the international search

4 October 1995

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HU Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 653 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Decock, L

18.10.95
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO,A,92 04433 (THE PROCTER & GAMBLE COMPANY) 19 March 1992 see claims 1-10</td>
<td>1,8-15</td>
</tr>
</tbody>
</table>

Form PCT/ISA/20 (continuation of second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT-T- 106914</td>
<td>15-06-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 626938</td>
<td>13-08-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 4488289</td>
<td>01-05-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1333645</td>
<td>20-12-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-D- 68915926</td>
<td>14-07-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-T- 68915926</td>
<td>19-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES-T- 2055131</td>
<td>16-08-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 4501280</td>
<td>05-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 9003994</td>
<td>19-04-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4990593</td>
<td>05-02-91</td>
</tr>
<tr>
<td>CH-A-529806</td>
<td>31-10-72</td>
<td>DE-A- 2336640</td>
<td>28-03-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4257928</td>
<td>24-03-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 534176</td>
<td>05-01-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 6523880</td>
<td>06-08-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1147880</td>
<td>07-06-83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 534176</td>
<td>05-01-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 6523880</td>
<td>06-08-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1147880</td>
<td>07-06-83</td>
</tr>
<tr>
<td>WO-A-9204433</td>
<td>19-03-92</td>
<td>AU-B- 8499091</td>
<td>30-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2090236</td>
<td>08-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN-A- 1059555</td>
<td>18-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ-A- 9300360</td>
<td>13-04-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU-A- 64387</td>
<td>28-12-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 6503589</td>
<td>21-04-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ-A- 239696</td>
<td>28-03-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR-A- 25196</td>
<td>01-01-93</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

CIB 6 C08G63/688 C11D3/37

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 C08G C11D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie *</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP,A,0 029 620 (AGFA-GEVAERT) 3 Juin 1981 voir page 8, ligne 18 – page 9, ligne 11; revendications 1-4</td>
<td>1-3-5-7</td>
</tr>
<tr>
<td>X</td>
<td>EP,A,0 364 331 (EASTMAN KODAK COMPANY) 18 Avril 1990 voir revendications 1-7</td>
<td>1-3-5-7</td>
</tr>
<tr>
<td>X</td>
<td>CH,A,529 806 (INVENTA AG FÜR FORSCHUNG UND PATENTVERWERTUNG) 15 Décembre 1972 revendication, sous-revendication; exemple 1</td>
<td>1-3-5-7</td>
</tr>
<tr>
<td>X</td>
<td>EP,A,0 033 783 (NATIONAL STARCH AND CHEMICAL CORPORATION) 19 Août 1981 voir revendications 1-7</td>
<td>1-3-5-7</td>
</tr>
</tbody>
</table>

| X | Voir la suite du cadre C pour la fin de la liste des documents |
| X | Les documents de familles de brevets sont indiqués en annexe |

* Catégories spéciales de documents cités:

 "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent

 "E" document antérieur, mais publié à la date de dépôt international ou après cette date

 "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (elle qu'indique)

 "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

 "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"I" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"K" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

4 Octobre 1995

Date d'expédition du présent rapport de recherche internationale

18. 10. 95

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL-2280 HU Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Fonctionnaire autorisé

Decoster, L.
<table>
<thead>
<tr>
<th>C(fixe)</th>
<th>DOCUMENTS CONSIDERÉS COMME PERTINENTS</th>
<th>no. des revendications vues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO, A, 92 04433 (THE PROCTER & GAMBLE COMPANY) 19 Mars 1992 voir revendications 1-10</td>
<td>1,8-15</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT-T- 106914</td>
<td>15-06-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 626938</td>
<td>13-08-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 4488289</td>
<td>01-05-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1333645</td>
<td>20-12-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-D- 68915926</td>
<td>14-07-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-T- 68915926</td>
<td>19-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES-T- 2055131</td>
<td>16-08-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 4501280</td>
<td>05-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 9003994</td>
<td>19-04-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4990593</td>
<td>05-02-91</td>
</tr>
<tr>
<td>CH-A-529806</td>
<td>31-10-72</td>
<td>DE-A- 2336640</td>
<td>28-03-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 534176</td>
<td>05-01-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 6523880</td>
<td>06-08-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1147880</td>
<td>07-06-83</td>
</tr>
<tr>
<td>WO-A-9204433</td>
<td>19-03-92</td>
<td>AU-B- 8499091</td>
<td>30-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2090236</td>
<td>08-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN-A- 1059555</td>
<td>18-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ-A- 9300360</td>
<td>13-04-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU-A- 64367</td>
<td>28-12-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 6503589</td>
<td>21-04-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ-A- 239696</td>
<td>28-03-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR-A- 25196</td>
<td>01-01-93</td>
</tr>
</tbody>
</table>

Formulaire PCT/55A/210 (annexe familles de brevets) (juillet 1992)