
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011203268 B1

(54) Title
Content delivery networks mutators

(51) International Patent Classification(s)
G06Q 90/00 (2006.01)

(21) Application No: 2011203268 (22) Date of Filing: 2011.07.04

(43) Publication Date: 2012.07.19
(43) Publication Journal Date: 2012.07.19
(44) Accepted Journal Date: 2012.07.19

(62) Divisional of:
PCT/US2011/023410

(71) Applicant(s)
Limelight Networks, Inc.

(72) Inventor(s)
Roersma, Jacob S.;Knol, Luke;Lange,
Jared;Dunbar, Neil

Sig;Swanson, Wylie;Black, Bryan;Boelens,

(74) Agent / Attorney
Pizzeys, Level 2, Woden Plaza Offices Woden Town Square Woden, Canberra, ACT,
2606

(56) Related Art
US 7860964
US 2002/0133491

20
11

20
32

68

04
 Ju

l 2
01

1

ABSTRACT OF THE DISCLOSURE

A method for processing content objects with a plurality of resources associated

with a content delivery network (CDN) having a plurality of geographically distributed points of

presence (POPs) is disclosed. The plurality of resources are enrolled to be accessible from the

CDN. Each of the plurality of resources is categorized using a plurality of tags that categorize

the plurality of resources, and the plurality of resources includes a resource. Selection of a

policy from a plurality of policies is received, where the plurality of policies define processes to

perform on content objects stored at the CDN. The selected policy includes an applicability

criteria and a call to the resource. Metadata is received at the CDN, the metadata being related to

a content object, a requester of the content object and/or a provider of the content object. The

content object is received for storage at the CDN. It is determined that the policy is applicable

and that other policies are not applicable to the content object through analysis of the metadata

and/or the applicability criteria. The resource is called according to the call in the policy to cause

the resource to perform specified processing on the content object.

34

AUSTRALIA
Patents Act 1990

Regulation 3,2

Complete Specification

Standard Patent

DIVISIONAL

APPLICANT: Limelight Networks, Inc.

Invention Title: CONTENT DELIVERY NETWORKS
MUTATORS

The following statement is a full description of this invention, including the best method of
performing it known to me:

20
11

20
32

68

04
 Ju

l 2
01

1

CONTENT DELIVERY NETWORKS MUTATORS

CROSS-REFERENCES TO RELATED APPLICATION

[0001] This application is a continuation of PCT/US2011/023410, filed on February 1, 2011,

entitled “ASSET MANAGEMENT ARCHITECTURE FOR CONTENT DELIVERY

5 NETWORKS”. The entire disclosure of the above-listed PCT application is hereby incorporated

by reference in its entirety for all purposes.

BACKGROUND

[0002] This disclosure relates in general to content delivery networks (CDNs) and, but not by

way of limitation, to managing assets associated with the CDN.

10 [0003] Content providers (i.e., customers) offload their content delivery to CDNs for any

number of reasons. CDNs specialize in a range of content delivery and hosting options

optimized for performance so that end users get a desired quality of service (QoS). Different

CDNs have different topologies relying on more or less points of presence (POPs) distributed

geographically across the Internet. CDNs with more POPs tend to have less resources in each

15 POP, while those with less POPs tend to have more resources in each one. The topology and

asset allocation in a particular CDN is inflexible.

[0004] Customers are using CDNs and cloud services in more creative ways. Applications,

storage and other services are being provided remotely. CDNs have not provided the flexibility

to adapt to all the needs of customers yet have an excellent topology of distributed POPs with

20 fast interconnectivity between those POPs. Currently, limited interfaces to the CDN with little or

no customization results in lost opportunity.

SUMMARY

[0005] In one embodiment, the present disclosure provides a method and system for flexibly

processing content objects. The processing is performed with a content delivery network (CDN)

25 having a number of geographically distributed points of presence (POPs). Content objects are

ingested through landing pads and stored or otherwise processed in a flexible way where storage

bricks and other resources are chosen flexibly by characterization tags. Policies are used to

describe which content objects are processed by which categories of resources. A group of

1

20
11

20
32

68

04
 Ju

l 2
01

1

resources characterized by the tag are chosen when the processing is performed. When

retrieving content, the content object can be stored on any storage brick found through the tag

analysis process. A query is translated to addresses for the chosen storage brick(s).

[0006] In another embodiment, the present disclosure provides a method for processing

5 content objects with a plurality of resources associated with a content delivery network (CDN)

having a plurality of geographically distributed points of presence (POPs). The plurality of

resources are enrolled to be accessible from the CDN. Each of the plurality of resources is

categorized using a plurality of tags that categorize the plurality of resources, and the plurality of

resources includes a resource. Selection of a policy from a plurality of policies is received, and

10 the plurality of policies define processes to perform on content objects stored at the CDN. The

selected policy includes an applicability criteria and a call to the resource. Metadata is received

at the CDN related to the content object, a requester of the content object and/or a provider of the

content object. The content object is received for storage at the CDN. It is determined, through

analysis of the metadata and/or the applicability criteria, that the policy is applicable and that

15 other policies are not applicable to the received content object. The resource is called according

to the call in the policy to cause the resource to perform specified processing on the received

content object.

[0007] In another embodiment, the present disclosure provides a content delivery network

(CDN) having a plurality of geographically distributed points of presence (POPs) for processing

20 content objects with a plurality of resources. The CDN includes a landing pad to receive a

content object from a client, one or more databases comprising a list of the plurality of resources,

each of the plurality of resources being associated with one or more tags, and each tag indicating

a characteristic of the associated resource. The CDN also includes a policy reconciliation

service (PRS) for maintaining and processing policies, the PRS being coupled to the one or more

25 databases. The PRS includes a policy store comprising a plurality of policies, each of the

plurality of policies defining specific processing of content objects, the plurality of policies

including a first policy and a second policy. Each of the first policy and the second policy

includes an applicability parameter indicating criteria that a content object must satisfy in order

for the content object to be processed in accordance with the respective first or second policy, the

30 criteria indicated in the first policy’s applicability parameter being different from the criteria

2

20
11

20
32

68

04
 Ju

l 2
01

1

indicated in the second policy’s applicability parameter. The first policy comprises a disposition

parameter indicating criteria that a resource must satisfy in order for the resource to effect the

first policy, and the first policy comprises one or more mutators, each mutator comprising a

template for inclusion of an address of a resource and/or a location of a received content object.

5 The CDN also includes a policy manager configured to determine that the first policy is

applicable to the received content object and that the second policy is not applicable to the

received content object, the determination being based on the first policy’s criteria and metadata

related to the received content object, a requester of the received content object and/or a provider

of the received content object at the CDN. The policy manager is further configured to identify a

10 resource of the plurality of resources for effecting the first policy based on the disposition

parameter and a tag associated with the first policy.

[0008] In another embodiment, the present disclosure provides a content delivery network

(CDN) having a plurality of geographically distributed points of presence (POPs) for processing

content objects with a plurality of resources. The CDN includes two or more hardware servers

15 programmed for enrolling the plurality of resources to be accessible from the CDN; categorizing

each of the plurality of resources using a plurality of tags that categorize the plurality of

resources, where the plurality of resources includes a resource; receiving selection of a policy

from a plurality of policies, where the plurality of policies define processes to perform on content

objects stored at the CDN, wherein the selected policy includes an applicability criteria and a call

20 to the resource; receiving, at the CDN, metadata related to a content object, a requester of the

content object and/or a provider of the content object; receiving the content object for storage at

the CDN; determining that the policy is applicable and that other policies are not applicable to

the received content object through analysis of the metadata and/or the applicability criteria; and

calling the resource according to the call in the policy to cause the resource to perform specified

25 processing on the received content object.

[0009] Further areas of applicability of the present disclosure will become apparent from the

detailed description provided hereinafter. It should be understood that the detailed description

and specific examples, while indicating various embodiments, are intended for purposes of

illustration only and are not intended to necessarily limit the scope of the disclosure.

3

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

[0010] The present disclosure is described in conjunction with the appended figures:

FIG. 1 depicts a block diagram of an embodiment of a content distribution

system;

FIG. 2A and 2B depict block diagrams of embodiments of a point of presence

(POP);

FIGs. 3A and 3B depict block diagrams of embodiments of a content management

architecture;

FIGs. 4A and 4B depict block diagrams of embodiment of a content brick or

resource;

FIG. 5 depicts a block diagram of an embodiment of the policy reconciliation

service interacting with a metadata directory;

FIG, 6 depicts a diagram of an embodiment of a directory structure;

FIGs. 7 and 8 illustrate swim diagrams of embodiments of a process for using the

content management architecture to retrieve a content object;

FIG. 9 illustrates a flowchart of an embodiment of a process for applying policies

to a content object;

FIG. 10 illustrates a flowchart of an embodiment of a process for configuring a

customer account;

FIG. 11 illustrates a flowchart of an embodiment of a process for disambiguation

of policies;

FIGs. 12A, 12B and 12C depict block diagrams of embodiments of policy

prioritization hierarchies;

FIG. 13 illustrates a flowchart of an embodiment of a process for performing a

policy;

FIG. 14 illustrates a flowchart of an embodiment of a process for enrolling a

resource or brick into the content distribution system;

FIG. 15 illustrates a flowchart of an embodiment of a process for delivering a

content object using the content management architecture;

FIGs. 16A and 16B illustrate flowcharts of embodiments of a process for

elastically managing propagation of content objects; and

4

20
11

20
32

68

04
 Ju

l 2
01

1

FIG. 17 illustrates a flowchart of an embodiment of a process for using policies to

change the jurisdiction used to process a content object.

[0011] In the appended figures, similar components and/or features may have the same

reference label. Further, various components of the same type may be distinguished by

5 following the reference label by a dash and a second label that distinguishes among the similar

components. If only the first reference label is used in the specification, the description is

applicable to any one of the similar components having the same first reference label irrespective

of the second reference label.

DETAILED DESCRIPTION

10 [0012] The ensuing description provides preferred exemplary embodiment(s) only, and is not

intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing

description of the preferred exemplary embodiment(s) will provide those skilled in the art with

an enabling description for implementing a preferred exemplary embodiment. It is understood

that various changes may be made in the function and arrangement of elements without departing

15 from the spirit and scope as set forth in the appended claims.

[0013] Referring first to FIG. 1, a block diagram of an embodiment of a content distribution

system 100 is shown. The content originator 106 offloads delivery of the content objects to a

content delivery network (CDN) 110 in this embodiment. The content originator 106 produces

and/or distributes content objects and includes a content provider 108, a content site 116, and an

20 origin server 112. The CDN 110 can cache, redistribute and/or host content in various

embodiments for third parties such as the content originator 106 to offload delivery and typically

provide better quality of service (QoS).

[0014] In this embodiment, the content distribution system 100 locates the content objects (or

portions thereof) and distributes the content objects to end user systems 102. A content object is

25 any content file or content stream and could include, for example, video, pictures, data, audio,

software, and/or text. The content object could be live, delayed or stored. Throughout the

specification, references may be made to a content object, content, content stream and/or content

file, but it is to be understood that those terms could be used interchangeably wherever they may

appear.

5

5

10

15

20

25

[0015] Many content providers 108 use a CDN 110 to deliver the content objects over the

Internet 104 to end users 128. The CDN 110 includes a number of points of presence (POPs)

120, which are geographically distributed through the content distribution system 100 to deliver

content. Various embodiments may have any number of POPs 120 within the CDN 110 that are

generally distributed in various locations around the Internet 104 to be proximate to end user

systems 102. Multiple POPs 120 use the same IP address such that an Anycast routing scheme is

used to find a POP 120 likely to be close, in network terms, to the end user for each request. In

addition to the Internet 104, a wide area network (WAN) 114 or other backbone may couple the

POPs 120 with each other and also couple the POPs 120 with other parts of the CDN 110.

[0016] When an end user 128 requests a web page through its respective end user system 102,

the request for the web page is passed either directly or indirectly via the Internet 104 to the

content originator 106. The content originator 106 is the source or re-distributor of content

objects. The content site 116 is a web site accessible by the end user system 102. In one

embodiment, the content site 116 could be a web site where the content is viewable with a web

browser. In other embodiments, the content site 116 could be accessible with application

software other than a web browser. In this embodiment, the content provider 108 directs content

requests to a CDN 110 after they are made or formulates the delivery path to the CDN 110 by

embedding the delivery path into the URLs for a web page. In any event, the request for content

is handed over to the CDN 110 by using an Anycast IP address corresponding to one, two or

more POPs 120.

[0017] Once the request for a content object is passed to the CDN 110, the request is

associated with a particular POP 120 within the CDN 110 using the Anycast routing scheme.

The particular POP 120 may retrieve content object from the content provider 108 if not already

within the CDN 110. Alternatively, the content provider 108 may directly provide the content

object to the CDN 110 and its associated POPs 120 through pre-population or hosting in advance

of the first request. The CDN servers include edge servers that actually serve end user requests.

The origin server 112 holds a copy of each content object for the content originator 106.

Periodically, the content of the origin server 112 may be reconciled with the CDN 110 through a

cache, hosting and/or pre-population algorithm. Some content providers 108 could use an origin

6

20
11

20
32

68

04
 Ju

l 2
01

1

server within the CDN 110 to host the content and avoid the need to maintain an accessible copy

of the content object at the origin server 112 of the content originator 106.

[0018] Once the content object is retrieved from the origin server 112 by the CDN 110, the

content object is stored in a manner accessible to the CDN to allow processing by that POP 120

5 to service the end user systems 102. For example, the content object could be stored on a brick

130. Streamed content objects can have real time or near real time information or can be

previously stored. The end user system 102 receives the content object and processes it for use

by the end user 128. The end user system 102 could be a personal computer, media player,

handheld computer, Internet appliance, phone, IPTV set top, web server, processing system,

10 streaming radio or any other device that receives and/or plays content objects. In some

embodiments, a number of the end user systems 102 could be networked together. Although this

embodiment only shows a single content originator 106 and a single CDN 110, it is to be

understood that there could be many of each in various embodiments.

[0019] Storage accessible to the CDN 110 includes bricks 130 in this embodiment. A brick

15 130 is any storage medium inside or outside the CDN 110 that is part of a content management

architecture (CMA). The storage medium includes a layer of software to accommodate

commands for the brick. Any storage array, network attached storage, drive, flash media, or

other non-volatile memory could act as a brick 130 with the proper layer of software. In this

embodiment, one of the end user systems 102-1 has a brick 130-1 coupled to it. The CDN 110

20 could store content on any brick 130 to implement a policy, regardless of whether the brick is

internal or external to the CDN 110.

[0020] Other resources 134 are available to the CDN 110 to process content. Resources 134

can be internal or external to the CDN 110. A brick 130 is just a resource, but it is broken out

separately since the processing it performs is largely limited to storage. Generally, a resource

25 134 is any hardware or software function that can store or process a content object. Examples

include, transcoders, cryptographic processors, compression engines, content processors (e.g.,

image processors, video processors or audio processors), thumbnail generators, media

syndication services, video/audio ad insertion engines, video processing services, metadata

insertion engines, or anything that can process content objects and can be interfaced with an API

30 from the CDN 110. In this example, there is a first resource 134-1 available to the CDN 110

7

20
11

20
32

68

04
 Ju

l 2
01

1

over the Internet 104 and a second resource 134-2 within the CDN 110, but it is to be understood

there could be many more resources available to the CDN 110.

[0021] With reference to FIG. 2A, a block diagram of an embodiment of a POP 120-1 is

shown. There are both legacy edge servers 235 that don’t natively support the CMA and edge

5 servers 230 that do in this embodiment. Legacy edge servers 235 use a mapper transport 245

that supports the CMA to gather any content requested from CDN 110 and present the content

like an origin server. The mapper transport 245 makes the calls necessary to locate the content

and pass it to the legacy edge server 235. Requests are made to bricks 130 by the mapper

transport 245 that acts as a reverse proxy to return the requested content. Typically, the software

10 on the legacy edge server 235 does not require any rewriting to allow integration with the CMA

because of the mapper transport 245.

[0022] The various edge servers 230, 235 are coupled to each other and the Internet 104 and

WAN 114 using switching fabric 240. Edge servers 230, 235 number in the thousands in a given

POP 120. The edge servers 230, 235 could be divided by function and/or customer. Loading

15 algorithms can be used to divide load among the edge servers 230, 235 in any number of ways.

The edge servers 230 perform caching, streaming, hosting, storage, and/or other functions within

the POP 120. An edge server 230, 235 is typically a rack-mounted computer that could have

varying levels of processing power, memory and storage. Software running on the edge server

230, 235 includes, for example, HTTP proxy caching, media servers, Flash™ servers, Java™

20 application servers, Silverlight™ servers, etc.

[0023] The switching fabric 240 is used for several functions. Incoming requests for content

objects are routed to the edge servers 230, 235 using the switching fabric. This could be done

using routing, redirection or domain name service (DNS). Load balancing, round-robin , and/or

other techniques could be used by the switching fabric 240 to route requests to edge servers 230,

25 235. Communication within the POP 120 also uses the switching fabric 240. Edge servers 230,

235 could have multiple software applications running that communicate with other edge servers

230, 235.

[0024] There are legacy landing pads 215 and landing pads 210 supporting CMA. The legacy

landing pads 215 use a legacy adapter 285 to integrate with the CMA. The legacy adapter 285

8

20
11

20
32

68

04
 Ju

l 2
01

1

includes a portable operating system interface for Unix (“POSIX”) adapter to allow backward

compatibility to legacy landing pads 215. Many applications are designed to directly interface

with the AMA without requiring the POSIX functionality of the legacy adapter 285. A universal

namespace and directory space is provided by the legacy adapter 285 for the CMA to abstract the

5 legacy storage interface from the native storage. There can be multiple landing pads 210, 215 in

multiple POPs 120 for a given customer to provide an ingest point for content objects.

[0025] A content directory 205 is provided for the CMA to allow locating, processing and

storing content. The content directory 205 includes a metadata directory 275 and a content

mapper 220. The metadata directory 275 manages through selection of resources and bricks that

10 are members of tag and tagset groups, which resources and bricks are selected for particular

processing task. The content mapper 220 is just a database storing UUID and corresponding

path and filename along with the brick addresses that store the file referenced by a particular

UUID. The health of bricks 130 and resources 134, metadata, tags, and other information is

maintained by the metadata directory 275. All bricks 130 and resources 134 have various tags

15 associate with them. For each tag or tagset, the bricks 130 or resources 134 that have that tag or

tagset are known to the metadata directory 275 to allow selection of a brick 130 or resource 134

for a particular processing task performed on a content object.

[0026] The content mapper 220 is a distributed database or data structure that translates path

and filename to a universal unique identifier (UUID). In this embodiment, the UUID is a 256-bit

20 number that is randomly, pseudorandomly, sequentially, or unpredictably assigned to each

content object file stored in the CDN 110. It is extremely unlikely that two files would have the

same UUID and a check could be performed prior to assignment to be sure the UUID generated

hasn’t already been used within the CDN 110.

[0027] A policy reconciliation service (PRS) 260 maintains and processes policies. Each

25 policy defines processing to perform on one or more content objects. The operation of a policy

is affected by criteria based upon metadata and tags/tagsets. Where there are multiple policies

applicable to content, the PRS disambiguates the situation based upon a hierarchy or by picking

the lowest or highest common denominator for the applicable policies.

[0028] Within each POP 120 or elsewhere in the CDN, there are a number of bricks 130 that

30 store content objects and resources 134 that process the content objects. A policy can define the

9

20
11

20
32

68

04
 Ju

l 2
01

1

classes of bricks suitable for storage and the processing that a resource 134 would perform on a

content object. Parameters are passed to a resource 134 using a mutator that is part of a policy.

[0029] With reference to FIG. 2B, a block diagram of an embodiment of a POP 120-2 is

shown. The edge servers 230 and landing pads 210 in this embodiment natively support the

5 CMA without any translation or interfaces required. Calls are made to the content directory 205

to find the UUID for a content object and the brick names or identifiers that hold the content

object. When storing content objects, the content directory 205 uses the tags and metadata to

choose one or more bricks 130 that would store a particular content object.

[0030] With reference to FIG. 3 A, a block diagram of an embodiment that shows portions of a

10 content management architecture (CMA) using legacy edge servers 235. This embodiment has

only legacy edge hosts 316 and legacy edge caches 304 instantiated on the legacy edge servers

235. Other embodiments could additionally include edge caches and/or edge servers that

natively support the CMA.

[0031] When a content object or portion thereof is not found on the legacy edge server 235,

15 reference to a mapper transport 245 is made. The mapper transport 245 acts as an origin server

for all the content in the CMA. The mapper transport 245 interacts with the lookup listeners 328

to get names or addresses of the bricks 130 that hold the content object along with its UUID.

The mapper transport 245 then proxies the content object back to the requesting legacy edge

cache 304 or legacy edge host 316. The protocol and handshaking expected by the legacy edge

20 cache 304 or legacy edge host 316 is performed by the mapper transport.

[0032] The metadata directory 275 and content mapper 220 collectively form the content

directory 205. The metadata directory 275 translates a path and filename to a UUID when

originally storing a content object. To find out a UUID or brick addresses, the path and filename

is sent to the content mapper 220, by multicasting using multiple unicast channels to some or all

25 the lookup listeners 328. The namespace is divided between the lookup listeners 328 in addition

to having multiple alternative lookup listeners 328. Multiple lookup listeners 328 that receive

the request will respond, but the requester only uses the first lookup listener 328 to respond.

Where there are multiple lookup listeners distributed around the CDN, a distributed database

protocol is used to keep all of them reconciled.

10

20
11

20
32

68

04
 Ju

l 2
01

1

[0033] The mapper cabinet 324 stores the UUID and brick names or addresses for each path

and filename combination. The lookup listener 328 queries the mapper cabinet 324 with the path

and filename, to get the UUID for that path and filename that is returned with all the brick names

that hold the content file. The lookup listener 328 with the answer passes the UUID and brick

5 information back to the mapper transport 245. Where there are multiple bricks 130 with the

UUID, the mapper transport 245 chooses one and confirms it is there. Additional, bricks 130

could be queried if unsuccessful. The mapper transport 245 proxies the content object back to

the requesting legacy edge cache 304 or legacy edge host 316, but other embodiments could

redirect the request directly to the brick 130.

10 [0034] With reference to FIG. 3B, a block diagram of another embodiment that shows portions

of a CMA. This embodiment uses edge caches 305 and edge hosts 315 that support the CMA.

Where the content object is not found locally, the edge server 230 will request the path and file

from the content mapper 220. Through multicast to the lookup listeners 328, one with the

answer returns it after a query to its respective mapper cabinet 324. The edge server 230 can

15 make an educated guess on what lookup listeners 328 are likely to respond first instead of

querying all of them within the CDN each time. The guess could be based upon which returned

answers quickly in the past or based upon an estimate of the closest ones in a network sense.

[0035] The UUID and brick names or addresses are returned by the content mapper 220 to the

edge server 230. The edge cache 305 or edge host 315 can directly request the content object

20 from a brick address by providing it the UUID. Where there are multiple bricks with the content

object, they could be queried according to different schemes, for example, querying in parallel or

sequentially. The bricks 130 may be inside or outside the CDN 110. Where a name of a brick is

returned instead of an address, a domain name lookup service could be used to find the address.

[0036] Referring next to FIG. 4A, a block diagram of an embodiment of a content brick 130 is

25 shown. A brick 130 is connected to the switching fabric 240 in some way to be managed the

CMA. The brick daemon 404 is a software layer that is between the switching fabric 240 and the

native file interface 408 to translate communication with the CMA to allow storage on the native

storage 412. Since there are many native file interfaces and host platforms, the brick daemon

404 is customized for the host platform. This embodiment of the brick daemon 404 only does

11

20
11

20
32

68

04
 Ju

l 2
01

1

translation, but other embodiments could perform authentication and/or encryption. Files are

stored on the native storage 412 with the UUID as the file name.

[0037] Referring next to FIG. 4B, a block diagram of an embodiment of a resource 134 is

shown. The resource 134 could be any hardware or software that processes a content object. A

5 resource API 405 receives mutators and other commands. The resource API 405 interfaces with

a native resource interface 409 to command a native resource 413 to perform processing on a

content object. In some cases, the resource 134 has a native API the is suitable for integration

with the CMA without the need for a resource API layer.

[0038] With reference to FIG. 5, a block diagram of an embodiment of the PRS 260

10 interacting with a metadata directory 275 is shown. The PRS 260 includes a policy manager 504

that controls a policy compiler, a policy store 520, and a policy mapping store 518. The policy

compiler 528 performs disambiguation to resolve conflicts when multiple policies apply to the

same content object. Conflicts can be resolved by a hierarchical scheme where policies higher in

the hierarchy take precedence. In another embodiment, the policy compiler chooses the most or

15 least stringent of the conflicting policies. For example, a policy that requires all JPEG files be

deleted after two weeks and another policy that requires all files to be deleted when not requested

for a day could be resolved either most stringently to delete the JPEG file after not being used for

a day or least stringently to be deleted after two weeks. Additionally, any syntax errors in the

policies are found and identified by the policy compiler 528.

20 [0039] The policy store 520 holds all the policies in the CMA. The policies are applicable to

many customers and each have various levels of alterations for a particular customer. There are

policies for ingest, replication, hosting, transcoding, encryption, compression, thumbnailing,

various workflows, aging content in/out of system, and other processing for a content object.

Each policy is a function with defined with PRS parameters that include criteria, variables,

25 storage disposition and optional mutators. Table I below shows examples of some policies with

the PRS parameters that implement the policy and the variables used. For example, a transcode

policy retrieves a source URL and places it in an intake subdirectory for the transcoder. The

transcoder performs any number of different transcodes on the source files as specified and

stores the resulting files as the specified transcode URLs.

12

20
11

20
32

68

04
 Ju

l 2
01

1

Table I. Example Ingest and Hosting Policies

Policy PRS Parameters Variable(s)

Ingest Ingest API
Information

Origin URL, Content Tags, Transcode Options, Storage
Options, Purge Date

Transcoder Format(s) Transcode Options, URL, Content Tags

Store File(s) File Name, Storage Options

Automatic Purging Purge Date

Replication File Copy Number of Copies, Content Tags, Infrastructure Tags

Transcode Retrieve Source Source URL

n Transcodes Transcode Options, Different Transcodes, Source URL,
Content Tags

Store Results Transcode URLs

Host Hosting API
Information

Origin URL, Content Metadata, Customer Metadata, Storage
Options, Purge Date

Store File(s) Stored URL, Storage Options

File Aging Purge Date

[0040] Policies are preformulated or custom designed by content providers or content

receivers. The policy could be in any format (e.g., XML, text, etc.) and could be command line

instructions, run-time executed source code or compiled into object code. Policies can age into

5 or out of system. A PRS parameter acts as an instruction in a CDN-specific programming

language. A policy can be assigned to an end user who receives content, a customer who

provides content, a content object, a class of content objects, a directory, and/or any other tag or

metadata demarcation.

[0041] Criteria for a policy define its applicability to the content objects in the CMA. Criteria

10 allow size-based processing, MIME type workflows, or any metadata or tag qualifier before

performing the policy. For example, a compression policy could be applied to a particular

MIME type stored in a particular POP that has not been requested for some period of time.

13

20
11

20
32

68

04
 Ju

l 2
01

1

[0042] Each policy has PRS parameter that defines a disposition for the content object to be

performed after any processing. The disposition can say what type bricks 130 or resources 134

to use. The number of copies of the content object to have and what geographic spread to place

on those copies can also be defined. A deletion date can be defined in the PRS parameter.

5 [0043] A mutator indicates a resource 134 that will process the content object. The API to the

resource typically includes the source path and filename for content file and any number of

variable that affect processing by the resource 134. The mutators are in the form of a URL in

this embodiment, but other embodiments could use any format. The mutator URL identifies the

address of the resource 134, a source content object location that is being operated upon and a

10 number of variables. The mutator URL can perform conditional actions based upon prior

mutators and/or variables.

[0044] The functionality of a policy is demonstrated with an example thumbnailing policy that

uses a thumbnailing resource to create thumbnail images for an image content object. In this

example, the policy would store any files which end in the file name extension is 'jpg' in three

15 different locations. One of the locations is in the European Union and two are stored in the

United States. Once all copies have been made, a call to the thumbnailer resource 134 is made,

which generates a smal l thumbnail image of the source JPEG file that is stored in. a

predetermined location. The thumbnailer resource 134 uses the pathname of the source JPEG

file as well as its size in bytes passed as variables in the mutator URL. The thumbnailer resource

20 134 is an HTTP-based API which is called with this URL

http://www.imagetransform.org/thumbnailer?path=<full path to source image>&size=<size of

image>. The resource is located at the address of the imagetransform.org domain, which may or

may not be within the CDN 110.

[0045] In this example, all known bricks 130 have infrastructure tags 508 for their

25 geographical locations (e.g., city, metropolitan area, country, supranational entity). For example,

a brick 130 in London would be tagged with the tags LONDON, UK, EU, and EMEA. A brick

in 130 Paris would be tagged with PARIS, FRANCE, EU, and EMEA. A brick 130 in Chicago

would be tagged CHICAGO, IL, USA, NA, and AMERICAS, and so on.

[0046] The one or more databases or data structures hold the infrastructure tags and tagsets

30 508 and addresses of all bricks 130 or resources 134 that comply with each tag or tagset. The

14

http://www.imagetransform.org/thumbnailer?path=%253cfull
imagetransform.org

20
11

20
32

68

04
 Ju

l 2
01

1

tagset could be named to be the same as the tag, by convention, i.e., LONDON, USA, etc.

Tagsets could be conjunctions of two or more tags. For example, a tagset called LOND-HPERF

could contain both the LONDON and HIGH-PERFORMANCE tags. A query to the metadata

service 524 for a given tag or tagset would return all bricks 130 and resources 134 that have the

5 tag(s).

[0047] All known bricks 130 or other resources 134 are arbitrarily grouped with a tagset

having any number of tags. For geographic tags, a brick 130 cannot be in London and

somewhere else at the same time, so generally a geographic tag are not conjoined with other

geographic tags in a tagset. Not all the tags which exist need to be in a tagset—some might be

10 reserved for future use. Similarly, not all tagsets need be utilized in any policy.

[0048] This example policy is expressed in a pseudo language below as four PRS parameters.

The first PRS parameter is the policy name. For the second PRS parameter, one or more criteria

can be specified as positive or negative logic to test for a condition before applying the policy.

In this example, the criteria defines applicability to content files of the JPG MIME type. The

15 disposition in the third PRS parameter is the storage conditions specifying tags and the minimum

number of copies.

• Policy: "ExamplePol"
• Criteria: [{ name = 'AjpgS'}]
• Disposition: [{ Tagset = "USA", MinBricks = 2 }, {Tagset = "EU", MinBricks = 1}]

20 · Thumbnail Mutator = [http://www.imagetransform.org/thumbnailer?patli=%p&size=%s]

In order to decide the applicability of this policy, the PRS 260 would first would look at the

name extension of the file as a criteria. If it matches the regular expression '.*.jpg$' (that is, it

ends with the text 'jpg'), then this policy applies. Any other files would not be deemed to be

covered by this policy.

25 [0049] When executing the policy, the PRS 260 would select two bricks which have all the

tags in the tagset USA, and one brick from the set which have all the tags in tagset EU. The

bricks could be chosen by any criteria such as randomly, round robin, available space, cost of

storage, proximity in network terms, bandwidth cost to transport the file, etc. Once three receipts

come back from those bricks marked COMPLETE, the source JPEG file itself goes into the

30 COMPLETE state, and the thumbnail mutator in the PRS parameter list gets called, substituting

15

http://www.imagetransform.org/thumbnailer?patli=%2525p&size=%2525s

20
11

20
32

68

04
 Ju

l 2
01

1

the metavariables %p with the full path to the object, and %s with the size in bytes of the image

object. Other policies could have any number of mutators for storage, transcoding, replication,

or other processing for a file or asset.

[0050] The policy mapping store 518 records which policies are mapped to various levels of

5 the hierarchy. Various embodiments could map policies to the national jurisdiction, regional

jurisdiction, CDN-wide, POP-applicable, customer, sub-customer, directory, sub-directory,

MIME-type, individual file, etc. to achieve any level of granularity. FIG. 12A, 12B and 12C,

show embodiments of a different policy prioritization hierarchies 1200. Each block represents a

level in the hierarchy and can have a number of policies assigned to it. The policies for a

10 particular level can be organized in a priority as between the others at that level. Policies in a

higher block take precedence over those in a lower block during the disambiguation processes

performed by the policy compiler 528. The present embodiment only has two levels in the

hierarchy as illustrated in FIG. 12A. Some policies disassociate themselves with a particular

level of the hierarchy once performed. For example, a policy could be used to update coding on

15 the content library from a legacy format where all new content is received in the updated coding.

After running the policy once, it can be disassociated from the customer with a PRS parameter in

the policy that removes the association in the policy mapping store 518.

[0051] The directory structure 532 for this example is illustrated in FIG. 6 where each

customer has a directory with optional subdirectories. Each directory or subdirectory can hold

20 file names 604 for content objects of the customer. The directory structure 532 is stored in the

metadata directory 275 in this embodiment. Table II shows an example of a portion of the

policy mapping 518 for the hierarchy in FIG. 12A and the directory structure of FIG. 6. The

/ZBSRadio client has subdirectories for /streams and /podcasts. All the files in the

/ZBS Radio/streams path has both ingest and host policies that are applied, while all the files in

25 the /ZBS_Radio/podcasts path has ingest, transcode and host policies that are applied.

Directory

Table II. Policy Mapping

Subdirectory File Policy

ABS Movie - Ingest, Replication, Host

Channel

16

20
11

20
32

68

04
 Ju

l 2
01

1

...

ZBS Radio Streams - Ingest, Host

Podcasts - Ingest, Transcode, Host

Realure - Silverthorne Trails.epub Ingest, Replication

eBooks Keystone Boarding.epub Ingest, Replication

Aventneer.epub Ingest

Aventneer Audio .mp3 Ingest, Replication, Transcode

[0052] A UUID generator 532 assigns a 256 bit code to each path and filename stored in the

CMA, The UUID becomes the file name for content objects stored with the various bricks 130

associate with the CMA. The UUID is a one-way function in that the path and file name cannot

5 be determined from the UUID alone, but a query to the mapper cabinet 324 can give the bricks

storing a particular UUID and the path and file name.

[0053] The metadata directory 275 maintains metadata, tags and tagsets that are used by the

policies to process content objects. There is customer metadata 516 describing details about the

customer. The customer metadata 516 is entered when the customer configures their account

10 with the CDN and includes accountholding personal information, account, any sub-account(s),

zone, channel, confidentiality level, etc. The directory and subdirectoiy structure for a customer

is stored in the directory structure 532 in this embodiment, but could be stored with other

customer metadata 516 in other embodiments.

[0054] Also stored is user metadata 540 that is discerned about the end user 128. Typically,

15 the end user 128 does not intentionally interface with the CDN 110 so the user metadata 540 is

largely discerned indirectly. Metadata includes usage habits, content preferences, demographic

information, user identifier, POP location receiving request, and end user system location. The

content player, IP address, cookies or other techniques may be used to discern one user from

another. Privacy concerns can limit the availability of user metadata 540.

20 [0055] Infrastructure tags and tagsets 508 are assigned to bricks 130 and resources 134. The

number of tags increase as customers want greater granularity in applying policies.

17

20
11

20
32

68

04
 Ju

l 2
01

1

Infrastructure tags include: carbon use, energy use, storage type (e.g., solid state, magnetic,

optical, spinning, tape), equipment manufacturer, reliability (e.g., dual-location replication,

RAID level, tape archive), write only, write once, interface speed (e.g., SATA, SAS, Ethernet,

10Gb), retrieval latency, storage cost, physical security surrounding equipment, geographical

5 location of content, various performance discriminators, equipment location to city, region, or

country, POP, IPV4 or IPV6 compatibility, CDN hosted, user hosted, level of QoS. The tags can

be applied to bricks and resources regardless of them being inside or outside the CDN 110.

[0056] Content metadata 512 relates to content objects with the CMA. The content metadata

512 can additionally be stored in the content object itself and/or its file name. The content

10 metadata includes MIME type, encoding, container format, copyright terms, cost terms,

copyright year, actors, director, studio, program summary, content rating, critical review ranking,

title, transcript, ad insertion locations, encryption, request popularity, etc. Some content

metadata 512 is not stored in the database or store, but is discerned through interaction with the

content file. For example, MIME type is readily discernable from the file itself without

15 refereeing the content metadata 512 in the store or database.

[0057] Bricks 130 and resources 134 are expressly enrolled to work with the CMA. A

registration interface 536 is used to enter the address or domain name for the brick 130 or

resource 134 that is stored in a brick/resource information store 544. The bricks 130 and

resources 134 periodically report health and status information through a report interface 548

20 that is also stored in the brick/resource information store 544. The metadata directory 275 can

periodically request status and health information using the report interface 548 or can test the

brick 130 or resource 134. Where calls to the brick 130 or resource 134 fail or perform poorly,

the brick/resource information 544 can be updated to reflect status.

[0058] With reference to FIG. 7, a swim diagram of an embodiment of a process for using the

25 CMA to retrieve a content object with a legacy edge server 235 is shown. The depicted portion

of the process begins in block 704 where the end user system 102 requests a file from an the

legacy edge server 235. Where the legacy edge server 235 cannot fulfill the request, the file is

requested from the mapper transport 245 in block 708. The request from the legacy edge server

235 is typically a URL which is converted by the mapper transport 245 in block 712. A

30 multicast query is made to the lookup listeners 328 in block 714 that is received in block 716.

18

20
11

20
32

68

04
 Ju

l 2
01

1

To achieve parallel requests to the lookup listeners 328, multiple unicast requests are made

overlapping in time.

[0059] In block 724, a query is made from the lookup listener 328 to the mapper cabinet 324.

The first lookup listener 328 to find the result in its respective mapper cabinet 324, responds to

5 the mapper transport 245 with the brick addresses and UUID in block 728 that receives them in

block 734. The mapper transport 245 determines which of the brick addresses to use where there

are multiple ones in block 748. The determination can be random or according to some other

scheme. The UUID is requested from the address of the selected brick in block 752. If

unsuccessful as determined in block 756, another address is attempted by looping back to block

10 748.

[0060] Where the file with the UUID for the name is found on the brick 130, the file is

renamed and sent to the legacy edge server 235 in block 760. The file is received in block 764

and returned to the end user system 102 in block 768. In this way, the CMA is used like an

origin server by any legacy process with the mapper transport 245 translating the interaction.

15 [0061] Referring next to FIG. 8, a swim diagram of another embodiment of a process for using

the CMA to retrieve a content object is shown. This configuration does not use the mapper

transport 245 as the edge server 230 knows how to interact with the content directory 205

directly. In block 804, a request for a file is made by the end user system 102 to the edge server

230. The path and filename is requested using multicast to the lookup listeners 328, where the

20 content object is not found on the edge server 230 in block 814. The content directory 205

receives the request in block 816, determines or looks-up the UUID in block 820 and the brick

names in block 824 from the mapper cabinet 324 to respond first with the answer.

[0062] The brick addresses and UUID are sent by the content directory 205 in block 828 and

received by the edge server 230 in block 834. The edge server 230 determines which brick

25 address to try first in block 848 before requesting that UUID from the brick 130 in block 852. If

not found in block 856, another brick address is attempted by looping back to block 848. Where

the file is found in block 856, it is renamed and returned to the end user system 102 in block 868.

[0063] With reference to FIG. 9, a flowchart of an embodiment of a process 900 for applying

policies to a content object is shown. The depicted portion of the process begins in block 904,

19

20
11

20
32

68

04
 Ju

l 2
01

1

where the customer account, services and policies are configured, which is explained in greater

detail in relation to FIG. 10 below. In block 908, a content object file is received from the

customer using a landing pad 210, 215 or other API. Some embodiments can add content object

files when requested from the CDN 110 and are located after a cache miss. Other embodiments

5 can designate a path that is automatically reconciled with the CDN 110 using a policy.

[0064] Some policies are triggered by an action such as intake, user request, or other action

that would affect the content object file. Other policies are run periodically or according to a

schedule, for example, checking a directory for newly encoded files and moving the file back out

to the origin server 112 of the content originator 106. In any event, the potential policies are

10 determined in block 912, which is explained in greater detail in relation to FIG. 11. The policies

generally applicable to the content file is determined by analysis of all policies associated with

the hierarchy 1200 in block 916. Where there are more than one policy, a disambiguation

process is performed by the policy compiler 528 to find the policy that has the highest priority.

[0065] In block 920, the policy is interpreted and performed. The policy is represented as a

15 number of PRS parameters that are interpreted to perform some processing on the content object

file. The functionality of block 920 is explained in greater detail in relation to FIG. 13 below. If

there are more policies applicable to the content object file that are still waiting to complete as

determined in block 922, processing loops back to block 912. The just performed policy may

have changed the content object file such that it qualifies for more or less policies so that is

20 reanalyzed in block 912. At some point, it is determined block 922 that all policies have been

performed and the normal operation of the CDN 110 utilizes the content object file in its

processed form is performed in block 924.

[0066] Upon changes to user, customer or content metadata 540, 516, 512 referenced in the

applicable policies or tags 508 associate with where a content object file is stored, the policies

25 are run again. For each content object, the relevant input metadata 512, 516, 540 or tags 508

used in the policies are tracked. Where there are changes to any of the metadata 512, 516, 540,

tags 508 or policies as determined in block 928, processing loops back to block 912 to rerun the

policies.

[0067] Referring next to FIG. 10, a flowchart of an embodiment of a process 904 for

30 configuring a customer account is shown. The depicted portion of the process begins in block

20

20
11

20
32

68

04
 Ju

l 2
01

1

1004 where the customer connects to the CDN 110 and authenticates their identity. Certain

demographic and payment options may be entered along with customer metadata 516. In block

1008, a landing pad 210 is selected and customized. A landing pad 210 is an ingest point and

can be configured in any number of ways to efficiently provide content objects to the CDN 110.

5 [0068] In block 1012, the customer can choose the number of POPs and/or their location that

will host the landing pad. The customer can select that each POP would have an instantiated

landing pad 210 or instantiate one upon request. To provide for high volume accounts, there can

be a number of landing pads per POP that even scales up or down with demand. The customer

can design the directory structure 532 for their account by renaming directories and adding sub-

10 directories nested down any number of levels in block 1016.

[0069] The customer can customize policy templates, design new policies or modify their

existing policies in block 1020, The policies are mapped to the hierarchy 1200 in block 1022.

Where there are multiple policies for a particular level in the hierarchy, they are put in order of

importance to allow resolving potential conflicts during disambiguation. In block 1024, the

15 landing pads 210 start normal operation at the selected POP(s) 120. The directory structure and

loaded files for the customer can be viewed and modified through the landing pad in block 1028.

[0070] With reference to FIG. 11, a flowchart of an embodiment of a process 912 for

disambiguation of policies is shown. The process 912 is best understood in reference to one

hierarchy from FIGs. 12A, 12B or 12C. The depicted portion of the process 912 begins in block

20 1104 where all policies possibly applicable to the file are found throughout the hierarchy. The

policies are all prioritized in block 1108. The tags, metadata and criteria of the PRS parameters

in the policies are gathered in block 1112. Criteria can and other filters in the policies can make

many policies irrelevant to a particular content file.

[0071] In block 1116, the inapplicable and conflicting policies are removed from the list. Each

25 policy has a criteria that may make the policy inapplicable to the file. Additionally, there can be

conflicting policies where the lower priority policy is removed. The policy compiler 528 also

checks for syntax errors or other problems in block 1120. The invalid policies are removed from

the list in block 1124. The list of potential policies are known at the point so that the highest

priority can be executed.

21

20
11

20
32

68

04
 Ju

l 2
01

1

[0072] With reference to FIG, 13, a flowchart of an embodiment of a process 920 for

performing a policy is shown. The depicted portion of the process begins in block 1302 where

the policy compiler 528 checks the policy for errors prior to running the policy after being loaded

by the policy manager 504. The policy manager 504 checks the policy for any criteria identified

5 in a PRS parameter. Where there is a criteria, a determination is made in block 1308 to see if the

criteria is satisfied to allow further evaluation of the policy. Should the criteria exclude further

processing, processing passes from block 1308 to block 1312 where processing of the policy is

complete.

[0073] Should the policy criteria be satisfied in block 1308, processing continues to 1316 to

10 see if there is a mutator PRS parameter in the policy. Where there is no mutator, processing goes

to block 1344 where the content object a disposition PRS parameter defines how the resulting

content object is stored. The storage may be dependent on variables, metadata and/or tags. The

metadata directory 275 can be queried for bricks 130 that comply with a given tag that can be

specified in the disposition PRS parameter to find the one or more bricks 130 to use. For

15 example, the disposition could be to store the content object in three locations with a USA tag.

A query would be made to the metadata directory 275 and it would choose three from all the

bricks 130 with the USA tag and specify those bricks 130. The policy manager 504 would write

the content object to the addresses specified by the metadata directory 275. Where there is one

or more mutators as determined in block 1316, processing continues to block 1320.

20 [0074] In block 1320, the address of the resource is parsed from the mutator URL. Where the

address is a domain name, that is resolved to an IP address using a domain name service (DNS).

The resource 134 API uses a URL in this embodiment so that requesting the URL in block 1324

passes the source file location and other embedded variables. In some embodiments, the mutator

specifies a group of resources that comply with a tag. The metadata directory 275 is queried to

25 choose from the group of resources with the tag and return the address of the particular resource

to use. For example, the mutator may specify using a transcoder service in Russia. The

metadata directory would find ail transcoder services with a Russia tag and return one. The one

chosen could be random, round robin, based upon loading status from the resource information

database 544 or some other algorithm.

22

20
11

20
32

68

04
 Ju

l 2
01

1

[0075] The resource 134 parses the source file location from the URL in block 1328. The

content object is retrieved by the resource 134 in block 1332. In block 1336, the resource 134

performs the requested processing according to any other variables passed in the URL or other

API. If there is another mutator in the policy as determined in block 1340 processing loops back

5 to block 1320 for processing. Where it is determined in block 1340 that there are no additional

mutators in the policy, processing goes to block 1344 for execution of the disposition PRS

parameter. In this way, a policy is performed to process a content object file.

[0076] Referring next to FIG. 14, a flowchart of an embodiment of a process 1400 for

enrolling a resource 134 or brick 130 into the CMA is shown. The metadata directory 275

10 knows addresses for the enrolled resources 134 and bricks 130 along with the infrastructure tags

508 associate with each. The depicted portion of the process 1400 begins in block 1404 where a

new resource 134 or brick 130 is identified for inclusion in the CMA. A unique identifier or

name or an address is assigned to the resource 134 or brick 130 in block 1408. The address can

be a virtual one that is resolved through DNS. Infrastructure tags for the new enrollee are

15 entered into the CMA in block 1412.

[0077] The resource 134 or brick 130 is added to the tag or tagset groups in block 1416. A

query for a tag or tagset can quickly return all the addresses for resources 134 or bricks 130 by

arranging those groups beforehand. The resource is added to the CMA by being coupled to the

switching fabric 240 even though it may be inside or outside the CDN 110. Periodically, when

20 polled or according to a schedule, the resource 134 or brick 130 reports health and other status to

the metadata directory 275 in block 1424 for retention in the resource information store 544.

The metadata directory 275 can avoid assigning new content objects to a resource 134 or brick

130 that is less healthy or more overloaded than the other members in the tag or tagset group.

[0078] With reference to FIG. 15, a flowchart of an embodiment of a process 1500 for

25 delivering a content object using the CMA is shown. The depicted portion of the process begins

in block 1504 where the end user system 102 queries for content from the CDN 110. Through

Anycast, redirection, switching, or DNS resolution, the request finds its way to a ‘nearby’ POP

120. Closeness is a function of network proximity which generally corresponds to geographic

proximity, but not necessarily so.

23

20
11

20
32

68

04
 Ju

l 2
01

1

[0079] In block 1512, a cacheing or hosting edge server 230 is assigned. Where the edge

server 230 cannot satisfy the request locally, a request is made to the CMA for the content

object. Through the process outlined in FIGs. 7 and 8 above, the resource 134 or brick 130 is

located and the content is relayed or proxied to the edge server 230 in block 1520. In block

5 1524, the edge server fulfils the request. The end user plays the content in block 1528.

[0080] Referring next to FIG. 16A, a flowchart of an embodiment of a process 1600-1 for

elastically managing propagation of content objects is shown. This workflow is implemented

with the CMA using various policies to scale-up or scale-down the propagation of content

objects in a fluid manner. The depicted portion of the process 1600 begins in block 1604 where

10 a policy measures popularity content metadata 512 for a content object. A counter in the CDN

tracks the popular content and updates the content metadata 512 in the metadata directoiy 275

accordingly. Popularity could be measured on a scale of one to one hundred with the most

popular being at one hundred and the least popular being at one. The policy measures

acceleration in popularity by keeping a number of past data points for the content objects.

15 [0081] In block 1608, the quickest changes are addressed by adding the name of the content

file to a list in a policy. The footprint algorithm could be run separately in each POP 120 to

measure local popularity or could be run to measure popularity in all POPs 120. The footprint is

a function of how many requests are likely, the size of the content object, the QoS desired for

delivery, and the level of CDN service ordered by the customer. In block 1612, the policy is

20 passed variables that manage propagation of the content objects to accomplish a desired

footprint. The variables would updates a disposition PRS parameter accordingly in the policy.

[0082] In block 1616, the policy implementing the footprint change for the content objects

experiencing the quickest changes is performed by the policy manager 504. The bricks 130 to

store or delete in each tag or tagset group are determined in block 1620. The tag and tagsets

25 chosen as criteria define the footprint even though the metadata directoiy 275 chooses the

individual bricks 130 that have the tag or tagset assigned to it. The policy adds or deletes copies

of the content objects with the highest acceleration accordingly.

[0083] Referring next to FIG. 16B, a flowchart of an embodiment of a process 1600-1 for

elastically managing propagation of content objects is shown. Unlike the embodiment of FIG.

30 16A, this embodiment measures the velocity as a function of the popularity metadata. When the

24

20
11

20
32

68

04
 Ju

l 2
01

1

velocity changes, a policy triggers a reevaluation of the footprint in block 1603. The velocity

may have to change by a certain percentage before triggering the reevaluation or may be checked

periodically. Other embodiments could measure poor QoS feedback from end user systems 102

or complaints before modifying the footprint in block 1608. When the footprint changes,

5 processing continues through the remainder of the blocks in a manner similar to FIG. 16A.

[0084] With reference to FIG. 17, a flowchart of an embodiment of a process 1700 for using

policies to change the jurisdiction used to process a content object is shown. The POP 120

where the content object lands can be different from where it is processed and stored. Policies

are used to accomplish customized processing for the different movements of a source file and

10 its various processed versions. Resources 134 or bricks 130 may be less costly or underutilized

in different parts of the CDN 110. For example, transcoder resources in India could be

underused in the middle of the day in the United States due to the time differences. A policy

could move transcodes to resources 134 in India.

[0085] The depicted portion of the process 1700 begins in block 1704 where the customer

15 manually or automatically provides the content object to a landing pad 210 in one jurisdiction. A

jurisdiction could be any legal, geographical or political boundary in this embodiment. The

demarcations of a jurisdiction can be a custom geography perhaps defined in a license or other

agreement. It is determined in block 1708 that a jurisdictional policy is active and applicable to

the content object. In block 1712, the jurisdictional domain to perform the processing defined in

20 the policy is determined. The processing could be a resource 134 and/or a brick 130. The

content object is sent to brick 130 and/or resource 134 in target jurisdictional zone or domain. In

block 1720, the content object is processed in the chosen jurisdictional zone 1720.

[0086] In block 1724, the disposition PRS parameter defining how to store the content object is

analyzed. The jurisdictional zone for storage of the processed file can be different from the

25 jurisdictional zone that received the file and processed the file. Bricks 130 with the proper tags

or tagsets of the jurisdictional zone are selected from to assign individual bricks 130. In other

examples, the policy may require that certain files be processed in the same jurisdictional zone as

received. Further, embodiments may require receipt, processing and storage to be in the same

jurisdictional zone. Without a policy restricting movement, processing and storage could choose

25

20
11

20
32

68

04
 Ju

l 2
01

1

resources and bricks outside the jurisdictional zone based upon, for example, those resources and

bricks being under utilized.

[0087] A number of variations and modifications of the disclosed embodiments can also be

used. For example, the above embodiments have a particular arrangement of the CMA, but

5 blocks could be combined or split in any manner to still achieve the same functionality.

Additionally, portions of the CMA could reside outside of the CDN. For example, the PRS,

metadata directory, and/or content mapper could be maintained outside of the CDN.

[0088] Specific details are given in the above description to provide a thorough understanding

of the embodiments. However, it is understood that the embodiments may be practiced without

10 these specific details. For example, circuits may be shown in block diagrams in order not to

obscure the embodiments in unnecessary detail. In other instances, well-known circuits,

processes, algorithms, structures, and techniques may be shown without unnecessaiy detail in

order to avoid obscuring the embodiments.

[0089] Implementation of the techniques, blocks, steps and means described above may be

15 done in various ways. For example, these techniques, blocks, steps and means may be

implemented in hardware, software, or a combination thereof. For a hardware implementation,

the processing units may be implemented within one or more application specific integrated

circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs),

programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors,

20 controllers, micro-controllers, microprocessors, other electronic units designed to perform the

functions described above, and/or a combination thereof.

[0090] Also, it is noted that the embodiments may be described as a process which is depicted

as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram.

Although a flowchart may describe the operations as a sequential process, many of the

25 operations can be performed in parallel or concurrently. In addition, the order of the operations

may be re-arranged. A process is terminated when its operations are completed, but could have

additional steps not included in the figure. A process may correspond to a method, a function, a

procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its

termination corresponds to a return of the function to the calling function or the main function.

26

20
11

20
32

68

04
 Ju

l 2
01

1

[0091] Furthermore, embodiments may be implemented by hardware, software, scripting

languages, firmware, middleware, microcode, hardware description languages, and/or any

combination thereof. When implemented in software, firmware, middleware, scripting language,

and/or microcode, the program code or code segments to perform the necessary tasks may be

5 stored in a machine readable medium such as a storage medium. A code segment or machine

executable instruction may represent a procedure, a function, a subprogram, a program, a routine,

a subroutine, a module, a software package, a script, a class, or any combination of instructions,

data structures, and/or program statements. A code segment may be coupled to another code

segment or a hardware circuit by passing and/or receiving information, data, arguments,

10 parameters, and/or memory contents. Information, arguments, parameters, data, etc. may be

passed, forwarded, or transmitted via any suitable means including memory sharing, message

passing, token passing, network transmission, etc.

[0092] For a firmware and/or software implementation, the methodologies may be

implemented with modules (e.g., procedures, functions, and so on) that perform the functions

15 described herein. Any machine-readable medium tangibly embodying instructions may be used

in implementing the methodologies described herein. For example, software codes may be

stored in a memory. Memory may be implemented within the processor or external to the

processor. As used herein the term “memory” refers to any type of long term, short term,

volatile, nonvolatile, or other storage medium and is not to be limited to any particular type of

20 memory or number of memories, or type of media upon which memory is stored.

[0093] Moreover, as disclosed herein, the term "storage medium" may represent one or more

memories for storing data, including read only memory (ROM), random access memory (RAM),

magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash

memory devices and/or other machine readable mediums for storing information. The term

25 "machine-readable medium" includes, but is not limited to portable or fixed storage devices,

optical storage devices, wireless channels, and/or various other storage mediums capable of

storing that contain or carry instruction(s) and/or data.

[0094] While the principles of the disclosure have been described above in connection with

specific apparatuses and methods, it is to be clearly understood that this description is made only

30 by way of example and not as limitation on the scope of the disclosure.

27

[0095] Throughout this specification and the claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be

understood to imply the inclusion of a stated integer or step or group of integers or steps but not

the exclusion of any other integer or step or group of integers or steps.

5 [0096] The reference to any prior art in this specification is not, and should not be taken as, an

acknowledgement or any form of suggestion that the prior art forms part of the common general

knowledge in Australia.

20
11

20
32

68

04
 Ju

l 2
01

1

28

CLAIMS

20
11

20
32

68
 04 Ap

r 2
01

2

WHAT IS CLAIMED IS:

1. A content delivery network (CDN) having a plurality of geographically

distributed points of presence (POPs) for processing content objects with a plurality of resources,

the CDN comprising:

a landing pad to receive a content object from a client;

one or more databases comprising a list of the plurality of resources, each of the

plurality of resources being associated with one or more tags, each tag indicating a characteristic

of the associated resource, wherein the one or more tags includes at least one non-geographic tag

that identifies a physical property of the resource or characterizes the associated resource’s

performance of processing content objects; and

a policy reconciliation service (PRS) for maintaining and processing policies, the

PRS being coupled to the one or more databases, the PRS comprising:

a policy store comprising a plurality of policies, each of the plurality of

policies defining specific processing of content objects, the plurality of policies including

a first policy and a second policy,

wherein each of the first policy and the second policy comprises an

applicability parameter indicating criteria that a content object must satisfy in

order for the content object to be processed in accordance with the respective first

or second policy, the criteria indicated in the first policy’s applicability parameter

being different from the criteria indicated in the second policy’s applicability

parameter,

wherein the first policy comprises a disposition parameter

indicating criteria that a resource must satisfy in order for the resource to effect

the first policy, and

wherein the first policy comprises one or more mutators, each

mutator comprising a template for inclusion of an address of a resource and/or a

location of a received content object; and

a policy manager configured to:

determine that the first policy is applicable to the received content

object and that the second policy is not applicable to the received content object,

29

20
11

20
32

68

04
 A

pr
 2

01
2

the determination being based on the first policy’s criteria and metadata related to

the received content object, a requester of the received content object and/or a

provider of the received content object at the CDN; and

identify a resource of the plurality of resources for effecting the

first policy based on the disposition parameter and a tag associated with the

resource and with the first policy.

2. The CDN having a plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 1, wherein the mutator

comprises a template for a universal resource locator.

3. The CDN having a plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 1, wherein the

resource comprises an HTTP-based application programming interface.

4. The CDN having a plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 1, wherein the specific

processing defined in the first policy comprises storing the content object.

5. The CDN having a plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 1, wherein the one or

more databases comprise the metadata related to a content object, a requester of the content

object and/or a provider of the content object at the CDN.

6. The CDN having a plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 1, wherein one of the

one or more mutators comprises a template for inclusion of the address of the resource and a

location of the received content object.

7. The CDN having a plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 1, wherein the

resource comprises a storage device located outside of the CDN.

30

20
11

20
32

68

04
 A

pr
 2

01
2

8. A method for processing content objects with a plurality of resources

associated with a content delivery network (CDN) having a plurality of geographically

distributed points of presence (POPs), the method comprising:

enrolling the plurality of resources to be accessible from the CDN;

categorizing each of the plurality of resources using a plurality of tags that

categorize the plurality of resources, and the plurality of resources includes a resource, wherein

the one or more tags includes at least one non-geographic tag that identifies a physical property

of the resource or characterizes the associated resource’s performance of processing content

objects;

receiving selection of a policy from a plurality of policies, wherein the plurality of

policies define processes to perform on content objects stored at the CDN, wherein the selected

policy includes an applicability criteria and a call to the resource;

receiving, at the CDN, metadata related to a content object, a requester of the

content object and/or a provider of the content object

receiving the content object for storage at the CDN;

determining that the policy is applicable and that other policies are not applicable

to the received content object through analysis of the metadata and/or the applicability criteria;

and

calling the resource according to the call in the policy to cause the resource to

perform specified processing on the received content object.

9. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, wherein calling the resource comprises embedding a delivery path into a uniform

resource locator (URL).

10. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, further comprising:

detecting a change to the metadata or one of the plurality of resources associated

with one of the tags; and

determining if the policy still applies to the received content object.

31

20
11

20
32

68

04
 A

pr
 2

01
2

11. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, further comprising choosing the resource from a larger group of resources all associated

with a tag from the plurality of tags, wherein the tag is identified in the policy.

12. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, further comprising the resource:

parsing a file location for the received content object from the call;

parsing a variable from the mutator;

reading the received content object from the file location; and

processing the received content object according to the variable with the resource.

13. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, further comprising resolving overlap between the policy and the other policies found

applicable to the content object.

14. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, wherein:

the applicability criteria specifies a tag, and

the tag is used to select the resource from a plurality of resources.

15. The method for processing content objects with the plurality of resources

associated with the CDN having the plurality of geographically distributed POPs as recited in

claim 8, wherein the specified processing includes storing the received content object on a

storage medium that has a tag specified in the policy.

16. A content delivery network (CDN) having a plurality of geographically

distributed points of presence (POPs) for processing content objects with a plurality of resources,

the CDN comprising two or more hardware servers programmed for:

enrolling the plurality of resources to be accessible from the CDN;

32

20
11

20
32

68

04
 A

pr
 2

01
2

categorizing each of the plurality of resources using a plurality of tags that

categorize the plurality of resources, and the plurality of resources includes a resource, wherein

the one or more tags includes at least one non-geographic tag that identifies a physical property

of the resource or characterizes the associated resource’s performance of processing content

objects;

receiving selection of a policy from a plurality of policies, wherein the plurality of

policies define processes to perform on content objects stored at the CDN, wherein the selected

policy includes an applicability criteria and a call to the resource;

receiving, at the CDN, metadata related to a content object, a requester of the

content object and/or a provider of the content object;

receiving the content object for storage at the CDN;

determining that the policy is applicable and that other policies are not applicable

to the received content object through analysis of the metadata and/or the applicability criteria;

and

calling the resource according to the call in the policy to cause the resource to

perform specified processing on the received content object.

17 The CDN having the plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 16, wherein the

resource is a storage brick.

18. The CDN having the plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 16, wherein at least

some of the plurality of resources are located outside the CDN.

19. The CDN having the plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 16, wherein the

resource is a storage medium, an application program interface (API) to a software processor, a

transcoder, a compression engine, an ad insertion function, a syndication engine, an

cryptoengine, a thumbnail generator, an ad insertion engine, or a content syndication service.

33

20
11

20
32

68

04
 A

pr
 2

01
2

20. The CDN having the plurality of geographically distributed POPs for

processing content objects with a plurality of resources as recited in claim 16, wherein the policy

further includes a storage disposition defining how to store the received content object.

21. A method for processing content objects with a plurality of resources

associated with a content delivery network substantially as herein described.

34

20
11

20
32

68

04
 Ju

l 2
01

1

20
11

20
32

68

04
 Ju

l 2
01

1

2/19

i
I·

120-1

FIG. 2A

20
11

20
32

68

04
 Ju

l 2
01

1

3/19

120-1

FIG. 2B

ο
(Μ

4/19

20
11

20
32

68

04
 Ju

l

Content
Cache

< ♦

_r!04
Legacy
Edge

Cache
220

— 275

Metadata
Directory ♦

■**
•
ft
a
•
a
a
a

a
a
t*

t
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

324-1328Ί

Lookup — Mapper
Listener w

Cabinet

£
Lookup
Listener

k

245

328-η

<■ * Mapper
Cabinet

a

324-n J
a
t
a
a
a
a
a
a
a
a
»
a
ft

130-1

(y, v v

Mapper -t..

Transport
4----------------

Brick

315
j:

Legacy
r

Edge --------------- —> Brick:
Host

FIG. 3A

20
11

20
32

68

04
 Ju

l 2
01

1

5119

FIG. 3B

ο
(Μ

24

6/19

20
11

20
32

68

04
 Ju

l

Switching
Fabric

1'
I
I
I
I

B
I
I
I
I
I
fe
I
I
B
I

130

«κ

1 1—J Γ e—'—
Brick Native File fe. Native

Daemon Interface Storage

FIG. 4Α

FIG. 4B
600

t
t
t

»

*

*
ι
i.
*

»
»

»
t
t
1
I
ft
1
I
ft
*

.....................
□ A8S Movie Channel
□ ACME Town Info

□ Prescott
Γ~1 Flagstaff
□Tempe

ϋ! □ Phoenix
w □Winslow
® □Scull Valley
iti □Tucson
M ^3001150916

ft'

I

604
«·»**»·»*******»*■ »:** *

; Silverthorne Trails.epub !
* Keystone Boarding.epub ;
Ϊ Adventneer.epub ;
J Adventneer Audio.mp3 J
Lw *«******* ******■■■···!

FIG. 6

ο
(Μ

20
11

20
32

68

04
 Ju

l

FIG. 5

ο
(Μ

8/19

20
11

20
32

68

04
 Ju

l

I I
FIG. 7

20
11

20
32

68

04
 Ju

l 2
01

1

Edge Server

9/19

Content Directory

FIG. 8

20
11

20
32

68

04
 Ju

l 2
01

1

10/19

900X

FIG. 9

ο
(Μ

11/19

20
11

20
32

68

04
 Ju

l

904

FIG. 10

20
11

20
32

68

04
 Ju

l 2
01

1

12ί1θ

FIG. 11

912X

ο
(Μ

13/19

20
11

20
32

68

04
 Ju

l

1200-1

FIG. 12Α

FIG. 12B FIG. 12C

20
11

20
32

68

04
 Ju

l 2
01

1

14/19

20
11

20
32

68

04
 Ju

l 2
01

1

15/19

1400X

FIG. 14

I
20

11
20

32
68

04

 Ju
l 2

01
1

16/19

FIG. 15

$ -
20

11
20

32
68

04

 Ju
l 2

01
1

17/19

FIG. 16A

20
11

20
32

68

04
 Ju

l 2
01

1

16/19

FIG. 168

20
11

20
32

68

04
 Ju

l 2
01

1

ΪΘΠ9

1700

FIG. 17

