

Memória descritiva referente à patente de invenção de ICI AME-RICAS INC., norte-americana, (estado: Delaware), industrial e comercial, com sede em Concord Pike and New Murphy Road, Wilmington, Delaware 19897, Estados Unidos da América, (inventor: John Anthony Schwartz, residente nos Estados Unidos da América), para "PROCESSO PARA A PREPARAÇÃO DE PIRAZINA AMIDAS E DE COMPOSIÇÕES FARMACEUTICAS QUE AS CONTEM"

Memória descritiva

Antecedentes da Invenção

A presente invenção refere-se a novas pirazino amidas que são adequadas como diuréticos eucalémi-cos.

Existe uma variedade de agentes disponível para utilização no tratamento da hipertensão. Uma classe particular de tais agentes são diuréticos. Os diuréticos utilizam-se para vários objectivos, por exemplo, redução do fluído do corpo e redução dos níveis de sódio no corpo, por exemplo, no tratamento de hipertensão e edemas. Um exemplo de um diurético é cloridrato de 2-(amino-metil)-4-(1,1-di-metil-etil)-6-iodo-fenol de fórmula I

discutida na Patente dos U.S. Nº 4.029.816 de Cragoe et al; e Stokker, G.E., <u>J. Red. Chem</u>, 1980, 23, 1414-1427. Os diuréticos adicionais incluem hidroclorotiazida e clorotalidona.

Um problema com alguns diuréticos é a redução dos níveis de potássio no soro e as complicações provocadas pela reduição dos níveis de potássio abaixo das necessidades para manutenção das funções fisiológicas. Assim, alguns diuréticos utilizam-se em conjunção com um agente de conservação do potássio tal como mono-cloridrato de 3,5-di-amino-N-lamino-imino-metil)-6-cloro-pirazina carboxalmida, di-hidrato de fórmula II

apresentado na Patente dos U.S. Nº 3.577.418 de Cragoe et al., que se utiliza em conjunção com, por exemplo, diuréticos de tiazida.

Assim, há a necessidade de um agente simples que seja um diurético eficaz mas que conserve o potássio (iso-calémico, também chamado eucalémico) de maneira a solucionar os problemas associados com hipocalémia (falta de potássio) e hipercalémica (excesso de potássio) sem a necessidade de se tomarem múltiplos agentes terapêuticos.

A patente dos U.S. 4.085.211 descreve uma série de pirazino-carboxamidas como agentes eucalémicos que possuem propriedadeqs diuréticas e natriuréticas. Descobriu-se agora (e isto é uma base para esta invenção) que, surpreendentemente, determinados amino-metil-fenois que contêm pirazino-amidas de fórmula III definida adiante possuem propriedades diuréticas eucalémicas e são importantes no tratamento de doenças e estados em que é necessário um efeito diurético eucalémico, por exemplo no tratamento de edemas, hipertensão e/ou estados relacionados.

SUMÁRIO DA INVENÇÃO

A presente invenção refere-se a compostos da fórmula III

em que

R representa hidrogénio ou metilo;

R⁴ é escolhido num grupo constituído por hidrogénio e metilo; A representa cloro ou bromo;

Z é escolhido num grupo constituído por cloro, bromo e iodo; e n é 1 ou 2;

e os seus sais farmaceuticamente aceitáveis.

Significações preferenciais para os grupos atrás descritos são:

para R⁴: metilo
para Z: bromo
para A: cloro;

Os compostos preferenciais são:

- a) 3,5-di-amino-N-/2-//2-//2-//2-//3-bromo-5-(1,1-di-meti1-eti1)-2-hidroxi-feni1_/meti1_/amino_/-eti1_/amino_/-2-oxo-eti1_/meti1-amino_/eti1_/-6-cloro-pirazina-carboxa-mida; e
- b) 3,5-di-amino-N-/2-//3-//2-//3-bromo-5-(1,1-di-me-ti1-eti1)-2-hidroxi-feni1_/meti1_/amino_/-eti1_/amino_/-3--oxo-propi1_/meti1-amino_/eti1_/-6-cloro-pirazina-carboxa-mida.

É de notar que determinados compostos de fórmula III, por exemplo os que contêm um átomo de carbono assimetricamente substituído, podem existir em, e isolarem-se em, formas opticamente activas e racémicas. Alguns compostos podem apresentar polimosfismo. É entendido que a presente invenção abrange qualquer forma racémica, opticamente-activa, tautomérica, polimórfica ou estereo-isomérica, ou suas misturas, formas essas que possuem as propriedades atrás descritas, sendo bem conhecido na especialidade como se preparam formas opticamente-activas (por exemplo, por resolução da forma racémica ou por síntese de materiais de partida opticamente - activos).

Os compostos da presente invenção podem preparar-se por métodos que incluem os conhecidos na es-

pecialidade. Para os métodos descritos adiante "PyZ" tem o significado apresentados na fórmula V.

Halo ou halogéneo representa cloro, bromo ou iodo. Estes métodos para preparação de um composto da fórmula III incluem o seguinte:

(A) Alquilação por redução de uma pirazinamido-amina seleccionada da fórmula XI

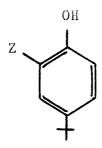
com um composto carbonilo apropriado da fórmula (XII) (isto \acute{e} , um salicilalde \acute{i} do da fórmula XII para R = hidrog \acute{e} nio ou uma cetona da fórmula XII para R = metilo):

$$Z = \bigcup_{C \in CH_3} \bigcup_{3}^{OH} \bigcup_{C-R} XII$$

num solvente tal como etanol ou metanol, de preferência, peformação <u>in situ</u> de uma imina intermediária da fórmula XVII

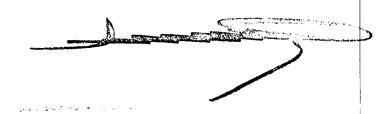
(que se formou mas não se isolou) e redução com um agente de redução tal como o boro-hidreto de sódio ou hidrogénio e um catalisador. Recupera-se o produto de reacção deseja-do por diluição da mistura de reacção com água precipitar o produto, que se pode purificar por cristalização a partir dum solvente apropriado, tal como o metanol ou etanol.

(B) Alquilação de uma pirazinamido-amina seleccionada da fórmula XI


com um halogeneto de benzilo apropriado da fórmula XVIII

e, de preferência, na presença de uma base tal como, por exemplo, carbonato de potássio ou tri-etil-amina, por exem-

plo, durante l a 5 dias, por exemplo, à temperatura ambiente. Utiliza-se um solvente tal como o metanol ou di-metil-formamida. Isola-se o produto de reacção desejado por diluição da mistura de reacção com água para precipitar o produto, que se pode purificar por cristalização a partir de um solvente apropriado, tal como metanol ou etanol.


(C) Reacção de uma pirazinamido-amina de fórmula XI com um fenol de fórmula XIX:

e um aldeído de fórmula R.CHO, isto é com formaldeído (convenientemente como solução de formalina) ou acetaldeído e aquecimento a temperaturas até 100° C durante 1 a 5 dias. Utiliza-se em solvente tal como tetra-hidrofurano ou dioxano. Recupera-se o produto de reacção desejado por evaporação do solvente e purifica-se por cristalização a partir de um álcool tal como etanol.

(D) Reacção de um éster de pirazinamida particular da fórmula IX

em que L é um grupo alquilo (C_1-C_3) tal como, por exemplo, metilo ou etilo, com uma etileno-di-amina benzílica da fórmula XX:

por aquecimento em conjunto a uma temperatura de 140°C, por exemplo, de 1 a 5 horas. O produto desejado pode purificar-se por cristalização a partir de um álcool tal como o etanol. As etileno-di-aminas benzílicas da fórmula XX prepararam-se misturando uma di-amina alifática com um dos grupos amino adequadamente protegido (por exemplo, uma ftalimida ou butil-oxi-carbonilo (BOC) da fórmula XIII

$$\begin{array}{c}
0 \\
| \\
\text{Hal-}(CH_2)_n - C - \text{Hal}
\end{array}$$

em que Q é grupo de protecção adequada tal como o BOC ou ftalimida, com um composto carbonilo apropriado da fórmula XII num solvente tal como o etanol ou metanol. As aminas intermedia da fórmula XXI

não são isoladas mas agitadas com um agente de redução tal

como o boro-hidreto de sódio ou hidrogénio e um catalizador. Recupera-se o produto desejado por diluição da mistura de reacção com água para precipitar o produto, que se pode purificar por cristalização a partir de um solvente de hidrocarboneto.

A remoção do grupo de protecção proporciona a etileno-di-amina benzílica desejada, da fórmula XX

(E) Para um composto da fórmula III em que R representa metilo, faz-se o tratamento da imina intermediária correspondente da fórmula XVII em que R representa o hidrogénio, com um agente organometálico tal como, por exemplo, brometo de metil-magnésio, cloreto de metil-magnésio ou iodeto de metil magnésio.

O produto desejado pode purificar-se como descrito no Método (A).

Uma imina intermediária da fórmula XVII em que R representa o hidrogénio pode proporcionar-se por um método convencional, isolada por evaporação do solvente, e dissolvida de novo num solvente inerte apropriado tal como, por exemplo, éter ou tetra-hidrofurano, por reacção com um reagente organo-metálico.

- (F) Halogenação de uma amino-metil-fenol-pirazinamida (correspondente a um composto da fórmula III, mas com Z=hidrogénio) com um agente de halogenação num solvente tal como ácido acético ou cloreto de metileno. Recupera-se o produto desejado por evaporação do solvente e cristalização a partir de um solvente apropriado como o metanol ou etanol.
- (G) Desalquilação de uma amino-metil-aril-éter-pirazinamida escolhida da fórmula XXII:

em que R⁵ é alquilo inferior, tal como, por exemplo, metilo, com um agente de desalquilação tal como tio-etóxido de lítio ou tri-brometo de boro num solvente tal como di-metil-formamida ou cloreto de metileno respectivamente.

 $\label{eq:purifica-se} \text{Purifica-se o produto desejado como} \\ \text{descrito no m\'etodo (A).}$

Os intermediários da fórmula XI podem proporcionar-se como se segue.

Prepararam-se os ácidos pirazinóicos da fórmula Pyz CO₂H por hidrólise dos ésteres de metilo correspondentes da fórmula Pyz CO₂CH₃. Realiza-se normalmente a hidrólise utilizando uma solução de base aquosa tal como hidróxido de sódio e um solvente tal como isopropanol ou etanol e agita-se a mistura à temperatura ambiente, durante la 24 horas. Isola-se então, o ácido pirazinóico por arrefecimento e acidificação da mistura com um ácido clorídrico.

Os imidazóis de pirazinoilo da fórmula

VI

preparam-se por reacção dos ácidos correspondentes da fórmula PyzCO₂H com l,l-carbonil-di-imidazol (ligeiramente em excesso) num solvente como di-metil-formamida ou metanol à temperatura ambiente e agitando a mistura durante 10 a 24 horas. Isolam-se os imidazóis de pirazinoilo por diluição com metanol ou água.

As pirazinamidas de fórmula VII

preparam-se por mistura de imidazóis de pirazinoílo particulares com uma di-amina alifática de fórmula VIII

e agitação à temperatura ambiente durante 5 a 24 horas. Pode adicionar-se um solvente tal como tetra-hidrofurano ou pode utilizar-se um excesso da di-amina como solvente. Recupera--se o produto de reacção desejado por evaporação do solvente para proporcionar o produto que se pode purificar por cristalização a partir de um álcool tal como etanol.

Os ésteres de pirazinamida da fórmula

ΙX

$$\begin{array}{c|cccc}
0 & H & R^4 & 0 \\
\parallel & \parallel & \parallel & \parallel \\
Pyz-C-N-(CH_2)_2-N(CH_2)_n & C-O-L
\end{array}$$
IX

preparam-se por mistura de uma pirazinamida particular da fórmula VII com um bromo-éster de alquilo apropriado da fórmula X

$$\begin{array}{c}
0 \\
\parallel \\
\text{Br}(CH_2)_n C-O-L
\end{array}$$

(cerca de 5-10% em excesso) em que L representa alquilo (C_1-C_3) e uma base tal como carbonato de potássio ou tri-etil-amina durante 1 a 2 dias à temperatura ambiente. Utiliza-se um solvente tal como o metanol ou di-metil-formamida. Isola-se o éster de pirazinamido por diluição deste com água. Pode purificar-se por recristalização a partir dum solvente apropriado tal como o etanol. /* Nota: Quando n=2 na fórmula X um éster acrílico da fórmulka Xa

pode ser substituído pelo bromo-éster_/

As pirazinamido-aminas da fórmula XI

preparam-se por mistura de um éster de pirazinamido particu-

lar com etileno-di-amina da fórmula ${\rm H_2N-(CH_2)_2-NH_2}$ (duplamente em excesso) e aquecimento à temperatura de $100^{\rm O}{\rm C}$, de preferência cerca de $40^{\rm O}{\rm C}$, durante 1 a 24 horas. Pode adicionar-se um solvente tal como um álcool, por exemplo, 2-propanol, ou um excesso de amina pode utilizar-se como solvente. Recuperou-se o produto de reacção desejado por evaporação do solvente e excesso de di-amina.

Outro método para a preparação de uma pirazinamido-amina da fórmula XI começa com uma di-amina alifática com um dos grupos amino adequadamente protegido (por exemplo, quer uma ftalimida ou butil-oxi-carbonilo (BOC). Tal composto é apresentado na fórmula XIII:

$$H_2N-(CH_2)_2-NH-Q$$
 XIII

EM QUE Q é um grupo de protecção adequado tal como BOC ou ftalimida. A reacção desta di-amina mono-protegida com um halogeneto de halo-alcanoilo da fórmula XIV:

$$\begin{array}{c|c}
0 \\
\parallel \\
\text{Ha1-(CH}_2)_n - \text{C-Ha1}
\end{array}$$
XIV

em que Hal representa cloro, bromo ou iodo, num solvente tal como tetra-hidrofurano ou di-oxano, à temperatura ambiente, na presença de um neutralizador de ácido tal como tri-etil--amina ou carbonato de potássio ou N-metil-morfolina, proporciona a di-amina acilada da fórmulaz XV:

$$\begin{array}{c}
0 \\
\parallel \\
\text{Hal-(CH}_2)_n - \text{C-NH-(CH}_2)_2 - \text{NH-Q}
\end{array}$$
XV

que se pode purificar por destilação. O tratamento da di-amina acilada com uma pirazinamida adequada da fórmula VII e
uma base tal como a tri-etil-amina ou carbonato de potássio
quer puro ou num solvente tal como tetra-hidrofurano ou di-metil-formamida, proporciona pirazinamido-amina protegida
apropriada. A pirazinamido-amina protegida da fórmula XVI

isola-se por diluição com água. Pode purificar-se por cristalização a partir dum solvente apropriado.

A remoção do grupo de protecção proporciona a pirazinamido-amina da fórmula XI desejada.

Os sais farmaceuticamente aceitáveis podem obter-se, utilizando procedimentos padrão bem conhecidos na especialidade, por exemplo, por reacção de um composto de fórmula III com um ácido adequado para proporcionar um anião fisiológicamente aceitável, tal como, por exemplo, ácido sulfúrico, ácido clorídrico ou ácido cítrico.

Como referido anteriormente, os compostos desta invenção ou um sal correspondente, podem ser

adequados nos tratamentos de hipertensão ou edema e particularmente como diuréticos, especialmente diuréticos eucalémicos. Os compostos de fórmula III são importantes como padrões farmacológicos para o desenvolvimento e normalização de novos modelos de doenças e ensaios para utilização no desenvolvimento de novos agentes terapêuticos para tratamentos de hipertensão.

Quando se utiliza no tratamento de uma ou várias das doenças atrás referidas, um composto de formula III ou um seu sal pode geralmente administrar-se como uma composição farmacêutica apropriada que consiste de um composto de fórmula III como definido anteriormente ou um seu sal em conjunto com um diluente ou veículo farmacêuticamente aceitável, sendo a composição adaptada para a via particular de administração escolhida. Tais composições proporcionam-se como um aspecto adicional desta invenção. Podem obter-se por utilização de procedimentos e excipientes e ligantes convencionais e podem apresentar-se numa variedade de formas de dosagem. Por exemplo, podem apresentar-se na forma de pastilhas, cápsulas, soluções ou suspensões para administração oral, na forma rectal; na forma de soluções e ou suspensões estéreis para administração por injecção intravenosa ou intramuscular ou infusão; e na forma de pos em conjunto com diluentes sólidos inertes farmaceuticamente aceitáveis tais como lactose..

Para administração oral pode utilizar-se convenientemente uma pastilha ou cápsula contendo até
250 mg (e tipicamente 5 a 100 mg) de um composto de fórmula
III ou um seu sal. De maneira semelhante para injecção intravenosa ou intramuscular ou infusão pode utilizar-se convenientemente uma solução ou suspensão estéril contendo até 10%
p/p (e tipicamente 0,05 a 5% p/p) de um composto de fórmula
III ou um seu sal.

A dose de composto de fórmula III ou de um seu sal, a administrar varia, necessariamente, de acordo com princípios bem conhecidos na especialidade, tendo em conta a via de administração e a gravidade do estado e o tamanho e idade do paciente sob tratamento. Contudo, regra geral, um composto de fórmula III ou um seu sal administra-se a um animal de sangue quente (tal como o homem) de modo que receba uma dose na gama de, por exemplo, 0,05 a 25 mg/Kg (e normalmente 0,5 a 10 mg/Kg).

As propriedades diuréticas e eucalémicas de um composto de fórmula III podem demonstrar-se utilizando ensaios padrão.

Ensaio A

Método: Escolheram-se caes Beagle fêmeas de uma colonia de criação existente (peso na gama de 9,0-13,0 Kg), colocaram--se numa dieta especial de comida para cão certificada e uma porção de Dieta de Prescrição P/D de comida para cão, e observaram-se para a adequabilidade para treino. Escolheram--se caes deste grupo para treino. Durante um período de uma a duas semanas permitiu-se que os caes desenvolvessem gradualmente tolerância à limitação da luz, em pé ou sentados num suporte com gancho. O tempo máximo no gancho é aproximadamente 9 horas. Realizou-se também durante o período de treino, a aceitação sem tensão, do processo de cateterização da bexiga. Utilizaram-se catéteres estéreis Bordex (tamanhos 8, 10 pediátricos). Os caes Beagle fêmeas conscientes com acesso livre a água, prenderam-se durante a noite. Colocaram-se os caes em suportes com gancho (Alice Jing Chatham) e cateterizaram-se. Permitiu-se um curto período de equilíbrio de 30 minutos para a urina residual ser drenada da bexiga. Recolheu--se a urina expelida espontâneamente em tubos de 50 ml pre--pesados (Falcon). Dois períodos de controlo de 1 hora são seguidos de dosagem oral com cápsulas de gelatina contendo

compostos de ensaio ou diuréticos padrão. Alternativamente alguns compostos administram-se via oral por tubos em quantidades de 10 ml. Não foi dada água. Recolheu-se a urina expelida espontâneamente durante 6 horas adicionais para um período total de recolha de oito horas. Depois disto, os cães voltaram às gaiolas e alimentaram-se e deu-se-lhes água. As experiências realizara-se umas vezes em cada duas semanas em cada cão, assegurando assim a recuperação adequada entre os testes. As amostras de urina pesaram-se e mediu-se o volume. No dia seguinte fez-se a análise por electrólise da urina (sódio, potássio, cloretos). As análises, por electrólise, da urina mostraram resultados semelhantes aos de outros diuréticos excepto que não houve excessiva perda de potássio.

Ensaio B

Método: Utilizaram-se cães Beagle da colónia de criação estabelecida de Marshall Animal Facility ou White Eagle Laboratories. Cães Beagles saudáveis machos e/ou fêmeas de 9-13 Kg de peso de corpo alojaram-se de acordo com o procedimento de operação padrão (SOP) dos Serviços Veterinários e colocaram-se numa dieta de comida seca para cão "certificada" complementada com uma porção de dieta para cachorro, Prescrição de Dieta P/D de comida para cão, com livre acesso à água. É necessário um período mínimo de equilíbrio de duas semanas, nestas dietas antes de se tentar a determinação do nível basal por electrólise.

Antes de se iniciar a dosagem da droga, obtiveram-se seis amostras de sangue de controlo para estabelecer uma gama para o nível basal electrolítico. Avaliaram-se as amostras de controlo para a consistência dos níveis de K^+ no plasma, e é normalmente desejável uma gama inferior a 0,25 mEg de K^+ . Historicamente têm-se obtido níveis de K^+ no plasma na gama de 4,00 - 4,30 mEq. Qualquer cão que não se aproxima destes valores é normalmente retirado do estudo.

Procedimento de Amostragem: Obtiveram-se as amostras de plasma por picada na veia safena ou na veia jugular dos membros dianteiros. Utilizou-se uma seringa de 5 cm³ com agulha 20 normalizada para obter uma amostra de 5 cm³. Conservou-se a amostra com 100 ul de 1000 unidades de heparina. Centrifugaram-se as amostras durante dez minutos a 2500 rpm. Pipetou-se, então, o plasma num tubo apropriadamente etiquetadas e congelaram-se todas as amostras para aguardarem a determinação electrolítica.

Horário e Preparação da Dosagem da Droga: Depois de se analisarem as amostras de controlo, dividiram-se os caes, ao acaso, em grupos, permitindo um mínimo de quatro cães por grupo de droga. Os compostos de teste dosaram-se numa base de mg/Kg. Utilizaram-se cápsulas de gelatina de tamanho "2" 00 e "3" 000. Alternativamente, alguns compostos administraram-se via oral por tubos. Suspenderam-se os compostos em 10 ml de solução salina por tratamento com ultra-sons. Determinou-se o peso do cão pela média dos valores durante os três dias de controlo. A altura do dia para dosagem da droga é consistente através do estudo. As amostras são recolhidas nos dias 4, 7, 11, 14, 21 e 28. A dosagem efectua-se a meio da manha (10 a 11 horas) e o sangue retira-se aproximadamente três horas depois da dosagem (13 a 14 horas). (As cápsulas de droga são administradas oralmente seguidas de 5-10 ml de água de uma seringa com uma agulha de administração oral, ligada). Os hematocritos retiram-se com tubos capilares microhematocritos e leram-se imediatamente a seguir à recolha de amostras de plasma.

<u>Dados de Avaliação</u>: Analisaram-se as amostras de plasma para o potássio como descrito atrás, e não apresentaram variação substancial no potássio sérico.

Regra geral, os compostos desta invenção que foram ensaiados apresentaram um perfil de um diurético eucalémico. Os compostos desta invenção que foram ensaia-

dos não apresentaram sinais evidentes da toxicidade a seguir à administração oral de doses múltiplas dadose terapeuticamente recomendada.

A invenção é, agora, ilustrada pelos seguintes exemplos não limitativos nos quais, excepto se estabelecido de outro modo:

- (i) todas as operações se executaram à temperatura ambiente, isto é, à temperatura na gama de $18-25^{\circ}$;
- (ii) a evaporação do solvente executou-se utilizando um evaporador rotativo sob pressão reduzida (600-4000 pascais; 4,5--30 mmHg) com uma temperatura de banho até 60°;
- (iii) a cromatografia intermitente executou-se em Merck Kieselgel (Art 9385) e a cromatografia de coluna em Merck Kieselgel 60 (Art 7734); / estes materiais obtiveram-se de E.Merck, Darmstadt, R.F. da Alemanha_/; a cromatografia de camada fina (TLC) executou-se em Analtech, placas de 0,25mm de sílica gel GHLF (Art 21521), obtido de Analtech, Newark, de USA;
- (iv) regra geral, as reacções são seguidas por cromatografia de camada fina (TLC) e os tempos de reacção são dados apenas para ilustração.
- (v) os pontos de fusão não são corrigidos e (d) a decomposição indicada; os pontos de fusão apresentados são os obtidos para os materiais preparados como descrito; o polimorfismo pode originar o isolamento de materiais com diferentes pontos de fusão, em algumas preparações;
- (vi) todos os produitos finais foram essencialmente purificados por TLC e têm um espectro de ressonância magnética nuclear (RMN) satisfatória e dados microanalíticos;

(vii) as producções apresentam-se apenas para ilustração;

(viii) quando apresentados, os dados RMN estão na forma de valores delta para os maiores protões, de diagnóstico apresentados em partes por milhão (ppm) relativamente ao tetra-metil-silano (TMS) como um padrão interno, determinado a 80MHz ou 250MHz utilizando CDC13 ou DMSO-dó como solvente; as abreviaturas convencionais para a forma do sinal utilizadas são, por exemplo; s, simpleto; d, dupleto; m, multipleto; br, faixa, etc; em adição "Ar" significa um grupo aromático ou sinal;

- (ix) os símbolos químicos têm os seus significados normais; utilizaram-se também, as seguintes abreviaturas: v (volume), p (peso), p.f. (ponto de fusão), 1 / litro(s) /, ml (mililitros), g (grama(s)), mg / miligrama(s) /;
- (x) sistemas de/solventes TLC: sistema de solvente A: 25:5:70 (V/V/V) metanol:tri-etil-amina:cloreto de metileno;
- (xi) alguns compostos são referidos por letras, por exemplo
- (A) para a última referência nos Exemplos; e
- (xii) a secagem da fase orgânica realizou-se por rotação com sulfato de sódio.
- (xiii) as proporções de solvente apresentam-se em volume: (volume (V/V).
- (xiv) nos exemplos 1-6, o radical genérico R é hidrogénio.

EXEMPLO 1

3,5-di-amino-N-/2-/2-//2-//3-bromo-5-(1,1-di-metil-etil)--2hidroxi-fenil/metil/amino/etil/amino/-2-oxo-etil/metil-amino/etil/-6-cloro-pirazino-carboxamida (Fórmula III, A=C1, R 4 =CH $_3$, M=1, Z=Br).

a) Agitou-se uma solução de 1,72 g (5,2 mmoles) de 3,5-di--amino-N-/2-//2-/(2-amino-eti1)amino/-2-oxo-eti1//-metil-amino $\overline{/}$ etil $\overline{/}$ -6-cloro-pirazino-carboxamida (\underline{A}) e 1,2g (5,0 mmoles) de 2-hidroxi-3-bromo-5-(1,1-di-metil-etil)benzaldeido (ver L.C. Felton e J.H. Brewer, Science, 105: 409 (1947) como um método de obtenção deste material) em 30 ml de metanol à temperatura ambiente durante 1 hora. Adicionou--se boro-hidreto de sódio (0,19g, 5 mmoles) e agitou-se a mistura de reacção durante uma hora. Evaporou-se o solvente e fraccionou-se o resíduo entre água e cloreto de metileno. Secou-se a fase orgânica (Na_2SO_4) e evaporou-se. Fez-se a cromatografia do residuo em 50 g de silica gel eluida com 4:96 (V/V) metanol:cloreto de metileno, para dar 1.78 g (3.0)mmoles, 61%) do composto do título como um sólido leve, amarelo depois de trituração com hexano; p.f. 93-95°C. Analise para C23H34BrC1N803:

Calculado: C 47,15, H 5,85, N, 19,12 Encontrado: C 46,86, H 5,75; N 18,87

Converteu-se uma amostra do composto do título num sal oxalato em etanol; p.f. $162-163^{\circ}C$.

Análise para $C_{23}H_{34}BrC1N_8O_3.2C_2H_2O_4$:

Calculado: C 42,34; H 5,00; N 14,63 Encontrado: C 42,36; H 5,04; N 14,45

Obteve-se o material de partida (\underline{A}) como se segue:

b) Agitou-se uma mistura de 24,0g (100,0 mmoles) de 1-(3,5-di-amino-6-cloro-pirazinoil) imidazol (ver Patente dos U.S. 4.029.816 para um exemplo de como se obtem este material) e 13,6 g(183,5 mmoles) de N-metil-etileno-di-amina em 100 ml de tetra-hidrofurano, À temepratura ambiente durante 18 horas. Filtrou-se a mistura de reacção e evaporou-se. Cristalizou-se o resíduo a partir de 2-propanol para dar 20,8 g

(85,0 mmoles, 85%) de 3,5-di-amino-6-c1oro-N-(2-metil-amino-etil)pirazino-2-carboxamida; p.f. 142,5-143 °C.

Análise para $C_8H_{18}C1N_60$:

Calculado: C 39,27; H 5,35; N 34,35 Encontrado: C 39,28; H 5,26; N 34,55

c) Agitou-se uma mistura de 4,89 g(20,0 mmoles) de 3,5-di--amino-6-cloro-N-(2-metil-amino-etil)pirazino-2-carboxamida, 3,1g (20,0 mmoles) de bromo-acetato de metilo e 2,0 g (20,0 mmoles) de tri-etil-amina, em 30 ml de metanol à temperatura ambiente, durante 18 horas. Separou-se o solvente e fraccio-nou-se o resíduo entre uma solução aquosa saturada de bicarbonato de sódio e cloreto de metileno. Secou-se a fase orgânica e filtrou-se através de 50 g de sílica gel eluída com cloreto de metileno. A evaporação do solvente proporcionou 6,2g (19,6 mmoles, 98%) de éster metílico de N- $\frac{7}{2}$ - \frac

Calculado: C 41,71; H 5,41; N 26,53 Encontrado C 41,88; H 5,41; N 26,51

d) Aqueceu-se uma solução de 2,3g (7,26 mmoles) de éster metílico de N-/2-//(3,5-di-amino-6-cloro-pirazinil)carbonil)_/-amino_/etil_/-N-metil-glicina em 0,9g (15,0 mmoles) de etileno-di-amina, num banho de vapor durante 2 horas. Evaporou-se o excesso de etileno-di-amina. Triturou-se o resíduo com 2-propanol. Obtiveram-se 1,72 g (5,2 mmoles, 72%) de 3,5-di-amino-N-/2-//(2-amino-etil)amino_/-2-oxo-etil_/-metil-amino-etil_/-6-cloro-pirazina-carboxamida, como um sólido leve, amarelo; p.f. 106-109°C; Rf=0,23, Sistema Solvente A.

EXEMPLO 2

3,5-Di-amino-N-/2-//3-//2-//3-bromo-5-(1,1-di-meti1-eti1)-2-hidroxi-feni1/meti1/amino/eti1/amino/eti1/amino/-3-oxo-propi1/meti1-amino/eti1/-6-cloro-pirazino-carboxamida (Fórmula III, A=C1, R 4 =CH $_3$, m=2, Z=Br).

a) Agitou-se uma solução de 900 mg (2,5 mmoles) de 3,5-di-amino-N-/2-//3-/(2-amino-etil)amino_/-3-oxo-propil / metil-amino_/etil_/-6-cloro-pirazino-carboxamida (B) e 650mg
(2,5 mmoles) de 2-midroxi-3-bromo-5-(1,1-di-metiletil)benzaldeído em 30 ml de metanol à temperatura ambiente, durante 1
hora. Adicionou-se bromo-hidreto de sódio (0,10g, 30 mmoles)
e agitou-se a mistura de reacção durante uma hora. Evaporou-se o solvente e fraccionou-se o resíduo entre água e cloreto de metileno. Secou-se a fase orgânica e evaporou-se. Obtiveram-se 800 mg (1,33 mmoles, 53%) do composto do título
como um sólido branco depois da recristalização a partir de
2-propanol; p.f. 146,5-147°C.

Análise para $C_{24}H_{26}BrC1N_80_3$:

Calculado: C 48,05; H 6,04; N 18,68 Encontrado: C 48,00; H 5,85; N 18,67

Calculado: C 43,11; H 5,17; N 14,37 Encontrado: C 43,38; H 5,21; N 14,42

Obteve-se o material de partida (\underline{B})

como se segue:

b) Agitou-se uma mistura de 24,0g (100,0 mmoles) de 1-(3,5-di-amino-6-cloro-pirazinoil)imidazol e 13,6g (183,5 mmoles) de N-metil-etileno-di-amina em 100 ml de TiF, à temperatura ambiente durante 18 horas. Filtrou-se a mistura de reacção

e evaporou-se. Cristalizou-se o resíduo a partir de 2-propanol para proporcionar 20,8g (85,0 mmoles, 85%) de 3,5-di-amino-6-cloro-N-(2-metil-amino-etil)pirazina-2-carboxamida; p.f. 142,5-143 °C.

Análise para $C_8H_{13}C1N_60$:

Calculado: C 39,27; H 5,35; N 34,35 Encontrado: C 39,28; H 5,26; N 34,55

c/ Agitou-se em 20 m1 de DMF, uma mistura de 2,44g (10,0 mmoles) de 3,5-di-amino-6-cloro-N-(2-metil-amino-etil)pira-zina-2-carboxamida, 1,67g (10,0 mmol) de metil 3-bromo-pro-prianato e 1,38 g (10,0 mmoles) de carbonato de potássio, durante 18 horas à temperatura ambiente. Adicionou-se água (100 m1) e filtrou-se o sólido e secou-se ao ar. A cristalização a partir do etanol proporcionou 2,1 g (6,34 mmoles, 63%) de éster metílico de N- $\frac{7}{2}$ - $\frac{7}{2}$ - $\frac{7}{2}$ -3,5-di-amino-6-cloro-pirazinil)carbonil $\frac{7}{2}$ -amino $\frac{7}{2}$ etil $\frac{7}{2}$ -N-metil-beta-alanina,como cristais brancos; p.f. 136,5-137°C.

Calculado: C 43,57; H 5,79; N 25,41 Encontrado: C 43,50; H 5,76; N 25,53

d) Aqueceu-se a 40° C uma solução de 20,4g (61,7 mmoles) de éster metilico de N-/2-//3,5-di-amino-6-cloro-pirazinil_/carbonil_/-amino_/etil_/-N-metil-beta-alanina e 36,0g (0,6 moles) de etileno-di-amina, durante 2 dias sob uma atmosfera inerte. Triturou-se o resíduo com 2-propanol. Obtiveram-se 15,2 g (44,4 mmoles 72%) de 3,5-di-amino-N-/2-//3--/(2-amino-etil)amino_/-3-oxo-propil_/metil-amino_/etil_/-6-cloro-pirazino-carboxamida, como um sólido branco; p.f. $140-142^{\circ}$ C; Rf=0,27, sistema Solvente A. Análise para $C_{13}^{\rm H}_{23}^{\rm C1N}_{8}^{\rm O}_{2}$

13 23 6 2

Calculado: C 43,51; H 6,46; N 31,23 Encontrado; C 43,23; H 6,39; N 30,92

EXEMPLO 3

Repetiu-se o procedimento descrito no Exemplo 1 utilizando benzaldeido da fórmula XII onde R=H (ver G.E. Stokker e E.M. Schultz, Syn. Comm., 12:847 (1982) para um método de obtenção deste material) para proporcionar um produto da fórmula IIIa

em que A representa cloro e Z representa iodo, como apresentado na Tabela I

TABELA I

Exemplo	<u>Z</u>	<u>Sa1</u>	p.f.(°C)	%Produção
3	Т	dioxalato	162-164	68

EXEMPLOS 4-5

Repetiu-se o procedimento descrito no Exemplo 2 utilizando benzalde \hat{i} do da fórmula XII em que R=H, para proporcionar produtos da fórmula IIIb:

em que A representa cloro e $\, Z \,$ tem as significações apresentadas na Tabela II:

TABELA II

Exemplo	<u>Z</u>	<u>Sal</u>	$\underline{\text{p.f.}}(\underline{^{\text{o}}C})$	% Produção
4	C1	mono-HC1	95-96	43
5	I	di-HC1	170-175	51

EXEMPLO 6

3,5-Di-amino-N-/ / 2-/ / 2-/ / 2-/ / 3-bromo-5-(1,1-di-meti1-eti1)-2-hidroxi-feni1_/meti1_/amino_/eti1_/amino_/-2-oxo-eti1_/amino_/eti1_/-6-cloro-pirazino-carboxamida (Fórmula III, A=C1, R⁴=H, n=1, Z=Br).

a) Agitou-se uma solução de 4,07g (12,3 mmoles) de 3,5-di--amino-N-/2-/2-/2-/(2-amino-etil)amino/-2-oxo-etil/ami-no/etil/-6-cloro-pirazina-carboxamida (/E) e 3,16g (12,3 mmoles) de 2-hidroxi-3-bromo-5-(1,1-di-metil-etil)benzaldeído em 150 ml de etanol, durante 2 horas à temperatura ambiente. Adicionou-se boro-hidreto de sódio (0,56 g, 14,8 mmoles) e agitou-se a mistura de reacção durante 20 minutos. Evaporou-

-se o solvente e fraccionou-se o resíduo entre água e cloreto de metileno. Secou-se a fase orgânica e evaporou-se. Fez-se a cromatografia do resíduo em sílica gel (300 mg) utilizando um gradiente de 0,2:5:94,8 a 0,2:10:89,8 (V/V/V) de hidróxido de amónio:metanol:cloreto de metileno como eluente. Obtiveram-se 3,28g (5,73 mmoles, 47%) do composto do título como uma espuma branca. Converteu-se isto num sal de oxalato em metanol., p.f. 203-204°C.

Análise para $\mathrm{C_{22}H_{32}BrC1N_80_3.2C_2H_20_4}$

Calculado; C 41,52; H 4,83; N 14,90 Encontrado: C 41,83; H 4,87; N 15,23

Obteve-se o material de partida (\underline{K})

como se segue:

b) Permitiu-se que uma mistura de 2,0g (10,0 mmoles) de 3,5-di-amino-6-cloro-pirazina-2-carboxilato de metilo e 13,5g (22,6 mmoles) de etileno di-amina, se mantivesse durante 3 dias à temperatura ambiente. Evaporou-se a amina em excesso e cristalizou-se o resíduo a partir do etanol. Obtive-ram-se 1,38g (5,9 mmoles, 59%) de 3,5-di-amino-6-cloro-N-(2-amino-etil)pirazina-2-carboxamida; p.f. 173-174°C. Análise para C_7 H $_{11}$ ClN $_{6}$ O

Calculado: C 36,45; H 4,81; N 36,44 Encontrado: C 36,50; H 4,71; N 36,22

Análise para $C_{10}^{H}_{15}^{C1N}_{603}$:

Calculado: C 39,67; H 4,99; N 27,76 Encontrado: C 39,66; H 4,95; N 27,65

d) Agitou-se uma solução de 7,45g (24,6 mmoles) de éster metílico de $N-\sqrt{2-\sqrt{2}}$ (3,5-di-amino-6-cloro-pirazini1)carboni1_/-amino_/etil_/glicina e 22,48 ml (373,9 mmoles) de etileno-di-amina, à temperatura ambiente durante dois dias. Evaporou-se o excesso de di-amina. Obtiveram-se 8,14g (24,6 mmoles, 100%) de 3,5-di-amino- $N-\sqrt{2-\sqrt{2}-\sqrt{2}-\sqrt{2}}$ (2-amino-etil)ami-no_/-2-oxo-etil_/amino_/etil_/-6-cloro-pirazino-carboxamida como um sólido amarelo; Rf=0,28, Sistema Solvente A.

EXEMPLO 7

a) Agitou-se uma solução de 8,11g (22,63 mmoles) de 3,5-di--amino-N- $\sqrt{2}$ - $\sqrt{-3}$ - $\sqrt{(2}$ -amino-etil)amino $\sqrt{-3}$ -oxo-propil $\sqrt{-3}$ metilamino $\sqrt{-3}$ -di-cloro-pirazina-carboxamida (\underline{B}) e 7,50g (29,17 mmoles) de 1- $\sqrt{-3}$ -bromo-5-(1,1-di-metil-etil)-2-hidro-xi-fenil $\sqrt{-2}$ -tanona (\underline{L}) em 100 ml de metanol e 50 ml de clore-to de metileno, durante 1,5 horas à temperatura ambiente. Adicionou-se bromo-hidreto de sódio (1,26g, 33,31 mmoles) e agitou-se a reacção de mistura durante 1 hora. Evaporou-se o solvente e fez-se a cromatografia do resíduo em sílica gel (250 g) utilizando 3:97 ($\sqrt{-2}$) metanol:cloreto de metileno como eluente. Obtiveram-se 9,11g (14,83 mmoles, 66%) do composto do título depois da trituração com éter; pf. 100-102 0 C.

Calculado: C 48,91; H 6,24; N 18,25 Encontrado: C 49,10; H 6,06; N 17,99

Obteve-se o material de partida (\underline{L}) como se segue:

b) Arrefeceu-se num banho de gelo-água, uma mistura de 12,86g (50,0 mmoles) de 2-hidroxi-3-bromo-5-(1,1-dimetil-etil)ben-zaldeído e 3,82g (55,0 mmoles) de cloridrato de hidroxil-amina em 30 ml de etanol, 30 ml de água e 30 ml de tetra-hidrofurano. Adicionou-se bicarbonato de sódio (5,04g, 60,0 mmo-les) numa pequena porção durante 15 minutos. Depois de agitar durante 1 hora à temperatura ambiente, adicionou-se água (200 mmoles) e filtrou-se o sólido e secou-se. Obtiveram-se 13,2g (48,5 mmoles, 97%) de 2-hidroxi-3-bromo-5-(1,1-dimetil-etil)benzaldeído oxima como um sólido branco; p.f. 167,5--168°C.

Análise para $C_{11}^{H}_{14}^{BrNO}_{2}$

Calculado: C 48.55; H 5.19; N 5.15 Encontrado: C 48,33; H 5.14; N 4,93

c) Arrefeceu-se num banho de gelo-água uma mistura de 12,0g (44,0 mmoles) de 2-hidroxi-3-bromo-5-(1,1-dimetil-etil)ben-zaldeído oxima e 18,9g (90,0 mmoles) de anidrido tri-fluoro-acético em 100 ml de tetra-hidrofurano. Adicionou-se uma solução de 15,2g (150,0 mmoles) de tri-etil-amina em 40 ml de tetra-hidrofurano. Depois de se fazer o refluxo durante a noite, separou-se o solvente. Fraccionou-se o resíduo entre água e cloreto de metileno. Lavou-se a fase orgânica com ácido clorídrico 1N seguida de bicarbonato de sódio saturado e depois secou-se e evaporou-se. Cristalisou-se o resíduo a partir do hexano para proporcionar 10,4g (41,2 mmoles, 94%) de 2-hidroxi-3-bromo-5-(1,1-di-metil-etil)-benzonitrilo; p.f. 69-71°C.

Análise para C₁₁H₁₂BrNO:

Calculado: C 51,99; H 4.76; N 5.51 Encontrado: C 51,87; H 4,77; N 5,27

d) Adicionou-se a uma solução de 10,4g (41,2 mmoles) de 2-hidroxi-3-bromo-5-(1,1-di-metil-etil) benzonitrilo em 50 ml de tetra-hidrofurano, 47 ml (133,9 mmoles, 2,85 H) de brometo de metil-magnésio em éter. Depois de agitação durante a noite à temperatura ambiente, verteu-se a mistura de reacção em gelo e acidificou-se com ácido clorídrico 2N. Extraiu-se a solução aquosa com éter. Secou-se a fase orgânica e evaporou-se. A cristalização a partir de 2-propanol proporcionou 10,5g (38,7 mmoles, 94%) de $1-\sqrt{3}$ -bromo-5 (1,1-di-metil-etil)-2-hidroxi-fenil $\sqrt{2}$ -tanona; p.f. 98-98,5°C Análise para $C_{12}H_{15}Br\dot{\phi}_2$:

Calculado: C 53,16; H 5,58 Encontrado: C 53,19; H 5,54

EXEMPLO 8

Cápsula

Cada capsula contém:

<u>Material</u>	Quantidade/350mg de mistura
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Composto do Exemplo 2	120.0 mg
Lactose, Formulação Nacional	175.0 mg
Amido glicolato de Sódio	18.0 mg
Amido pré-gelatinizado	35.0 mg
Estearato de magnésio	2.0 mg

Todos os materiais atrás referidos excepto o estearato de magnésio, peneiraram-se através duma peneira adequada, por exemplo de malha 20, e misturaram-se num misturador durante cerca de 5 minutos. O estearato de magnésio peneirou-se através de uma peneira adequada, por exemplo, de malha 40, e o estearato de magnésio adicionou-se então aos materiais misturados, e mistiurou-se durante 2 minutos. Colocou-se o pó de mistura num contentor adequado e

Quantidade de/350mg de mistura

adequadamente rotulado e encapsulado em cápsulas de gelatina dura de duas unidades (tamanho eqdef 0) como exigido.

EXEMPLO 9

<u>Cápsula</u>

Cada cápsula contém:

Materia1

Composto do Exemplo 2	120.0 mg
Lactose, Formulário Nacional	175.0mg
Celulose Microcristalina	18.0 mg
Amido pré-gelatinizado	35.0 mg
Estearato de magnésio	2.0 mg

Todos os materiais atrás referidos, excepto o estearato de magnésio, peneiraram-se através de uma peneira adequada, por exemplo de malha 20 e misturaram-se num misturador durante cerca de 5 minutos. O estearato de magnésio peneirou-se através duma peneira adequada, por exemplo de malha 40, e o estearato de magnésio peneirado adicionou-se então dos materiais misturados e misturou-se durante 2 minutos. Colocou-se o pó de mistura num contentor adequado e adequadamente rotulado e encapsulado em cápsulas de gelatina dura de duas unidades (tamanho #0) como exigido.

REIVINDICAÇÕES

- 1ª -

Processo para a preparação de um composto de fórmula III

em que R é hidrogénio ou metilo;

R⁴ é escolhido de um grupo que consiste em hidrogénio e metilo; A é cloro ou bromo; Z é escolhido de um grupo que consiste em cloro, bromo e iodo;

e $\,$ n é 1 ou 2; e dos seus saisfarmaceuticamente activos caracterizado por

(A) alquilar-se redutivamente uma pirazinamido amida de fór-mula XI

com um composto carbonilo adequado de fórmula XII

ou (B) alquilar-se uma pirazinamidoamina de fórmula XI com um halogeneto de benzilo adequado de fórlmula XVIII

ou (C) fazer-se reagir uma pirazinamidoamina de fórmula XI

com um fenol de fórmula XIX

e um aldeido da fórmula R.CHO; ou (D) fazer-se reagir um éster de pirazinamido da fórmula IX

$$\begin{array}{c|c}
0 & H & R^4 & 0 \\
\parallel & \parallel & \parallel & \parallel \\
Pyz-C-N-(CH_2)_2-N(CH_2)_nC-O-L
\end{array}$$
IX

com uma etilenodiamina benzílica de fórmula XX

ou (E) para um composto de fórmula III em que $\mathbb R$ é metilo, tratar-se uma imina intermediária correspondente de fórmula XVII

em que R é hidrogénio, com cloreto de metil-magnésio, brometo de metil-magnésio ou iodeto de metil-magnésio;

- ou (F) halogenar-se uma aminometil-fenolpirazinamida correspondendo a um composto de fórmula III mas com Z representando hidrogénio; e
- (G) desalquilar uma aminometilaril-éter-pirazinamida de fór-mula (XXII)

em quer R, R^4 , A, Z e n têm as significações anteriores, L é alquilo (C_1 - C_3) e R^5 é alquilo inferior e em seguida quando é necessário um sal farmaceuticamente aceitável, fazer-se reagir um composto de fórmula III com um ácido adequado para proporcionar um anião fisiológicamente aceitável.

-2a -

Processo de acordo com a reivindicação 4 ser metilo; 2 ser bromo; e 4 ser cloro.

- 3ª -

Processo de acordo com a reivindicação

- 1, caracterizado por se obter
- a) 3,5-diamino- $N-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-2}}}}}$ 3-bromo-5-(1,1-dimeti1-eti1)--2-hidroxi-feni1_/meti1_/amino_/eti1_/-amino-2-oxo-eti1_/meti1amino_/eti1_/-6-cloropirazino-carboxamida;
- b) 3,5-dimino-N-/2-//3-//2-//3-bromo-5-(1,1-dimeti1--eti1)-2-hidroxifeni1_/meti1_/amino_/eti1_/amino_/-3-oxopro-pi1_/meti1amino_/eti1_/-6-cloropirazino-carboxamida; e seus sais farmaceuticamente aceitáveis.

 -4^{a}

Processo de acordo com a reivindicação 1, caracterizado por se obter um sal de adição de ácido de um ácido que proporciona um anião fisiológicamente aceitável. Processo para a preparação de uma composição farmacêutica caracterizado por se incorporar como ingrediente activo uma quantidade diurética eucalénica de um
composto preparado de acordo com a reivindicação 1 ou um seu
sal farmaceuticamente aceitável em associação com um diluente
ou veículo farmaceuticamente aceitável.

A requerente declara que o primeiro pedido desta patente foi apresentado no Reino Unido em 26 de Maio de 1987, sob o nº. 8712362 e em 2 de MArço de 1988, sob o nº. 8804984.

Lisboa, 25 de Maio de 1988

R E S U M O

PROCESSO PARA A PREPARAÇÃO DE PIRAZINA AMIDAS E DE COMPOSIÇÕES FARMACEUTICAS QUE AS CONTEM"

Processo para a preparação de um composto de fórmula III

e dos seus sais farmaceuticamente activos, que compreende (A) alquilar-se redutivamente uma pirazinamidoamina de fórmula XI

com um composto carbonilo adequado de fórmula XII

ou (B) alquilar-se uma pirazinamidoamina de fórmula XI com um halogeneto de benzilo adequado de fórmula XVIII

ou (C) fazer-se reagir uma pirazinamidoamina de fórmula XI

com um fenol de fórmula XIX

e um aldeido da fórmula R.CHO; ou (D) fazer-se reagir um éster de pirazinamido de fórmula IX

com uma etilenodiamina benzílica de fórmula XX

ou (E) para um composto de fórmula III em que $\mathbb R$ é metilo, tratar-se uma imina intermediária correspondente de fórmula XVII

com cloreto de metil-magnésio, brometo de metil-magnésio ou iodeto de metil-magnésio

- ou (F) halogenar-se uma aminometil-fenolpirazinamida correspondendo a um composto de fórmula III mas com Z representando hidrogénio; e
- (G) desalquilar uma aminometilaril-éter-pirazinamida de fór-mula XXII

e em seguida quando é necessário um sal farmaceuticamente aceitável, fazer-se reagir um composto de fórmula III com um ácido adequado para proporcionar um anião fisiologicamente aceitável.