发明名称
LNT、LNNT及其岩藻糖基化衍生物的生物技术生产

摘要
本发明主要涉及体内合成乳糖基-N-四糖（LNT）和乳糖基-N-新四糖（LNNT）及其岩藻糖基化衍生物的遗传工程化微生物，并涉及所述微生物在产生乳糖基-N-四糖和乳糖基-N-新四糖及其岩藻糖基化衍生物的方法中的用途。
1. 用于体内合成乳糖基-N-四糖或乳糖基-N-新四糖的遗传修饰微生物，所述微生物包含
 (i) 编码β1,3-N-乙酰葡萄糖胺基转移酶的第一转基，和
 (ii) 编码β1,3-半乳糖基转移酶或编码β1,4-半乳糖基转移酶的第二转基。
2. 根据权利要求1所述的遗传修饰微生物，所述微生物额外地经遗传修饰，从而抑制LacZ和LacA的表达。
3. 根据权利要求2所述的遗传修饰微生物，其中(i) 第一转基已经整合入LacZYA基因座并且微生物包含进一步的编码LacY的转基。
4. 根据权利要求3所述的遗传修饰微生物，其中编码LacY的转基已经整合入FucIK基因座。
5. 根据权利要求1至4中任一项所述的遗传修饰微生物，所述微生物包含进一步的编码UDP-糖焦磷酸酶的转基。
6. 根据权利要求1至5中任一项所述的遗传修饰微生物，所述微生物额外地经遗传修饰，从而抑制UDP-葡萄糖4-差向异构酶的表达。
7. 根据权利要求1至6中任一项所述的遗传修饰微生物，其中一个或两个、或一个、多个或全部转基是染色体整合的。
8. 根据权利要求1至7中任一项所述的遗传修饰微生物，所述微生物包含进一步的编码
 具有L-岩藻糖激酶活性和L-岩藻糖-1-磷酸鸟苷酸转移酶活性的双功能酶的转基和至少一个编码能够a1,2-岩藻糖基化、a1,3-岩藻糖基化或a1,4-岩藻糖基化的酶的转基。
9. 根据权利要求8所述的遗传修饰微生物，其中编码具有L-岩藻糖激酶活性和L-岩藻糖-1-磷酸鸟苷酸转移酶活性的所述双功能酶的转基是染色体整合的，并且至少一个编码能够a1,2-岩藻糖基化、a1,3-岩藻糖基化或a1,4-岩藻糖基化的酶的转基在质粒载体上表达。
10. 根据权利要求8所述的遗传修饰微生物，其中编码具有L-岩藻糖激酶活性和L-岩藻糖-1-磷酸鸟苷酸转移酶活性的所述双功能酶的转基和至少一个编码能够a1,2-岩藻糖基化、a1,3-岩藻糖基化或a1,4-岩藻糖基化的酶的转基均是染色体整合的。
11. 根据前述权利要求任一项所述的遗传修饰微生物的用途，用于体内合成乳糖基-N-四糖或乳糖基-N-新四糖或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物。
12. 制备乳糖基-N-四糖或乳糖基-N-新四糖或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物的方法，包括以下步骤：
 (a) 提供根据权利要求1至10中任一项所述的遗传修饰微生物，
 (b) 在允许合成乳糖基-N-四糖和乳糖基-N-新四糖的条件下培养所述遗传修饰微生物，
 (c) 任选地添加岩藻糖，
 (d) 任选地分离合成的乳糖基-N-四糖或乳糖基-N-新四糖或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物。
13. 根据权利要求12所述的方法，其中步骤(b) 包括
 - 使用半乳糖作为所述微生物的碳源，或
 - 使用甘油和半乳糖作为所述微生物的碳源。
14.根据权利要求12和13中任一项所述的方法，其中步骤(b)包括连续或分批地添加一种或多种碳源，所述碳源优选地选自乳糖、葡萄糖、甘油、半乳糖和它们的任何混合物。

15.根据权利要求12至14中任一项所述的方法，所述方法通过补料分批法实施，批次体积处于2L至30L，优选地3L至20L，特别优选地5L至15L的范围内。

16.根据权利要求1至10中任一项所述的遗传修饰微生物或根据权利要求11所述的用途或根据权利要求12至15中任一项所述的方法，其中遗传修饰微生物选自细菌、真菌和植物，优选地选自棒杆菌属(Corynebacterium)、短杆菌属(Beibacterium)、芽孢杆菌属(Bacillus)、酵母属(Saccharomyces)和埃希氏菌属(Enterobacteria)的微生物。
LNT, LNnT和其岩藻糖基化衍生物的生物技术生产

[0001] 本发明涉及体内合成乳糖基-N-四糖(lacto-N-tetrose; LNT)和乳糖基-N-新四糖(lacto-N-neotetrose; LNnT)和它们的岩藻糖基化衍生物的遗传修饰微生物，并涉及这类微生物在产生乳糖基-N-四糖和乳糖基-N-新四糖和它们的岩藻糖基化衍生物的方法中的用途。

[0002] 认为人乳汁在健康的婴儿发育中具有重要作用。存在于其中的低聚糖(人乳汁低聚糖(HMO))是乳汁的主要组分之一，并且它们的核心结构具有在还原性末端处的乳糖单元并且以分支或链状方式续以N-乙酰基乳糖胺单位。末端位置处的岩藻糖基修饰或唾液酸基修饰可将它们扩入结构多样性。

![Chemical Structure](image)

[0008] 因此，本发明的主要目的是阐述一个能够产生高产量LNT和LntT和它们的岩藻糖基化衍生物的系统、优选地微生物。

[0009] 本发明的另一个目的是提供能够以有效和廉价方式生物技术地产生LNT和LntT和它们的岩藻糖基化衍生物的相应方法。

[0010] 根据本发明，一种用于体内合成乳糖基-N-四糖或乳糖基-N-新四糖的遗传修饰微生物实现了主要目的，所述微生物包含

[0011] (i) 编码β1,3-N-乙酰葡糖胺基转移酶的第一转基因，和

[0012] (ii) 在合成乳糖基-N-四糖的情形) 编码β1,3-半乳糖基转移酶的第二转基因；或

[0013] (在合成乳糖基-N-新四糖的情形) 编码β1,4-半乳糖基转移酶的第二转基因。

[0014] 在本发明的上下文中，遗传修饰微生物意指其中已经使用生物技术方法以特异性方式关闭了单个基因和/或并入了内源或外源基因（转基因）的微生物。本发明的转基因可以是从不同生物输入的基因或者是在涉及的微生物中天然存在的已经通过基因工程整合在基因组中不同位点处并且因而表达（例如，在不同于天然启动子的启动子下表达）的基因。

[0015] 令人惊讶地，在本发明的过程中发现，基因工程中常规使用的微生物以转基因方

0015 根据本发明的一个优选实施方式,微生物额外地经遗传修饰,从而抑制LacZ和LacA的表达。在一个特别优选的实施方式中, (i) 第一转基因因此已经整合入LacZYA基因座并且微生物包含进一步的编码LacY的转基因。

0016 为了阻止乳糖的代谢及其可能被LacZ和LacA乙酰化,可以在本发明的微生物中抑制这些基因的表达。这优选地通过第一转基因(i)整合入LacZYA基因座进行。然而,为了确保微生物将仍然摄取乳糖,在一个优选的实施方式中,LacY以转基因方式在基因组中不同位点处表达,例如在不同的启动子、优选地Pac启动子下表达。特别优选地,LacY整合入编码岩藻糖代谢基因的fucIK基因座。

0017 为了确保LNT的产率和LntT的产率尽可能地高,有利的是胞内提供大量核苷酸活化型糖,尤其UDP-β半乳糖以便LNT II至LNT的转化能够高效推进。

0018 因此,在本发明的一个优选的实施方式中,微生物包含编码UDP-半乳糖基糖磷酸酶(USP)的一个转基因。

0019 这种USP例如由大利士曼原虫 (Leishmania major) 中的LmjF17.1160可读框编码 (参见Damerow等人, J.Biol. Chem.2010, 285, 878-887)。利用半乳糖-1-磷酸,所述USP催化UDP-半乳糖的生成。有利地,这种反应还可以防止半乳糖1-磷酸的可能细胞毒性堆积。

0020 在本发明的一个优选的实施方式中,微生物额外地经遗传修饰,从而抑制UDP-葡萄糖4-差向异构酶的表达。

0021 可以例如通过缺失galE-基因实现这种抑制作用,所述galE-基因优选地由T5启动子替换以继续表达操纵子的下游基因。有利地,胞内UDP-半乳糖浓度因而同样地增加。特别优选的是这个实施方式与 (如上文所述的) 包含编码UDP-半乳糖磷酸酶 (USP) 的转基因的微生物的组合。

0022 根据本发明,还特别优选上文描述的任何实施方式的微生物,其中一个或两个、或者一个、多个或全部转基因是染色体整合的。

0023 使用无质粒的菌株是特别有利的,因为维持生产性不需要任何选择压力 (抗生素
耐药性）。另外，不希望在食品相关的或制药适用的生产工艺中使用抗生素。

根据本发明微生物的另一个优选实施方案，所述微生物包含进一步的编码具有L-岩藻糖激酶活性的L-岩藻糖-1-磷酸鸟苷酸转移酶活性的双功能酶的转基木和至少一个编码能够a1,2-岩藻糖基化，a1,3-岩藻糖基化或a1,4-岩藻糖基化的酶的转基木。

通过合成LNT或LNNT后的反应，这种微生物能够产生这两种化合物的岩藻糖基化衍生物，因此天然存在的HMOs的结构变异性和其应用本发明微生物的可能应用（参见图2）。例如，可以使用FKP作为具有L-岩藻糖激酶活性和L-岩藻糖-1-磷酸鸟苷酸转移酶活性的双功能酶。例如，表达由fucC(a1,2-岩藻糖基化)基因、fucT14(a1,4-岩藻糖基化)基因或

futA(a1,3-岩藻糖基化)基因编码的酶适用于岩藻糖基化。

在如上文所述的本发明微生物的一个优选实施方案中，编码具有L-岩藻糖激酶活性和L-岩藻糖-1-磷酸鸟苷酸转移酶活性的双功能酶的转基木是染色体整合的，并且至少一个编码能够a1,2-岩藻糖基化，a1,3-岩藻糖基化或a1,4-岩藻糖基化的酶的转基木在质粒载体上表达。

在如上文所述的本发明微生物的一个特别优选的实施方案中，编码具有L-岩藻糖激酶活性和L-岩藻糖-1-磷酸鸟苷酸转移酶活性的所述双功能酶的转基木是染色体整合的，并且至少一个编码能够a1,2-岩藻糖基化，a1,3-岩藻糖基化或a1,4-岩藻糖基化的酶的转基木是染色体整合的。

本发明的又一个方面涉及了如上文所述的遗传修饰微生物。优选地如根据如上文所述的任何实施方案描述为本发明优选的遗传修饰微生物用于体内合成乳糖基-N-四糖或乳糖基-N-新四糖或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物的用途。

使用这种遗传修饰微生物使乳糖基-N-四糖或乳糖基-N-新四糖、或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物按适合于预期用途的规模和价廉产生成为可能。

根据一个方面，本发明涉及一种制备乳糖基-N-四糖或乳糖基-N-新四糖或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物的方法，所述方法包括以下步骤：

(a) 提供如上文所述的遗传修饰微生物，优选地如上文所述为优选的遗传修饰微生物，

(b) 在允许合成乳糖基-N-四糖和乳糖基-N-新四糖的条件下培养所述遗传修饰微生物，

(c) 任选地添加岩藻糖，

(d) 任选地从合成的乳糖基-N-四糖或乳糖基-N-新四糖或者乳糖基-N-四糖或乳糖基-N-新四糖的岩藻糖基化衍生物。

本发明的方法包括首先提供如上文所述的遗传修饰微生物并且例如在摇瓶中或者允许合成乳糖基-N-四糖或乳糖基-N-新四糖的条件下培养它。文中的细胞生长主要取决于所用的微生物。优选地，使用的微生物是生物技术应用中常规使用的已知最大生产性的微生物。除了必需的乳糖外，还可以有效地使用廉价的（其他）碳源，例如，所述碳源选自葡萄糖、甘油、半乳糖和任何其混合物。为了允许合成LNT或LNNT，乳糖必须作为底物存在，并且必须诱导（如上文所述的）转基木(i) 和(ii) 的表达。所述诱导任选地是其控制下表达这些转基木的启动子的功能。为了确保产物的岩藻糖基化，还必须添加岩藻糖。优选地仅
在诱导合成LNT或LNN的基因后才添加岩藻糖，理想地以存在足够量的适宜底物并且不是仅乳糖岩藻糖基化的方式添加岩藻糖。备用选，岩藻糖可以在步骤(b)开始时已经存在，并且表达可以在与调节LNT或LNNT的基因表达的一个启动子不同的启动子下进行。随后在所需的时间添加适宜的诱导物，诱导岩藻糖基转移酶基因。在优选的开发中，用于LNT或LNN合成基因在IPTG诱导型启动子下表达并且在这种情况下岩藻糖基转移酶基因在鼠李糖诱导型启动子下表达。

[0036] 任选地，随后分离产生的产物。为此，将细胞如例借助离心收集、重悬于水中并且裂解。产生的糖随后可以使用标准方法从上清液纯化。

[0037] 在本发明方法的一个优选实施方案中，步骤(b)包括

[0038] 使用半乳糖作为所述微生物的碳源，或

[0039] 使用半乳糖和乳糖作为所述微生物的碳源。

[0040] 在本发明的过程中，已经发现可以通过提供的碳源控制LNT相对于LNTI中间体的产率（参见图3）。因此，例如，当半乳糖是存在的主要碳源时，特别高的产率出现。优选地，相对于合成要求的乳糖和可能存在的其它碳源（如甘油或葡萄糖）的总重量，半乳糖的（重量）比例例如是至少50%、优选地70%、特别优选地至少90%。同样地，当所用的主要碳源是甘油并在诱导用于合成LNT或LNNT的基因开始时添加半乳糖时，实现特别高的产率。再次，相对于合成要求的乳糖和可能存在的其它碳源（如葡萄糖）的总重量，甘油的（重量）比例例如是至少50%、优选地至少70%、特别优选地至少90%。

[0041] 另外优选（如上文所述的）一种本发明方法，其中步骤(b)包括连续或分批地添加一种或多种碳源，所述碳源优选地选自乳糖、葡萄糖、甘油、半乳糖和它们的任何混合物、优选地至少乳糖、特别优选地乳糖和半乳糖、或者乳糖、半乳糖和甘油。

[0042] 有利地，当特定碳源已经彻底用尽或耗用到某个程度时，可以通过连续或分批地添加所述特定碳源避免可能的细胞毒性堆集或不必要的抑制作用。

[0043] 优选地，（如上文所述的）遗传修饰微生物或根据本文所述的任何用途或根据本发明在本文所述的任何方法中待使用的微生物选自细菌、真菌和植物，优选地以下微生物：棒杆菌属（Corynebacterium）、尤尔氏氧化棒杆菌（Corynebacterium glutamicum）；短杆菌属（Beivibacterium）、尤氏黄短杆菌（Beivibacterium flavum）；芽孢杆菌属（Bacillus）；酵母属（Saccharomyces）；和埃希氏菌属（Escherichia）、尤其大肠杆菌。

[0044] 使用基因工程中常规使用的微生物对实施本发明特别有利，因为它们已经为了高生产性而优化并且用于引入和诱导转基因基因的工程方法是已知的。

[0045] 在本发明的过程中，已经展示还可以按规模规模高效地实施补料分批式的本发明方法（参见实施例3），因此优选如上文所述的方法，其中所述方法通过补料分批过程实施，批次体积处于2L至30L，优选地3L至20L，特别优选地5L至15L范围内。

[0046] 下文将基于附图和实施例以举例方式更详细地解释本发明。

[0047] 图1：乳糖的胞内反应以产生乳糖基-N-四糖的简图。

[0048] 图2：胞内合成以LNT作为核心结构的岩藻糖基化IMO的简图。FucT是岩藻糖基转移酶，并且LFXH是从其所得的产物。

[0049] 图3：诱导后24小时摇瓶培养物的培养上清液中特定低聚糖占低聚糖总量的比例
随碳源变化的函数。用0.5mM IPTG诱导并且添加2g L^-1乳糖和2g L^-1在每种情况下第二列出的碳源并且在30°C和90转/分钟温育。

【0051】图4：摇瓶培养中诱导后24小时随碳源变化而变化的LNT浓度。用0.5mM IPTG诱导并且添加2g L^-1乳糖和2g L^-1在每种情况下第二列出的碳源并且在30°C和90转/分钟温育。

【0052】图5：摇瓶培养中诱导后24小时随碳源变化而变化的LNT II浓度。用0.5mM IPTG诱导并且添加2g L^-1乳糖和2g L^-1在每种情况下第二列出的碳源并且在30°C和90转/分钟温育。

【0053】图6：LNT I的结构（在非还原性末端处半乳糖基残基上带有α1,2-连接的岩藻糖基残基的LNT）。

【0054】图7：LND II的结构（在α-乙酰葡糖胺基残基上带有α1,4-连接的岩藻糖基残基和在还原性末端处兼容基残基上带有α1,3-连接的岩藻糖基残基的LNT）。

【0055】图8：诱导后24小时针对各种碳源的摇瓶实验中乳糖消耗和产物形成的比较。a) 乳糖浓度（白色），LNT II浓度（灰色）和LNT浓度（黑色）。b) 每生物量的产物产量。c) 培养上清液中以%计的产物比例。

【0056】图9：在多种碳源中的指数生长期间UDP糖的胞内浓度；UDP-葡萄糖（灰色）、UDP-半乳糖（黑色）、UPD-乙酰葡糖胺（白色）。值作为≥2次独立实验的均数和SE给出。

【0057】图10：LNT补料分批生产。垂直、短划线（12.6小时）表示IPTG添加以诱导蛋白质表达和乳糖首次添加。垂直、点线（20.5小时）表示分批阶段结束和半乳糖和氨添加的开始。a) 向系统添加的总碳源的特点：半乳糖（实线）、氮源：磷酸铵（点线）和乳糖（短划线）；b) 细胞干重浓度（CDW）；c) LNT II（空心三角形）和LNT（实心圆圈）的浓度。

【0058】图11：岩藻糖基化的乳糖基-N-三糖II的结构。

【0059】图12：双岩藻糖基化的乳糖基-N-戊糖的结构。

【0060】实施例1：制备本发明的遗传修饰微生物

【0061】所述制备过程的起始菌株是大肠杆菌K-12菌株LB110。借助同源重组通过敲除相应表达盒中的糖分解基因座，修饰这种无质粒的菌株。移除编码β-半乳糖苷酶的lacZ基因并且向菌株提供编码脑膜炎念珠菌B1,3-N-乙酰葡萄糖胺转移酶的lgtA基因以允许合成LNT II。最后，为菌株编码酶Wbg0B1,3-半乳糖基转移酶的wbg0基因。所述基因是染色体整合的。

【0062】这涉及首先将lgtA基因克隆入具有IPTG诱导型P_{lac}启动子的表达载体，随后对所述表达载体在lgtA基因下游配两端分布有FRT的氯霉素抗性基因。借助PCR扩增表达盒，所述表达盒包括P_{lac}启动子、核糖体结合位点（Shine-Dalgarno序列）、lgtA、FRT-cat、FRT抗性标志物和rrnB转录终止子序列。该盒随后染色体整合入LacZYA基因座。

【0063】进一步向该菌株提供P_{lac}启动子控制下的大肠杆菌K12lacY基因以确保摄取乳糖。为此目的，将lacY克隆入表达载体，随后通过下游克隆FRT-kan-FRT抗性盒，产生合适的抗性标记的表达盒。在扩增后，所述表达盒染色体整合入fuc1K基因座。

【0064】对于LNT II至LNT的胞内转化，来自大肠杆菌055:17菌株的编码B1,3-半乳糖基转移酶的wbg0基因染色体整合入xy1AB基因座，如对lgtA所述那样实施。

【0065】实施例2：研究使用多种碳源形成LNT和LNT II
尽管文献（参见McGinnis等人，J.Bacteriol.1969,100,902-913）中描述了葡萄糖对半乳糖的分解代谢物阻遏，但是这个实验使用与葡萄糖或甘油混合的半乳糖，以分析产物形成。在每种情况下，葡萄糖是半乳糖和甘油各自以终浓度10g L^{-1}使用，而乳糖以终浓度2g L^{-1}使用，混合的半乳糖同样地以2g L^{-1}使用。后者均在OD_{600}=0.4-0.6在诱导时添加（采用0.5mM IPTG，终浓度）。

诱导后24小时，用中氨基苯甲酸衍生化后，通过HPLC以荧光方式确定培养上清液中和培养沉淀物中LNT的形成（参见Ruhak等人，Proteomics 2010,10,2334-2336）。因此，4小时，当甘油换成葡萄糖时，观测到改良的LNT产率。如预期的那样，含有葡萄糖的培养物添加半乳糖显示既不促进生长，也不影响产物形成，这归根于分解代谢物阻遏。除乳糖之外，半乳糖是使用的唯一碳源时或在诱导时添加半乳糖至含有甘油的培养物；在诱导后24小时，所述培养物中的LNT浓度明显地降低。添加半乳糖至含有甘油的培养物增加LNT浓度2.7倍至434.3mg L^{-1}。因此使用葡萄糖时显示约2的产物形成速率。在无葡萄糖或甘油的情况下培养基使用10g L^{-1}半乳糖，酶促过量的LNT浓度。因此，采用葡萄糖实现的酶促过量的LNT浓度。
(Tullinge, 瑞典) 获得纯度超过 95% 的乳糖基-N-四糖标准品。UDP-葡萄糖二钠盐水合物标准品 (≥98%) 和 UDP-N-乙酰葡萄糖胺钠盐标准品 (≥98%) 从 Sigma Aldrich (Taufkirchen, 德国) 获得，并且 UDP-半乳糖二钠盐 (≥95%) 从 Calbiochem (Merck, 达姆施塔特, 德国) 获得。乳糖一水合物 (欧洲药典), 葡萄糖一水合物 (≥99.5%), 甘油 (≥98%) 和半乳糖 (≥98%) 从 Carl Roth (卡尔斯鲁厄, 德国) 获得。全部其他化学品和试剂均以可获得的最高纯度从 Carl Roth (卡尔斯鲁厄, 德国) 或 Sigma Aldrich (Taufkirchen, 德国) 获得。

[0073] 在 30°C 和 90 转/分钟在每种情况下以两个批次在含有 50mL 极限培养基的 500mL 摇
瓶中实施 LNT II 和 LNT 的合成, 所述极限培养基包含 1% 的主要碳源 (甘油, 乳糖或半乳
糖) 和氯霉素 (50μg mL⁻¹, 以避免污染)。培养基具有以下组成: 2.68g L⁻¹ (NH₄)₂SO₄, 1g L⁻¹
(NaH₂PO₄), 10g L⁻¹ 主要碳源 (甘油, 葡萄糖或半乳糖), 14.6g L⁻¹K₂HPO₄, 0.241g L⁻¹
MgSO₄, 10mg L⁻¹ MnSO₄·H₂O, 0.2g L⁻¹ Na₂SO₄·4H₂O, 4g L⁻¹ NaH₂PO₄·H₂O, 0.5g L⁻¹
NH₄Cl, 10mg L⁻¹ 盐酸

硫酸盐, 和痕量元素溶液 (3mL L⁻¹: 0.5g L⁻¹ CuCl₂·2H₂O, 16.7g L⁻¹ FeCl₃·6H₂O, 20.1g L⁻¹
Na₂EDTA, 0.18g L⁻¹ ZnSO₄·7H₂O, 0.1g L⁻¹ MnSO₄·H₂O, 0.16g L⁻¹ CuSO₄·5H₂O, 0.18g L⁻¹
CoCl₂·6H₂O)。用含有 1% 相应碳源的极限培养基琼脂平板上生长的单菌落接种所述培养基, 在达到 600nm 光密度 (OD₆₀₀) 0.4~0.6 后, 将培养物用 0.5mM IPTG (终浓度) 诱导, 诱导时添加 2g L⁻¹ 乳糖。为了确定乳糖水平、乳糖水平、LNT II 水平和 LNT 水平, 诱导后 24 小时将 2mL 样品离心 (15300g, 2 分钟)。在离心后, 将上清液贮存在 -20°C 直至衍生化; 将沉淀物用 1mL 冰冷的盐水洗涤, 如前述离心, 并且同样地贮存在 -20°C。

[0074] 在每种情况下诱导后 24 小时, 通过离心 (5869g, 4°C, 20 分钟) 10mL 培养物并且在
120°C 干燥细胞沉淀物至恒定重量 (最少两个批次), 分析含有一种主要碳源 (甘油, 乳糖
或半乳糖) 的培养物的细胞干重 (CDW), 摇瓶中确定 CDW [g L⁻¹] 与 OD₆₀₀ [-] 的相关性 (甘油
作为主要碳源时 0.3, 乳糖作为主要碳源时 0.37, 并且半乳糖作为主要碳源时 0.39)。

[0075] 如图 8a 和图 8b 所示, 提供的碳源对乳糖转化具有显著影响, 其中结果表明所使用
的碳源影响向更多的 UDP 活化型糖偏移, 和影响乳糖摄取。如上文所述, 在甘油上生长的培
养物导致最低 LNT 产率 (0.152 ± 0.002g L⁻¹), 但在使用甘油和半乳糖混合物时增加了 LNT 产
率接近 3 倍。与之相反, 比较在乳糖或在葡萄糖/半乳糖混合物上生长的培养物, 显示大致
相同的 LNT 产率, 但是在混合物的情况下, 乳糖至 LNT II 的转化显著地较低。在仅用乳糖
生长的培养物中观察到最高的乳糖转化以及最高的 LNT 产率 (0.810 ± 0.013g L⁻¹)

[0076] 除影响乳糖转化成 LNT II 和 LNT之外, 还显示所用的碳源影响产物 LNT 的释放 (参
见图 8c)。虽然含有葡萄糖或乳糖/半乳糖混合物的培养物导致释放约 50% 产生的 LNT, 但
超过 90% 所形成的 LNT 存在于含有半乳糖或甘油/半乳糖的培养物的培养基中。

[0077] 摇瓶实验显示碳源可以明显地影响 LNT 的形成, 为了确定所用的碳源是否可以控
制供体底物的胞间可用性并且因此控制产物形成, 对 UDP-N-乙酰葡萄糖胺, UDP-葡萄糖和
UDP-半乳糖的浓度定量。这涉及在含有甘油, 葡萄糖和半乳糖之一的极限培养基中培养根
据实施例 1 制备的菌株, 收获处于指数生长晚期的细胞和通过 HPLC 分析胞间代谢物。

[0078] 将菌株在 30°C 和 90 转/分钟在 1L 摇瓶中培养, 所述摇瓶充入 100mL 如上文所述的含
有甘油、葡萄糖或半乳糖的极限培养基。在 OD₆₀₀ 0.4~0.6 时, 用 0.5mM IPTG 诱导表达并且将培
养物在 30°C 和 90 转/分钟进一步温育。诱导后 12 小时, 将 25mL 样品离心 (2876 转/分
钟, 4°C, 15 分钟)。沉淀物随后重悬于缓冲液 (乙腈: 甲醇: H₂O 4:4:2, 含 0.1M 甲酸 (Bennett 等人
Nat. Chem. Biol., 2009, 5, 593-599)中并且且在冰上温育10分钟期间每3分钟在4℃在涡旋混合器上剧烈混合，并且至样液后用1M NH₄OH中和。随后将样品再次离心(22410g, 4℃, 10分钟。上清液在Speedvac CON-1000中干燥(Fröbel, Lindau, 德国)并且且在HPLC分析之前以5%的体积体积溶于于H₂O中。使用配备Chromeleon软件、Gina自动采样器、P580泵、UVD二极管列阵探测器和Luna C18 (2)反相柱（250mm x 4.5mm, 5μm, Phenomenex, Aschaffenburg, 德国）的Dionex HPLC仪（Thermo Fisher Scientific, Dreieich, 德国），分析UDP糖。修改自Payne和Ames(Am, Anal, Biochem, 1982, 123, 151-161)的上述方法以流量1μl/min-1应用:0至30分钟从100%溶剂A/0%溶剂B至80%溶剂A/20%溶剂B的线性梯度、30至30.5分钟从80%溶剂A/20%溶剂B至100%溶剂A/0%溶剂B的线性梯度。30.5至35分钟采用100%溶剂A以平衡该柱用于下一个样品的等强度条件。通过与7种不同浓度的商业标准品比较保留时间、谱图和信号面积，262nm进行鉴定和定量。

结果揭示，UDP-己糖的浓度的确明显取决于所用的碳源。仅在半乳糖的生长产生最高的胞内UDP半乳糖量(145.63±20.52nmol L⁻¹OD⁻¹)，大约3倍高于葡萄糖(65.73±5.63nmol L⁻¹OD⁻¹)。分析了在葡萄糖(145.63±20.52nmol L⁻¹OD⁻¹)上的生长所观察到的量。在葡萄糖和半乳糖上生长期间观察到最高的UDP-N-乙酰葡萄胺(334.03±3.41nmol L⁻¹OD⁻¹)（参见图9）。

实施例3:在半乳糖上合成LNT的可放大性研究

与通常使用的大肠杆菌碳源（如葡萄糖或甘油）相比，使用半乳糖作为完整细胞合成LNT的碳源具有优势，这归因于较高的胞内UDP半乳糖浓度。为了显示在半乳糖上合成LNT的可放大性，在高细胞密度下在生物反应器中按10升规模实施补料分批培养（补料分批法）。该方法使用8.45升补料启动，在起初存在的半乳糖已经利用后达到约13g L⁻¹CDW的生物量浓度。在后续补料阶段期间，如此设定输入的半乳糖，从而待定生长速率(μ=0.054)，在47小时后产生最终生物量55.7g L⁻¹CDW（参见图10a、b）。

实施例4: 在30°C在30L搅拌罐反应器（Bioengineering, Wald, 瑞士）中使用无机盐培养基作为主要碳源的半乳糖，实施实施例1中制备的菌株的补料分批培养，起始体积为8.45升并且终体积为13.63L。培养基从Wilms等人（Biotechnol. Bioeng., 2001, 73, 95-103）修改而来和具有以下组成:8升分批培养基组成如下:2.68g L⁻¹(NH₄)₂SO₄、1.1g L⁻¹(NH₄)₂HPO₄、25g L⁻¹半乳糖、3.9g L⁻¹(NH₄)₆HPO₄、14.6g L⁻¹MgSO₄.7H₂O、0.241g L⁻¹MnSO₄·4H₂O、0.2g L⁻¹Na₂SO₄、4.4g L⁻¹NH₄HPO₄·H₂O、0.5g L⁻¹NaCl、10mg L⁻¹盐酸磷酸钠和痕量元素溶液（3mL L⁻¹, 组成参上所述）。在分批和进料阶段期间，通过氮（25%）滴定调节pH至7.0。通过曝气和搅拌，维持相对溶解氧（pO₂）在40%以上，反应器压力为大气压以上500hPa。用0.45L过滤预培养物接种补料培养基以产生细胞干重浓度0.096g L⁻¹，并且加入至文末所指出的那样，在30°C和90分钟于含有10g L⁻¹半乳糖的所述无机盐培养基中培养，接种后12.6小时通过添加1PTG (0.5mM终浓度)诱导重组基因的表达，细胞干重浓度为大约2.4g L⁻¹。同时添加乳糖（16.9g）以发允许产物形成。在起初提供的半乳糖已经利用后（由pO₂增加指示），以三个添加启动进料阶段:添加1由514.76g L⁻¹半乳糖、15.21g L⁻¹MgSO₄·7H₂O、0.65g L⁻¹盐酸磷酸钠和100.89mL L⁻¹痕量元素溶液（组成参上文所述）组成，而添加2由335.59g L⁻¹(NH₄)₂HPO₄组成，并且添加3由用于形成产物的150g L⁻¹乳糖组成。根据式(1)的半乳糖受限生长速率，按比率81:19进行添加1和添加2的添加。
$$F(t) = \left[\frac{\mu_{oet}}{Y_{x/s}} \right] + \frac{m}{t} \times \left[\frac{c_{20} \times c_{10}}{c_{20}} \right] \times e^{\mu_{oet} \times t} \tag{1}$$

其中 $F \left[\text{L h}^{-1} \right]$ 是添加速率, $t \left[\text{h} \right]$ 是进料段时间, $\mu_{oet} \left[\text{L h}^{-1} \right]$ 是所需的生长速率 (本文中固定在0.1), $Y_{x/s} \left[\text{g g}^{-1} \right]$ 是来自底物的生物量的比产率系数 (从先前的摇瓶实验取为0.36), $m \left[\text{g g}^{-1} \text{h}^{-1} \right]$ 是比恒定保持系数 (取为0.04), $c_{20} \left[\text{g L}^{-1} \right]$ 是进料段开始时的生物量浓度 (这个过程中为12.0), $V_{o} \left[\text{L} \right]$ 是进料段开始时的培养物体积 (固定在82.25), 并且 $c_{10} \left[\text{g L}^{-1} \right]$ 是添加1的半乳糖浓度 (固定在514.76) (Wenzel等人, Appl. Environ. Microbiol., 2011, 77, 6419–6425)。基于此,考虑单因素调节乳糖添加量,总结200.4g乳糖添加到该系统。通过测量OD_{600}确定生长并且通过相关系数0.47 g l^{-1} (在发酵期间定)计算CDW浓度直至培养物密度为400单位。随后通过离心10mL培养物和随后在玻璃管中干燥细胞沉淀物至恒定重量, 一式两份直接测定CDW浓度。

在培养期间添加的全部乳糖均被利用并反应以产生LNT II和LNT。在该方法期间LNT II和LNT浓度增加, 分别达到最终产率12.72±0.21 g L^{-1} (LNT II) 和 13.70±0.10 g L^{-1} (LNT II)。最高的LNT II浓度在44小时后达到 (15.78±0.29 g L^{-1}) 并且随后下降, 原因在于乳糖利用和添加半乳糖所致的稀释 (参照图10 a, c)。为了确保在发酵过程结束时完全利用乳糖, 接种后44小时停止乳糖进料。在LNT形成的时间期间, 产率是0.37 g L^{-1} h^{-1} 并且补料分批法产生的LNT最终产是173.37±2.86 g, 其中大部分产物 (88.91±0.06% 的LNT II和 64.86±0.12% 的LNT I) 存在于培养物的上清液中。

实施例4: 合成具有LNT或LNT核心结构的岩藻糖基化低聚糖

情况下,将菌株在摇瓶中含葡萄糖(10g 1⁻¹)和酪蛋白氨基酸(1g 1⁻¹最终浓度, Difco,用于更可靠的生长)的有限培养基中培养。这涉及每种情况下Os000=0.4-0.6用IPTG(0.5mM终浓度)诱导转录并同时添加乳糖(2g 1⁻¹终浓度)。用IPTG诱导后26小时及取得原先样品并添加0.5培养物体积的含有葡萄糖(10g 1⁻¹)的有限培养基后加入白藻糖
(2g 1⁻¹终浓度)以确保持续供应足够的碳及继续合成足够量的LNT或LNNT。随后将培养物在
30℃和90转/分钟进一步温育,并且在第一次诱导后65小时实施第二次取样。65小时后与采用空质粒的对照相比时,菌株在每种情况下显示可以归因于核心结构成功白藻糖基化的产物。

[0089] 实施例5:使用岩藻糖基转移酶基因为于鼠李糖诱导型启动子控制下的菌株合成岩藻糖基化的LNT或LNNT核心结构

[0090] 使用这样的菌株再次实施相同实验,在所述菌株中,岩藻糖基转移酶基因为于具有IPTG诱导型 tac启动子的载体上,而于白藻糖基转移酶基因(futC)已经置于鼠李糖诱导型启动子控制下的质粒中(参见 Wiese, A. Molekulargenetische und funktionelle Charakterisierung des Hydantoin-Operons aus Arthrobacter aurescens DSM 3747
[Molecular genetic and functional characterization of the hydantoin operon from Arthrobacter aurescens DSM 3747](2000))。这涉及首先用L-鼠李糖(2g 1⁻¹诱导
表达岩藻糖基转移酶基因以及加入L-岩藻糖以便为LgtA和LgtB/WbgO糖基转移酶提供更多的蛋白质形成源。另外,类似于先前实验的方式实施的摇瓶培养物在诱导后65小时显示出样品中更强的岩藻糖基转移酶信号。为了在没有抗生素情况下合成这些结构物,还将岩
藻糖基转移酶基因染色体地整合入rhaBAD鼠李糖操纵子。整合的岩藻糖基转移酶基因在每种情况下在此均处于 tac启动子控制下。通过HPLC和质谱法显示摇瓶实验中的全部菌株均
具有合成岩藻糖基化LNT或LNNT的能力。

[0091] 实施例6:合成和分离较大的岩藻糖基化低聚糖

[0092] 由于上述实验还对LNT展示岩藻糖基化发挥作用,并且由于已经产生基于LNT的
α1,3-岩藻糖基化合物和α1,2-岩藻糖基化合物(参见Drouillard等人, Angew Chem Int Ed Engl 2006, 45,1778-1780;Dumon等人, Glycoconj J. 2001,18, 465-474),产生的岩
藻糖基化合物待分离和进一步表征。为此目的,上述含有L-鼠李糖诱导型质粒的培养物
按750ml规模在3升带挡板的摇瓶中于除盐水以外与前文相同的条件下按50℃中,在100℃温育20分钟和离心从细胞沉淀物回收产物,并且随后借助制备性活性炭/Celitc545色谱和凝胶过滤色谱分离。这涉及除来自Bio-Rad的Bio-Gel P2之外,还使用粒
度分布更窄和截止值更大的Bio-Gel P4(特细),因为后者已经成功地用于分级较大的中性
低聚糖(参见Priem等人,Glycobiology 2002,12,235-240)。这些分离步骤能够从培养物总计
分离59.4mg LNF1(结构参见图6)。借助质谱法和NMR研究其部分,旨在阐明结构。在此
显示产物的质谱图,除一些污染物质之外,尤其显示LNF1的质子加合物,钠加合物和二钠加
合物的信号。

[0093] 从含有Fuct14的菌株分离的低聚糖产生总计133.7mg LNDIII(结构参见图7)。另外,分离了71.5mg岩藻糖基化乳糖基-N-三糖II。质谱在此同样显示预期加合物的质量并且
几乎无任何污染物。这些物质是以LNT作为核心结构的岩藻糖基化或二岩藻糖基化化合物,
其中先前尚未将所述化合物描述为大肠杆菌中体内合成的化合物(也未描述具有相似量的
已知产物的其他合成途径。分离过程中出现的另一种化合物是带两个岩藻糖基残基的乳糖基-N-戊糖，这可能是用另一个N-乙酰葡萄糖胺基延伸LNT的结果。
图1
图2
图7
图8
图9
图10