

(12) United States Patent

Anderskewitz et al.

US 8,987,249 B2 (10) Patent No.:

(45) **Date of Patent:** Mar. 24, 2015

(54) SUBSTITUTED 2-AZA-BICYCLO[2.2.1] HEPTANE-3-CARBOXYLIC ACID (BENZYL-CYANO-METHYL)-AMIDES INHIBITORS OF CATHEPSIN C

(71) Applicants: Ralf Anderskewitz, Laupheim (DE); Florian Binder, Maselheim (DE); Matthias Grauert, Biberach an der Riss (DE): Marc Grundl, Biberach an der Riss (DE); Peter Wilhelm Haebel, Mittelbiberach (DE); Thorsten Oost, Biberach an der Riss (DE); Alexander Pautsch, Biberach an der Riss (DE); Stefan Peters, Biberach an der Riss (DE); Viktor Vintonyak, Biberach an

der Riss (DE)

(72) Inventors: Ralf Anderskewitz, Laupheim (DE); Florian Binder, Maselheim (DE): Matthias Grauert, Biberach an der Riss (DE); Marc Grundl, Biberach an der Riss (DE); Peter Wilhelm Haebel, Mittelbiberach (DE); Thorsten Oost, Biberach an der Riss (DE); Alexander Pautsch, Biberach an der Riss (DE); Stefan Peters, Biberach an der Riss

der Riss (DE)

Boehringer Ingelheim International Assignee: GmbH, Ingelheim am Rhein (DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(DE); Viktor Vintonyak, Biberach an

Appl. No.: 14/205,861

(21)(22)Filed: Mar. 12, 2014

(65)**Prior Publication Data**

> US 2014/0275025 A1 Sep. 18, 2014

(30)Foreign Application Priority Data

Mar. 14, 2013	(EP)	 13159240
May 31, 2013	(EP)	 13170005

1110	1, 2013	(L1)	131700
(51)	Int. Cl.		
	C07D 471/0	8 (2006.01)	
	C07D 498/0	(2006.01)	
	C07D 487/1	0 (2006.01)	
	C07D 405/1	2 (2006.01)	
	C07D 209/5	(2006.01)	
	A61K 31/40	3 (2006.01)	
	A61K 31/40	35 (2006.01)	
	A61K 31/40	45 (2006.01)	
	A61K 31/41	<i>55</i> (2006.01)	
	A61K 31/41	92 (2006.01)	
	A61K 31/43	8 (2006.01)	
	A61K 31/49	6 (2006.01)	
	A61K 31/53	83 (2006.01)	
	A61K 31/55	<i>I</i> (2006.01)	
	A61K 45/06	(2006.01)	
	C07D 401/1	2 (2006.01)	
	C07D 403/1	2 (2006.01)	
	C07D 403/1	4 (2006.01)	
(52)	U.S. Cl.		

CPC C07D 209/52 (2013.01); A61K 31/403 (2013.01); A61K 31/4035 (2013.01); A61K *31/4045* (2013.01); *A61K 31/4155* (2013.01); A61K 31/4192 (2013.01); A61K 31/438 (2013.01); A61K 31/496 (2013.01); A61K 31/5383 (2013.01); A61K 31/551 (2013.01); A61K 45/06 (2013.01); C07D 401/12 (2013.01); *C07D* 403/12 (2013.01); *C07D* 403/14 (2013.01); C07D 405/12 (2013.01); C07D 487/10 (2013.01); C07D 498/04 (2013.01); C07D 471/08 (2013.01)

USPC 514/210.18; 514/219; 514/249; 514/301; 514/304; 546/125; 540/597; 544/349; 544/362

(58) Field of Classification Search

USPC 514/210.18, 219, 249, 301, 304; 546/125; 544/349, 362; 540/597 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4.125.727 A 11/1978 Los 7,012,075 B2 3/2006 Prasit et al. 3/2011 Furber et al. 7.902.181 B2 (Continued)

FOREIGN PATENT DOCUMENTS

0202556 A2 WO 2004110988 A1 12/2004 WO (Continued)

OTHER PUBLICATIONS

Adkison, A.M. et al., "Dipeptidyl peptidase I activates neutrophilderived serine proteases and regulates the development of acute experimental arthritis." The Journal of Clinical Investigation, 2002, vol. 109, No. 3, pp. 363-371.

(Continued)

Primary Examiner — Niloofar Rahmani (74) Attorney, Agent, or Firm — Michael P. Morris; Anthony P. Bottino

(57)ABSTRACT

This invention relates to 2-Aza-bicyclo[2.2.1]heptane-3-carboxylic acid (benzyl-cyano-methyl)-amides of formula 1

and their use as inhibitors of Cathepsin C, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment and/or prevention of diseases connected with dipeptidyl peptidase I activity, e.g. respiratory diseases.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0223846 A1 10/2006 Dyatkin et al. 2013/0172327 A1* 7/2013 Grundl et al. 514/219

FOREIGN PATENT DOCUMENTS

WO	2005042533 A2	5/2005
WO	2009047829 A1	4/2009
WO	2009074829 A1	6/2009
WO	2010128324 A1	11/2010
WO	2010142985 A1	12/2010
WO	2012119941 A1	9/2012
WO	2013041497 A1	3/2013

OTHER PUBLICATIONS

Akk, A.M. et al., "Dipeptidyl Peptidase I-Dependent Neutrophil Recruitment Modulates the Inflammatory Response to Sendai Virus Infection." The Journal of Immunology, 2008, vol. 180, pp. 3535-3542.

Farberman, M.M. et al., "Airway proteins involved in bacterial clearance susceptible to cathepsin G proteolysis." European Respiratory Journal, 2010, vol. 35, No. 2, pp. 410-417.

Guyot, N. et al., "Deficiency in All Three Neutrophil Serine Proteases Protects Mice Against Cigarette Smoke-Induced Emphysema." American Journal of Respiratory and Critical Care Medicine, 2010, vol. 181, p. A5128.

Henriksen, P.A. et al., "Human neutrophil elastase: Mediator and therapeutic target in atherosclerosis." The International Journal of Biochemistry & Cell Biology, 2008, vol. 40, pp. 1095-1100.

Herias, M. et al., "Abstract 5871: Leukocyte Cathepsin C Deficiency Attenuates Atherosclerosis in LDL Receptor Deficient Mice." Circulation, 2009, vol. 120, p. 1166.

Hu, Y. et al., "Dipeptidyl Peptidase I Regulates the Development of Collagen-Induced Arthritis." Arthritis & Rheumatism, 2005, vol. 52, No. 8, pp. 2553-2558.

Joosten, L.A. et al., "Inflammatory Arthritis in Caspase 1 Gene-Deficient Mice." Arthritis & Rheumatism, 2009, vol. 60, No. 12, pp. 3651-3662.

Koga, H. et al., "Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses." Respiratory Research, 2013, vol. 14, No. 8, pp. 1-13.

Kotlowski, R. et al., "Population-Based Case-Control Study of Alpha 1-Antitrypsin and SLC11A1 in Crohn's Disease and Ulcerative Colitis." Inflammatory Bowel Disease, 2008, vol. 14, No. 8, pp. 1112-1117.

Laprise, C. et al., "Functional classes of bronchial mucosa genes that are differentially expressed in asthma." BMC Genomics, 2004, vol. 5, No. 21, pp. 1-10.

Liu, H. et al., "Neutrophil elastase and elastase-rich cystic fibrosis sputum degranulate human eosinophils in vitro." American Physiological Scoiety, 1999, vol. 276, pp. L28-L34.

Milner, J.M. et al., "Emerging Roles of Serine Proteinases in Tissue Turnover in Arthritis." Arthritis & Rheumatism, 2008, vol. 58, No. 12, pp. 3644-3656.

Morohoshi, Y. et al., "Inhibition of neutrophil elastase prevents the development of murine dextran sulfate sodium-induced colitis." Journal of Gastroenterology, 2006, vol. 41, pp. 318-324.

Motta, Jean-Paul et al., "Modifying the Protease, Antiprotease Pattern by Elafin Overexpression Protects Mice From Colitis." Gastroenterology, 2011, vol. 140, pp. 1272-1282.

Schmid, M. et al., "Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn's disease." Journal of Leukocyte Biology, 2007, vol. 81, pp. 907-915.

Sedor, J. et al., "Cathepsin-G Interferes with Clearance of *Pseudomonas aeruginosa* from Mouse Lungs." Pediatric Research, 2007, vol. 61, No. 1, pp. 26-31.

Shapiro, S.D. et al., "Neutrophil Elastase Contributes to Cigarette Smoke-Induced Emphysema in Mice." American Journal of Pathology, 2003, vol. 163, No. 6, pp. 2329-2335.

Wright, J.L. et al., "Synthetic Serine Elastase Inhibitor Reduces Cigarette Smoke-Induced Emphysema in Guinea Pigs." Ameican Journal of Respiratory and Critical Care Medicine, 2002, vol. 166, pp. 954-960.

Yuyama, N. et al., "Analysis of Novel Disease-Related Genes in Bronchial Asthma." Cytokine, 2002, vol. 19, No. 6, pp. 287-296. Abstract in English for WO 2009/047829, publication date Apr. 16, 2009.

Bondebjerg, J. et al., "Dipeptidyl nitriles as human dipeptidyl peptidase I inhibitors." Bioorganic & Medicinal Chemistry Letters, 2006, vol. 16, No. 13, pp. 3614-3617.

Guay, D. et al., "Design and synthesis of dipeptidyl nitriles as potent, selective, and reversible inhibitors of cathespin C." Bioorganic & Medicinal Chemistry Letters, 2009, vol. 19, No. 18, pp. 5392-5396. International Search Report for PCT/EP2014/054794 mailing date Apr. 2, 2014.

International Search Report for PCT/EP2014/054798 mailing date Apr. 4, 2014.

International Search Report for PCT/EP2014/054802 mailing date Apr. 10, 2014.

International Search Report for PCT/EP2014/054827 mailing date Apr. 28, 2014.

* cited by examiner

SUBSTITUTED 2-AZA-BICYCLO[2.2.1] HEPTANE-3-CARBOXYLIC ACID (BENZYL-CYANO-METHYL)-AMIDES INHIBITORS OF CATHEPSIN C

FIELD OF INVENTION

This invention relates to substituted 2-Aza-bicyclo[2.2.1] heptane-3-carboxylic acid (benzyl-cyano-methyl)-amides of formula 1

and their use as inhibitors of Cathepsin C, pharmaceutical compositions containing the same, and methods of using the 25 same as agents for treatment and/or prevention of diseases connected with dipeptidyl peptidase I activity, e.g. respiratory diseases.

BACKGROUND INFORMATION

WO2004110988 discloses peptidyl nitrile inhibitors as dipeptidyl-peptidase I (DPPI) inhibitors for the treatment of a series of diseases.

WO2009074829 and WO2010142985 also disclose pepti- 35 dyl nitrile inhibitors as dipeptidyl-peptidase I (DPPI) inhibitors for the treatment asthma, COPD or allergic rhinitis.

BRIEF SUMMARY OF THE INVENTION

Dipeptidyl-aminopeptidase I (DPPI or Cathepsin C; EC3.4.141), is a lysosomal cysteine protease capable of removing dipeptides from the amino terminus of protein substrates. DPPI was first discovered by Gutman and Fruton in 45 1948 (J. Biol. Chem. 174: 851-858, 1948). The cDNA of the human enzyme has been described in 1995 (Paris et al.: FEBS Lett 369: 326-330, 1995). The DPPI protein is processed into a mature proteolytically active enzyme consisting of a heavy chain, a light chain, and a propeptide that remains associated 50 with the active enzyme (Wolters et al.; J. Biol. Chem. 273: 15514-15520, 1998). Whereas the other cysteine Cathepsins (e.g. B, H, K, L and S) are monomers, DPPI is a 200-kD tetramer with 4 identical subunits, each composed of the 3 different polypeptide chains. DPPI is constitutively 55 expressed in many tissues with highest levels in lung, kidney, liver and spleen (Kominami et al.; Biol. Chem. Hoppe Seyler 373: 367-373, 1992). Consistent with its role in the activation of serine proteases from hematopoetic cells, DPPI is also relatively highly expressed in neutrophils, cytotoxic lympho- 60 cytes, natural killer cells, alveolar macrophages and mast cells. Recent data from DPPI deficient mice suggest that, besides being an important enzyme in lysosomal protein degradation, DPPI also functions as the key enzyme in the activation of granule serine proteases in cytotoxic T lymphocytes 65 and natural killer cells (granzymes A and B; Pham et al.; Proc. Nat. Acad. Sci. 96: 8627-8632, 1999), mast cells (chymase

2

and tryptase; Wolter et al.; J. Biol. Chem. 276: 18551-18556, 2001), and neutrophils (Cathepsin G, elastase and proteinase 3; Adkison et al.; J. Clin. Invest. 109: 363.371, 2002). Once activated, these proteases are capable of degrading various extracellular matrix components, which can lead to tissue damage and chronic inflammation.

Thus, inhibitors of Cathepsin C could potentially be useful therapeutics for the treatment of neutrophil-dominated inflammatory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary emphysema, asthma, multiple sclerosis, and cystic fibrosis (Guay et al.; Curr. Topics Med. Chem. 10: 708-716, 2010; Laine and Busch-Petersen; Expert Opin. Ther. Patents 20: 497-506, 2010). Rheumatoid arthritis is also another chronic inflammatory disease where DPPI 15 appears to play a role. Neutrophils are recruited to the site of joint inflammation and release Cathepsin G, elastase and proteinase 3, proteases which are believed to be responsible for cartilage destruction associated with rheumatoid arthritis. Indeed, DPPI deficient mice were protected against acute 20 arthritis induced by passive transfer of monoclonal antibodies against type II collagen (Adkison et al.; J. Clin. Invest. 109: 363.371, 2002).

In light of the role DPPI plays in activating certain proinflammatory serine proteases, it seems desirable to prepare compounds that inhibit its activity, which thereby inhibit downstream serine protease activity. It has been surprisingly found that the bicyclic compounds of the present invention possess potent Cathepsin C activity, high selectivity against other Cathepsins, e.g. Cathepsin K, and in general desirable 30 pharmacokinetic properties.

DETAILED DESCRIPTION OF THE INVENTION

A compound of formula 1

$$(R^1)_2 \xrightarrow{N} N$$

$$N$$

$$R^3$$

$$R^2$$

 $\ensuremath{R^1}$ is independently selected from H, $\ensuremath{C_{1\text{--}6}}\xspace\text{-alkyl-}$, halogen, HO—, C_{1-6} -alkyl-O—, H_2N —, C_{1-6} -alkyl-HN— and $(C_{1-6}$ -alkyl)₂N—, C_{1-6} -alkyl-C(O)HN—; or two R^1 are together C_{1-4} -alkylene;

R² is selected from

 $R^{2.1}$:

aryl-; optionally substituted with one, two or three residues independently selected from R^{2.1}; optionally substituted

 C_{5-10} -heteroaryl-; containing one, two, three or four heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2,2}; wherein a carbon atom of the ring is optionally substituted with one R^{2.3}; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$; and

 C_{5-10} -heterocyclyl-; containing one, two, three or four heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two 5 or three or four R^{2.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.2}; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$ or one R^{2.5}; a nitrogen atom of the ring is optionally substituted with one R^{2.4} or

R² and R⁴ are together with two adjacent carbon atoms of the phenyl ring a 5- or 6-membered aryl or heteroaryl, containing one, two or three heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein carbon 15 atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.2}:

R^{2.1} is independently selected from among H, halogen, NC—, O=, HO—, H-A-, H-A-C₁₋₆-alkylene-, R^{2.1.1}-A-, C_{1-6} -alkyl-A-, C_{3-8} -cycloalkyl-A-, C_{1-6} -haloalkyl-A-, $R^{2.1.1}$ — C_{1-6} -alkylene-A-, C_{1-6} -alkyl-A- C_{1-6} -A- C_{1 lene-, C_{3-8} -cycloalkyl-A- C_{1-6} -alkylene-, C_{1-6} -haloalkyl-A- C_{1-6} -alkylene-, $R^{2.1.1}$ — C_{1-6} -alkylene-A- C_{1-6} -alkylene-, $R^{2.1.1}$ -A- C_{1-6} -alkylene-, HO— C_{1-6} -HO—C₁₋₆-alkylene-A-C₁₋₆-alkylene-, alkylene-A-, C_{1-6} -alkyl-O— C_{1-6} -alkylene-A- and C_{1-6} -alkyl-O- C_{1-6} -alkylene-A- C_{1-6} -alkylene-; $R^{2.1.1}$ is independently selected from

aryl-; optionally substituted independently from each other with one, two or three $R^{2.1.1.1}$;

C₅₋₁₀-heteroaryl-; containing one, two, three or four heteroatoms independently selected from S, S(O), 35 S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and indetwo or three $R^{2.1.1.2}$;

C₅₋₁₀-heterocyclyl-; containing one, two, three or four heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the 45 A is a bond or independently selected from -O-, -S-. ring are optionally and independently from each other substituted with one, two or three or four R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R2.1.1.2;

 $R^{2.1.1.1}$ is independently selected from among halogen, HO—, O=, C_{1-6} -alkyl-, C_{1-6} -alkyl-O—, C_{1-6} -haloalkyl-, C₁₋₆-haloalkyl-O— and C₃₋₈-cycloalkyl-;

R^{2.1.1.2} is independently selected from among O= $C_{1\text{--}6}$ -alkyl-, $C_{1\text{--}6}$ -haloalkyl-; $C_{3\text{--}8}$ -cycloalkyl-, $C_{1\text{--}6}$ - 55 or a salt thereof. alkyl-O—C₁₋₆-alkyl-, H(O)C—, C₁₋₆-alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl-;

 $\mathrm{R}^{2.2}$ is independently selected from among H-A-C₁₋₆-alkylene-, C_{3-8} -cycloalkyl-, C_{1-6} -alkyl-A- C_{1-6} -alkylene-, 60 $\rm C_{3-8}$ -cycloalkyl-A- $\rm C_{1-6}$ -alkylene-, $\rm C_{1-6}$ -haloalkyl-A- $\rm C_{1-6}$ -alkylene-, $\rm R^{2.1.1}$ -A- $\rm C_{1-6}$ -alkylene-, $\rm C_{1-6}$ -alkyl-S

 $(O)_2$ —, C_{1-6} -alkyl-C(O)— and $R^{2.1.1}$ -A-; $(P)_2$ —, C_{1-6} -alkyl-C(O)— and $R^{2.1.1}$ -A-; $R^{2.3}$ and R^4 are together selected from among —O—, —S—, —N($R^{2.3.1}$)—, —C(O)N($R^{2.3.1}$)—, —N($R^{2.3.1}$) 65 C(O)—, $-S(O)_2N(R^{2\cdot3\cdot1})$ —, $-N(R^{2\cdot3\cdot1})S(O)_2$ -C(O)O, -OC(O), -C(O), -S(O)

 $(R^{2.3.2})_2^2$ — and — C_{1-4} -alkylene-;

 $R^{2.3.1}$ is independently selected from among H, C_{1-6} alkyl-, C₁₋₆-haloalkyl-; C₃₋₈-cycloalkyl-, HO—C₁₋₄alkylene-, (C_{1-4} -alkyl)-O— C_{1-4} -alkylene-, H_2N — $\mathrm{C}_{1\text{--}4}\text{-alkylene-}, (\mathrm{C}_{1\text{--}4}\text{-alkyl})\text{HN---}\mathrm{C}_{1\text{--}4}\text{-alkylene-}$ and, $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-;

 $R^{2.3.2}$ is independently selected from among H, $C_{1\text{-}6}$ alkyl-, C_{1-6} -haloalkyl-; C_{3-8} -cycloalkyl-, HO— C_{1-4} alkylene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2N — C_{1-4} -alkylene-, $(C_{1-4}$ -alkyl)HN— C_{1-4} -alkylene- and $(C_{1-4}$ -alkyl $)_2$ N— C_{1-4} -alkylene-;

R^{2.4} and R⁴ are together selected from among and K are together selected from almong $-N(R^{2,4,1})$ —, $-C(O)N(R^{2,4,1})$ —, $-N(R^{2,4,1})C(O)$ —, $-S(O)_2N(R^{2,4,1})$ —, $-N(R^{2,4,1})S(O)_2$ —, -C(O)—, -S(O)—, -S(O)—, $-C(R^{2,4,2})$ — $-C(R^{2,4,2})$ — $-C(R^{2,4,2})$ —, $-C(R^{2,4,2})$ $-N(R^{2.4.1})C(R^{2.4.2})_2$ — and $-C_{1.4}$ -alkylene-; and

R^{2.4.1} is independently selected from H, C₁₋₆-alkyl-, C₁₋₆-haloalkyl-; C₃₋₈-cycloalkyl-, HO—C₁₋₄-alkylene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2N — C_{1-4} alkylene-, $(C_{1-4}$ -alkyl)HN $-C_{1-4}$ -alkylene-, $(C_{1-4}$ $alkyl)_2N-C_{1-4}$ -alkylene-;

 $R^{2.4.2}$ is independently selected from H, C_{1-6} -alkyl-, C_{1-6} -haloalkyl-; C_{3-8} -cycloalkyl-, $HO-C_{1-4}$ -alkylene-, (C₁₋₄-alkyl)-O—C₁₋₄-alkylene-, H₂N—C₁₋₄alkylene-, $(C_{1-4}$ -alkyl) $\hat{H}N$ — C_{1-4} -alkylene- and $(C_{1-4}$ -alkyl $)_2$ N— C_{1-4} -alkylene-;

 $R^{2.5}$ and R^4 are together selected from $-C(R^{2.5.1})$ = $=C(R^{2.5.1})$ — and -N=; and

 $R^{2.5.1}$ is independently selected from H, C_{1-6} -alkyl-, $C_{1\text{--}6}$ -haloalkyl-; $C_{3\text{--}8}$ -cycloalkyl-, HO— $C_{1\text{--}4}$ -alkylene-, ($C_{1\text{--}4}$ -alkyl)-O— $C_{1\text{--}4}$ -alkylene-, H $_2$ N— $C_{1\text{--}4}$ -alkylene-, alkylene-, $(C_{1-4}$ -alkyl)HN— C_{1-4} -alkylene- and $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-;

R³ is H or F;

pendently from each other substituted with one, 40 R4 is independently selected from F, Cl, phenyl-H₂C—O—, HO—, C₁₋₆-alkyl-, C₁₋₆-haloalkyl-, C₃₋₈-cycloalkyl-, $\begin{array}{llll} C_{1\text{-}6}\text{-}alkyl\text{-}O\text{---}, & C_{1\text{-}6}\text{-}haloalkyl\text{-}O\text{---}, & C_{1\text{-}6}\text{-}alkyl\text{-}HN\text{---}, \\ (C_{1\text{-}6}\text{-}alkyl)_2\text{-}HN\text{----}, & C_{1\text{-}6}\text{-}alkyl\text{-}HN\text{---}C_{1\text{-}4}\text{-}alkyl\text{ene-} \\ \end{array}$ $(C_{1-6}$ -alkyl)₂-HN— C_{1-4} -alkylene-;

> $-N(R^5)$, $-C(O)N(R^5)$, $-N(R^5)C(O)$, $-S(O)_2N$ (R^5) —, $-N(R^5)S(O)_2$ —, $-S(O)(=NR^5)$ — $N(R^5)$ —, $-N(R^5)(NR^5)=S(O)$ —, $-S(=NR^5)_2$ — $N(R^5)$ —, $-N(R^5)(NR^5=)_2S-, -C(R^5)=C(R^5)-, -C=C$ _OC(O)__, —C(O)O—, —C(O)—, $--S(=NR^5)-$ -S(O),- $-S(O)(=NR^5)$ $-S(=NR^5)_2-$, $-(R^5)(O)S=N-$, $-(R^5)(O)S=$ and $-N=(O)(R^5)S-:$

> R⁵ is independently selected from H, C₁₋₆-alkyl- and NC—;

PREFERRED EMBODIMENTS

Preferred are the above compounds of formula 1, wherein R^1 is $R^{1.a}$ and $R^{1.a}$ is independently selected from H, C_{1-4} alkyl-, F and HO-

Preferred are the above compounds of formula 1, wherein R^1 is $R^{1.b}$ and $R^{1.b}$ is H.

Preferred are the above compounds of formula 1, wherein R^1 is $R^{1.c}$ and two $R^{1.c}$ are together —CH₂—

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.a}$ and $R^{2.a}$ is $R^{2.1}$.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.b}$ and $R^{2.b}$ is $R^{2.1.a}$.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2,c}$ and $R^{2,c}$ is aryl-; optionally substituted with one, two or three residues independently selected from $R^{2,1}$; optionally substituted with one $R^{2,3}$.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.d}$ and $R^{2.d}$ is phenyl; optionally substituted with one, two or three residues independently selected from $R^{2.1}$; optionally substituted with one $R^{2.3}$.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.d}$ and $R^{2.d}$ is phenyl; optionally substituted with one, two or three residues independently selected from $R^{2.1}$ and

R^{2.1.a} and R^{2.1.a} is selected from H, halogen, NC—, 15 O=, HO—, H-A-, H-A-C₁₋₄-alkylene-, R^{2.1.1}-A-, C_{1.4}-alkyl-A-, C₃₋₆-cycloalkyl-A-, C_{1.4}-alkylene-, C₃₋₆-cycloalkyl-A-C₁₋₄-alkylene-, C₁₋₄-haloalkyl-A-C₁₋₄-alkylene-, C₁₋₄-alkylene-, R^{2.1.1} alkylene-, R^{2.1.1}—C₁₋₄-alkylene-A-C₁₋₄-alkylene-, R^{2.1.1} alkylene-A-C₁₋₄-al

$$R^{2.1.1}$$
 is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from $R^{2.1.1.1}$;

 $C_{5\text{-}10}$ -heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.2}$:

 $C_{5\text{-}10}$ -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.2}$; and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O—, C_{1-4} -alkyl-, $C_{1.4}$ -alkyl-O—, C_{1-4} -haloalkyl-, C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and

 $R^{2.1.1.2}$ is independently selected from O—, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-; $C_{3.6}$ -cycloalkyl-, $C_{1.4}$ -alkyl-O— $C_{1.4}$ -alkyl-, H(O)C—, $C_{1.4}$ -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl.

Preferred are the above compounds of formula 1, wherein 55 R^2 is $R^{2,g}$ and $R^{2,g}$ is selected from

6

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; and

with $R^{2.2}$; and $R^{2.1.a}$ is selected from H, halogen, NC—, O—, HO—, H-A-, H-A-C₁₋₄-alkylene-, $R^{2.1.1}$ -A-, C₁₋₄-alkyl-A-, C₃₋₆-cycloalkyl-A-, C₁₋₄-haloalkyl-A-, $R^{2.1.1}$ — C₁₋₄-alkylene-A-, C₁₋₄-alkylene-, C₁₋₄-alkylene-, C₁₋₄-alkylene-, $R^{2.1.1}$ —cloalkyl-A-C₁₋₄-alkylene-, $R^{2.1.1}$ —cl₁₋₄-alkylene-A-C₁₋₄-alkylene-, $R^{2.1.1}$ —A-C₁₋₄-alkylene-A-C₁₋₄-alkylene-A-, HO—C₁₋₄-alkylene-A-, HO—C₁₋₄-alkylene-A-c₁₋₄-alkylene-A-c₁₋₄-alkylene-A-and C₁₋₄-alkylene-, C₁₋₄-alkylene-A-c₁₋₄-alkylene-, and

 $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

 $C_{5\text{-}10}$ -heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1.2}$;

C₅₋₁₀-heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O=, C_{1-4} -alkyl-, C_{1-4} -alkyl-O—, C_{1-4} -haloalkyl-, C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and

R^{2.1.1.2} is independently selected from O=, C_{1.4}-alkyl-, C_{1.4}-haloalkyl-; C_{3.6}-cycloalkyl-, C_{1.4}-alkyl-O=C_{1.4}-alkyl-, H(O)C—, C_{1.4}-alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl; and

 $R^{2.2}$ is $R^{2.2.a}$ and $R^{2.2.a}$ is independently selected from H-A-C $_{1-4}$ -alkylene-, C_{3-6} -cycloalkyl-, C_{1-4} -alkylene-, C_{3-6} -cycloalkyl-A-C $_{1-4}$ -alkylene-, C_{1-4} -alkylene-, $R^{2.1.1}$ -A-C $_{1-4}$ -alkylene-, C_{1-4} -alkylene-, $R^{2.1.1}$ -A-C $_{1-4}$ -alkylene-, C_{1-4} -alkyl-S (O) $_{2}$ — and C $_{1-4}$ -alkyl-C(O)—, $R^{2.1.1}$ -A-.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.e}$ and $R^{2.e}$ is $C_{5.or.6}$ -heteroaryl-, containing one, two,

30

35

8

three or four heteroatoms independently selected from S, S(O), $S(O)_2$, O and O, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three O0. Wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three O0. Wherein a carbon atom of the ring is optionally substituted with one O0. An introgen atom of the ring is optionally substituted with one O0.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2,f}$ and $R^{2,f}$ is bicyclic C_{7-10} -heteroaryl-, each containing one, two, three or four heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2,1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2,2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2,3}$; a nitrogen atom of the ring is optionally substituted with one $R^{2,3}$; a nitrogen atom of the ring is optionally substituted with one $R^{2,3}$.

Preferred are the above compounds of formula 1, wherein 20 R² is R^{2,g} and R^{2,g} is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1}$; 50 wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.h}$ and $R^{2.h}$ is selected from pyrazole, thiophene and furane, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1}$; wherein possibly available nitrogen atoms of the fing are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$.

Preferred are the above compounds of formula 1, wherein 65 R² is R^{2,i} and R^{2,i} is selected from C₆-heterocyclyl- and C₇₋₁₀-heterocyclyl-, each containing one, two, three or four heteroa-

toms independently selected from S, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2,1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2,2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2,3}$ or one $R^{2,5}$; a nitrogen atom of the ring is optionally substituted with one $R^{2,4}$

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2,j}$ and $R^{2,j}$ is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1}; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2.2}; wherein a carbon atom of the ring is optionally substituted with one R^{2.3} or one R^{2.5}; a nitrogen atom of the ring is optionally substituted with one R^{2.4}

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2,j}$ and $R^{2,j}$ is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1}$; 15 wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; and

 $\begin{array}{c} {\rm R^{2.1}\ is\ R^{2.1.a}\ and\ R^{2.1.a}\ is\ selected\ from\ H,\ halogen,\ NC-,}\\ {\rm O=,\ HO-,\ H-A-,\ H-A-C_{1-4}-alkylene-,\ R^{2.1.1}-A-,\ C_{1.4}-alkylene-,\ C_{3-6}-cycloalkyl-A-,\ C_{1-4}-alkylene-,\ C_{3-6}-cycloalkyl-A-C_{1-4}-alkylene-,\ C_{3-6}-cycloalkyl-A-C_{1-4}-alkylene-,\ C_{1-4}-alkylene-,\ R^{2.1.1}-alkylene-,\ R^{2.1.1}-C_{1-4}-alkylene-A-C_{1-4}-alkylene-,\ R^{2.1.1}-c_{1-4}-alkylene-A-C_{1-4}-alkyle$

$$R^{2.1.1}$$
 is $R^{2.1.1.a}$ and $R^{2.1.1}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

 $C_{5\text{-}10}$ -heteroaryl-, containing one, two, three or four heteroatoms selected independently from $S, S(O), S(O)_2, O$ and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2,1,1,1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2,1,1,2}$; and

C₅₋₁₀-heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), 45 S(O)₂, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O—, C_{1-4} -alkyl-, C_{1-4} -alkyl-O—, C_{1-4} -haloalkyl-, C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and

R^{2.1.1.2} is independently selected from O=, C_{1.4}-alkyl-, C_{1.4}-haloalkyl-; C_{3.6}-cycloalkyl-, C_{1.4}-alkyl-O—C_{1.4}-alkyl-, H(O)C—, C_{1.4}-alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl; and

 $R^{2.2}$ is $R^{2.2.a}$ and $R^{2.2.a}$ is independently selected from H-A-C $_{1.4}$ -alkylene-, C_{3-6} -cycloalkyl-, $C_{1.4}$ -alkylene-, $C_{1.4}$ -alkylene-, C_{3-6} -cycloalkyl-A-C $_{1.4}$ -alkylene-, $C_{1.4}$ -alkylene-, $R^{2.1.1}$ -A-C $_{1.4}$ -alkylene-, $C_{1.4}$ -alkylene-

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2,k}$ and $R^{2,k}$ is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$ or one $R^{2.5}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2,l}$ and $R^{2,l}$ is selected from

$$N_{H}$$
 and N_{H} and N_{H}

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four $R^{2,1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2,2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2,3}$ or one $R^{2,5}$; a nitrogen atom of the ring is optionally substituted with one $R^{2,4}$.

Preferred are the above compounds of formula 1, wherein R² is R^{2.m} and R^{2.m} is together with R⁴ and two adjacent carbon atoms of the phenyl ring a 5- or 6-membered aryl or heteroaryl, containing one, two or three heteroatoms independently selected from S, S(O), S(O)₂, O and N, preferably pyrazole, naphtene, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1}, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.2}.

Preferred are the above compounds of formula 1, wherein R² is R^{2.n} and R^{2.n} is selected from aryl-, pyrazole, thiophene and furane; wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four R^{2.1}; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2.2}; wherein a carbon atom of the ring is optionally substituted with one R^{2.3}; a nitrogen atom of the ring is optionally substituted with one R^{2.4}; or R^{2.n} is selected from

60

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$ or one $R^{2.5}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.o}$ and $R^{2.o}$ is selected from aryl-, pyrazole, thiophene and furane; wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$.

Preferred are the above compounds of formula 1, wherein 30 R² is R^{2,p} and R^{2,p} is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$ or one $R^{2.5}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$.

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2\cdot q}$ and $R^{2\cdot q}$ is selected from among the substituents (a1) to (q1)

$$\stackrel{H}{\overbrace{\hspace{1cm}}}$$

$$\underset{NH}{\text{HN}}$$

$$\underset{N}{\text{HN}} \bigcirc \bigcirc$$

$$\bigcap_{N} O$$

$$\underset{\text{HN}}{\text{HN}}$$

$$\bigcap_{N}^{\text{(h1)}}$$

$$\underset{NH}{\text{HN}}$$

$$\begin{array}{c} \text{HN} \\ \end{array}$$

$$HN \longrightarrow H$$

$$N \underbrace{\qquad \qquad \qquad }_{H} O$$

$$\begin{array}{c} N \\ H \\ O \end{array}$$

13

-continued

$$\begin{array}{c}
H \\
O \\
\downarrow \\
I \\
I
\end{array}$$

$$\bigcap_{N}^{(q1)}$$

wherein carbon atoms of the ring are optionally and indepen- 20 dently from each other substituted with one, two, three or four $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other are substituted with R^{2.2}

Particularly preferred $R^{2,q}$ is substituent (a1) or (c1), wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other are substituted 30 with R^{2.2}

Particularly preferred R^{2,q} denotes a substituent selected from the group (a1) to (q1), wherein carbon atoms of the ring are optionally and independently from each other substituted with a group selected from among =0, Me, MeSO₂—, 35 Me-piperazinyl-SO₂—, morpholinyl, —CN and F, and possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with Me₂N- CH_2 — CH_2 —, F_2CH — CH_2 —, — CH_3 and tetrahydrofura-

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.s}$ and $R^{2.s}$ is Phenyl- $R^{2.3}$, wherein the phenyl ring is optionally substituted with one or two residues R^{2.1}, wherein

 $R^{2.1}$ is $R^{2.1.a}$ and $R^{2.1.a}$ is selected from H, halogen, NC—, O =, HO =, H-A-, H-A-C₁₋₄-alkylene-, $R^{2.1.1}$ -A-, C_{1-4} - 45 alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} -haloalkyl-A-, $R^{2.1.1}$ — C_{1-4} -alkylene-A-, C_{1-4} -alkyl-A- C_{1-4} -alkylene-, $\begin{array}{lll} C_{3\text{-}6}\text{-cycloalkyl-A-C}_{1\text{-}4}\text{-alkylene-}, & C_{1\text{-}4}\text{-haloalkyl-A-C}_{1\text{-}4}\text{-alkylene-}, & R^{2\text{-}1,1}-C_{1\text{-}4}\text{-alkylene-A-C}_{1\text{-}4}\text{-alky$ lene-, R^{2.1.1}-A-C₁₋₄-alkylene-, HO—C₁₋₄-alkylene-A-, 50 $HO-C_{1-4}$ -alkylene- $A-C_{1-4}$ -alkylene-, C_{1-4} -alkyl- $O-C_{1-4}$ -alkyl-o-C₁₋₄-alkylene-A- and C₁₋₄-alkyl-O—C₁₋₄-alkylene-A- $C_{1.4}$ -alkylene-; and $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each 55 R1 is H, other with one, two or three residues independently selected from $R^{2.1.1.1}$;

 C_{5-10} -heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring 60 are optionally and independently from each other substituted with one, two or three R^{2.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.2}$;

 C_{5-10} -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O),

14

S(O)2, O and N, and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

R^{2.1.1.1} is independently selected from halogen, HO—, O=, C_{1-4} -alkyl-, C_{1-4} -alkyl-O-, C_{1-4} -haloalkyl-,

 $C_{1.4}$ -haloalkyl-O— and $C_{3.6}$ -cycloalkyl-; and $R^{2.1.2}$ is independently selected from O—, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-; $C_{3.6}$ -cycloalkyl-, $C_{1.4}$ -alkyl-O— $C_{1.4}$ -alkyl-, H(O)C—, $C_{1.4}$ -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl.

and $R^{2.s}$ and R^4 together denote a group (r1),

wherein the N-atom is optionally substituted with —R^{2.2}, wherein

 $\ensuremath{R^{2.2}}$ is independently selected from H-A-C $_{\ensuremath{\text{1-6}}}\text{-alkylene-,}$ C_{3-8} -cycloalkyl-, C_{1-6} -alkyl-A- C_{1-6} -alkylene-, C_{3-8} -cycloalkyl-A- C_{1-6} -alkylene-, C_{1-6} -haloalkyl-A- C_{1-6} -alkylene-, C_{1-6} -alkyl-S(O)₂—, C_{1-6} -alkyl-C(O)— and C_{1-6} -alkyl-A- C_{1-6} -alkyl-S(O)₂—,

Particularly preferred are the above compounds of formula 1, wherein R^2 is $R^{2.s}$ and $R^{2.s}$ is Phenyl- $R^{2.3}$ wherein the phenyl ring is optionally substituted with one or two residues independently selected from F and —CN, and R^{2.s} and R⁴ together denote a group (r1), wherein the 40 N-atom is optionally substituted with —CH₃,

Particularly preferred are the above compounds of formula 1, wherein

R³ is H or F, preferably F,

 R^2 is $R^{2.s}$ and $R^{2.s}$ is Phenyl- $R^{2.3}$,

wherein the phenyl ring is optionally substituted with one or two residues independently selected from F and —СN,

and R^{2.s} and R⁴ together denote a group (r1), wherein the N-atom is optionally substituted with —CH₃;

Particularly preferred are the above compounds of formula 1, wherein R^{2.s} and R⁴ together denote a group (r1), optionally substituted as described above, in meta and para position of the phenyl ring.

(i2)

(d2)

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.r}$ and $R^{2.r}$ is selected from among the substituents (a2) to (w2) or

 R^2 together with R^4 denotes a group selected from among (a3) to (e3).

$$N \longrightarrow N$$
*

-continued

-continued

(t2)
$$_{10}$$
 $_{0}$ $_{0}$ $_{15}$ $_$

Particularly preferred $R^{2,r}$ is substituent (a2) or (c2).

Particularly preferred R² is substituted Phenyl-R^{2.3} wherein R² together with R⁴ denotes a group selected from ₂₅ among (a3), (b3), (c3), (d3) and (e3).

Preferred are the above compounds of formula 1, wherein R^{2.1} is R^{2.1.a} and R^{2.1.a} is selected from H, halogen, NC—, O=, HO—, H-A-, H-A-C_{1.4}-alkylene-, R^{2.1.1}-A-, C_{1.4}-alkylene-, C_{1.4}-alkylene-A-, C_{1.4}-alkylene-, C_{1.4}-alkylene-, C_{3.6}-cycloalkyl-A-C_{1.4}-alkylene-, C_{1.4}-alkylene-, C_{1.4}-alkylene-, R^{2.1.1}—C_{1.4}-alkylene-, C_{1.4}-alkylene-, R^{2.1.1}—C_{1.4}-alkylene-A-C_{1.4}-alkylene-, HO—C_{1.4}-alkylene-A-C_{1.4}-alkyl

(a3) Preferred are the above compounds of formula 1, wherein $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

 $C_{5\text{--}10}\text{-heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)_2, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three <math>R^{2\text{-}1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1.2}$

50 and

55

(c3)

 C_{5-10} -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other are substituted with one, two or three $R^{2.1.1.2}$; and

 60 R^{2.1.1.1} is independently selected from halogen, HO—, O—, C_{1.4}-alkyl-, C_{1.4}-alkyl-O—, C_{1.4}-haloalkyl-, C_{1.4}-haloalkyl-O— and C_{3.6}-cycloalkyl-; and

R^{2.1.1.2} is independently selected from O—, C_{1.4}-alkyl-, C_{1.4}haloalkyl-; C_{3.6}-cycloalkyl-, C_{1.4}-alkyl-O—C_{1.4}-alkyl-,
H(O)C—, C_{1.4}-alkyl-(O)C—, tetrahydrofuranylmethyland tetrahydropyranylmethyl.

Preferred are the above compounds of formula 1, wherein $R^{2.1.1}$ is $R^{2.1.1.b}$ and $R^{2.1.1.b}$ is phenyl or selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.1.1.2}$; and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O=, C_{1.4}-alkyl-, C_{1.4}-alkyl-O—, C_{1.4}-haloalkyl-, C_{1.4}-haloalkyl-O— and C_{3.6}-cycloalkyl-; and

 $R^{2.1.1.2}$ is independently selected from O=, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-; C_{3-6} -cycloalkyl-, $C_{1.4}$ -alkyl-O-C $_{1.4}$ -alkyl-, H(O)C—, $C_{1.4}$ -alkyl-(O)C—, tetrahydrofuranylmethyl-and tetrahydropyranylmethyl-

Preferred are the above compounds of formula 1, wherein $R^{2.1.1}$ is $R^{2.1.1.c}$ and $R^{2.1.1.c}$ is phenyl or selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.1.1.2}$; and

R^{2.1.1.1} is independently selected from F, Cl, Me, MeO—and 55 cyclopropyl-; and

R^{2.1.1.2} is independently selected from Me, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl.

Preferred are the above compounds of formula 1, wherein $R^{2.1.2}$ is $R^{2.1.2.a}$ and $R^{2.1.2.a}$ is selected from H, NC—, $C_{1.4}$ - 60 alkyl-, $C_{1.4}$ -haloalkyl-, $C_{3.6}$ -cycloalkyl-, HO— C_{1-4} -alkylene- and ($C_{1.4}$ -alkyl)-O— C_{1-4} -alkylene-.

Preferred are the above compounds of formula 1, wherein $R^{2.1.2}$ is $R^{2.1.2.b}$ and $R^{2.1.2.b}$ is selected from H, C_{1-4} -alkyl-, and C_{3-6} -cycloalkyl-;

Preferred are the above compounds of formula 1, wherein R^{2.2} is R^{2.2.a} and R^{2.2.a} is independently selected from H-A-

 $\begin{array}{lll} C_{1\text{-}4}\text{-}alkylene-, & C_{3\text{-}6}\text{-}cycloalkyl-, & C_{1\text{-}4}\text{-}alkyl-A-C_{1\text{-}4}\text{-}alkylene-, & C_{3\text{-}6}\text{-}cycloalkyl-A-C_{1\text{-}4}\text{-}alkylene-, & C_{1\text{-}4}\text{-}haloalkyl-A-C_{1\text{-}4}\text{-}alkylene-, & C_{1\text{-}4}\text{-}alkyl-S(O)_2-and & C_{1\text{-}4}\text{-}alkyl-C(O)-, & R^{2\text{-}1\text{-}1}\text{-}A-; & R^{2\text{-}1\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}1\text{-}A-;} & R^{2\text{-}1\text{-}A-;} & R^{$

Preferred are the above compounds of formula 1, wherein $R^{2.2}$ is $R^{2.2.b}$ and $R^{2.2.b}$ is together with R^4 selected from -C(O), -S(O), -S(O), $-C(R^{2.1.2})$ and $-C_{1-4}$ -alkylene-;

Preferred are the above compounds of formula 1, wherein R^{2,3} is together with R⁴ a group R^{2,3,a} and R^{2,3,a} is selected from -O-, -S-, $-N(R^{2,3,1})-$, $-C(O)N(R^{2,3,1})-$, $-N(R^{2,3,1})C(O)-$, $-S(O)_2N(R^{2,3,1})-$, $-N(R^{2,3,1})$, $S(O)_2-$, -C(O), -C(O)-, -C(O)-, -C(O)-, -S(O)-, $-S(O)_2-$, $-C(R^{2,3,2})=C(R^{2,3,2})-$, -C=N-, $-C(R^{2,3,2})=C(R^{2,3,2})-$, $-C(R^{2,3,2})=C(R^{2,3,2})-$, $-C(R^{2,3,2})=C(R^{2,3,2})-$, $-C(R^{2,3,2})=C(R^{2,3,2})-$, and $-C_{1,4}$ -alkylene-; and

 $-\mathrm{C_{1.4}}\text{-alkylene-};$ and R^{2.3.1} is independently selected from H, C_{1.4}-alkyl-, C_{1.4}-haloalkyl-, C_{3.6}-cycloalkyl-, HO—C_{1.4}-alkylene-, (C_{1.4}-alkyl)-O—C_{1.4}-alkylene-, H₂N—C_{1.4}-alkylene-, (C_{1.4}-alkyl)HN—C_{1.4}-alkylene- and (C_{1.4}-alkyl)₂N—C_{1.4}-alkylene-;

 $R^{2.3.2}$ is independently selected from H, $C_{1\text{-}4}\text{-}alkyl\text{-},\ C_{1\text{-}4}\text{-}alkyl\text{-},\ C_{1\text{-}4}\text{-}alkyl\text{-},\ C_{1\text{-}4}\text{-}alkyl\text{-}ne\text{-},\ (C_{1\text{-}4}\text{-}alkyl)\text{-}O\text{--}C_{1\text{-}4}\text{-}alkyl\text{-}ne\text{-},\ H_2N\text{--}C_{1\text{-}4}\text{-}alkyl\text{-}ne\text{-},\ (C_{1\text{-}4}\text{-}alkyl)\text{-}N\text{--}C_{1\text{-}4}\text{-}alkyl\text{-}ne\text{-},\ (C_{1\text{-}4}\text{-}alkyl)\text{-}N\text{--}C_{1\text{-}4}\text{-}alkyl\text{-}ne\text{-}.$

35 R^{2.4.1} is independently selected from H, C₁₋₄-alkyl-, C₁₋₄-haloalkyl-, C₃₋₆-cycloalkyl-, HO—C₁₋₄-alkylene-, (C₁₋₄-alkyl)-O—C₁₋₄-alkylene-, (C₁₋₄-alkyl)+N—C₁₋₄-alkylene- and (C₁₋₄-alkyl)₂N—C₁₋₄-alkylene-; (C₁₋₄-alkylene-;

40 $R^{2.4.2}$ is independently selected from H, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-, $C_{3.6}$ -cycloalkyl-, HO— $C_{1.4}$ -alkylene-, ($C_{1.4}$ -alkyl-O— $C_{1.4}$ -alkylene-, ($C_{1.4}$ -alkyl-HN— $C_{1.4}$ -alkylene-, ($C_{1.4}$ -alkyl-ne-, alkyl-ne-.

Preferred are the above compounds of formula 1, wherein $R^{2.5}$ is together with R^4 a group $R^{2.5.a}$ and $R^{2.5.a}$ is selected from $-C(R^{2.5.1})$ —, $-C(R^{2.5.1})$ — and -N—; and $R^{2.5.1}$ is independently selected from H, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-, C_{3-6} -cycloalkyl-, $HO-C_{1-4}$ -alkylene-, $(C_{1-4}$ -alkyl- $O-C_{1-4}$ -alkylene-, H_2N-C_{1-4} -alkylene-, $(C_{1-4}$ -alkyl- $HO-C_{1-4}$ -alkyl-HO

Preferred are the above compounds of formula 1, wherein R^2 is $R^{2.m}$ and $R^{2.m}$ is together with R^4 and two adjacent carbon atoms of the phenyl ring a 5- or 6-membered aryl or heteroaryl, containing one, two or three heteroatoms independently selected from S, S(O), $S(O)_2$, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1}$, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.2}$; and

 $\begin{array}{lll} R^{2.1.a} & \text{is R}^{2.1.a} & \text{and R}^{2.1.a} & \text{is selected from H, halogen, NC---,} \\ O=, HO--, H-A-, H-A-C_{1-4}-alkylene-, R^{2.1.1}-A-, C_{1-4}-alkyl-A-, C_{3-6}-cycloalkyl-A-, C_{1-4}-alkylene-, R^{2.1.1}-C_{1-4}-alkylene-A-, C_{1-4}-alkyl-A-C_{1-4}-alkylene-, C_{3-6}-cycloalkyl-A-C_{1-4}-alkylene-, C_{1-4}-haloalkyl-A-C_{1-4}-alkylene-, C_{1-4}-haloalkyl-A-C_{1-4}-alkylene-, C_{1-4}-alkylene-, C_{1-4}-alkylene$

22

alkylene-, R^{2.1.1}— $C_{1.4}$ -alkylene-A- $C_{1.4}$ -alkylene-, R^{2.1.1}—A- $C_{1.4}$ -alkylene-, HO— $C_{1.4}$ -alkylene-A-, HO— $C_{1.4}$ -alkylene-A- $C_{1.4}$ -alkylene-A- $C_{1.4}$ -alkylene-A-and $C_{1.4}$ -alkylene-A- $C_{1.4}$ -alkylene-; and

 $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

C₅₋₁₀-heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}.

 $C_{5\text{-}10}$ -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1.2}$ and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O=, C_{1-4} -alkyl-, C_{1-4} -alkyl-O—, C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and

 $R^{2.1.1.2}$ is independently selected from O=, C_{1-4} -alkyl-, $_{30}$ C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O— C_{1-4} -alkyl-, H(O)C—, C_{1-4} -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl; and

 $R^{2.2}$ is $R^{2.2.a}$ and $R^{2.2.a}$ is independently selected from H-A-C_{1.4}-alkylene-, C_{3.6}-cycloalkyl-, C_{1.4}-alkyl-A-C_{1.4}-alkylene-, C_{3.6}-cycloalkyl-A-C_{1.4}-alkylene-, C_{1.4}-haloalkyl-A-C_{1.4}-alkylene-, $R^{2.1.1}$ -A-C_{1.4}-alkylene-, C_{1.4}-alkyl-S (O)₂— and C_{1.4}-alkyl-C(O)—, $R^{2.1.1}$ -A-.

Preferred are the above compounds of formula 1, wherein R² is R^{2.n} and R^{2.n} is selected from aryl-, pyrazole, thiophene and furane; wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four R^{2.1}; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2.2}; wherein a carbon atom of the ring is optionally substituted with one R^{2.3}; a nitrogen atom of the ring is optionally substituted with one R^{2.4}; or R^{2.n} is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four

 $R^{2.1}$; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with $R^{2.2}$; wherein a carbon atom of the ring is optionally substituted with one $R^{2.3}$ or one $R^{2.5}$; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$; and

 $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

 $C_{5\text{-}10}$ -heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.2}$; and

C₅₋₁₀-heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O—, C_{1-4} -alkyl-, C_{1-4} -alkyl-O—, C_{1-4} -haloalkyl-, C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and

 $R^{2.1.1.2}$ is independently selected from O=, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-; $C_{3.6}$ -cycloalkyl-, $C_{1.4}$ -alkyl-O—C $_{1.4}$ -alkyl-, H(O)C—, $C_{1.4}$ -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl; and

 $R^{2.2}$ is $R^{2.2.a}$ and $R^{2.2.a}$ is independently selected from H-A-C $_{1.4}$ -alkylene-, $C_{3.6}$ -cycloalkyl-, $C_{1.4}$ -alkylene-, $C_{1.4}$ -alkylene-, $C_{3.6}$ -cycloalkyl-A-C $_{1.4}$ -alkylene-, $C_{1.4}$ -al

 $(O)_2$ — and $C_{1,4}$ -alkyl-C(O)—, $R^{2.3.1}$ -A-; and $R^{2.3}$ is together with R^4 a group $R^{2.3.a}$ and $R^{2.3.a}$ is selected from -O—, -S—, $-N(R^{2.3.1})$ —, $-C(O)N(R^{2.3.1})$ —, $-N(R^{2.3.1})$ C(O)—, $-S(O)_2N(R^{2.3.1})$ —, $-N(R^{2.3.1})$ S($O)_2$ —, -C(O)O—, -OC(O)—, -C(O)—, -S(O)—, -S(O)—, $-C(R^{2.3.2})$ —C($R^{2.3.2}$)—, -C=N—, -N=C—, $-C(R^{2.3.2})$ 2—O—, $-O-C(R^{2.3.2})$ 2—, and $-C_{1,4}$ -alkylene-; and

 $-\mathrm{C}_{1.4}$ -alkylene-; and $\mathrm{R}^{2.3.1}$ is independently selected from H, $\mathrm{C}_{1.4}$ -alkyl-, $\mathrm{C}_{1.4}$ -haloalkyl-, C_{3-6} -cycloalkyl-, HO—C $_{1.4}$ -alkylene-, (C $_{1.4}$ -alkyl-O—C $_{1.4}$ -alkylene-, H $_2$ N—C $_{1.4}$ -alkyl-N—C $_{1.4}$ -alkyl-ne-; and (C $_{1.4}$ -alkyl-ne-; C $_{1.4}$ -alkyl-ne-;

C_{1.4}-alkylene-; $R^{2.3.2} \text{ is independently selected from H, C}_{1.4}\text{-alkyl-, C}_{1.4}\text{-haloalkyl-, C}_{3.6}\text{-cycloalkyl-, HO-C}_{1.4}\text{-alkylene-, (C}_{1.4}\text{-alkyl-O-C}_{1.4}\text{-alkylene-, H}_2\text{N-C}_{1.4}\text{-alkylene-, (C}_{1.4}\text{-alkyl-HN-C}_{1.4}\text{-alkylene- and (C}_{1.4}\text{-alkyl-g}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\text{N-C}_2\text{N-C}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\text{N-C}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_2\textN-C}_2\text{N-C}_$

 $R^{2.4}$ is together with R^4 a group $R^{2.4.a}$ and $R^{2.4.a}$ is selected from $-N(R^{2.4.1})$ —, $-C(O)N(R^{2.4.1})$ —, $-N(R^{2.4.1})$ C

 $\begin{array}{lll} (O) & -, & -S(O)_2N(R^{2.4.1}) -, & -N(R^{2.4.1})S(O)_2 -, \\ -C(O) & -, & -S(O) -, & -S(O)_2 -, & -C(R^{2.4.2}) = C \\ (R^{2.4.2}) & -, & -C = N -, & -N = C -, & -C(R^{2.4.2})_2N \\ (R^{2.4.1}) & -, & -N(R^{2.4.1})C(R^{2.4.2})_2 - \text{ and } -C_{1.4}\text{-alkylene-}; \\ \text{and} \end{array}$

 $R^{2.4.1}$ is independently selected from H, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-, $C_{3.6}$ -cycloalkyl-, HO— $C_{1.4}$ -alkylene-, ($C_{1.4}$ -alkyl-O— $C_{1.4}$ -alkylene-, H $_2$ N— $C_{1.4}$ -alkylene-, ($C_{1.4}$ -alkyl)HN— $C_{1.4}$ -alkylene- and ($C_{1.4}$ -alkyl) $_2$ N— $C_{1.4}$ -alkylene-;

 $C_{1.4}$ -alkylene-; $R^{2.4.2}$ is independently selected from H, $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-, C_{3-6} -cycloalkyl-, HO— $C_{1.4}$ -alkylene-, $(C_{1.4}$ -alkyl-O— $C_{1.4}$ -alkylene-, H_2 N— $C_{1.4}$ -alkylene-, $(C_{1.4}$ -alkyl)HN— $C_{1.4}$ -alkylene- and $(C_{1.4}$ -alkyl)N— $C_{1.4}$ -alkylene-; and

 $R^{2.5}$ is together with R^4 a group $R^{2.5.a}$ and $R^{2.5.a}$ is selected from $-C(R^{2.5.1})$ —, $-C(R^{2.5.1})$ — and -N—; and $R^{2.5.1}$ is independently selected from H, $C_{1.4}$ -alkyl-, $C_{1.4}$ -

R^{2.3.1} is independently selected from H, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-, C_{3-6} -cycloalkyl-, HO— C_{1-4} -alkylene-, 20 (C_{1-4} -alkyl)-O— C_{1-4} -alkylene-, H₂N— C_{1-4} -alkylene-, (C_{1-4} -alkyl)HN— C_{1-4} -alkylene- and (C_{1-4} -alkyl)₂N— C_{1-4} -alkylene-.

Preferred are the above compounds of formula 1, wherein R^1 is $R^{1.b}$ and $R^{1.b}$ is H; or two R^1 are together — CH_2 —; R^2 is selected from $R^{2.1}$;

phenyl-; optionally substituted with one or two residues independently selected from $R^{2.1}$; optionally substituted with one $R^{2.3}$:

 C_5 -heteroaryl-; containing two or three independently selected from S, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one $R^{2.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other 35 substituted with one $R^{2.2}$;

monocyclic C_6 -heterocyclyl containing one or two nitrogen atoms, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one $R^{2.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one $R^{2.2}$; and

bicyclic C_{9 or 10}-heterocyclyl-; containing one, two, three or four heteroatoms independently selected from S(O)₂, 45 O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one R^{2.2};

 $R^{2.1}$ is independently selected from halogen, NC—, O—, H-A-, H-A-C $_{1\text{--}4}$ -alkylene-, $R^{2.1.1}$ -A-, $C_{1\text{--}4}$ -alkyl-A-, $C_{3\text{--}6}$ -cycloalkyl-A-, $R^{2.1}$ — $C_{1\text{--}4}$ -alkylene-A-, $C_{1\text{--}4}$ -alkylene-A- 55 $C_{1\text{--}4}$ -alkylene-;

C₁₋₄-alkylene-; R²⁻¹⁻¹ is independently selected from phenyl-; and

C_{5 or 6}-heterocyclyl-; containing one or two heteroatoms independently selected from O and N, 60 wherein the ring is fully or partially saturated, wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one C₁₋₄-alkyl-;

 $R^{2.2}$ is independently selected from H-A-C₁₋₄-alkylene-, 65 C₃₋₆-cycloalkyl-, C₁₋₄-alkyl-A-C₁₋₄-alkylene-, $R^{2.1.1}$ -A-C₁₋₄-alkylene- and C₁₋₄-alkyl-C(O)—;

 $R^{2.3}$ and R^4 are together a group selected from $-N(R^{2.3.1})-$, $-C(O)N(R^{2.3.2})-$ and $-N(R^{2.3.1})C$

 $R^{2.3.1}$ is independently selected from H and H_3C —; R^3 is H or F;

 R^4 is $R^{4.b}$ and $R^{4.b}$ is F;

A is a bond or independently selected from -O-, -C(O) $N(R^5)-$, $-N(R^5)C(O)-$, $-S(O)_2N(R^5)-$, $-N(R^5)S$ $(O)_2-$, -C(O)O-, -OC(O)-, -C(O)-, $-S(O)_2-$ and $-N=(O)(R^5)S-$;

 $\rm R^5$ is independently selected from H and $\rm C_{1 - 4}$ -alkyl-; or a salt thereof.

Preferred are the above compounds of formula 1, wherein R² is selected from the Table 1R²—Embodiments of the invention for R², R^{2.1}, R^{2.1,1}, R^{2.2}, R^{2.3}, R^{2.4} and R^{2.5} (if present):

E#	\mathbb{R}^2	$R^{2.1}$	R ^{2.1.1}	R ^{2.2}	R ^{2.3-5}
1	$R^{2.a}$	$R^{2.1}$	$R^{2.1.1.a}$		_
2	$R^{2.a}$	$R^{2.1}$	$R^{2.1.1.b}$		_
3	$R^{2.a}$	$R^{2.1}$	$R^{2.1.1.c}$		_
4	$R^{2.b}$	$R^{2.1.a}$	$R^{2.1.1.a}$		_ _ _
5	$\mathbb{R}^{2.b}$	$R^{2.1.a}$	$R^{2.1.1.b}$		_
6	$R^{2.b}$	$R^{2.1.a}$	$R^{2.1.1.c}$		_ _ _
7	$\mathbb{R}^{2.c}$	$R^{2.1.a}$	$R^{2.1.1.a}$	_	_
8	$R^{2.c}$	$R^{2.1.a}$	$R^{2.1.1.b}$	_	_
9	$R^{2.c}$	$R^{2.1.a}$	R ^{2.1.1.c}	_	
10	$R^{2.c}$	$R^{2.1.a}$	$R^{2.1.1.c}$	_	$R^{2.3.a}$
11	$R^{2.c}$	R ^{2.1.a}	$R^{2.1.1.c}$	_	$R^{2.4.a}$
12	$R^{2.c}$	$R^{2.1.a}$	R ^{2.1.1.c}	_	$R^{2.5.a}$
13	$R^{2.d}$	R ^{2.1.a}	R ^{2.1.1.a}	_	_
14	$R^{2.d}$	$R^{2.1.a}$	R ^{2.1.1.b}	_	_
15	$R^{2.d}$	$R^{2.1.a}$	R ^{2.1.1.c}	_	 R ^{2.3.a}
16	R^{2d}	R ^{2.1.a}	R ^{2.1.1.c}	_	R ^{2.3.a}
17	$R^{2.d}$	R ^{2.1.a}	R ^{2.1.1.c}	_	R ^{2.4.a}
18	$R^{2.d}$	$R^{2.1.a}$ $R^{2.1.a}$	R ^{2.1.1.c} R ^{2.1.1.a}	— n22a	R ^{2.5.a}
19	R ^{2.e}	$R^{2.1.a}$ $R^{2.1.a}$	$R^{2.1.1.a}$ $R^{2.1.1.b}$	$R^{2.2.a}$ $R^{2.2.a}$	_
20	R ^{2.e}	$R^{2.1.a}$ $R^{2.1.a}$	R ^{2.1.1.0} R ^{2.1.1.c}	$R^{2,2,a}$ $R^{2,2,a}$	_
21	$R^{2.e}$ $R^{2.f}$	$R^{2.1.a}$ $R^{2.1.a}$	$R^{2.1.1.a}$	$R^{2.2.a}$ $R^{2.2.a}$	_
22	R ² ∫	$R^{2.1.a}$ $R^{2.1.a}$	$R^{2.1.1.b}$	$R^{2,2,a}$ $R^{2,2,a}$	_
23	R ² ∫	R ^{2.1.a}	R ^{2.1.1.c}	$R^{2,2,a}$ $R^{2,2,a}$	_
24	R ² .g	$R^{2.1.a}$	R ^{2.1.1.a}	$R^{2.2.a}$	_
25	R^{-s} $R^{2}g$	$R^{2.1.a}$	$R^{2.1.1.b}$	$R^{2.2.a}$	_
26 27	R ^{2.g}	R ^{2.1.a}	R ^{2.1.1.c}	$R^{2.2.a}$	_ _ _
28	$R^{2.h}$	$R^{2.1.a}$	R ^{2.1.1.a}	$R^{2.2.a}$	_
28 29	$R^{2.h}$	$R^{2.1.a}$	$R^{2.1.1.b}$	$R^{2.2.a}$	_
30	$R^{2.h}$	$R^{2.1.a}$	R ^{2.1.1.c}	$R^{2,2,a}$	_
31	R ^{2.e}	$R^{2.1.a}$	R ^{2.1.1.c}		R ^{2.3.a}
32	R ^{2.€}	$R^{2.1.a}$	$R^{2.1.1.c}$	_	$R^{2.4.a}$
33	R ^{2.e}	R ^{2.1.a}	R ^{2.1.1.c}	_	R ^{2.5.a}
34	$R^{2,g}$	$R^{2.1.a}$	R ^{2.1.1.c}		R ^{2.3.a}
35	R ^{2.g}	$R^{2.1.a}$	R ^{2.1.1.c}		R ^{2.4.a}
36	$R^{2.g}$	$R^{2.1.a}$	R ^{2.1.1.c}		$R^{2.5.a}$
37	$R^{2.h}$	$R^{2.1.a}$	$R^{2.1.1.c}$	_	$R^{2.3.a}$
38	$R^{2.h}$	$R^{2.1.a}$	$R^{2.1.1.c}$		$R^{2.4.a}$
39	$R^{2.h}$	$R^{2.1.a}$	R ^{2.1.1.c}	_	$R^{2.5.a}$
40	$R^{2.i}$	$R^{2.1.a}$	R ^{2.1.1.a}	$R^{2.2.a}$	_
41	$R^{2.i}$	$R^{2.1.a}$	$R^{2.1.1.b}$	$R^{2.2.a}$	_
42	$R^{2.i}$	$R^{2.1.a}$	$R^{2.1.1.c}$	$R^{2.2.a}$	_
43	$\mathbb{R}^{2,j}$	$R^{2.1.a}$	$R^{2.1.1.\alpha}$	$R^{2.2.a}$	_
44	R^{2j}	$R^{2.1.a}$	$R^{2.1.1.b}$	$R^{2.2.a}$	
45	$\mathbb{R}^{2,j}$	$R^{2.1.a}$	$R^{2.1.1.c}$	R ^{2.2.a}	
46	$\mathbb{R}^{2.k}$	$R^{2.1.a}$	$R^{2.1.1.a}$	$R^{2.2.a}$	_
47	$R^{2.k}$	$R^{2.1.a}$	$R^{2.1.1.b}$	$R^{2.2.a}$	_
48	$\mathbb{R}^{2.k}$	$R^{2.1.a}$	$R^{2.1.1.c}$	$R^{2.2.a}$	_
49	$\mathbb{R}^{2.I}$	$R^{2.1.a}$	R ^{2.1.1.a}	$R^{2.2.a}$	_ _ _
50	$\mathbb{R}^{2.I}$	$R^{2.1.a}$	$R^{2.1.1.b}$	R ^{2.2.a}	_
51	$R^{2.l}$	$R^{2.1.a}$	$R^{2.1.1.c}$	$R^{2.2.a}$	_

For a better understanding of the Table $1R^2$ —Embodiments of the invention example (E#) 21, can also be read as a group R^2 , wherein

R² is R^{2.e'} and R^{2.e'} is C_{5 or 6}-heteroaryl-, containing one, two, three or four heteroatoms independently selected from S,

S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2,2}; and

R^{2.1} is R^{2.1.a} and R^{2.1.a} is selected from H, halogen, NC—, O=, HO-, H-A-, H-A-C₁₋₄-alkylene-, R^{2.1}-A-, C₁₋₄alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} -haloalkyl-A-, $R^{2.1.1}$ — C_{1-4} -alkylene-A-, C_{1-4} -alkyl-A- C_{1-4} -alkylene-, $\begin{array}{lll} C_{3\text{-}6}\text{-cycloalkyl-A-C}_{1\text{-}4}\text{-alkylene-}, & C_{1\text{-}4}\text{-haloalkyl-A-C}_{1\text{-}4}\text{-alkylene-}, & R^{2\text{-}1\text{-}1}\text{--}C_{1\text{-}4}\text{-alkylene-A-C}_{1\text{-}4}\text{-alkylene-}. \end{array}$ lene-, $R^{2.1.1}$ -A- C_{1-4} -alkylene-, HO— C_{1-4} -alkylene-A-, $HO-C_{1-4}$ -alkylene- $A-C_{1-4}$ -alkylene-, C_{1-4} -alkyl- $O-C_{1-4}$ -alkyl-o- C_{1-4} -alkylene-A- and C_{1-4} -alkyl-O— C_{1-4} -alkylene-A- $_{15}$ C_{1-4} -alkylene-; and $R^{2.1.1.c}$ is $R^{2.1.1.c}$ and $R^{2.1.1.c}$ is phenyl or selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1} wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2.1.1.2};

R^{2.1.1.1} is independently selected from F, Cl, Me, MeO - and cyclopropyl-; and

R^{2.1.1.2} is independently selected from Me, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl;

 $R^{2.2}$ is $R^{2.2.a}$ and $R^{2.2.a}$ is independently selected from $\label{eq:harmonic} \mbox{H-A-C}_{\mbox{1-4}}\mbox{-alkylene-}, \quad \mbox{C_{3-6}$-cycloalkyl-}, \quad \mbox{C_{1-4}$-alkyl-A-cycloalkyl-}$ $\begin{array}{l} C_{1\text{--}4}\text{-alkylene-}, C_{3\text{--}6}\text{-cycloalkyl-A-C}_{1\text{--}4}\text{-alkylene-}, C_{1\text{--}4}\text{-alkylene-}, \\ C_{1\text{--}4}\text{-alkylene-}, & R^{2\text{--}1\text{--}}\text{-A-C}_{1\text{--}4}\text{-alkylene-}, \\ C_{1\text{--}4}\text{-alkyl-S(O)}_2\text{---}, C_{1\text{--}4}\text{-alkyl-C(O)}\text{---}, R^{2\text{--}1\text{--}}\text{-A--}. \end{array}$

Preferred are the above compounds of formula 1, wherein R^3 is $R^{3.a}$ and $R^{3.a}$ is H.

Preferred are the above compounds of formula 1, wherein R^3 is $R^{3.b}$ and $R^{3.b}$ is F.

Preferred are the above compounds of formula 1, wherein 55 R⁴ is R^{4.a} and R^{4.a} is selected from F, Cl, phenyl-H₂C—O—, HO—, C₁₋₄-alkyl-, C₁₋₄-haloalkyl-, C₃₋₆-cycloalkyl-, C₁₋₄alkyl-O— and C₁₋₄-haloalkyl-O—

Preferred are the above compounds of formula 1, wherein R^4 is $R^{4.b}$ and $R^{4.b}$ is F; preferably in ortho position.

Preferred are the above compounds of formula 1, wherein A is A^a and A^a is a bond or independently selected from -O—, $-C(O)N(R^5)$ —, $-N(R^5)C(O)$ —, $-S(O)_2N(R^5)$ – $\begin{array}{lll} -N(R^5)S(O)_2-, & -C(O)O-, & -OC(O)-, & -C(O)-, & R^3 \text{ is H or F;} \\ -S(O)_2-, & -(R^5)(O)S-N-, & -(R^5N-)(O)S- & \text{and } 65 \end{array}$ and $\begin{array}{lll} R^3 \text{ is H or F;} \\ R^4 \text{ is R}^{4.a} \text{ and } R^{4.a} \text{ is selected from F, Cl, phenyl-H}_2C-O-, \\ \end{array}$ $-N = (O)(R^5)S$ and R^5 is $R^{5,a}$ and $R^{5,a}$ is independently selected from H, C₁₋₄-alkyl- and NC-

Preferred is a compound of formula 1, wherein

R¹ is independently selected from H, C₁₋₄-alkyl-, halogen, HO-, C_{1-4} -alkyl-O-, H_2N- , C_{1-6} -alkyl-HN-, $(C_{1-6}$ alkyl)₂N— and C₁₋₆-alkyl-C(O)HN—;

or two R^{1} are together C_{1-4} -alkylene;

R² is selected of the examples of the Table 1R²—Embodiments of the invention; preferably examples (E#) 7-51. preferably one of the groups selected from 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51;

 R^3 is H or F;

R⁴ is independently selected from F, Cl, phenyl-H₂C—O—, $\label{eq:homogeneous} \mbox{HO---}, \quad \mbox{C_{1-6}-haloalkyl-,} \quad \mbox{C_{3-8}-cycloalkyl-,}$ C_{1-6} -alkyl-O—, C_{1-6} -haloalkyl-O—, C_{1-6} -alkyl-HN— $(C_{1-6}$ -alkyl)₂-HN—, C_{1-6} -alkyl-HN— C_{1-4} -alkylene- and $(C_{1-6}$ -alkyl)₂-HN— C_{1-4} -alkylene-;

A is a bond or independently selected from —O—, —S— $-N(R^5)$, $-C(O)N(R^5)$, $-N(R^5)C(O)$, $-S(O)_2N$ (R^5) —, $-N(R^5)S(O)_2$ —, $-S(O)(=NR^5)-N(R^5)^2$ —, $-N(R^5)(NR^5=)$, S(O)—, $-S(=NR^5)_2-N(R^5)$ —, $-N(R^5)(NR^5=)_2S-$, $-C(R^5)=C(R^5)-$, -C=C- $-C(O)O_{-}, -OC(O)_{-}, -C(O)_{-}, -S(O)_{-}, S(O)_{2}_{-}, -S(=NR^{5})_{-}, -S(O)(=NR^{5})_{-}, -S(=NR^{5})_{2}_{-}, -(R^{5})(O)S=N_{-}, -(R^{5}N=)(O)S-$ and $-N=(O)(R^{5})$ 25

R⁵ is independently selected from H, C₁₋₆-alkyl- and NC—; or a salt thereof.

Preferred is a compound of formula 1, wherein

 R^1 is $R^{1.a}$ and $R^{1.a}$ is independently selected from H, C_{1-4} alkyl-, F and HO-

or two R^1 are together C_{1-4} -alkylene;

R² is selected of the examples of the Table 1R²—Embodiments of the invention; preferably examples (E#) 7-51, preferably one of the groups selected from 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51;

40 R^3 is H or F;

 R^4 is $R^{4.a}$ and $R^{4.a}$ is F, Cl, phenyl-H₂C—O—, HO—, C₁₋₄alkyl-, C_{1-4} -haloalkyl-, C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O and C₁₋₄-haloalkyl-O—;

A is a bond or independently selected from —O—, —S- $-N(R^5)$, $-C(O)N(R^5)$, $-N(R^5)C(O)$, $-S(O)_2N$ $-N(R^5)S(O)_2$, $-S(O)(=NR^5)-N(R^5)$, $N(R^5)(NR^5)=S(O)$, $-S(=NR^5)_{r}-N(R^5) -N(R^5)(NR^5=)_2S-, -C(R^5)=C(R^5)-, -C=C$ $-C(O)O-, -OC(O)-, -C(O)-, -S(O)-, S(O)_2 -S(=NR^5)-, -S(O)(=NR^5)-, -S(=NR^5)_2$ $-(R^5)(O)S = N - , -(R^5N =)(O)S - and -N = (O)(R^5)$

R⁵ is independently selected from H, C₁₋₆-alkyl- and NC—; or a salt thereof.

Preferred is a compound of formula 1, wherein

 R^1 is $R^{1.a}$ and $R^{1.a}$ is independently selected from H, C_{1-4} alkyl-, F and HO-

or two R^1 are together C_{1-4} -alkylene;

 ${\rm R}^2$ is selected of the examples of the Table ${\rm 1R}^2$ —Embodiments of the invention; preferably examples (E#) 7-51, preferably one of the groups selected from 13, 14, 15, 16, 17, 18 or 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39 or 43, 44, 45, 46, 47 and 48;

HO—, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-, C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O— and C_{1-4} -haloalkyl-O—;

A is A^a and A^a is a bond or independently selected from -O-, $-C(O)N(R^5)-$, $-N(R^5)C(O)-$, $-S(O)_2N$ (R^5) —, $-N(R^5)S(O)_2$ —, -C(O)O--, -OC(O)--,-C(O)—, $S(O)_2$ —, $-(R^5)(O)S$ —N—, $-(R^5N$ —)(O)S— and —N= $(O)(R^5)S$ —;

R5 is R5.a and R5.a is independently selected from H, C1.4alkyl- and NC—;

or a salt thereof.

Preferred is a compound of formula 1, wherein

 R^1 is $R^{1.b}$ and $R^{1.b}$ is H; or two R^1 are together —CH₂—; R² is selected of the examples of the Table 1R²—Embodiments of the invention; preferably examples (E#) 7-51,

preferably one of the groups selected from 13, 14, 15, 16, 17, 18 or 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39 or 43, 44, 45, 46, 47 and 48;

 R^3 is H or F;

 R^4 is $R^{4.b}$ and $R^{4.b}$ is F;

A is A^a and A^a is a bond or independently selected from -O-, $-C(O)N(R^5)-$, $-N(R^5)C(O)-$, $-S(O)_2N$ (R^5) —, $-N(R^5)S(O)_2$ —, -C(O)O-, -OC(O)-, 20-C(O)—, $S(O)_2$ —, $-(R^5)(O)S=N$ —, $-(R^5N=)(O)$ S— and —N= $(O)(R^5)S$ —;

R⁵ is R^{5.a} and R^{5.a} is independently selected from H, C₁₋₄alkyl- and NC—;

or a salt thereof.

Preferred is a compound of formula 1, wherein

 R^1 is $R^{1.b}$ and $R^{1.b}$ is H; or two R^1 are together — CH_2 —

R² is selected of the examples of the Table 1R²—Embodiments of the invention; preferably examples (E#) 7-51, preferably one of the groups selected from 13, 14, 15, 16, 30 R³ is H or F; 17, 18 or 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39 or 43, 44, 45, 46, 47 and 48;

 R^3 is H or F;

 R^4 is $R^{4.b}$ and $R^{4.b}$ is F;

A is A^a and A^a is a bond or independently selected from 35 -O-, $-C(O)N(R^5)-$, $-N(R^5)C(O)-$, $-S(O)_2N(R^5)-$, $-N(R^5)S(O)_2-$, -C(O)O-, -OC(O)-, C(O)—, $S(O)_2$ —, $C(R^5)(O)S=N$ —, $C(R^5N=)(O)$ S— and —N=(O)(R^5)S—;

 R^5 is $R^{5.a}$ and $R^{5.a}$ is independently selected from H, C_{1-4} - 40 R^3 is $R^{3.a}$ and $R^{3.a}$ is H, and alkyl- and NC-;

or a salt thereof.

Preferred is a compound of formula 1, wherein

 R^1 is $R^{1.b}$ and $R^{1.b}$ is H; or two R^1 are together — CH_2 —;

R² is selected from

R^{2.1}:

phenyl-; optionally substituted with one or two residues independently selected from R^{2.1}; optionally substituted with one $R^{2.3}$;

C₅-heteroaryl-; containing two or three independently 50 1, wherein selected from S, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one R^{2.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one $R^{2.2}$:

monocyclic C₆-heterocyclyl containing one or two nitrogen atoms, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one R^{2.1}; wherein nitrogen atoms of the ring are optionally 60 and independently from each other substituted with one $R^{2.2}$; and

bicyclic C_{9 or 10}-heterocyclyl-; containing one, two, three or four heteroatoms independently selected from S(O)₂, O and N, wherein the ring is fully or partially saturated, 65 wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two

or three R2.1; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one $R^{2.2}$;

R^{2.1} is independently selected from halogen, NC—, O—, alkylene-, preferably F, NC—, O=, H-A-, H-A-CH $_2$ —,

 $R^{2.\overline{1.1}}$ is independently selected from

phenyl-; and

C_{5 or 6}-heterocyclyl-; containing one or two heteroatoms independently selected from O and N, wherein the ring is fully or partially saturated, wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one C₁₋₄-alkyl-; preferably H₃C-

R^{2.2} is independently selected from H-A-C₁₋₄-alkylene-, C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-A- C_{1-4} -alkylene-, $R^{2.1.1}$ -A-C₁₋₄-alkylene-, C₁₋₄-alkyl-C(O)—; preferably H-A- CH_2 —, H-A- CH_2 — CH_2 —, cyclopropyl-, H_3C -A- CH_2 — CH_2 —, $R^{2.1.1}$ -A- CH_2 — and H_3C —C(O)—;

 $R^{2.3}$ and R^4 are together a group selected from $-N(R^{2.3.1})-$, $-C(O)N(R^{2.3.2})-$ or $-N(R^{2.3.1})C$

R^{2.3.1} is independently selected from H and H₃C—;

 R^4 is $R^{4.b}$ and $R^{4.b}$ is F;

A is a bond or independently selected from —O—, —C(O) $N(R^5)$ —, $-N(R^5)C(O)$ —, $-S(O)_2N(R^5)$ —, $-N(R^5)S$ $(O)_2$ —, —C(O)O—, —OC(O)—, —C(O)—, — $S(O)_2$ and $-N=(O)(R^5)S-$;

R⁵ is independently selected from H or C₁₋₄-alkyl-; or a salt thereof.

Preferred are the above compounds of formula 1, wherein

 R^4 is $R^{4.b}$ and $R^{4.b}$ is F;

Particularly preferred are the above compounds of formula 1, wherein

 R^3 is H,

R4 is F and

R² is R^{2.q} and R^{2.q} is selected from among the substituents (a1) to (q1).

Particularly preferred are the above compounds of formula

R³ is F and

R² and R⁴ together denote a group selected from among (r1) to (t1).

Preferably (a1) to (q1) or (r1) to (t1) are independently substituted by a substituent selected from among

=O, Me, MeSO₂—, Me-piperazinyl-SO₂—, morpholinyl, furanyl, Me₂N—CH₂—CH₂—, F₂CH—CH₂—, —CN and

Preferred are the compounds of formula I, wherein the compounds are selected from the group consisting of examples 2, 3, 6, 16, 43, 155, 193, 249, 250, 254, 283, 284, 322, 323, 324, 325, 326, 328, 329, 330, 331, 333, 342, 343, 351, 352, 353, 354, 355, 356, 357, 358 and 359.

Particularly preferred are the compounds of formula I, wherein the compounds are selected from the group consisting of examples 322, 323, 324, 325 and 326.

Preferred are the above compounds of formula 1, in its enantiomerically pure form of formula 1'

$$(\mathbb{R}^{1})_{2} \xrightarrow{\mathbb{N}} \mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{2}$$

wherein R^1 , R^2 , R^3 and R^4 have the above mentioned meaning.

USED TERMS AND DEFINITIONS

Terms not specifically defined herein should be given the meanings that would be given to them by one of skill in the art in light of the disclosure and the context. As used in the specification, however, unless specified to the contrary, the following terms have the meaning indicated and the following conventions are adhered to.

In the groups, radicals, or moieties defined below, the number of carbon atoms is often specified preceding the group, for example, $C_{1\text{-}6}$ -alkyl means an alkyl group or radical having 1_{30} to 6 carbon atoms.

In general in single groups like HO, $\rm H_2N$, $\rm S(O)$, $\rm S(O)_2$, $\rm NC$ (cyano), HOOC, $\rm F_3C$ or the like, the skilled artisan can see the radical attachment point(s) to the molecule from the free valences of the group itself. For combined groups comprising $\rm S(C)$ two or more subgroups, the last named subgroup is the radical attachment point, for example, the substituent "aryl- $\rm C_{1-4}$ -alkyl-" means an aryl group which is bound to a $\rm C_{1-4}$ -alkyl-group, the latter of which is bound to the core or to the group to which the substituent is attached.

Alternatively "*" indicates within a chemical entity the binding site, i.e. the point of attachment.

In case a compound of the present invention is depicted in form of a chemical name and as a formula in case of any discrepancy the formula shall prevail. An asterisk is may be 45 used in sub-formulas to indicate the bond which is connected to the core molecule as defined.

Many of the followings terms may be used repeatedly in the definition of a formula or group and in each case have one of the meanings given above, independently of one another. 50

The term "substituted" as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded, and that the substitution results in a stable compound.

The expressions "prevention", "prophylaxis", "prophylactic treatment" or "preventive treatment" used herein should be understood synonymous and in the sense that the risk to develop a condition mentioned hereinbefore is reduced, especially in a patient having elevated risk for said conditions or a corresponding anamnesis, e.g. elevated risk of developing metabolic disorder such as diabetes or obesity or another disorder mentioned herein. Thus the expression "prevention of a disease" as used herein means the management and care of an individual at risk of developing the disease prior to the 65 clinical onset of the disease. The purpose of prevention is to combat the development of the disease, condition or disorder,

30

and includes the administration of the active compounds to prevent or delay the onset of the symptoms or complications and to prevent or delay the development of related diseases, conditions or disorders. Success of said preventive treatment is reflected statistically by reduced incidence of said condition within a patient population at risk for this condition in comparison to an equivalent patient population without preventive treatment.

The expression "treatment" or "therapy" means therapeu-10 tic treatment of patients having already developed one or more of said conditions in manifest, acute or chronic form, including symptomatic treatment in order to relieve symptoms of the specific indication or causal treatment in order to reverse or partially reverse the condition or to delay the progression of the indication as far as this may be possible, depending on the condition and the severity thereof. Thus the expression "treatment of a disease" as used herein means the management and care of a patient having developed the disease, condition or disorder. The purpose of treatment is to combat the disease, condition or disorder. Treatment includes the administration of the active compounds to eliminate or control the disease, condition or disorder as well as to alleviate the symptoms or complications associated with the disease, condition or disorder.

Unless specifically indicated, throughout the specification and the appended claims, a given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E/Z isomers etc. . . .) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including pharmaceutically acceptable salts thereof and solvates thereof such as for instance hydrates including solvates of the free compounds or solvates of a salt of the compound.

As used herein the term "prodrug" refers to (i) an inactive form of a drug that exerts its effects after metabolic processes within the body converting it to a usable or active form, or (ii) a substance that gives rise to a pharmacologically active metabolite, although not itself active (i.e. an inactive precursor).

The terms "prodrug" or "prodrug derivative" mean a covalently-bonded derivative, carrier or precursor of the parent compound or active drug substance which undergoes at least some biotransformation prior to exhibiting its pharmacological effect(s). Such prodrugs either have metabolically cleavable or otherwise convertible groups and are rapidly transformed in vivo to yield the parent compound, for example, by hydrolysis in blood or by activation via oxidation as in case of thioether groups. Most common prodrugs include esters and amide analogs of the parent compounds. The prodrug is formulated with the objectives of improved chemical stability, improved patient acceptance and compliance, improved bioavailability, prolonged duration of action, improved organ selectivity, improved formulation (e.g., increased hydrosolubility), and/or decreased side effects (e.g., toxicity). In general, prodrugs themselves have weak or no biological activity and are stable under ordinary conditions. Prodrugs can be readily prepared from the parent compounds using methods known in the art, such as those described in A Textbook of Drug Design and Development, Krogsgaard-Larsen and H. Bundgaard (eds.), Gordon & Breach, 1991, particularly Chapter 5: "Design and Applications of Prodrugs"; Design of Prodrugs, H. Bundgaard (ed.), Elsevier, 1985; Prodrugs: Topical and Ocular Drug Delivery, K. B. Sloan (ed.), Marcel Dekker, 1998; Methods in Enzymology, K. Widder et al. (eds.), Vol. 42, Academic Press,

1985, particularly pp. 309-396; Burger's Medicinal Chemistry and Drug Discovery, 5th Ed., M. Wolff (ed.), John Wiley & Sons, 1995, particularly Vol. 1 and pp. 172-178 and pp. 949-982; Pro-Drugs as Novel Delivery Systems, T. Higuchi and V. Stella (eds.), Am. Chem. Soc., 1975; Bioreversible Carriers in Drug Design, E. B. Roche (ed.), Elsevier, 1987, each of which is incorporated herein by reference in their

The term "pharmaceutically acceptable prodrug" as used herein means a prodrug of a compound of the invention which is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible.

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound 20 medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, and commensurate with a reasonable benefit/risk ratio.

As used herein, "pharmaceutically acceptable salts" refer 25 to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. For example, such salts include salts from ammonia, L-arginine, betaine, line, piperazine, potassium hydroxide, 1-(2-hydroxyethyl)pyrrolidine, sodium hydroxide, triethanolamine (2,2',2"-nitrilotris(ethanol)), tromethamine, zinc hydroxide, acetic acid, 40 2.2-dichloro-acetic acid, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 2,5-dihydroxybenzoic acid, 4-acetamido-benzoic acid, (+)camphoric acid, (+)-camphor-10-sulfonic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, decanoic acid, 45 dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, ethylenediaminetetraacetic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, D-glucoheptonic acid, D-gluconic acid, D-glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glu- 50 taric acid, glycerophosphoric acid, glycine, glycolic acid, hexanoic acid, hippuric acid, hydrobromic acid, hydrochloric acid, isobutyric acid, DL-lactic acid, lactobionic acid, lauric acid, lysine, maleic acid, (-)-L-malic acid, malonic acid, DL-mandelic acid, methanesulfonic acid, galactaric acid, 55 naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, nitric acid, octanoic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid (embonic acid), phosphoric acid, propionic acid, (-)-L-pyroglutamic acid, salicylic acid, 4-amino-sali- 60 cylic acid, sebacic acid, stearic acid, succinic acid, sulfuric acid, tannic acid, (+)-L-tartaric acid, thiocyanic acid, p-toluenesulfonic acid and undecylenic acid. Further pharmaceutically acceptable salts can be formed with cations from metals like aluminium, calcium, lithium, magnesium, potassium, 65 sodium, zinc and the like. (also see Pharmaceutical salts, Berge, S. M. et al., J. Pharm. Sci., (1977), 66, 1-19).

32

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a sufficient amount of the appropriate base or acid in water or in an organic diluent like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile, or a mixture thereof.

Salts of other acids than those mentioned above which for example are useful for purifying or isolating the compounds of the present invention (e.g. trifluoro acetate salts) also comprise a part of the invention.

The term halogen generally denotes fluorine, chlorine, bromine and iodine.

The term "C_{1-n}-alkyl", wherein n is an integer selected from 2, 3, 4, 5 or 6, either alone or in combination with another radical denotes an acyclic, saturated, branched or linear hydrocarbon radical with 1 to n C atoms. For example the term C_{1-5} -alkyl embraces the radicals H_3C —, H_3C CH_{2} —, $H_{3}C$ — CH_{2} — CH_{2} —, $H_{3}C$ — $CH(CH_{3})$ —, $H_{3}C$ CH₂—CH₂—CH₂—, H₃C—CH₂—CH(CH₃)—, H₃C—CH CH_2 — $CH(CH_3)$ — CH_2 —, H_3C — $CH(CH_3)$ — CH_2 — (CH₂CH₃)-

The term " C_{1-n} -alkylene" wherein n is an integer selected from 2, 3, 4, 5 or 6, preferably 4 or 6, either alone or in combination with another radical, denotes an acyclic, straight or branched chain divalent alkyl radical containing from 1 to n carbon atoms. For example the term C_{1-4} -alkylene includes benethamine, benzathine, calcium hydroxide, choline, deanol, diethanolamine (2,2'-iminobis(ethanol)), diethy-lamine, 2-(diethylamino)-ethanol, 2-aminoethanol, ethylene-diamine, N-ethyl-glucamine, hydrabamine, 1H-imidazole, lysine, magnesium hydroxide, 4-(2-hydroxyethyl)-morpho- $\begin{array}{c} -\text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}(\text{CH}_3) - \text{CH}_2 - \text{$ $-C(CH_3)_2-CH_2-$, $-CH(CH_3)-CH(CH_3)-$, $-CH_2$ $(CH_2CH_3)-$

> The term "C_{3-n}-cycloalkyl", wherein n is an integer selected from 4, 5, 6, 7 or 8, preferably 4, 5 or 6, either alone or in combination with another radical denotes a cyclic, saturated, unbranched hydrocarbon radical with 3 to 8 C atoms. For example the term C₃₋₈-cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl.

> By the term "halo" added to a "alkyl", "alkylene" or "cycloalkyl" group (saturated or unsaturated) is such a alkyl or cycloalkyl group wherein one or more hydrogen atoms are replaced by a halogen atom selected from among fluorine, chlorine or bromine, preferably fluorine and chlorine, particularly preferred is fluorine. Examples include: H₂FC-HF₂C—, F₃C-

> The term "aryl" as used herein, either alone or in combination with another radical, denotes a carbocyclic aromatic monocyclic group containing 6 carbon atoms which may be further fused to a second five- or six-membered, carbocyclic group which may be aromatic, saturated or unsaturated. Aryl includes, but is not limited to, phenyl, indanyl, indenyl, naphthyl, anthracenyl, phenanthrenyl, tetrahydronaphthyl and dihydronaphthyl.

> The term " C_{5-10} -heterocyclyl" means a saturated or unsaturated mono- or polycyclic-ring systems including aromatic ring system containing one or more heteroatoms independently selected from N, O or S(O), wherein r=0, 1 or 2, consisting of 5 to 10 ring atoms wherein none of the heteroa-

toms is part of the aromatic ring. The term "heterocyclyl" is intended to include all the possible isomeric forms. Thus, the term "heterocyclyl" includes the following exemplary structures which are not depicted as radicals as each form may be attached through a covalent (single or double) bond to any of atom so long as appropriate valences are maintained:

The term " C_{5-10} -heteroaryl" means a mono- or polycyclicring systems containing one or more heteroatoms independently selected from N, O or $S(O)_r$, wherein r=0, 1 or 2, consisting of 5 to 10 ring atoms wherein at least one of the heteroatoms is part of aromatic ring. The term "heteroaryl" is intended to include all the possible isomeric forms. Thus, the term "heteroaryl" includes the following exemplary structures which are not depicted as radicals as each form may be attached through a covalent bond to any atom so long as appropriate valences are maintained:

15

20

Preparation

²⁵ General Synthetic Methods

The invention also provides processes for making a compound of Formula I. In all methods, unless specified otherwise, R^1 , R^2 and n in the formulas below shall have the meaning of R^1 , R^2 and n in Formula 1 of the invention described herein above.

Optimal reaction conditions and reaction times may vary depending on the particular reactants used. Unless otherwise specified, solvents, temperatures, pressures, and other reaction conditions may be readily selected by one of ordinary skill in the art. Specific procedures are provided in the Synthetic Examples section. Typically, reaction progress may be monitored by thin layer chromatography (TLC) or LC-MS, if desired, and intermediates and products may be purified by chromatography on silica gel, HPLC and/or by recrystallization. The examples which follow are illustrative and, as recognized by one skilled in the art, particular reagents or conditions could be modified as needed for individual compounds without undue experimentation. Starting materials and intermediates used, in the methods below, are either commercially available or easily prepared from commercially available materials by those skilled in the art.

A compound of Formula V, VII and IX may be made by the method outlined in Scheme 1:

Scheme 1

$$(R^1)_n \longrightarrow (R^1)_n$$

$$(R^1)_n \longrightarrow H$$

$$(R^1)_n$$

PGHN
$$\longrightarrow$$
 PGHN \longrightarrow PG

As illustrated in Scheme 1, a compound of Formula II, wherein PG represents a protecting group (e.g. tert-butoxy-carbonyl), may be reacted with an aqueous ammonia solution, using standard literature procedures for the formation of an amide. For example, in the presence of a base such as N-methyl-morpholine or N-ethyl-morpholine and an activating agent such as O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) or O-(Benzotriazol-1-yl)-N,N,N',N'-

tetramethyluroniumtetrafluoroborate (TBTU). The reaction is conveniently carried out in a suitable solvent such as N,N-dimethylformamide. Standard peptide coupling reactions known in the art (see for example M. Bodanszky, 1984, The Practice of Peptide Synthesis, Springer-Verlag) may be employed in these syntheses.

Dehydration of an amide such as in a compound of Formula III or Formula IX to the corresponding nitrile of Formula IV or VII may be carried out by use of a dehydration agent such as (methoxycarbonylsulfamoyl)triethyl ammonium hydroxide, in a suitable solvent such as dichloromethane (DCM).

Reacting an acid of Formula VI using standard literature procedures for the formation of an amide, for example in the presence of a base such as N,N-diisopropylethylamine (DI-PEA) and an activating agent such as HATU or TBTU, with an amine of Formula V or VIII in a suitable solvent, provides a compound of Formula VII or IX. Standard peptide coupling reactions known in the art (see for example M. Bodanszky, 1984, The Practice of Peptide Synthesis, Springer-Verlag) may be employed in these syntheses.

The protection and deprotection of functional groups is described in 'Protective Groups in Organic Synthesis', T. W. Greene and P. G. M. Wuts, Wiley-Interscience. For example, for the deprotection of tert-butoxycarbonyl, an acid such as formic acid, trifluoroacetic acid, p-toluenesulfonic acid or HCl may be used in a suitable solvent such as water, DCM or dioxane. Another method to deprotect tert-butoxycarbonyl is the reaction with trimethyliodosilane or trimethylchlorosilane in combination with sodium iodide in an appropriate solvent like acetonitrile, DMF or DCM.

Scheme 2

$$(R^1)_n$$

$$(R^1$$

-continued

(R¹)_n

YII

$$X = I, Br, OTf \text{ or } N_3$$
 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf \text{ or } N_3$

IX

 $X = I, Br, OTf$

During the reaction sequences depicted in Scheme 1 and Scheme 2 a hydroxy group (X=OH) can be converted to a trifluoromethanesulfonyl group (X=OTf) at any level. Especially, a compound IX with X=OH is transformed to the appropriate triflate (X=OTf) by reaction with N,N-bis-(trifluoromethanesulfonyl) aniline, or trifluoromethanesulfonyl chloride or anhydride, in the presence of an organic base e.g. triethylamine, morpholine, piperidine, DIPEA in an appropriate anhydrous solvent, e.g. DCM.

As illustrated in Scheme 2, (transition) metal catalyzed reaction of a compound of Formula VII or IX wherein X is I, Br, Cl or OTf, provides a compound of Formula X or XI. For example, reaction with a boronic acid or the corresponding boronic acid ester, in a suitable solvent such as acetonitrile, in the presence of a suitable catalyst such as 1,1-bis(di-tert-butylphosphino)ferrocene palladium dichloride and a suitable base such as K₂CO₃ provides a compound of Formula X or XI. Alternatively, reaction of a compound of Formula VII or IX, wherein X is I, Br, Cl or OTf with a tributyl(vinyl)tin reagent in the presence of a suitable catalyst such as bis-

(triphenylphosphin)-palladiumchloride, in a suitable solvent such as dimethylformamide (DMF) and if desirable in the presence of an additive such as tetraethylammonium chloride provides compounds of Formula X or XI. Further, reaction of a compound of Formula VII or IX, wherein X is I or Br, may be reacted with an amine in the presence of a suitable catalyst such as Cu(I)I and a suitable base such as caesium carbonate and a suitable promotor such as L-proline provides a compound of Formula X or XI.

In an inversed fashion compounds of formula VII or IX (X: I, Br, Cl, OTf) can be converted into the corresponding boronic acid derivatives VIIa or IXa, wherein R can be H or lower alkyl independently and the residues R can form a ring. For example, VII or IX can be reacted with bis-pinacolato-diboron in the presence of a suitable catalyst such as 1,1-bis (di-tert-butylphosphino)ferrocene palladium dichloride and a suitable base such as potassium acetate or sodium, potassium or cesium carbonate or phosphate, in a suitable solvent such as dioxan, dimethylformamide (DMF), or dichloromethane (DCM) to yield the boronic esters VIIa or IXa, respectively.

These can be reacted with appropriate aromatic halides in analogy as above to yield the desired coupling products of formula X or XI.

Further, as illustrated in Scheme 2, reaction of a compound of Formula VII or IX, wherein X is N₃ with an alkyne in the presence of a suitable catalyst such as copper(II)sulfate pentahydrate and a suitable reducing agent such as L-ascorbic acid in a suitable solvent such as dimethyl sulfoxide (DMSO)/ water provides a compound of Formula X or XI.

Further modifications of compounds of Formula X, XI and I by methods known in the art and illustrated in the Examples below, may be used to prepare additional compounds of the invention.

Dehydration of an amide of Formula XI to the corresponding nitrile of Formula X may be carried out by use of a dehydration agent such as (methoxycarbonylsulfamoyl)triethyl ammonium hydroxide, in a suitable solvent such as DCM.

or TBTU, can be reacted with an amine of Formula XII in a suitable solvent. Standard peptide coupling reactions known in the art (see for example M. Bodanszky, 1984, The Practice of Peptide Synthesis, Springer-Verlag) may be employed in these syntheses. Deprotection of functional groups is described in 'Protective Groups in Organic Synthesis', T. W. Greene and P. G. M. Wuts, Wiley-Interscience. For example, for the deprotection of tert-butoxycarbonyl, an acid such as formic acid, p-toluenesulfonic acid, trifluoroacetic acid or HCl may be used in a suitable solvent such as water, DCM or dioxane and can be performed on the crude amide coupling product to provide a compound of Formula I. Another method to deprotect tert-butoxycarbonyl is the reaction with trimethyliodosilane or trimethylchlorosilane in combination with sodium iodide in an appropriate solvent like acetonitrile, DMF or DCM.

Scheme 3

PG
IN

$$R^4$$
 R^3
 IV
 $X = I, Br, Cl, OTf or N_3$
 R^4
 R^3
 IV
 $X = I, Br, Cl, OTf or N_3$
 R^4
 R^3
 R^2
 R^4
 R^3
 R^2
 R^4
 R^3
 R^4
 R^3

As illustrated in Scheme 3, (transition) metal catalyzed reaction of a compound of Formula IV wherein X is I, Br, Cl or OTf, provides a compound of Formula XII. For example, reaction with a boronic acid or the corresponding boronic 60 acid ester, in a suitable solvent such as acetonitrile, in the presence of a suitable catalyst such as 1,1-bis(di-tert-butylphosphino)ferrocene palladium dichloride and a suitable base such as K₂CO₃ provides a compound of Formula XII.

An acid of Formula VI using standard literature procedures 65 for the formation of an amide, for example in the presence of a base such as DIPEA and an activating agent such as HATU

Scheme 4

Y

$$R^4$$
 R^3
 $Y = CI, Br, OSO_2R$

XIII

 R^2
 R^4
 R^3

XIV

 R^4
 R^3
 R^4
 R^3
 R^4
 R^3

As illustrated in Scheme 4, amino nitrile derivatives of Formula XIII can be converted to substituted amino nitriles of Formula V via alkylation to compounds of Formula XIV, followed by deprotection of the amino group. During the alkylation step a suitable base is used in an appropriate solvent, using a benzylation agent XV with an appropriate leaving group like Cl, Br, or sulfonates. Especially useful is the use of sodium hydroxide as base in water and DCM under phase transfer conditions using benzyltrimethylammonium chloride as described for example by Naidu et al, WO2011/46873. The protective group is removed under acidic conditions, e.g. aq. HCl in dioxan. The amino nitrile V is further processed as depicted in Scheme 1.

$$\begin{array}{c} \text{Scheme 5} \\ \text{Re} \\ \text{Re} \\ \text{NH}_{2} \\ \text{NV} \\ \text{NV}$$

As illustrated in Scheme 5, nitro compounds of formula XV can be reduced to anilines of formula XVI by catalytic

hydrogenation under conditions, where the nitrile group is still stable. Better suited are reagents like sodium dithionite,

SnCl₂ or iron in a suitable solvent like water, methanol, ethanol, acetonitrile or ethyl acetate.

Reacting of 2-halo-benzoic acid, especially 2-iodo-benzoic acid using standard literature procedures for the formation of an amide, for example in the presence of a base such as N,N-diisopropylethylamine (DIPEA) and an activating agent such as HATU or TBTU, with an amine of Formula XVI in a suitable solvent, provides a compound of Formula XVII. Standard peptide coupling reactions known in the art (see for example M. Bodanszky, 1984, The Practice of Peptide Synthesis, Springer-Verlag) may be employed in these syntheses.

The benzoic amide group as in Formula XVII can be protected by an acid labile group, especially by alkoxymethyl or silylalkoxymethyl groups as mentioned for example in 'Protective Groups in Organic Synthesis', T. W. Greene and P. G. 15 M. Wuts, Wiley-Interscience. Especially useful is the use of 2-trimethylsilylethoxymethylchloride as alkylating agent after having removed the amide proton by a strong base such as NaH in an inert solvent like DMF, THF or dioxan. The products are compounds of the formula XVIII.

Cyclisation of compounds like formula XVIII can be performed with the aid of a palladium catalyst like Pd(PPh₃)₄ (tetrakis(triphenylphosphine)palladium(0) and a base like potassium acetate or sodium, potassium or cesium carbonate or phosphate, especially sodium carbonate in a suitable solvent, e.g. DMF, preferrably under elevated temperature. This results in the formation of compound of the formula XIXa and XIXb, which can be separated or processed further as a mixture

Compounds like XIXa or XIXb or a mixture thereof can be 30 deprotected in acidic medium. Deprotection of functional groups is described in 'Protective Groups in Organic Synthesis', T. W. Greene and P. G. M. Wuts, Wiley-Interscience. For example, an acid such as formic acid, p-toluenesulfonic acid, trifluoroacetic acid or HCl may be used in a suitable solvent 35 such as water, DCM or dioxane and can be performed on the crude amide coupling product to provide a compound of Formula XXa and XXb. Another method to deprotect first the

46

tert-butoxycarbonyl is the reaction with trimethyliodosilane or trimethylchlorosilane in combination with sodium iodide in an appropriate solvent like acetonitrile, DMF or DCM. After that the trimethylsilylmethoxymethyl group can be removed in acidic medium as mentioned above, especially with formic acid again leading to compounds of the formula XXa and XXb.

SYNTHETIC EXAMPLES

The following are representative compounds of the invention which can be made by the general synthetic schemes, the examples, and known methods in the art. Starting materials and intermediates were either commercially available and purchased from catalogues of AATPHARM, ABCR, ACROS, ACTIVATE, ALDRICH, ALFA, ALLICHEM, ANICHEM, ANISYN, ANISYN Inc., APAC, APOLLO, APOLLO-INTER, ARKPHARM, ARKPHARMINC, ASIBA PHARMATECH, ATOMOLE, BACHEM, BEP-20 HARM, BIOFOCUS, BIOGENE, BORON-MOL, BOROP-HARM, CHEMBRIDGE, CHEMCOLLECT, CHEMFU-TURE, CHEMGENX, CHEMIMPEX, CHESS, COMBI-BLOCKS, COMBI-PHOS, DLCHIRAL, EGA, E-MERCK, EMKA-CHEMIE, ENAMINE, EPSILON, FLROCHEM, FLUKA, FOCUS, FRONTIER, ISOCHEM, JW PHARM-LAB, KINGSTONCHEM, LANCASTER, MANCHES-TER, MANCHESTER ORGANICS, MAYBRIDGE, MAYBR-INT, MERCACHEM, MERCK, MILESTONE, MOLBRIDGE, NETCHEM, OAKWOOD, PHARM-ABRIDGE, PLATTE, RIEDEL DE HAEN, SMALL-MOL, SPECS, SPECTRA GROUP LIMITED, INC, SYNCHEM OHG, SYNCHEM-INC, SYNCOM, TCI, VIJAYA PHARMA, WAKO, WUXIAPPTEC or were synthesized according to literature or as described below in "Synthesis of starting materials/educts"

"Liquid chromatography-mass spectroscopy (LCMS) retention time and observed m/z data for the compounds below are obtained by one of the following methods:

		LC-MS Method 001_CA07		
Device-Description Column Column Dimension Particle Size		Waters Acquity with DAD Waters Sunfire C18 2.1 × 50 mm 2.5 µm	and MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% TFA]	% Sol [Acetonitrile 0.08% TFA]	Flow [ml/min]	Temp [° C.]
0.0 0.75 0.85	95.0 0.0 0.0	5.0 100.0 100.0	1.5 1.5 1.5	60.0 60.0 60.0
		LC-MS Method 002_CA03		
Device-Description Column Column Dimension Particle Size		Agilent 1100 with DAD at Waters Sunfire C18 3.0 × 30 mm 2.5 µm	nd MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% TFA]	% Sol [Acetonitrile	Flow [ml/min]	Temp [° C.]
0.0 0.9 1.1	99.0 0.0 0.0	1.0 100.0 100.0	2.0 2.0 2.0	60.0 60.0 60.0

		-continued		
	L	C-MS Method 002_CA0)7	
Device-Description Column Column Dimension Particle Size	•	Waters Acquity with 310 Waters XBridge BEH C 3.0 × 30 mm 1.7 μm		
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% NH4OH]	% Sol [Acetonitrile	Flow [ml/min]	Temp [° C.]
0.0 0.7 0.8 0.81 1.1	95.0 0.1 0.1 95.0 95.0	5.0 99.9 99.9 5.0 5.0	1.5 1.5 1.5 1.5 1.5	60 0 60.0 60.0 60.0
	L	C-MS Method 003_CA0)4	
Device-Description Column Column Dimension Particle Size	•	Agilent 1100 with DAD Waters XBridge C18 3.0 × 30 mm 2.5 μm	and MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% NH4OH]	% Sol [Acetonitrile	Flow [ml/min]	Temp [° C.]
0.0 1.2 1.4	98.0 0.0 0.0	2.0 100.0 100.0	2.0 2.0 2.0	60.0 60.0 60.0
	L	C-MS Method 004_CA0)1	
Device-Description Column Column Dimension Particle Size	•	Agilent 1100 with DAD, Waters Sunfire C18 4.6 × 30 mm 3.5 μm	Waters Autosample	er and MSD
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% TFA]	% Sol [Acetonitrile]	Flow [ml/min]	Temp [° C.]
0.0 1.5 1.8	98.0 0.0 0.0	2.0 100.0 100.0	2.5 2.5 2.5	60.0 60.0 60.0
	L	C-MS Method 004_CA0)5	
Device-Description Column Column Dimension Particle Size	•	Waters Acquity with DA Waters XBridge C18 3.0 × 30 mm 2.5 μm	D and MSD, CTC A	Autosampler
Gradient/Solvent Time [min]	$\%~{\rm Sol}~[{\rm H_2O}\\0.1\%~{\rm NH_4OH}]$	% Sol [Acetonitrile]	Flow [ml/min]	Temp [° C.]
0.0 1.2 1.4	98.0 0.0 0.0	2.0 100.0 100.0	2.0 2.0 2.0	60.0 60.0 60.0
	L	C-MS Method 004_CA0)7	
Device-Description Column Column Dimension Particle Size	· · · · · · · · · · · · · · · · · · ·	Waters Acquity with wit YMC Triart C18 2.0 × 30 mm 1.9 μm	h 3100 MS	
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% NH4OH]	% Sol [Acetonitrile	Flow [ml/min]	Temp [° C.]
0.0	95.0 0.1	5.0 99.9	1.5 1.5	60.0 60.0

		-continued		
	LC	C-MS Method 005_CA	01	
Device-Description Column Column Dimension Particle Size	V 3	Agilent 1100 with DAD Waters Sunfire C18 0 × 30 mm 5 μm	, Waters Autosample	er and MS-Detector
Gradient/Solvent Time [min]	% Sol [H ₂ O 0.1% TFA]	% Sol [Acetonitrile	Flow [ml/min]	Temp [° C.]
0.0 1.2 1.4	98.0 0.0 0.0	2.0 100.0 100.0	2.0 2.0 2.0	60.0 60.0 60.0
	L	C-MS Method V001_00)3	
Device-Description Column Column Dimension Particle Size	V 4	Waters Alliance with DA Waters XBridge C18 6 × 30 mm 5 μm	AD and MSD	
Gradient/Solvent Time [min]	% Sol [H2O, 0.1% TFA]	% Sol [Methanol]	Flow [ml/min]	Temp [° C.]
0.0 0.20 1.5 1.75	95 95 0 0	5 5 100 100	4 4 4 4	60 60 60 60
	L	C-MS Method V001_00)7	
Device-Description Column Column Dimension Particle Size	V 4	Waters Alliance with DA Waters XBridge C18 6.6 × 30 mm 6.5 µm	AD and MSD	
Gradient/Solvent Time [min]	% Sol [H2O, 0.1% TFA]	% Sol [Methanol]	Flow [ml/min]	Temp [° C.]
0.0 1.6 1.85 1.9	95 0 0 95	5 100 100 5	4 4 4 4	60 60 60
	L	C-MS Method V003_00)3	
Device-Description Column Column Dimension Particle Size	V 4	Waters Alliance with DA Waters XBridge C18 6.6 × 30 mm 6.5 μm	AD and MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O, 0.1% NH ₃]	% Sol [Methanol]	Flow [ml/min]	Temp [° C.]
0.0 0.2 1.5 1.75	95 95 0 0	5 5 100 100	4 4 4 4	60 60 60
	Lo	C-MS Method V011_S	01	
Device-Description Column Column Dimension Particle Size	V 4	Waters Alliance with DA Waters XBridge C18 6.6 × 30 mm 6.5 µm	AD and MSD	
Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% NH ₃]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0 0.2 1.6 1.7	97 97 0 0	3 3 100 100	5 5 5 5	60 60 60

		-continued		
	LC	C-MS Method V012_S0	01	
Device-Description Column Column Dimension Particle Size	W 4.	Vaters Alliance with DA Vaters XBridge C18 .6 × 30 mm .5 µm	AD and MSD	
Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0	97	3	5	60
0.2 1.6	97 0	3 100	5 5	60 60
1.7	0	100	5	60
	LC	C-MS Method V018_S0	01	
Device-Description Column Column Dimension Particle Size	W 4.	Vaters Alliance with DA Vaters Sunfire C18 .6 × 30 mm .5 µm	AD and MSD	
Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0	97	3	5	60
0.2	97	3	5 5	60
1.6 1.7	0 0	100 100	5	60 60
	LC	-MS Method W018_S	01	
Device-Description Column Column Dimension Particle Size	W 4.	Vaters 1525 with DAD Vaters Sunfire C18 6 × 30 mm 5 µm	and MSD	
Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0	97	3	4	60
0.15	97	3	3	60
2.15 2.20	0	100 100	3 4.5	60 60
2.40	0	100	4.5	60
	LC	C-MS Method X001_00)2	
Device-Description Column Column Dimension Particle Size	W 2.	Vaters Acquity with DA Vaters XBridge BEH C .1 × 30 mm .7 µm		
Gradient/Solvent Time [min]	% Sol [H ₂ O, 0.10% TFA]	% Sol [Methanol]	Flow [ml/min]	Temp [° C.]
0.0	99	1	1.3	60
0.05 1.05	99 0	1 100	1.3 1.3	60 60
1.03	0	100	1.3	60
	LC	C-MS Method X001_00)4	
Device-Description Column Column Dimension Particle Size	W 2	Vaters Acquity with DA Vaters XBridge C18 1 × 20 mm 5 μm	D and MSD	
		% Sol	Flow	Temp
Gradient/Solvent Time [min]	% Sol [H ₂ O, 0.10% TFA]	[Methanol]	[ml/min]	[° C.]
			[ml/min] 1.4	
Time [min]	0.10% TFA]	[Methanol]		[° C.]

		-continued		
	I	LC-MS Method X002_00)2	
Device-Description Column Column Dimension Particle Size		Waters Acquity with DA Waters Sunfire C18 2.1 × 30 mm 2.5 μm	D and MSD	
Gradient/ Solvent Time [min]	% Sol [H2O, 0.10% TFA]	% Sol [Methanol]	Flow [ml/min]	Temp [° C.]
0.00 0.15 1.10 1.25	99 99 0 0	1 1 100 100	1.2 1.2 1.2 1.2	60 60 60 60
	I	.C-MS Method X011_S)2	
Device-Description Column Column Dimension Particle Size		Waters Acquity with DA Waters XBridge BEH C 2.1 × 30 mm 1.8 μm		
Solvent Gradient time [min]	% Sol [H2O, 0.1% NH3]	% Sol [Acetonitril]	Flow [rnl/min]	Temp [° C.]
0.00 0.02 1.00 1.10	99 99 0 0	1 1 100 100	1.3 1.3 1.3 1.3	60 60 60 60
	I	C-MS Method X011_S)3	
Device-Description Column Column Dimension Particle Size		Waters Acquity with DA Waters Xbridge BEH C1 2.1 × 30 mm 1.7 μm		
Solvent Gradient time [min]	% Sol [H2O, 0.1% NH3]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.00 0.02 1.00 1.10	95 95 0 0	5 5 100 100	1.3 1.3 1.3 1.3	60 60 60 60
	I	C-MS Method X012_S0	01	
Device-Description Column Column Dimension Particle Size		Waters Acquity with DA Waters XBridge BEH C 2.1 × 30 mm 1.7 μm		
Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0 0.02 1.00 1.10	99 99 0 0	1 1 100 100	1.6 1.6 1.6 1.6	60 60 60 60
	Ι	C-MS Method X012_S)2	
Device-Description Column Column Dimension Particle Size		Waters Acquity with DA Waters XBridge BEH C 2.1 × 30 mm 1.7 μm		
Solvent Gradient time [min]	% Sol [H2O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0 0.02 1.00 1.10	99 99 0 0	1 1 100 100	1.3 1.3 1.3 1.3	60 60 60 60

		-continued		
	LC	C-MS Method X016_S0)1	
Device-Description Column Column Dimension Particle Size	W 2.	Vaters Acquity with DA Vaters XBridge BEH Pl 1 × 30 mm 7 µm		
Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0 0.02 1.00 1.10	99 99 0 0	1 1 100 100	1.6 1.6 1.6 1.6	60 60 60
	LC	C-MS Method X018_S	01	
Device-Description Column Column Dimension Particle Size	W 2.	Vaters Acquity with DA Vaters Sunfire C18 .1 × 30 mm .5 μm	D and MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0 0.02 1.00 1.10	99 99 0 0	1 1 100 100	1.5 1.5 1.5 1.5	60 60 60
	LC	-MS Method X018_S)2	
Device-Description Column Column Dimension Particle Size	W 2.	Vaters Acquity with DA Vaters Sunfire C18 .1 × 30 mm .5 µm	D and MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.0 0.02 1.00 1.10	99 99 0 0	1 1 100 100	1.3 1 3 1.3 1.3	60 60 60
	LC	C-MS Method Z001_00)2	
Device-Description Column Column Dimension Particle Size	W 3	gilent 1200 with DAD Vaters XBridge C18 × 30 mm .5 µm	and MSD	
Gradient/Solvent Time [min]	% Sol [H ₂ O, 0.1% TFA]	% Sol [Methanol]	Flow [ml/min]	Temp [° C.]
0.0 0.05 1.40 1.80	95 95 0 0	5 5 100 100	2.2 2.2 2.2 2.2	60 60 60 60
	LC	C-MS Method Z011_S0)3	
Device-Description Column Column Dimension Particle Size	W 3	gilent 1200 with DAD Vaters XBridge C18 × 30 mm .5 µm	and MSD	
Gradient/Solvent Time [mm]	% Sol [$\rm H_2O$, 0.1% NH3]	% Sol [Acetonitril]	Flow [ml/min]	Temp [° C.]
0.00 0.20 1.20 1.25 1.40	97 97 0 0	3 3 100 100 100	2.2 2.2 2.2 3 3	60 60 60 60

Device-Description Column Dimension Agilent 1200 with DAD and MSD Waters XBridge C18 3 × 30 mm Particle Size 2.5 jum Elow Temp [ml/min] [° C.]	Agilent 1200 with DAD and MSD Waters XBridge C18 3 × 30 mm 2.5 μm			-continued		
Waters XBridge C18 Say 30 mm Particle Size Size Say 30 mm Particle Size Say 30 mm Say	Valuers NBridge C18 3 x 30 mm 2.5 μm 2.		LC	C-MS Method Z011_U0	03	
Time [min] 0.1% NH3] [Acetonitril] [ml/min] [° C.]	Time [min] 0.1% NH3] [Acetentril] [ml/min] [° C] 0.00 50 50 2.2 60 0.20 50 50 2.2 60 1.25 0 100 3 60 LC-MS Method Z012_S04 LC-MS Method Z012_S04 Device-Description Column Dimension Price of Size Agilent 1200 with DAD and MSD Waters NBridge C18 3 x 30 mm 2.5 μm Flow Temp [m/min] Temp [m/min] [° C.] Column Dimension Price of Size 97 3 2.2 60 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 3 60 1.24 0 100 3 60 LC-MS Method Z018_S04 Device-Description Column Dimension Price of Size Agilent 1200 with DAD and MSD Waters Sunfire C18 3 x 30 mm 2.2 60 1.20	Column Column Dimension	W 3	Vaters XBridge C18 × 30 mm	and MSD	
1,20	Company Comp					
1.20	1.20	0.00	50	50	2.2	60
1.25	1.25					
Device-Description Column Same Same Column Co	LC-MS Method Z012_S04 Squitter Squitte					
Device-Description Column Dimension Particle Size Sol [H ₂ O ₃ Sol [H ₂ O ₄ Column Dimension Particle Size Sol [H ₂ O ₄ Sol [H ₂ O ₄	Device-Description Column Dimension Dimension					
Column Dimension Particle Size Waters XBridge C18 3 × 30 mm 2.5 μm Gradient/Solvent Time [min] % Sol [H ₂ O, 0.1% NH3] % Sol [Flow [ml/min] Flow [° C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method Z018_S04 Device-Description Column Dimension Particle Size Agilent 1200 with DAD and MSD Waters Sunfire C18 3 x 30 mm 3 x 30 mm 2.5 µm Temp Solvent Gradient time [min] % Sol [H ₂ O, 0 % Sol Flow [ml/min] Temp Column Dimension Particle Size Agilent 1200 with DAD and MSD Waters Sunfire C18 3 x 30 mm 2.2 60 1.25 0 100 3 60 1.26 0 100 3 60 1.25 0 100	Column Salumn S		LC	C-MS Method Z012_S0)4	
Gradient/Solvent Time [min] % Sol [H ₂ O, % Sol Flow [ml/min] [° C.]	Cradient/Solvent % Sol [H ₃ O, % Sol Flow Temp ["C.]	Column Column Dimension	W 3	Vaters XBridge C18 × 30 mm	and MSD	
Time [min] 0.1% NH3 [Acetonitril] [ml/min] [° C.]	Time [min] 0.1% NH3 [Acetonitril] [ml/min] [° C.]			·	Flore	Tama
0.20	1.20					
1.20	1.20					
1.25	1.25					
LC-MS Method Z018_S04 LC-MS Method Z018_S04	LC-MS Method Z018_S04 Agilent 1200 with DAD and MSD Waters Sunfire C18 3 x 30 mm 2.5 μm					
Device-Description Column Column Dimension C	Agilent 1200 with DAD and MSD					
Column Column Dimension Particle Size Waters Sunfire C18 3 x 30 mm 2.5 μm Solvent Gradient time [min] % Sol [H ₂ O,	Column Dimension Particle Size Waters Sunfire C18 3 × 30 mm 2.5 μm Solvent Gradient time [min] % Sol [H ₂ O, time [min] % Sol [H ₂ O, time [min]] Flow [ml/min] Temp [ml/min] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 3 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method Z020_S01 Device-Description Column Dimension Agilent 1200 with DAD and MSD Waters Sunfire C18 3 × 30 mm 3 × 30 mm 2.5 μm Solvent Gradient time [min] % Sol [H ₂ O, time [min] [acetonitril] [ml/min] [acetonitril] [c] C.] Solvent Gradient time [min] % Sol [H ₂ O, time [min] [acetonitril] [ml/min] [acetonitril] [c] C.] Solvent Gradient time [min] % Sol [H ₂ O, time [min] [acetonitril] [c] C.] Column [min] [acetonitril] [c] C.] Column [min] [acetonitril] [c] C.]<		LC	C-MS Method Z018_S0)4	
Column Dimension Particle Size $3 \times 30 \text{ mm}$ 2.5 μm Solvent Gradient time [min] % Sol [H ₂ O, 0.1% TFA] % Sol [H ₂ O, mode of the property of time [min] Flow [min] Temp [c C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 LC-MS Method Z020_S01 Device-Description Column Dimension Particle Size Agilent 1200 with DAD and MSD Waters Sunfire C18 Solvent Gradient time [min] % Sol [H ₂ O, Material Size with DAD and MSD Waters Sunfire C18 Solvent Gradient time [min] % Sol [H ₂ O, Material Size with DAD and MSD Waters Sunfire C18 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.25 0 100 3 60 1.40 0	Solvent Gradient time [min] Sol [H ₂ O, 0.1% TFA] [Acetonitril] Flow [ml/min] [° C.]				and MSD	
Particle Size 2.5 μm	Particle Size 2.5 μm Solvent Gradient time [min] % Sol [H ₂ O, 0.1% TFA] % Sol [H ₂ O, [ml/min] Flow [ml/min] Temp [ml/min] [° C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 1.40 0 100 3 60 1.40 0 100 3 60 1.20 1.20 100 3 60 1.20 1.20 100 3 60 1.20 1.20 1.20 100 3 60 1.20					
time [min] 0.1% TFA] [Acetonitril] [ml/min] [° C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 LC-MS Method Z020_S01 LC-MS Method Z020_S01 Device-Description Column Dimension Agilent 1200 with DAD and MSD Waters Sunfire C18 3 × 30 mm 2.5 μm Solvent Gradient fimin] % Sol [H ₂ O, 9/8 Sol Flow Flow Flow Flow Flow Flow Flow Fl	time [min] 0.1% TFA] [Acetonitril] [ml/min] [° C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 3 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method Z020_S01 Device-Description Varies Sunfire C18 3 × 30 mm 2.5 μm Solvent Gradient time [min] 0.1% FA] [Acetonitril] [ml/min] [° C.] 0.00 97 3 2.2 60 0.20 97 7 3 2.2 60 0.20 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.20 0 100 2.2 60 1.21 60 1.22 60 1.24 60 1.25 0 100 3 60 LC-MS Method V001_007 Device-Description Surface with DA- and MS-Detector Varies Size 3.5 μm Solvent Gradient Varies Size 3.5 μm					
0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 3.3 60 1.25 0 100 3 60 1.40 0 100 3 60	O.00 97 3 2.2 60	Solvent Gradient	% Sol [H ₂ O,	% Sol	Flow	Temp
0.20	0.20	time [min]	0.1% TFA]	[Acetonitril]	[ml/min]	[° C.]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.20					
1.25	1.25					
LC-MS Method Z020_S01	1.40 0 100 3 60					
Agilent 1200 with DAD and MSD	Agilent 1200 with DAD and MSD					
Column Column Dimension Particle Size Waters Sunfire C18 $3 \times 30 \text{ mm}$ $2.5 \mu m$ Solvent Gradient time [min] % Sol [H ₂ O, 0.1% FA] % Sol [H ₂ Contine [mi] [ml/min] Flow [ml/min] Temp [ml/min] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Column Stridge C18 Column Dimension Particle Size 4.6 × 30 mm 3.5 μm	Column Dimension Particle Size Waters Sunfire C18 3 × 30 mm 2.5 μm Solvent Gradient time [min] % Sol [H ₂ O, 0.1% FA] % Sol Flow [min/min] Temp [° C.] 0.00 97 3 2.2 60 0.20 0.20 97 3 2.2 60 0.20 1.20 0 100 2.2 60 0.20 1.25 0 100 3 60 0.20 1.40 0 100 3 60 0.20 1.25 0 100 3 60 0.20 1.40 0 100 3 60 0.20 20evice-Description Column Column Dimension Column Surface Size Waters Alliance with DA- and MS-Detector XBridge C18 0.20 4.6 × 30 mm 0.20 20evice-Description Column Dimension Column Dime		LC	C-MS Method Z020_S0	01	
		Column	V	Vaters Sunfire C18	and MSD	
time [min] 0.1% FA] [Acetonitril] [ml/min] [° C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	time [min] 0.1% FA] [Acetonitril] [ml/min] [° C.] 0.00 97 3 2.2 60 0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Column XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 µm Solvent Gradient % Sol [H ₂ O, % Sol Flow Temp time [min] 0.1% FA] [Methanol] [ml/min] [° C.]	Particle Size	2.	.5 μm		
0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	0.20 97 3 2.2 60 1.20 0 100 2.2 60 1.25 0 100 3 60 LC-MS Method V001_007 LC-MS Method V001_007 Device-Description Column Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension Particle Size 4.6 × 30 mm 3.5 μm Solvent Gradient Gradient (min)					
1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	1.20 0 100 2.2 60 1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Column					
1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Waters Alliance with DA- and MS-Detector Column XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	1.25 0 100 3 60 1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Column XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm Solvent Gradient % Sol [H ₂ O, % Sol Flow Temp time [min] 0.1% FA] [Methanol] [ml/min] [° C.]					
1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Waters Alliance with DA- and MS-Detector Column XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	1.40 0 100 3 60 LC-MS Method V001_007 Device-Description Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension 4.6 × 30 mm article Size 3.5 μm Solvent Gradient % Sol [H ₂ O, % Sol Flow Temp time [min] 0.1% FA] [Methanol] [ml/min] [° C.]					
Device-Description Column Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	Device-Description Waters Alliance with DA- and MS-Detector XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm Solvent Gradient % Sol [H ₂ O, % Sol Flow Temp time [min] 0.1% FA] [Methanol] [ml/min] [° C.]					
Column XBridge C18 Column Dimension 4.6 × 30 mm Particle Size 3.5 μm	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		LC	C-MS Method V001_00)7	
Column Dimension $4.6 \times 30 \text{ mm}$ Particle Size $3.5 \mu\text{m}$	Column Dimension 4.6 × 30 mm 3.5 μ m Solvent Gradient % Sol [H ₂ O, % Sol Flow Temp time [min] 0.1% FA] [Methanol] [ml/min] [° C.]	•			A- and MS-Detector	
Particle Size 3.5 μm	Solvent Gradient % Sol $[H_2O]$, % Sol $[H_2O]$ Flow Temp time $[min]$ 0.1% FA] $[Methanol]$ $[ml/min]$ $[^{\circ}C.]$					
	time [min] 0.1% FA] [Methanol] [ml/min] [° C.]					
Solvent Gradient % Sol [H ₂ O ₃ % Sol Flow Temp	time [min] 0.1% FA] [Methanol] [ml/min] [° C.]	Solvent Gradient	% Sol [H ₂ O,	% Sol	Flow	Temp
1 2 /	0.0 95 5 4.0 40					
0.0 05 5 4.0 60		0.0	95	5	4.0	60
	1.6 0 100 40 00					
1.6 0 100 4.0 60		1.6				
time [min] 0.1% FA] [Methanol] [ml/min] [° C.]		Solvent Gradient time [min] 0.00 0.20 1.20 1.25 1.40 Device-Description Column Dimension Particle Size Solvent Gradient time [min]	% Sol [H ₂ O, 0.1% FA] 97 97 0 0 0 0 LC W X 4 3. % Sol [H ₂ O, 0.1% FA]	% Sol [Acetonitril] 3 3 100 100 100 2-MS Method V001_00 Vaters Alliance with DA (Bridge C18 .6 × 30 mm .5 µm % Sol [Methanol]	[ml/min] 2.2 2.2 2.2 3 3 3 7 A- and MS-Detector Flow [ml/min]	[° C.] 60 60 60 60 60 Temp [° C.]
	1.0 0 100 4.0 60		0	100	4.0	60
		1.6				

	LC-MS M	fethod I_ADH_15_MEOF	H_DEA.M		
Device-Description Column Column Dimension Particle Size		Agilent 1260 SFC with Daicel Chiralpak AD-H 4.6 × 250 mm 5 µm	OAD		
Solvent Gradient time [min]	% Sol [scCO ₂]	% Sol [Methanol, 0.2% Diethylamine]	Flow [ml/min]	Temp [° C.]	Backpressure [bar]
0.00 10.00	85 85	15 15	4 4	40 40	150 150
	LC-MS N	Method I_OJH_10_IPROF	_DEA.M		
Device-Description Column Column Dimension Particle Size		Agilent 1260 SFC with Daicel Chiralcel OJ-H 4.6 × 250 mm 5 µm	OAD		
Solvent Gradient time [min]	% Sol [scCO ₂]	% Sol [Isopropanol, 0.2% Diethylamine]	Flow [ml/min]	Temp [° C.]	Backpressure [bar]
0.00 10.00	90 90	10 10	4 4	40 40	150 150
	LC-MS	Method I_IC_20_MEOH	_NH3.M		
Device-Description Column Column Dimension Particle Size		Agilent 1260 SFC with Daicel Chiralpak IC 4.6 × 250 mm 5 µm	OAD and MSD		
Solvent Gradient time [min]	% Sol [scCO ₂]	% Sol [20 rnM NH3 in Methanol]	Flow [ml/min]	Temp [° C.]	Backpressure [bar]
0.00 10.00	80 80	20 20	4 4	40 40	150 150
	LC-MS M	fethod I_ADH_40_MEOH	H_DEA.M		
Device-Description Column Column Dimension Particle Size		Agilent 1260 SFC with E ID aicel Chiralpak AD-H 4.6 × 250 mm 5 µm			
Solvent Gradient time [min]	% Sol [scCO ₂]	% Sol [Methanol, 0.2% Diethylamine]	Flow [ml/min]	Temp	Backpressure [bar]
0.00 10.00	60 60	40 40	4 4	40 40	150 150
	LC-MS N	Method I_ASH_30_10MIN	I_SS4P.M		
Device-Description Column Column Dimension Particle Size		Berger SFC Analytix witi Daicel Chiralpak AS-H 4.6 × 250 mm 5 µm	h DAD		
Solvent Gradient time [min]	% Sol [scCO ₂]	% Sol [Ethanol, 0.2% Diethylamine]	Flow [ml/min]	Temp	Backpressure [bar]
0.00 10.00	70 70	30 30	4 4	40 40	120 120

-continued

LC-MS Method I_OJH_10_MEOH_DEA.M						
Device-Description Column Column Dimension Particle Size		Agilent 1260 SFC with I Daicel Chiralcel OJ-H 4.6 × 250 mm 5 µm	OAD			
Solvent Gradient time [min]	% Sol [scCO ₂]	% Sol [Methanol, 0.2% Diethylamine]	Flow [ml/min]	Temp [° C.]	Backpressure [bar]	
0.00 10.00	90 90	10 10	4 4	40 40	150 150	

Mixture of stereoisomers can be separated on preparative scale by one of the following chiral SFC methods. 2x describes two columns switched in a row.

Methode: Chiral SFC A

Column: 2x Daicel Chiralpak AD-H 5 μm 20×250 mm Eluent: 85% scCO₂, 15% Methanol 0.2% Diethylamine

Flow: 55 mL/min Temperature: 40° C. Backpressure: 120 bar Wavelength: 254 nm

Concentration: 52 mg/ml in Methanol

Injection volume: 300 μl

Device-Description: Thar MultiGram II

Methode: Chiral SFC B

Column: 2x Chiralcel OJ-H 5 μm, 20×250 mm

Eluent: 90% scCO₂, 10% Isopropanol 0.2% Diethylamine

Flow: 60 mL/min Temperature: 40° C. Backpressure: 150 bar Wavelength: 254 nm

Concentration: 50 mg/ml in Methanol

Injection volume: 200 μl

Device-Description: Jasco Rockclaw 150

Methode: Chiral SFC C

Column: 2x Daicel Chiralpak AD-H 5 µm, 10×250 mm Eluent: 85% scCO₂, 15% Methanol 0.2% Diethylamine

Flow: 10 mL/min Temperature: 40° C. Backpressure: 120 bar Wavelength: 254 nm

Concentration: 15 mg/ml in Methanol Injection volume: 100 μl Device-Description: Thar MiniGram

Methode: Chiral SFC D

Column: 1x Daicel Chiralpak AD-H, 5 μm, 20×250 mm Eluent: 60% scCO₂, 40% Methanol 0.2% Diethylamine

Flow: 60 mL/min Temperature: 40° C. Backpressure: 120 bar Wavelength: 254 nm

Concentration: 50 mg/ml in Methanol Injection volume: 400 µl

Device-Description: Thar MultiGram II

Methode: Chiral SFC E

Column: 2x Daicel Chiralpak AS-H 5 μm, 20×250 mm Eluent: 70% CO₂, 30% Ethanol 0.2% Diethylamine

Flow: 55 mL/min Temperature: 40° C Backpressure: 120 bar Wavelength: 254 nm

Concentration: 100 mg/ml in Methanol

Injection volume: 200 µl

Device-Description: Thar MultiGram II

Methode: Chiral SFC F

Column: Daicel Chiralpak IC 5 μm, 20×250 mm

Eluent: 85% scCO₂, 15% Ethanol

Flow: 60 mL/min Temperature: 40° C Backpressure: 150 bar Wavelength: 254 nm

Concentration: 35 mg/ml in Methanol

Injection volume: 500 μl

Device-Description: Sepiatec Prep SFC 100 Methode: Chiral SFC G

Column: Chiralpak AY-10 µm, 50×300 mm

Eluent: A for CO₂, and B for ethanol: n-heptane=1:1 Gradient: B 10%

62

Flow: 170 mL/min Temperature: 38° C. Backpressure: 100 bar Wavelength: 220 nm

Concentration: 300 mg/ml in ethanol Injection volume: 4 mL per injection

Cycletime: 3.5 min

Device-Description: Thar 200 preparative SFC

35 Synthesis Methods: Method A

40

Synthesis of (1S,2S,4R) - N-[(1S)-1-cyano-2-[2-fluoro-4-(2-methylisoindolin-5-yl)phenyl]ethyl]-3azabicyclo[2.2.1]heptane-2-carboxamide

Example 1

15

20

25

30

35

I-1.4

Step 1: Synthesis of Intermediate I-1.1
R1 (20.0 g, 55 mmol) is suspended in DCM (400 mL) and a solution of R2 (26.4 g, 111 mmol) dissolved in DCM is added. The reaction mixture is stirred for 12 h under argon atmosphere. The reaction mixture is washed with water. The organic layer is dried over MgSO₄, filtrated and concentrated. The residue is dissolved in DCM, filtrated by flash chromatography (using solvent mixture cyclohexane/ethyl acetate=70/30) and concentrated to give I-1.1. Yield 97% m/z 287/343 [M+H]+, rt 1.29 min, LC-MS Method X012_S01.

The following intermediate as shown in Table 2 is synthesized in a similar fashion from the appropriate intermediates:

TABLE 2

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-1.1.1	R1.1	O H N N N N N N N N N N N N N N N N N N	391	1.29	V012_S01

To I-1.1 (5.80 g, 17 mmol) in anhydrous dioxane (60 mL) R3 (5.20 g, 20 mmol) and potassium acetate (4.98 g, 51 mmol) are added. The mixture is purged with argon, [1,1'-Bis (diphenylphosphino)ferrocene]dichloropalladium(II) (PdCl₂ (dppf)) (1.38 g, 1.7 mmol) is added to the mixture and heated to 80° C. for 2 h. DCM is added and the mixture is filtrated. The filtrate is diluted with water and extracted with DCM. The organic layer is dried over MgSO₄, filtrated and concentrated. The residue is purified by flash chromatography (cyclohexane/ethyl acetate=8/2) and concentrated. Yield 97% m/z 291/335/391 [M+H]+, rt 1.36 min, LC-MS Method V012_S01.

66

Step 3: Synthesis of Intermediate I-1.3

I-1.2 (1.22 g, 5 mmol) and R4 (2.30 g, 5.9 mmol) are dissolved in acetonitrile (25 mL). Na₂CO₃-solution (2 mol/L, 4.9 mL) and 1,1'-Bis(di-tert-butylphosphino) ferrocene-palladium dichloride (319 mg, 0.49 mmol) are added. The reaction mixture is stirred at 80° C. for 1 h. The crude mixture is extracted with ethyl acetate, washed with half saturated brine. The organic layer is dried over MgSO₄, filtrated and concentrated and the residue is purified by reversed phase HPLC. Yield 59%, m/z=396 [M+H]+, rt 0.96 min, LC-MS Method V012 S01.

The following intermediates as shown in Table 3 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 3

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-1.3.1	I-1.1.1, direct coupling with boronic ester R7.3	F O H N SO_2Me	444	1.21	V018_S01

TABLE 3-continued

Intermediate Edu	uct	Structure of Intermediate	$\begin{array}{c} m/z \\ [M+H] + \end{array}$	rt (min)	LC-MS method
I-1.3.3 I-1. dire coupl wit boro ester l	rect O Î	F SO ₂ Me	444	1.14	V011_S01

Step 4: Synthesis of Intermediate I-1.4

I-1.3 (1.15 g, 2.91 mmol) is dissolved in acetonitrile. 1.39 20 V011_S01. g p-toluenesulfonic acid monohydrate is added and stirred for 48 h. The precipitate is filtered off, dissolved in ethyl acetate and washed with saturated NaHCO3-solution. The organic layer is dried over MgSO4, filtrated and concentrated. Yield thesized in a tes:

78%. m/z 296 [M+H]+, rt 1.03 min, LC-MS Method V011 S01.

The following intermediates as shown in Table 4 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 4

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-1.4.1	I-1.3.1	H ₂ N N SO ₂ Me	344	0.76	V018_S01

TABLE 4-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-1.4.3	I-1.3.3	H ₂ N N SO ₂ Me	344	0.77	V018_S01

Step 5: Synthesis of Intermediate I-1.5

to Tararov et al, Tetrahedron Asymmetry 13 (2002), 25-28) (98 mg, 0.4 mmol) in DMF (1.5 mL) diisopropylethylamine (0.18 mL, 1.0 mmol) and HATU (154 mg, 0.4 mmol) are added and the reaction mixture is stirred for 15 min. Then intermediate I-1.4 (100 mg, 0.3 mmol) is added and the mixture is stirred for 12 h. DCM is added and the mixture is

washed with saturated Na2CO3 solution. The organic layer is To R5 (purchased from Aldrich or synthesized in analogy 20 dried over MgSO₄, filtrated, and the residue is concentrated. Then the residue is purified by reversed phase HPLC. Yield 68%, m/z 419/463/518 [M+H]+, rt 1.29 min, LC-MS Method V011 S01.

> The following intermediates as shown in Table 5 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 5

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-1.5.1	I-1.4.1	F SO ₂ Me	567	1.24	V018_S01

TABLE 5-continued

Intermediate	Educt	Structure of Intermediate	$\begin{array}{c} m/z \\ [M+H] + \end{array}$	rt (min)	LC-MS method
I-1.5.3	I-1.4.3	F SO ₂ Me	567	1.14	V011_S01

Step 6: Synthesis of Example 1

To I-1.5 (120 mg, 0.23 mmol) in acetonitrile, p-toluene-sulfonic acid monohydrate ($110 \, \text{mg}$, 0.58 mmol) is added and stirred for 3 d. The reaction solution is purified by reversed phase HPLC. Yield 47%, m/z 419 [M+H]+, rt 1.16 min, LC-MS Method V011_S01.

Method A1

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2-fluoro-4-(1-methyl-2-oxo-indolin-6-yl)phenyl] ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 2

$$H_2N$$
 H_2N
 H_2N
 H_2
 H_3N
 H_4
 H_5
 H_5
 H_5
 H_7
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_9
 H_9

Example 2

Step 1: Synthesis of Intermediate I-2.1

To R5 (7.59 g, 31 mmol) in DCM (300 mL) diisopropylethylamine (4.8 mL, 28 mmol) and HATU (11.5 g, 30 mmol) are added and stirred for 25 min. Then R6 (10.4 g, 28 mmol) and diisopropylethylamine (7.2 mL, 42 mmol) are added and stirred for 3 h. The solvent is evaporated, dissolved in ethyl acetate and washed with water, 0.5 M HCl and aq. NaHCO3 solution (10%). The organic layer is dried over MgSO₄, filtrated and concentrated. The residue is purified by flash chromatography (using solvent mixture DCM/methanol=95/5). Yield >95%, m/z 484 [M+H]+, rt 1.18 min, LC-MS Method V011 S01.

The following intermediates as shown in Table 6 are synthesized in a similar fashion from the appropriate intermediate:

TABLE 6

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
1-2.1.1	NH2 NH2 Br	496	0.95	Z018_S04

Step 2: Synthesis of Intermediate I-2.2

To I-2.1 (12.7 g, 26 mmol) in DCM (130 mL) R2 (12.5 g, 52 mmol) is added. The reaction mixture is stirred for 12 h. The solvent is evaporated, dissolved in ethyl acetate and washed with water, 0.1 M HCl and aq. NaHCO3 solution (5%). The organic layer is dried over MgSO₄ and concen-

 $_{\rm 45}$ trated. The residue is recrystallized from DCM and acetonitrile. Yield 64% m/z 466 [M+H]+, rt 1.30 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 7 are synthesized in a similar fashion from the appropriate intermediate:

TABLE 7

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.2.1	I-2.1.1	O H N N N Br	478	1.03	Z018_S04

TABLE 7-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.2.3	I-2.1.2	H N Br	466/468	1.27	V011_S01

Synthesis of Intermediate I-2.2.2

Synthesis of tert-butyl (1S,2S,4R)-2-[[(1S)-2-amino-1-[[2,3-difluoro-4-trifluoromethylsulfonyl oxy)phenyl]methyl]-2-oxo-ethyl]carbamoyl]-3-azabicyclo
[2.2.1]heptane-3-carboxylate

The phenol I-2.1.3 is transformed into the corresponding trifluoromethanesulfonate I-2.2.2: I.2.1.3 (200 mg, 0.46 mmol) is dissolved in anhydrous DCM (1.5 mL). Triethylamine (95 μ L, 0.69 mmol) is added and the reaction mixture is cooled to 0° C. R18 (179 mg, 0.50 mmol) is then added and the mixture was stirred at 0° C. for 90 minutes and additional 12 h at room temperature. The mixture is concentrated and the residue is purified by reversed phase HPLC. Yield 85%, m/z 472 [M+H–BOC]+, rt 0.97 min, LC-MS Method Z011_S03.

35 Step 3: Synthesis of Intermediate I-2.3

To I-2.2 (5.00 g, 10 mmol) in acetonitrile (100 mL) R7 (3.07 g, 11 mmol) is added. The mixture is purged with argon, 1,1-Bis(di-tert-butylphosphino) ferrocene palladium dichloride (0.70 g, 1.1 mmol) and aq. sodium carbonate solution (2 mol/L, 1.07 mL) are added and the mixture is heated to 70° C. for 3.5 h. Ethyl acetate and water are added to the reaction mixture. The organic layer is washed with aq. NaHCO3 solution (5%) and water. The organic layer is dried over MgSO₄ and concentrated. The residue is purified by flash chromatography (cyclohexane/ethyl acetate=1/1). Yield 41% m/z 533 [M+H]+, rt 1.25 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 8 are synthesized in a similar fashion from the appropriate intermediates ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 8

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.1	1-2.2	H ₃ C CH ₃	560	0.76	X018_S01
I-2.3.2	1-2.2	$\begin{array}{c} O \\ N \\$	528	0.88	004_CA01
I-2.3.3	I-2.2	N in S N in S CH ₃ CCH ₃	470	0.90	004_CA05
I-2.3.4	I-2.2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	510	0.87	004_CA05

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-2.3.5	I-2.2	N H ₃ C N N N N N N N N N N N N N N N N N N N	482	0.77	004_CA05
I-2.3.6	I-2.2	CH ₃ CH ₃ O CH ₃ O CH ₃ O CH ₃	468	0.92	004_CA05
I-2.3.7	I-2.2	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N	454	0.82	Z011_S03
I-2.3.8	I-2.2	H ₃ C CH ₃ F NH NH NH CH ₃	496	0.82	004_CA05
I-2.3.9	I-2.2	F CH_3 $CH_$	538	1.00	004_CA05
		O CH ₃ H ₃ C CH ₃			

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.10	I-2.2	O N N O CH ₃ CH ₃	470	0.91	004_CA05
I-2.3.11	I-2.2	O N H ₃ C CH ₃	539	0.66	004_CA05
I-2.3.12	I-2.2	CH ₃ CH ₃ CH ₃	482	0.75	004_CA05
I-2.3.13	I-2.2.1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	407	1.03	Z018_S04
I-2.3.14	I-2.2	CH ₃ CH ₃ CH ₃	499	0.86	004_CA05

TABLE 8-continued

		TABLE 8-continued		
Intermediate	Educt	Structure of Intermediate	m/z rt [M + H]+ (mir	LC-MS n) method
I-2.3.15	I-2.2	H ₃ C CH ₃	438 0.94 [M+H- BOC]+	X018_S04
I-2.3.16	I-2.2	O N N N N N N N N N N CH ₃	552 0.77	004_CA05
I-2.3.17	I-2.2	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	556 0.91	X018_S04
I-2.3.18	1-2.2	O CH ₃ CH ₃ CH ₃	518 0.89	004_CA05

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.19	1-2.2	CH ₃ CH ₃ CH ₃ CH ₃	482	0.77	004_CA05
I-2.3.20	I-2.2	CH ₃ CCH ₃ CH ₃ CCH ₃	510	0.86	004_CA05
I-2.3.21	I-2.2	$\begin{array}{c} O \\ N \\ N \\ O \\ CH_3 \end{array}$	482	0.75	004_CA01
I-2.3.22	1-2.2	$\bigcap_{N \text{ CH}_3}^{N} \bigcap_{\text{CH}_3}^{N} \bigcap_{\text{CH}_3}^{\text{CH}_3}$	496	0.82	004_CA01
1-2.3.23	I-2.2	O NH NH NH NH NH NH NH O CH ₃	554	0.68	004_CA05

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.24	I-2.2.1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	530	1.02	Z018_S04
I-2.3.25	I-2.2	$\bigcap_{N} \bigcap_{H} \bigcap_{CH_3} \bigcap_{CH_3$	512	0.83	004_CA01
I-2.3.26	I-2.2	$H_{3}C$ CH_{3}	354	1.02	Z018_S04
I-2.3.27	I-2.2	$\bigcap_{N} \bigcap_{N \in \mathcal{CH}_3} \bigcap_{CH_3} \bigcap_{CH_$	530	0.91	004_CA01
I-2.3.28	I-2.2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	499	0.82	004_CA05

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.29	I-2.2	$\bigcap_{N} \bigoplus_{H_3C} \bigcap_{CH_3} \bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{S} \bigcap_{S} \bigcap_{CH_3} \bigcap_{S} \bigcap_{S} \bigcap_{S} \bigcap_{CH_3} \bigcap_{S} \bigcap_{S} \bigcap_{CH_3} \bigcap_{S} \bigcap_{CH_3} \bigcap_{S} \bigcap_{CH_3} \bigcap_{S} \bigcap_{CH_3} \bigcap_{CH_3$	395 [M + H - BOC]+	1.02	Z018_S04
I-2.3.30	I-2.2	$\begin{array}{c} O \\ H_{3}C \\ CH_{3} \end{array}$	560	0.76	X018_S01
I-2.3.31	I-2.2	$\bigcap_{N} \bigcap_{H} \bigcap_{CH_3} \bigcap_{CH_3$	468	0.9	004_CA01
I-2.3.32	I-2.2.1	$H_{3}C$ CH_{3} F N	397	0.97	Z018_S04

TABLE 8-continued

		TABLE 8-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.33	1-2.2	H ₃ C CH ₃	431	1.07	Z018_S04
I-2.3.34	1-2.2	H_3C O N	512	0.75	004_CA01
I-2.3.35	1-2.2	N N N N CH ₃ CH ₃ CH ₃	536	0.89	004_CA05
I-2.3.36	I-2.2	$\bigcap_{N} \bigcap_{N} \bigcap_{H_{3} \subset CH_{3}} \bigcap_{F} \bigcap_{H_{3} \subset CH_{3}} \bigcap_{H_{3} \subset C$	454	0.85	004_CA01

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.37	1-2.2	$\bigcap_{N \in \mathcal{C}H_3} \bigcap_{CH_3} \bigcap_{$	468	0.69	004_CA01
1-2.3.38	1-2.2	CH ₃ CH ₃	482	0.78	004_CA01
I-2.3.39	I-2.2.1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	411	1.01	Z018_S04
I-2.3.40	1-2.2	H_3C CH_3 N	354	0.87	Z018_S04
I-2.3.41	I-2.2	OH N N H OH OH OH OH	514	0.44	004_CA05

Intermediate	e Educt	Structure of Intermediate	m/z [M + H]+	rt · (min)	LC-MS method
I-2.3.42	I-2.2	$\begin{array}{c} O \\ N \\ N \\ H \end{array}$ $\begin{array}{c} O \\ N \\ N \\ \end{array}$ $\begin{array}{c} O \\ N \\ N \\ \end{array}$ $\begin{array}{c} O \\ N \\ N \\ \end{array}$ $\begin{array}{c} O \\ N \\ \end{array}$ $\begin{array}{c$	538	0.76	004_CA01
I-2.3.43	I-2.2	$H_{3}C$ CH_{3} CH_{3} CH_{3}	483	0.93	V012_S01
I-2.3.44	1-2.2	$\begin{array}{c} CH_3 \\ N \\ N \\ H \end{array}$	536	0.85	004_CA05
I-2.3.45	I-2.2	O N N H O CH ₃ CH ₃	483	0.81	004_CA05
I-2.3.46	I-2.2	O H ₃ C CH ₃ CH ₃ CH ₃	482	0.77	004_CA05

		TABLE 8-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-2.3.47	I-2.2.1	O N CH ₃ CH ₃	547	0.83	004_CA05
I-2.3.48	I-2.2.1	NH ₂	519	0.71	004_CA05
I-2.3.49	I-2.2.1	$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{NH}}$	533	0.77	004_CA05
I-2.3.50	I-2.2.1	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	519	0.89	004_CA05
		$_{ m H_{3}C}$ $_{ m CH_{3}}$			

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]-	rt + (min)	LC-MS method
I-2.3.51	I-2.2.1	O CH ₃ N N N N CH ₃ CCH ₃	540	0.9	004_CA05

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.54	I-2.2.1	$\bigcap_{\substack{N\\N\\H_3C}}\bigcap_{CH_3}^{N}\bigcap_{CH_3}$	555	0.72	004_CA05

I-2.3.56 I-2.2.1
$$H_3C$$
 494 0.79 004_CA05

TABLE 8-continued

		TABLE 8-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.57	I-2.2.1	CH ₃	569	0.71	004_CA05
I-2.3.58	I-2.2.1	H_3C CH_3 H_3C N	569	0.66	004_CA05
I-2.3.59	I-2.2.1	CH ₃	554	0.79	004_CA05
I-2.3.60	I-2.2.1	F CH_3 CH_3 N N N N N N N	502	0.81	004_CA05

TABLE 8-continued

			m/z	rt	LC-MS
Intermediate		Structure of Intermediate	[M + H]+		method
-2.3.61	I-2.2.1	O NH ₂ NH ₃ C CH ₃	555	0.74	004_CA05
2.3.62	I-2.2.1	$\begin{array}{c} O \\ N \\ N \\ N \\ M \\ \end{array}$	554	0.79	004_CA05
-2.3.63	I-2.2.1	O N H H CH ₃ CH ₃	511	0.87	004_CA05
I-2.3.64	I-2.2.1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	519	0.73	004_CA05

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.65	1-2.2.1	O N N N H O CH ₃ CH ₃	531	0.71	004_CA05

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt - (min)	LC-MS method
I-2.3.68	1-2.2.1	O N N N N N N N N N N N N N	569	0.79	004_CA05

TABLE 8-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.71	I-2.2	$\begin{array}{c} O \\ H \\ N \\ O \\ CH_3 \end{array}$	468 [M + H - BOC]+	1.00	X018_S04
I-2.3.72	I-2.2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	577	n.d.	n.d.
I-2.3.73	I-2.2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	561	n.d.	n.d.
I-2.3.74	I-2.2.2	NH2 NH2 NH2 NH2	469	0.89	Z018_S04

TABLE 8-continued

		TABLE 8-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.75	1-2.2.2	NH2 NH2 SO ₂ Me	578	0.88	Z018_S04
I-2.3.76	I-2.2.2	NH2 NH2 F H NH2 O	455 (M + H - BOC)+	0.85	Z018_S04
I-2.3.77	I-2.2.2	NH2 NH2 F	488 (M + H – BOC)	0.89	Z018_S04
I-2.3.78	I-2.2.2	NH2 NH2 SO ₂ Me	503 (M + H - BOC)+	0.89	Z018_S04

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.79	I-2.2		626	0.54	X012_S0

398 0.89 Z018_S04 (M + H -BOC)+

398 0.89 n.d. (M + H -BOC)+

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.82	1-2.2	H N F O OH	508	0.94	Z018_S04

55

During the synthesis of intermediates I-2.3.17 and I-2.3.29 the bromide (I-2.2) is transformed into the corresponding dioxaborolane compound. Coupling with aromatic bromides is performed in analogy to the synthesis of intermediate I-1.3 (method A).

Intermediate I-2.3.43 is further processed via hydrogena- 50 tion before the BOC group is removed (step 4)

-continued

H
N
I-2.3.43.1

To I-2.3.43 (90 mg, 0.19 mmol) in methanol (10 mL) Pd/C (10%, 20 mg) is added. The reaction mixture is stirred under hydrogen (50 psi) for 3 h. Then the mixture is filtered and concentrated. The crude product is carried on with step 4. Yield >95%

In analogy the following intermediates as shown in Table 9 are prepared.

TABLE 9

Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.43.2	1-3.2.78	$H_{3}C$ CH_{3} CH_{3} CH_{3}	517	0.47.	X012_S02
I-2.3.43.3	I-2.3.83	$C \xrightarrow{CH_3} F$	561	n.d.	n.d.

Intermediates I-2.3.74-78 and I-2.3.43.2 are converted to the corresponding nitriles in analogy to step 2 of method A1 to yield the compounds in the following Table 10.

TABLE 10								
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method			
I-2.3.74.1	I-2.3.74		451 [M + H - BOC]+	0.98	Z018_S01			
I-2.3.75.1	I-2.3.75	N N N N N N N N N N N N N N N N N N N	460 (M+H+) – BOC	0.96	Z018_S04			

TABLE 10-continued

		TABLE 10-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.76.1	I-2.3.76	H N N H N N H N N N N N N N N N N N N N	437 (M + H - BOC)+	0.93	Z018_S04
I-2.3.77.1	1-2.3.77		470 (M + H - BOC)+	0.96	Z018_S04
I-2.3.78.1	I-2.3.78	SO ₂ Me	485 (M + H - BOC)+	0.96	Z018_S04
I-2.3.43.1	I-2.3.43.2	H N N N N N N N N N N N N N N N N N N N	499	0.54	Z018_S02

The intermediate I-2.3.7 is combined with appropriate halogenides or acid chlorides before (in step 4) the BOC group is removed

To I-2.3.7 (45 mg, 0.10 mmol) and R17 (19 μL, 0.20 mmol) in DMF (1.5 mL) potassium carbonate (42 mg, 0.30 mmol) is added. The reaction mixture is heated to 80° C. for 12 h. The mixture is purified directly by reversed phase HPLC. Yield 65%, m/z 526 [M+H]+, rt 0.71 min, LC-MS Method X018_S01.

The following intermediates as shown in Table 11 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 11

Intermediate	educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.7.3	I-2.3.7	H_{3} C C H $_{3}$	496	0.77	X018_S01

TABLE 11-continued

		IABLE 11-continued	m/z	g-4-	LC-MS
Intermediate	educt	Structure of Intermediate	m/z [M + H]+	rt (min)	method
I-2.3.7.5	I-2.3.7	$H_{3}C$ CH_{3}	552	0.79	X018_S01
I-2.3.7.6	I-2.3.7	$\begin{array}{c} & & \\$	512	0.72	X018_S01
I-2.3.7.7	I-2.3.7	$H_{3}C$ CH_{3} CH_{3} CH_{3}	438 [M + H - BOC]+	1.11	X018_S01
I-2.3.7.8	I-2.3.7	H_3C CH_3 CH_3 CH_3 CH_3	593	0.69	X018_S01

TABLE 11-continued

Intermediate	educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.7.9	1-2.3.7	H_3C CH_3	566	0.79	X018_S01
I-2.3.7.10	I-2.3.7	$\begin{array}{c} H \\ N \\ O \\ O \\ O \\ O \\ F \\ \end{array}$	526	0.75	X018_S01
I-2.3.7.11	I-2.3.7		494 (M+H- BOC)+	1.03	Z018_S04

The reaction conditions for I-2.3.7.11 differ: Pyridine and dichlormethane instead of potassium carbonate and DMF is used.

Intermediate I-2.3.7.4 is separated according to method chiral SFC B to give the following intermediates as shown in Table $11.1\,$

TABLE 11.1

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.7.4.1	I-2.3.7.4	GC CH ₃ F	n.d.	3.90	I_OJH_10_IPROP_DEA.M

TABLE 11.1-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-2.3.7.4.2	I-2.3.7.4	N F N N N N N N N N N N N N N N N N N N	n.d.	3.4	I_OJH_10_IPROP_DEA.M

Step 4: Synthesis of Example 2

To I-2.3 (2.35 g, 4.4 mmol) in acetonitrile (50 mL) sodium iodide (1.98 g, 13 mmol) and chlorotrimethylsilane (1.44 g, 13 mmol) are added. The mixture is stirred for 1 h, then methanol is added, stirred for additional 30 min and then 25 concentrated. The residue is purified by reversed phase HPLC. Yield 47%, m/z 433 [M+H]+, rt 0.59 min, LC-MS Method X011_S01.

Method A2.1

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2-fluoro-4-(1-oxo-3H-isobenzofuran-5-yl)phenyl] ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 3

$$\begin{array}{c|c} & & & & \\ & &$$

I-3.1

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Step 1: Synthesis of Intermediate I-3.1

To I-2.1 (1.00 g, 2.1 mmol) in dioxane (5 mL) R3 (0.58 g, 2.3 mmol) is added. The mixture is purged with argon. [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) as a complex with dichloromethane (34 mg, 0.04 mmol) and potassium acetate (0.39 g, 3.9 mmol) are added. The mixture is heated to 100° C. for 12 h. Water is added to the reaction mixture, which is extracted with diethyl ether. The organic layer is washed with brine, dried over MgSO₄, filtrated and concentrated. Yield 74% m/z 532 [M+H]+

The following intermediates as shown in Table 12a are synthesized in a similar fashion from the appropriate intermediate:

TABLE 12a

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.1.1	(1RS)- I-2.2	H N N N N N N N N N N N N N N N N N N N	514	0.90	V011_S01

TABLE 12a-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.1.2	I-2.2	H O H N F	432	1.05	V018_S01
I-3.1.3	I-2.2	H O H F B O C C C C C C C C C C C C C C C C C C	514	0.95	Z011_S03
I-3.1.5	I-2.1	H NH2 O NH2 O O O O O O O O O O O O O O O O O O O	450 (Boronacid)	0.67	V011_S01

During the synthesis of intermediate I-3.1.2, I-3.1.4 and I-3.1.5 instead of R3 5,5,5',5'-Tetramethyl-[2,2']bi[[1,3,2]di-45 oxaborinanyl] is used.

During the synthesis of intermediate I-3.1 I-3.1.2 and I-3.1.4 also the corresponding boronic acid is isolated as shown in Table 12b. Either the boronic ester or boronic acid is used for the payt steps. used for the next steps.

TABLE 12b

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.1.4	I-2.2.3	OH NO H NO H NO H NO H	432	0.88	V011_S01

TABLE 12b-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.1.6	I-2.1	O O O F OH OH	449	0.42	X016_S01
I-3.1.7	I-2.2	H O O O O O O O O O O O O O O O O O O O	432	0.56	X018_S01

Step 2: Synthesis of Intermediate I-3.2

acetonitrile (4 mL) aq. Na₂CO₃-solution (2 M, 663 µL) is added. The mixture is purged with argon, R8 (154 mg, 0.72 mmol) and [1,1'-Bis(diphenylphosphino) ferrocene]dichloropalladium(II) as a complex with dichloromethane (80 mg, 0.10 mmol) are added. The reaction is stirred at 70° C. for 4 h. 35 ate ((R,S)=1:1 mixture of stereoisomers at the carbon adja-Ethyl acetate is added and the mixture is filtrated. The filtrate

is washed with water and aq. Na₂CO₃ solution (10%). The To I-3.1 (295 mg, 0.66 mmol, as boronic acid (I-3.1.6)) in 30 organic layer is dried over MgSO₄ and concentrated. The residue is purified by flash chromatography (DCM/methanol=97/3). Yield 53%.

The following intermediates as shown in Table 13 are synthesized in a similar fashion from the appropriate intermedicent to the nitrile group):

TABLE 13

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.1	I-3.1	H NH2 O NH2 O NH2 O NH2	551	1.08	V011_S01
I-3.2.2	I-3.1.1	F F	520	1.21	V011_S01

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.5	I-3.1	H NH2	n.d.	n.d.	n.d.
I-3.2.6	(1S)-I-3.1.1	N F F N N N N N N N N N N N N N N N N N	447/ 491/ 547	1.18	V011_S01
I-3.2.8	I-3.1	NH2 OOOO	n.d.	n.d.	n.d.
I-3.2.10	(1S)-I-3.1.1	N P P P P P P P P P P P P P P P P P P P	519	1.11	V011_S01
I-3.2.11	I-3.1.1	H N N N N N N N N N N N N N N N N N N N	n.d.	n.d.	n.d.

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.12	I-3.1.1	H N N N N N N N N N N N N N N N N N N N	n.d.	n.d.	n.d.
I-3.2.13	1-3.1.1	H N N N CI	n.d.	n.d.	n.d.
I-3.2.15	I-3.1	NH2 NH2 NH2 NH2	n.d.	n.d.	n.d.
I-3.2.16	I-3.1	NH2 NH2	n.d.	n.d.	n.d.

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-3.2.17	I-3.1	H NH2	n.d.	n.d.	n.d.
I-3.2.36	I-3.1.3	H H N F N N N N N N N N N N N N N N N N	368 (M + H - BOC)+	0.73	004_CA05
I-3.2.37	I-3.1.3	H N F	382 (M + H - BOC)+	0.75	004_CA05
I-3.2.38	I-3.1.3	H N F S S S S S S S S S S S S S S S S S S	415 (M + H - BOC)+	0.95	004_CA05
I-3.2.39	I-3.1.3	H N F	430 (M + H - BOC)+	0.91	004_CA05

TABLE 13-continued

		TABLE 15-continued			
Inter- mediate	Educt	Structure of Intermediate	m/z M + H]+	rt (min)	LC-MS method
I-3.2.40	1-3.1.3		405 (M+ H- BOC)+	0.74	004_CA05
I-3.2.41	I-3.1.3	H N F	405 (M+ H- BOC)+	0.67	004_CA05
I-3.2.42	I-3.1.3	O H N F F N N N N N N N N N N N N N N N N	405 (M + H - BOC)+	0.77	004_CA05
I-3.2.43	I-3.1.3	H N F	382 (M+ H- BOC)+	0.72	004_CA05

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.44	I-3.1.3		394 (M + H - BOC)+	0.70	004_CA05
I-3.2.45	I-3.1.3	H N O S S S S N	411 (M + H - BOC)+	0.88	004_CA05
I-3.2.46	I-3.1.3	H N F F N N N N N N N N N N N N N N N N	397 (M + H - BOC)+	0.68	004_CA05
I-3.2.47	I-3.1.3	H N F O STATE OF THE STATE OF T	379 (M + H - BOC)+	0.85	004_CA05
I-3.2.48	I-3.1.3	HN F	442 (M + H - BOC)+	0.92	004_CA05

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.49	I-3.1.3	H _N F	442 (M + H - BOC)+	0.94	004_CA05
I-3.2.50	I-3.1.3	H N P P O O O O O O O O O O O O O O O O O	412 (M + H - BOC)+	0.84	004_CA05
1-3.2.51	1-3.1.3	HN F	611	n.d.	n.d.
1-3.2.52	I-3.1.3	H N F	613	1.24	V012_S01

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-3.2.53	I-3.1.3	H N P F N N N N N N N N N N N N N N N N N	466 (M + H - BOC)+	0.91	Z018_S04
1-3.2.54	I-3.1.3	H N N N N N N N N N N N N N N N N N N N	647	n.d.	n.d.
1-3.2.55	I-3.1.2	O H N F S S S S S S S S S S S S S S S S S S	568	1.23	V011_S01
1-3.2.56	I-3.1.2	H N F F F F	622	1.24	V011_S01

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.57	I-3.1.2	N O N N N N N N N N N N N N N N N N N N	547	0.76	X011_S03
I-3.2.58	I-3.1.2	H N F F O	494	0.57	X011_S03
I-3.2.59	I-3.1.2		494	0.56	X011_S03
I-3.2.60	I-3.1.2	H N F F N N N N N N N N N N N N N N N N	552	0.58	X011_S03

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.61	I-3.1.2	H N F N N N N N N N N N N N N N N N N N	380 (M+ H- BOC)+	0.52	X011_S03
I-3.2.62	I-3.1.2	H N F N F N N N N N N N N N N N N N N N	380 (M + H - BOC)+	0.52	X011_S03
I-3.2.63	I-3.1.3	HEN O F SEE O	445 (M + H - BOC)+	0.93	Z018_S04
I-3.2.64	I-3.1.3	H N F F N N N N N N N N N N N N N N N N	538	0.94	Z018_S04

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.65	I-3.1.3	THE STATE OF	466 (M + H - BOC)+	0.91	Z018_S04
I-3.2.66	I-3.1.3		525 (M + H - BOC)+	0.93	Z011_S03
I-3.2.67	1-3.1.7	HN P F P P P P P P P P P P P P P P P P P	538	0.83	X018_S01
I-3.2.68	I-3.1.7	H N F S S S S S S S S S S S S S S S S S S	526	1.11	V011_S01

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.69	I-3.1.7		586	1.29	V011_S01
I-3.2.70	I-3.1.7	O H N F F F S S S S S S S S S S S S S S S S	640	1.31	V011_S01
1-3.2.71	I-3.1.7	H N N N N N N N N N N N N N N N N N N N	604	n.d.	n.d.
I-3.2.72	I-3.1.7	F N N N N N N N N N N N N N N N N N N N	n.d.	n.d.	n.d.

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-3.2.73	I-3.1.7	H N F	590	1.03	Z011_S03
I-3.2.74	I-3.1	H NH2 O NH2	529	0.48	X012_S02
1-3.2.75	I-3.1	NH2 NH2 NH2	543	1.04	V011_S01
1-3.2.76	I-3.1	H NH2 NH2 N NH2	543	1.02	V011_S01

TABLE 13-continued

		TABLE 13-continued			
Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.77	I-3.1.4	H N OH	n.d.	n.d.	n.d.
I-3.2.78	I-3.1	H NH2	n.d.	n.d.	n.d.
I-3.2.79	I-3.1.7	H N O N O N N N N N N N N N N N N N N N	539	1.18	V011_S01
I-3.2.80	I-3.1.7	H N F	546 (M + H - Boc- t-Bu)	1.106	Z020_S01

TABLE 13-continued

		17 In the Fig. 15 Continued			
Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.81	I-3.1.6	H NH ₂	557	1.05	V011_S01
I-3.2.82	I-3.1.6	H NH2	577	0.50	X018_S02
I-3.2.83	I-3.1.1	H N N S O F S O	644	0.53	X012_S01
I-3.2.84	I-3.1.7		640	0.53	X012_S01

TABLE 13-continued

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.85	I-3.1.7	N F N N N N N N N N N N N N N N N N N N	551	0.59	X011_S03
I-3.2.86	I-3.1.7	HMN F	544	0.60	X012_S02
I-3.2.87	1-3.1.7	H N F N N N N N N N N N N N N N N N N N	n.d.	n.d.	n.d.
I-3.2.88	I-3.1.2	H N F N N N N N N N N N N N N N N N N N	533	1.08	V011_S01

Inter- mediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-3.2.90	I-3.1.6	H NH2	563	1.29	V011_S01
I-3.2.91	I-3.1.7	H N F	n.d.	n.d.	n.d.

Intermediate I-3.2.64 is separated according to method chiral SFC A to give the following intermediates as shown in Table 13.1

TABLE 13.1

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.64.1	I- 3.2.64	H N N F N N N N N N N N N N N N N N N N	n.d.	3.828	I_ADH_15_MEOH_DEA.M
I-3.2.64.2	I- 3.2.64	H N F F N N N N N N N N N N N N N N N N	n.d.	4.631	I_ADH_15_MEOH_DEA.M

5

Intermediate I-3.2.74, I-3.2.75, I-3.2.81, I-3.2.82, I-3.2.89,I-3.2.90, I-3.2.113, is further processed via hydrogenation before the BOC group is removed (step 4)

To I-3.2.74 (210 mg, 0.33 mmol) in methanol (10 mL) Pd/C (10%, 90 mg) is added. The reaction mixture is stirred at 50° C. under hydrogen (50 psi) for 6 h. Then the mixture is filtered and concentrated. The crude product is carried on with step 4. Yield 85%, m/z 531 [M+H]+, rt 0.48 min, LC-MS Method X012_S02.

In analogy the following intermediates as shown in Table 17 are prepared.

17 are prepared.

TABLE 17

Intermediate	Educt	Structure of Intermediate	m/z $[M + H]+$	rt (min)	LC-MS method
I-3.2.122	I- 3.2.75	NH ₂	545	0.98	V011_S01
I-3.2.123	I- 3.2.75	H NH2 NH2 NH2	545	1.03	V011_S01
I-3.2.124	I- 3.2.81	H NH2 NH2 NH2	559	0.62	X011_S03

TABLE 17-continued

Intermediate	Educt Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.125	J- 3.2.82 NH ₂	489	0.44	X018_S02
I-3.2.126	J- 3.2.89 NH ₂	516	1.02	V011_S01
I-3.2.127	I- 3.2.90 NH ₂	475	0.41	X018_S02
I-3.2.128	I- 3.2.113 O NH ₂	530	1.12	V011_S01
I-3.2.129	J- 3.2.113 O NH ₂ N NH ₂	530	1.00	V011_S01

Intermediate I-3.2.91 is further processed in the following way:

To I-3.2.91 (200 mg, 0.28 mmol) in ACN (3 mL) is added p-toluene sulfonic acid monohydrate (79.67 mg, 0.42 mmol) and stirred at r.t. for 2.5 h. The reaction mixture is diluted with TEA, filtered and purified by reversed phase HPLC.

I-3.2.131

Yield 68%

Intermediate I-3.2.125, I-3.2.126, I-3.2.129 and I-3.2.131 is further processed via reductive amination before the BOC group is removed (step 4)

To I-3.2.125 (130 mg, 0.266 mmol) in dichlormethane is added 3-oxotetrahydrofuran (27.49 mg, 0.319 mmol) and glacial acetic acid (15.22 μL, 0.266 mmol) and stirred for 45 min at r.t. Sodium triacetoxyborohydride (83.1 mg, 0.372 mmol) is added and the reaction mixture is stirred at r.t. overnight.

I-3.2.132

The reaction mixture is diluted with dichlormethane and sat. NaHCO₃. The organic layer is separated, dried and concentrated. The crude product is used for the next step without further purification.

Yield 99%, m/z 559 [M+H]+, rt 0.44 min, LC-MS Method X018_S02.

In analogy the following intermediates as shown in Table 18 are prepared.

TABLE 18

Intermediate	Educt	Structure of Intermediate	[]	m/z M + H]+	rt (min)	LC-MS method
I-3.2.133,	I-3.2.126,	H N O F	O NH ₂	586	0.50	X012_S02

		TABLE 18-continued			
Intermediate	Educt	Structure of Intermediate	$\begin{array}{c} m/z \\ [M+H] + \end{array}$	rt (min)	LC-MS method
I-3.2.134	I-3.2.126	H NH2 NH2	530	1.14	V011_S01
I-3.2.135	I-3.2.129	H NH2	586	1.09	V011_S01
I-3.2.136	I-3.2.131	H N F	n.d.	n.d.	n.d.

The reaction time for I-3.2.133 and I-3.2.135 is 30 min at r.t. and for I-3.2.134 2 h at r.t. and for I-3.2.136 1 h at r.t.

Intermediate I-3.2.136 is deprotected (see example 359) and further processes via hydrogenation to give example 358:

Example 359

To example 359 (20 mg, 0.047 mmol) in methanol (3 mL) Pd/C (10%, 5 mg) is added. The reaction mixture is stirred at r.t. under hydrogen (50 psi) for 10 min. Then the mixture is filtered and concentrated. The crude product is purified by

reversed phase HPLC to give example 358. Yield 35%, m/z 425 [M+H]+, rt 0.715 min, LC-MS Method Z012_S04.

Intermediate I-3.2.127 is further processed via alkylation before the BOC group is removed (step 4)

I-3.2.137

To I-3.2.127 (71 mg, 0.15 mmol) in DMF (2 mL) is added 2-bromoethyl methyl ether (29.53 μ L, 0.31 mmol) and potassium carbonate (41.36, 0.266 mmol) and stirred overnight at r.t. The reaction mixture is diluted with dichlormethane and water. The organic layer is separated, dried and concentrated. The crude product is purified by reversed phase HPLC. Yield 40%, m/z 533 [M+H]+, rt 1.05 min, LC-MS Method V011_S01.

15 Step 3: Synthesis of Intermediate I-3.3

To I-3.2 (187 mg, 0.35 mmol) in DCM (12 mL) R2 (182 mg, 0.77 mmol) is added. The reaction mixture is stirred for 12 h, concentrated, dissolved in ethyl acetate and extracted with 0.1M HCl and water. The organic layer is dried over
 MgSO₄ and concentrated. Yield 86%.

The following intermediates as shown in Table 19 are synthesized in a similar fashion from the appropriate intermediate:

TABLE 19

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.3.1	I-3.2.1	F F O	533	1.21	V011_S01
I-3.3.3	1-3.2.5		n.d.	n.d.	n.d.

Intermediate	Educt	Structure of Intermediate	m m/z $ m [M+H]+$	rt (min)	LC-MS method
I-3.3.4	I-3.2.8		n.d.	n.d.	n.d.
I-3.3.5	I-3.2.15	H N N N N N N N N N N N N N N N N N N N	626	n.d.	n.d.
I-3.3.6	I-3.2.16	H N N N N N N N N N N N N N N N N N N N	n.d.	n.d.	n.d.
I-3.3.7	I-3.2.17	H N O O F	n.d.	n.d.	n.d.

	TABLE 19 Continued			
Intermediate	Educt Structure of Intermediate	m/z $[M + H]+$	rt (min)	LC-MS method
I-3.3.8	I- 3.2.130 H N N N N N N N N N N N N N N N N N N	513	0.55	V011_S02
I-3.3.9	I-3.2.75 O H N F N N N N N N N N N N N	525	1.17	V011_S01
I-3.3.10	I-3.2.76 O H N F F N N N N N N N N N N N N N N N N	525	1.15	V011_S01
I-3.3.11	J- 3.2.122	527	1.15	V011_S01
I-3.3.12	J- 3.2.123	527	1.12	V011_S01

	TABLE 19-continued			
Intermediate	Educt Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.3.13	I-3.2.78 O O F N N N N N N N N N N N N N N N N	496	0.54	X012_S02
I-3.3.14	I- 3.2.124 N N N N N N N N N N N N N N N N N N N	541	0.71	X011-S03
I-3.3.15;	J- 3.2.132 H N O F	541	0.49	X018_S02
I-3.3.16	I- 3.2.133	568	1.22	V011_S01

	TABLE 19-continued			
Intermediate	Educt Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.3.17	I- 3.2.134 N N N N N N N N N N N N N N N N N N N	512	1.26	V011_S01
I-3.3.18	3.2.137 N N N N N N N N N N N N N N N N N N N	515	1.17	V011_S01
I-3.3.19	J- 3.2.128 H N N N N N N N N N N N N N N N N N N	512	1.25	V011_S01
I-3.3.20	3.2.135 N O F N N N N N N N N N N N N N N N N	568	1.23	V011_S01

15

20

25

30

Step 4: Synthesis of Example 3

To I-3.3 (155 mg, 0.30 mmol) in acetonitrile, sodium 5 iodide (134 mg, 0.89 mmol) and chlorotrimethylsilane (114 μl, 0.89 mmol) are added. The mixture is stirred for 2 h, then methanol is added, stirred for additional 30 min and then concentrated. The residue is purified by reversed phase HPLC. Yield 62%, m/z 420 [M+H]+, rt 0.41 min, LC-MS Method X016_S01.

Method A2.2

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2-fluoro-4-(4-phenylpiperazin-1-yl)phenyl]ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 32

-continued

Step 1: Synthesis of Intermediate I-3.2.4

To I-3.1.2 (150 mg, 0.30 mmol) in DCM (6 mL), triethylamine (85 μL, 0.61 mmol), R112 (55.22 mg, 0.34 mmol) and copper(II)acetate (85 mg, 0.47 mmol) are added. The mixture is stirred for 72 h at r.t. 7M ammonium solution in methanol is added, the mixture is concentrated. The residue dissolved in acetonitrile and filtrated. The product is purified by reversed phase HPLC. Yield 54%, m/z 548 [M+H]+, rt 1.37 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 14 are synthesized in a similar fashion from the appropriate intermediate

TABLE 14

Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.7	I-3.1.2 O H N F N N N N O N N N O N N N N N N N N N	528	1.10	V011_S01

	TABLE 14-continued	m/z	LC-MS
Intermediate	Educt Structure of Intermediates	[M + H]+ rt (min	
I-3.2.9	I-3.1.2 W N N N N N N N N N N N N N N N N N N	550 1.11	V011_S01
I-3.2.14	I-3.1.2 O H N O H N O N O N O O N O O O O O O	556 1.20	V011_S01
I-3.2.19	I-3.1.2 O H N F N N N N N N N N N N N	544 1.22	V011_S01
I-3.2.20	I-3.1.2 O H N O N N N N N N N N N N N	354 1.20 (M + H - BOC)+	V011_S01
I-3.2.22	I-3.1.2 O H N F N N N N N N N N N N N N N N N N N	530 1.13	V011_S01

TABLE 14-continued

		m/z		LC-MS
Intermediate	Educt Structure of Intermediates	[M + H]+	rt (min)	method
1-3.2.24	I-3.1.2 O H N N N N N N N N N N N N N N N N N N	512	1.28	V011_S01
1-3.2.25	I-3.1.2 O H N F N N N N N N N N N N N N N N N N N	500	1.21	V011_S01
I-3.2.26 (forms together with I-3.2.27)	I-3.1.2 O H N F N N N N N N N N N N N N N N N N N	516	1.02	V011_S01
I-3.2.27 (forms together with I-3.2.26)	I-3.1.2 O H N F N N N N N N N N N N N N N N N N N	516	1.02	V011_S01
I-3.2.28;	I-3.1.2 O H N F N N N N N N N N N N N N N N N N N	558	1.25	V011_S01

TABLE 14-continued

	I DEE 14 continued			
Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.29	I-3.1.2 O H N O F N N N N N N N N N N N N N N N N N	500	1.21	V011_S01
I-3.2.30	I-3.1.2 O H N F N O N O N O O O O O O O O O O O O O	556	1.13	V011_S01
I-3.2.31	I-3.1.2 O H N F F N N N N N N N N N N N N N N N N	499	1.49	V011_S01
I-3.2.32;	I-3.1.2 O H N F F N N N N N N N N N N N N N N N N	514	1.21	V011_S01

TABLE 14-continued

Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
1-3.2.33	I-3.1.2	471	1.39	V011_S01
I-3.2.34	I-3.1.2	472	1.36	V011_S01
I-3.2.35	I-3.1.2 O H N F F O O O O O O O O O O O O O O O O O	473	1.17	V011_S011
I-3.2.92	I-3.1.2	n.d.	0.67	X011_S03
I-3.2.93;	I-3.1.2 O H N F F N N N N N N N N N N N N N N N N	540	1.09	V011_S01

TABLE 14-continued

	TABLE 14-Continued			
Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.94	I-3.1.2	561	1.07	V011_S01
1-3.2.95	I-3.1.2 O H N F O O O O O O O O O O O O O O O O O O	559	1.08	V011_S01
I-3.2.96	I-3.1.2	528	0.78	X011_S03
1-3.2.97	I-3.1.2	528	0.77	X011_S03

Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.98	I-3.1.7	542	1.26	V011_S01
1-3.2.99	I-3.1.7 O H N F	512	1.26	V011_S01
I-3.2.100	I-3.1.7	526	0.72	X011_S03
I-3.2.101	I-3.1.7	500	1.24	V011_S01
I-3.2.102	I-3.1.4 O H N N N N N N N N N N N N N N N N N N	486	1.13	V011_S01

TABLE 14-continued					
Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method	
I-3.2.103	I-3.1.2 O H N F N O N O N O O O O O O O O O O O O O	584	1.36	V011_S01	
1-3.2.104	I-3.1.7 O H N F	512	1.31	V011_S01	
1-3.2.105	I-3.1.7 O H N F N N N N O N N O N O N N O N N N N N	568	0.75	X011_S03	
I-3.2.106	I-3.1.7 O H N F N N N N N N N N N N N N N N N N N	498	1.20	V011_S01	

TABLE 14-continued

	TABLE 14-continued			
Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.107	I-3.1.7 O H N F N N N N N N N N N N N N N N N N N	542	1.13	V011_S01
I-3.2.108	I-3.1.7 O H N F N N N N N N N N N N N N N N N N N	512	1.29	V011_S01
I-3.2.109	I-3.1.2 N N N N N N N N N N N N N N N N N N	572	1.36	V011_S01
I-3.2.110	I-3.1.2 O H N N N N N N N N N N N N N N N N N N	556	0.65	X011_S03

	IABLE 14-continued			
Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.111	I-3.1.1 O H N O F N N N N N N N N N N N N N N N N N	528	0.79	X011_S03
I-3.2.112	I-3.1.7 O H N F F N N N N N N N N N N N N N N N N	513	0.69	X011_S03
I-3.2.114	I-3.1.7 O H N F H O H H N H N N H N N H N N N N N N N N	n.d.	n.d.	n.d.
1-3.2.115	I-3.1.7 O H N F F N N H M N N N N N N N N N N N N N N N N	542	0.99	Z011_S03

Intermediate	Educt Structure of Intermediates	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.116	I-3.1.7 O H N F H O N N H N N N N N N N N N N N N N N N	542	1.017	Z011_S03

For the synthesis of the intermediates I-3.2.117 and ²⁰ I-3.2.118 to the educt I-3.1.2 with the appropriate amine in MeOH 0.14 eq copper(I)oxide is added (as shown in Table 15).

TABLE 15

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.117	I-3.1.2	$ \begin{array}{c} $	422 (M + H - BOC)+	1.32	V011_S01

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.119	I-3.2.118	H N N N O OH	498	1.84	I_OJH_10_MEOH_DEA.M
I-3.2.120	I-3.2.119	H N F N N N N N N N N N N N N N N N N N	525	1.10.	V011_S01

The synthesis of I-3.2.119 proceeds in the following way: I-3.2.118 (785 mg, 1.49 mmol) is dissolved in THF. LiOH (1.5 eq.) as aq. solution is added and stirred at r.t. for 9 h. The product mixture is acidified with 1 M HCl to pH 5 and purified by HPLC-MS. Yield: 61%.

The amide coupling for synthesis of intermediate I-3.2.120 proceeds in the following way: I-3.2.119 (40 mg, 0.08 mmol) HATU (33.6 mg, 0.088 mmol) and DIPEA (55.3 μ L, 0.322

mmol) are dissolved in DMF. The mixture is stirred at r.t. for 15 min. Dimethylamine (120.6 $\mu L, 0.241$ mmol) is added, and the reaction mixture is stirred at r.t. for 1.5 h. The product mixture is separated by HPLC-MS.

The fractions are combined and freeze-dried. Yield: 85%. The following intermediate as shown in Table 16 is synthesized in a similar fashion from the appropriate intermediate

TABLE 16

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-3.2.121	I-3.2.119	N N N N N N N N N N N N N N N N N N N	567	1.10	V011_S01

20

25

30

45

The reaction conditions for I-3.2.94 and I-3.2.95 differ: Pyridine instead of TEA is used.

The reaction conditions are 80° C. overnight.

The reaction conditions for I-3.2.111 differ: 2 eq of N-Methylmorpholine N-Oxid is added to the reaction.

Step 2: Synthesis of Example 32

To I-3.2.4 (82 mg, 0.15 mmol) in acetonitrile, p-toluene-sulfonic acid monohydrate (95 mg, 0.50 mmol) is added and stirred overnight at r.t. The reaction mixture is basified with ammonium solution. 0.5 mL water and 1 mL ACN are added. The precipitate is filtered off, washed with ACN and dried. The crude product is triturated with aq. sodium hydrogencarbonate solution, filtered by suction and dried. Yield 31%, m/z $_{\rm 15}$ 448 [M+H]+, rt 1.28 min, LC-MS Method V011_S01.

Method A3

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2-fluoro-4-(3-methylsulfonylphenyl)phenyl]ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 4

$$H_2N$$
 Br
 $R5$
 $R5$
 $I-4.1$

-continued

Step 1: Synthesis of Intermediate I-4.1

To I-1.1 (5.00 g, 14 mmol) in acetonitrile (250 mL) p-toluenesulfonic acid monohydrate (3.05 g, 16 mmol) is added and the mixture is stirred for 3 d. The precipitate is filtered off and the solution is washed with acetonitrile. The residue is stirred with aq. NaHCO3 solution (2%), and extracted with ethyl acetate. The organic layer is dried over MgSO₄ and concentrated. Yield 78%, m/z 243/245 [M+H]+, rt 0.76 min, LC-MS Method V018 S01.

The further intermediates belong to the following description

Synthesis of 2-amino-3-(4-bromo-2-fluoro-phenyl)propanenitrile

I-4.0

Step 1.1: Synthesis of Intermediate I-4.0 (Compare with Synthesis of Intermediate I-7.1)

To R19 (28.1 g, 104 mmol) and R20 (21.0 g, 95 mmol) in DCM (130 mL) benzyltrimethylammonium chloride (1.77 g, 9.5 mmol) is added. Under strong stirring water (8 mL) and aq. NaOH solution (19 mol/L, 9 mL) are added (exothermic reaction). The reaction mixture is stirred for 12 h. Water is added and the product is extracted with DCM. The organic layer is dried over MgSO₄ and concentrated. The crude product is used in step 2. Yield >95%, rt 1.56 min, LC-MS Method V003_003.

The following intermediates as shown in Table 20 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 20

Intermediate	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.0.1	F F	n.d.	n.d.	n.d.

425/427 1.51 V011_S01

TABLE 20-continued

Intermediate	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-4.0.3	CI N	n.d.	n.d.	n.d.

Step 1.2: Synthesis of Intermediate I-4.1.1 (Compare with Synthesis of Intermediate I-7.2)

To I-4.0 (40.8 g, 100 mmol) in dioxane (400 mL) hydrogen 45 chloride solution in dioxane (4 mol/L, 27.5 mL, 9.5 mmol) is added. The reaction mixture is stirred for 12 h. Aq. hydrochloric acid (1 mol/L, 100 mL) is added and the mixture is stirred for additional 2 h. The reaction is concentrated, the

residue is stirred with acetonitrile and the precipitate is filtered off. Yield 49%, m/z 243 [M+H]+, rt 0.42 min, LC-MS Method X001_004.

The following intermediates as shown in Table 21 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 21

Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-4.1.1.1	I-4.0.1	F N N N N N	261	0.35	Z001_002

217

TABLE 21-continued

		TABLE 21-continued			
Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-4.1.1.2	I-4.0.2	F F N N N	261/263	0.34	V012_S01
I-4.1.1.3	I-4.0.3	Cl NH ₂	259	0.39	X001_004
I-4.1.1.4	I-4.0.4	O N N N	331/333	0.48	V018_S01

Step 2: Synthesis of Intermediate I-2.2

To R5 (2.82 g, 11 mmol) in dry DCM (150 mL) diisopropylethylamine (5.8 mL, 33 mmol) and HATU (5.1 g, 13 mmol) are added and the mixture is stirred for 30 min. Then a solution of I-4.1 (2.75 g, 11 mmol) in DCM (50 mL) is added and stirred for 12 h. The mixture is washed with water, aq. K2CO3 solution (5%) and 1 M HCl. The organic layer is

dried over MgSO₄ and concentrated. Yield 68%, m/z 466/468 [M+H]+, rt 1.25 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 22 are synthesized in a similar fashion from the appropriate intermediate: ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group)

TABLE 22

Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-4.2.1	I-4.1.1	H N N N N N N N N N N N N N N N N N N N	466	0.78	X001_004

TABLE 22-continued

Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
1-4.2.2	I-4.1.1.1	N F Br	484	1.29	V011_S01
I-4.2.3	I-4.1.1.2	H N F Br	484/486	1.29	V011_S01
I-4.2.4	I-4.1.1.3	O N Br	n.d.	n.d.	n.d.
I-4.2.5	I.4.1.1.4	H N N N N N N N N N N N N N N N N N N N	554	1.42	V011_S01

Step 3: Synthesis of Intermediate I-4.3

To I-2.2 (300 mg, 0.64 mmol) in acetonitrile (7.5 mL) R9 60 (142 mg, 0.71 mmol) is added. The mixture is purged with argon 1,1-Bis(di-tert-butylphosphino)ferrocene palladium dichloride (42 mg, 0.10 mmol) and aq. sodium carbonate solution (2 mol/L, 0.64 mL) are added and heated to 70° C. for $_{65}$ 2.5 h. Ethyl acetate and water are added to the reaction mixture. The organic layer is washed with aq. NaHCO3 solution

(5%) and water. The organic layer is dried over MgSO₄ and concentrated. Yield raw product >95% m/z 442 [M+H]+, rt 0.93 min, LC-MS Method Z018 S04.

The following intermediates as shown in Table 23 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 23

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.1	I-4.2.1	O H N F O S O S O	567	1.19	V011_S01
I-4.3.2	I-4.2.1	O F N N N N N N N N N N N N N N N N N N	533	0.75	X001_004
I-4,3,3	I-2.2		442	0.92	Z018_S04
I-4.3.4	I-4.2.3	H N F S O	585	1.20	V011_S01

TABLE 23-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.5	I-4.2.1	F H H	519	0.62	Z001_002
I-4.3.6	1-2.2	H N N N S N S N S N S N S N S N S N S N	429	0.95	Z018_S04
I-4.3.8	I-4.2.2	P P P P P P P P P P P P P P P P P P P	551	1.22	V011_S01
I-4.3.9	I-4.2.1	O F N	n.d.	1.39	V003_003

TABLE 23-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.10	I-4.2.1	H ₂ N _O S _O O	543	0.57	001_CA07
I-4.3.11	I-4.2.1		518	0.55	001_CA07
I-4.3.12	I-4.2.1	H N N S S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S	n.d.	n.d.	n.d.
I-4.3.13	I-4.2.1	H N N N N N N N N N N N N N N N N N N N	532	0.57	001_CA07

TABLE 23-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.14	I-4.2.1		556	0.60	001_CA07
I-4.3.15	I-4.2.3	O F F O	551	1.21	V011_S01
I-4.3.16	I-4.2.1	F NH2	506	0.56	001_CA07
I-4.3.17	I-4.2.1	H N N S S O	541	0.60	001_CA07

TABLE 23-continued

Intermediate Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.18 I-4.2.1	$\bigcup_{N} \bigcup_{N} \bigcup_{N$	542	0.56	001_CA07
I-4.3.19 1-4.2.5		621	1.33	V011_S01
I-4.3.20 I-4.2.1	H N N N N N N N N N N N N N N N N N N N	556	0.60	001_CA07
I.4.3.21 I-4.2.1	H N N N S S S O O O O O O O O O O O O O O	556	0.62	001_CA07

TABLE 23-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.22	I-4.2.1		532	0.58	001_CA07
I-4.3.23	I-4.2.1	H N F N N N N N N N N N N N N N N N N N	n.d.	1.22	Z018_S04
I-4.3.24	I-4.2.4	H N N CI	n.d.	n.d.	n.d.
I-4.3.25	I-4.2.1	H N N N N N N N N N N N N N N N N N N N	506	0.55	001_CA07

TABLE 23-continued

Intermediate Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.26 I-4.2.1	H N F S S S S S S S S S S S S S S S S S S	n.d.	n.d.	n.d.
I-4.3.27 I-4.2.1	H N N N N N N N N N N N N N N N N N N N	534	0.63	001_CA07
I-4.3.28 I-2.2	H N F O N N N N N N N N N N N N N N N N N	500	0.98	V011_S01
I-4.3.29 I-2.2	H N F F O O O O O O O O O O O O O O O O O	442 (M + H - BOC)+	1.09	Z018_S04

TABLE 23-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.30	I-4.3.29	THE NOTION OF TH	414 (M + H - BOC)+	0.60	Z011_S03
I-4.3.31 I	I-2.2	H N F O OH	408 (M + H - BOC)+	0.93	Z018_S04

The reaction conditions for I-4.3.28 differ: Under argon atmosphere I-2.2 (250 mg, 0.54 mmol), potassium carbonate (150 mg, 1.07 mmol), copper (I) iodide (10 mg, 0.05 mmol), N,N'-dimethylethylendiamine (25 μ L, 0.23 mmol) and 4-methyl-piperazin-2-one (75 mg, 0.66 mmol) in dioxane (10 mL) are heated to 80° C. for 8 d. The reaction mixture is filtered and the solution is concentrated. The residue is purified by reversed phase HPLC. Yield 30%, m/z 500 [M+H]+, rt 0.98 min, LC-MS Method V011 S01.

The synthesis of I-4.3.30 proceeds in the following way: I-4.3.29 (509 mg, 0.94 mmol) is dissolved in dioxane. LiOH (1.5 eq.) as aq. solution is added dropwise to the solution and stirred at r.t. for 8 h. The product mixture is extracted 2× with DCM. The organic layer is extracted twice with water. The 45 water phase is acidified with 1 M HCl to pH 4, the solvent removed in vacuo to yield the crude product, which is purified by HPLC-MS (Gilson, mass flow 120 mL/min, 10 μ M, 200 g Xbridge RP18, ACN/water/NH $_3$). Yield: 44%.

Intermediate I-4.3.19 is additionally treated with BBr_3 to 50 give example 120:

I-4.3.19

-continued

I-4.3.19 (600 mg, 0.97 mmol) in DCM (50 mL) is stirred at -5° C. Then boron tribromide solution (1 mol/L in DCM, 2.90 mL) is added dropwise. The reaction mixture is stirred at 0° C. for 90 min and then stirred at room temperature for additional 12 h. The mixture is cooled down again to -5° C. and is quenched with conc. ammonia solution. The mixture is concentrated and purified by reversed phase HPLC. Yield 5%, m/z 429 [M+H]+, rt 0.81 min, LC-MS Method V018_S04.

Additional Step: Amide Coupling to Afford I-4.3.32

The amide coupling for synthesis of intermediate I-4.3.32 proceeds in the following way: I-4.3.30 (35 mg, 0.068 mmol) TBTU (45 mg, 0.14 mmol) and N-methylmorpholine (75 μ L, 0.68 mmol) are dissolved in DMF. The mixture is stirred at r.t. for 5 min. 0.5 M ammonia in dioxane (2 mL, 1 mmol) is added, and the reaction mixture is stirred at r.t. for 12 h. The product mixture is separated by HPLC-MS (Waters, 30×100 mm, 10 μ M, sunfire RP18, ACN/water/TFA). The fractions are combined and freeze-dried. Yield: 59%.

The following amide intermediates as shown in Table 24.1 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 24.1

Intermediate	Educt	Structure of Intermediate	m/z $[M + H]+$	rt (min)	LC-MS method
I-4.3.32	I-4.3.30	H N F F N N N N N N N N N N N N N N N N	413 (M + H – BOC)+	0.89	Z018_S04
I-4.3.33	I-4.3.30	H N F O NH	427 (M + H - BOC)+	0.92	Z018_S04
I-4.3.34	I-4.3.30	THE SECOND SECON	455 (M + H - BOC)+	1.00	Z018_S04
I-4.3.35	I-4.3.30	HN F	467 (M + H – BOC)+	0.99	Z018_S04

TABLE 24.1-continued

Intermediate E	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.36 I-4	4.3.30	The second secon	441 (M + H - BOC)+	0.95	Z018_S04
I-4.3.37 I-4	4.3.31	H N F N N N N N N N N N N N N N N N N N	435 (M + H - BOC)+	0.95	Z018_S04
I-4.3.38 I-4	4.3.31	H N F	490 (M + H - BOC)+	0.75	Z018_S04
I-4.3.39 I-4	4.3.31	HN,	421 (M + H - BOC)+	0.91	Z018_S04

TABLE 24.1-continued

		TABLE 24.1-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-4.3.40	I-4.3.31	HN F HN O HN O	491 (M + H – BOC)+	0.94	Z018_S04
I-4.3.41	I-4.3.31	H N O N O O O O	477 (M + H - BOC)+	0.93	Z018_S04
I-4.3.42	I-4.3.31	H N P O N P	475 (M + H - BOC)+	1.02	Z018_S04

TABLE 24.1-continued

		TABLE 24.1-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.43	I-4.3.31	O H N F O N N O N N O N N O N N O N N O N N O N N O N N O N O N N O N	435 (M + H - BOC)+	0.94	Z018_S04
I-4.3.44	I-4.3.31	H N F O N F O N O N O N O N O N O N O N O	461 (M + H - BOC)+	0.97	Z018_S04
I-4.3.45	I-4.3.30	H N F	496 (M + H - BOC)+	0.89	Z011_S03
I-4.3.46	I-4.3.30	H N F S S S S S S S S S S S S S S S S S S	519 (M + H - BOC)+	0.90	Z018_S04

		TABLE 24.1-continued			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.47	I-4.3.30	H N F S S S S S S S S S S S S S S S S S S	524 (M + H - BOC)+	0.97	Z011_S03
I-4.3.48	I-4.3.30	H N F S O N N O O O O O O O O O O O O O O O O	540 (M + H - BOC)+	0.91	Z011_S03
I-4.3.49	I-4.3.30	H N F S S S S S S S S S S S S S S S S S S	422 (M + H - BOC)+	0.98	Z011_S03
I-4.3.50	I-4.3.30	H N N N N N N N N N N N N N N N N N N N	483 (M + H - BOC)+	0.90	Z011_S03

TABLE 24.1-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.51	I-4.3.30	H N O N O N O N O N O N O	424 (M + H - BOC)+	0.86	Z011_S03
1-4.3.52	I-4.3.30	H N F F F F F F F F F F F F F F F F F F	564 (M + H - BOC)+	0.98	Z018_S04
I-4.3.53	I-4.3.30	H N F N N N N N N N N N N N N N N N N N	510 (M + H - BOC)+	0.85	Z011_S03
I-4.3.54	I-4.3.30	THE SECOND SECON	583 (M + H - BOC)+	0.89	Z011_S03

TABLE 24.1-continued

Intermediate	Educt	Structure of Intermediate	m/z $[M + H]+$	rt (min)	LC-MS method
1-4.3.55	I-4.3.30	NH NH	497 (M + H - BOC)+	0.91	Z011_S03
I-4.3.56	I-2.3.41	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	413 (M + H - BOC)+	0.84	Z011_S03
I-4.3.57	I-2.3.41	H N F S N N N N N N N N N N N N N N N N N	519 (M + H - BOC)+	0.94	Z018_S04
1-4.3.58	I-2.3.80	H N F O N N N N N N N N N N N N N N N N N	522 (M + H - BOC)+	0.87	Z018_S04

TABLE 24.1-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-4.3.59	I-2.3.81	HN F	397 (M + H - BOC)+	0.86	Z018_S04
I-4.3.60	I-2.3.81	H ₂ N	503 (M + H - BOC)+	0.88	Z011_S03
I-4.3.61	I-2.3.81	HN F	480 (M + H - BOC)+	0.74	Z018_S04
I-4.3.62	I-2.3.81	H N F O N N N N N N N N N N N N N N N N N	425 (M + H - BOC)+	0.91	Z018_S04

TABLE 24.1-continued

Intermediate	Educt	Structure of Intermediate	m m/z $[M+H]+$	rt (min)	LC-MS method
I-4.3.63	I-2.3.82	H N O NH ₂	407 (M + H - BOC)+	1.02	Z018_S04
1-4.3.64	I-2.3.82	H N F	490 (M + H - BOC)+	0.76	Z018_S04
I-4.3.65	I-2.3.80	H N F F O N O N O O N O O O O O O O O O O	467 (M + H - BOC)+	0.91	Z018_S04
I-4.3.66	I-2.3.80	H N N F N N N N N N N N N N N N N N N N	480 (M + H - BOC)+	0.73	Z018_S04

The reaction conditions for I-4.3.63 differ: I-2.3.82 (100 mg, 0.197 mmol), HATU (82.4 mg, 0.217 mmol) and DIPEA (68 μL , 2 eq) are dissolved in DMF. The mixture is stirred at r.t. for 30 min. Ammonium chloride (63.2 mg, 1.182 mmol) and DIPEA (204 μL , 6 eq) are added, and the reaction mixture is stirred at r.t. for 3 h. The product mixture is separated by HPLC-MS (Waters, 30×100 mm, 10 μM , xBridge RP18, ACN/water/TFA). The fractions are combined and freezedried. Yield: 27%.

The reaction conditions for I-4.3.65 and I-4.3.66 differ: DCM is used as solvent instead of DMF.

Step 4: Synthesis of Example 4

I-4.3 (348 mg, 0.64 mmol) in formic acid is stirred for 10 min at 40° C. The reaction solution is diluted with DMF and directly purified by reversed phase HPLC. Yield 86%, m/z 442 [M+H]+, rt 0.65 min, LC-MS Method Z018_S04.

Method A4

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2-fluoro-4-[4-(1H-indol-5-yl)triazol-1-yl]phenyl] ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 5

I-5.1

-continued
NH
NH
Example 5

Step 1: Synthesis of Intermediate I-5.1

1-2.1 (2.26 g, 4.7 mmol), sodium azide (0.61 g, 9.3 mmol), trans-(1R,2R)—N,N'-bismethyl-1,2-cyclohexane diamine (147 μl, 0.93 mmol), copper(I)iodide (89 mg, 0.47 mmol) and L-ascorbic acid sodium salt (92 mg, 0.47 mmol) are dissolved in ethanol/water=7/3 (60 mL). The mixture is heated to 100° C. for 1.5 h. Water and DCM are added to the reaction mixture. The organic layer is washed with water and brine, dried over MgSO₄ and concentrated. The residue is purified by reversed phase HPLC. Yield 85% m/z 447 [M+H]+, rt 0.91 min, LC-MS Method Z018 S04.

Step 2: Synthesis of Intermediate I-5.2

To I-5.1 (1.76 g, 3.9 mmol) in anhydrous DCM (30 mL) R2 (2.35 g, 9.9 mmol) is added. The reaction mixture is stirred for 11 h. The reaction mixture is extracted with 0.5M HCl and water. The organic layer is extracted with half saturated Na2CO3 solution, water and brine. The residue is purified by reversed phase HPLC. Yield 54% m/z 329 [M+H]+, rt 0.96 min, LC-MS Method Z018_S04.

Step 3: Synthesis of Example 5

To R10 (28 mg, 0.20 mmol) in DMSO (1.3 mL) I-5.2 (43 mg, 0.10 mmol) is added. Then copper(II) sulfate pentahydrate (2.2 mg, 0.011 mmol), L-ascorbic acid sodium salt (11 mg, 0.05 mmol) and 100 μL water are added. The reaction mixture is stirred for 12 h. The reaction mixture is diluted with DMF and directly purified by reversed phase HPLC. The achieved substance is dissolved in formic acid, stirred at 40° C. for 10 min and the reaction mixture is purified again by reversed phase HPLC. Yield 34% m/z 470 [M+H]+, rt 0.70 min, LC-MS Method Z018 S04.

30

Method A5

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2fluoro-4-(4-methylpiperazin-1-yl)phenyl]ethyl]-3azabicyclo[2.2.1]heptane-2-carboxamide

Example 6

Example 6

Step 1: Synthesis of Intermediate I-6.1
To I-3.1 (90 mg, 0.20 mmol) in DCM (4 mL), triethylamine (60 μL, 0.43 mmol), R11 (23 μL, 0.21 mmol) and copper(II) acetate (55 mg, 0.30 mmol) are added. The mixture is stirred for 12 h. 7M ammonium solution in methanol is added, the mixture is concentrated. The residue dissolved in acetonitrile and filtrated. The product is purified by reversed phase HPLC. Yield 32%, m/z 504 [M+H]+, rt 1.00 min, LC-MS Method

The following intermediates as shown in Table 24.2 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 24.2

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS
I-3.2.89	1-3.1.5	H NH2 NH2	606	1.40	V011_S01

TABLE 24.2-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
1-3.2.113	I-3.1.5	H NH2	606	1.37	V011_S01

Step 2: Synthesis of Intermediate I-6.2

To I-6.1 (40 mg, 0.08 mmol) in DCM (1 mL) R2 (35 mg, 0.15 mmol) is added. The reaction mixture is stirred for 12 h. The reaction mixture is concentrated and the residue is purified by reversed phase HPLC. Yield 67%, m/z 486 [M+H]+, rt 1.12 min, LC-MS Method V011_S01.

Step 3: Synthesis of Example 6

To I-6.2 (25 mg, 0.05 mmol) in acetonitrile, p-toluene-sulfonic acid monohydrate (35 mg, 0.18 mmol) is added and stirred for 12 h. The product is purified by reversed phase HPLC. Yield 86%, m/z 386 [M+H]+, rt 0.98 min, LC-MS Method V011_S01.

Method B

Synthesis of (1S,2S,4R)—N-[2-[4-(1-acetyl-5-methyl-pyrazol-3-yl)-2-fluoro-phenyl]-1-cyano-ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 7

$$R12$$
 $R12$
 $R13$
 $R12$
 $R13$
 $R13$
 $R14$
 $R15$
 $R15$

Example 7

Step 1: Synthesis of Intermediate I-7.1 R12 (340 mg, 1.54 mmol), R13 (480 mg, 1.54 mmol), benzyltrimethylammonium chloride (29 mg, 0.15 mmol) and DCM (10 mL) are put together. Under stirring water (250 μ L) and sodium hydroxide solution (19 mol/L, 146 μ L) are added. 5 The reaction mixture is stirred for 1 h. Half saturated brine and DCM are added. The organic layer is concentrated and

purified by reversed phase HPLC. Yield 22%. m/z 451 [M+H]+, rt 1.48 min, LC-MS Method V011_S01.

The following intermediate as shown in Table 25 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TADLE 25

	TABLE 25			
Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-7.1.1	O Br	447/449	0.78	X012_S01

TABLE 25-continued

	TABLE 25-continued			
Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-7.1.4		413	0.90	X012_S01
1-7.1.5		401	0.86	X012_S01
I-7.1.6		500	0.95	X012_S01
I-7.1.7	O Br F N	466	0.82	X011_S01

Step 2: Synthesis of Intermediate I-7.2

 60 >95%. m/z 287 [M+H]+, rt 1.01 min, LC-MS Method V011_S01.

To I-7.1 (155 mg, 0.34 mmol) in dioxane (6 mL) aq. HCl (1 $\,$ h. 135 μ L aq. HCl (1 M) is added and stirred for additional 30 min. The product is purified by reversed phase HPLC. Yield

The following intermediates as shown in Table 26 are synmol/L, 361 μ L) is added. The reaction mixture is stirred for 1 $_{65}$ the sized in a similar fashion from the appropriate intermediate ate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 26

		TABLE 26			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-7.2.1	I-7.1.1	O Br NH ₂	284/286	0.48	X012_S01
I-7.2.2	I-7.1.2	O NH2	n.d.	n.d.	n.d.
I-7.2.3	I-7.1.3	$0 \longrightarrow 0$ $N \longrightarrow N$ NH_2	336	0.56	X012_S01
I-7.2.4	I-7.1.4	N NH ₂	249	0.47	X012_S01
I-7.2.5	I-7.1.5	N	227	0.43	X012_S01
I-7.2.6	I-7.1.6	NH2 NH2	336	0.55	X012_S01

TABLE 26-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-7.2.7	I-7.1.7	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	318/320 (M + H2O)	0.48	X011_S02

Step 3: Synthesis of Intermediate I-7.3

To R5 (50 mg, 0.21 mmol) in DMF (1.5 mL) HATU (87 mg, 0.23 mmol) and diisopropylethylamine (143 μ L, 0.83 mmol) are added and the reaction mixture is stirred for 15 20 min. Then intermediate I-7.2 (87 mg, 0.22 mmol) is added and the mixture stirred for 12 h. The reaction solution is

purified by reversed phase HPLC. Yield 81%, m/z 510/454/410 [M+H]+, rt 1.28 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 27 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

		TABLE 27			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-7.3.1	I-7.2.1	Br O O O	506/508	0.66	X012_S01
I-7.3.2	1-7.2.2		415	0.61	X012_S01
1-7.3.3	1-7.2.3		559	0.84	X012_S01

TABLE 27-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-7.3.4	I-7.2.4	N O O O O	472	0.78	X012_S01
I-7.3.5	I-7.2.5		460	0.74	X012_S01
I-7.3.6	I-7.2.6		559	0.84	X012_S01
I-7.3.7	I-7.2.7	Br N O O	524/526	0.71	X011_S02

Intermediate I-7.3.7 is separated according to method "Chiral SFC F" to give the following compounds of Table 28 $\,$

TABLE 28

Intermediate	Educt	Structure	m/z [M + H]+	rt SFC (min) method
I-7.3.8	I-7.3.7	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	n.d.	2.432 I_IC_20_MEOH_NH3.M

40

45

TABLE 28-continued

Intermediate	Educt	Structure	m/z [M + H]+	rt SFC (min) method
I-7.3.9	I-7.3.7	Br N O O O	n.d.	1.946 I_IC_20_MEOH_NH3.M

Step 4: Synthesis of Example 7

To I-7.3 (40 mg, 0.08 mmol) in acetonitrile (1 mL) sodium iodide (14 mg, 0.09 mmol) and chlorotrimethylsilane (12 $\mu L,~_{20}$ 0.09 mmol) are added. The mixture is stirred for 20 min. The product is purified by reversed phase HPLC. Yield 39%, m/z 410 [M+H]+, rt 0.96 min, LC-MS Method V018_S01

For example 58 I-7.3 is stirred in formic acid at 50° C. for 10 min in a pressure vessel.

Method C

Synthesis of (1S,2S,4R)—N-[1-cyano-2-(1H-inda-zol-5-yl)ethyl]-3-azabicyclo[2.2.1]heptane-2-car-boxamide

Example 8

$$H_{2N}$$
 H_{2N}
 H

50 Step 1: Synthesis of Intermediate I-8.1

To R5 (102 mg, 0.42 mmol) in DMF (3 mL) diisopropylethylamine (296 $\mu L,\,1.70$ mmol) and TBTU (136 mg, 0.23 mmol) are added and the reaction mixture is stirred for 15 min. Then R14 (135 mg, 0.42 mmol) is added and the mixture is stirred for additional 1 h. Water is added to the reaction mixture and extracted with ethyl acetate. The organic layer is washed with brine, dried over Na2SO4 and concentrated. Yield 70%.

The following intermediate as shown in Table 29 is synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the amide group):

		TABLE 29			
Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-8.1.1	R14.1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	428	0.91	V011_S01
I-8.1.2	R14.2	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	437	0.64	X012_S01
I-8.1.3	R47	NH2 NH2	512	1.26	V011_S01
I-8.1.4	R49	NH2 NH2	517	1.09	V011_S01
		60			

The reaction conditions for I-8.1.3 and I-8.1.4 differ: HATU is used instead of TBTU.

Step 2: Synthesis of Intermediate I-8.2

To I-8.1 (126 mg, 0.29 mmol) in DCM (1 mL) R2 (155 mg, 0.65 mmol) is added. The reaction mixture is stirred for 12 h and then concentrated. Yield 100% m/z 310/354/410 [M+H]+, rt 1.02 min, LC-MS Method V012_S01.

The following intermediates as shown in Table 30 are syn-65 thesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 30

L-8.2.2 L-8.1.2	Tutomandist	a advat	Structure	m/z	at (min)	LC-MS
1-8.2.2 1-8.1.2 420 0.70 X012 1-8.2.3 1-8.1.3 494 1.37 V011 1-8.2.4 1-8.1.4 499 1.22 V011 1-8.2.5 1-24.3.2 0 527 0.66 X011			Structure			n.d
1-8.2.3 1-8.1.3 494 1.37 V011 1-8.2.4 1-8.1.4 499 1.22 V011 1-8.2.5 1-24.3.2 0 527 0.66 X011			N N N N N N N N N N N N N N N N N N N			
I-8.2.3 I-8.1.3 494 1.37 V011 I-8.2.4 I-8.1.4 499 1.22 V011 I-8.2.5 I-24.3.2 0 527 0.66 X011	I-8.2.2	I-8.1.2	H N	420	0.70	X012_S01
I-8.2.4 I-8.1.4 499 1.22 V011 H N N N N N N N N S 1-8.2.5 I-24.3.2 O H N N N N N N N N N N N N N N N N N						
I-8.2.5 I-24.3.2 O H N N 527 0.66 X011	1-8.2.3	I-8.1.3		494	1.37	V011_S01
H	I-8.2.4	I-8.1.4		499	1.22	V011_S01
	1-8.2.5	I-24.3.2	H N N N N N N N N N N N N N N N N N N N	527	0.66	X011_S03

To I-8.1 (120 mg, 0.29 mmol) in acetonitrile (7 mL) sodium iodide (132 mg, 0.88 mmol) and chlorotrimethylsilane (106 μ l, 0.88 mmol) are added. The mixture is stirred for 12 h, then methanol (7 mL) is added, stirred for 1 h and then concentrated. The residue is dissolved in ethyl acetate, washed with water and brine, dried over Na₂SO₄ and concentrated. The product is purified by reversed phase HPLC. Yield 19%, m/z 310 [M+H]+, rt 0.86 min, LC-MS Method V011_S01. Method D

Synthesis of (1S,2S,4R)—N-[1-cyano-2-(6-oxo-5H-phenanthridin-8-yl)ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 9

278

Step 1: Synthesis of Intermediate I-9.1

I-7.3.1 (200 mg, 0.39 mmol) and R16 (65 mg, 0.47 mmol) in acetonitrile (5 mL) is purged with argon. 1,1-Bis(di-tert-butylphosphino)ferrocene palladium dichloride (26 mg, 0.04 mmol) and aq. sodium carbonate solution (2 mol/L, 395 μ L) are added and heated to 70° C. for 3 h. DCM and water are added to the reaction mixture. The organic layer is dried over MgSO₄ and concentrated. The product is purified by reversed phase HPLC. Yield 50% m/z 487 [M+H]+, rt 0.60 min, LC-MS Method X012_S01.

Step 2: Synthesis of Example 9

To I-9.4 (115 mg, 0.24 mmol) in acetonitrile (5 mL) sodium iodide (106 mg, 0.71 mmol) and chlorotrimethylsilane (90 μ L, 0.71 mmol) are added. The mixture is stirred for 90 min.

Example 206

20

25

The product is purified by reversed phase HPLC. Yield 32%, m/z 387 [M+H]+, rt 0.39 min, LC-MS Method X012_S01. Synthesis of Intermediate I-9.1.1

I-9.1 (100 mg, 0.2 mmol) and MeI (14.2 μ L, 0.23 mmol) are dissolved in 2 mL DMF, and NaH (9.04 mg, 0.23 mmol, 5 as 60% suspension in paraffin oil) is added. After stirring for 12 h at r.t., the mixture is diluted with methanol, filtered and purified by HPLC. The product fractions are freeze-dried to yield 42 mg (41%) I-9.1.1. m/z 501 [M+H]+, rt 0.65 min, LC-MS Method X012 S01.

Boc deprotection to Example 206 is performed in analogy to the synthesis of Example 9.

Method D1

Synthesis of (1S,2S,4R)—N-[2-(3-chloro-5-methyl-6-oxo-phenanthridin-8-yl)-1-cyano-ethyl]-3-azabicy-clo[2.2.1]heptane-2-carboxamide

$$Br$$
 N
 O
 O
 $R3$
 $R3$
 $I-7.3.1$

$$\begin{array}{c|c}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

Step 1: Synthesis of Intermediate I-18.1

To I-7.3.1 (4.0 g, 7.9 mmol) in anhydrous dioxane (50 mL) R3 (2.93 g, 11.5 mmol) and potassium acetate (2.27 g, 23.2 mmol) are added. The mixture is purged with argon, [1,1'-Bis (diphenylphosphino)ferrocene]dichloropalladium(II)

dichlormethan complex (PdCl₂(dppf)) (0.66 g, 0.81 mmol) is added to the mixture and heated to 70° C. overnight. The reaction mixture is diluted with DCM and water. The organic layer is separated, dried and concentrated. The residue is purified by reversed phase HPLC. Yield 71% m/z 554 [M+H]+, rt 0.74 min, LC-MS Method X011_S03.

The following intermediates as shown in Table 31 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 31

Intermediate educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.1.1 I-7.3.7	H N O O O O O O O O O O	572	0.72	X011_S02

TABLE 31-continued

Intermediate educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.1.2 I-7.3.8	F N N N N N N N N N N N	572	0.74	X012_S01

Step 2: Synthesis of Intermediate I-18.2

To I-18.1 (150 mg, 0.27 mmol) in anhydrous ACN (5 mL) (5-chloro-2-iodophenyl)methanamine (72.498 mg, 0.27 mmol) is added and purged with argon. 1,1bis(di-tert.bu-tylphosphino)ferrocene palladium dichloride (17.66 mg, 0.027 mmol) and a solution of sodium carbonate in water 2 mol/L (0.271 mL, 0.54 mmol) are added, purged again with argon and heated to 70° C. for 6 h. The reaction mixture is

diluted with DCM and water. The organic layer is separated, dried and concentrated. The crude residue is used for the next step without further purification. Yield 93% m/z 536[M+H]+, rt 0.71 min, LC-MS Method X012_S01.

The following intermediates as shown in Table 32 are synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 32

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.2.1	I-18.1.1	N HN F N N N N N H	530	0.62	X011_S03
I-18.2.2	I-18.1.1	$\begin{array}{c c} F & N & O \\ \hline \\ HN & N & N \\ \hline \\ O & N \\ \end{array}$	523	0.66	X011_S02
I-18.2.3	I-18.1	$\begin{array}{c} H_2N \\ \\ \end{array}$	548	0.48	X011_S03

TABLE 32-continued

TABLE 32-continued						
Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method	
I-18.2.4	I-18.1.1	F N O O O	505	0.65	X011_S02	
I-18.2.5	I-18.1.1	F N O O O	523	0.66	X011_S02	
I-18.2.6	I-18.1	F HN N O O O	541	0.69	X012_S02	
I-18.2.7	I-18.1	CI N O O O O O O O O O O O O O O O O O O	522	0.65	X012_S01	
I-18.2.8	I-18.1	N N O O O O O O O O O O O O O O O O O O	512	0.57	X012_S01	

TABLE 32-continued

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.2.9	I-18.1		545	0.61	X011_S03
I-18.2.10	I-18.1	F N O O O O O O O O O O O O O O O O O O	523	0.68	X012_S02
I-18.2.11	I-18.1	F F F N O O O O O O O O O O O O O O O O	555	0.69	X011_S03
I-18.2.12	I-18.1	F F F N N O O O O O O O O O O O O O O O	580	0.60	X011_S03
I-18.2.13	I-18.1	N N O O O O O O O O O O O O O O O O O O	526	0.64	X012_S01

TABLE 32-continued

IABLE 32-continued								
Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method			
I-18.2.14	I-18.1	CI N N O	521	0.67	X011_S03			
I-18.2.15	I-18.1		558	0.50	X012_S01			
I-18.2.16	I-18.1	F HN O ON N	530	0.54	X011_S03			
I-18.2.17	I-18.1	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	505	0.61	X012_S01			
I-18.2.18	I-18.1	N N O O O O O O O O O O O O O O O O O O	512	0.45	X012_S01			

TABLE 32-continued

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.2.19	I-18.1	F HN O O O	523	0.62	X012_S01
I-18.2.20	I-18.1		545	0.61	X011_S03
I-18.2.21	I-18.1		517	0.61	X011_S03
I-18.2.22	I-18.1		565	0.53	X012_S01
I-18.2.23	I-18.1	HN O N O N O N O N O N O N O N O N O N O	602	0.66	X012_S01

TABLE 32-continued

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.2.24	I-18.1.2	F N O O O O O O O O O O O O O O O O O O	505	0.61	X012_S01
I-18.2.25	I-18.1.2	F N O O O O O O O O O O O O O O O O O O	523	0.63	X012_S01
I-18.2.26	I-18.1.2	$F \longrightarrow F \longrightarrow N \longrightarrow $	541	0.64	X012_S01
I-18.2.27	I-18.1.2	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	548	0.60	X012_S01
I-18.2.28	I-18.1.2	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	519	0.67	X012_S01

35

65

TABLE 32-continued

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-18.2.29	I-18.1		570	0.59	X012_S01

Step 3: Synthesis of Example 305

To I-18.2 (270 mg, 0.25 mmol) in THF (3 mL) methane-sulfonic acid (81.87 μL , 1.26 mmol) is added and the reaction mixture is stirred at r.t. overnight. The reaction mixture is concentrated and the residue is purified by reversed phase HPLC. Yield 14% m/z 435 [M+H]+, rt 0.48 min, LC-MS Method X012_S01.

Method E

Synthesis of (1S,2S,4R)—N-[1-cyano-2-(6-oxo-5H-phenanthridin-3-yl)ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide and (1S,2S,4R)—N-[1-cyano-2-(6-oxo-5H-phenanthridin-1-yl)ethyl]-3-azabicyclo [2.2.1]heptane-2-carboxamide

Example 123 and 128

I-10.2

Example 123

Step 1: Synthesis of Intermediate I-10.1

To I-7.3.2 (6.0 g, 14.5 mmol) in ethyl acetate (100 mL) tin(II)chloride dihydrate (16.3 g, 72.4 mmol) is added. The reaction mixture is stirred for 12 h. The mixture is set basic with potassium carbonate and aq. sodium hydroxide solution. The organic layer is separated, is dried over MgSO₄ and is concentrated. The residue is purified by reversed phase

296

HPLC. Yield 32% m/z 385 [M+H]+, rt 0.42 min, LC-MS Method $X012_S01$.

Step 2: Synthesis of Intermediate I-10.2

To R23 (0.70 g, 2.81 mmol) in DCM (20 mL) diisopropylethylamine (1.20 mL, 7.02 mmol) and HATU (1.09 g, 2.81 mmol) are added and the reaction mixture is stirred for 7 min. Then intermediate I-10.1 (0.90 g, 2.34 mmol) is added and the mixture is stirred for additional 12 h. The mixture is concentrated and the residue is purified by flash chromatography (cyclohexane/ethyl acetate=70/30). Yield 90% m/z 615 [M+H]+, rt 0.66 min, LC-MS Method X012 S01.

The following intermediate as shown in Table 33 is synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 33

		HADED 33			
Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
1-10.2.1	I-10.1	F HN O O O	585/587	0.67	X012_S01

Step 3: Synthesis of Intermediate I-10.3

To I-10.2 (800 mg, 1.30 mmol) in DMF (20 mL) sodium hydride (58 mg, 1.43 mmol) is added and the reaction mixture is stirred for 10 min. Then 2-(trimethylsilyl)ethoxymethylchloride (0.25 mL, 1.43 mmol) is added and the mixture is stirred for additional 2 h. Water and DCM is added to the mixture and the organic layer is concentrated. The residue is purified by reversed phase HPLC. Yield 26% m/z 745 [M+H]+, rt 0.85 min, LC-MS Method X012_S01.

The following intermediate as shown in Table 34 is synthesized in a similar fashion from the appropriate intermediate:

297

TABLE 34

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-10.3.1	I-10.2.1	F N O O O O O O O O O O O O O O O O O O	715/717	0.84	X012_S01

Step 4: Synthesis of Intermediate I-10.4

To I-10.3 (200 mg, 0.27 mmol) in anhydrous DMF (10 mL) tetrakis(triphenylphosphine)palladium (16 mg, 0.01 mmol) and sodium carbonat (58 mg, 0.55 mmol) is added. The reaction mixture is heated to 150° C. for 5 h. Water and ethyl acetate is added to the mixture. The organic layer is dried over MgSO₄ and is concentrated. The residue is purified by reversed phase HPLC. Yield 34% m/z 617 [M+H]+, rt 0.84 min, LC-MS Method X012_S01.

During this ring cyclization both isomeres are obtained; but it is first possible to separated them by reversed phase HPLC on the last step (see step 6).

The following intermediate as shown in Table 35 is synthesized in a similar fashion from the appropriate intermediate:

TABLE 35

Intermediate	Educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-10.4.1	I-10.3.1	F O O O O O O O O O O O O O O O O O O O	635	0.86	X012_S01

Step 5: Synthesis of Intermediate I-10.5

To I-10.4 (57 mg, 0.09 mmol) in acetonitrile (5 mL) sodium iodide (42 mg, 0.28 mmol) and chlorotrimethylsilane (35 μ L, 0.28 mmol) are added. The mixture is stirred for 90 min. Then methanol (5 mL) is added and the mixture is stirred for additional 15 min. The mixture is concentrated and DCM and water is added to the residue. The organic layer is separated,

is dried over MgSO₄ and concentrated again. The crude product is carried on with step 6. Yield >95%, m/z 517 [M+H]+, rt 0.62 min, LC-MS Method X012_S01.

Step 6: Synthesis of Example 123 and 128

I-10.5 (48 mg, 0.09 mmol) is stirred in formic acid for 48 h. The mixture is purified by reversed phase HPLC. It is possible to separate the both isomers:

25

30

Isomer 1=example 123: yield 3%, m/z 387 [M+H]+, rt 0.38 min, LC-MS Method X012_S01, Isomer 2=example 128: yield 6%, m/z 387 [M+H]+, rt 0.35 min, LC-MS Method X012_S01. Method W

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[2fluoro-4-[(1-methyl-4-piperidyl)oxy]phenyl]ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 319

Step 1: Synthesis of Intermediate I-19.1

I-2.2 (300 mg, 0.64 mmol) in anhydrous toluene is purged with argon. 4-hydroxy-1-methylpiperidine (148.18 mg, 1.29 mmol), allylpalladium chloride dimer (5.88 mg, 0.016 mmol), 2-(di-t-butylphosphino)-3-methoxy-6-methyl-2'-4'- 60 6'-tri-1-propyl-1,1'-biphenyl (18.09 mg, 0.039 mmol), cesium carbonate (314.4 mg, 0.965 mmol) and molecular sieve (4A) are added and purged with argon again. The reaction mixture is stirred at 90° C. for 21 h. Afterwards filtered through a pad of celite, washed with ethyl acetate and con- 65 centrated. The crude residue is purified by reversed phase HPLC and freeze dried. Yield 16%.

Step 2: Synthesis of Example 319 (See Method A2, Step 4)

To I-19.1 (50 mg, 0.1 mmol) in acetonitrile (6 mL) sodium iodide (45 mg, 0.3 mmol) and chlorotrimethylsilane (38.1 µL, 0.3 mmol) are added. The mixture is stirred for 2 h, then methanol is added, stirred for additional 30 min and then concentrated. The residue is purified by reversed phase HPLC. Yield 34%, m/z 401 [M+H]+, rt 0.31 min, LC-MS Method X012 S02. Method W1

Synthesis of (1S,2S,4R)—N-[(1S)-1-cyano-2-[4-[3-(dimethylamino)-1-piperidyl]-2-fluoro-phenyl] ethyl]-3-azabicyclo[2.2.1]heptane-2-carboxamide

Example 344

Example 344

Step 1: Synthesis of Intermediate I-20.1

55

To I-2.2 (300 mg, 0.64 mmol) in anhydrous dioxane (8 mL) are added 3-dimethylamino-piperidine (164.96 mg, 1.29 mmol) and cesium carbonate (846.87 mg, 2.57 mmol). The mixture is purged with argon and chloro(2-dicyclohexylphosphino-2',4',6'-tri-1-propyl-1,1'-biphenyl)[2-(2-aminoethyl) phenyl]palladium(II) (95.05 mg, 0.13 mmol) is added and stirred at 90° C. for 2 h. The reaction mixture is filtered and concentrated. The residue is diluted with dichlormethane and

20

35

301

water. The organic layer is separated, dried and concentrated. The crude product is purified by reversed phase HPLC. Yield 12%.

Step 2: Synthesis of Example 344 (See Method A5, Step 3)

To I-20.1 (53 mg, 0.1 mmol) in acetonitrile (8 mL) p-toluenesulfonic acid monohydrate (68.70 mg, 0.36 mmol) is added and stirred at r.t. for 6 h. The mixture is concentrated, diluted with methanol and purified by reversed phase HPLC. Yield 28%, m/z 414 [M+H]+, rt 0.74 min, LC-MS Method 004_CA05.

Method Z

Synthesis of (1S,2S,4R)—N-[1-cyano-2-(3-fluo-rophenanthridin-8-yl)ethyl]-3-azabicyclo[2.2.1]hep-tane-2-carboxamide

Example 315

I-21.2(R,S)

302

$$\begin{array}{c|c}
& H \\
& N \\
& F
\end{array}$$

Example 315

25 Step 1: Synthesis of Intermediate I-21.1

To I_18.1 (1.5 g, 2.7 mmol) in anhydrous THF (1 mL) under argon atmosphere lithium borhydride (59 mg, 2.7 mmol) is added. The mixture is heated to 50° C. overnight. The reaction mixture is carefully diluted with water and extracted with ethyl acetate. The organic layer is separated, dried and concentrated. The crude residue is filtered through a pad of silica gel (cyclohexane/ethyl acetate 1:2). Yield 37%.

Step 2: Synthesis of Intermediate I-21.2

To I-21.1 (260 mg, 0.495 mmol) in anhydrous ACN (5 mL) 5-fluoro-2-iodo-aniline (117.28 mg, 0.495 mmol), 1,1bis (diphenylphosphino)ferrocene palladium dichloride (36.21 mg, 0.049 mmol) and a solution of sodium carbonate in water 2 mol/L (0.742 mL, 1.48 mmol) are added and purged with argon and heated to 80° C. for 1 h. The reaction mixture is diluted with DCM and water. The organic layer is separated, dried and concentrated. The crude residue is purified by reversed phase HPLC. Yield 41%, m/z 509[M+H]+, rt 0.66 min, LC-MS Method X011_S03.

The following intermediate as shown in Table 36 is synthesized in a similar fashion from the appropriate intermediate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 36

Intermediate Educt Structure of Interm		n/z rt +H]+ (min	LC-MS) method
I-21.2.1 I-21.1	NH ₂	491 0.63	X011_S03

Step 3: Synthesis of Intermediate I-21.3

To I-21.2 (103 mg, 0.2 mmol) in DCM manganese(IV) oxide (153.65 mg, 8.73 mmol) is added under cooling. The reaction mixture is stirred at r.t. overnight and 1 h at 50° C. Another manganese(IV)oxide (50 mg, 2.84 mmol) is added and stirred for further 2 h at 50° C. The reaction mixture is filtered through a pad of cellulose and concentrated in vacuo. The residue is purified by reversed phase HPLC. The residue is purified by reversed phase HPLC.

Yield 27%.

The following intermediate as shown in Table 37 is synthesized in a similar fashion from the appropriate intermedi- 10 ate ((R,S)=1:1 mixture of stereoisomers at the carbon adjacent to the nitrile group):

TABLE 37

Intermediate Edu	luct Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-21.3.1 I-21	H N N N N N N N N N N N N N N N N N N N	n.d.	n.d.	n.d.

Step 4: Synthesis of Example 315

To I-21.3 (26.4 mg, 0.054 mmol) in acetonitrile, p-toluenesulfonic acid monohydrate (35.98 mg, 0.189 mmol) is added and stirred for 5 h. The reaction solution is purified by reversed phase HPLC. Yield 60%, m/z 389 [M+H]+, rt 0.37 min, LC-MS Method X12_S01. Synthesis of Starting Materials/Educts

Synthesis of tert-butyl N-[(1S)-2-amino-1-[(4bromo-2-fluoro-phenyl)methyl]-2-oxo-ethyl]carbamate (R1)

Br
$$R25$$
 $R24$
 $R25$
 $R25$
 $R24$
 $R25$
 $R25$
 $R25$
 $R24$
 $R25$
 $R25$

304

Step 1: Synthesis of Intermediate I-11.1

R24 (212 g, 1151 mmol) in tetrahydrofuran (dry) (600 mL) is cooled to -78° C. Then n-butyllithium (2.5 M in hexanes, 552 mL, 1381 mmol) is added dropwise, keeping the temperature below -78° C. After 30 min R25 (324 g, 1209 mmol) in tertahydrofurane (dry) (120 mL) is added dropwise. The reaction mixture is stirred at -78° C. for 1 h. The mixture is quenched with saturated NH₄Cl solution and extracted three times with ethyl acetate. The organic layer is washed with brine, dried over Na₂SO₄ and evaporated in vacuo. The residue is purified by flash chromatography (heptane/ethyl acetate=80/20). Yield 60%.

Step 2: Synthesis of Intermediate I-11.2

To I-11.1 (104 g, 265 mmol) in acetonitrile (600 mL) aq. 0.2 M HC (2788 mL, 558 mmol) is added.

The mixture is stirred at RT for 12 h. The mixture is extracted with diethylether and the pH of the aq. layer is adjusted to \sim 8 with sat. NaHCO₃-solution. Then it is extracted three times with ethyl acetate. The organic layer is 25 washed with brine, dried over Na₂SO₄ and concentrated. Yield 80%.

Step 3: Synthesis of Intermediate I-11.3

I-11.2 (62.4 g, 211 mmol) is stirred in aq. 3 M HCl (3 mol/L, 1000 mL) at 60° C. for 16 h. The mixture is cooled

306

down and the pH is adjusted to \sim 7 with aq. 6 M NaOH. Then the reaction mixture is filtered, washed three times with water and dried in a vacuum oven at 40° C. for 12 h. Yield 74%.

Step 4: Synthesis of Intermediate I-11.4

To I-11.3 (151 g, 546 mmol) in 1,4-dioxane (2.2 L) is added aq. 2 M sodium carbonate (301 mL) and di-tertbutyl dicarbonate (138 g, 147 mL). The mixture is stirred for 4 h. Then water is added and the pH is adjusted to \sim 4-5 with citric acid. The mixture is extracted three times with ethyl acetate. The organic layer is washed with brine, dried over Na₂SO₄ and concentrated. The residue is stirred in heptane for 15 min and the product is filtered off. Yield 87%.

Step 5: Synthesis of R1

To I-11.4 (181 g, 476 mmol) in dry DMF (1200 mL) N-methylmorpholine (72 g, 713 mmol) and TBTU (153 g, 476 mmol) are added and the reaction mixture is stirred for 30 min. Then the reaction mixture is cooled to 0° C. and aq. 35% ammonium chloride solution (47 mL, 856 mmol) is added and the mixture is stirred at room temperature for 12 h. Water is added and the formed product is filtered off and washed three times with water. The product is dried in a vacuum oven at 40° C. for 72 h. Yield 64%.

The following intermediate as shown in Table 38 is synthesized in a similar fashion from the appropriate intermediates:

TABLE 38

Intermediate	Structure	m/z [M + H]+	r (min)	LC-MS method
R1.1	O H NH2	409	1.05	V011_S01

The compound is commercially available or can be synthesized in analogy to Tararov et al, Tetrahedron Asymmetry 13 (2002), 25-28.

$$\begin{array}{c}
0 \\
0 \\
0
\end{array}$$
R5H
R5G

308

Step 1: Synthesis of R5C

A solution of R5A (44.9 g, 0.44 mol), freshly distilled from a commercially available solution in toluene (at 50 mbar, 55° C.) in diethylether (300 ml) is cooled at -10° C., followed by dropwise addition of R5B (53 g, 440 mmol), keeping the temperature below 0° C. After complete addition, MgSO4*H20 (91 g, 660 mmol) is added, and the resulting mixture stirred at room temperature overnight. The mixture is filtrated, the solution phase concentrated in vacuo and the residue distilled under reduced pressure to yield R5C (47 g, m/z 206 [M+H]+, rt 1.29 min, LC-MS Method V003_003). The product is used without further purification. Step 2: A solution of R5C (47 g; 229 mmol) and R5D (30 g; 458 mmol) (freshly distilled from dicyclopentadien) in DMF (150 ml) and 120 µl water is cooled to 0° C., before TFA (18 ml; 234 mmol) is added dropwise. The mixture is stirred overnight at room temperature, then added to a solution of 40

(150 ml) and 120 μl water is cooled to 0° C., before TFA (18 ml; 234 mmol) is added dropwise. The mixture is stirred overnight at room temperature, then added to a solution of 40 g NaHCO3 in 1200 ml water and extracted with diethylether. The organic layer is separated, washed subsequently with aqueous NaHCO3 and water, dried over MgSO4, and concentrated in vacuo. The residue is worked up by column chromatography on silica (cyclohexane/ethyl acetate=9:1) to yield R5E (Yield 52% m/z 272 [M+H]+, rt 0.42 min, LC-MS Method X001_004)
 Sten 3: To a colution of R5E (24.8 g, 91 mmol) in ethanol (250)

Step 3: To a solution of R5E (24.8 g, 91 mmol) in ethanol (250 ml), Raney-nickel is added (2.5 g) and reacted at 50 psi under a hydrogen atmosphere at room temperature. The catalyst is filtered of, the solution concentrated in vacuo and the residue worked up by chromatography on silica (cyclohexane/ethyl acetate 9:1). After evaporation of the organic solvent, the obtained product is redissolved in diethylether and triturated with solution of HCl in dioxane, concentrated in vacuo, redissolved in 200 ml ethanol and concentrated in vacuo to yield

solved in 200 ml ethanol and concentrated in vacuo to yield R5F: (Yield 78% m/z 274 [M+H]+, rt 0.42 min, LC-MS Method X001_004).

Step 4: To a solution of R5F (22 g, 71 mmol) in ethanol (250 ml), 10% Pd/C is added (2.5 g) and reacted at 15 bar under a hydrogen atmosphere at room temperature. The catalyst is filtered of, the solution concentrated in vacuo. The residue is washed with diisopropylether to yield R5G. (Yield 98% m/z 170 [M+H]+, rt 0.48 min, LC-MS Method V001_007).

Step 5: To R5G in a solution of triethylamin (24.6 ml), THF (150 ml) and water (2 ml), R5I (15.9 g; 73 mmol) is added and the resulting mixture stirred for 40 hours at room temperature, then concentrated in vacuo. Ethyl acetate is added to the residue, subsequently extracted with water, 1 N acidic acid and water, before the organic layer is dried over MgSO4 and concentrated in vacuo to yield R5I. (Yield 95% m/z 270 [M+H]+, rt 1.33 min, LC-MS Method V003_003).

40

Step 6: A mixture of R5I (16.9 g; 63 mmol) in acetone (152 ml), water (50 ml) and lithium hydroxide (3 g, 126 mmol) is stirred overnight at room temperature. Water (100 ml) was added, the volume reduced in vacuo before cooling to 0° C. followed by the addition of 1N aqueous HCl to acidify to a pH of 2-3, immediately followed by extraction with ethyl acetate. The organic layer was washed with water, dried (MgSO4) and concentrated. To the residue, dichloromethane (100 ml) and cyclohexane (100 ml) was added, the volume reduced in vacuo by half and the mixture temperated at 15° C. The precipitate was filtered of, washed with cyclohexane to yield R5 (Yield 66%, m/z 242 [M+H]+).

Synthesis of (2S)-2-amino-3-(4-bromo-2-fluoro-phenyl)propanamide (R6)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

To R1 (10.0 g, 27.7 mmol) in DCM (70 mL) TFA (25 mL, 162.0 mmol) is added and the reaction mixture is stirred for 12 h. Then the reaction mixture is concentrated, the residue is dissolved in DCM and diisopropylether is added. The product precipitates and is filtered by suction and washed with diisopropylether. Yield >95% m/z 261 [M+H]+, rt 0.67 min, LC-MS Method V018_S01.

The following intermediate as shown in Table 38.1 is synthesized in a similar fashion from the appropriate intermediates:

TABLE 38.1

Inter- mediate	Structure	m/z [M + H]+	rt (min)	LC-MS method	55
R6.1	H ₂ N NH ₂	217	0.08	Z011_S03	60
	F				65

For R6.1 the reaction time is 2 h. After the reaction mixture is concentrated, the crude residue is freeze-dried and used without further purification for the next step.

Synthesis of 2-Amino-3-(1H-indazol-5-yl)propanamide (R14)

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

I-8.5

-continued

-continued

$$H_2N$$
 NH
 $I-8.6$
 H_2N
 NH_2
 NH_2

Step 1: Synthesis of Intermediate I-8.3

1,1,3,3-Tetramethylguanidin (0.44 mL, 3.51 mmol) in THF (5 mL) is cooled down to -70° C. Educt R22 (1.00 g, 3.36 mmol) is dissolved in 5 mL THF and is added. The mixture is stirred for 5 min before R15 (0.49 g, 3.36 mmol)—also dissolved in 5 mL THF—is added dropwise. The cooling is removed and the mixture warms up to room temperature. The reaction mixture is heated to 80° C. for 12 h. Because of remaining educt Tetramethylguanidin and R22 are added twice and the mixture is stirred at 80° C. for additional 4 h.

The reaction mixture is concentrated. Ethyl acetate and water are added to the residue. 1 M sulfuric acid is added and the organic layer is separated, is dried over MgSO₄ and concentrated. Yield 87%, m/z 318 [M+H]+, rt 0.97 min, LC-MS Method V011_S01.

The following intermediate as shown in Table 39 is synthesized in a similar fashion from the appropriate intermediate:

TABLE 39

Inter- medi- ate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-8.3.1	O NH H	318	1.00	V012_S01

Step 2: Synthesis of Intermediate I-8.4

To I-8.3 (925 mg, 2.91 mmol) in methanol (30 mL) Pd/C (10%, 130 mg) is added. The reaction mixture is stirred under hydrogen (3 bar) for 16 h. Then the mixture is filtered and the filtrate is concentrated. The residue is triturated with diethyl ether and the product is filtered by suction. Yield 88%, m/z $320 \, [M+H]+$, rt 0.99 min, LC-MS Method V011_S01.

The following intermediate as shown in Table 40 is synthesized in a similar fashion from the appropriate intermediate:

TABLE 40

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-8.4.1	I-8.3.1	O NH H	320	0.96	V011_S01

55 Step 3: Synthesis of Intermediate I-8.5

To I-8.4 (820 mg, 2.57 mmol) in methanol (15 mL) sodium hydroxide solution (2.5 mL, 1 mol/L) is added. The reaction mixture is heated to 40° C. for 2 h. The mixture is concentrated partially and 1 M HCl is added to neutralization. The precipitation is filtered with suction, is dissolved in methanol and concentrated quickly. Yield 65%, m/z 306 [M+H]+, rt 0.57 min, LC-MS Method V011_S01.

The following intermediate as shown in Table 41 is synthesized in a similar fashion from the appropriate intermediate:

TABLE 41

Intermediate	educt	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-8.5.1	I-8.4.1	HO NH H	306	0.55	V011_S01

Step 4: Synthesis of Intermediate I-8.6

To I-8.5 (400 mg, 1.31 mmol) in DMF (5 mL) diisopropylethylamine (502 $\mu L,\, 2.88$ mmol) and TBTU (421 mg, 1.31 mmol) are added and the reaction mixture is stirred for 15 min. Then aq. 30% ammonia solution (545 µL, 9.61 mmol) is added and the mixture is stirred for additional 12 h. Water is added to the reaction mixture and extracted with ethyl acetate. $_{25}$ μL , 0.47 mmol) is added and the reaction mixture is heated to The organic layer is washed with brine and saturated NaHCO₃ solution, is dried over MgSO₄ and concentrated. Yield 55%, m/z 305 [M+H]+, rt 0.75 min, LC-MS Method V011_S01.

The following intermediate as shown in Table 42 is synthesized in a similar fashion from the appropriate intermediate:

For I-8.6.2 N-methylmorpholine is used instead of diisopropylethylamine (in analogy to synthesis of R1)

Step 5: Synthesis of R14

To I-8.6 (130 mg, 0.43 mmol) in DCM (3 mL) TFA (358 30° C. for 12 h. Then the reaction mixture is concentrated. Yield >95%.

The following intermediate as shown in Table 43 is synthesized in a similar fashion from the appropriate intermedi-

TABLE 42

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
I-8.6.1	I-8.5.1	H ₂ N NH	327 [M + Na]+	0.77	V011_S01

Inter- medi- ate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
R14.1	I-8.6.1	$\begin{array}{c} O \\ H_2N \end{array} \begin{array}{c} NH_2 \\ H \\ N \end{array}$	227 [M + Na]+	0.53	V011_S01
R14.2	I-8.6.2	H_2N NH_2 NH_2	214	0.31	X012_S01

Synthesis of 5-bromo-2-methyl-isoindoline (R4)

The pH of a mixture of R26 (1.85 g, 7.9 mmol) in methanol (100 mL) and water (10 mL) is adjusted to ~5 with acetic acid. Then a 37% formalin solution (1.28 mL, 15.8 mmol) is added $\,^{35}$ and the mixture is stirred for 15 min. Sodium cyanoborohydride (0.74 g, 11.8 mmol) is added and the reaction mixture is stirred for additional 12 h. The mixture is concentrated and

316

ethyl acetate and aq. 1 M NaOH solution are added to the residue. The organic layer is washed with NaCl solution, dried over ${\rm MgSO_4}$ and concentrated. The residue is dissolved in diethyl ether and ethereal HCl is added dropwise. The resulting precipitate is filtered off. Yield 62% m/z 212/214 [M+H]+, rt 0.65 min, LC-MS Method V012_S01.

Synthesis of 1-(4-bromo-benzenesulfonyl)-4-methyl-piperazine (R34)

R33 (800 mg, 3.1 mmol) is dissolved in DCM, N-methyl-piperazine (313 mg, 3.1 mmol) is added and stirred for 12 h. After addition of 2 mL 1N HCl under stirring the phases are separated. The organic phase is dried over MgSO₄ and after filtration evaporated in vacuo. Yield: 84% m/z 319 (M+H)+.

The following intermediates as shown in Table 44 are synthesized in a similar fashion from the appropriate intermediate:

TABLE 44

		II DEE 11			
Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
R34.1	R33	Br S N	304	n.d.	n.d.
R34.2	R33	Br N	306	n.d.	n.d.
R34.3	R33	$\operatorname{Br} = \left(\begin{array}{c} O \\ S \\ O \end{array} \right) \left(\begin{array}{c} O \\ F \end{array} \right) \left(\begin{array}{c} F \\ O \end{array} \right) \left(\begin{array}{c} O \\ F \end{array} \right) \left(\begin{array}{c} O \\ O \end{array} \right)$	340	0.64	X012_S01

317

TABLE 44-continued

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
R34.4		Br F	337/339	0.36	X012_S01
R34.5		$Br = \begin{bmatrix} 0 \\ \parallel \\ S \\ \parallel \\ 0 \end{bmatrix} $	333/335	0.36	X012_S01

For R34.4 and R34.5 additional 2 eq. of DIPEA are added to the reaction mixture.

In analogy the following reagent as shown in Table 45 is prepared:

TABLE 45

Intermediate	Educt	Structure of Intermediate	m/z [M + H]+	rt (min)	LC-MS method
R36.1	commerically available	N N N N S S S S S S S S S S S S S S S S	243	0.64	Z018_S04

Synthesis of Reagent R37

Step 1: Synthesis of R36

 $R35\,(200\,\mu L, 1.448\,mmol)$ is dissolved in $10\,mL$ methanol. Cyanamide (79.112 mg, 1.882 mmol), potassium tert-butoxide (194.9 mg, 1.737 mmol) and N-bromosuccinimide (386.282 mg, 2.171 mmol) are added and stirred for 1 h at room temperature. The product is purified by preparative HPLC (Waters 30×100 mm, 10 μm , sunfire RP18, acetonitrile/water/TFA). The fractions containing the product are 65 combined and lyophilized. Yield 87%, m/z 244 [M+H]+, rt 0.62 min, LC-MS Method Z018_S04.

Step 2: Synthesis of R37

R36 (335 mg, 1.378 mmol) is dissolved in 3 mL ethanol.

Potassium carbonate (571.315 mg, 4.134 mmol) and 3-chloroperbenzoic acid (356.696 mg, 2.067 mmol) are added at 0° C., and the mixture is stirred for 2 h at room temperature. The solvent is evaporated in vacuo and the residue is dissolved in DMF. The product is purified by preparative HPLC (Waters 30×100 mm, 10 μm, sunfire RP18, acetonitrile/water/TFA). The fractions containing the product are combined and lyophilized. Yield 71%, m/z 260 [M+H]+, rt 0.68 min, LC-MS Method Z018_S04.

In analogy the following reagent as shown in Table 46 is prepared:

TABLE 46

Inter- medi- ate	Educt	Structure of Intermediate	m/z [M + H]+		LC-MS method
R37.1	R36.1	Br N N N N N N N N N N N N N N N N N N N	259	0.67	Z011_S03

30

50

55

Synthesis of 1-[3-[4-(bromomethyl)-3-fluoro-phenyl]-5-methyl-pyrazol-1-yl]ethanone (R13)

Step 1: Synthesis of Intermediate I-13.1

To potassium tert.-butylate (7.4 g, 65.6 mmol) in anhydrous THF (300 mL) is added crown ether 18-6 (12.2 g, 46.0 mmol). The mixture is cooled down to 0° C. and R28 (5.0 g, 32.9 mmol) is added and stirred for 15 min at room temperature. Then acetic acid methyl ester (5.2 mL 65.7 mmol) is added and the reaction mixture is stirred for additional 1 h. The mixture is concentrated and the residue is purified via flash chromatography (cyclohexane/ethyl acetate=95:5). 65 Yield 79%, m/z 195 [M+H]+, rt 0.66 min, LC-MS Method V011 S01.

R13

Step 2: Synthesis of Intermediate I-13.2

To I-13.1 (5.1 g, 26.1 mmol) 1 M hydrazine solution in THF (78.2 mL, 78.2 mmol) is added and the reaction mixture is heated to 80° C. for 12 h. The reaction mixture is concentrated and the residue is purified via flash chromatography (cyclohexane/ethyl acetate=70:30). Yield 90%, m/z 191 [M+H]+, rt 1.01 min, LC-MS Method V011_S01.

Step 3: Synthesis of Intermediate I-13.3

I-13.2 (1.00 g, 5.3 mmol) and acetic acid anhydride (5.00 mL, 53.0 mmol) are stirred for 12 h. Water and methanol are added to the reaction mixture, the precipitate is filtered by suction and dried in vacuo. Yield 87%, m/z 233 [M+H]+, rt 1.31 min, LC-MS Method V011_S01.

Step 4: Synthesis of R13

To I-13.3 (0.95 g, 4.1 mmol) in DCM (25 mL) is added N-bromo succinimide (0.80 g, 4.5 mmol) and 2,2'-azobis (isobutyronitrile) (50 mg). The reaction mixture is refluxed for 12 h under radiation with an Hg lamp. The mixture is concentrated and the residue is purified via flash chromatography (cyclohexane/DCM=75:25). Yield 39%, m/z 311 [M+H]+, rt 1.43 min, LC-MS Method V018_S01.

Synthesis of 6-bromo-2-methyl-3,4-dihydroisoquinolin-1-one (R32)

R31 (500 mg, 2.2 mmol) in DMF (3 mL) is cooled down to 0° C. Under argon atmosphere NaH (60%, 121 mg, 3.0 mmol) is added and stirred for 20 min. Then methyl iodide (0.275 mL, 4.4 mmol) is added and the mixture is stirred for additional 1 h at 0° C. Ice water is added to the reaction mixture and the precipitate is filtered by suction and dried at 50° C. in the vacuum oven for 12 h. Yield 73%, m/z 240/242 [M+H]+, rt 0.89 min, LC-MS Method V012_S01.

Synthesis of tert-butyl 2-(bromomethyl)-9H-carbazole-9-carboxylate (R13.1 for synthesis of I-7.1.3)

Step 1: Synthesis of Intermediate I-15.1

3-Methyl-diphenylamine R38 (1.0 g, 5.5 mmol), $\rm K_2CO_3$ (75 mg, 0.55 mmol) and palladium acetate (37 mg, 0.16 mmol) in 2,2-dimethyl-1-propanol (5 mL) is stirred at 110° C. for 14 h. Water is added to the reaction mixture and extracted 30 with dichloromethane. The combined organic layer is concentrated in vacuo, residue triturated with methanol/dichloromethane and dried in vacuo and directly taken to the next step. Yield 29%, m/z 182 [M+H]+, rt 0.67 min, LC-MS Method X012_S01.

Step 2: Synthesis of Intermediate I-15.2

I-15.1 (285 mg, 1.6 mmol), di-tert.-butyl dicarbonate (412 mg, 1.9 mmol) and DMAP (50 mg, 0.41 mmol) in dichloromethane (10 ml) are stirred at room temperature for 16 40 hours. The reaction mixture extracted with water, the organic layer is separated and concentrated in vacuo and directly taken to the next step. Yield 86%, m/z 282 [M+H]+, rt 0.89 min, LC-MS Method X012_S01.

Step 3: Synthesis of Intermediate R13.1

I-15.2 (380 mg, 1.4 mmol), N-bromosuccinimide (289 mg, 1.6 mmol), AIBN (20 mg, 0.12 mmol) in tetrachloromethane (5 mL) is heated to reflux over 16 h. Water and dichloromethane are added to the reaction mixture, the organic layer separated and concentrated. The residue is triturated with methanol and used directly in the next step. Yield 41%, m/z 360 [M+H]+, rt 0.67 min, LC-MS Method V0110_S01.

Synthesis of tert-butyl 3-(chloromethyl)-9H-carbazole-9-carboxylat (R13.2 for synthesis of I-7.1.6)

Step 1: Synthesis of Intermediate I-16.1

9H-Carbazole-3-carboxylic acid R39 (500 mg, 2.4 mmol), in methanol (20 mL) is cooled to 0° C. Thionylchloride (206 ml, 2.8 mmol) is added dropwise to the stirred mixture at this temperature. The mixture is then stirred at room temperature for 16 hours. The formed precipitate is filtered and dried in vacuo and directly taken to the next step. Yield 53%, m/z 226 [M+H]+, rt 0.59 min, LC-MS Method X012_S01. Step 2: Synthesis of Intermediate I-16.2

i-16.1 (280 mg, 1.2 mmol), di-tert.-butyl dicarbonate (326 mg, 1.5 mmol) and DMAP (50 mg, 0.41 mmol) in dichloromethane (10 ml) are stirred at room temperature for 16 hours. The reaction mixture extracted with water, the organic layer is separated and concentrated in vacuo and directly taken to the next step. Yield 99%, m/z 326 [M+H]+, rt 0.84 min, LC-MS Method X012_S01.

Step 3: Synthesis of Intermediate I-16.3 I-16.2 (400 mg, 1.2 mmol) and boron

f-16.2 (400 mg, 1.2 mmol) and boronhydride-tetrahydrofuran addukt (1.2 ml 1M in THF, 1.2 mmol) are dissolved in THF (5 ml). LiBH4 is repeatedly added in small portions at 50° C., until HPLC shows completion of reaction. Water and dichloromethane are added to the reaction mixture, the organic layer separated, concentrated. and purified via HPLC. Yield 40%, m/z 280 [M-H2O+H]+, rt 0.70 min, LC-MS Method X012 S01.

Step 4: Synthesis of Intermediate R13.2

 \vec{l} -16.3 (145 mg, 0.5 mmol) and DIPEA (171 μl, 1.0 mmol) are dissolved in dichloromethane (10 ml) and cooled to -10° C. Methanesulfonylchloride (46 μl, 0.6 mmol) in dichloromethane (1 ml) is added dropwise. After complete addition, the mixture is stirred for 16 h at room temperature. Water is added to the reaction mixture, the organic layer separated, concentrated in vacuo to yield R13.2, which is directly taken to the next step. Yield 73%, rt 0.87 min, LC-MS Method X012_S01.

Synthesis of 2-(chloromethyl)-9,10-dihydrophenanthrene (R13.3 for synthesis of I-7.1.4)

Step 1: Synthesis of Intermediate I-17.1

2-Acetyl-9,10-dihydro-phenanthren R40 (1.0 g, 4.5 mmol) is added to solution of bromine (924.7 μ l, 18 mmol) and KOH 50 (3.3 g, 58.5 mmol) in water (20 ml) at 0° C. After addition is completed, the reaction mixture is heated to 55° C. for 16 hours. The mixture is cooled to r.t., extracted with dichloromethane. The aqueous phase is separated, acidified with 1 M HCl aq and the precipitating product is filtered off and dried in vacuo at 50° C. Yield 92%, m/z 225 [M+H]+, rt 0.62 min, LC-MS Method X012_S01.

Step 2: Synthesis of Intermediate I-17.2 I-17.1 (930 mg, 4.2 mmol) is dissolv

I-17.1 (930 mg, 4.2 mmol) is dissolved in THF (10 ml), CDI (874 mg, 5.4 mmol) is added in small portions and the mixture is stirred for 1 h at 50° C. The mixture is added slowly to sodium borohydride (470 mg, 12.4 mmol) in ice water, so that the temperature remains below 10° C. The mixture is stirred for 16 hours at r.t. and extracted with dichloromethane/water. The organic layer is separated and concentrated in vacuo, the remaining crude product purified via HPLC. Yield 53%, m/z 210 [M]+, 193 [M–H₂O]+, rt 0.61 min, LC-MS Method X012_S01.

Step 3: Synthesis of Intermediate R13.3

I-17.2 (460 mg, 2.2 mmol), DIPEA (766 μ l, 4.4 mmol) are dissolved in dichloromethane (10 ml) and cooled to -10° C. Methanesulfonylchloride (207 μ l, 2.6 mmol) in dichloromethane (1 ml) is added dropwise. After complete addition, the mixture is stirred for 16 h at room temperature. Water is added to the reaction mixture, the organic layer separated, concentrated in vacuo and the remaining crude product purified via HPLC. Yield 67%, m/z 228 [M]+, rt 0.79 min, LC-MS Method X012_S01.

Synthesis of 6-Aza-tricyclo[3.2.1.0*2,4*]octane-6,7-dicarboxylic acid 6-tert-butylester (R6.2)

$$\bigcap_{R5D} + \bigcap_{R5A} \bigcap_{R29A} \bigcap_{R29A} \bigcap_{R29A} \bigcap_{R29} \bigcap_{R14.1} \bigcap$$

R6.1

25

30

35

Step 1: Synthesis of Intermediate R29.2

Dicyclopenta-1,3-diene is cracked and distilled at 42° C. and 1013 mbar to give cyclopenta-1,3-diene.

Ethyl 2-oxoacetate is also freshly distilled from a commercially available solution in toluene. Assumed concentration is 50%.

To N-boc-imino-(triphenyl)phosphorane (11.32 g, 30.00 mmol) in toluene (100 mL) is added ethyl 2-oxoacetate (15 mL, 60.00 mmol) and cyclopenta-1,3-diene (5 mL, 60.00 mmol) and stirred overnight at r.t. The reaction mixture is concentrated and the crude residue is purified over silica gel (cyclohexane/ethyl acetate 7:3). Yield 16%

R29.2. can be obtained through preparative chiral chromatography from this mixture of R29.1 and R29.2 (table 46.1) using method Chiral SFC $\rm G$

TABLE 46.1

Intermediate	Structure of Intermediate
- Intermediate	Statute of Intermediate
R29.1	
R29.2	

Step 2: Synthesis of Intermediate I-14.1

To R29.2 (5.00 g, 18.7 mmol) in diethylether (100 mL) is added palladium(II) acetate (0.42 g, 1.87 mmol). Under stirring diazomethane solution in diethylether (62 mmol) is added. The reaction mixture is stirred for 12 h. To destroy remaining diazomethane, silica gel and 3 mL acetic acid are added. Then the mixture is stirred for additional 1 h and filtrated. The solution is concentrated and extracted with DCM, water and brine. Yield 98%, m/z 226 [M+H-tButyl]+, 55 rt 0.64 min, LC-MS Method X012_S01.

Step 3: Synthesis of R6.2

To I-14.1 (5.40 g, 19.2 mmol) in dioxane (60 mL) is added aq. 4 M NaOH (20 mL, 80 mmol). The reaction mixture is heated to 50° C. for 3 h. The mixture is extracted two times with DCM, then the water layer neutralized with 2 M HCl and extracted three times with DCM. The combined organic layers are dried over MgSO $_4$ and concentrated. The residue is dissolved in diethylether and evaporated, the product crystallizes. Yield 88%, m/z 198 [M+H–tButyl]+, rt 0.48 min, LC-MS Method X012_S01.

326

Synthesis of 1-Methyl-6-(4,4,5,5-tetramethyl-[1,3,2] dioxaborolan-2-yl)-1,3-dihydro-indol-2-one (R7)

$$R27$$
 Br
 $I-12.1$

Step 1: Synthesis of Intermediate I-12.1

To R27 (25.0 g, 111 mmol) in acetonitrile (750 mL) is added MeI (15 mL, 241 mmol) and $\rm K_2CO_3$ (60.0 g, 434 mmol) and the reaction mixture is stirred at 60° C. for 2 h. The reaction mixture is filtered and concentrated. Water and ethyl acetate are added to the residue. The organic layer is extracted twice with water, dried over $\rm MgSO_4$ and concentrated. Yield 56%, m/z 240/242 [M+H]+, rt 0.48 min, LC-MS Method X001_004.

The following intermediates as shown in Table 47 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 47

Inter- mediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-12.1.1	N	311/313	0.362	Z020_S01
	Br			

Inter- mediate	Structure	m/z [M + H]+	rt (min)	LC-MS method	
I-12.1.2	Br	n.d.	n.d.	n.d.	5
					10
I-12.1.3	HN	211/213	0.55	X012_S01	15
I-12.1.4		n.d.	n.d.	n.d.	20
I-12.1.5	Br	245	0.21	X012_S01	30
I.12.1.6	Br NO	n.d.	n.d.	n.d.	35 40
I-12.1.7	F	268	0.71	X012_S01	45
I-12.1.8	CI	211/213	0.55	X012_S01	50 55

For I-12.1.1, I-12.1.2, I-12.1.3, I-12.1.5, I-12.1.7 and I-12.1.8 sodium hydride and DMF is used instead of potassium carbonate and ACN.

For I-12.1.3, I-12.1.7 and I-12.1.8 the reaction temperature is r.t.

For I-12.1.4 DMF is used.

For I-12.1.6 the reaction conditions differ: 1,1-Difluoro-2- 65 trifluoromethanesulfonyl-ethane is used as alkylation reagent in triethylamin as solvent at r.t.

328

Step 2: Synthesis of Intermediate I-12.2

I-12.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125° C. for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HCl. The organic layer is dried over MgSO₄ and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by suction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001_003.

The following intermediates as shown in Table 48 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 48

)	Inter- mediate	Structure	m/z [M + H]+		LC-MS method
•	I-12.2.1	Br. N	n.d.	n.d.	n.d.
;	I-12.2.2	Br N	283/285	0.832	n.d.
;	I-12.2.3	Br	n.d.	n.d.	n.d.

Step 3: Synthesis of Intermediate R7

To I-12.2 (32.0 g, 142 mmol) in anhydrous dioxane (400 mL) is added R3 (54.4 g, 241 mmol) and potassium acetate (41.6 g, 424 mmol). The mixture is purged with Argon, [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) as a complex with dichloromethane (11.2 g, 14 mmol) is added and the mixture is heated to 90° C. for 2 h. The reaction mixture is diluted with ethyl acetate and water, the organic layer is washed with water, dried over MgSO₄ and concentrated. The residue is purified via flash chromatography (cyclohexane/EA=70:30). Yield 72%, m/z 274 [M+H]+, rt 0.67 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 49 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 49

	TABLE 49			
Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R7.1	O B O S O N	325 [M + NH ₄]+	0.30	X018_S01
R7.2		276 [M + H]+	0.94	X002_002
R7.3	O B SO ₂ Me	n.d.	n.d.	n.d.
R7.4		318	0.92	Z018_S04
R7.5		302	n.d.	n.d.
R7.6		294	0.85	Z018_S04

TABLE 49-continued

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R7.7	O B N H	260	0.65	X001_004
R7.8		n.d.	n.d.	n.d.
R7.9		280	0.63	X001_002

Synthesis of Boronic Ester R7.6

2 g (10.3 mmol) 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 2.9 mL (20.6 mmol) 4-(iodomethyl)-tetrahydro-2H-pyran are dissolved in 200 mL DMF and 4.274 g (30.9 mmol) $\rm K_2CO_3$ are added. The mixture is shaken at 80° C. for 5 h. After cooling to r.t. the mixture is filtered, the filtrate is concentrated in vacuo to approximately 60 mL. The product is separated using HPLC-MS (Gilson, mass flow 120 mL/min, 10 µm, 200 g Sunfire RP18, ACN/water/TFA). The product fractions are combined and freezedried to yield 115 mg product (3.8%) R7.6.

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1 g, 4.56 mmol) and pyridine (10 mL) are cooled down with an ice bath. Methanesulfonyl chloride (0.933 mL, 12.01 mmol) is dissolved in dichlormethane (10 mL) and added slowly 50 dropwise. The reaction mixture is allowed to come to room temperature and concentrated. The residue is diluted with dichlormethane and water. The organic layer is separated, dried and concentrated. The crude product is used without further purification. Yield: >95%

Synthesis of Boronic Ester R7.9

Under nitrogen atmosphere to sodiumhydride (50%) (0.218 g, 4.54 mmol) and DMF (3 mL) is added 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (0.5 g, 2.5 mmol) and stirred for 30 min at r.t. N-(2-chloroethyl) 60 acetamide (0.775 mL, 7.52 mmol) is added and stirred at 90° C. overnight. Due to no reaction N-(2-chloroethyl)acetamide (0.26 mL) and copper(I)iodide (25 mg, 0.13 mmol) are added and stirred at 90° C. for 24 h. The reaction mixture is diluted with methanol, filtered through a thiol cartridge and concentrated. The crude product is used without further purification. Yield: 100%

All other boronic acid derivatives R9 and R16 and alkynes R10 are purchased or prepared by literature known procedures.

Synthesis of tert-butyl (1S,2S,4R)-2-(1-methoxycar-bonylvinylcarbamoyl)-3-azabicyclo[2.2.1]heptane-3-carboxylate (R41)

Step 1: Synthesis of Intermediate I-22.1

To R5 (500 mg, 2.07 mmol) in DMF (5 mL) are added HATU (866.72 mg, 2.28 mmol) and DIPEA (1.43 mL, 8.29 15 mmol) and stirred at r.t. for 15 min. To the reaction mixture is added methyl 2-amino-3-hydroxy-propanoate hydrochloride (354.64 mg, 2.28 mmol) and stirred at r.t. for 4 h. The reaction mixture is diluted with ACN and water and purified by reversed phase HPLC.

Yield 79%, m/z 343 [M+H]+, rt 0.44 min, LC-MS Method X011_S03.

Step 2: Synthesis of R41

I-22.1 (100 mg, 0.29 mmol) is dissolved in dichlormethane (2 mL) and cooled down to 0° C. 4-dimethylamino pyridine 25 (1.78 mg, 0.015 mmol), TEA (65.13 μL, 0.47 mmol) and methansulfonyl chloride (29.59 μL, 0.38 mmol) are added and stirred at r.t. for 3 h. The reaction mixture is diluted with sodium carbonate solution. The organic layer is separated, dried and concentrated. The crude residue is purified by 30 reversed phase HPLC.

Yield 27%, m/z 324 [M+H]+, rt 0.63 min, LC-MS Method X011_S03.

Synthesis of methyl(E)-2-(benzyloxycarbonylamino)-3-[4-(1,4-dimethyl-4-piperidyl)-2-fluorophenyl]prop-2-enoate (R42)

-continued

$$rac{1}{\sqrt{\frac{1}{N}}}$$

Step 1: Synthesis of Intermediate I-23.1

To 1-fluoro-2-methoxy-benzene (25 mL, 222.79 mmol) and 1,4-dimethylpiperidin-4-ol (7 g, 54.18 mmol) is added trifluoromethanesulfonic acid (50 mL, 565.04 mmol) under ice bath cooling. The reaction mixture is stirred at r.t. over-35 night, poured into iced water and extracted with PE. To the aqueous phase is added solid sodium carbonate and extracted with ethyl acetate. The organic layer is dried and concentrated. The crude product is triturated with disopropylether and the precipitate is filtered off. Yield 82%, m/z 238 [M+H]+, rt 0.39 min, LC-MS Method X018_S02.

Step 2: Synthesis of Intermediate I-23.2

To I-23.1 (16.9 g, 43.63 mmol) in dichlormethane (150 mL) is added boron tribromide 1M in dichlormethane (44 45 mL, 44 mmol) and stirred at r.t. overnight. The reaction mixture is diluted with dichlormethane and 10% K2CO3-solution. The resulting precipitate is filtered off. The aq. layer is repeatedly extracted with dichlormethane, the precipitate formed upon standing at rt is filtered off and washed with dichlormethane. The dichloromethane phase is concentrated and purified by reversed HPLC and freeze dried. The isolated precipitates and the corresponding HPLC fractions are combined to yield the desired product.

Yield 18%, m/z 224 [M+H]+, rt 0.61 min, LC-MS Method V011 S01.

Step 3: Synthesis of Intermediate I-23.3

To I-23.2 (1.4 g, 6.27 mmol) in anhydrous dichlormethane (40 mL) triethylamine (1.8 mL, 12.985 mmol) is added and cooled down to -20° C. Trifluoromethanesulfonic acid anhydride (1.1 mL, 6.538 mmol) is added dropwise and stirred at -10° C. for 30 min. The reaction mixture is diluted with dichlormethane, washed with K₂CO₃-solution and brine. The 65 organic layer is dried and concentrated. The crude product is used for the next step without further purification. Yield 98%, m/z 356 [M+H]+, rt 1.30 min, LC-MS Method V011 S01.

55

60

Step 4: Synthesis of R42

2-benzyloxycarbonylamino-acrylicacidmethylester (2.274 g, 9.67 mmol), bis(dibenzylideneacetone) palladium (0) (295 mg, 0.32 mmol), (2-biphenylyl)di-tert-butylphosphine (345 mg, 1.156 mmol) and lithium chloride (710 mg, 16.73 mmol) are purged with argon. I-23.3 (2.29 g, 6.44 mmol) dissolved in DMF (15 mL) and triethylamine are added and stirred at 80° C. overnight. The reaction mixture is concentrated, then diluted with dichlormethane and washed with 5% K₂CO₃-solution. The organic layer is dried and concentrated. The crude product is purified by reversed phase HPLC.

Yield 33%, m/z 441 [M+H]+, rt 1.23 min, LC-MS Method V011 $\,$ S01.

The following intermediate as shown in Table 50 is synthesized in an analogous manner from the appropriate intermediate R41 and R91:

-continued

TABLE 50

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R42.1		558	0.47	X018_S01

Synthesis of (2S)-2-amino-3-(4-benzyloxy-2-fluorophenyl)propanamide hydrochloride (R47)

$$\begin{array}{c} & & & \\$$

I-24.1

-continued NH_2 $NH_$

Step 1: Synthesis of Intermediate I-24.1

R22 (22.58 g, 75.97 mmol) in Me-THF (50 mL) is cooled down to -10° C., 1,1,3,3-tetramethylguanidine (9.55 mL, 75.97 mmol) is added and stirred for 30 min. 4-benzyloxy-2-

fluoro-benzaldehyde (15.9 g, 69.06 mmol) dissolved in 100 mL Me-THF is added dropwise and stirred for 3 h at -10° C. to 0° C. The cooling is removed and the mixture warms up to room temperature.

The reaction mixture is diluted with 300 mL Me-THF and 5 extracted with water. The organic layer is treated with activated carbon, dried over MgSO₄ and concentrated.

The crude product is recrystallized with cyclohexane and filtered off.

Yield 97%, m/z 402 [M+H]+, rt $0.80 \, \text{min}$, LC-MS Method X018 S01.

The following intermediate as shown in Table 50.1 is synthesized in an analogous manner from the appropriate intermediates:

TABLE 50.1

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-24.1.1	O H O Br	374/376	0.77	X018_S02

Step 2: Synthesis of Intermediate I-24.2

1-24.1 (2.8 g, 6.98 mmol) and (+)-1,2-bis((2s,5s)-2,5-diethylphospholano)benzene(cyclooctadiene)rhodium(I) trifluoromethanesulfonate (250 mg, 0.346 mmol) in methanol (60 mL) are stirred under hydrogen (50 psi) at r.t. for 2 h. Then the mixture is filtered and the filtrate is concentrated. Yield 100%, m/z 404 [M+H]+, rt 1.40 min, LC-MS Method V001 S01.

The following intermediates as shown in Table 51 are synthesized in an analogous manner from the appropriate intermediates:

TABLE 51

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-24.2.1	O H O O O O O O O O O O O O O O O O O O	443	1.24	V011_S01

TABLE 51-continued

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
1-24.2.3	O H O Br	376	n.d.	n.d.

Step 3: Synthesis of Intermediate I-24.3
I-24.2 (2.95 g, 6.95 mmol) is dissolved in anhydrous methanol (15 mL). Calcium chloride (812 mg, 7.32 mmol) and ammonia in methanol 7N (15 mL, 10.5 mmol) is added and stirred at r.t. overnight. The reaction mixture is diluted with water (45 mL) and the precipitate is filtered off and ²⁰ washed with water.

Yield 90%, m/z 389 [M+H]+, rt 0.65 min, LC-MS Method

The following intermediate as shown in Table 52 is synthesized an analogous manner from the appropriate interme- 25 diates:

TABLE 52

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-24.3.1	O H NH2	428	1.05	V011_S01
I-24.3.2	NH2 NH2 NH2	545	0.57	X011_S03
I-24.3.3	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	361/363	0.64	X018_S02

20

30

35

Intermediate I-24.3.1 is purified by reversed phase HPLC. Step 4: Synthesis of R47

To I-24.3 (2.42 g, 6.23 mmol) in dichlormethane (20 mL) is added HCl in dioxane 4 mol/L (7.79 mL, 31.15 mmol) and stirred at r.t. for 3 h. The reaction mixture is diluted with TBME and the precipitate is filtered off and washed with TBME

Yield 95%, m/z 289 [M+H]+, rt $0.50 \, \text{min}$, LC-MS Method X011 S03.

The following intermediate as shown in Table 52.1 is synthesized in an analogous manner from the appropriate intermediates:

TABLE 52.1

Inter- mediate	Structure	m/z $[M + H]+$	rt (min)	LC-MS method
R47.1	H ₂ N NH ₂ CIH Br	261/ 263	0.31	X018_S02

Synthesis of (2S)-2-amino-3-[4-(1,4-dimethyl-4-piperidyl)-2-fluoro-phenyl]propanamide R49

$$\begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

I-24.3.1 (625 mg, 1.46 mmol) and Pd/C 10% (150 mg) in methanol (60 mL) is stirred under hydrogen (50 psi) at r.t. for 3.5 h. The reaction mixture is filtered and concentrated.

Yield 99%, m/z 294 [M+H]+, rt 0.80 min, LC-MS Method V011_S01.

Synthesis of (1-ethyl-3,6-dihydro-2H-pyridin-4-yl) trifluoromethanesulfonate (R51)

$$\begin{array}{c}
F \\
F \\
F
\end{array}$$

$$\begin{array}{c}
O \\
N \\
R50
\end{array}$$

$$\begin{array}{c}
R51
\end{array}$$

$$\begin{array}{c}
F \\
F \\
F
\end{array}$$

$$\begin{array}{c}
O \\
S \\
F
\end{array}$$

The reaction is carried out under argon atmosphere.

Diisopropylamine (5.289 mL, 38 mmol) in anhydrous THF (25 mL) is cooled down to -50° C. N-butyllithium in hexane 2.5M (13.786 mL, 34.47 mmol) is added dropwise and stirred for 45 min, then the solution is allowed to warm up to 0° C. and cooled down to -50° C. again. 1-Ethyl-4-piperidone (4 g, 31.45 mmol) dissolved in 30 mL THF is added dropwise and stirred for 30 min. R18 (11.797 g, 33.02 mmol) dissolved in 30 mL THF is added dropwise. The cooling is removed and 45 the reaction mixture stirred for 2 h.

The reaction mixture is diluted with 50 mL toluene. The organic layer is washed with 1N sodium hydroxide, halfsaturated brine, dried and concentrated. The residue is purified over silica gel. Yield 15%, m/z 260 [M+H]+, rt 0.30 min, LC-MS Method X012_S01.

The following intermediates as shown in Table 53 are synthesized in an analogous manner from the appropriate intermediates:

TABLE 53

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R51.1	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	274	n.d.	n.d.

	TABLE 53-continued			
Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R51.2	$F \longrightarrow F$ $O \longrightarrow S \longrightarrow O$ O N	n.d.	n.d.	n.d.
R51.3	F O S O N O	n.d.	n.d.	n.d.
R51.4	F F O N N	322	1.41	V011-S01
R51.5		316	1.23	Z012_S04
R51.6	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	308	1.38	V11_S01

25

30

35

40

For Intermediate R51.2, R51.3, R51.4 and R51.6 the reaction conditions differ: lithium bis(trimethylsilyl)amide is used and the reaction is carried out at -78° C. The crude product is used for the next step without further purification.

Intermediate R51.4 is purified over silica gel.

For Intermediate R51.5 the reaction conditions differ: lithium bis(trimethylsilyl)amide is used and the reaction is carried out at -50° C. The crude product is purified over silica gel.

Synthesis of (5-ethyl-1-isobutyl-pyrazol-3-yl)trifluoromethanesulfonate (R54)

Step 1: Synthesis of Intermediate I-25.1

Ethyl pent-2-ynoate (300 μ L, 2 mmol), isobutylhydrazine hydrate (240 μ L, 2 mmol), methanol (1 mL) and water (1 mL) are stirred together in the microwave at 140° C. for 15 min.

The crude product is used for the next step without further purification.

Step 2: Synthesis R54

Intermediate I-25.1 (380 mg, 2 mmol) is dissolved in anhydrous dichlormethane (10 mL), DIPEA (1.2 mL, 6.94 mmol) is added and cooled down to 0° C. Trifluoromethylsulfonyl trifluoromethanesulfonate

 $(375\,\mu\text{L}, 2.26\,\text{mmol})$ dissolved in dichlormethane is added dropwise and stirred for 45 min. Another trifluoromethylsul-

fonyl trifluoromethanesulfonate (188 μ L, 1.13 mmol) is added and stirred for 30 min. The reaction mixture is extracted with NaHCO₃-solution (5%). The organic layer is separated, dried and concentrated. The residue is purified over silica gel.

Yield 21%, m/z 301 [M+H]+, rt 0.86 min, LC-MS Method X018_S02.

Synthesis of 1-bromo-3-methylsulfonyl-5-(2,2,2-trifluoroethoxy)benzene (R57)

45 Step 1: Synthesis of Intermediate I-26.1

3-bromo-5-methylsulfanyl-phenol (5 g, 22.82 mmol) is dissolved in dichlormethane (100 mL) and cooled down to 0° C. 3-chloroperbenzoic acid (10.23 g, 45.64 mmol) is added and stirred at r.t. overnight. The reaction mixture is diluted with dichlormethane and water. The organic layer is separated, dried and concentrated. The crude product is purified by reversed phase HPLC and freeze dried.

Yield 55%, m/z 251/253 [M+H]+, rt 0.47 min, LC-MS 55 Method X018_S01.

Step 2: Synthesis R57

To I-26.1 (150 mg, 0.597 mmol) and potassium carbonate (206.41 mg, 1.49 mmol) in DMF is added 1,1,1-trifluoro-2-iodo-ethane (147.196 $\mu L,~1.493$ mmol) and stirred over 3 days at 85° C. The reaction mixture is diluted with water, the precipitate is filtered off, washed with water and dried. Yield 52%, m/z 350/352 [M+H]+, rt 1.16 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 54 are synthesized in a similar fashion from the appropriate intermediates:

40

TABLE 54

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method	elab
R57.1	Br O F	332/334 [M + NH ₄]+	1.01	V011_S01	LG1SLA00459
R57.2	Br O S	296/298 [M + NH ₄]+	1.11	V011_S01	LG1SLA00495

The two intermediates in the table above are purified by reversed phase HPLC.

Synthesis of 4-bromo-N1-methyl-benzene-1,2-diamine (R58)

$$H_2N$$
 O^*
 O^*

Step 1: Synthesis of Intermediate I-36.1

To 4-bromo-2-nitro-aniline (10 g, 46.08 mmol) in DMF (200 mL) are added potassium carbonate (15 g, 108.53 mmol) and portionwise methylamine hydrochloride (3.11 g, 46.08 55 mmol) and stirred overnight at r.t. The reaction mixture is filtered and concentrated. The crude product is triturated with DIPE, filtered off and dried. Yield 86%

Step 2: Synthesis of R58

To I-36.1 (5.27 g, 22.81 mmol) in ethyl acetate is added platinum on carbon (550 mg) and stirred under hydrogen (5 bar) at r.t. for 4 h. The reaction mixture is filtered through a pad of celite and concentrated. The crude product is used without further purification for the next step

Yield 96%

Synthesis of 5-bromo-N,1-dimethyl-benzimidazol-2-amine (R60)

Step 1: Synthesis of Intermediate I-27.1

4-bromo-1-n-methylbenzene-1,2-diamine (4.42 g, 21.98 mmol), N,N'-carbonyl-di-(1,2,3-triazole (4.178 g, 24.18 mmol), and TEA (9.184 mL, 65.95 mmol) in THF (70 mL) are stirred at r.t. for 30 min, then heated under reflux overnight. The reaction mixture is concentrated, triturated with water, filtered off and dried. The residue is triturated again with DIPE and filtered off.

Yield 88%

35

50

55

R63

1-27.1 (4.41 g, 19.42 mmol) and phosphoroxybromide (27.84 g, 97.11 mmol) are stirred at 100° C. for 3 h. The reaction mixture is diluted with iced water. The precipitate is filtered off and triturated with DIPE.

Yield 89%

Step 3: Synthesis of R60

I-27.2 (200 mg, 0.69 mmol) and methylamine in methanol 2 mol/L (2 mL, 4 mmol) are stirred at 80° C. for 16 h. The reaction mixture is purified by reversed phase HPLC.

Yield 63%, m/z 240/242 [M+H]+, rt 0.48 min, LC-MS Method X011_S03.

Synthesis of (7R,8aR)-7-methoxy-1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-a]pyrazine (R63)

Step 1: Synthesis of Intermediate I-28.1

I-28.3

To 2-(tert-butoxycarbonylamino)acetic acid (1.5 g, 8.56 mmol) and HATU (3.58 g, 9.42 mmol) in DMF (15 mL) is 60 added DIPEA (5.89 mL, 34.25 mmol) and stirred for 15 min. Methyl (2R,4R)-4-methoxypyrrolidine-2-carboxylate hydrochloride (1.675 g, 8.56 mmol) is added and stirred at r.t. overnight. The reaction mixture is diluted with dichlormethan and NaHCO₃-solution. The organic layer is separated and 65 washed with brine, dried and concentrated. The crude residue is purified by reversed phase HPLC.

350

Yield 74%, m/z 317 [M+H]+, rt 0.47 min, LC-MS Method X018 S01.

Step 2: Synthesis of Intermediate I-28.2

I-28.1 (2 g, 6.32 mmol), hydrochloric acid in dioxane 4 mol/L (10 mL, 40 mmol) and dioxane (30 mL) are stirred at r.t. overnight. The reaction mixture is directly used for the next step.

Step 3: Synthesis of Intermediate I-28.3

To the reaction mixture from the previous step is added TEA till a pH value of 8 is reached. The precipitate is filtered off and the mother liquor is concentrated to isolate the desired product. Yield 97%, m/z 185 [M+H]+, rt 0.18 min, LC-MS Method V011_S01.

15 Step 4: Synthesis of R63

To lithiumaluminium hydride 1 mol/L in THF (12.215 mL, 12.215 mmol) in THF (8 mL) is added a solution of I-28.3 (900 mg, 4.886 mmol) in THF (4 mL) dropwise and stirred at r.t. for 1.5 h. Under cooling the reaction mixture is poured into aq. sodium hydroxide (1 mol/L) and diluted with THF (30 ml). The precipitate is filtered off and the mother liquor is concentrated. The residue is diluted with methanol and stirred a few minutes at 50° C. The precipitate is filtered off and the mother liquor is concentrated to give the crude product which is purified over amino phase silica gel. Yield 36%

Synthesis of 3,4,4a,5,6,7,8,8a-octahydro-2H-2,6-naphthyridin-1-one (R65)

5,6,7,8-tetrahydro-2H-2,6-naphthyridin-1-one hydrochloride (250 mg, 1.339 mmol), platinum oxide (100 mg) and glacial acetic acid (10 mL) are stirred under hydrogen (5 bar) at r.t. for 24 h.

The reaction mixture is filtered off and concentrated. The crude product is purified over amino phase silica gel.

Yield 71%.

Synthesis of 4-bromo-2-isopropyl-1-methylsulfinyl-benzene (R67)

1-isopropyl-2-methylsulfanyl-benzene (400 mg, 2.41 mmol) is dissolved in dichlormethane (4 mL) and cooled down to 0° C. Bromine (123.21 μ L, 2.41 mmol) is added and stirred at r.t. for 3 days.

The reaction mixture is concentrated and purified by reversed phase HPLC.

Yield 53%, m/z 261/263 [M+H]+, rt 1.06 min, LC-MS Method V011 S01.

Synthesis of (3-bromophenyl)imino-dimethyl-oxo-sulfane (R70)

1-Bromo-3-iodo-benzene (250 $\mu L,\,1.96$ mmol), (methylsulfonimidoyl)methane (219.188 mg, 2.353 mmol), cesium carbonate (894.466 mg, 2.745 mmol) and dioxane (12 mL) are purged with argon. (5-diphenylphosphanyl-9,9-dimethyl-xanthen-4-yl)-diphenyl-phosphane (85.098, 0.147 mmol) and tris(dibenzylideneacetone)dipalladium(0) (44.89 mg, 0.049 mmol) are added, purged again with argon and stirred at 105° C. for 3 h.

The reaction mixture is filtered through a pad of celite. The filtrate is concentrated and purified by reversed phase HPLC. Yield 94%, m/z 249 [M+H]+, rt 0.74 min, LC-MS Method $_{30}$

Z018_S04.

The following intermediate as shown in Table 55 is synthesized in a similar fashion from the appropriate intermediate.

To 2-(4-amino-3-bromo-phenyl)acetic acid (5 g, 21.73 mmol) in methanol (50 mL) and dichlormethane (100 mL) is added at -5° C. trimethylsilyldiazomethane in diethylether 2 mol/L (31.51 mL, 63.03 mmol) dropwise over a period of 30 min. The reaction mixture is allowed to warm up to r.t. and concentrated. The crude product is used without further purification.

Yield 95%, m/z 244/246 [M+H]+, rt 0.48 min, LC-MS Method X011_S03.

Synthesis of 2-(4-amino-3-bromo-phenyl)-N-methylacetamide; 2,2,2-trifluoroacetic acid (R72)

TABLE 55

Intermediate	Structure	$\begin{array}{c} m/z \\ [M+H] + \end{array}$	rt (min)	LC-MS method	elab
R70.1	o S N	318	0.83	Z018_S04	CCCYUJ00250

Synthesis of 2-(4-amino-3-bromo-phenyl)-N-methylacetamide (R71)

OH
OH
OH
ONH
$$_{NH_2}$$
 $_{NH_2}$
 $_{R102}$
 $_{R71}$
 $_{NH_2}$
 $_{R71}$
 $_{65}$

-continued

Step 1: Synthesis of Intermediate I-29.1

4-amino-3-bromophenylacetic acid methyl ester (22 g, 81.12 mmol), di-t-butyl-dicarbonate (20.13 g, 92.22 mmol), 4-dimethylaminopyridine (991.02 mg, 8.11 mmol) and dichlormethane (300 mL) are stirred together at r.t. overnight.

The reaction mixture is extracted with KHSO₄-solution (10%), NaHCO₃-solution and brine. The organic layer is separated, dried and concentrated. The residue is purified over silica gel.

Yield 8%, m/z 344/346 [M+H]+, rt 1.34 min, LC-MS Method V011_S01.

Step 2: Synthesis of Intermediate I-29.2

To I-29.1 (4 g, 11.62 mmol) in dioxane (50 mL) is added a solution of lithium hydroxide (400 mg, 13.95 mmol) in water (5 mL) and stirred at r.t. overnight. The precipitate is filtered by suction and dried.

Yield 91%, m/z 274/276 [M+H-isobutene]+, rt 0.29 min, LC-MS Method X011 S03.

Step 3: Synthesis of Intermediate I-29.3

To I-29.2 (150 mg, 0.45 mmol) in DMF (2 mL) is added TBTU (175.04 mg, 0.55 mmol) and after 7 min methylamine 2 mol/L in THF (0.9 ml, 1.82 mmol) is added. The reaction mixture is stirred at r.t. overnight and purified by reversed phase HPLC.

Yield 35%, m/z n.d. [M+H]+, rt 0.55 min, LC-MS Method X011 S03.

Step 4: Synthesis of R72

To I-29.3 (97 mg, 0.28 mmol) in dichlormethane (2 mL) is added trifluoracetic acid (0.5 mL) and stirred at r.t. for 1 h. The reaction mixture is concentrated.

Yield 99%, m/z 243/245 [M+H]+, rt 0.26 min, LC-MS Method X012_S01.

Synthesis of 4-amino-3-fluoro-5-iodo-benzamide (R74)

Step 1: Synthesis of Intermediate I-30.1

2-fluoro-6-iodo-4-(methoxycarbonyl)aniline (30 g, 0.1 mol), ethanol (300 mL) and NaOH 20% (30 mL) are stirred together under reflux for 2 h. The reaction mixture is diluted with water and acidified with KHSO $_4$ -solution (1 mol/L). The precipitate is filtered off and recrystallized with ethanol.

Yield 86%

Step 2: Synthesis of R74

To I-30.1 (26 g, 0.092 mol) in DMF (200 mL) is added 1,1'-carbonyldiimidazole (17.8 g, 0.11 mol) and ammonium carbonate (48 g, 0.5 mol) and stirred at 50° C. for 30 min. The reaction mixture is concentrated and the residue is diluted with water. The precipitate is filtered off and recrystallized with ethanol.

Yield 83%

60

Synthesis of 4-amino-3-fluoro-5-iodo-benzonitrile (R74.1)

35

NH₂ F 5 NH₂ N 10 R74.1

To R74 (2 g, 7.14 mmol) in dichlormethane (50 mL) is added R2 (3.4 g, 14.28 mmol) and stirred at r.t. overnight. The 15 reaction mixture is extracted with water. The organic layer is separated, dried and concentrated. The crude residue is filtered through a pad of silica gel (eluent (ethyl acetate/cyclohexane 3:7).

Yield 53%, m/z 263 [M+H]+, rt 0.47 min, LC-MS Method X012 $\,$ S01.

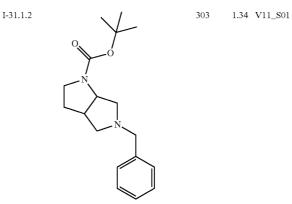
Synthesis of 3-tetrahydrofuran-3-yl-3,8-diazabicyclo [3.2.1]octane (R77)

Step 1: Synthesis of Intermediate I-31.1

To tert-butyl 3,8-diazabicyclo[3.2.1]octane-8-carboxylate hydrochloride (300 mg, 1.21 mmol) in THF (5 mL) is added tetrahydrofuran-3-one (114.21 mg, 1.33 mmol) and sodium triacetoxyborhydride (349.78 mg, 1.57 mmol) and stirred at r.t. for 0.5 h.

Sodium acetate (148.40 mg, 1.81 mmol) is added and stirred at r.t. overnight.

The reaction mixture is diluted with aq. sodiumhydrogen carbonate solution and extracted with ethyl acetate. The 65 organic layer is separated, dried and concentrated. The crude residue is purified by reversed phase HPLC.


356

Yield 61%, m/z 283 [M+H]+, rt 0.61 min, LC-MS Method V011_S01.

The following intermediates as shown in Table 56 are synthesized in an analogous manner from the appropriate intermediates:

TABLE 56

Inter- mediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-31.1.1		213	n.d.	n.d.

For I-31.1.1 sodium cyanoborhydride and methanol is used instead of sodium triacetoxyborhydride and THF.

Step 2: Synthesis of R77

I-31.1 (206 mg, 0.73 mmol) and hydrochloric acid in ether 1 mol/L (5 mL) is stirred at r.t. for 3 h. The reaction mixture is concentrated, diluted in dichlormethan/methanol 7/3 and filtered over amino phase silica gel.

Yield 99%, m/z 183 [M+H]+, rt 0.28 min, LC-MS Method $V011_S01$.

The following intermediates as shown in Table 56.1 are synthesized in an analogous manner from the appropriate intermediates:

TABLE 56.1

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R77.1	N H	n.d.	n.d.	n.d.

40

55

60

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method		
R77.2	HZ N	203	0.91	V11_S01		

For R77.1 p-toluenesulfonic acid monohydrate is used for the deprotection.

Synthesis of tert-butyl 4-(5-bromo-2-oxo-indolin-1-yl)piperidine-1-carboxylate (R79)

$$R78$$
 $R78$
 $R78$
 $R78$
 $R78$

Step 1: Synthesis of Intermediate I-38.1

To 1,3-dihydro-1-(piperidin-4-yl)-(2H)-indol-2-one (200 65 mg, 0.93 mmol) in dichlormethane (5 mL) are added TEA (0.129 mL, 0.93 mmol) and di-t-butyl-dicarbonate (201.82

358

mg, 0.93 mmol). The reaction mixture is stirred for 10 min, diluted with water and sodium hydrogenearbonate solution and extracted with dichlormethane. The organic layer is dried and concentrated. Yield >95%, m/z 261 [M+H-tert.butyl]+, rt
1.055 min, LC-MS Method Z020_S01.

Step 2: Synthesis of R79

Tert-butyl 4-(2-oxoindolin-1-yl)piperidine-1-carboxylate (100 mg, 0.32 mmol) in ACN is cooled down to -10° C., N-bromosuccinimide (56.47 mg, 0.32 mmol) is added and stirred at -10° C. for 2 h. The reaction mixture is diluted with dichlormethane and water. The organic layer is separated, dried and concentrated. The crude product is used for the next step without further purification. Yield 99%, m/z 395 [M+H]+, rt 1.126 min, LC-MS Method Z020_S01.

Synthesis of 2-amino-N-cyclopropyl-3-iodo-benzamide (R82)

Synthesis of R82

To 2-amino-3-iodo-benzoic acid (200 mg, 0.76 mmol) in DMF (1 mL) TBTU (244.15 mg, 0.76 mmol) and DIPEA 45 (245.69 μL, 1.52 mmol) are added and stirred at r.t. for 7 min. Cyclopropylamine (52.69 μL, 0.76 mmol) is added and stirred at r.t. overnight. The reaction mixture is diluted with water and the precipitate is filtered off and dried.

Yield 89%, m/z 303 [M+H]+, rt 0.49 min, LC-MS Method X012_S01.

Synthesis of 6-bromo-1-(1-methyl-4-piperidyl)indolin-2-one (R85)

Step 1: Synthesis of Intermediate I-32.1

To sodium hydride 60% (1.536 g, 38.4 mmol) in DMSO (30 mL) under nitrogen atmosphere is added di-tert.butylmalonate (8.61 mL, 38.4 mmol) dropwise. The reaction mixture is stirred at 100° C. for 1 h, cooled down to 10° C. and a solution of 2,5-dibromonitrobenzene (4.93 g, 17.55 mmol) in 65 DMSO (25 mL) is added dropwise. After the addition the reaction mixture is stirred at 100° C. for 1 h again.

The reaction mixture is poured into ammoniumchloride solution and the pH is adjusted with sodium hydrogensulfate to pH 7. Water and a mixture of ethylycetate/cyclohexane 1/1 is added. The aq. layer is extracted with this mixture. The organic layer is separated, washed with brine, dried and concentrated. The crude product is used for the next step without further purification. Yield 45%, m/z 414/416 [M+H]+, rt 1.215 min, LC-MS Method Z011_S03.

10 Step 2: Synthesis of Intermediate I-32.2

To I-32.1 (1 g, 2.4 mmol) in ethanol is added platinum on carbon (50 mg) and stirred under hydrogen (50 psi) at r.t. for 67 h. The reaction mixture is filtered and concentrated. The crude residue is purified by reversed phase HPLC.

Yield 34%, m/z 274/276 [M+H]+, rt 1.156 min, LC-MS Method Z011 S03.

Step 3: Synthesis of Intermediate I-32.3

To I-32.2 (316.66 mg, 0.81 mmol) in dichlormethane (2 mL) and glacial acetic acid (73.88 mL, 1.22 mmol) are added Boc-4-piperidone (210.41 mg, 1.06 mmol), titanium (IV) isopropoxide (346.17 mg, 1.22 mmol) and sodium triacetoxyborhydride (258.14 mg, 1.22 mmol) and stirred at 50° C. for 3 h and at r.t. over 3 days. The reaction mixture is diluted with dichlormethane and water. The organic layer is separated and concentrated. The crude product is purified by reversed phase HPLC. Yield 27%, m/z 569/571 [M+H]+, rt 1.049 min, LC-MS Method Z011 U03.

30 Step 4: Synthesis of Intermediate I-32.4

To I-32.3 (125.3 mg, 0.2 mmol) in toluene (1 mL) is added 4-ethyl-benzenesulfonic acid (163.9 mg, 0.9 mmol) and stirred at 140° C. by microwave irradiation. The reaction mixture is concentrated and diluted with sodium hydroxide 1 mol/L and dichlormethane and concentrated again. The crude product is used without further purification for the next step.

Yield 92%, m/z 295/7 [M+H]+, rt 0.867 min, LC-MS Method Z011_S03.

40 Step 5: Synthesis of R85

To I-32.4 (60 mg, 0.20 mmol) in methanol (1 mL) are added formaldehyde in water (37%) (75.67 μ L, 1.02 mmol) and glacial acetic acid (17.44 μ L, 0.31 mmol), stirred at r.t. for 75 min, afterwards sodium triacetoxyborhydride (107.70 mg, 0.51 mmol) is added. The reaction mixture is stirred at r.t. overnight

The reaction mixture is diluted with sodium hydroxide 1 mol/L and dichlormethane. The organic layer is separated, washed with brine, dried and concentrated. The crude product is used for the next step without further purification.

Yield 52%, m/z 309/311 [M+H]+, rt 0.912 min, LC-MS Method Z011_S03.

Synthesis of 6-bromo-N-methyl-1H-benzimidazol-2-amine (R88)

Br
$$NH_2$$
 $R86$ NH_2 $R87$

15

25

35

45

Step 1: Synthesis of Intermediate I-33.1

To 4-bromobenzene-1,2-diamine (0.5 g, 3 mmol) in dichlormethane (10 mL) and DIPEA (0.55 mL, 3 mmol) is added methylimino(thioxo)methane (0.2 g, 3 mmol) and stirred at 50° C. for 4 h and at r.t. overnight. The reaction mixture is extracted with, aq. acetic acid (1%), aq. sodium carbonate (10%) and brine. The organic layer is separated, dried and concentrated. The residue is purified over silica gel.

Yield 69%, m/z 260/262 [M+H]+, rt 0.45 min, LC-MS Method X018 S02.

Step 2: Synthesis of R88

To I-33.1 (130 mg, 0.50 mmol) in ACN (2.5 mL) are added benzotriazol-1-yl-oxy-tris(dimethylamino) phosphonium hexafluorophosphate (BOP reagent) (330 mg, 0.50 mmol) and DBU (150 μL , 1.00 mmol) and stirred at r.t. for 0.5 h. The reaction mixture is purified by reversed phase HPLC.

Yield 51%

Synthesis of 4-(6-bromo-5-fluoro-tetralin-2-yl)morpholine (R91)

To 6-bromo-5-fluoro-tetralin-2-one (1 g, 4.11 mmol) and 55 morpholine (0.36 mL, 4.11 mmol) in dichlormethane is added glacial acetic acid (0.52 mL, 9.05 mmol). The reaction mixture is cooled with an ice bath and sodium triacetoxyborhydride (1.74 g, 8.23 mmol) is added. The reaction mixture is stirred at r.t. overnight. Morpholine (0.2 mL) is added and 60 stirred again at r.t. overnight. The reaction mixture is basified with potassium carbonate solution (20%) and stirred for 15 min. The organic layer is separated and the aq. layer is washed two times with dichlormethane. The organic layers are dried and concentrated. The crude product is purified by reversed 65 phase HPLC Yield 57%, m/z 314/316 [M+H]+, rt 0.68 min, LC-MS Method X011_S03.

The following intermediate as shown in Table 57 is synthesized in a similar fashion from the appropriate intermediates:

TABLE 57

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
R91.1	OH N	172	n.d.	n.d.

Synthesis of 1-tetrahydrofuran-3-ylpiperidin-4-one (R91.2)

$$\begin{array}{cccc}
OH & & O \\
& & & \\
N & & & \\
& & & \\
N & & & \\
& & & \\
R91.1 & & R91.2
\end{array}$$

To R91.1 1-tetrahydrofuran-3-ylpiperidin-4-ol (200 mg, 1.17 mmol) in dichlormethane (5 mL) is added dess-martin periodine (595 mg, 1.40 mmol) and stirred at r.t. for 5 h. The reaction mixture is filtered through ALOX/N and washed with cyclohexane/ethyl acetate 1:3. The filtrate is concentrated.

Yield 51%

Synthesis of (4aS,7aR)-2,3,4,4a,5,6,7,7a-octahydropyrrolo[3,4-b][1,4]oxazine

65 Step 1: Synthesis of Intermediate I-34.1

To tert-butyl (4aS,7aR)-3,4,4a,5,7,7a-hexahydro-2H-pyr-rolo[3,4-b][1,4]oxazine-6-carboxylate (200 mg, 0.88 mmol)

50

55

in methanol (3 mL) are added formaldehyde in water (37%) (26.44 mg, 0.33 mmol) and glacial acetic acid (79.71 mg, 1.31 mmol), stirred at r.t. for 75 min, afterwards sodium triacetoxyborhydride (464.19 mg, 2.19 mmol) is added. The reaction mixture is stirred at r.t. for 2 h Additional formaldehyde 5 in water (37%) (26.44 mg, 0.33 mmol) is added and stirred in a 50° C. warm water bath for 10 min, sodium triacetoxyborhydride (464.19 mg, 2.19 mmol) is added and stirred at r.t. for 1.5 h. The reaction mixture is diluted with aq. sodium hydrogencarbonate solution and water and extracted with 10 ethyl acetate. The organic layer is washed with aq. sodium hydrogencarbonate solution and brine, dried and concentrated. Yield 79

The following intermediates as shown in Table 58 are synthesized in a similar fashion from the appropriate intermedi- 15

364 TABLE 59-continued

Inter-	Structure	m/z	rt	LC-MS
mediate		[M + H]+	(min)	method
R93.2	HN H O	n.d.	n.d.	n.d.

TABLE 58

Intermediate	Structure	m/z [M + H]+	rt (min)	LC-MS method
I-34.1.1	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	n.d.	n.d.	n.d.
I-34.1.2	O N H O	n.d.	n.d.	n.d.

Step 2: Synthesis of R93

To I-34.1 (167 mg, 0.69 mmol) in dichlormethan (3 mL) p-toluenesulfonic acid monohydrate (655.48 mg, 3.45 mmol) is added and stirred at r.t. overnight. The reaction mixture is extracted with sodium hydroxide 1 mol/L. The organic layer 45 is separated dried and concentrated. Due to less yield the aq. layer is saturated with sodium chloride and extracted with dichlormethane. The aq layer is concentrated and extracted again with dichlormethane. All organic layers are combine, dried and concentrated. Yield 76%

The following intermediates as shown in Table 59 are synthesized in a similar fashion from the appropriate intermediates:

TABLE 59

Inter-	Structure	m/z	rt	LC-MS
mediate		[M + H]+	(min)	method
R93.1	NH NH	n.d.	n.d.	n.d.

Synthesis of 1-bromo-4-(bromomethyl)-2,5-difluoro-benzene (R99)

$$F \longrightarrow F$$

$$F \longrightarrow F$$

$$R98$$

$$R99$$

R98 (31.4 g, 15.17 mmol), N-bromosuccinimide (32.4 g, 1.6 mmol), AIBN (4.98 g, 30.34 mmol) in tetrachloromethane 60 is heated at 90° C. overnight. The reaction mixture is cooled down to r.t. and concentrated. The residue is dissolved in ethyl acetate and extracted with water. The organic layer is dried over MgSO₄, filtered and concentrated. The crude product is purified by high vacuum distillation (boiling point 95° C.-98° C. by oil bath temperature of 140° C.)

Yield 67%

The following intermediate as shown in Table 60 is synthesized in an analogous manner from the appropriate intermediates:

TABLE 60

Inter- mediate		Structure	m/z [M + H]+	rt (min)	LC-MS method	
R99.1	Br		n.d.	0.65	X012_S01	10
	$_{\rm F}$	Br				15

For R99.1 the reaction temperature is 80° C. For the work up the reaction mixture is cooled to r.t. and the precipitate filtered off. The mother liquor is extracted with aq. hydrochloric acid (1 mol/L) and aq. sodium hydroxide (1 mol/L), dried and concentrated. The crude product is used without further purification.

Synthesis of 2-benzyloxy-4-bromo-1-(chloromethyl)benzene (R100)

Br O Cl

R100

15 Step 1: Synthesis of Intermediate I-35.1

To methyl 4-bromo-2-hydroxy-benzoate (4.3 g, 18.61 mmol) in acetonitrile (50 mL) are added bromomethylbenzene (2.23 mL, 19.54 mmol) and potassium carbonate (3.86 g, 27.92 mmol) and stirred for 4 h at reflux. The reaction mixture is cooled down to r.t., diluted with water and extracted with ethyl acetate. The organic layer is separated, dried over MgSO₄ and concentrated. The crude residue is purified over silica gel (eluent: cyclohexane/ethyl acetate 95:5). Yield 75%

Step 2: Synthesis of Intermediate I-35.2

I-35.1 (4.5 g, 14.01 mmol) is dissolved in THF (50 mL) and a solution of lithium aluminium hydride in THF (8.41 mL, 8.41 mmol) is added dropwise between 5° C.-10° C. The reaction mixture is stirred 1 h under cooling and 1.5 h at r.t. Afterwards the mixture is cooled down and hydrolysed with 30 mL aq. hydrochloric acid (1 mol/L), diluted with water and extracted with ethyl acetate. The organic layer is washed with water, dried over MgSO₄ and concentrated. The crude residue is used for the next step without further purification. Yield 94%

Step 3: Synthesis of R100

50

To I-35.2 (3.85 g, 13.13 mmol) in dichlormethane (40 mL) is added triethylamine (2.21 mL, 15.76 mmol) and cooled down to 0° C.-2° C. Methanesulfonyl chloride (1.12 mL, 14.45 mmol) dissolved in dichlormethane (3 mL) is added dropwise. The reaction mixture is stirred for 1 h at 2° C.-5° C. and overnight at r.t. The reaction mixture is concentrated, 45 diluted with dichlormethane and water. The organic layer is washed with 1 mol/L hydrochloric acid, water, dried over MgSO₄ and concentrated. The crude residue is used for the next step without further purification. Yield 74%

Synthesis of tert-butyl N-(4-amino-3-bromo-phenyl)carbamate (R104)

35

40

3.15 mmol) in ethyl acetate (20 mL) is added tin (II) chloride dihydrate (3.56 g, 15.77 mmol) and stirred overnight at r.t. The reaction mixture is basified with potassium carbonate/ sodium hydroxide. The organic layer is separated, dried and concentrated. The crude product is used without further purification for the next step. Yield 83%, m/z 287/289[M+H]+, rt

Step 2: Synthesis of Intermediate I-37.2

The following intermediate as shown in Table 61 is syn- 10 the sized in an analogous manner from the appropriate intermediates:

0.58 min, LC-MS Method X011_S03.

Under argon atmosphere I-37.1 (1.09 g, 4.44 mmol) is dissolved in THF (40 mL) and cooled down to -70° C. Lithium bis(trimethylsilyl)amide 1 mol/L (9 mL, 9 mmol) is added dropwise and stirred for 4 h at -70° C. The reaction mixture is quenched with hydrochloric acid 1 mol/L (15 mL). Afterwards solid sodium carbonate (1 g) is added. The aqlayer is extracted with ethyl acetate. The organic layers are combined, dried and concentrated. The crude product is purified over silica gel (eluent: ethyl acetate). Yield 68%

TABLE 61

15 Step 3: Synthesis of R106

Intermediate Structure
$$m/z$$
 rt method $M+H$ 1+ $M=1$ $M=1$

I-37.2 (0.63 g, 2.96 mmol) and hydrochloric acid 4 mol/L (15 mL) are stirred at 100° C. overnight. The reaction mixture is diluted with water and freeze-dried. The crude product is filtered over amino phase silica gel (eluent: dichlormethane/methanol). Yield 82%

Synthesis of 3,4,6,7,9,9a-hexahydro-1H-pyrido[2,1-c][1,4]oxazin-8-one (R106)

Synthesis of 5-bromo-2-methylsulfonyl-phenol (R109)

Step 1: Synthesis of Intermediate I-37.1

To 4-bromo-2-fluoro-1-methylsulfonyl-benzene (2 g, 7.9 mmol) in DMF (15 mL) is added 2-methanesulfonyl-ethanol (1.47 g, 11.85 mmol). Sodium hydride (948.16 mg, 23.71 mmol) is added in portions at 0° C. The reaction mixture is allowed to come to r.t. and is added dropwise into cooled aq. hydrochloric acid. The aq. layer is extracted with ethyl acetate. The organic layer is dried over MgSO₄, filtered and concentrated. The crude residue is purified by reversed phase HPLC. Yield 86%, m/z 251/253[M+H]+, rt 0.42 min, LC-MS Method X018_S01.

R109

To methyl 2-morpholin-3-ylacetate hydrochloride (1 g, 60 5.11 mmol) in methanol (25 mL) are added TEA (0.785 mL, 5.63 mmol) and acrylic acid methyl ester (0.465 mL, 5.16 mmol) and stirred overnight at r.t. Again acrylic acid methyl ester (0.465 mL, 5.16 mmol) is added and stirred 3 days at r.t. The reaction mixture is concentrated and the crude product is purified over silica gel (eluent: ethyl acetate).

Examples

(rt=retention time) Deprotection Methods: TSA (toluene sulfonic acid cf. Example 1), SI (trimethylsilyl iodide cf. example 2 or 3), FA (formic acid cf. example 4 or 7), TFA (trifluoroacetic acid). Stereochemistry at the carbon atom adjacent to the nitrile group is assigned: Stereo bond means S-isomer, non-stereo bond means 1:1 mixture of stereoisomers.

TABLE 62

	17.0000 02			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
1	H NH N	I-1.5	A/TSA	47
2	CH ₃	I-2.3	A1/SI	44
3	HN N N N N N N N N N N N N N N N N N N	I-3.3	A2.1/SI	62
4	NH F CH ₃	I-4.3	A3/FA	86
5	N N N N N N N N N N N N N N N N N N N	I-5.2	A4/FA	34

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
6	H NH F	I-6.2	A5/TSA	86
7	H NH N N N N N N N N N N N N N N N N N	I-7.3	B/FA	39
8	HN O N N N N N N N N N N N N N N N N N N	I-8.2	C/SI	19
9	HN N N N N N N N N N N N N N N N N N N	I-9.1	D/SI	32
10	F N N N N N N N N N N N N N N N N N N N	I-3.3.1	A2.1/SI	25

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
11	H N N N N N N N N N N N N N N N N N N N	I-3.2.2	A2.1/SI	17
12	NH F	I-2.3.1	A1/FA	36
13	H N N N N N O	I-2.3.7.1	A1/FA	56
14	H N O S S O N	I-4.3.1	A3/SI	43

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
15	F N N N N N N N N N N N N N N N N N N N	I-4.3.2	A3/SI	21
16	NH F	I-4.3.3	A3/TSA	93
17	NH N	I-2.3.2	A1/TSA	16
18	NH NH S	I-2.3.3	A1/TSA	36
19	F O O O O O O O O O O O O O O O O O O O	I-4.3.1	A3/SI	59

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
20	F N	I-2.3.7.3	A1/TSA	22
21	F N O	I-2.3.7.4	A1/FA	49
22	F H N O	I-4.3.5	A3/SI	70
23	NH NH NN N	I-2.3.4	A1/TSA	37
24	H N N N N N N N N N N N N N N N N N N N	I-2.3.74.1	A1/TFA	45

	IABLE 02-continued		Syn./	
Example	Structure	Educt	Deprot. Method	Yield [%]
25	NH NH N S N	I-4.3.6	A3/TSA	45
26	NH NH NN N	I-2.3.5	A1/TSA	49
27	NH N	I-2.3.6	A1/TSA	38
28	H N N N N N N N N N N N N N N N N N N N	I-2.3.7.5	A1/FA	75
29	F H N O	I-4.3.7	A3/SI	40

	TABLE 02 Continued		Syn./	
Example	Structure	Educt	Deprot. Method	Yield [%]
30	NH N	I-2.3.8	A1/TSA	46
31	H F F N O	I-4.3.8	A3/SI	39
32	NH F	I-3.2.4	A2.2/TSA	31
33	NH NH S F F	1-2.3.9	A1/TSA	16
34	H N N O O O O O O O O O O O O O O O O O	I-3.3.3	A2.1/SI	32

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
35	F F	I-4.3.9	A3/SI	77
36	NH NH S	I-2.3.10	A1/TSA	39
37	$\bigcap_{NH} \bigoplus_{N} \bigcap_{N} \bigcap_{$	I-4.3.10	A3/FA	98
38	NH N	I-2.3.11	A1/TSA	6
39	NH N	I-2.3.12	A1/TSA	30

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
40	NH NH N S S N	I-2.3.13	A1/TSA	49
41	$\bigcap_{NH} \bigoplus_{N} \bigoplus_{N} \bigcap_{N} \bigcap_{H} \bigcap_{N} \bigcap_{$	I-4.3.11	A3/FA	>95
42	NH NH F	I-3.2.6	A2.1/TSA	75
43	NH F	I-3.2.7	A2.2/TSA	84

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
44	F N O	1-2.3.7.6	A1/FA	64
45	H N N S S S S N N S S N N S S N N S S N N S S N S S N S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S S N S N S N S S N S N S S N S N S N S S N S	I-4.3.12	A3/SI	58
46	NH NH S	I-2.3.14	A1/TSA	12
47	NH NH F	I-5.2	A4/TSA	57
48	F N N N N N N N N N N N N N N N N N N N	1-2.3.7.7	A1/FA	20

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
49	NH NH O	I-4.3.13	A3/FA	93
50	O H NH F	I-2.3.15	A1/TFA	31
51	F NH S S S S S S S S S S S S S S S S S S	I-4.3.14	A3/FA	76
52	H N O F O S O N	1-4.3.4	A3/SI	33

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
53	NH NH N	I-4.3.16	A3/FA	85
54	O NH ₂	I-4.3.17	A3/FA	96
55		1-2.3.7.8	A1/FA	71
56	$\bigcap_{NH} \bigcap_{N} \bigcap_{H_2N} \bigcap_{O}$	I-4.3.18	A3/FA	67

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
57	O N N N N N N N N N N N N N N N N N N N	I-2.3.16	A1/TSA	38
58	NH NH N N N N N N N N N N N N N N N N N	I-7.3	B/FA	90
59	NH F	I-2.3.17	A1/FA	37
60	NH N	I-2.3.18	A1/TSA	33
61	H N F F N N N N N N N N N N N N N N N N	I-4.3.15	A3/SI	47

			Syn./ Deprot.	Yield
Example	Structure	Educt	Method	[%]
62	F NH	I-4.3.20	A3/FA	91
63	NH NH N	I-2.3.19	A1/TSA	19
64	NH N	I-2.3.20	A1/TSA	48
65	NH NH N	I-2.3.21	A1/TSA	6
66	N N N N N N N N N N N N N N N N N N N	I-5.2	A4/TSA	23
67	N N N N N N N N N N N N N N N N N N N	I-5.2	A4/TSA	53

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
68	NH NH NH	I-2.3.22	A1/TSA	17
69	NH NH NH	I-2.3.23	A1/TSA	19
70	NH NH N	I-2.3.24	A1/TSA	58
71	H NH NH N N N N N N N N N N N N N N N N	I-4.3.21	A3/FA	>95
72	$\bigcap_{NH} \bigcap_{H} \bigcap_{S} \bigcap_{CH_3}$	I-2.3.25	A1/TSA	13
73	H NH N N N N N N N N N N N N N N N N N	I-2.3.26	A1/TSA	53

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
74	F N N N N N N N N N N N N N N N N N N N	1-2.3.7.9	A1/TSA	41
75	H N N N N N N N N N N N N N N N N N N N	I-3.3.4	A2.1/SI	4
76	F CH ₃	I-4.3.22	A3/FA	89
77	O-NH NH F	—CH ₃ I-5.2	A4/TSA	40
78	NH N	1-2.3.27	A1/TSA	7

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
79	NH NH	I-4.3.23	A3/FA	80
80	NH NH CH ₃	I-2.3.28	A1/TSA	24
81	CI CH ₃	I-4.3.24	A3/SI	31
82	NH HO CH ₃	I-5.2	A4/TSA	44
83	$\bigcap_{NH} \bigoplus_{N} \bigcap_{NH_2} \bigcap_{NH_$	I-4.3.25	A3/FA	>95

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
84	N N N N N N N N N N N N N N N N N N N	1-5.2	A4/TSA	46
85	NH NH N N N N N N N N N N N N N N N N N	I-2.3.29	A1/FA	60
86	H NH F CH3	I-2.3.30	A1/FA	63
87	F CH ₃	I-2.3.7.10	A1/TSA	8
88	H NH O CH3	I-4.3.26	A3/FA	52

TABLE 62-continued

	1ABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
89	NH HO CH ₃	I-5.2	A4/TSA	48
90	O NH F	I-5.2	A4/TSA	77
91	NH F	I-3.2.9	A2.2/TSA	92
92	$\bigcap_{NH} \bigcap_{H} \bigcap_{CH_3} \bigcap_{CH_3}$	I-2.3.31	A1/TSA	14
93	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	I-2.3.32	A1/TSA	54

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
94	H ₃ C O N N N N N N	I-5.2	A4/TSA	80
95	NH NH	I-3.2.10	A2.1/TSA	53
96	H N F O N	I-2.3.33	A1/FA	87
97	H ₃ C O NH NH	I-2.3.34	A1/TSA	22

TABLE 62-continued

	TABLE 02 Continued		Syn./ Deprot.	Yield
Example 98	Structure H N H N N N N N N N N N N N N N N N N	Educt I-3.2.11	Method A2.1/SI	83
99	N CI	I-5.2	A4/TSA	34
100	NH NH CH ₃	I-2.3.35	A1/TSA	16
101	NH HO CH ₃	I-5.2	A4/TSA	48
102	H N N N N N N N N N N N N N N N N N N N	I-3.2.12	A2.1/SI	29
103	N CI	I-2.3.36	A1/TSA	17

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
104	$\bigcap_{NH} \bigcap_{H} \bigcap_{CH_3} \bigcap_{CH_3}$	I-2.3.37	A1/TSA	8
105	NH NH F	I-5.2	A4/TSA/TSA	26
106	NH N	I-5.2	A4/TSA	30
107	F NH F N O O O O O O O	I-4.3.27	A3/FA	80
108	F F CI	I-3.2.13	A2.1/SI	42

Example	Structure	Educt	Syn./ Deprot. Method	Yield
109	NH HO CH ₃	I-5.2	A4/TSA	41
110	NH NH CH ₃	I-2.3.38	A1/TSA	21
111	O—CH ₃	I-5.2	A4/TSA	84
112	NH N	I-5.2	A4/TSA	22
113	NH N N S CH ₃	1-2.3.39	A1/TSA	45
114	H NH NH	I-2.3.40	A1/TSA	53

Example	Structure	Educt	Syn./ Deprot. Method	Yield
115	NH NH S OH	I-2.3.41	A1/TSA	30
116	NH N	I-2.3.42	A1/TSA	8
117	F CH ₃	I-2.3.43.1	A1/SI	57
118	NH NH F F	I-2.3.44	A1/TSA	40
119	CH ₃ O N N N N N N N N N N N N N N N N N N	I-5.2	A4/TSA	37

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
120	HO CH ₃	I-4.3.19	A3/SI	5
121	$\bigcap_{NH} \bigcap_{H} \bigcap_{N} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{$	I-2.3.45	A1/TSA	41
122	H N CH ₃	I-4.3.19	A3/SI	27
123		I-10.5	E/FA	10
124	O CH ₃ CH ₃	I-5.2	A4/TSA	36

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
125	NH P CH ₃	I-4.3.28	A3/TSA	79
126	NH H3C N-N CH3	I-2.3.46	A1/TSA	7
127	HN HN N	I-8.2.1	C/SI	36
128		I-10.5	E/FA	5
129	$\bigcap_{NH} \bigcap_{N} \bigcap_{CH_3} O$	I-2.3.47	A1/TSA	21

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
130	NH ₂	I-2.3.48	A1/TSA	33
131	$\bigcap_{NH} \bigcap_{NH} \bigcap_{F} \bigcap_{NH} \bigcap$	I-2.3.49	A1/TSA	28
132	N NH NH F	I-2.3.50	A1/TSA	36
133	O CH ₃ S S NH F	I-2.3.51	A1/TSA	28
134	NH NH	I-2.3.52	A1/TSA	8

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
135	NH NH F	I-2.3.53	A1/TSA	25
136	$\bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} \bigcap_{$	1-2.3.54	A1/TSA	33
137	O N CH ₃	I-2.3.55	A1/TSA	25
138	H ₃ C N N N H	I-2.3.56	A1/TSA	41
139	NH NH H ₃ C O	1-2.3.57	A1/TSA	26

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
140	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	I-2.3.58	A1/TSA	16
141	NH NH F	I-2.3.59	A1/TSA	28
142	N N N N N N N N	I-2.3.60	A1/TSA	24
143	NH NH2	I-2.3.61	A1/TSA	33
144	NH NH F	I-2.3.62	A1/TSA	34
145	NH NH F	I-2.3.63	A1/TSA	21

TABLE 62-continued

	1ABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
146	O NH ₂ O NH ₂	I-2.3.64	A1/TSA	32
147	O NH F	I-2.3.65	A1/TSA	34
148	O NH F	I-2.3.66	A1/TSA	10
149	CH ₃ N N N N F	I-2.3.67	A1/TSA	23
150	HN CH ₃ HN CH ₃ N N N F	I-2.3.68	A1/TSA	33

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
151	NH NH F	I-2.3.69	A1/TSA	25
152	H ₃ C S O	I-2.3.70	A1/FA	68
153	H NH F O S S O S S O	I-2.3.71	A1/FA	73
154	NH NH N O	I-3.2.14	A2.2/TSA	59

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
155	F CH ₃	1-3.3.5	A2.1/SI	62
156	H N N N N N N N N N N N N N N N N N N N	I-3.3.6	A2.1/SI	25
157	H N N N N N N N N N N N N N N N N N N N	I-4.3.32	A3/FA	36
158	H N O O O O O O O O O O O O O O O O O O	I-2.3.72	A1/SI	57

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
159	THE NAME OF THE PARTY OF THE PA	I-1.5.1	A/TSA	65
160	NH N	I-3.2.37	A2.1/TSA	34
161	F S NH	I-4.3.33	A3/FA	75
162	NH N	I-3.2.47	A2.1/TSA	52
163	NH NH NH NH	I-3.2.36	A2.1/TSA	40

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
164	F N N N N N N N N N N N N N N N N N N N	I-4.3.34	A3/FA	78
165	H N N N N N N N N N N N N N N N N N N N	I-4.3.35	A3/FA	90
166	H N N N N N N N N N N N N N N N N N N N	I-3.3.7	A2.1/SI	33
167	NH NH2	I-3.2.46	A2.1/TSA	49
168	NH NH NN N	I-3.2.42	A2.1/TSA	37

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
169	H NH NH N N N N N N N N N N N N N N N N	I-1.5.2	A/TSA	79
170	F N N N N N N N N N N N N N N N N N N N	I-4.3.36	A3/FA	77
171	NH H NH	I-3.2.39	A2.1/TSA	37
172	NH I I I I I I I I I I I I I I I I I I I	I-3.2.38	A2.1/TSA	36
173	NH NH S	I-3.2.45	A2.1/TSA	34

	TABLE 62-continued		Syn./ Deprot.	Yield
Example	Structure	Educt	Method	[%]
174	NH NH NN N	I-3.2.40	A2.1/TSA	33
175	NH N	I-3.2.50	A2.1/TSA	44
176	H N N N N N N N N N N N N N N N N N N N	I-2.3.75.1	A1/FA	53
177	H N N N N N N N N N N N N N N N N N N N	I-3.2.51	A2.1/SI	59
178	NH F	I-3.2.19	A2.2/TSA	81

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
179	NH NH S	I-3.2.49	A2.1/TSA	35
180	H N F N N N N N N N N N N N N N N N N N	I-3.2.20	A2.2/TSA	56
181	THE	I-2.3.76.1	A1/FA	31
182	NH NH NH N N N N N N N N N N N N N N N	I-3.2.22	A2.2/TSA	31
183	H N N N N N N N N N N N N N N N N N N N	I-2.3.78.1	A1/FA	36

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
184	F HN	1-4.3.37	A3/TFA	51
185	H N N N N N N N N N N N N N N N N N N N	1-4.3.38	A3/TFA	28
186	H N N N N N N N N N N N N N N N N N N N	I-4.3.39	A3/TFA	40

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
187	NH F	I-3.2.24	A2.2/SI	17
188	H NH F NN N	I-3.2.25	A2.2/TSA	85
189	H NH F	I-3.2.26	A2.2/TSA	13
190	NH NH OH	I-3.2.27	A2.2.TSA	19

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
191	H N F N N N N N N N N N N N N N N N N N	I-3.2.28	A2.2/TSA	84
192	NH F	I-3.2.29	A2.2/TSA	75
193	H NH F	I-3.2.30	A2.2/TSA	42
194	NH NH NN N	I-3.2.41	A2.1/TSA	33
195	NH F	I-3.2.31	A2.2/TSA	86

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
196	NH NH NH	1-3.2.32	A2.2/TSA	18
197	H NH F	I-3.2.33	A2.2/TSA	68
198	NH IN SECOND	I-3.2.48	A2.1/TSA	32
199	F N N N N N N N N N N N N N N N N N N N	1-2.3.73	A1/SI	56

TABLE 62-continued

	TABLE 02 COMMEC		Syn./ Deprot. Method	Yield
Example 200	Structure H N N O N N N N N N N N N N N N N N N N	Educt I-4.3.40	A3/TFA	[%] 51
201	H N N N N N N N N N N N N N N N N N N N	I-2.3.43.2.1	A2/SI	65
202	H N N N N N N N N N N N N N N N N N N N	I-4.3.41	A3/TFA	52
203		I-7.3.3	B/SI	56

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
204	O H N F N N N N N N N N N N N N N N N N N	I-3.2.34	A2.2/TSA	90
205	NH F	I-3.2.35	A2.2/TSA	76
206		I-9.1.1	D/SI	39
207	F O H N H N H N H N H N H N H N H N H N H	I-10.4.1	E/TFA	28
208	NH NH NN N	1-3.2.43	A2.1/TSA	22

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
209		I-7.3.4	B/SI	55

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
212		I-7.3.5	B/SI	54
213	H N O H N H	I-7.3.6	B/SI	65
214	F N N N N N N N N N N N N N N N N N N N	I-1.5.3	A/TSA	72
215	O HN NH	I-10.4.1	E/TFA	23

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
216	NH N	I-4.3.44	A3/TFA	38

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
219	H N N N N N N N N N N N N N N N N N N N	I-2.3.43.3	A1/SI	41
220	O NH NHN N	I-8.2.2	C/SI	69
221	NH N	I-3.2.44	A2.1/TSA	17
222	H NH F	I-3.2.53	A2.1/FA	59

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
223	H N N N N N N N N N N N N N N N N N N N	I-2.3.43	A1/SI	60
224		I-2.3.79	A1/SI	47
225	H NH F S N N N N N N N N N N N N N N N N N N	I-4.3.45	A3/FA	15
226	NH NH NH NN N	I-4.3.46	A3/FA	53

TABLE 62-continued

	17 ADEL 02 continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
227	H NH F	I -4.3.47	A3/FA	28
228	NH F	I-4.3.48	A3/FA	37
229	NH F	I-4.3.49	A3/FA	14
230	F N O N O O	I-4.3.50	A3/FA	47

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
231	H NH F O	I-4.3.51	A3/FA	30
232	NH F F S O	I-4.3.52	A3/FA	60
233	H NH F N N N N N N N N N N N N N N N N N	I-4.3.53	A3/FA	37
234	NH F	I-4.3.54	A3/FA	71

A1/FA

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
235	F NH	I-4.3.55	A3/FA	38

53

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
238	NH F	I-4.3.58	A1/FA	42

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
241	H NH NH NO	I-4.3.61	A1/FA	41
242	H NH F	I-4.3.62	A1/FA	52
243		I-2.3.7.11	A1/FA	62
244	NH P NH2	I-4.3.63	A1/FA	43

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
245	NH F	I-4.3.64	A1/FA	42
246	HN N O S N O F F	I-3.2.54	A2.1/SI	63
247	H NH F	I-3,2.92	A2.2/TSA	20
248	NH NH NH	I-3.2.93	A2.2/TSA	78

TABLE 62-continued				
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
249	NH F	I-3.2.7	A2.2/TSA	6
250	NH N	I-3.2.7	A2.2/TSA	7
251	H NH F SS O	1-3.2.55	A2.1/TSA	65
252	NH F	1-3.2.56	A2.1/TSA	82

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
253	F NH N N N N N N N N N N N N N N N N N N	I-3.2.57	A2.1/TSA	73
254	H NH N N	I-3.2.58	A2.1/TSA	53
255	H NH NH	I-3.2.59	A2.1/TSA	58
256	H NH NH N N N N N N N N N N N N N N N N	I-3.2.60	A2.1/TSA	52

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield
257	H NH NH	I-3.2.61	A2.1/TSA	41
258	NH F	I-3.2.62	A2.1/TSA	19
259	NH F SS S	I-3.2.63	A2.1/FA	19
260	NH NH NH N F N N N N N N N N N N N N N N	I-3.2.64.1	A2.1/FA	91

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
261	NH P	I-3.2.64.2	A2.1/FA	79
262	NH P	I-2.3.7.4.1	A1/FA	53
263	NH NH NH NN N	I-3.2.65	A2.1/FA	52
264	O H NH F S S S S S S S S S S S S S S S S S S	I-3.2.66	A2.1/FA	23

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
265	NH F	I-3.2.94	A2.2/TSA	14
266	NH F S O	I-3.2.95	A2.2/TSA	8
267	NH F	I-3.2.96	A2.2/TSA	41
268	H NH F	I-3.2.97	A2.2/TSA	80

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
269	NH F	I-3.2.98	A2.2/TSA	27
270	H N F N N N N N N N N N N N N N N N N N	I-3.2.99	A2.2/TSA	81
271	H NH F	I-3.2.100	A2.2/TSA	17
272	H NH F	I-3.2.101	A2.2/TSA	27
273	O NH F	I-3.2.67	A2.1/TSA	7

TABLE 62-continued

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
274	O H N F S O O O O O O O O O O O O O O O O O O	1-3.2.68	A2.1/TSA	73
275	H N F	1-3.2.69	A2.1/TSA	71
276	NH F F F F	1-3.2.70	A2.1/TSA	72
277	H N N N N N N N N N N N N N N N N N N N	I-3.2.71	A2.1/TSA	2

	TABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
278	H N N N N N N N N N N N N N N N N N N N	I-3.2.72	A2.1/TSA	13
279	H N N N N N N N N N N N N N N N N N N N	I-3.2.73	A2.1/TSA	28
280	H N N N N N N N N N N N N N N N N N N N	I-3.3.8	A2.1/SI	90
281	NH F	I-3.3.9	A2.1/TSA	83

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
282	NH F	I-3.3.10	A2.1/TSA	42
283	NH F	I-3.3.11	A2.1/TSA	91
284	NH F	I-3.3.12	A2.1/TSA	80
285	NH F F	I-3.2.117	A2.2/TSA	81

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
286	THE NAME OF THE PARTY OF THE PA	I-3.2.120	A2.2/TSA	80
287	H NH F	I-3.2.121	A2.2/TSA	77
288	H NH F	I-4.3.65	A3/FA	68
289	THE NEW YORK OF THE NEW YORK O	I-4.3.66	A3/FA	66

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
290	H N N N N N N N N N N N N N N N N N N N	I-8.2.3	C/TSA	93
291	$\begin{array}{c} H_2N \\ \\ \end{array} \\ 0 \\ \end{array}$	I-18.2.3	D1/MSA	18
292	F N N N N N N N N N N N N N N N N N N N	I-18.2.1	D1/SI	11
293	F N O H	I-18.2.2	D1/SI	24
294	F N O H	I-18.2.4	D1/SI	20

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
295	F N N N N N N N N N N N N N N N N N N N	I-18.2.5	D1/SI	13
296	F HN O H	I-18.2.6	D1/TSA	7
297	CI N N N N N N N N N N N N N N N N N N N	I-18.2.7	D1/SI	43
298	HN N N N N N N N N N N N N N N N N N N	I-18.2.8	D1/SI	71
299	O N N N N N N N N N N N N N N N N N N N	I-18.2.9	D1/SI	55

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
300	F N N N N N N N N N N N N N N N N N N N	I-18.2.10	D1/TSA	24
301	F F F N N N N N N N N N N N N N N N N N	I-18.2.11	D1/SI	27
302	F F F N N N N N N N N N N N N N N N N N	I-18.2.12	D1/SI	58
303	N O H N O H N O O O O O O O O O O O O O	I-18.2.13	D1/TSA	29
304	CI N N N N N N N N N	I-18.2.14	D1/SI	32

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
305	CI N N N N N N N N N N N N N N N N N N N	I-18.2	D1/MSA	14
306		I-18.2.15	D1/MSA	29
307	F HN O H	I-18.2.16	D1/SI	36
308	F N O H	I-18.2.17	D1/SI	37
309	N HN O	I-18.2.18	D1/MSA	11

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
310	F HN O H	I-18.2.19	D1/SI	63
311		I-18.2.20	D1/SI	13
312		I-18.2.21	D1/SI	28
313		I-18.2.22	D1/SI	7
314	NH ₂ N N N N N N N N N N N N N	I-18.2.23	D1/MSA	25

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
315	H NH N N N N N N N N N N N N N N N N N	I-21.3	Z/TSA	60
316	NH NH N	I-21.3.1	Z/TSA	51
317	NH NH NH OH	1-3.2.77	A2.1/TSA	47
318	H NH N N	I-3.2.102	A2.2/TSA	83
319	H N N N N N N N N N N N N N N N N N N N	I-19.1	W/SI	34

			Syn./	37 - 1.1
Example	Structure	Educt	Deprot. Method	Yield [%]
320	THE	I-3.3.13	A2.1/SI	74
321	H N N N N N N N N N N N N N N N N N N N	I-8.2.4	C/TSA	91
322	F N O H	I-18.2.24	D1/TSA	30
323	F N O H N H N H N H N H N H N H N H N H N	I-18.2.25	D1/TSA	32
324	F N O H	I-18.2.26	D1/TSA	36

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
325	F N N N N N N N N N N N N N N N N N N N	I-18.2.27	D1/TSA	9
326	F N O H	I-18.2.28	D1/TSA	30
327	H NH F NH	I-3.2.103	A2.2/TSA	62
328	NH F	I-3.2.104	A2.2/TSA	86
329	H NH F	I-3.2.105	A2.2/TSA	62

	TABLE 62-continued				
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]	
330	NH F	I-3.2.106	A2.2/TSA	59	
331	H NH F	I-3.2.107	A2.2/TSA	70	
332	H NH F	I-3.2.79	A2.1/TSA	64	
333	O H N F F N N N N N N N N N N N N N N N N	I-3.2.108	A2.2/TSA	33	

	1ABLE 62-continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
334	NH F	I-3.2.80	A2.1/TSA	11
335	H N F N N N N N N N N N N N N N N N N N	I-3.2.109	A2.2/TSA	90
336	NH F	I-3.2.110	A2.2/TSA	72
337	NH F	I-3.3.14	A2.1/TSA	86

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
338	NH NH N	I-3.3.15	A2.1/TSA	48
339	NH NH N S O	I-3.2.83	A2.1/TSA	54
340	H N N N N N N N N N N N N N N N N N N N	I-3.2.84	A2.1/TSA	42
341		I-18.2.29	D1/TSA	17

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
342	NH P	I-3.2.85	A2.1/TSA	68

	17 IDEE 02 continued			
Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
345	THE NEW YORK OF THE NEW YORK O	I-3.2.111	A2.2/TSA	2
346	NH F N N N N N N N N N N N N N N N N N N	I-3.2.87	A2.1/TSA	14
347	NH NH NH NH	I-3.2.88	A2.1/TSA	18
348	O H N N N N N N N N N N N N N N N N N N	I-3.3.16	A2.1/TSA	76

TABLE 62-continued

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
349	NH NH NH	I-3.3.17	A2.1/TSA	73
350	NH NH N N N N N N N N N N N N N N N N N	I-3.3.18	A2.1/TSA	65
351	NH NH N N N N N N N N N N N N N N N N N	1-8.2.5	C/TSA	44
352	NH F	I-3.2.112	A2.2/TSA	78

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
353	H NH N N	I-3.3.19	A2.1/TSA	78
354	NH NH N	I-3.3.20	A2.1/TSA	62
355	O H N H H O N N N N N N N N N N N N N N	I-3.2.114	A2.2/TSA	88
356	O F N N N N N N N N N N N N N N N N N N	1-3.2.115	A2.2/TSA	>95
357	NH NH NN N N N N N N N N N N N N N N N	I-3.2.116	A2.2/TSA	80

Example	Structure	Educt	Syn./ Deprot. Method	Yield [%]
358	NH PF	Ex 359	A2.1	35
359	H N F	I-3.2.136	A2.1/TSA	61

Analytical Data of Examples

TABLE 63-continued

				_				
	T.4	ABLE 63		35	Ex.	m/z [M + H]+	rt [min]	LC-MS-Method
				_	34	420	1.06	V011_S01
	m/z	rt			35	407	1.10	V001_007
Ex.	[M + H]+	[min]	LC-MS-Method		36	370	0.80	004_CA01
	410	1.16	T/011 CO1	-	37	443	0.62	Z018_S04
1	419	1.16	V011_S01	40	38	439	0.60	004_CA01
2	433	0.59	X011_S01		39	382	0.64	004_CA01
3	420	0.41	X016_S01		40	407	0.72	Z018_S04
4	442	0.65	Z018_S04		41	419	0.61	Z018_S04
5	470	0.70	Z018_S04		42	447	1.09	V011_S01
6	386	0.98	V011_S01		43	428	0.95	V011_S01
7	410	0.96	V018_S01	45	44	412	0.63	Z018_S04
8	310	0.86	V011_S01		45	421	0.90	V012_S01
9	387	0.39	X012_S01		46	399	0.73	004_CA01
10	447	0.42	X012_S01		47	461	0.72	Z018_S04
11	420	0.41	X012_S01		48	438	0.60	X018_S01
12	460	0.67	Z018_S04		49	433	1.13	W018_S01
13	426	0.63	Z018_S04	50	50	438	0.66	Z018_S04
14	467	0.86	V018_S01		51	457	0.64	Z018_S04
15	433	1.04	V001_007		52	n.d.	n.d.	n.d.
16	442	0.65	Z018_S04		53	407	0.61	Z018_S04
17	428	0.81	004_CA01		54	442	0.63	Z018_S04
18	370	0.80	004_CA01		55	493	0.64	Z018_S04
19	467	0.86	V018_S01	55	56	443	0.60	Z018_S04
20	396	0.66	Z018_S04	33	57	452	0.69	004_CA01
21	438	0.64	Z018_S04		58	368	0.79	V018_S01
22	419	0.41	Z001_002		59	456	0.43	X018_S01
23	410	0.78	004_CA01		60	418	0.80	004 CA01
24	451	0.69	Z018_S04		61	451	0.88	V018_S01
25	385	0.64	Z018_S04		62	457	0.64	Z018 S04
26	382	0.68	004_CA01	60	63	382	0.64	004_CA01
27	368	0.82	004_CA01		64	410	0.78	004_CA01
28	452	0.70	Z018_S04		65	382	0.64	004 CA05
29	419	0.41	Z001_002		66	463	0.79	Z011_S03
30	396	0.73	004_CA01		67	395	0.82	Z011_S03
31	451	1.12	V011 S01		68	396	0.73	004 CA01
32	448	1.28	V011_S01	65	69	354	0.54	004_CA01
33	438	0.93	004_CA01		70	430	0.72	Z018_S04
55	730	0.73	007_0101		70	730	0.72	2010_50-

529TABLE 63-continued

530
TABLE 63-continued

Ex.	m/z [M + H]+	rt [min]	LC-MS-Method		Ex.	m m/z $ m [M+H]+$	rt [min]	LC-MS-Method
71	456	0.67	Z018_S04	5	148	445	0.68	004_CA01
72	412	0.76	004_CA01		149	445	0.69	004_CA01
73	354	0.70	Z018_S04		150	469	0.73	004_CA01
74	466	0.70	Z018_S04		151	468	0.76	004_CA01
75	364	0.50	X012_S01		152	460	0.67	Z018_S04
76 77	433	0.65	Z018_S04		153	468	0.70	Z018_S04
78	491 430	0.86 0.85	Z011_S03 004_CA01	10	154 155	456 526	1.08 0.80	V011_S01 V012_S01
79	419	0.62	Z018_S04		156	448	0.47	X012_S01
80	399	0.62	004_CA01		157	413	0.61	Z018_S04
81	449	0.90	V012_S01		158	477	0.87	V012_S01
82	441	0.63	Z018_S04		159	467	0.85	V018_S01
83	407	1.09	W018_S01	15	160	382	0.64	004_CA05
84	471	0.92	Z011_S03		161	427	0.64	Z018_S04
85 86	395 460	0.50 0.67	X018_S01 Z018_S04		162 163	379 368	0.76 0.61	004_CA05 004_CA05
87	426	0.66	Z018_S04		164	455	0.71	Z018_S04
88	442	0.64	Z018_S04		165	467	0.70	Z018_S04
89	427	0.75	Z011_S03		166	448	0.48	X12_S01
90	397	0.60	Z018_S04	20	167	397	0.56	004_CA05
91	450	0.98	V011_S01		168	405	0.66	004_CA05
92	368	0.81	004_CA01		169	469	1.02	V011_S01
93 94	397	0.65	Z018_S04		170	441 430	0.67	Z018_S04
94 95	461 419	0.90 0.82	Z011_S03 V012_S01		171 172	415	0.83 0.87	004_CA05 004_CA05
96	431	0.32	Z018 S04	25	173	411	0.78	004_CA05
97	412	0.65	004_CA01		174	405	0.63	004_CA05
98	400	0.94	V012_S01		175	412	0.74	004_CA05
99	468	0.73	Z011_S03		176	460	0.67	Z18_S04
100	436	0.82	004_CA01		177	511	1.05	V012_S01
101	413	0.70	Z011_S03		178	444	1.10	V011_S01
102	400	0.92	V012_S01	30	179	442	0.86	004_CA05
103 104	354 368	0.76 0.79	004_CA01 004_CA05		180 181	354 437	0.36 0.65	X018_S01 Z018_S04
105	413	0.79	Z011_S03		182	430	0.03	X018_S01
106	482	0.81	Z011_S03		183	485	0.67	Z018_S04
107	435	1.25	W018_S01		184	435	0.67	Z018_S04
108	400	0.82	V012_S01	35	185	490	0.55	Z018_S04
109	441	0.80	Z011_S03		186	421	0.63	Z018_S04
110	382	0.67	004_CA01		187	412	0.26	X018_S01
111	399	0.58	Z018_S04		188	400	1.10	V011_S01
112 113	443 411	0.75 0.70	Z011_S03 Z018_S04		189 190	416 416	0.88 0.89	V011_S01 V011_S01
114	354	0.59	Z018_S04		191	458	1.14	V011_S01
115	414	0.68	004_CA01	40	192	400	1.10	V011_S01
116	438	0.68	004_CA01		193	456	1.00	V011_S01
117	385	0.65	V012_S01		194	405	0.55	004_CA05
118	436	0.77	004_CA01		195	399	1.42	V011_S01
119	461	0.93	Z011_S03		196	414	0.65	V018_S01
120 121	431 383	0.81 0.71	V018_S01 004_CA01	45	197 198	371 442	1.28 0.84	V011_S01 004_CA05
121	521	0.71	V018_S01	73	198	461	1.24	V012_S01
123	387	0.38	X012_S01		200	491	0.67	Z018_S04
124	427	0.83	Z011_S03		201	399	0.32	X012_S02
125	400	0.83	V011_S01		202	477	0.66	Z018_S04
126	382	0.66	004_CA01		203	359	0.46	X12_S01
127	310	0.92	V011_S01	50	204	372	0.93	V011_S01
128	387	0.35	X012_S01		205	373	1.05	V011_S01
129 130	447 419	0.76 0.64	004_CA01 004_CA01		206 207	401 405	0.43 0.41	X12_S01 X12_S01
131	433	0.71	004_CA01		208	382	0.60	004_CA05
132	419	0.84	004_CA01		209	372	0.52	X12_S01
133	440	0.83	004_CA01	55	210	475	0.74	Z018_S04
134	431	0.67	004_CA01	33	211	435	0.67	Z018_S04
135	430	0.74	004_CA01		212	360	0.48	X12_S01
136	455	0.67	004_CA01		213	359	0.43	X12_S01
137	430	0.78	004_CA01		214	467	1.02	V011_S01
138 139	394 469	0.70 0.74	004_CA01 004_CA01		215 216	405 461	0.37 0.70	X12_S01 Z018_S04
140	469	0.74	004_CA01 004_CA01	60	216	513	0.70	V012_S01
141	454	0.73	004_CA01		218	470	0.69	Z018_S04
142	402	0.73	004_CA01		219	461	0.82	V012_S01
143	455	0.68	004_CA01		220	320	0.39	001_CA07
144	454	0.73	004_CA01		221	394	0.59	004_CA05
145	411	0.78	004_CA01		222	466	0.65	Z018_S04
146	419	0.66	004_CA01	65	223	383	0.31	X012_S02
147	431	0.64	004_CA01		224	526	0.36	X012_S01

531 TABLE 63-continued

532 TABLE 63-continued

rt [min] 0.54 1.17 0.56 0.83 0.9 0.8 0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 0.97 1.14 0.61 0.67 0.56	LC-MS-Method Z018_S04 Z018_S04 Z018_S04 Z011_S03 Z011_S03 Z011_S03 Z018_S04 Z018_	5 — 10 15 20	Ex. 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	m/z [M+H]+ 480 426 421 435 458 430 405 412 423 445 417 465 402 389 371 381	rt [min] 0.53 0.47 0.51 0.48 0.48 0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37 0.31	DC-MS-Method 002_CA03 X012_S02_ 002_CA03 X012_S01_ 004_CA05 004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01_ X012_S01_
1.17 0.56 0.83 0.9 0.8 0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S03 Z011_S03 Z011_S03 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z01	10	302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317	480 426 421 435 458 430 405 412 423 445 417 465 402 389 371	0.53 0.47 0.51 0.48 0.48 0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	002_CA03 X012_S02_ 002_CA03 X012_S01_ 004_CA05 004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_
1.17 0.56 0.83 0.9 0.8 0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z011_S03 Z011_S03 Z011_S03 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04	15	303 304 305 306 307 308 309 310 311 312 313 314 315 316 317	426 421 435 458 430 405 412 423 445 417 465 402 389 371	0.47 0.51 0.48 0.48 0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	X012_S02_ 002_CA03 X012_S01_ 004_CA05 004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01
0.83 0.9 0.8 0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z011_S03 Z011_S03 Z011_S03 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z018_S01 Z018_S04	15	304 305 306 307 308 309 310 311 312 313 314 315 316 317	421 435 458 430 405 412 423 445 417 465 402 389 371	0.51 0.48 0.48 0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	002_CA03 X012_S01_ 004_CA05 004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.9 0.8 0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z011_S03 Z011_S03 Z011_S03 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04	15	305 306 307 308 309 310 311 312 313 314 315 316 317	435 458 430 405 412 423 445 417 465 402 389 371	0.48 0.48 0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	X012_S01_ 004_CA05 004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.8 0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S01	15	306 307 308 309 310 311 312 313 314 315 316 317	458 430 405 412 423 445 417 465 402 389 371	0.48 0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	004_CA05 004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.77 1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S05 Z018_S01 Z018_S01 Z018_S01 Z018_S01 Z018_S01	15	307 308 309 310 311 312 313 314 315 316 317	430 405 412 423 445 417 465 402 389 371	0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
1.31 0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z018_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01	15	307 308 309 310 311 312 313 314 315 316 317	430 405 412 423 445 417 465 402 389 371	0.56 0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	004_CA05 001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.76 0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z011_S03 Z018_S04 Z011_S03 Z018_S04 Z018_S		308 309 310 311 312 313 314 315 316 317	405 412 423 445 417 465 402 389 371	0.35 0.60 0.73 0.52 0.62 0.33 0.26 0.37	001_CA07 004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.95 0.82 0.60 0.68 0.66 0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z011_S03 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S01 Z018_S01 Z018_S01 Z018_S01 Z018_S01 Z018_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01 Z011_S01		309 310 311 312 313 314 315 316 317	412 423 445 417 465 402 389 371	0.60 0.73 0.52 0.62 0.33 0.26 0.37	004_CA05 003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.60 0.68 0.66 0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S01 V012_S01 X011_S01 V011_S01 V011_S01 V011_S01		310 311 312 313 314 315 316 317	423 445 417 465 402 389 371	0.73 0.52 0.62 0.33 0.26 0.37	003_CA04 002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.68 0.66 0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S01 V012_S01 X011_S01 V011_S01 V011_S01 V011_S01		311 312 313 314 315 316 317	445 417 465 402 389 371	0.52 0.62 0.33 0.26 0.37	002_CA03 004_CA05 X012_S01_ X012_S01_ X012_S01
0.66 0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S05 V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01		312 313 314 315 316 317	417 465 402 389 371	0.62 0.33 0.26 0.37	004_CA05 X012_S01_ X012_S01_ X012_S01
0.37 0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S01 X011_S01 X011_S01 V011_S01 V011_S01 V011_S01		313 314 315 316 317	465 402 389 371	0.33 0.26 0.37	X012_S01_ X012_S01_ X012_S01
0.64 0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01	20	314 315 316 317	402 389 371	0.26 0.37	X012_S01_ X012_S01
0.53 0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 Z018_S04 Z018_S04 V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01	20	315 316 317	389 371	0.37	X012_S01
0.64 0.74 0.73 0.56 1.05 0.58 0.97 0.97 0.97 1.14 0.61	Z018_S04 Z018_S04 Z018_S04 Z018_S04 V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01	20	316 317	371		
0.74 0.73 0.56 1.05 0.58 0.97 0.97 1.14 0.61 0.67	Z018_S04 Z018_S04 Z018_S04 V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01	20	317		0.31	
0.56 1.05 0.58 0.97 0.97 0.97 1.14 0.61 0.67	Z018_S04 V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01	20		381		X012_S01
1.05 0.58 0.97 0.97 0.97 1.14 0.61 0.67	V012_S01 X011_S03 V011_S01 V011_S01 V011_S01 V011_S01		319		0.61	003_CA04
0.58 0.97 0.97 0.97 1.14 0.61 0.67	X011_S03 V011_S01 V011_S01 V011_S01 V011_S01		316	386	0.99	V011_S01
0.97 0.97 0.97 1.14 0.61 0.67	V011_S01 V011_S01 V011_S01 V011_S01		319	401	0.31	X012_S02
0.97 0.97 1.14 0.61 0.67	V011_S01 V011_S01 V011_S01		320	397	0.34	X012_S02
0.97 1.14 0.61 0.67	V011_S01 V011_S01		321	399	1.10	V011_S01
1.14 0.61 0.67	V011_S01	25	322	405	0.75	003_CA04
0.61 0.67			323	423	0.55	005_CA01
	X011_S02		324	441	0.56	005_CA01
0.56	X011_S03		325	448	0.53	005_CA01
	004_CA05		326	419	0.83	003_CA04
0.55	004_CA05		327	384	0.46	002_CA07
0.60	004_CA05	30	328	412	0.74	004_CA05
0.5 0.50	004_CA05 004_CA05		329	468	0.66	X011_S03
0.64	n.d.		330	398	0.8	003_CA04
0.66	Z018_S04		331	442	0.72	003_CA04
0.65	Z018_S04					
0.65	Z018_S04	35	332	439	0.62	X011_S03
0.65	Z018_S04	35	333	412	1.15	V011_S01
1.19	Z018_S04		334	502	0.54	Z020_S01
0.59 0.6	003_CA04		335	372	0.93	V011_S01
0.61	003_CA04 004_CA07		336	456	0.67	004_CA05
0.59	004_CA07		337	441	0.63	X011_S03
0.78	003_CA04	40	338	441	0.29	X018_S02
0.82	003_CA04		339	544	0.35	X012_S01
0.65	n.d.		340	540	0.83	003_CA04
1.13	V011_S01		341	470	0.40	X012_S01_
0.73	X011_S03 002_CA07		342	452	0.47	004_CA07
0.47 0.56	002_CA07 002_CA07	45	343	445	0.48	004_CA07
0.58	002_CA07		344	414	0.74	004_CA05
0.57	Z020_S01		345	428	0.30	X012_S01
0.54	n.d.				0.98	Z011_S03
0.53	Z020_S01		346	516		
0.35	X012_S02		347	433	0.96	V011_S01
1.03	V011_S01	50	348	468	1.09	V011_S01
1.02	V011_S01		349	412	1.14	V011_S01
0.49 0.46	004_CA07 004_CA07		350	415	0.79	003_CA04
1.26	V011_S01		351	427	0.57	X011_S03
0.58	004_CA05		352	413	1.11	V011_S01
0.57	004_CA05	55	353	412	0.78	004_CA05
0.64	Z018_S04	55	354	468	0.76	003_CA04
	Z018_S04					
0.53	V011_S01		355	428	0.90	Z011_S03
1.28						Z011_S03
1.28 0.64						Z011_S03
1.28 0.64 0.51		60	358	425	0.71	Z012_S04
1.28 0.64 0.51 0.37			359	423	1.06	Z011_S03
1.28 0.64 0.51 0.37 0.36	X012_S02_	_				
1.28 0.64 0.51 0.37	001_CA07					
1.28 0.64 0.51 0.37 0.36 0.37	X012_S01_		Examples	representing n	nixtures of	stereoisomers o
1.28 0.64 0.51 0.37 0.36 0.37 0.49 0.39	003 (2403	c de				
1.28 0.64 0.51 0.37 0.36 0.37 0.49 0.39 0.37 0.48						
	0.64 0.51 0.37 0.36 0.37 0.49 0.39	0.64 Z011_S03 0.51 005_CA01 0.37 001_CA07 0.36 001_CA07 0.37 001_CA07 0.49 X012_S02_ 0.39 001_CA07 0.37 X012_S01_ 0.48 002_CA03 0.41 X012_S01_	0.64 Z011_S03 0.51 005_CA01 0.37 001_CA07 0.36 001_CA07 0.37 001_CA07 0.49 X012_S02_ — 0.39 001_CA07 0.37 X012_S01_ 0.48 002_CA03 0.41 X012_S01_ 65 de	0.64 Z011_S03 356 0.51 005_CA01 357 0.37 001_CA07 60 358 0.37 001_CA07 359 0.49 X012_S02 0.39 001_CA07 0.37 X012_S01 0.48 002_CA03 0.41 X012_S01 65 detected and	0.64 Z011_S03 356 442 0.51 005_CA01 357 442 0.37 001_CA07 60 358 425 0.37 001_CA07 359 423 0.49 X012_S02 0.39 001_CA07 0.37 X012_S01_ 0.48 002_CA03 0.41 X012_S01_ 65 detected and resolved into s 0.47 X012_S01_ lytical and preparative chir	0.64 Z011_S03 356 442 0.91 0.51 005_CA01 357 442 0.93 0.37 001_CA07 60 358 425 0.71 0.37 001_CA07 359 423 1.06 0.37 001_CA07 359 423 1.06 0.49 X012_S02 0.39 001_CA07 0.37 X012_S01_ 504 0.48 002_CA03 0.41 X012_S01_ 65 detected and resolved into single stereo

Examples representing mixtures of stereoisomers can be 65 detected and resolved into single stereoisomers through analytical and preparative chiral chromatography. Representatives of examples for this process are given in Table 64

TABLE 64

	The abbreviation "Dist. example" refers to the distomer of the given example.									
	Analytical SFC Data									
Example	Methode	Stereoisomer 1 (Exampl No.).	rt [min]	Stereoisomer 2 (Example No.)	rt [min]	SFC Method				
15	I_ASH_30_10MIN_SS4P.M	2	3.94	Dist2	5.67	chiral				
22	I_ADH_40_MEOH_DEA.M	29	3.60	Dist29	5.76	SFC E chiral SFC D				
43	I_ADH_15_MEOH_DEA.M	249	7.43	250	8.72	chiral SFC C				

TABLE 65

List of Abbreviations						
ACN	acetonitrile					
AIBN	2,2'-azobis(isobutyronitrile)					
ALOX	aluminium oxide					
aq.	aqueous					
BOC	tert. butyloxycyrbonyle-					
d	day					
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene					
DCM	dichlormethane					
DEA	diethylamine					
DIPEA	n,n-diisopropylethylamine					
DIPE	diisopropyl ether					
DMAP	4-dimethylaminopyridine					
DMF	n,n-dimethylformamide					
DMSO	dimethyl sulfoxide					
EA	ethyl acetate					
FA	formic acid					
h	hour					
HATU	o-(7-azabenzotriazol-1-yl)-N,N,N',N'-					
	tetramethyluronium hexafluoro-phosphate					
LiOH	lithium hydroxide					
МеОН	methanol					
MSA	methanesulfonic acid					
MeTHF	methyl tetrahydrofuran					
NaH	sodium hydride					
PE	petrol ether					
RT, r.t.	room temperature, e.g. 15-25° C.					
rt	retention time					
SI	trimethylsilyl iodide					
TBME	tert-butyl methyl ether					
TBTU	o-(1H-benzo-1,2,3-triazol-1-yl)-N,N,N',N'-					
TTD 1	tetramethyluronium tetrafluoroborate					
TEA	triethylamine					
TFA	trifluoroacetic acid					
THF	tetrahydrofuran					
TSA	toluene sulfonic acid					

PHARMACOLOGICAL DATA

Other features and advantages of the present invention will become apparent from the following more detailed examples which illustrate, by way of example, the principles of the invention.

Inhibition of Human DPPI (Cathepsin C)

Materials: Microtiterplates (Optiplate-384 F) were purchased from PerkinElmer (Prod. No. 6007270). The substrate Gly-Arg-AMC was from Biotrend (Prod.-No. 808756 Custom peptide). Bovine serum albumin (BSA; Prod. No. A3059) and Dithiothreitol (DTT; Prod. No D0632) were from Sigma. TagZyme buffer was from Riedel-de-Haen (Prod.-No. 04269), NaCl was from Merck (Prod.-No. 1.06404.1000) and morpholinoethane sulfonic acid (MES), was from Serva 65 (Prod.-No. 29834). The DPP1 inhibitor Gly-Phe-DMK was purchased from MP Biomedicals (Prod.-No. 03DK00625).

The recombinant human DPPI was purchased from Prozymex. All other materials were of highest grade commercially available.

The following buffers were used: MES buffer: 25 mM MES, 50 mM NaCl, 5 mM DTT, adjusted to pH 6.0, containing 0.1% BSA; TAGZyme Buffer: 20 mM NaH₂PO₄, 150 mM NaCl adjusted to pH 6.0 with HCl Assay Conditions:

The recombinant human DPPI was diluted in TAGZyme buffer to 1 U/ml (38.1 µg/ml, respectively), and then activated by mixing in a 1:2 ratio with a Cysteamine aqueous solution (2 mM) and incubating for 5 min at room temperature.

Five uL test compound (final concentration 0.1 nM to 100 μM) in aqua bidest (containing 4% DMSO, final DMSO concentration 1%) were mixed with 10 μL of DPPI in MES buffer (final concentration 0.0125 ng/μL) and incubated for 10 min. Then, 5 μL of substrate in MES buffer (final concentration 50 μM) were added. The microtiter plates were then incubated at room temperature for 30 min. Then, the reaction was stopped by adding 10 μL of Gly-Phe-DMK in MES-buffer (final concentration 1 μM). The fluorescence in the wells was determined using a Molecular Devices SpectraMax M5 Fluorescence Reader (Ex 360 nm, Em 460 nm) or an Envision Fluorescence Reader (Ex 355 nm, Em 460 nm).

Each assay microtiter plate contained wells with vehicle controls (1% DMSO in bidest+0.075% BSA) as reference for non-inhibited enzyme activity (100% Ctl; high values) and wells with inhibitor (Gly-Phe-DMK, in bidest+1% DMSO+0.075% BSA, final concentration 1 μM) as controls for background fluorescence (0% Ctl; low values).

The analysis of the data was performed by calculating the percentage of fluorescence in the presence of test compound in comparison to the fluorescence of the vehicle control after subtracting the background fluorescence using the following formula:

(RFU(sample)-RFU(background))* 100/(RFU(control)-RFU(background))

Data from these calculations were used to generate IC_{50} values for inhibition of DPPI, respectively.

TABLE 66

Example	Inhibition of DPPI IC50 [μM]		
1	0.0086		
2	0.0020		
3	0.0007		
4	0.0014		
5	0.0040		
6	0.0107		
7	0.0019		
8	0.6794		
9	0.0096		

536
TABLE 66-continued

17 1151	E 00 continued		17 1151	E 00 continued
Example	Inhibition of DPPI IC50 [μM]		Example	Inhibition of DPPI IC50 [μM]
10	0.0015	_	88	0.0152
11	0.0017	5	89	0.0156
12	0.0019		90	0.0160
13	0.0019		91	0.0170
14	0.0020		92	0.0177
15	0.0020		93	0.0183
16	0.0026		94	0.0187
17 18	0.0026 0.0027	10	95 96	0.0192 0.0198
19	0.0027		97	0.0198
20	0.0031		98	0.0203
21	0.0031		99	0.0211
22	0.0033		100	0.0223
23	0.0037	15	101	0.0239
24	0.0037	10	102	0.0248
25	0.0039		103	0.0249
26	0.0040		104	0.0249
27	0.0040		105	0.0250
28 29	0.0041 0.0042		106 107	0.0259 0.0259
30	0.0042	20	107	0.0264
31	0.0043		109	0.0269
32	0.0045		110	0.0286
33	0.0045		111	0.0318
34	0.0046		112	0.0333
35	0.0046		113	0.0364
36	0.0047	25	114	0.0367
37	0.0047		115	0.0378
38	0.0048		116	0.0391
39	0.0051		117	0.0396
40	0.0051		118	0.0443
41 42	0.0053 0.0053	20	119 120	0.0512 0.0556
43	0.0056	30	121	0.1565
44	0.0059		122	0.1817
45	0.0063		123	0.1866
46	0.0069		124	0.1869
47	0.0072		125	0.2060
48	0.0072	35	126	0.2751
49	0.0073	33	127	0.8597
50	0.0074		128	2.3930
51	0.0075		129	0.0827
52 53	0.0076		130	0.0435
53 54	0.0079 0.00 8 2		131 132	0.1387 0.0189
55	0.0082	40	133	0.0161
56	0.0083		134	0.0178
57	0.0083		135	0.2857
58	0.0084		136	0.0102
59	0.0085		137	0.0597
60	0.0087		138	0.0145
61	0.0087	45	139	0.0117
62	0.0091		140	0.0215
63	0.0093		141	0.0366
64 65	0.0093 0.0094		142 143	0.0631 0.0067
66	0.0094		143	0.0263
67	0.0096	50	145	0.0538
68	0.0097	50	146	0.0305
69	0.0099		147	0.0062
70	0.0102		148	0.0304
71	0.0108		149	0.0387
72	0.0108		150	0.0386
73	0.0112	55	151	0.0369
74 75	0.0114 0.0114		152 153	0.0021 0.0038
75 76	0.0114		153 154	0.0038
77	0.0117		155	0.0008
78	0.0120		156	0.0006
79	0.0120		157	0.0009
80	0.0124	60	158	0.0015
81	0.0131		159	0.0016
82	0.0131		160	0.0017
83	0.0133		161	0.0019
84	0.0137		162	0.002
85	0.0140	65	163	0.0021
86	0.0141	دن	164	0.0023
87	0.0142		165	0.0027

537TABLE 66-continued

538
TABLE 66-continued

TABLE 66-continued			TABLE 66-continued			
Example	Inhibition of DPPI IC50 [μM]		Example	Inhibition of DPPI IC50 [μM]		
166	0.0033	· —	244	0.0037		
167	0.0034	5	245	0.0059		
168	0.0037		246	0.0059		
169	0.0041		247	0.0084		
170	0.0042		248	0.0180		
171	0.005		249	0.0063		
172	0.0052	4.0	250	0.0042		
173 174	0.0055 0.0056	10	251 252	0.0115 0.0038		
175	0.0030		252 253	0.0110		
176	0.0066		254 254	0.0020		
177	0.0074		255	0.0109		
178	0.0074		256	0.0263		
179	0.0075		257	0.0399		
180	0.0077	15	258	0.0079		
181	0.0086		259	0.0060		
182	0.0088		260	0.0035		
183	0.0088		261	0.0042		
184	0.0088		262	0.0064		
185	0.009		263	0.0118		
186	0.0096	20	264	0.0170		
187	0.0098		265	0.0627		
188	0.0098		266	0.0437		
189	0.0104		267	0.0105		
190	0.0109		268	0.0111		
191	0.0112		269	0.0094		
192	0.0113	25	270	0.0063		
193	0.0123		271	0.0059		
194	0.0133		272	0.0068		
195	0.0147		273	0.0289		
196	0.0151		274	0.0065		
197	0.0156		275	0.0330		
198	0.0158	30	276	0.0141		
199	0.016		277	0.0030		
200	0.0165		278	0.0010		
201	0.0201		279	0.0055		
202	0.0229		280	0.0212		
203	0.0233		281	0.0033		
204	0.0245	35	282	0.0037		
205	0.0259	33	283	0.0097		
206	0.0263		284	0.0138		
207	0.0291		285	0.0093		
208	0.0298		286	0.0389		
209	0.0458		287	0.0397		
210	0.0494	40	288	0.0023		
211	0.0611	40	289	0.0025		
212	0.2955		290	0.0206		
213	0.619		291	0.0059		
214	0.8148		292	0.0009		
215	0.8819		293	0.0013		
216			294	0.0016		
217	0.0037	45	295	0.0021		
218	0.0189		296	0.0029		
219	0.0374		297	0.0032		
220	0.253		298	0.0032		
221	0.0037		299	0.0032		
222	0.0022		300	0.0038		
223	0.0059	50	301	0.0045		
224	0.0012		302	0.0047		
225	0.0008		303	0.0050		
226	0.0009		304	0.0060		
227	0.0010		305	0.0069		
228	0.0016		306	0.0070		
229	0.0017	55	307	0.0072		
230	0.0018		308	0.0083		
231	0.0022		309	0.0091		
232	0.0022		310	0.0094		
233	0.0022		311	0.0099		
234	0.0038		312	0.0110		
235	0.0047	60	313	0.0136		
236	0.0016	00	314	0.0140		
237	0.0046		315	0.0135		
238	0.0143		316	0.0424		
239	0.0034		317	0.0520		
240	0.0061		318	0.2120		
241	0.0068		319	0.0175		
	0.0109	65	320	0.0096		
242	0.0109		321			

Inhibition of DPPI IC50 [µM]

0.0008

0.0010

0.0013

0.0019

0.0034

0.0042

0.0070

0.0078

0.0093

0.0129

0.0153

0.0220

0.0245

0.0245

0.0282

0.0443

0.0013

0.0018

0.0076 0.0013

0.0045

0.0100

0.0184

0.0010 0.0085

0.0176

0.0206

0.0386

0.0828

0.0173

0.0065

0.0068

0.0224

0.0200

0.0338

0.0220

0.0088

0.0441

Example

323

324

326

327

328

329

330

331

332

333

334

335

336 337

338

339

340

341

342

343

344

345

346

347 348

349

350

351

352

353

354

355

356

357

358

359

WO09074829; Example 56

Cell Seeding and Treatment:

Compounds in 100% DMSO were diluted in Medium (-FCS) with 10% DMSO and further diluted according to the experiment planned.

20 ul of the compound solution was transferred in the respective wells of the 24 well plate and diluted with 2 ml cell suspension/well containing 1.105 cells/ml (final concentration of DMSO=0.1%). Compound dilution factor=100

Compounds (up to 7 concentrations) were tested in triplicates with 3 wells for the DMSO 0.1% control, incubated for 48 hours without medium change at 37° C., 5% CO2 and 95% relative humidity.

Cell Harvesting and Cell Lysate:

Transfer the cell suspension in 2.2 ml Eppendorf cups. Separate cells from medium by centrifugation (400×g; 5 min; RT); discard the supernatant. Resuspend in 1 ml PBS; centrifugation (400×g; 5 min; RT); wash cells twice with PBS. Add 100 µl Serin lysis buffer (ice cold) to the cell pellet; resuspend the pellet and store on ice for 15 minutes. Remove debris by centrifugation at 15000xg for 10 min at 4° C. Transfer 80-100 µl lysate supernatant in 96 well plate and store immediately at -80° C.

Neutrophil Elastase Activity Assay:

Frozen lysates were thawn at 37° C. for 10 minutes and stored on ice. Protein content was determined with Bradford protein assay. Lysates were diluted to 0.2-0.5 mg/ml protein in serine protease buffer+HSA.

Standard: NE (100 g/ml stocksolution in Tris-buffer; stored at -80° C.) was diluted in Tris-buffer+HSA to 750 ng/ml, and further serially diluted 1:2 for the standard curve.

Buffer, blank, standard and lysate samples were transferred into 384 well plate

Blank: 5 µl Tris-buffer+10 µl Tris-buffer+HSA+5 µl Sub-

Standard: 5 µl Tris-buffer+10 µl NE (diff. conc.)+5 µl Sub-

Lysate: 5 µl Tris-buffer+10 µl Lysat+5 µl Substrate

The increase in fluorescence (Ex360 nm/Em 460 nm) is determined over 30 minutes with a Molecular Device Spectramax M5 Fluorescence Reader. Kinetic Reduction (Vmax units/sec); 4 vmax points. The amount of neutrophil elastase (ng/ml) is calculated using the standard curve and the Spectramax software. The result is interpolated to ng/mg lysate protein using excel formula functions. Percent inhibition in the compound-treated lysate samples is calculated relative to DMSO-treated control-sample (100-(compoundsample*100)/control-sample) A test compound will give values between 0% and 100% inhibition of neutrophil elastase. IC50 is calculated using Graphpad Prism; nonlinear fitting (log(inhibitor) vs. response—Variable slope). The IC50 value is interpolated as the concentration of test compound which leads to a neutrophil elastase activity reduction of 50% (relative to the DMSO-treated control).

Determination of Neutrophil Elastase Activity in U937 Cytosolic Lysate Preparation after Incubation with Test Compound

Materials:

Optiplate 384F were purchased from PerkinElmer (Prod. No. #6007270). 24 well Nunclon cell culture plates (No. 142475) and 96 well plates (No. 267245) were from Nunc. Dimethylsulfoxid (DMSO) was from Sigma (Prod. No. D8418). Nonidet-P40 (NP40) was from USBiological (Prod. 45 No. N3500)

Substrate, specific for Neutrophil elastase, was from (MeOSuc-Ala-Ala-Pro-Val-AMC; I-1270).

Human neutrophil elastase was from Calbiochem (Prod. 50 No. 324681)

Buffers

Tris-buffer (100 mM Tris; 1M NaCL; pH 7.5)

Tris-buffer+HSA 0.1%; Human Serum Albumin from Calbiochem (Cat#. 126658)

Serine-protease buffer (20 mM Tris; 100 mM NaCL; pH 7.5)+0.1% HSA

Serine protease lysis buffer: 20 mM Tris-HCL; 100 mM NaCl pH 7.5; +0.2% Nonidet-P40;

PBS: phosphate buffered saline, without Ca and Mg, from 60 Gibco

Cell Culture:

U937 from ECACC (Cat. No. 85011440) cultured in suspension at 37° C. and 5% CO2.

Cell density: 0.2-1 Mio. Cells/ml.

Medium: RPMI1640 GlutaMAX (No. 61870) with 10% FCS from Gibco

TABLE 67

Example	Reduction of NE-activity in U937 cells IC50 [μΜ]				
1	0.0023				
2	0.0062				
3	0.0029				
4	0.0064				
6	0.0024				
11	0.0087				
16	0.0145				
29	0.0088				

540

Pipetting Plan

strate

542

TABLE	67-continued		TABLE 67-continued		
Example	Reduction of NE-activity in U937 cells IC50 [µM]		Example	Reduction of NE-activity in U937 cells IC50 [μΜ]	
42	0.0083	5	358	0.0037	
43	0.0092		359	0.0029	
154 155	0.0046 0.0005		WO09074829; Example 56	0.1067	
156	0.0023				
158	0.0088		Inhibition of Human Cathep		
169 177	0.0091 0.0092	10		es (Optiplate-384 F were pur-	
178	0.0036			rod. No. 6007270). The substrate	
182	0.0081			rom Biomol (ProdNo. P-142).	
185	0.0039			149) was from Sigma. Sodium	
187 188	0.0073 0.0044			odNo. 6268.0250), EDTA was	
191	0.0033	15		0). The inhibitor E-64 was pur-	
192	0.0041			No. E3132). The recombinant	
193	0.0065			me was purchased from Biomol	
196 217	0.0053 0.0075			r materials were of highest grade	
223	0.0030		commercially available.	1	
224	0.0010	20		re used: Activation buffer: 32.5	
225	0.0028			ed to pH 3.5 with HCl; Assay	
226 227	0.0018 0.0009			ate, 4 mM EDTA, 20 mM L-Cys-	
228	0.0046		teine, adjusted to pH 5.5 wit	h HCl,	
229	0.0029	2.5	Assay Conditions:	5 1 4 1 TZ 1 1	
232 234	0.0052 0.0069	25		,5 µl procathepsin K were mixed	
237	0.0069			d incubated at room temperature	
241	0.0053		for 30 min.		
245	0.0038			concentration 0.1 nM to 100 µM)	
247 249	0.0080 0.0165	20		% DMSO, final DMSO concen-	
250	0.0115	30		10 uL of Cathepsin K in assay	
253	0.0055			ng/μL) and incubated for 10 min.	
254	0.0305			ssay buffer (final concentration	
267 268	0.0027 0.0007			ates were then incubated at room	
269	0.0055	25		en, the reaction was stopped by	
270	0.0014	33		ay buffer (final concentration 1	
271 272	0.0017			e wells was determined using a lax M5 Fluorescence Reader (Ex	
272 277	0.0024 0.0036		360 nm, Em 460 nm).	lax W13 Fluorescence Reader (Ex	
278	0.0010			ate contains wells with vehicle	
279	0.0019	40		st) as reference for non-inhibited	
281 282	0.0019 0.0034	70		; high values) and wells with	
283	0.0045			DMSO, final concentration 1 M)	
284	0.0053			uorescence (0% Ctl; low values).	
289	0.0039			is performed by calculating the	
293 294	0.0046 0.0078	45		n the presence of test compound	
295	0.0086			cence of the vehicle control after	
300	0.0089		subtracting the background to		
303	0.0083 0.0093				
319 320	0.0093		(RFU(sample)-RFU(backgro		
322	0.0021	50	100/(RFU(control)-RF)	U(background))	
323	0.0014		Data from these calculation	ons were used to generate IC ₅₀	
324	0.0013		values for inhibition of Cath		
325 326	0.0047 0.0019				
328	0.0012		TAI	3LE 68	
329	0.0025	55			
330	0.0377		Emmed	Inhibition of Cathepsin K	
331 332	0.0060 0.0058		Example	IC50 [μM]	
333	0.0038		2	2.8	
339	0.0006		3	2.1	
340	0.0008	60	4 5	2.6 2.6	
342	0.0247		6	2.5	
343 344	0.0169 0.0041		7	8.0	
345	0.0041		10 11	2.7 2.6	
346	0.0068		12	2.0	
348	0.0020	65	13	3.4	
349	0.0028		14	2.7	

544TABLE 68-continued

17 10121	3 00 continued		17 110121	3 00 continued
Example	Inhibition of Cathepsin K IC50 [μΜ]		Example	Inhibition of Cathepsin K IC50 [μΜ]
15	3.2	_ 5	93	6.9
16	2.1	3	93 94	4.9
			94	
17	6.1		95	3.6
18	3.0		96	5.5
19	5.4		97	7.9
20	2.9		98	8.4
21	4.9	10	99	2.9
22	3.2		100	8.2
23	3.8		101	6.5
24	13.3		102	4.3
25	6.3		103	5.9
26	3.6		104	10.3
27	3.2	15	105	5.2
28	2.7	13	106	5.3
29	1.4		107	4.7
30	3.1		108	9.4
31	7.3		109	4.5
32	3.9		110	9.8
33	4.8		111	4.3
34	2.5	20	112	5.6
35	4.4		113	8.3
36	3.0		114	6.8
37	5.1		115	2.3
38	2.9		116	2.3 7.7
	2.9			2.7
39	7.8	25	117	2.7
40	7.8	23	118	3.9
41	4.7		119	4.5
42	2.9		121	5.2
43	2.2		130	10.2
44	4.0		132	12.2
45	4.4		133	19.4
46	4.0	30	134	6.7
47	3.4		136	6.2
48	3.3		138	6.4
49	6.5		139	4.8
50	3.6		140	8.4
51	4.9		141	8.8
52	17.0	35	143	5.1
53	4.1	33	144	11.1
54	4.5		145	7.4
55	3.9		146	9.6
56	4.0		147	9.7
57	2.3		148	14.6
58	11.1		149	7.6
59	2.5	40	150	9.3
60	12.3		151	4.8
61	10.9		152	6.1
62	3.9		153	4.4
63	6.2		154	4.6
64	4.2		155	1.0
		45		
65	11.7	40	156	7.8
66	4.8		157	7.4
67	4.6		158	9.4
68	7.3		159	3.3
69	2.4		161	10.7
70	12.0		167	6.3
71	4.8	50	169	5.2
72	7.3		176	13.9
73	3.1		181	9.7
74	2.5		182	3.5
75	5.3		185	1.7
76	5.3		186	3.5
77	5.3	55	190	3.7
78	6.7	33	193	2.2
79	3.5		199	11.7
80	4.1		200	3.3
81	4.5		201	2.5
82	5.4		203	8.4
83	5.1		218	26.0
84	4.9	60	222	1.7
85	3.0		228	2.0
86	6.8		229	1.6
88	0.0		230	5.9
	8.8		∠3∪	3.9 2.4
89	5.4		231	2.4
90	3.5	65	233	3.0
91	2.5	65	234	2.9
92	8.2		235	3.0

Example	Inhibition of Cathepsin K IC50 [µM]		tions without NADPH, te [%] remaining test compincubation is reflected by t	pound after NADF
236	1.7		stability). The quenched is	
237	1.9		gation (10,000 g, 5 min)	
238	9.3		assayed by LC-MS/MS for	
239	2.0			
240	9.4		The half-life (t½ INVI	
241	2.5		the semilogarithmic plot	
242	2.5	10	The intrinsic clearance (
244	2.0		considering the amount o	f protein in the incu
245	1.2		· ·	•
247 249	4.5 3.6		CL_INTRINSIC [μl/min.	
250	3.1		[min]*protein conte	nt [mg/ml]))*1,000.
252	3.3		The half-life (t1/2 INVI)	FRO) values of sale
253	5.7	15		
254	4.5		in the metabolic stability	assay described ab
259	3.7		the following table	
260	3.9			
261	3.8		7	TABLE 69
262	2.8	20		
263	2.1	20		In vitro stability
267	4.7			microsome i
268	3.8		Example	t½ [n
269 270	1.7 6.1			. 10
274	3.5		2	>12
276	5.5	25	3 4	>13
278	1.2		5	-1.
281	1.9		6	>13
282	1.8		9	>12
283	3.6		10	>13
285	8.7		12	>13
288	2.2	30	14	>13
293	2.7		15	13
294	2.2		16	>13
295	4.7		19	>13
296 207	>30.0		21	>13
297 298	12.4 17.6		22	>13
300	23.1	35	24 28	11 >13
301	19.5		29	>13
303	22.2		31	- 1.
315	>30.0		33	>13
319	4.5		35	>13
322	1.1	40	40	>13
323	0.9	40	41	>13
324	0.8		42	>13
325	2.3		43	>13
326	1.1		44	>13
328	7.7		47	
330 331	6.6 1.5	45	49	>13
332	6.2	72	50 52	>13
333	2.4		53	>13 >13
343	5.3		54	>13
344	6.2		55	>13
345	9.2		57	9
346	4.0	50	58	>13
348	4.3		62	>13
349	5.0		67	8
358	9.6		71	>12
359	6.3		76	8
WO09074829; Example 56	0.4		77	>13
		55	78 82	13

Determination of Metabolic Stability with Human Liver

The metabolic degradation of the test compound is assayed at 37° C. with pooled human liver microsomes. The final incubation volume of 100 µl per time point contains TRIS 60 buffer pH 7.6 (0.1 M), magnesium chloride (5 mM), microsomal protein (1 mg/ml) and the test compound at a final concentration of 1 µM. Following a short preincubation period at 37° C., the reactions are initiated by addition of beta-nicotinamide adenine dinucleotide phosphate, reduced form 65 (NADPH, 1 mM) and terminated by transferring an aliquot into acetonitrile after different time points. Additionally, the

546

NADPH-independent degradation is monitored in incubations without NADPH, terminated at the last time point. The PH independent ontrol) (metabolic leted by centrifuhe supernatant is arent compound.

ed by the slope of tion-time profile. is calculated by cubation:

f-life

ected compounds bove are listed in

	٦	TABLE 69
20	Example	In vitro stability in human liver microsome incubations t½ [min]
25	2 3 4 5	>125 57 >130 92
30	9 10 12 14 15	>130 >120 >130 >130 >130 >130 130 >130
35	19 21 22 24 28 29	>130 >130 >130 >130 110 >130 >130
40	31 33 35 40 41 42 43	90 >130 >130 >130 >130 >130 >130
45	44 47 49 50 52 53	>130 >130 84 >130 >130 >130 >130
50	54 55 57 58 62 67	>130 >130 >5 >130 95 >130 >130 89
55	71 76 77 78 82 83	>120 84 >130 130 >130 >130
	86 88	>130 >130

98

100

102

>130

>130

>130

>130

>130

>130

>130

>130

>130

547TABLE 69-continued

>130 >130

548 TABLE 69-continued

TABLE 09-continued			TABLE 09-continued		
Example	In vitro stability in human liver microsome incubations t½ [min]	_	Example	In vitro stability in human liver microsome incubations t ¹ / ₂ [min]	
105	>120	_ 5 _	260	N120	
105	>130		260	>130	
106	>130		261	>130	
108	>130		262	>120	
109	>130		263	>130	
110	>130		266	>130	
111	>130	10	267	>130	
112	>130		268	>130	
114	>130		269	>130	
116	>130		270	>130	
117	>130		271	130	
125	>130		272	>130	
132	>130	1.5	274	>125	
136	>130	15	276	130	
139	>130		277	>130	
143	>130		278	>130	
147	>130		281	>130	
152	>130		282	>130	
153					
	110	20	283	>130	
154	>130		284	58	
155	62		285	>130	
156	95		288	>130	
157	>130		289	110	
158	>130		291	>130	
159	>130		292	94	
162	>130	25	293	>130	
166	94		294	>130	
167	>130		295	>130	
169	>130		296	>130	
171	83		298	105	
176	>130		300	>130	
178	>130	30	301	100	
180	>120	30	303	>130	
181	>130		305	91	
182	>130		306	>130	
183	>130		307	>130	
184	>130		308	>130	
185	>130	35	310	>130	
188	97		313	>130	
189	>130		314	>130	
190	>130		315	92	
191	91		319	>130	
192	>130		320	>130	
193	>130	40	321	>130	
194	85	40	322	>130	
196	>130		323	>130	
199	88		324	>130	
200	>130		325	>130	
201	>130		327	>130	
204	>130		328	>130	
205	>130	45	330	>130	
218	>130	-	331	>120	
221	>130		332	100	
221	>130		333	>130	
222	>130		335	>130	
230	>130		341	>130	
231	>130	50	342	>130	
233	>130		343	>130	
235	>130		344	110	
236	>130		345	>130	
238	110		346	>130	
239	>130		347	>130	
240	110	55	348	130	
241	84	33	349	>130	
242	>130		358	>130	
244	92		359	>130	
245	>130		WO09074829; Example 56	120	
247	>130	_	., 005074029, Example 50	120	
		_			
248	>130	60			
249	>130		COMP	NIATIONIC	
250	>130		COMBI	NATIONS	
252	130				
253	>130		The compounds of general	l formula I may be used on th	
254	>130	0	wn or combined with other	active substances of formula	
255	>130				
258	>130	65 a	ccording to the invention.	The compounds of general for	

The compounds of general formula I may be used on their own or combined with other active substances of formula I according to the invention. The compounds of general formula I may optionally also be combined with other pharmacologically active substances. These include, β2-adrenocep-

tor-agonists (short and long-acting), anti-cholinergics (short and long-acting), anti-inflammatory steroids (oral and topical corticosteroids), cromoglycate, methylxanthine, dissociatedglucocorticoidmimetics, PDE3 inhibitors, PDE4-inhibitors, PDE7-inhibitors, LTD4 antagonists, EGFR-inhibitors, Dopamine agonists, PAF antagonists, Lipoxin A4 derivatives, FPRL1 modulators, LTB4-receptor (BLT1, BLT2) antagonists, Histamine H1 receptor antagonists, Histamine H4 receptor antagonists, dual Histamine H1/H3-receptor antagonists, PI3-kinase inhibitors, inhibitors of non-receptor tyrosine kinases as for example LYN, LCK, SYK, ZAP-70, FYN, BTK or ITK, inhibitors of MAP kinases as for example p38, ERK1, ERK2, JNK1, JNK2, JNK3 or SAP, inhibitors of the NF-κB signalling pathway as for example IKK2 kinase inhibitors, iNOS inhibitors, MRP4 inhibitors, leukotriene biosyntheses inhibitors as for example 5-Lipoxygenase (5-LO) inhibitors, cPLA2 inhibitors, Leukotriene A4 Hydrolase inhibitors or FLAP inhibitors, Non-steroidal anti-inflammatory agents (NSAIDs), CRTH2 antagonists, DP1-receptor modulators, Thromboxane receptor antagonists, CCR3 antagonists, CCR⁴ antagonists, CCR1 antagonists, CCR5 20 antagonists, CCR6 antagonists, CCR7 antagonists, CCR8 antagonists, CCR9 antagonists, CCR30 antagonists, CXCR3 antagonists, CXCR⁴ antagonists, CXCR² antagonists, CXCR¹ antagonists, CXCR5 antagonists, CXCR6 antagonists, CX3CR³ antagonists, Neurokinin (NK1, NK2) antagonists, Sphingosine 1-Phosphate receptor modulators, Sphingosine 1 phosphate lyase inhibitors, Adenosine receptor modulators as for example A2a-agonists, modulators of purinergic receptors as for example P2X7 inhibitors, Histone Deacetylase (HDAC) activators, Bradykinin (BK1, BK2) antagonists, TACE inhibitors, PPAR gamma modulators, Rho-kinase inhibitors, interleukin 1-beta converting enzyme (ICE) inhibitors, Toll-Like receptor (TLR) modulators, HMG-CoA reductase inhibitors, VLA-4 antagonists, ICAM-1 inhibitors, SHIP agonists, GABAa receptor antagonist, ENaC-inhibitors, Prostasin-inhibitors, Matriptase-in- 35 hibitors, Melanocortin receptor (MC1R, MC2R, MC3R, MC4R, MC5R) modulators, CGRP antagonists, Endothelin antagonists, TNFa antagonists, anti-TNF antibodies, anti-GM-CSF antibodies, anti-CD46 antibodies, anti-IL-1 antibodies, anti-IL-2 antibodies, anti-IL-4 antibodies, anti-IL-5 40 antibodies, anti-IL-13 antibodies, anti-IL-4/IL-13 antibodies, anti-TSLP antibodies, anti-OX40 antibodies, mucoregulators, immunotherapeutic agents, compounds against swelling of the airways, compounds against cough, VEGF inhibitors, NE-inhibitors, MMP9 inhibitors, MMP12 inhibitors, but also 45 combinations of two or three active substances.

Preferred are betamimetics, anticholinergics, corticosteroids, PDE4-inhibitors, LTD4-antagonists, EGFR-inhibitors, CRTH2 inhibitors, 5-LO-inhibitors, Histamine receptor antagonists and SYK-inhibitors, NE-inhibitors, MMP9 50 inhibitors, MMP12 inhibitors, but also combinations of two or three active substances, i.e.:

Betamimetics with corticosteroids, PDE4-inhibitors, CRTH2-inhibitors or LTD4-antagonists,

Anticholinergics with betamimetics, corticosteroids, 55 PDE4-inhibitors, CRTH2-inhibitors or LTD4-antagonists,

Corticosteroids with PDE4-inhibitors, CRTH2-inhibitors or LTD4-antagonists

PDE4-inhibitors with CRTH2-inhibitors or LTD4-antago- 60 nists

CRTH2-inhibitors with LTD4-antagonists.

INDICATIONS

The compounds of the invention and their pharmaceutically acceptable salts have activity as pharmaceuticals, in

550

particular as inhibitors of dipeptidyl peptidase I activity, and thus may be used in the treatment of:

1. respiratory tract: obstructive diseases of the airways including: asthma, including bronchial, allergic, intrinsic, extrinsic, exercise-induced, drug-induced (including aspirin and NSAID-induced) and dust-induced asthma, both intermittent and persistent and of all severities, and other causes of airway hyper-responsiveness; chronic obstructive pulmonary disease (COPD); bronchitis, including infectious and eosinophilic bronchitis; emphysema; alpha1-antitrypsin deficiency, bronchiectasis; cystic fibrosis; sarcoidosis; farmer's lung and related diseases; hypersensitivity pneumonitis; lung fibrosis, including cryptogenic fibrosing alveolitis, idiopathic interstitial pneumonias, fibrosis complicating anti-neoplastic therapy and chronic infection, including tuberculosis and aspergillosis and other fungal infections; complications of lung transplantation; vasculitic and thrombotic disorders of the lung vasculature, polyangiitis (Wegener Granulomatosis) and pulmonary hypertension; antitussive activity including treatment of chronic cough associated with inflammatory and secretory conditions of the airways, and iatrogenic cough; acute and chronic rhinitis including rhinitis medicamentosa, and vasomotor rhinitis; perennial and seasonal allergic rhinitis including rhinitis nervosa (hay fever); nasal polyposis; acute viral infection including the common cold, and infection due to respiratory syncytial virus, influenza, coronavirus (including SARS) and adenovirus;

2. skin: psoriasis, atopic dermatitis, contact dermatitis or other eczematous dermatoses, and delayed-type hypersensitivity reactions; phyto- and photodermatitis; seborrhoeic dermatitis, dermatitis herpetiformis, lichen planus, lichen sclerosus et atrophica, pyoderma gangrenosum, skin sarcoid, discoid lupus erythematosus, pemphigus, pemphigoid, epidermolysis bullosa, urticaria, angioedema, vasculitides, toxic erythemas, cutaneous eosinophilias, alopecia areata, malepattern baldness, Sweet's syndrome, Weber-Christian syndrome, erythema multiforme; cellulitis, both infective and non-infective; panniculitis; cutaneous lymphomas, non-melanoma skin cancer and other dysplastic lesions; druginduced disorders including fixed drug eruptions;

3. eyes: blepharitis; conjunctivitis, including perennial and vernal allergic conjunctivitis; iritis; anterior and posterior uveitis; choroiditis; autoimmune, degenerative or inflammatory disorders affecting the retina; ophthalmitis including sympathetic ophthalmitis; sarcoidosis; infections including viral, fungal, and bacterial;

4. genitourinary: nephritis including interstitial and glomerulonephritis; nephrotic syndrome; cystitis including acute and chronic (interstitial) cystitis and Hunner's ulcer; acute and chronic urethritis, prostatitis, epididymitis, oophoritis and salpingitis; vulvo-vaginitis; Peyronie's disease; erectile dysfunction (both male and female);

5. allograft rejection: acute and chronic following, for example, transplantation of kidney, heart, liver, lung, bone marrow, skin or cornea or following blood transfusion; or chronic graft versus host disease;

6. other auto-immune and allergic disorders including rheumatoid arthritis, irritable bowel syndrome, systemic lupus erythematosus, multiple sclerosis, Hashimoto's thyroiditis, Graves' disease, Addison's disease, diabetes mellitus, idiopathic thrombocytopaenic purpura, eosinophilic fasciitis, hyper-IgE syndrome, antiphospholipid syndrome and Sazary syndrome;

7. oncology: treatment of common cancers including prostate, breast, lung, ovarian, pancreatic, bowel and colon, stomach, skin and brain tumors and malignancies affecting the bone marrow (including the leukaemias) and lymphoprolif-

erative systems, such as Hodgkin's and non-Hodgkin's lymphoma; including the prevention and treatment of metastatic disease and tumour recurrences, and paraneoplastic syndromes; and,

8. infectious diseases: virus diseases such as genital warts, 5 common warts, plantar warts, hepatitis B, hepatitis C, herpes simplex virus, molluscum contagiosum, variola, human immunodeficiency virus (HIV), human papilloma virus (HPV), cytomegalovirus (CMV), varicella zoster virus (VZV), rhinovirus, adenovirus, coronavirus, influenza, parainfluenza; bacterial diseases such as tuberculosis and *mycobacterium avium*, leprosy; other infectious diseases, such as fungal diseases, chlamydia, *Candida, aspergillus*, cryptococcal meningitis, *Pneumocystis carnii*, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection and leishmaniasis.

9. pain: Recent literature data from Cathepsin C-deficient mice point to a modulatory role of Cathepsin C in pain sensation. Accordingly, inhibitors of Cathepsin C may also be useful in the clinical setting of various form of chronic pain, e.g. inflammatory or neuropathic pain.

For treatment of the above-described diseases and conditions, a therapeutically effective dose will generally be in the range from about 0.01 mg to about 100 mg/kg of body weight per dosage of a compound of the invention; preferably, from about 0.1 mg to about 20 mg/kg of body weight per dosage.

For Example, for administration to a 70 kg person, the dosage range would be from about 0.7 mg to about 7000 mg per dosage of a compound of the invention, preferably from about 7.0 mg to about 1400 mg per dosage. Some degree of routine dose optimization may be required to determine an optimal dosing level and pattern. The active ingredient may be administered from 1 to 6 times a day.

The actual pharmaceutically effective amount or therapeutic dosage will of course depend on factors known by those skilled in the art such as age and weight of the patient, route of administration and severity of disease. In any case the active ingredient will be administered at dosages and in a manner which allows a pharmaceutically effective amount to be delivered based upon patient's unique condition.

We claim: 40

1. A compound of formula 1

R² is selected from

wherein $$^{55}\rm R^{1}$ is independently selected from H, $\rm C_{1-6}\mbox{-}alkyl\mbox{-}, halogen,$

HO—, C_{1-6} -alkyl-O—, H_2N —, C_{1-6} -alkyl-HN— (C_{1-6} -alkyl) $_2N$ — and C_{1-6} -alkyl-C(O)HN—; or two R^1 are together C_{1-4} -alkylene;

 $\begin{pmatrix}
O \\

\end{pmatrix}, \quad
\begin{pmatrix}
S \\

\end{pmatrix}, \quad
\begin{pmatrix}
S \\

N
\end{pmatrix}, \quad
\begin{pmatrix}
H \\
N
\end{pmatrix}$ 65

60

552

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2,1}; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2,2}; and

 $\begin{array}{llll} R^{2.1} & \text{is independently selected from H, halogen, NC},\\ O=, & HO-, & H-A-, & H-A-C_{1.4}-alkylene-, & R^{2.1.1}-A-,\\ & C_{1.4}-alkyl-A-, & C_{3-6}-cycloalkyl-A-, & C_{1.4}-haloalkyl-A-, & R^{2.1.1}-C_{1.4}-alkylene-A-, & C_{1.4}-alkylene-, & C_{1.4}-alkylene-, & C_{1.4}-alkylene-, & C_{1.4}-alkylene-, & C_{1.4}-alkylene-, & C_{1.4}-alkylene-, & R^{2.1.1}-C_{1.4}-alkylene-, & R^{2.1.1}-A-C_{1.4}-alkylene-, & HO-C_{1.4}-alkylene-A-C_{1.4}-alkylene-, & HO-C_{1.4}-alkylene-A-C_{1.4}-alkylene-, & C_{1.4}-alkylene-A-C_{1.4}-alkylene-, & C_{1.4}-alkylene-A-C_{1.4}-alkylene-, & C_{1.4}-alkylene-, & C_{1.$

aryl-; optionally substituted independently from each other with one, two or three R^{2.1.1.1};

C₅₋₁₀-heteroaryl-; containing one, two, three or four heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

C₅₋₁₀-heterocyclyl-; containing one, two, three or four heteroatoms independently selected from S, S(O), S(O)₂, O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three or four R^{2,1,1,1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2,1,1,2};

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O=, C_{1-4} -alkyl-, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-, C_{1-6} -cycloalkyl-; and

 $R^{2.1.1.2}$ is independently selected from O $C_{1.4}$ -alkyl-, $C_{1.4}$ -haloalkyl-; C_{3-6} -cycloalkyl-, $C_{1.4}$ -alkyl-O—, $C_{1.4}$ -alkyl-, H(O)C—, $C_{1.4}$ -alkyl-(O)C—, tetrahydronulymethyl- and tetrahydropyranylmethyl-; and

R^{2.2} is independently selected from H-A-C_{1.4}-alkylene-, C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-A- C_{1-4} -alkylene-, C_{3-6} cycloalkyl-A- C_{1-4} -alkylene-, C_{1-4} -haloalkyl-A- C_{1-4} -alkylene-, $R^{2.1.1}$ -A- C_{1-4} -alkylene-, C_{1-4} -alkylene- $S(O)_2$ — and C_{1-4} -alkyl-C(O)—, $R^{2.1.1}$ -A-; $R^{2.3}$ and R^4 are together selected from -O, and R' are together selected from -O, -S, $-N(R^{2,3,1})$, $-C(O)N(R^{2,3,1})$, $-N(R^{2,3,1})C$ (O), $-S(O)_2N(R^{2,3,1})$, $-N(R^{2,3,1})S(O)_2$, -C(O)O, -C(O), -C(O), -C(O), -S(O), $-C_1N_1$, $-C_1N_2$, $-C_2N_2N_2N_3$, and $-N_1(R^{2.3.1})C_1(R^{2.3.2})_2$ and $-C_1$ -alkylene-; $R^{2.3.1}$ is independently selected from H, C_{1-6} -alkyl-, C_{1-6} -haloalkyl-; C_{3-8} -cycloalkyl-, $HO-C_{1-4}$ -alky- 15 lene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2N - C_{1-4} -alkylene-, $(C_{1-4}$ -alkyl)HN— C_{1-4} -alkylene-and $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-; $R^{2.3.2}$ is independently selected from H, C_{1-6} -alkyl-, C_{1-6} -haloalkyl-; C_{3-8} -cycloalkyl-, $HO-C_{1-4}$ -alky- 20 lene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2N -C₁₋₄-alkylene-, (C₁₋₄-alkyl)HN—C₁₋₄-alkyleneand $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-; $R^{2.4}$ and R^4 are together selected from $-N(R^{2.4.1})$ - $-C(O)N(R^{2.4.1})$, $-N(R^{2.4.1})C(O)$, $-S(O)_2N$ 25 $R^{2.4.1}$)—, $-N(R^{2.4.1})S(O)_2$ —, -C(O)—, -S(O)—, $-C(R^{2.4.2})$ — $-C(R^{2.4.2})$ —--C=N-, -N=C-, $-C(R^{2.4.2})_2N(R^{2.4.1})-$ and $-N(R^{2.4.1})C(R^{2.4.2})_2$ —, — C_{1-4} -alkylene-; and $R^{2.4.1}$ is independently selected from H, C_{1-6} -alkyl-, 30 C_{1-6} -haloalkyl-; C_{3-8} -cycloalkyl-, $HO-C_{1-4}$ -alkylene-, (C₁₋₄-alkyl)-O—C₁₋₄-alkylene-, H₂N- $C_{1.4}$ -alkylene-, $(C_{1.4}$ -alkyl)HN— $C_{1.4}$ -alkylene-and $(C_{1.4}$ -alkyl)₂N— $C_{1.4}$ -alkylene-; $R^{2.4.2}$ is independently selected from H, C_{1-6} -alkyl-, 35 C₁₋₆-haloalkyl-; C₃₋₈-cycloalkyl-, HO—C₁₋₄-alkylene-, (C₁₋₄-alkyl)-O—C₁₋₄-alkylene-, H₂N- C_{1-4} -alkylene-, $(C_{1-4}$ -alkyl)HN— C_{1-4} -alkyleneand $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-; $R^{2.5}$ and R^4 are together selected from $-C(R^{2.5.1})$ =, 40 $=C(R^{2.5.1})-, -N=;$ and $R^{2.5.1}$ is independently selected from H, C_{1-6} -alkyl-, C_{1-6} -haloalkyl-; C_{3-8} -cycloalkyl-, $HO-C_{1-4}$ -alkylene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2N — C_{1-4} -alkylene-, $(C_{1-4}$ -alkyl)HN $-C_{1-4}$ -alkylene- 45 and $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-; R^3 is H or F: R⁴ is independently selected from F, Cl, phenyl-H₂C— O—, HO—, C_{1-6} -alkyl-, C_{1-6} -haloalkyl-, C_{3-8} -cycloalkyl-, C_{1-6} -alkyl-O—, C_{1-6} -haloalkyl-O—, C_{1-6} - 50 alkyl-HN—, $(C_{1-6}$ -alkyl)₂-HN—, C_{1-6} -alkyl-HN— C_{1-4} -alkylene- and $(C_{1-6}$ -alkyl)₂-HN— C_{1-4} -alkylene-; A is a bond or independently selected from —O—, —S—, $-N(R^5)C(O) -N(R^5)$ —, $-C(O)N(R^5)$ —, $-S(O)_2N(R^5)$, $-N(R^5)S(O)_2$, $-S(O)(=NR^5)$ $N(R^5)$ —, $-N(R^5)(NR^5)$ —) S(O)—, $-S(=NR^5)_2$ —N (R^5) —, $-N(R^5)(NR^5)=_2S$ —, $-C(R^5)=_C(R^5)$ —, C = C, -C(O)O, -OC(O), -C(O) $-S(=NR^5)-, -S(O)$ $-S(O)-, -S(O)_2-,$ $(=NR^5)$ —, $-S(=NR^5)_2$ —, $-(R^5)(O)S=N$ —, 60 $-(R^5N =)(O)S -, and -N = (O)(R^5)S -;$ R5 is independently selected from H, C1-6-alkyl- and NC—:

554 3. The compound of formula 1, according to claim 1, wherein R⁴ is R^{4.a} and R^{4.a} is F, Cl, phenyl-H₂C—O—, HO—, C₁₋₄-alkyl-, C₁₋₄-haloalkyl-, C₃₋₆-cycloalkyl-, C₁₋₄alkyl-O— and C₁₋₄-haloalkyl-O— 4. The compound of formula 1, according to claim 1, wherein R^4 is $R^{4.b}$ and $R^{4.b}$ is F. 5. The compound of formula 1, according to claim 1, wherein A is A^a and A^a is a bond or independently selected from —O—, —C(O)N(R⁵)—, —N(R⁵) \bar{C} (O)—, —S(O)₂N (R^5) —, $-N(R^5)S(O)_2$ —, -C(O)O—, -OC(O)—, C(O), S(O), C(O), C(O)S—, -N=(O)(R^5)S— and R^5 is $R^{5.a}$ and $R^{5.a}$ is independently selected from H, C₁₋₄-alkyl- and NC-. 6. The compound of formula 1, according to claim 1, wherein R^2 is $R^{2.1}$ and R^{2.1} is R^{2.1.a} and R^{2.1.a} is selected from H, halogen, NC—, O=, HO-, H-A-, H-A- C_{1-4} -alkylene-, $R^{2.1.1}$ -A-, C_{1-4} alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} -haloalkyl-A-, $R^{2.1.1}$ - C_{1-4} -alkylene-A-, C_{1-4} -alkylene-, $\begin{array}{lll} C_{3\text{-}6}\text{-cycloalkyl-A-C}_{1\text{-}4}\text{-alkylene-}, & C_{1\text{-}4}\text{-haloalkyl-A-C}_{1\text{-}4}\text{-alkylene-}, & R^{2\text{-}1,1} - C_{1\text{-}4}\text{-alkylene-A-C}_{1\text{-}4}\text{-alkylene-} \end{array}$ lene-, R^{2.1.1}-A-C₁₋₄-alkylene-, HO—C₁₋₄-alkylene-A-,
$$\label{eq:hocondition} \begin{split} \text{HO---} \mathbf{C}_{1\text{--}4}\text{-alkylene--}, \ \ \mathbf{C}_{1\text{--}4}\text{-alkyl-O---} \end{split}$$
 C_{1-4} -alkylene-A- and C_{1-4} -alkyl-O— C_{1-4} -alkylene-A- $C_{1.4}$ -alkylene-; and $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from aryl-, optionally substituted independently from each other with one, two or three residues independently selected from $R^{2.1.1.1}$; C_{5-10} -heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and C_{5-10} -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), $S(O)_2$, O and N and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and R^{2.1.1.1} is independently selected from halogen, HO—, O=, C₁₋₄-alkyl-, C₁₋₄-haloalkyl-, C₁₋₄-haloalkyl-O— and C₃₋₆-cycloalkyl-; and $R^{2.1.1.2}$ is independently selected from O=, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O— C_{1-4} -alkyl-, H(O)C—, C_{1-4} -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl. 7. The compound of formula 1, according to claim 1, so wherein R^2 is $R^{2.d}$ and $R^{2.d}$ is phenyl; optionally substituted with one, two or three residues independently selected from $R^{2.1}$ is $R^{2.1.a}$ and $R^{2.1.a}$ is selected from H, halogen, NC—, O=, HO-, H-A-, H-A-C₁₋₄-alkylene-, R^{2.1.1}-A-, C₁₋₄alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} -haloalkyl-A-, $R^{2.1.1}$ — C_{1-4} -alkylene-A-, C_{1-4} -alkyl-A- C_{1-4} -alkylene-, $\begin{array}{lll} C_{3\text{-}6}\text{-}cycloalkyl-A-C_{1\text{-}4}\text{-}alkylene-,} & C_{1\text{-}4}\text{-}haloalkyl-A-C_{1\text{-}4}\text{-}alkylene-,} & C_{1\text{-}4}\text{-}alkylene-A-C_{1\text{-}4}\text{-}alkylene-A-C_{1\text{-}4}\text{-}alkylene-A-,} \\ lene-, & R^{2\text{-}1,1}\text{-}A-C_{1\text{-}4}\text{-}alkylene-,} & HO-C_{1\text{-}4}\text{-}alkylene-A-,} \end{array}$

HO—C₁₋₄-alkylene-A-C₁₋₄-alkylene-, C₁₋₄-alkyl-O—

 C_{1-4} -alkylene-A- and C_{1-4} -alkyl-O— C_{1-4} -alkylene-A-

C₁₋₄-alkylene-; and

2. The compound of formula 1, according to claim **1**, 65 wherein R^1 is $R^{1.a}$ and $R^{1.a}$ is independently selected from H, $C_{1.4}$ -alkyl-, F and HO—.

or a salt thereof.

55

555

 $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from $R^{2.1.1.1}$:

C₅₋₁₀-heteroaryl-, containing one, two, three or four 5 heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

 C_{5-10} -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), $S(O)_2$, O and N and the ring is fully or partially 15 saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, 20 two or three R^{2.1.1.2}; and

R^{2.1.1.1} is independently selected from halogen, HO—, O=, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-, C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and

 $R^{2.1.1.2}$ is independently selected from O=, C_{1-4} -alkyl-, 25 C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O— C_{1-4} -alkyl-, H(O)C—, C_{1-4} -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl.

8. The compound of formula 1, according to claim 1, wherein R^2 is $R^{2,j}$ and $R^{2,j}$ is selected from

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or 60 three R^{2.1}, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2,2}; and

R^{2.1} is R^{2.1.a} and R^{2.1.a} is selected from H, halogen, NC—, O=, HO-, H-A-, H-A- C_{1-4} -alkylene-, $R^{2.1.1}$ -A-, C_{1-4} - 65 alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} -haloalkyl-A-, $R^{2.1.1} \hspace{-0.1cm} - \hspace{-0.1cm} C_{1\text{--}4} \text{-alkylene-A-, } C_{1\text{--}4} \text{-alkyl-A-C}_{1\text{--}4} \text{-alkylene-,}$

556

 $\begin{array}{lll} C_{\text{3-6}}\text{-cycloalkyl-A-C}_{\text{1.4}}\text{-alkylene-}, & C_{\text{1.4}}\text{-haloalkyl-A-C}_{\text{1.4}}\text{-alkylene-}, & R^{2.1.1}\text{--}C_{\text{1.4}}\text{-alkylene-A-C}_{\text{1-4}}\text{-alkylene-}. \end{array}$ lene-, $R^{2.1.1}$ -A- C_{1-4} -alkylene-, HO— C_{1-4} -alkylene-A-, HO— C_{1-4} -alkylene-A- C_{1-4} -alkylene-, C_{1-4} -alkyl-O— C_{1-4} -alkylene-A- and C_{1-4} -alkyl-O— C_{1-4} -alkylene-A- C_{1-4} -alkylene-; and $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-; optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

 C_{5-10} -heteroaryl-; containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

C₅₋₁₀-heterocyclyl-; containing one, two, three or four heteroatoms selected independently from S. S(O), S(O)₂, O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three or four R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2};

R^{2.1.1.1} is independently selected from halogen, HO—, O=, C_{1-4} -alkyl, C_{1-4} -alkyl-O=, C_{1-4} -haloalkyl-,

 C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and $R^{2.1.1.2}$ is independently selected from O—, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O— C_{1-4} -alkyl-, H(O)C—, C_{1-4} -alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl-;

R^{2.2} is R^{2.2.a} and R^{2.2.a} is independently selected from $\label{eq:hamma-condition} \mbox{H-A-C}_{\mbox{1-4}-} \mbox{alkylene-}, \quad \mbox{C_{3-6}$-cycloalkyl-}, \quad \mbox{C_{1-4}$-alkyl-A-}$

9. The compound of formula 1, according to claim 1, wherein R^2 is $R^{2.m}$ and $R^{2.m}$ is together with R^4 and two adjacent carbon atoms of the phenyl ring a 5- or 6-membered aryl or heteroaryl, containing one, two or three heteroatoms 45 independently selected from S, S(O), S(O)2, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $\mathbb{R}^{2.1}$. wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted

with one, two or three $R^{2.2}$; and $R^{2.1}$ is $R^{2.1.a}$ and $R^{2.1.a}$ is selected from H, halogen, NC—, $\begin{array}{lll} C_{3\text{-}6}\text{-}cycloalkyl\text{-}A\text{-}C_{1\text{-}4}\text{-}alkylene-,} & C_{1\text{-}4}\text{-}haloalkyl\text{-}A\text{-}\\ C_{1\text{-}4}\text{-}alkylene-,} & R^{2\text{-}1\text{-}1}\text{--}C_{1\text{-}4}\text{-}alkylene\text{-}A\text{-}C_{1\text{-}4}\text{-}alky-} \end{array}$ lene-, $R^{2.1.1}$ -A- C_{1-4} -alkylene-, HO— C_{1-4} -alkylene-A-, HO— $C_{1.4}$ -alkylene-A- $C_{1.4}$ -alkylene-, $C_{1.4}$ -alkylene-A- and $C_{1.4}$ -alkylene-A- $C_{1.4}$ -alkylene-; and $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-; optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

C₅₋₁₀-heteroaryl-; containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring

558

are optionally and independently from each other substituted with one, two or three R^{2,1,1,1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2.1.1.2}$; and

C₅₋₁₀-heterocyclyl-; containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three or four R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2};

R^{2.1.1.1} is independently selected from halogen, HO—, 15 O=, $C_{1.4}$ -alkyl, $C_{1.4}$ -alkyl-O—, $C_{1.4}$ -haloalkyl-, $C_{1.4}$ -haloalkyl-O— and C_{3-6} -cycloalkyl-; and $R^{2.1.1.2}$ is independently selected from O=, $C_{1.4}$ -alkyl-,

 C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O-C₁₋₄-alkyl-, H(O)C—, C₁₋₄-alkyl-(O)C—, tetrahy- 20 drofuranylmethyl- and tetrahydropyranylmethyl-;

 $R^{2.2}$ is $R^{2.2.\alpha}$ and $R^{2.2.\alpha}$ is independently selected from $\label{eq:harmonic} \mbox{H-A-C}_{\mbox{1-4$}}\mbox{-alkylene-}, \quad \mbox{C_{3-6$}$-cycloalkyl-}, \quad \mbox{C_{1-4$}$-alkyl-A-cycloalkyl-}$ $\begin{array}{ll} C_{1\text{--}4}\text{-alkylene-}, C_{3\text{--}6}\text{-cycloalkyl-A-C}_{1\text{--}4}\text{-alkylene-}, C_{1\text{--}4}\text{-}25\\ \text{haloalkyl-A-C}_{1\text{--}4}\text{-alkylene-}, & R^{2\text{-}1,1}\text{-}A\text{-}C_{1\text{--}4}\text{-alkylene-}, \end{array}$ C_{1-4} -alkyl- $S(O)_2$ —, C_{1-4} -alkyl-C(O)—, and $R^{2.1.1}$ -A-.

10. The compound of formula 1, according to claim 1, wherein R^2 is $R^{2,n}$ and $R^{2,n}$ is selected from aryl-, pyrazole, thiophene, furane; wherein carbon atoms of the ring are 30 optionally and independently from each other substituted with one, two, three or four R^{2.1}, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2.2}; wherein a carbon atom of the ring is optionally substituted with one R^{2.3}; a nitrogen 35 atom of the ring is optionally substituted with one $R^{2.4}$; or $R^{2.n}$ is selected from

wherein carbon atoms of the ring are optionally and inde- 55 pendently from each other substituted with one, two, three or four R^{2.1}, wherein possibly available nitrogen atoms of the ring are optionally and independently from each other substituted with R^{2.2}; wherein a carbon atom of the ring is optionally substituted with one R^{2.3} or one 60 R^{2.5}; a nitrogen atom of the ring is optionally substituted with one $R^{2.4}$; and

 $R^{2.1}$ is $R^{2.1.a}$ and $R^{2.1.a}$ is selected from H, halogen, NC—, O=, HO-, H-A-, H-A-C₁₋₄-alkylene-, R^{2.1.1}-A-, C₁₋₄alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} -haloalkyl-A-, 65 $R^{2.1.1}$ — C_{1-4} -alkylene-A-, C_{1-4} -alkyl-A- C_{1-4} -alkylene-, C_{3-6} -cycloalkyl-A- C_{1-4} -alkylene-, C_{1-4} -haloalkyl-A-

 $R^{2.1.1}$ — C_{1-4} -alkylene-A- C_{1-4} -alky- C_{1-4} -alkylene-, lene-, $R^{2.1.1}$ -A- C_{1-4} -alkylene-, HO— C_{1-4} -alkylene-A-, HO— C_{1-4} -alkylene-A- C_{1-4} -alkylene-, C_{1-4} -alkyl-O— C₁₋₄-alkylene-A- and C₁₋₄-alkyl-O—C₁₋₄-alkylene-A- C_{1-4} -alkylene-; and $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-; optionally substituted independently from each other with one, two or three residues independently selected from $R^{2.1.1.1}$:

C₅₋₁₀-heteroaryl-; containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2}; and

C₅₋₁₀-heterocyclyl-; containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three or four R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R2.1.1.2;

R^{2.1.1.1} is independently selected from halogen, HO--, O=, C₁₋₄-alkyl, C₁₋₄-alkyl-O-, C₁₋₄-haloalkyl-,

 C_{1-4} -haloalkyl-O— and C_{3-6} -cycloalkyl-; and $R^{2.1.1.2}$ is independently selected from O—, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, C_{1-4} -alkyl-O— C₁₋₄-alkyl-, H(O)C—, C₁₋₄-alkyl-(O)C—, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl-;

 $R^{2.2}$ is $R^{2.2.a}$ and $R^{2.2.a}$ is independently selected from H-A-C₁₋₄-alkylene-, C₃₋₆-cycloalkyl-, C₁₋₄-alkyl-A-

 $R^{2.3}$ is together with R^4 a group $R^{2.3.a}$ and $R^{2.3.a}$ is selected is together with K 'a group K '' and K is selected from -O, -S, $-N(R^{2.3.1})$, $-C(O)N(R^{2.3.1})$, $-N(R^{2.3.1})$ C(O, $-S(O)_2N(R^{2.3.1})$, $-N(R^{2.3.1})$ S(O)₂, -C(O)O, -C(O), -C($-N(R^{2.3.1})C(R^{2.3.2})_2$ — and $-C_{1-4}$ -alkylene-; and

R^{2.3.1} is independently selected from H, C₁₋₄-alkyl-, C₁₋₄-haloalkyl-; C₃₋₆-cycloalkyl-, HO—C₁₋₄-alkylene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2 N— C_{1-4} alkylene-, $(C_{1.4}$ -alkyl)HN— $C_{1.4}$ -alkylene- and $(C_{1.4}$ -alkyl)₂N— $C_{1.4}$ -alkylene-; $(R^{2.3.2}$ is independently selected from H, $C_{1.4}$ -alkyl-,

 $C_{1.4}$ -haloalkyl-; $C_{3.6}$ -cycloalkyl-, HO— $C_{1.4}$ -alkylene-, ($C_{1.4}$ -alkyl)-O— $C_{1.4}$ -alkylene-, H2N— $C_{1.4}$ alkylene-, $(C_{1-4}$ -alkyl)HN $-C_{1-4}$ -alkylene- and

alkylene-, $(C_{1.4}$ -alkyl)HIN— $C_{1.4}$ -alkylene- and $(C_{1.4}$ -alkyl) $_2$ N— $C_{1.4}$ -alkylene-; and $R^{2.4}$ is together with R^4 a group $R^{2.4.a}$ and $R^{2.4.a}$ is selected from — $N(R^{2.4.1})$ —, — $C(O)N(R^{2.4.1})$ —, — $N(R^{2.4.1})C(O)$ —, — $S(O)_2N(R^{2.4.1})$ —, — $N(R^{2.4.1})S(O)_2$ —, —C(O)—, —S(O)—, —S(O)—, — $C(R^{2.4.2})$ — $C(R^{2.4.2})$ —, — $C(R^{2.4.2})$ — $C(R^{2.4.2})$ —, — $C(R^{2.4.2})$ —, — $C(R^{2.4.2})$ —, — $C(R^{2.4.2})$ —, and — $C(R^{2.4.1})C(R^{2.4.2})$ —, — $C(R^{2.4.2})$ —, and — $C(R^{2.4.1})C(R^{2.4.2})$ —, — $C(R^{2.4.2})$ —, — $C(R^{2.4.2})$

 $R^{2.4.1}$ is independently selected from H, C_{1-4} -alkyl-, C₁₋₄-haloalkyl-; C₃₋₆-cycloalkyl-, HO—C₁₋₄-alky-

45

50

60

(g1)

lene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2 N— C_{1-4} alkylene-, $(C_{1-4}$ -alkyl)HN $-C_{1-4}$ -alkylene- and $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-;

 $R^{2.4.2}$ is independently selected from H, $\mathrm{C}_{1\text{--}4}\text{-}alkyl\text{-},$ C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, $HO-C_{1-4}$ -alkylene-, $(C_{1-4}$ -alkyl)-O— C_{1-4} -alkylene-, H_2 N— C_{1-4} alkylene-, $(C_{1-4}$ -alkyl)HN $-C_{1-4}$ -alkylene- and $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-; and

 $R^{2.5}$ is together with R^4 a group $R^{2.5.a}$ and $R^{2.5.a}$ is selected 10 from $-C(R^{2.5.1})$ =, $-C(R^{2.5.1})$, and -N=; and

 $R^{2.5.1}$ is independently selected from H, C_{1-4} -alkyl-, C_{1-4} -haloalkyl-; C_{3-6} -cycloalkyl-, $HO-C_{1-4}$ -alkylene-, (C_{1-4} -alkyl)-O— C_{1-4} -alkylene-, H_2 N— C_{1-4} alkylene-, $(C_{1-4}$ -alkyl)HN— C_{1-4} -alkylene- and $(C_{1-4}$ -alkyl)₂N— C_{1-4} -alkylene-.

11. The compound of formula 1 according to claim 1, wherein

 R^1 is $R^{1.b}$ and $R^{1.b}$ is H;

 R^2 is $R^{2,q}$ and $R^{2,q}$ is selected from among the substituents (a1) to (q1)

25 (a1)

(b1)

(c1) 35

(d1) 40

(e1)

(f1)

(h1)

(i1) 65 -continued (j1)

(k1)

(11)

(m1)

(n1)

(01)

(p1)

(q1)

wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two, three or four R^{2.1}; wherein possibly available nitrogen atoms of the ring are optionally and independently from each other are substituted with $R^{2.2}$;

or a salt thereof.

12. The compound of formula 1 according to claim 1, wherein R^2 is $R^{\bar{2}.s}$ and $R^{2.s}$ is Phenyl- $R^{2.3}$,

wherein the phenyl ring is optionally substituted with one

or two residues $R^{2.1}$, wherein $R^{2.1}$ is $R^{2.1.a}$ and $R^{2.1.a}$ is selected from H, halogen, NC-, O=, HO-, H-A-, H-A-C₁₋₄-alkylene-, $R^{2.1.1}$ -A-, C_{1-4} -alkyl-A-, C_{3-6} -cycloalkyl-A-, C_{1-4} haloalkyl-A-, $R^{2.1.1}$ — C_{1-4} -alkylene-A-, C_{1-4} -alkyl-HO—C₁₋₄-alkylene-A-, HO—C₁₋₄-alkylene-A-C₁₋₄alkylene-, C_{1-4} -alkyl-O— C_{1-4} -alkylene-A- and C_{1-4} alkyl-O— C_{1-4} -alkylene-A- C_{1-4} -alkylene-; and

 $R^{2.1.1}$ is $R^{2.1.1.a}$ and $R^{2.1.1.a}$ is selected from

aryl-, optionally substituted independently from each other with one, two or three residues independently selected from R^{2.1.1.1};

C₅₋₁₀-heteroaryl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.1}; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three R^{2.1.1.2};

 $C_{5\text{-}10}$ -heterocyclyl-, containing one, two, three or four heteroatoms selected independently from S, S(O), S(O)₂, O and N, and the ring is fully or partially saturated, wherein carbon atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1.1}$; wherein nitrogen atoms of the ring are optionally and independently from each other substituted with one, two or three $R^{2\text{-}1.1.1}$; and

 $R^{2.1.1.1}$ is independently selected from halogen, HO—, O—, $C_{1.4}$ -alkyl-, $C_{1.4}$ -alkyl-O—, $C_{1.4}$ -haloalkyl-O— and C_{3-6} -cycloalkyl-; $_{25}$ and

 $\begin{array}{lll} R^{2.1.1.2} \text{ is independently selected from O=, C$_{1.4}$-} \\ \text{alkyl-, C$_{1.4}$-haloalkyl-; C$_{3.6}$-cycloalkyl-, C$_{1.4}$-} \\ \text{alkyl-O-C$_{1.4}$-alkyl-, H(O)C-, C$_{1.4}$-alkyl-(O) C-, tetrahydrofuranylmethyl- and tetrahydropyranylmethyl;} \end{array}$

and R^{2.s} and R⁴ together denote a group (r1),

*,
HN *
40

wherein the N-atom is optionally substituted with $_{45}$ — $R^{2.2}$, wherein

 $R^{2.2}$ is independently selected from H-A-C $_{1-6}$ -alkylene-, C_{3-8} -cycloalkyl-, C_{1-6} -alkyl-A-C $_{1-6}$ -alkylene-, C_{3-8} -cycloalkyl-A-C $_{1-6}$ -alkylene-, C_{1-6} -haloalkyl-A-C $_{1-6}$ -alkylene-, $R^{2.1.1}$ -A-C $_{1-6}$ -alkylene-, C_{1-6} -

13. A compound of formula 1'

 $(\mathbb{R}^{1})_{2} \xrightarrow{H}_{N} \mathbb{R}^{3}$ $(\mathbb{R}^{1})_{2} \xrightarrow{H}_{N} \mathbb{R}^{3}$ $(\mathbb{R}^{1})_{2} \xrightarrow{H}_{N} \mathbb{R}^{3}$ $(\mathbb{R}^{1})_{2} \xrightarrow{H}_{N} \mathbb{R}^{3}$ $(\mathbb{R}^{1})_{2} \xrightarrow{H}_{N} \mathbb{R}^{3}$

wherein R^1 , R^2 , R^3 and R^4 have the meaning of claim 1.

562

14. A pharmaceutical composition comprising a compound of formula 1 according to claim 1 or a pharmaceutically acceptable salt thereof.

15. The pharmaceutical composition according to claim 14 further comprising a pharmaceutically active compound selected from the group consisting of betamimetics, anticholinergics, corticosteroids, PDE4-inhibitors, LTD4-antagonists, EGFR-inhibitors, CRTH2 inhibitors, 5-LO-inhibitors, Histamine receptor antagonists, CCR9 antagonists and SYK-inhibitors, NE-inhibitors, MMP9 inhibitors and MMP12 inhibitors, or combinations of two or three the pharmaceutically active compound.

16. A method of treating asthma and allergic diseases, gastrointestinal inflammatory diseases, eosinophilic diseases, chronic obstructive pulmonary disease, infection by pathogenic microbes, rheumatoid arthritis or atherosclerosis comprising administering to a patient a therapeutically effective amount of a compound according to claim 1.

17. A compound selected from

or a pharmaceutically acceptable salt thereof.

18. A compound selected from

or a pharmaceutically acceptable salt thereof. 19. A compound selected from

or a pharmaceutically acceptable salt thereof.

15

20

25

30

35

45

50

or a pharmaceutically acceptable salt thereof. **21**. A compound selected from

$$\begin{array}{c|c} F & N & O \\ \hline & & N \\ \hline &$$

or a pharmaceutically acceptable salt thereof. **22**. A compound selected from

or a pharmaceutically acceptable salt thereof. 23. A compound selected from

or a pharmaceutically acceptable salt thereof.

564
24. A compound selected from

or a pharmaceutically acceptable salt thereof.

25. A compound selected from

or a pharmaceutically acceptable salt thereof.

26. A compound selected from

$$\bigcap_{NH} \bigcap_{NH} \bigcap_{N} \bigcap_{CH_3} O$$

or a pharmaceutically acceptable salt thereof.