特許協力条約に基づいて公開された国際出願

世界知的所有権機関
国際事務局

国際公開日
2010年6月17日(17.06.2010)

代理人：久保幸雄、外(KUBO, Yukio et al.):

6号 オリエンタル新大阪ビルOsaka (JP).

国際公開番号
WO 2010/067400 A1

国際公開日
2010年6月17日(17.06.2010)

パーソナルコンピュータは、電力をUSBデバイス2へ供給する。USBデバイス2は、供給される電力を、電流の値が第二の値を超えないように消費させながら、二次電池を充電する。
明細書
電力使用方法、スレーブ装置、およびコンピュータプログラム
技術分野
0001 本発明は、USBなどのインタフェースを介してマスタからスレーブへの電力を供給し、スレーブで電力を使用する方法などに関する。
背景技術
0002 図「2」および図「2」は旧仕様および新仕様におけるスレーブへの電力供給の範囲を示す図である。
0003 近年、2台の装置を繋ぐインタフェースとして、USB（Universal Serial Bus）が普及している。USBによると、例えば、パソコンやコンピュータに、プリンタ、デジタルカメラ、携帯電話端末、フラッピディスクドライブ、ポータブルオーディオプレーヤ、PDA（Personal Digital Assistant）およびUSBメモリなど様々な装置を繋くことができる。
0004 USBによると、2台の装置間でデータのやり取りをするだけでなく、ホスト（7位側の装置。一般に、パソコンやコンピュータまたはUSBハブであることが多い。）からスレーブ（下位側の装置）への電力を供給することが可能。したがって、USBによって、スレーブに備えられた二次電池を、ホストの電力を供給することによって充電することが可能である。
0005 非特許文献に示したように、USBによるスレーブへの電力の供給に関する仕様が定められている。
0006 この仕様（新仕様）よりも前の仕様（旧仕様）では、図「2」の「既存領域」の範囲で、ホストからスレーブへのVBusによる電力の供給を行わなければならない。
0007 しかし、新仕様では、図「2」の「拡張領域」の範囲での電力の供給が認められている。または、ホストとスレーブとの間でのデータ通信を伴う場合は、その転送モードに応じて、図「2」の「High Speed拡張領域」および「Hi1 Speed/Low Speed拡張領域」の範囲でも、電力の供給が認められている。
ように、新仕様では、電力の供給に関する制限が緩和されている。
非特許文献1："Battery Charging Specification Revision 1.0"、2007年5月8日、USB Implementers Forum, Inc.

発明の開示

発明が解決しようとする課題

しかし、上述の通り制限が緩和されたことによって、却って、スレーブは期待通りに電力の供給を受けることができないことがある。そうすると、スレーブは一部の処理において正常に動作しないことがある。

例えば、スレーブは、4ボルト以上の電圧が掛からないマスタに接続されていることを認識しない仕様になっている場合は、2ボルトの電圧しか得られないならば、正常に動作しない。

本発明は、このような問題点に鑑み、電力の供給に関する制限が拡張された仕様において、電力の供給を受ける装置の動作を従来よりも確実にすることを目的とする。

課題を解決するための手段

本発明の一形態に係る電力使用方法は、第一の装置から供給される電力を第二の装置において使用する電力使用方法であって、前記第二の装置が特定の処理を行うのに最低限必要な電圧の値である第一の値を前記第一の装置へ通知する処理を、前記第二の装置に実行させ、前記第一の値の電圧で前記第一の装置が前記第二の装置へ電力を供給する際の電流の値である第二の値を前記第二の装置へ通知する処理を、前記第一の装置に実行させ、電力を所定の規格に基づいて前記第二の装置へ供給する処理を前記第一の装置に実行させ、供給される電力を、電流の値が前記第二の値を超えないように消費させながら、前記特定の処理を前記第二の装置に実行させる。

本発明の他の形態に係る電力使用方法は、第一の装置から供給される電力を第二の装置において使用する電力使用方法であって、前記第二の装置が特定の処理を行うのに最低限必要な電圧で前記電力を消費する際の電流の値を、試験を行うことによって検出する処理を、前記第二の装置に実行させ、前
記電力を、電流の値が前記検出された値を超えないように消費させながら、前記特定の処理を前記第二の装置に実行させる。

[003] 好ましくは、前記試験を、前記特定の処理のトレーニング用の回路によって行う。

[004] 前記特定の処理は、例えば、前記第二の装置の二次電池を充電する処理である。前記第一の装置は、パーソナルコンピュータまたはUSB(Universal Serial Bus)ハブであって、前記第二の装置は、USBデバイスである。

発明の効果

[005] 本発明によると、電力の供給に関する制限が拡張された仕様において、電力の供給を受ける装置の動作を従来よりも確実にすることができる。

図面の簡単な説明

[006] [図1]パーソナルコンピュータ「とUSBデバイス2との接続の形態の例を示す図

[図2]パーソナルコンピュータ「のハードウェア構成の例を示す図

[図3]パーソナルコンピュータ「およびUSBデバイス2の機能的構成の例を示す図

[図4]USBデバイス2のハードウェア構成の例を示す図である。

[図5]電圧電流テーブル「」Aの例を示す図

[図6]トレーニングユニット2のAの構成の例を示す図である。

[図7]パーソナルコンピュータ「とUSBデバイス2との接続の形態の他の例を示す図である。

[図8]電圧電流テーブル「」Bの例を示す図

[図9]電圧電流テーブル「」Cの例を示す図

[図10]パーソナルコンピュータ「とUSBデバイス2との接続の形態の他の例を示す図である。

[図11]旧仕様および新仕様におけるスレーブへの電力供給の範囲を示す図である。

[図12]旧仕様および新仕様におけるスレーブへの電力供給の範囲を示す図で
ある。
発明を実施するための最良の形態

[0017] 図1はパーソナルコンピュータとUSBデバイスとの接続の形態の例を示す図、図2はパーソナルコンピュータのハードウェア構成の例を示す図、図3はパーソナルコンピュータおよびUSBデバイスの機能的構成の例を示す図、図4はUSBデバイス2のハードウェア構成の例を示す図である。

[0018] 図1に示すパーソナルコンピュータ「は、USB(Universal Serial Bus)インタフェースを備えている。

[0019] USBデバイス2は、携帯電話端末、ポータブルオーディオプレーヤ、およびPDA(Personal Digital Assistant)などのような、USBインタフェースを備えた可搬型の装置である。

[0020] パーソナルコンピュータ「とUSBデバイス2とは、USBケーブルによって繋がれ、通信を行うことができる。さらに、パーソナルコンピュータ「は、USBデバイス2に電源を供給することができる。以下、USBのバージョンとしてUSB2.0および「0が用いられる場合を例に説明する。

[0021] パーソナルコンピュータ「は、図2に示すように、制御装置「0a、RAM(Random Access Memory)「0b、ROM(Read Only Memory)「0c、ハードディスク「0d、液晶ディスプレイ「0e、キーボード「0f、ポインティングデバイス「0g、およびUSBコントローラ「0hなどに有する。

[0022] 制御装置「0aは、CPU(Central Processing Unit)またはMPU(Micro Processing Unit)などであって、RAM「0bまたはROM「0cに記憶されているプログラムを実行する。なお、制御装置「0aがMPUである場合は、RAM「0bおよびROM「0cが制御装置「0aに一体的に組込まれていることがある。

[0023] キーボード「0fおよびポインティングデバイス「0gは、ユーザがコマンドおよびデータなどをパーソナルコンピュータ「に入力するためにの装置で
ある。
[0024] 液晶ディスプレイ「0ｅは、デスクトップ、ウィンドウ、およびダイアログボックスなど種々の画面を表示する。
[0025] ＵＳＢコントローラ「0ｈは、ＵＳＢの制御を行うためのＩＣ（Integrate
d电路）である。
[0026] ＲＯＭ「0ｃには、図3に示す電圧電流テーブル記憶部「0「、最低電圧
値問合せ部「0２、最低電圧値通知受付部「0３、供給電流値決定部「0４
、最大電流値通知部「0５、および供給電流制御部「0６などの機能を実現
するためのプログラムが記憶されている。これらのプログラムは、制御装置
「0ａによって実行される。これらのプログラムは、ＢＩＯＳ（Basic Input
/Output System）として提供してもよいし、ＯＳ（Operating System）のドライバとして提供してもよい。後者の場合は、ドライバはハードディスク「0ｄに記憶される。
[0027] ＵＳＢデバイス２は、図４に示すように、ＣＰＵ２０ａ、ＲＡＭ２０ｂ、
ＲＯＭ２０ｃ、電源ユニット２０ｄ、ＵＳＢコントローラ２０ｅ、およびト
レーニングユニット２０ｆなどに変する。そのほか、ＵＳＢデバイス２の種
類に応じて、種々のハードウェアを有する。例えば、ＵＳＢデバイス２が携
帯電話端末であれば、無線回路、アンテナ、液晶ディスプレイ、操作ボタン
、音声処理回路、デジタルカメラ、マイク、スピーカ、およびフラッシュメ
モリなどを有する。
[0028] ＵＳＢコントローラ２０ｅは、ＵＳＢの制御を行うためのＩＣである。電
源ユニット２０ｄは、二次電池および充電制御回路などを有する。二次電池
は、ＵＳＢケーブルを介してパーソナルコンピュータから供給される電力
によって充電される。また、ＵＳＢデバイス２の各部に電力を供給する。充
電制御回路は、二次電池への充電を制御し、過充電を防止する。
[0029] ＲＯＭ２０ｃには、図3に示す最低電圧記憶部「0「、最低電圧値コマ
ンド受付部「0２、最低電圧値通知部「0３、および最大電流値通知受付部
「0４などの機能を実現するためのプログラムが記憶されている。これらの
プログラムは、CPU20aによって実行される。トレーニングユニット20fについては、後に詳細に説明する。

图5は電圧電流テーブルTAの例を示す図、图6はトレーニングユニット20fの構成の例を示す図である。

次に、图3に示すパーソナルコンピュータ「およびUSBデバイス2の各
部の処理内容および图4の電源ユニット20dおよびトレーニングユニット
20fの処理内容などを詳細に説明する。

パーソナルコンピュータ「において、電圧電流テーブル記憶部「0」には
、電圧電流テーブルTLAが記憶されている。この電圧電流テーブルTLA
には、图5のように、USBデバイス2に掛ける電圧とその際にUSBデバイ
ス2へ供給する電流との関係を示している。電圧電流テーブルTLAの内
容は、USBコントローラ「01」の特性などに応じて決まり、電圧電流テ
ーブル記憶部「01」に記憶される。

なお、電圧電流テーブルTLAは、USBデバイス2との接続の完了後に
データ通信を行わない場合の電圧と電流との関係を示している。データ通信
を行う場合については、後に説明する。

最低電圧値間合せ部「02」は、パーソナルコンピュータ「にUSBデバイ
ス2が繋がれた際に、最低限必要な電圧の値（以下、最低電圧値＝b」と
記載する。）を回答するように要求するコマンド（以下、「コマンド3A」
と記載する。）をUSBデバイス2へ送信する。

USBデバイス2において、最低電圧値記憶部20は、USBデバイス2
が自らの充電を行うのに最低限必要な電圧の値つまり最低電圧値＝bを記
憶する。

最低電圧値コマンド送付部202は、パーソナルコンピュータ「からのコ
マンド3Aを受け付ける。

最低電圧値通知部203は、コマンド3Aが受け付けられると、最低電圧
値記憶部201に記憶されている最低電圧値＝bを示す回答データ3Bをパ
ーソナルコンピュータ「へ送信する。
パーソナルコンピュータにおいて、最低電圧値通知受付部「03」は、USBデバイス2からの回答データ3Bを受け付ける。

供給電流値決定部「04」は、受け付けられた回答データ3Bに示される最低電圧値を対応する電流の値を、電圧電流テーブル「J」を内蔵して検索する。そして、供給電流値決定部「04」は、検索した電流の値を、USBデバイス2へ供給する電流の値（以下、「最大電流値1b」と記載する。）に決定する。例えば、最低電圧値3bが4.0Vである場合は、「240mAに決定する。

最大電流値通知部「05」は、決定した最大電流値1bを示す通知データ3CをUSBデバイス2へ送信する。

供給電流制御部「06」は、決定した最大電流値1bで電力が供給されるように、USBコントローラ「0h」を制御する。

USBデバイス2において、最大電流値通知受付部204は、パーソナルコンピュータ「からの通知データ3Cを受け付ける。

以上の処理によって、最大電流値1b以下の電流がUSBデバイス2へ供給され、二次電池の充電が可能になる。

電源ユニット20dの充電制御回路は、最低電圧値3b以上の電圧で二次電池の充電を行う。この際に、二次電池へ流す電流を、パーソナルコンピュータ「からの通知された最大電流値1bを超えないように制御する。

または、電源ユニット20d充電制御回路は、二次電池へ流す電流を、図4のトレーニングユニット20fによって検出された電流値を超えないように制御でもよい。

トレーニングユニット20fは、USBデバイス2において最低電圧値3bを得るのに必要な電流値（以下、「最大電流値1h」と記載する。）を測定し、電源ユニット20dへ通知するための処理を行う。

トレーニングユニット20fは、図6に示すように、可変電流消費回路20fおよび電圧検出回路20fと20fを有する。トレーニングユニット20fは、次に説明するために、特定の処理（本実施例では、充電の処理）の際の
電圧と電流との関係を検出する試験を行うために用いられる。

[0048] USBデバイス2がパーソナルコンピュータCに接続されて、パーソナルコンピュータCからUSBデバイス2へ電流が供給されると、電流の一部を、量を少しずつ増加させながら変電流消費回路20f 'に流し消費させる。可変電流消費回路20f 'は試験（トレーニング）用の回路である。可変電流消費回路20f 'の抵抗の値は、電源ユニット20dの二次電池の充電時の抵抗値と等価である。

可変電流消費回路20f 'に流す電流の量は、CPU20aによって制御される。

[0049] 電圧検出回路20f 2は、可変電流消費回路20f 'に電流が流れているときの電圧を測定し続ける。そして、測定した電圧値が最低電圧値以上になったことを検知し、CPU20aへその旨を通知する。

[0050] CPU20aは、電圧検出回路20f 2からの通知を受けた後、その時点（つまり、可変電流消費回路20f 'に掛かる電圧の値が最低電圧値以上になった時点）の、可変電流消費回路20f 'に流れた電流の値を、最大電流値1hに設定する。そして、CPU20aは、決定した最大電流値1hを電源ユニット20dへ通知する。

[0051] そして、電源ユニット20dの充電制御回路は、二次電池へ流す電流を、トレーニングユニット20fおよびCPU20aによって得られた最大電流値1hを超えないように制御することで、最低電圧値以上で二次電池の充電を行うことができる。

[0052] 図7はパーソナルコンピュータCとUSBデバイス2が繋がれた際の全体的な処理の流れの例を説明するシーケンス図である。

[0053] 次に、パーソナルコンピュータCおよびUSBデバイス2の全体的な処理の流れを、図7を参照しながら説明する。

[0054] 図7において、パーソナルコンピュータCとUSBデバイス2が繋がると、パーソナルコンピュータCおよびUSBデバイス2の両装置は、従来通り、互いに繋がれたことを認識し、ハードウェアおよびソフトウェアに関する
する各種の設定（コンフィグレーション）を行う（§304, §404）。

すると、パーソナルコンピュータ「は、USBデバイス2に対して、コマンド3Aを送信することによって最低電圧値を問い合せる（§302）。USBデバイス2は、コマンド3Aを受信すると（§402）、パーソナルコンピュータ「に対して、回答データ3Bを送信することによって最低電圧値 \(\equiv b \) を回答（返答）する（§403）。

パーソナルコンピュータ「は、回答データ3Bを受信すると（§303）、最低電圧値 \(\equiv b \) に対応する最大電流値 \(1b \) を電圧電流テーブル「A（図5参照）の中から検索し、USBデバイス2に対して通知データ3Cを送信することによって最大電流値 \(1b \) を通知する（§304）。

パーソナルコンピュータ「は、電力をUSBデバイス2へ供給する（§305）。

USBデバイス2は、その供給を受け（§405）、最大電流値 \(1h \) を算出し（§306）、最大電流値 \(1h \) を電流のリミットとして二次電子の充電を行う（§407）。

本実施形態によると、電力の供給に関する制限が拡張された仕様において、USBデバイス2の動作を従来よりも確実にすることができる。

図8は電圧電流テーブル「Aの例を示す図、図9は電圧電流テーブル「B」の例を示す図、図10はパーソナルコンピュータ「とUSBデバイス2との接続の形態の他の例を示す図である。

パーソナルコンピュータ「とUSBデバイス2との接続の完了後、両装置がデータ通信を行う場合は、電圧と電流との関係が、通信の速度に応じて、電圧電流テーブル「Aに示される関係とは異なる。

そこで、図8に示すような、フルスピードモード（Full Speed Mode）およびロースピードモード（Low Speed Mode）用の電圧電流テーブル「Aと、ハイスピードモード（High Speed Mode）用の電圧電流テーブル「B」にCをと、電圧電流テーブル記憶部101に予め用意しておく。

パーソナルコンピュータ「は、コンフィグレーションによって転
送モードがフルスピードモードまたはローバスピードモードに決まった場合は、電圧電流テーブル T」「Aの代わりに電圧電流テーブル T」「Bを用いて最大電流値 1-b を決定する。ハイスピードモードに決まった場合は、電圧電流テーブル T」「Aの代わりに電圧電流テーブル T」「Cを用いて最大電流値 1-b を決定する。

[0064] 本実施形態では、図6のトレーニングユニット2 0f をUSBデバイス2に設けたが、図1 0に示すように、パーソナルコンピュータ「とUSBデバイス2とを繋ぐUSBケーブル4のUSBデバイス2側のコネクタに設けてもよい。ただし、この場合は、可変電流消費回路2 0f に流す電流を制御するためのコントローラおよびUSBデバイス2へ最大電流値 1-hの電流を流すように制御するためのコントローラをも、USBデバイス2側のコネクタに設けておく。

[0065] 図3 に示した電圧電流テーブル記憶部「 0「ないし供給電流制御部「 06の各機能をUSBハブに設けてもよい。そして、繋がれるUSBデバイス2ごとに出力する電流を制御すればよい。

[0066] その他、パーソナルコンピュータ「、USBデバイス2の全体または各部の構成、処理内容、処理順序、テーブルの構成などは、本発明の趣旨に沿って適宜変更することができる。
請求の範囲

[1] 第一の装置から供給される電力を第二の装置において使用する電力使用方法であって、

前記第二の装置が特定の処理を行うのに最低限必要な電圧の値である第一の値を前記第一の装置へ通知する処理を、前記第二の装置に実行させ、

前記第一の値の電圧で前記第一の装置が前記第二の装置へ電力を供給する際の電流の値である第二の値を前記第二の装置へ通知する処理を、前記第一の装置に実行させ、

電力を所定の規格に基づいて前記第二の装置へ供給する処理を前記第一の装置に実行させ、

供給される電力を、電流の値が前記第二の値を超えないように消費させながら、前記特定の処理を前記第二の装置に実行させる、

電力使用方法。

[2] 第一の装置から供給される電力を第二の装置において使用する電力使用方法であって、

前記第二の装置が特定の処理を行うのに最低限必要な電圧で前記電力を消費する際の電流の値を、試験を行うことによって検出する処理を、前記第二の装置に実行させ、

前記電力を、電流の値が前記検出された値を超えないように消費させながら、前記特定の処理を前記第二の装置に実行させる、

電力使用方法。

[3] 前記試験を、前記特定の処理のトレーニング用の回路によって行う、

請求項2記載の電力使用方法。

[4] 前記特定の処理は、前記第二の装置の二次電池を充電する処理である、

請求項「ないし請求項3のいずれかに記載の電力使用方法。

[5] 前記第一の装置は、パーソナルコンピュータまたはＵＳＢ（Universal Serial Bus）ハブであって、

前記第二の装置は、ＵＳＢデバイスである、
請求項「ないし請求項４のいずれかに記載の電力使用方法。

[6] ホストから電力の供給を受けて特定の処理を行うスレーブ装置であって、
当該スレーブ装置が特定の処理を行うのに最低限必要な電圧の値である第
一の値を前記ホスト装置へ通知する電圧値通知手段と、
前記第一の値の電圧で前記ホストが当該スレーブ装置へ電力を供給する際の電流の値である第二の値の通知を前記ホストから受け付ける処理を実行させ、
前記ホストから供給される電力を、電流の値が前記第二の値を超えないよ

[7] ホストから電力の供給を受けて特定の処理を行うスレーブ装置であって、
前記特定の処理を行うのに最低限必要な電圧で前記電力を消費する際の電流の値を、試験を行うことによって検出する、電流値検出手段と、
前記電力を、電流の値が前記第二の値を超えないように消費させながら、
前記特定の処理を実行する、特定処理実行手段と、
を有するスレーブ装置。

[8] 二次電池を有し、
前記特定処理手段は、前記特定の処理として、前記二次電池を充電する処理を実行する、
請求項6または請求項7記載のスレーブ装置。

[9] ホストから電力の供給を受けて特定の処理を行う装置を制御するためのコンピュータプログラムであって、
前記装置に、
前記装置が特定の処理を行うのに最低限必要な電圧の値である第一の値を
前記ホスト装置へ通知する処理を実行させ、
前記第一の値の電圧で前記ホストが前記装置へ電力を供給する際の電流の値である第二の値の通知を前記ホストから受け付ける処理を実行させ、
前記ホストから供給される電力を、電流の値が前記第二の値を超えないよ
うに消費させながら、前記特定の処理を実行させる、
コンピュータプログラム

ポストから電力の供給を受けて特定の処理を行う装置を制御するためのコンピュータプログラムであって、
前記装置に、
前記特定の処理を行うのに最低限必要な電圧で前記電力を消費する際の電流の値を、試験を行うことによって検出する処理を実行させ、
前記電力を、電流の値が前記検出された値を超えないように消費させながら、前記特定の処理を実行させる、
コンピュータプログラム。
[図4]

[図5]

TLA

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>5.0</th>
<th>4.9</th>
<th>4.8</th>
<th>4.7</th>
<th>4.6</th>
<th>4.5</th>
<th>4.4</th>
<th>4.3</th>
<th>4.2</th>
<th>4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>100</td>
<td>330</td>
<td>500</td>
<td>630</td>
<td>750</td>
<td>850</td>
<td>950</td>
<td>1030</td>
<td>1120</td>
<td>1180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>4.0</th>
<th>3.9</th>
<th>3.8</th>
<th>3.7</th>
<th>3.6</th>
<th>3.5</th>
<th>3.4</th>
<th>3.3</th>
<th>3.2</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>1240</td>
<td>1290</td>
<td>1340</td>
<td>1380</td>
<td>1430</td>
<td>1480</td>
<td>1520</td>
<td>1550</td>
<td>1580</td>
<td>1610</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>3.0</th>
<th>2.9</th>
<th>2.8</th>
<th>2.7</th>
<th>2.6</th>
<th>2.5</th>
<th>2.4</th>
<th>2.3</th>
<th>2.2</th>
<th>2.1</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>1630</td>
<td>1650</td>
<td>1670</td>
<td>1690</td>
<td>1710</td>
<td>1730</td>
<td>1745</td>
<td>1760</td>
<td>1775</td>
<td>1790</td>
<td>1800</td>
</tr>
</tbody>
</table>
TLB

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>5.0</th>
<th>4.9</th>
<th>4.8</th>
<th>4.7</th>
<th>4.6</th>
<th>4.5</th>
<th>4.4</th>
<th>4.3</th>
<th>4.2</th>
<th>4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>100</td>
<td>330</td>
<td>500</td>
<td>600</td>
<td>690</td>
<td>780</td>
<td>860</td>
<td>930</td>
<td>990</td>
<td>1050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>4.0</th>
<th>3.9</th>
<th>3.8</th>
<th>3.7</th>
<th>3.6</th>
<th>3.5</th>
<th>3.4</th>
<th>3.3</th>
<th>3.2</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>1090</td>
<td>1130</td>
<td>1170</td>
<td>1200</td>
<td>1230</td>
<td>1260</td>
<td>1290</td>
<td>1310</td>
<td>1330</td>
<td>1350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>3.0</th>
<th>2.9</th>
<th>2.8</th>
<th>2.7</th>
<th>2.6</th>
<th>2.5</th>
<th>2.4</th>
<th>2.3</th>
<th>2.2</th>
<th>2.1</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>1365</td>
<td>1380</td>
<td>1395</td>
<td>1410</td>
<td>1425</td>
<td>1440</td>
<td>1455</td>
<td>1470</td>
<td>1480</td>
<td>1490</td>
<td>1500</td>
</tr>
</tbody>
</table>

TLC

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>5.0</th>
<th>4.9</th>
<th>4.8</th>
<th>4.7</th>
<th>4.6</th>
<th>4.5</th>
<th>4.4</th>
<th>4.3</th>
<th>4.2</th>
<th>4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>100</td>
<td>330</td>
<td>470</td>
<td>540</td>
<td>600</td>
<td>640</td>
<td>670</td>
<td>690</td>
<td>720</td>
<td>740</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>4.0</th>
<th>3.9</th>
<th>3.8</th>
<th>3.7</th>
<th>3.6</th>
<th>3.5</th>
<th>3.4</th>
<th>3.3</th>
<th>3.2</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>760</td>
<td>770</td>
<td>780</td>
<td>790</td>
<td>800</td>
<td>810</td>
<td>820</td>
<td>830</td>
<td>840</td>
<td>850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電圧(V)</th>
<th>3.0</th>
<th>2.9</th>
<th>2.8</th>
<th>2.7</th>
<th>2.6</th>
<th>2.5</th>
<th>2.4</th>
<th>2.3</th>
<th>2.2</th>
<th>2.1</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流(mA)</td>
<td>860</td>
<td>870</td>
<td>875</td>
<td>880</td>
<td>885</td>
<td>888</td>
<td>891</td>
<td>894</td>
<td>896</td>
<td>898</td>
<td>900</td>
</tr>
</tbody>
</table>

図10

[図10に図が表示されています。]
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2008/003704

A. CLASSIFICATION OF SUBJECT MATTER
G06F1/26 (2006.01) i, H02J7/04 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F1/26, H02J7/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2008-217147 A (Toshiba Corp.), 18 September, 2008 (18.09.08), Par. Nos. [0062] to [0074]; Figs. 1 to 2, 8 (Family: none)</td>
<td>2, 5, 7-8, 10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2003-216284 A (Fuji Photo Film Co., Ltd.), 31 July, 2003 (31.07.03), Par. Nos. [0061] to [0087]; Figs. 1 to 2, 5 (Family: none)</td>
<td>1, 6, 9</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

See patent family annex.

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"K" document member of the same patent family.

Date of the actual completion of the international search 06 January, 2009 (06.01.09)

Date of mailing of the international search report 20 January, 2009 (20.01.09)

Name and mailing address of the ISA/ Japanese Patent Office

Facsimile No. A thonzed officer

Telephone No.
国際調査報告

国際出願番号 PCT/JP2008/003704

A. 発明の属する分野の分類（国際特許分類（IPC））
 IntCl G06F1/26(2006. 01)i, H02J7/04(2006. 01)i

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 IntCl G06F1/26, H02J7/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922 - 1996年
日本国公開実用新案公報	1971 - 2009年
日本国実用新案登録公報	1996 - 2009年
日本国登録実用新案公報	1994 - 2009年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリー</th>
<th>引用文献名 及び一部の範囲が関連するときは、その関連する範囲の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2008-217147 A (株式会社東芝) 2008.09.18, 段落 [0062]-[0074], 第1-2,8図 (ファミリーーなし)</td>
<td>2-5, 7-8, 10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2003-216284 A (富士写真フイルム株式会社) 2003.07.31, 段落 [0061]-[0087], 第1-2,5図 (ファミリーーなし)</td>
<td>1, 6, 9</td>
</tr>
</tbody>
</table>

※ 引用文献のカテゴリーノ
IA」特に関連のある文献ではなく、一般的技術水準を示すものの
IE」国際出願前の出願または特許であるか、国際出願日以後に公表されたもの
IL」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確認するために引用する文献（理由を付す）
IQ」口頭による開示、使用、展示等に言及する文献
RP」国際出願日前で、かつ優先権の主張の基礎となる出願

同日に公表された文献
IT」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
IX」特に関連のある文献であって、当該文献の発行日若しくは他の特別な理由を確認するために引用する文献（理由を付す）
Y」特に関連のある文献であって、当該文献の発行日若しくは他の特別な理由を確認するために引用する文献（理由を付す）

国際調査を完了日 06.01.2009
国際調査報告の発送日 20.01.2009