a2 United States Patent

Chudgar et al.

US009588923B2

US 9,588,923 B2
Mar. 7, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

FLOW PINNING IN A SERVER ON A CHIP 8,762,362 Bl 6/2014 Sathe et al.
8,767,757 Bl 7/2014 Chudgar et al.
: . 2003/0007489 Al 1/2003 Krishnan et al.
Applicant: égl;li)l(E)gAl\;I{(C)EOSCIRCUIITg A (US 2006/0265363 AL* 11/2006 Calvignac GLLC 15/00
» Sunnyvale, CA (US) 2007/0011734 Al 1/2007 Balakrishnan et al.
2010/0241831 Al 9/2010 Mahadevan et al.
Inventors: Keyur Chudgar, San Jose, CA (US); 2012/0311300 A1* 12/2012 Sundrani GOGF 9/526
Kumar Sankaran, San Jose, CA (US) 712/30
Assignee: APPLIED MICRO CIRCUITS FOREIGN PATENT DOCUMENTS
CORPORATION, Santa Clara, CA
(US) WO 2012/129432 A2 9/2012
Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35]] o o
U.S.C. 154(b) by 421 days. International Search Report & Written Opinion for PCT Application
Serial No. PCT/US2015/041911, mailed May 30, 2016, 12 pages.
Appl. No.: 14/162,903 . .
* cited by examiner
Filed: Jan. 24, 2014 .
Primary Examiner — Henry Tsai
Prior Publication Data Assistant Examiner — Juanito Borromeo
US 2015/0324306 Al Nov. 12. 2015 (74) Attorney, Agent, or Firm — Amin, Turocy & Watson
T LLP
Int. C1.
GO6F 13/24 (2006.01) 7 ABSTRACT
GO6F 13/38 (2006.01) Various embodiments provide for a system on a chip or a
U.S. CL server on a chip that performs flow pinning, where packets
CPC i GO6F 13/385 (2013.01) or streams of packets are enqueued to specific queues,
Field of Classification Search wherein each queue is associated with a respective core in a
None multiprocessor/multi-core system or server on a chip. With
See application file for complete search history. each stream of packets, or flow, assigned to a particular
processor, the server on a chip can process and intake
References Cited packets from multiple queues from multiple streams from
the same single Ethernet interface in parallel. Each of the
U.S. PATENT DOCUMENTS queues can issue interrupts to their assigned processors,
allowing each of the processors to receive packets from their
2’222’382 gl igggg %tr(grlger ot al respective queues at the same time. Packet processing speed
7044828 B2* 52011 Ronciak HO4L 47/125 is therefore increased by receiving and processing packets in
o 370/230 parallel for different streams.
8,335,884 B2* 12/2012 Hamadani GOGF 13/4022
710/316 20 Claims, 10 Drawing Sheets
100\
102-\
112 116
N\ 14 r_r
‘=:, SYSTEM
1 W
N-118

1 FLOW PINNING COMPONENT ’

ETHERNET INTERFACE
104

T

P

U.S. Patent

100—\

Mar. 7, 2017

Sheet 1 of 10

US 9,588,923 B2

QUEUE
MANAGER
108

SYSTEM
CPU
110

FLOW PINNING COMPONENT

106

ETHERNET INTERFACE

104

T

!

!

T

FIG. 1

US 9,588,923 B2

Sheet 2 of 10

Mar. 7, 2017

U.S. Patent

€ "Old

d3dv3dH 1IA0Vd

roe
J34L VIO Lvd

- c0¢

90¢

¢ 9Old

20¢
4341 VIOId1vd

_
|
_
_
_
_
P _
_
_
_
_
_
_

v0¢
EEER
HOHV3S AV

U.S. Patent

Mar. 7, 2017

Sheet 3 of 10

US 9,588,923 B2

400 ~,
402 ~
_[~416
e —
|
' BUFFER
[POOL
: 418
' BUFFER T T T T T T T)
| POOL | :
: 420 | [ETHERNET DMA |
ENGINE
'l BUFFER | 412 |
| POOL | |
| 422 |
| | AVL SEARCH | RESULT
| TREE DATABASE
| BUFFER | 10 s
POOL |)
! 424 ; |
| A J
|
N e o e e —
406
_____ b
| W,XY,Z | PACKET HEADER
404 —_ |— — — —— —
PACKET

FIG. 4

U.S. Patent Mar. 7, 2017 Sheet 4 of 10 US 9,588,923 B2
500 ~,
502 2l
516
512 A
514
2 - 1\
1 SYSTEM
CPU
- 518 510
\ 4 '
QUEUE
MANAGER MEQ"O(;RY
508

FLOW PINNING COMPONENT

506

FIG. 5

U.S. Patent Mar. 7, 2017 Sheet 5 of 10 US 9,588,923 B2

600
.\

START

02

EXTRACTING, BY A PROCESSOR EXECUTING A
FIRST DATA STRUCTURE, A METADATA STRING
FROM A PACKET

1 04

ASSOCIATING BY THE PROCESSOR
EXECUTING A SECOND DATA STRUCTURE, THE
PACKET WITH A RESPECTIVE RESULT
DATABASE BASED ON THE METADATA STRING

| :

ASSIGNING, BY AN ETHERNET DIRECT
MEMORY ACCESS ENGINE, THE PACKET TO A
QUEUE BASED ON THE RESULT DATABASE,
WHEREIN THE QUEUE 1S ASSOCIATED WITH A
RESPECTIVE CORE OF A MULTIPROCESSOR

END

FIG. 6

U.S. Patent Mar. 7, 2017 Sheet 6 of 10 US 9,588,923 B2

700
\

START

702

RECEIVING A PACKET FROM A MAC MODULE
OF AN ETHERNET INTERFACE

l 704

FEEDING A HEADER OF THE PACKET INTO A
PATRICIA TREE

l 706

EXTRACTING A METADATA STRING FROM THE
PACKET HEADER BASED ON A
. PREDETERMINED PROGRAMMING OF THE
PATRICIA TREE

END

FIG. 7

U.S. Patent Mar. 7, 2017 Sheet 7 of 10 US 9,588,923 B2

800
\

START

02

RECEIVING A METADATA STRING THAT
SPECIFIES A SOURCE [P, A DESTINATION IP, A
SOURCE PORT AND A DESTINATION PORT

1 .

LOOKING UP AN ASSOCIATED RESULTS
DATABASE BASED ON THE METADATA STRING

| :

DETERMINING AN ASSOCIATED PROCESSOR
BASED ON THE ASSOCIATED RESULTS
DATABASE

END

FIG. 8

U.S. Patent Mar. 7, 2017 Sheet 8 of 10 US 9,588,923 B2

900
\

START

902

DETERMINING AN ASSOCIATED RESULTS
DATABASE BASED ON THE METADATA STRING

l 904

DETERMINING A DESCRIPTOR QUEUE BASED
ON THE METADATA STRING, WHEREIN THE
DESCRIPTOR QUEUE IS ASSOCIATED WITH A
PROCESSOR

l 906

SENDING A MESSAGE TO THE DESCRIPTOR
QUEUE INDICATING A PACKET HAS ARRIVED

END

FIG. 9

US 9,588,923 B2

Sheet 9 of 10

Mar. 7, 2017

U.S. Patent

0l "Old

-——

020}
d31NdNOD
dLONIY

Y

0901
JOV4HELNI
MHOMILIN

ovoL
1NdNI

X

A

A

0501
Avidsida
“6'9 ‘LNd1NO

b LzoL SNg WALSAS 1

4

0201
1INN
ONISSZ3O0¥Hd

A 4

AHOW3N
INILSAS

U.S. Patent Mar. 7, 2017 Sheet 10 of 10 US 9,588,923 B2

[1122
| I Object

; 1124

Computing |~) ‘

Device i

1120 Computinig Device .

t , ‘
s
AN | ,
~ | s
AN i s
N | e
N | 1042
N | / e
N
N 1 s

Object S Comp_uting
1126 | ______ COMMUNICATIONS Device
NETWORK/BUS 1128
/// \\\
/’ ~

Dwm ="
Server Object

e Nl
Server Object

Data

Store(s)
1140

FIG. 11

US 9,588,923 B2

1
FLOW PINNING IN A SERVER ON A CHIP

TECHNICAL FIELD

The subject disclosure relates to flow pinning in a server
on a chip environment.

BACKGROUND

In computing networks, an Ethernet interface can receive
packets from many different Ethernet connections or flows.
In some systems, these flows of packets are processed
serially, as they are received by a dedicated processor. In
other traditional systems, these flows of packets are pro-
cessed by peripheral network interface cards that enqueue
the packets and/or flows to specific queues that are associ-
ated with a given CPU (central processing unit) in a multi-
core processor. Network interface cards are expensive how-
ever, both in terms of cost, power, and latency, as well as
taking up a lot of real estate in a system.

The above-described description is merely intended to
provide a contextual overview of current techniques for
performing flow pinning in a system on a chip and is not
intended to be exhaustive.

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some aspects described
herein. This summary is not an extensive overview of the
disclosed subject matter. It is intended to neither identify key
nor critical elements of the disclosure nor delineate the
scope thereof. Its sole purpose is to present some concepts
in a simplified form as a prelude to the more detailed
description that is presented later.

In an example embodiment, a server on a chip comprises
a first data structure, executed by a processor configured for
extracting a metadata string from a packet. The server on a
chip also includes a second data structure, executed by the
processor, configured for associating the packet with a result
database based on the metadata string. The server on a chip
also includes an Ethernet direct memory access engine
configured for assigning the packet to a queue based on the
result database, wherein the queue is associated with a
respective core of a multiprocessor.

In another example embodiment, a computer imple-
mented method for flow pinning a packet stream to a core of
a multiprocessor comprises extracting, by a processor
executing a first data structure, a metadata string from a
packet. The method also comprises associating, by the
processor executing a second data structure, the packet with
a respective result database based on the metadata string.
The method also includes assigning, by an Ethernet direct
memory access engine, the packet to a queue based on the
result database, wherein the queue is associated with a
respective core of the multiprocessor.

In another example embodiment, a server on a chip
comprises a means for extracting a metadata string from a
packet. The server on a chip also comprises a means for
associating the packet with a respective core of a multipro-
cessor based on the metadata string. The server on a chip can
further include a means for assigning the packet to a queue
associated with the processor.

The following description and the annexed drawings set
forth in detail certain illustrative aspects of the subject
disclosure. These aspects are indicative, however, of but a
few of the various ways in which the principles of various

20

25

30

35

40

45

50

55

2

disclosed aspects can be employed and the disclosure is
intended to include all such aspects and their equivalents.
Other advantages and novel features will become apparent
from the following detailed description when considered in
conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example, non-
limiting embodiment of a system that performs flow pinning
in accordance with various aspects described herein.

FIG. 2 is a block diagram illustrating an example, non-
limiting embodiment of a system that performs flow pinning
in accordance with various aspects described herein.

FIG. 3 is a block diagram illustrating an example, non-
limiting embodiment of a system that performs metadata
extraction from a packet header in accordance with various
aspects described herein.

FIG. 4 is a block diagram illustrating an example, non-
limiting embodiment of a system that performs packet
enqueuing in accordance with various aspects described
herein.

FIG. 5 is a block diagram illustrating an example, non-
limiting embodiment of a system that performs flow pinning
in accordance with various aspects described herein.

FIG. 6 illustrates a flow diagram of an example, non-
limiting embodiment of a method for flow pinning.

FIG. 7 illustrates a flow diagram of an example, non-
limiting embodiment of a means for extracting a metadata
string from a packet data.

FIG. 8 illustrates a flow diagram of an example, non-
limiting embodiment of a means for associating the packet
with a respective processor based on the metadata string.

FIG. 9 illustrates a flow diagram of an example, non-
limiting embodiment of a means for assigning the packet to
a queue associated with the processor.

FIG. 10 illustrates a block diagram of an example elec-
tronic computing environment that can be implemented in
conjunction with one or more aspects described herein.

FIG. 11 illustrates a block diagram of an example data
communication network that can be operable in conjunction
with various aspects described herein.

DETAILED DESCRIPTION

The disclosure herein is described with reference to the
drawings, wherein like reference numerals are used to refer
to like elements throughout. In the following description, for
purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the
subject innovation. It may be evident, however, that various
disclosed aspects can be practiced without these specific
details. In other instances, well-known structures and
devices are shown in block diagram form in order to
facilitate describing the subject innovation.

Various embodiments provide for a system on a chip or a
server on a chip that performs flow pinning, where packets
or streams of packets are enqueued to specific queues,
wherein each queue is associated with a respective core in a
multiprocessor/multi-core system or server on a chip. With
each stream of packets, or flow, assigned to a particular
processor, the server on a chip can process and intake
packets from multiple queues from multiple streams from
the same single Ethernet interface in parallel. Each of the
queues can issue interrupts to their assigned processors,
allowing each of the processors to receive packets from their

US 9,588,923 B2

3

respective queues at the same time. Packet processing speed
is therefore increased by receiving and processing packets in
parallel for different streams.

Performing flow pinning in this way, where each queue is
associated with a respective core allows the throughput of
incoming traffic with multiple streams to be increased.
Cache and CPU utilization are also increased, as each core
is used, and each core can access its own cache memory.
This generally allows hardware costs to be reduced, while
efficiently increasing the throughput of the system.

Turning now to the illustrations, FIG. 1 illustrates a
system 100 that performs flow pinning in accordance with
embodiments described herein. System 100 includes a sys-
tem and/or server on a chip (SoC) 102 that includes an
Ethernet interface 104. Ethernet interface 104 receives
incoming packets over a network. The packets can form one
or more streams or flows of data that are associated with one
or more other computing devices on the network. In some
embodiments, multiple flows of packets can be received
from a single computing device, and in other embodiments,
multiple flows of packets can be received from correspond-
ing computing devices. The computing devices that the
packets are received from can include, but are not limited to,
routers, switches, directly from other SoCs, and the packets
can be received via the local network, intranet, or Internet.
In some embodiments, SoC 102 can include multiple Eth-
ernet interfaces.

Ethernet interface 104 can pass the streams and/or flows
of packets to a flow pinning component 106. Based on layer
3 and/or layer 4 header data and/or metadata information
associated with the packets, the flow pinning component 106
can associate the flows of packets with one or more cores of
the system CPU 110. Each flow can be assigned to a
respective core of system CPU 110, or alternatively, each of
the cores of system CPU can be assigned one of, or a set of,
the packet streams received at the Ethernet interface 104.

Once the streams/flows of packets are assigned to respec-
tive cores of system CPU 110; the flow pinning component
106 can pass the packets, or packet header information to
queue manager 118, which enqueues the packet and/or
packet header information into queues 112, 114, 116, and
118 that are each associated with a respective one of the
cores of system CPU 110. In an embodiment, the packets are
stored in a memory (shown in more detail in FIG. 4 and FIG.
5) while descriptor messages associated with the packets are
enqueued in queues 112, 114, 116, and 118. The descriptor
messages, when the system CPU 110 receive their interrupts
from the queue manager 108, provide information about the
memory address of the packets that were stored in memory.

It is to be appreciated that while the embodiment shown
in FIG. 1 depicts 4 cores in system CPU 110. In other
embodiments, other numbers of cores are possible, and the
number of queues can correspond to the number of cores.

Turning now to FIG. 2, illustrated is a block diagram of
an example, non-limiting embodiment of a system 200 that
performs flow pinning in accordance with various aspects
described herein. System 200 includes a flow pinning com-
ponent 202 (e.g. flow pinning component 106) that can be
configured for associating packets and/or packet streams
with respective cores based on metadata associated with the
packets.

Flow pinning component 202 can include a first data
structure 206 that in an embodiment can be a patricia tree.
Patricia tree 206 can be a space optimized tree data structure
where each node with only one child is merged with its
child. Patricia trees in general are useful for constructing
associative arrays with keys that can be expressed as strings.

10

25

30

35

40

45

50

55

60

65

4

In an embodiment of the disclosure, patricia tree 206 can be
configured for extracting a metadata string from a packet or
packet header. The metadata string extracted by the patricia
tree 206 can be a 4-tuple string that includes a source
Internet protocol address, a destination Internet protocol
address, a source port and a destination port. The patricia
tree 206 can be preprogrammed with what packet data it
needs to extract, and in other embodiments can extract a
metadata string with other values. In an embodiment, the
metadata string can be a 12 byte string of data, but other
sizes of metadata strings are possible, where the size of the
metadata strings can depend on the information that is
extracted. In an embodiment, the AVL search tree 204 can be
preprogrammed with all the supporting sessions, current and
otherwise.

In an embodiment, the patricia tree 206 and the flow
pinning component 202 receive the packet headers alone
while the packets are held until the AVL search tree 204
determines which buffer pools to copy the packets to. In
other embodiments, the flow pinning component 202
receives the packets, and on onboard Ethernet direct
memory access engine copies the packets to the memory
based on the results of the AVL search tree 204 determina-
tion.

Turning now to FIG. 3, illustrated is an example, non-
limiting embodiment of a system 300 that performs meta-
data extraction from a packet header in accordance with
various aspects described herein. System 300 provides addi-
tional details for the metadata string extraction described in
reference to FIG. 2. Patricia tree 304 receives a packet
header 302. The packet header can contain information
about where the packet originated from, where it is headed,
and its mode of transportation. Patricia tree 304, based on a
preprogrammed determination of the type of data to extract,
can then extract, and form a metadata string of 4 values
(shown as [W,X,Y,Z] in packet header 306). The values
[W.X,Y,Z] can correspond to source IP address, destination
IP address, source port, and destination port.

In other embodiments the values can correspond to other
information about the packets. Additionally, in other
embodiments, the metadata string can include fewer than 4
values, or greater than 4 values.

Turning now to FIG. 4, illustrated is an example, non-
limiting embodiment of a system 400 that performs packet
enqueuing in accordance with various aspects described
herein. System 400 includes SoC 402 that receive a packet
404 via the SoC 402’s Ethernet interface. Packet 404
includes a packet header 406 with a metadata string [W,X,
Y,Z] that a patricia tree (e.g., patricia tree 206 and 304) has
extracted. AVL search tree 410 uses the metadata string
extracted by the patricia tree to determine the associated
result database 414 for the packet header 406 and packet
404.

The associated result databases include the information
such as which free buffer pool (418, 420, 422, and/or 422)
in a memory 416 to copy the packet to, and which of the
queues in which to enqueue the message to inform the CPU
of'a new packet. The AVL search tree 410 thus correlates the
source and destination addresses and the source and desti-
nation ports with the result database 414 in order to deter-
mine which core of the CPU the packet 404 should be
associated with and/or otherwise assigned to. In an embodi-
ment, the AVL search tree 410 can be preprogrammed with
all the supporting sessions, current and otherwise.

Once AVL search tree 410 determines which result data-
base 414 the packet 404 and packet header 406 are associ-
ated with, Ethernet DMA engine 412 can be configured to

US 9,588,923 B2

5

assign and/or copy the packet 404 to the buffer pool 418,
410, 422, or 424 that the packet 404 is associated with. Each
of the buffer pools 418, 410, 422, and 424 can be associated
with one or more of the respective cores of the system CPU.

The Ethernet DMA engine 412 can also be configured to
assign the packet to a queue based on the result database,
wherein the queue is associated with a respective core of the
CPU. Once assigned, the Ethernet DMA engine 412
enqueues a descriptor message to the assigned queue.

Turning now to FIG. 5, illustrated is an example, non-
limiting embodiment of a system 500 that performs flow
pinning in accordance with various aspects described herein.
System 500 includes SoC 502 that receive a packet via the
SoC 402’s Ethernet interface. The packet can includes a
packet header with a metadata string [W,X,Y,Z] that a flow
pinning component 506 (e.g. patricia tree 206 or 304 and
AVL search tree 204 or 410) can extract and be used to
associate the packet with a result database and buffer pool in
memory 504.

An Ethernet DMA engine on SoC 502 (not shown) can
then copy the packet to the associated buffer pool in memory
504, while also sending a descriptor message to queue
manager 508. The descriptor message can be enqueued in
one of the queues 512, 514, 516, or 518 that correspond to
the core of system CPU 510 that the packet has been
assigned to. Each of the queues 512, 514, 516, and 518 can
be configured to issue a unique interrupt to their respective
core of system CPU 510. Once interrupted, the descriptor
message provides details about the presence of the packet,
and where it is located in memory 504.

It is to be appreciated that the SoC 502 and its components
are capable of receiving multiple packets in parallel. As the
different flows are simultaneously received, descriptor mes-
sages are enqueued in queues 512, 514, 516, and 518 in
parallel, and thus each of the cores of system CPU 510
receive their associated packet streams in parallel. This
avoids the need for using global locking to prevent multiple
cores reading a single queue since there are multiple queues,
each dedicated to each processor of system CPU 510.

FIGS. 6-9 illustrate processes in connection with the
aforementioned systems. The process in FIG. 6-9 can be
implemented for example by systems 100, 200, 300, 400,
and 500 and illustrated in FIGS. 1-5 respectively. While for
purposes of simplicity of explanation, the methods are
shown and described as a series of blocks, it is to be
understood and appreciated that the claimed subject matter
is not limited by the order of the blocks, as some blocks may
occur in different orders and/or concurrently with other
blocks from what is depicted and described herein. More-
over, not all illustrated blocks may be required to implement
the methods described hereinafter.

FIG. 6 illustrates a flow diagram of an example, non-
limiting embodiment of a computer implemented method for
performing flow pinning of a packet stream to a core of a
multiprocessor.

Method 600 can start at 602, where extraction of a
metadata string from a packet can be performed by a first
processor executing a first data structure. The first data
structure can be a patricia tree (e.g., patricia tree 206 or 304).
The patricia tree can be a space optimized trie data structure
where each node with only one child is merged with its
child. Patricia trees in general are useful for constructing
associative arrays with keys that can expressed as strings. In
an embodiment of the disclosure, the patricia tree can be
configured for extracting a metadata string from a packet or
packet header. The metadata string extracted by the patricia
tree can be a 4-tuple string that includes a source internet

10

15

20

25

30

35

40

45

50

55

60

65

6

protocol address, a destination internet protocol address, a
source port and a destination port. The patricia tree can be
preprogrammed with what packet data it needs to extract,
and in other embodiments can extract a metadata string with
other values.

At 604, the packet can be associated with a respective
result database by the processor executing a second data
structure, wherein the associating is based on the metadata
string. The second data structure can be a AVL search tree
(e.g., AVL search tree 204 or 410). The AVL search tree is
a second data structure that then uses the metadata string
extracted by the patricia tree to determine the associated
result database for each packet/packet header. The associ-
ated result databases include the information such as which
free buffer pool in a memory to copy the packet to, and
which of the queues in which to enqueue the message to
inform the CPUs of a new packet. The AVL search tree thus
correlates the source and destination addresses and the
source and destination ports with the result databases in
order to determine which CPU the packet should be asso-
ciated with and/or otherwise assigned to. In an embodiment,
the AVL search tree associates the packet with the associated
result database based on indexing a lookup table with the
metadata string.

At 606, the packet can be assigned, by an Ethernet DMA
engine (e.g., Ethernet DMA engine 412) to a queue based on
the result database, wherein the queue is associated with a
respective core of a multiprocessor. The Ethernet DMA
engine can copy the packet to a free buffer pool determined
by the result database, and also enqueue in the queues a
descriptor message for the CPUs. The descriptor message
provides details about the presence of the packet, and where
it is located in the memory.

Turning now to FIG. 7, illustrated is a flow diagram of an
example, non-limiting embodiment of a means for extract-
ing a metadata string from a packet data. At 702, a packet is
received from a MAC module of an Ethernet interface (e.g.,
Ethernet interface 104). The Ethernet interface can have one
or more Ethernet lines attached to it, and in an embodiment,
can also be coupled to a wireless (e.g., WIFI 802.11a/b/g/
n/ac) adapter. The Ethernet interface can receive incoming
packets over a network. The packets can form one or more
streams or flows of data that are associated with one or more
other computing devices on the network. In some embodi-
ments, multiple flows of packets can be received from a
single computing device, and in other embodiments, mul-
tiple flows of packets can be received from corresponding
computing devices. The computing devices that the packets
are received from can include, but are not limited to, routers,
switches, directly from other SoCs, and the packets can be
received via the local network, intranet, or Internet.

At 704, a header of the packet can be fed into a patricia
tree. At 706, a metadata string is extracted from the header
of the packet based on a predetermine programming of the
patricia tree. The metadata string extracted by the patricia
tree can be a 4-tuple string that includes a source internet
protocol address, a destination internet protocol address, a
source port and a destination port.

Turning now to FIG. 8, illustrated is a flow diagram of an
example, non-limiting embodiment of a means for associ-
ating the packet with a respective processor based on the
metadata string. At 802, a metadata string is received that
specifies a source IP, a destination IP, a source port, and a
destination port. This information can be used to determine
where the packet originated from, the intended recipient,
also something about the nature of the packet contents
(based on the port).

US 9,588,923 B2

7

At 804, an associated results database is looked up based
on the metadata string. The lookup can be performed by an
AVL search tree data structure. In an embodiment, the AVL
search tree looks up one single entry per flow, and can be
programmed with all the supporting sessions.

At 806, an associated processor can be determined based
on the associated results table. The AVL search tree can
associated the packet with the based on indexing a lookup
table with the metadata string.

Turning now to FIG. 9, illustrated is a flow diagram of an
example, non-limiting embodiment of a means for assigning
the packet to a queue associated with the processor. At 902,
an associated results data base is determined based on the
metadata string. The AVL search tree can associated the
packet with the based on indexing a lookup table with the
metadata string.

At 904, a descriptor queue can be determined based on the
metadata string, wherein the descriptor queue is associated
with a processor. By correlating the metadata string with the
associated results database, the processor that the packet
belongs to, or should be assigned to can be determined.
Since each queue is associated with a respective processor,
the packet can be delivered to the appropriate descriptor
queue.

At 906, a message is sent to the descriptor queue indi-
cating that a packet has arrived. The message can be sent by
an Ethernet DMA engine, and can indicate the location of
the packet, and which buffer pool the packet has been stored
in.

EXAMPLE COMPUTING ENVIRONMENT

As mentioned, advantageously, the techniques described
herein can be applied to any device where it is desirable to
facilitate the execution of flow pinning. It is to be under-
stood, therefore, that handheld, portable and other comput-
ing devices and computing objects of all kinds are contem-
plated for use in connection with the various non-limiting
embodiments. Accordingly, the below general purpose
remote computer described below in FIG. 9 is but one
example, and the disclosed subject matter can be imple-
mented with any client having network/bus interoperability
and interaction. Thus, the disclosed subject matter can be
implemented in an environment of networked hosted ser-
vices in which very little or minimal client resources are
implicated, e.g., a networked environment in which the
client device serves merely as an interface to the network/
bus, such as an object placed in an appliance.

Although not required, some aspects of the disclosed
subject matter can partly be implemented via an operating
system, for use by a developer of services for a device or
object, and/or included within application software that
operates in connection with the component(s) of the dis-
closed subject matter. Software may be described in the
general context of computer executable instructions, such as
program modules or components, being executed by one or
more computer(s), such as projection display devices, view-
ing devices, or other devices. Those skilled in the art will
appreciate that the disclosed subject matter may be practiced
with other computer system configurations and protocols.

FIG. 10 thus illustrates an example of a suitable comput-
ing system environment 1000 in which some aspects of the
disclosed subject matter can be implemented, although as
made clear above, the computing system environment 1000
is only one example of a suitable computing environment for
a device and is not intended to suggest any limitation as to
the scope of use or functionality of the disclosed subject

10

15

20

25

30

35

40

45

50

55

60

65

8

matter. Neither should the computing environment 1000 be
interpreted as having any dependency or requirement relat-
ing to any one or combination of components illustrated in
the exemplary operating environment 1000.

With reference to FIG. 10, an exemplary device for
implementing the disclosed subject matter includes a gen-
eral-purpose computing device in the form of a computer
1010. Components of computer 1010 may include, but are
not limited to, a processing unit 1020, a system memory
1030, and a system bus 1021 that couples various system
components including the system memory to the processing
unit 1020. The system bus 1021 may be any of several types
of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures.

Computer 1010 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 1010. By way
of'example, and not limitation, computer readable media can
comprise computer storage media and communication
media. Computer storage media includes volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CDROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information and which can be accessed by
computer 1010. Communication media typically embodies
computer readable instructions, data structures, program
modules, or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media.

The system memory 1030 may include computer storage
media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) and/or random access
memory (RAM). A basic input/output system (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 1010, such as during
start-up, may be stored in memory 1030. Memory 1030
typically also contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 1020. By way of example, and not
limitation, memory 1030 may also include an operating
system, application programs, other program modules, and
program data.

The computer 1010 may also include other removable/
non-removable, volatile/nonvolatile computer storage
media. For example, computer 1010 could include a hard
disk drive that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive that reads
from or writes to a removable, nonvolatile magnetic disk,
and/or an optical disk drive that reads from or writes to a
removable, nonvolatile optical disk, such as a CD-ROM or
other optical media. Other removable/non-removable, vola-
tile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. A hard disk drive is typically
connected to the system bus 1021 through a non-removable
memory interface such as an interface, and a magnetic disk

US 9,588,923 B2

9

drive or optical disk drive is typically connected to the
system bus 1021 by a removable memory interface, such as
an interface.

A user can enter commands and information into the
computer 1010 through input devices such as a keyboard
and pointing device, commonly referred to as a mouse,
trackball, or touch pad. Other input devices can include a
microphone, joystick, game pad, satellite dish, scanner,
wireless device keypad, voice commands, or the like. These
and other input devices are often connected to the processing
unit 1020 through wuser input 1040 and associated
interface(s) that are coupled to the system bus 1021, but may
be connected by other interface and bus structures, such as
a parallel port, game port, or a universal serial bus (USB).
A graphics subsystem can also be connected to the system
bus 1021. A projection unit in a projection display device, or
a HUD in a viewing device or other type of display device
can also be connected to the system bus 1021 via an
interface, such as output interface 1050, which may in turn
communicate with video memory. In addition to a monitor,
computers can also include other peripheral output devices
such as speakers which can be connected through output
interface 1050.

The computer 1010 can operate in a networked or dis-
tributed environment using logical connections to one or
more other remote computer(s), such as remote computer
1070, which can in turn have media capabilities different
from device 1010. The remote computer 1070 can be a
personal computer, a server, a router, a network PC, a peer
device, personal digital assistant (PDA), cell phone, hand-
held computing device, a projection display device, a view-
ing device, or other common network node, or any other
remote media consumption or transmission device, and may
include any or all of the elements described above relative
to the computer 1010. The logical connections depicted in
FIG. 10 include a network 1071, such local area network
(LAN) or a wide area network (WAN), but can also include
other networks/buses, either wired or wireless. Such net-
working environments are commonplace in homes, offices,
enterprise-wide computer networks, intranets and the Inter-
net.

When used in a LAN networking environment, the com-
puter 1010 can be connected to the LAN 1071 through a
network interface or adapter. When used in a WAN net-
working environment, the computer 1010 can typically
include a communications component, such as a modem, or
other means for establishing communications over the
WAN, such as the Internet. A communications component,
such as wireless communications component, a modem and
so on, which can be internal or external, can be connected to
the system bus 1021 via the user input interface of input
1040, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the
computer 1010, or portions thereof, can be stored in a remote
memory storage device. It will be appreciated that the
network connections shown and described are exemplary
and other means of establishing a communications link
between the computers can be used.

EXAMPLE NETWORKING ENVIRONMENT

FIG. 11 provides a schematic diagram of an exemplary
networked or distributed computing environment. The dis-
tributed computing environment comprises computing
objects 1110, 1112, etc. and computing objects or devices
1120, 1122, 1124, 1126, 1128, etc., which may include
programs, methods, data stores, programmable logic, etc., as

10

15

20

25

30

35

40

45

50

55

60

65

10

represented by applications 1130, 1132, 1134, 1136, 1138
and data store(s) 1140. It can be appreciated that computing
objects 1110, 1112, etc. and computing objects or devices
1120, 1122, 1124, 1126, 1128, etc. may comprise different
devices, including microprocessor 512, or similar devices
depicted within the illustrations, or other devices such as a
mobile phone, personal digital assistant (PDA), audio/video
device, MP3 players, personal computer, laptop, etc. It
should be further appreciated that data store(s) 1140 can
include system memory 504, or other similar data stores
disclosed herein.

Each computing object 1110, 1112, etc. and computing
objects or devices 1120, 1122, 1124, 1126, 1128, etc. can
communicate with one or more other computing objects
1110, 1112, etc. and computing objects or devices 1120,
1122, 1124, 1126, 1128, etc. by way of the communications
network 1142, either directly or indirectly. Even though
illustrated as a single element in FIG. 11, communications
network 1142 may comprise other computing objects and
computing devices that provide services to the system of
FIG. 11, and/or may represent multiple interconnected net-
works, which are not shown. Each computing object 1110,
1112, etc. or computing object or devices 1120, 1122, 1124,
1126, 1128, etc. can also contain an application, such as
applications 1130, 1132, 1134, 1136, 1138, that might make
use of an APL or other object, software, firmware and/or
hardware, suitable for communication with or implementa-
tion of the techniques and disclosure described herein.

There are a variety of systems, components, and network
configurations that support distributed computing environ-
ments. For example, computing systems can be connected
together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many networks are
coupled to the Internet, which provides an infrastructure for
widely distributed computing and encompasses many dif-
ferent networks, though any network infrastructure can be
used for exemplary communications made incident to the
systems automatic diagnostic data collection as described in
various embodiments herein.

Thus, a host of network topologies and network infra-
structures, such as client/server, peer-to-peer, or hybrid
architectures, can be utilized. The “client” is a member of a
class or group that uses the services of another class or group
to which it is not related. A client can be a process, i.e.,
roughly a set of instructions or tasks, that requests a service
provided by another program or process. The client process
utilizes the requested service, in some cases without having
to “know” any working details about the other program or
the service itself.

In a client/server architecture, particularly a networked
system, a client is usually a computer that accesses shared
network resources provided by another computer, e.g., a
server. In the illustration of FIG. 11, as a non-limiting
example, computing objects or devices 1120, 1122, 1124,
1126, 1128, etc. can be thought of as clients and computing
objects 1110, 1112, etc. can be thought of as servers where
computing objects 1110, 1112, etc., acting as servers provide
data services, such as receiving data from client computing
objects or devices 1120, 1122, 1124, 1126, 1128, etc., storing
of data, processing of data, transmitting data to client
computing objects or devices 1120, 1122, 1124, 1126, 1128,
etc., although any computer can be considered a client, a
server, or both, depending on the circumstances.

A server is typically a remote computer system accessible
over a remote or local network, such as the Internet or
wireless network infrastructures. The client process may be
active in a first computer system, and the server process may

US 9,588,923 B2

11

be active in a second computer system, communicating with
one another over a communications medium, thus providing
distributed functionality and allowing multiple clients to
take advantage of the information-gathering capabilities of
the server. Any software objects utilized pursuant to the
techniques described herein can be provided standalone, or
distributed across multiple computing devices or objects.

In a network environment in which the communications
network 1142 or bus is the Internet, for example, the
computing objects 1110, 1112, etc. can be Web servers with
which other computing objects or devices 1120, 1122, 1124,
1126, 1128, etc. communicate via any of a number of known
protocols, such as the hypertext transfer protocol (HTTP).
Computing objects 1110, 1112, etc. acting as servers may
also serve as clients, e.g., computing objects or devices
1120, 1122, 1124, 1126, 1128, etc., as may be characteristic
of a distributed computing environment.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “a disclosed aspect,” or “an
aspect” means that a particular feature, structure, or char-
acteristic described in connection with the embodiment or
aspect is included in at least one embodiment or aspect of the
present disclosure. Thus, the appearances of the phrase “in
one embodiment,” “in one aspect,” or “in an embodiment,”
in various places throughout this specification are not nec-
essarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics may be
combined in any suitable manner in various disclosed
embodiments.

As utilized herein, NAND and NOR memory refer to two
types of flash memory based on the NAND and NOR logic
gates that they respectively use. The NAND type is primar-
ily used in main memory cards, USB flash drives, solid-state
drives, and similar products, for general storage and transfer
of data. The NOR type, which allows true random access
and therefore direct code execution, is used as a replacement
for the older EPROM and as an alternative to certain kinds
of ROM applications. However, NOR flash memory can
emulate ROM primarily at the machine code level; many
digital designs need ROM (or PLA) structures for other uses,
often at significantly higher speeds than (economical) flash
memory may achieve. NAND or NOR flash memory is also
often used to store configuration data in numerous digital
products, a task previously made possible by EEPROMs or
battery-powered static RAM.

As utilized herein, terms “component,” “system,” “archi-
tecture” and the like are intended to refer to a computer or
electronic-related entity, either hardware, a combination of
hardware and software, software (e.g., in execution), or
firmware. For example, a component can be one or more
transistors, a memory cell, an arrangement of transistors or
memory cells, a gate array, a programmable gate array, an
application specific integrated circuit, a controller, a proces-
sor, a process running on the processor, an object, execut-
able, program or application accessing or interfacing with
semiconductor memory, a computer, or the like, or a suitable
combination thereof. The component can include erasable
programming (e.g., process instructions at least in part
stored in erasable memory) or hard programming (e.g.,
process instructions burned into non-erasable memory at
manufacture).

By way of illustration, both a process executed from
memory and the processor can be a component. As another
example, an architecture can include an arrangement of
electronic hardware (e.g., parallel or serial transistors), pro-
cessing instructions and a processor, which implement the
processing instructions in a manner suitable to the arrange-

29 < 29 <

20

25

30

40

45

50

55

12

ment of electronic hardware. In addition, an architecture can
include a single component (e.g., a transistor, a gate
array, . . .) or an arrangement of components (e.g., a series
or parallel arrangement of transistors, a gate array connected
with program circuitry, power leads, electrical ground, input
signal lines and output signal lines, and so on). A system can
include one or more components as well as one or more
architectures. One example system can include a switching
block architecture comprising crossed input/output lines and
pass gate transistors, as well as power source(s), signal
generator(s), communication bus(ses), controllers, 1/O inter-
face, address registers, and so on. It is to be appreciated that
some overlap in definitions is anticipated, and an architec-
ture or a system can be a stand-alone component, or a
component of another architecture, system, etc.

In addition to the foregoing, the disclosed subject matter
can be implemented as a method, apparatus, or article of
manufacture using typical manufacturing, programming or
engineering techniques to produce hardware, firmware, soft-
ware, or any suitable combination thereof to control an
electronic device to implement the disclosed subject matter.
The terms “apparatus” and “article of manufacture” where
used herein are intended to encompass an electronic device,
a semiconductor device, a computer, or a computer program
accessible from any computer-readable device, carrier, or
media. Computer-readable media can include hardware
media, or software media. In addition, the media can include
non-transitory media, or transport media. In one example,
non-transitory media can include computer readable hard-
ware media. Specific examples of computer readable hard-
ware media can include but are not limited to magnetic
storage devices (e.g., hard disk, floppy disk, magnetic
strips . . .), optical disks (e.g., compact disk (CD), digital
versatile disk (DVD) . . .), smart cards, and flash memory
devices (e.g., card, stick, key drive . . .). Computer-readable
transport media can include carrier waves, or the like. Of
course, those skilled in the art will recognize many modi-
fications can be made to this configuration without departing
from the scope or spirit of the disclosed subject matter.

What has been described above includes examples of the
subject innovation. It is, of course, not possible to describe
every conceivable combination of components or method-
ologies for purposes of describing the subject innovation,
but one of ordinary skill in the art can recognize that many
further combinations and permutations of the subject inno-
vation are possible. Accordingly, the disclosed subject mat-
ter is intended to embrace all such alterations, modifications
and variations that fall within the spirit and scope of the
disclosure. Furthermore, to the extent that a term “includes”,
“including”, “has” or “having” and variants thereof is used
in either the detailed description or the claims, such term is
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

Moreover, the word “exemplary” is used herein to mean
serving as an example, instance, or illustration. Any aspect
or design described herein as “exemplary” is not necessarily
to be construed as preferred or advantageous over other
aspects or designs. Rather, use of the word exemplary is
intended to present concepts in a concrete fashion. As used
in this application, the term “or” is intended to mean an
inclusive “or” rather than an exclusive “or”. That is, unless
specified otherwise, or clear from context, “X employs A or
B” is intended to mean any of the natural inclusive permu-
tations. That is, if X employs A; X employs B; or X employs
both A and B, then “X employs A or B” is satisfied under any
of the foregoing instances. In addition, the articles “a” and

US 9,588,923 B2

13

“an” as used in this application and the appended claims
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form.

Additionally, some portions of the detailed description
have been presented in terms of algorithms or process
operations on data bits within electronic memory. These
process descriptions or representations are mechanisms
employed by those cognizant in the art to effectively convey
the substance of their work to others equally skilled. A
process is here, generally, conceived to be a self-consistent
sequence of acts leading to a desired result. The acts are
those requiring physical manipulations of physical quanti-
ties. Typically, though not necessarily, these quantities take
the form of electrical and/or magnetic signals capable of
being stored, transferred, combined, compared, and/or oth-
erwise manipulated.

It has proven convenient, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like. It should be
borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise or apparent from the
foregoing discussion, it is appreciated that throughout the
disclosed subject matter, discussions utilizing terms such as
processing, computing, calculating, determining, or display-
ing, and the like, refer to the action and processes of
processing systems, and/or similar consumer or industrial
electronic devices or machines, that manipulate or transform
data represented as physical (electrical and/or electronic)
quantities within the registers or memories of the electronic
device(s), into other data similarly represented as physical
quantities within the machine and/or computer system
memories or registers or other such information storage,
transmission and/or display devices.

In regard to the various functions performed by the above
described components, architectures, circuits, processes and
the like, the terms (including a reference to a “means”) used
to describe such components are intended to correspond,
unless otherwise indicated, to any component which per-
forms the specified function of the described component
(e.g., a functional equivalent), even though not structurally
equivalent to the disclosed structure, which performs the
function in the herein illustrated exemplary aspects of the
embodiments. In addition, while a particular feature may
have been disclosed with respect to only one of several
implementations, such feature may be combined with one or
more other features of the other implementations as may be
desired and advantageous for any given or particular appli-
cation. It will also be recognized that the embodiments
include a system as well as a computer-readable medium
having computer-executable instructions for performing the
acts and/or events of the various processes.

Other than where otherwise indicated, all numbers, values
and/or expressions referring to quantities of items such as
memory size, etc., used in the specification and claims are to
be understood as modified in all instances by the term
“about.”

What is claimed is:

1. A server on a chip, comprising:

a first data structure, executed by a processor, configured
for extracting a metadata string from a packet;

a second data structure, executed by the processor, con-
figured for associating the packet with a result database
based on the metadata string; and

10

20

25

30

35

40

45

50

55

14

an Ethernet direct memory access engine configured for
assigning the packet to a queue based on the result
database, wherein the queue is associated with a respec-
tive core of a multiprocessor, the Ethernet direct
memory access engine further configured for
enqueuing a descriptor message in the queue, and the
descriptor message comprises data that indicates a
presence of the packet and a location of the packet in
a memory.
2. The server on a chip of claim 1, wherein the data
structure is a patricia tree.
3. The server on a chip of claim 1, wherein the second data
structure is an AVL search tree.
4. The server on a chip of claim 1, wherein the metadata
string comprises a source internet protocol address, a des-
tination internet protocol address, a source port, and a
destination port.
5. The server on a chip of claim 1, wherein the metadata
string is a 12 byte long string that contains 4 items of
information.
6. The server on a chip of claim 1, wherein the metadata
string is extracted from layer 3 and layer 4 header data of the
packet.
7. The server on a chip of claim 1, wherein the second data
structure associates the packet with the associated result
database based on indexing a lookup table with the metadata
string.
8. The server on a chip of claim 1, further comprising a
queue manager configured for issuing respective unique
interrupts to respective cores of the multiprocessor, wherein
respective queues, comprising the queue, issue the respec-
tive unique interrupts to the respective cores, comprising the
respective core.
9. The server on a chip of claim 1, wherein the first data
structure extracts a plurality of metadata strings from a
plurality of packets.
10. The server on a chip of claim 1, wherein the first data
structure is preprogrammed to extract the metadata string
based on the second data structure.
11. The server on a chip of claim 1, wherein the Ethernet
direct memory access engine is further configured for copy-
ing the packet to a free buffer pool based on the result
database.
12. The server on a chip of claim 11, wherein the Ethernet
direct memory access engine is further configured for
enqueuing, in parallel, respective descriptor messages, com-
prising the descriptor message, in respective queues, com-
prising the queue, wherein the descriptor message is based
on the packet and the free buffer pool.
13. A computer implemented method for performing flow
pinning of a packet stream to a core of a multiprocessor,
comprising:
extracting, by a processor executing a first data structure,
a metadata string from a packet of the packet stream;

associating, by the processor executing a second data
structure, the packet with a respective result database
based on the metadata string;

assigning, by an Fthernet direct memory access engine,

the packet to a queue based on the result database,
wherein the queue is associated with a respective core
of a multiprocessor; and

enqueuing, by the Ethernet direct memory access engine,

a descriptor message in the queue, the descriptor mes-
sage comprising information that indicates a presence
of the packet and a location of the packet in a memory.

14. The computer implemented method of claim 13,
wherein the extracting further comprises extracting a 12 byte

US 9,588,923 B2

15

long string using a patricia tree, wherein the string comprises
a source Internet protocol address, a destination internet
protocol address, a source port, and a destination port.

15. The computer implemented method of claim 13,
wherein the extracting further comprises extracting the
metadata string from layer 3 and layer 4 header data of the
packet.

16. The computer implemented method of claim 13,
wherein the associating further comprises associating the
packet with the associated result database based on indexing
a lookup table with the metadata string.

17. The computer implemented method of claim 13,
further comprising issuing an interrupt to the respective core
via the assigned queue.

18. The computer implemented method of claim 13,
wherein the extracting further comprises extracting a plu-
rality of metadata strings from a plurality of packets.

5

10

15

16

19. The computer implemented method of claim 13,
further comprising:

copying the packet to a free buffer pool based on the result
database, wherein the descriptor message is based on
the packet in the free buffer pool and a predetermined
buffer.

20. A server on a chip, comprising:

means for extracting a metadata string from a packet;

means for associating the packet with a respective core of
a multiprocessor based on the metadata string;

means for assigning the packet to a queue associated with
the processor; and

means for enqueuing a descriptor message in the queue,
the descriptor message comprising data that indicates a
presence of the packet and a location of the packet in
a memory.

