a2 United States Patent

US007203872B2

(10) Patent No.: US 7,203,872 B2

Frodsham et al. 45) Date of Patent: Apr. 10, 2007
(54) CACHE BASED PHYSICAL LAYER SELF (58) Field of Classification Search None
TEST See application file for complete search history.
(75) Inventors: Tim Frodsham, Portland, OR (US); (56) References Cited
Lgkshminarayan Krishnamurty, U.S. PATENT DOCUMENTS
Hillsboro, OR (US); Naveen
Cherukuri, San Jose, CA (US); Sanjay 6,617,842 B2* 9/2003 Nishikawa et al. 324/158.1
Dabral, Palo Alto, CA (US); David S 6,651,205 B2* 11/2003 Takahashic.......... 714/738
.] : : 6,826,100 B2* 11/2004 Ellis et al.cccccceee. 365/201
Dunning, Portland, OR (US); Theodore o
7. Schoenborn, Portland, OR (US) 2004/0097093 Al* 5/2004 Fukuyama et al. 438/735
. . * cited by examiner
(73) Assignee: Intel Corporation, Santa Clara, CA
(as) Primary Examiner—Christine T. Tu
(74) Attorney, Agent, or Firm—DBlakely, Sokoloff, Taylor &
(*) Notice: Subject to any disclaimer, the term of this Zafman LLP
patent is extended or adjusted under 35
U.S.C. 154(b) by 335 days. 67 ABSTRACT
(21) Appl. No.: 10/882,966 A software self test engine is executed from a cache of a
) processor. The software self test engine is executed using an
(22) Filed: Jun. 30, 2004 execution engine of the processor to perform a physical
. L layer self test. The physical layer self test is performed by
(65) Prior Publication Data transmitting a test vector from the execution engine under
US 2006/0005092 Al Jan. 5, 2006 control of the self test engine to an input/output (“I/O”) unit
of the processor along a datapath coupling the execution
(51) Int.CL engine to the I/O unit. The test vector is transmitted along a
GOIR 31/28 (2006.01) loop back path including the I/O unit and the datapath to test
GOG6F 11/00 (2006.01) a hardware device along the loop back path.
(52) US.CL ...vevvennnne 714/716; 714/715; 714/735;

714/43; 714/44

31 Claims, 5 Drawing Sheets

PROCESSOR 200

270

275 —
CSR
250 — 280

IO UNIT 220

| — 260
! %I

| |-

|

L - - 255

EXECUTION ENGINE
(CORE) 205
280
S/W SELF
CACHE 210 f TEST ENG
SIW SELF | TEST | [
TESTENG| | VECTORS TEST
VECTORS
235 240 —" - 230

MEMORY IF,
GRAPHICS IF, IO IF
ETC.

US 7,203,872 B2

Sheet 1 of 5

Apr. 10, 2007

U.S. Patent

(LYY ¥oIldd)
1 ‘Ol

S30IA3a
TVYNYI31X3

3400

J0SS300yd

< =

501 —
A 01901 1SI8l

H1vdviva

1INN O/l

21901
S0 _ /] 1sml

US 7,203,872 B2

Sheet 2 of 5

Apr. 10, 2007

U.S. Patent

1531

w
o
(@]
—
O
L
=

ON3 1S3l
413S WIS

¢ Old

013
41 O/l *41 SOIHAYHD
‘4l AYOW3W

ya 1) 74 ya gee
7 Z

SHOL1D3A
1531

ON3 1531
4138 WS

¢ JHOVO

A
Y

08¢
502 (3409)

A -

JINION3 NOILNO3XT

’

00 40SS300¥d

G _
~ — /%
— 0.2
— 062
02 LINN O/l - S8

US 7,203,872 B2

Sheet 3 of 5

Apr. 10, 2007

U.S. Patent

m S0% 301A30 IAVIS
= 139) \

Sve
s ol
55¢ !
N
=== el a4
— ¥
— 0 —SE2 J
K\ \\ ’
$HO153AT BN 1831 AR N
—f L As3L 4735 WS ’
_/ 0¥ IHOVD D e
0z ; e \“ |
y y Vlv “ t
—7~__I\| -———————- ™
502 (3409) 52 dd w0] [Mose
INONINOILNOIXT 22 LINN O
\ 52
gee
002 40S$300¥d

0 QYVOdd3IHLIONW

U.S. Patent Apr. 10, 2007 Sheet 4 of 5 US 7,203,872 B2

400

N

TRANSFER S/W SELF TEST ENG 405
(AND TEST VECTORS) INTO CACHE
(E.G., TAP, INSTALL)

y
WRITE COMMAND DATA TO CSR(S) TOPLACE | / 410
ONE OR MORE OF 1/0 UNIT AND SLAVE
DEVICE(S) IN LOOP BACK TEST MODE

y

45
\ ADJUST OPERATING PARAMETERS |_
OF 1/0 UNIT OR SLAVE DEVICE(S) r

420)
_\ TRANSMIT TEST VECTOR OVER
DATAPATH TO /O UNIT

425 4
\ RECEIVE RESPONSE VECTOR

FROM DATAPATH
45— P
S/W SELF TEST ENCINE S/W SELF TEST ENGINE
ANALYZES RESPONSE
OR ANALYZES RESPONSE
VECTOR TO DETERMINE IF
A AGTURING B ANUF. VALID VECTOR TO DETERMINE
? DESIGN PARAMETERS
EXISTS
430
GENERATE 460
REPORT
y \
LOG PASSFAIL LOG PASSFAL
_ 440 450 -

FIG. 4

U.S. Patent Apr. 10, 2007 Sheet 5 of 5 US 7,203,872 B2

500

515
ya

FIG. 5

[}

'y

[vs]

Kllllllllllll
/s

/V _ [

IRARRRARARAR) s !

560

|

US 7,203,872 B2

1

CACHE BASED PHYSICAL LAYER SELF
TEST

TECHNICAL FIELD

This disclosure relates generally to built in self testing,
and in particular but not exclusively, relates to input/output
built in self testing.

BACKGROUND INFORMATION

In many integrated circuit technologies, a short between
a signal line and one of ground or a power supply can cause
the signal line to be “stuck at” a fixed voltage level. Other
manufacturing flaws can cause a switch to be “stuck open”,
“stuck closed”, or generate an erroneous output for a given
set of inputs. For analog circuitry, faults may present them-
selves as an erroneous impedance, driver output strength,
and receiver offset. Other errors are possible. Built in self
test (“BIST”) is a circuit design technique in which physical
elements of a circuit are devoted to testing the circuit itself
to identify, for example, stuck at faults. Input/output BIST
(“IBIST”) is a design technique for testing input/output
(“1/0”) circuitry.

FIG. 1 is a block diagram illustrating a central processing
unit (“CPU”) 100 having a processor core for executing
software instructions coupled via a datapath to an I/O unit
for communicating with devices external to the CPU. CPU
100 includes IBIST logic 105 that may be internal to the /O
unit or integrated along side the I/O unit. IBIST logic 105 is
physical test circuitry cast into the silicon of CPU 100 along
side operation circuitry for the express purpose of testing the
operation circuitry of the I/O unit. IBIST logic 105 may
include logic to directly stimulate the I/O unit with test
vectors strategically designed to test certain portions of the
1/O unit to determine whether these portions contain a
manufacturing flaw.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the fol-
lowing figures, wherein like reference numerals refer to like
parts throughout the various views unless otherwise speci-
fied.

FIG. 1 is a block diagram illustrating a known central
processing unit including input/output built in self test
(“IBIST”) logic cast in silicon.

FIG. 2 is a block diagram illustrating a processor capable
of receiving and executing a software self test engine, in
accordance with an embodiment of the present invention.

FIG. 3 is a block diagram illustrating a motherboard
including a processor capable of executing a software self
test engine to test hardware devices along a loop back path,
in accordance with an embodiment of the present invention.

FIG. 4 is a flow chart illustrating a process for executing
a software self test engine, in accordance with an embodi-
ment of the present invention.

FIG. 5 is a diagram illustrating a demonstrative process-
ing system for implementing embodiments of the present
invention.

DETAILED DESCRIPTION

Embodiments of a system and method for implementing
a software self test engine are described herein. In the
following description numerous specific details are set forth

20

25

30

35

40

45

50

55

60

65

2

to provide a thorough understanding of the embodiments.
One skilled in the relevant art will recognize, however, that
the techniques described herein can be practiced without one
or more of the specific details, or with other methods,
components, materials, etc. In other instances, well-known
structures, materials, or operations are not shown or
described in detail to avoid obscuring certain aspects.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

FIG. 2 is a block diagram illustrating a processor 200
capable of receiving and executing a software self test
engine, in accordance with an embodiment of the present
invention. The illustrated embodiment of processor 200
includes an execution engine 205 (a.k.a. processor core), a
cache 210, a datapath 215, an input/output (“I/O”) unit 220,
and test access ports (“TAPs™) 225 and 230.

The components of processor 200 are interconnected as
follows. Execution engine 205 is coupled to cache 210 to
receive and execute instructions therefrom. Cache 210 may
represent any cache coupled to execution engine 205, such
as level 1 and level 2 cache, system random access memory
(“RAM”), and the like. In one embodiment, a software self
test engine 235 and test vectors (or test generation algo-
rithms) 240 may be loaded into cache 210 via TAP 230.
Once loaded into cache 210, execution engine 205 can
execute software self test engine 235 from cache 210.

In one embodiment, software self test engine 235 is a
virtual input/output built in self test (“IBIST”) module that
replicates the functionality of hardware IBIST circuitry.
Software self test engine 235 leverages the presence of
execution engine 205 to perform self test functionality that
would otherwise require dedicated IBIST logic cast in
silicon. Software self test engine 235 performs physical
layer self tests to execute design verification and/or test for
manufacturing defects in /O circuitry. /O circuitry may
include any hardware/logic that is accessible to execution
engine 205.

Execution engine 205 is further coupled to I/O unit 220
via datapath 215. In one embodiment, datapath 215 is a
20-bit wide bus coupling I/O unit 220 to execution engine
205. Datapath 215 may include simple signal lines to a
complex network of drivers, receivers, buffers, latches,
repeaters, alignment circuitry, and the like, to convey data
back and forth between I/O unit 220 and execution engine
205. Executing software self test engine 235 from cache 210
enables test exercises to be run on datapath 215 itself. These
tests may target datapath 215 to search for defects or
characterize the performance of datapath 215. It should be
noted that traditional hardware IBIST circuits (e.g., IBIST
105) would not have access to datapath 215 and therefore
could not test datapath 215.

1/O unit 220 provides a link to external devices not
integrated into the die of processor 200. For example, 1/O
unit 220 may couple to a system bus 245 (e.g., front side
bus), which in turn couples to any number of external
hardware devices. These external hardware devices may
include typical devices disposed on a motherboard. For
example, system bus 245 may couple to a memory interface

US 7,203,872 B2

3

(e.g., memory controller hub), an I/O interface (e.g., 1/O
controller hub), a graphics interface (e.g., advance graphics
port), and the like.

1/O unit 220 includes a transceiver 250 for transmitting/
receiving data to/from system bus 245. Transceiver 250
includes drivers 255 to transmit data onto system bus 245
and transmit buffers 260 to buffer the data received along
datapath 215 prior to transmitting onto system bus 245.
Transceiver 250 further includes receivers 265 coupled to
receive data from system bus 245 and receive buffers 270
coupled to temporarily buffer the received data prior to
forwarding the received data to execution engine 205 via
datapath 215.

The illustrated embodiment of I/O unit 220 further
includes control and status registers (“CSRs™) 275. CSRs
275 enable 1/O unit 220 to be programmed with command
data and save status information. In one embodiment, CSRs
275 may be externally written to via TAP 225. In one
embodiment, CSRs 275 are exposed and accessible to
execution engine 205 over datapath 215. In the latter
embodiment, execution engine 205 and/or /O unit 220 may
include decode logic 280 to enable execution engine 205 to
address and map CSRs 275. During normal operation of
processor die 200, CSRs 275 are hidden or otherwise locked
out from execution engine 205 and applications executing
on execution engine 205. However, during a self-test mode
of operation, execution engine 205 is granted access to CSRs
275. In one embodiment, software self test engine 235
includes a key to access CSRs 275 during the self-test mode
of operation. Thus, CSRs 275 may be accessible both
externally to a technician or test equipment via TAP 225
and/or internally to execution engine 205 via datapath 215.

FIG. 3 is a block diagram illustrating a motherboard 300
including processor 200 capable to execute a software self
test engine to test hardware devices along a loop back path,
in accordance with an embodiment of the present invention.
The illustrated embodiment of motherboard 300 includes
processor 200, a slave device 305, and a slave device 310.
In the illustrated embodiment, each slave device 305 and
310 includes one or more transceivers 312, similar to
transceiver 250, to receive and transmit data thereon.

Slave devices 305 and 310 represent devices external to
processor 200 (i.e., not integrated onto the die of processor
200) coupled to processor 200 via I/O unit 220. For example,
slave device 305 may be a memory interface, a graphics
interface, or a repeater, while slave device 310 may be the
actual memory unit or graphics engine. Slave devices 305
and 310 may be “daisy chained” to system bus 245, as
illustrated, or multiple slave devices may be directly coupled
to system bus 245 (not illustrated).

Each of I/O unit 220, slave device 305, and slave device
310 can be placed in a loop back test mode to test hardware
circuitry along a loop back path 315. I/O unit 220 can be
placed into the loop back test mode by software self test
engine 235 accessing CSR 275 via datapath 215 and writing
command data to CSR 275. Similarly, software self test
engine 235 can place each of slave devices 305 and 310 into
the loop back test mode by accessing and writing command
data to CSR 320 and 325, respectively.

The processes explained below are described in terms of
computer software and hardware. The techniques described
may constitute machine-executable instructions embodied
within a machine (e.g., computer) readable medium, that
when executed by a machine will cause the machine to
perform the operations described. The order in which some
or all of the process blocks appear in each process should not
be deemed limiting. Rather, one of ordinary skill in the art

20

25

30

35

40

45

50

55

60

65

4

having the benefit of the present disclosure will understand
that some of the process blocks may be executed in a variety
of orders not illustrated.

FIG. 4 is a flow chart illustrating a process 400 to
implement physical layer self tests using a cache based
software self test engine, in accordance with an embodiment
of the present invention.

In a process block 405, software self test engine 235 is
transferred into cache 210. In one embodiment, software self
test engine 235 is transferred into cache 210 via TAP 230. In
this embodiment, software self test engine 235 may be used
to perform physical layer self test before any operating
system (“OS”) is loaded by processor 200. In one embodi-
ment, software self test engine 235 is transferred into cache
210 via an ordinary software install during OS runtime. In
this latter embodiment, software self test engine 235 may be
executed to perform various design verification tests (e.g.,
stress tests that determine operational limits of hardware
coupled to execution engine 205 along loopback path 315).
It should be appreciated that design verification tests may be
performed after testing for manufacturing flaws and I/O unit
220 and datapath 215 are known to be free of disabling
manufacturing flaws.

In a process block 410, execution engine 205 under the
control of software self test engine 235 writes command data
to one or more of CSRs 275, 320, and 325 to place one or
more of I/O unit 220, slave device 305, and slave device 310
into the loop back test mode. Placing one or more of I/O unit
220, slave device 305, and slave device 310 into the loop
back test mode enables software self test engine 235 to
transmit test vectors 330 onto datapath 215 that are routed
back to software self test engine 235 as response vectors 335
along loop back path 315.

In one embodiment, software self test engine 235 can
configure I/O unit 220 to perform near-end self tests that
only test the functionality of datapath 215 and I/O unit 220.
During these near-end tests, loop back path 315 is shortened
to loop back along path 340. In one embodiment, software
self test engine 235 can configure /O unit 220 and slave
device 305 to perform far-end self tests that test the func-
tionality of datapath 215, I/O unit 220, and slave device 305.
During these far end tests, loop back path 315 is selectively
adjusted to loop back along one of paths 345 or 350. In one
embodiment, software self test engine 235 can configure [/O
unit 220, slave device 305, and slave device 310 to perform
deep far-end tests that test the functionality of datapath 215,
1/0O unit 220, slave device 305, and slave device 310. During
these deep far-end tests, loop back path 315 is lengthened to
loop back along a path 355.

In a process block 415, software self test engine 235
transmits control data onto datapath 215 to adjust operating
parameters of the device under test. For example, transceiver
250 may include 64 individual drivers 255 and transmit
buffers 260, each corresponding to a bit line of system bus
245. In this case, software self test engine 235 may transmit
control data to I/O unit 220 to enable one of the driver
circuits for testing. In one embodiment, the control data is
written to one or more of CSRs 275, 320, and 325 to setup
and target various components (e.g., transceivers 250 and
312) in each of I/O unit 220 and slave devices 305 and 310
for physical layer self testing.

In a process block 420, software self test engine 235
transmits test vectors 330 over datapath 215 to I/O unit 220.
Test vectors 330 are selected to rigourously test hardware
along loop back path 315. For example, test vector 330 may
include 256 alternating “0” and “1” bits to test whether a
particular driver circuit of transceivers 250 or 312 is func-

US 7,203,872 B2

5

tioning properly. Test vectors 330 transmitted over datapath
215 may be obtained by software self test engine 235 from
cache 210 where they are stored as test vectors 240. As
discussed above, test vectors 240 can be uploaded into cache
210 via TAP 230 as a pre-configured set of test vectors,
pseudo-randomly generated by software self test engine 235
itself using the processing resources of execution engine
205, generated according to preconfigured guidelines, or a
combinations thereof.

Once transmitted, test vector 330 is looped back along
loop back path 315 as response vector 335 (process block
425). In a decision block 430, if software self test engine 235
is testing for a manufacturing flaws, then process 400
continues to a process block 435. In process block 435,
software self test engine 235 analyzes response vector 335
to determine whether a manufacturing flaw exits along loop
back path 315. Manufacturing flaws may include stuck at
faults, shorts, parasitic capacitances, and the like. Since test
vectors 330 are transmitted over datapath 330, a manufac-
turing flaw within datapath 215 can be tested for and
discovered using the techniques described herein. Further-
more, by beginning with near-end tests and gradually
extending loop back path 315 out to include far-end and
deep far-end testing, hardware flaws can be isolated to a
particular component of motherboard 300 or processor 200.

In one embodiment, analyzing response vector 335
includes comparing response vector 335 against test vector
330 to determine whether the two vectors are identical. If
response vector 335 is supposed to return to software self
test engine 235 as an identical replica to the transmitted test
vector 330, but instead returns with a bit flipped, then
software self test engine 235 may determine a flaw exists. In
one embodiment, response vector 335 is compared bit-by-bit
against the transmitted test vector 335. In one embodiment,
checksums are computed for each of test vector 330 and
response vector 335 and the checksums are compared. In
other embodiments, response vectors 335 are intended to
change in a known manner after traversing loop back path
315. In a process block 440, software self test engine 235
logs a pass and/or fail for each test vector 330 and response
vector 335 pair. The number of errors occurring in response
vector 335 can be counted and a bit error rate (“BER”) of the
loop back path 315 calculated.

Returning to decision block 430, if software self test
engine 235 is testing for design verification, then process
400 continues to a process block 445. In process block 445,
software self test engine 235 analyzes response vector 335
to determine design parameters. Testing for design verifica-
tion may include stress testing various components (e.g.,
datapath 215) to determine maximum clock speeds, signal
margins, BERs, testing for clock harmonic responses, and
the like. For example, software self test engine 235 may
adjust sampling timing of I/O unit 220 on datapath 215
and/or system bus 245 to determine signal margins. In a
process block 440, software self test engine 235 logs a pass
and/or fail for each test vector 330 and response vector 335
pair.

In a decision block 455, software self test engine 235
determines whether all test vectors 240 have been transmit-
ted. If not, process 400 returns to process block 415 and
continues therefrom as described above. It should be noted
that multiple test vectors may be transmitted without adjust-
ing operating parameters of I/O unit 220, slave device 305,
or slave device 310 and therefore, process block 415 may be
periodically skipped. If all the test vectors have been trans-
mitted and the self testing complete, then process 400
continues to a process block 460 to generate a pass/fail

20

25

30

35

40

45

50

55

60

65

6

report. In one embodiment, the pass/fail report is stored in
cache 210 and downloaded from cache 210 via TAP 230.

Implementing IBIST functionality using software self test
engine 235 loaded into cache 210 provides added flexibility.
Often optimal test vectors for verifying problematic portions
of a processor are not known until the processor is taped out
and entered high volume manufacturing for sale. Since
current IBIST engines are finite state machines cast in
silicon, adding a new optimized set of test vectors can be
very costly requiring a new tape out of the processor die.
However, embodiments of the present invention enable
circuit designers, original equipment manufactures, and the
like to augment existing test vectors with new ones as they
become available, simply by uploading the new test vectors
via TAP 230 into cache 210. Additionally, software self test
engine 235 helps ameliorate the tremendous burden of
extensive pre-silicon validation and post silicon debug of
extensive design for test features imbedded in silicon, as
well as, the expense and lengthy turn around time to fix bugs
or add enhancements to the design for test circuitry.

FIG. 5 is a diagram illustrating a demonstrative process-
ing system 500 for implementing embodiments of the
present invention. The illustrated embodiment of system 500
includes a chassis 510, a monitor 515, a mouse 520 (or other
pointing device), and a keyboard 525. The illustrated
embodiment of chassis 510 further includes a floppy disk
drive 530, a hard disk 535, a compact disc (“CD”) and/or
digital video disc (“DVD”) drive 537, a power supply (not
shown), and motherboard 300 populated with appropriate
integrated circuits including system memory 545, nonvola-
tile (“NV”’) memory 550, and one or more processor(s) 200.

Processor(s) 200 is communicatively coupled to system
memory 545, NV memory 550, hard disk 535, floppy disk
drive 530, and CD/DVD drive 537 via a chipset on moth-
erboard 300 to send and to receive instructions or data
thereto/therefrom. In one embodiment, NV memory 550 is
a flash memory device. In other embodiments, NV memory
550 includes any one of read only memory (“ROM”),
programmable ROM, erasable programmable ROM, elec-
trically erasable programmable ROM, or the like. In one
embodiment, system memory 545 includes random access
memory (“RAM”), such as dynamic RAM (“DRAM”),
synchronous DRAM, (“SDRAM”), double data rate
SDRAM (“DDR SDRAM”), static RAM (“SRAM”), and
the like. In various embodiments, either of NV memory 550
or system memory 545 may represent slave device 310,
while a memory controller/interface (not illustrated) may
represent slave device 305.

Hard disk 535 represents any storage device for software
data, applications, and/or operating systems, but will most
typically be a nonvolatile storage device. Hard disk 535 may
optionally include one or more of an integrated drive elec-
tronic (“IDE”) hard disk, an enhanced IDE (“EIDE”) hard
disk, a redundant array of independent disks (“RAID”), a
small computer system interface (“SCSI”) hard disk, and the
like.

In one embodiment, a network interface card (“NIC”) (not
shown) is coupled to an expansion slot (not shown) of
motherboard 300. The NIC is for connecting system 500 to
a network 560, such as a local area network, wide area
network, or the Internet. In one embodiment network 560 is
further coupled to a remote computer 565, such that system
500 and remote computer 565 can communicate.

The above description of illustrated embodiments of the
invention, including what is described in the Abstract, is not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and

US 7,203,872 B2

7

examples for, the invention are described herein for illus-
trative purposes, various equivalent modifications are pos-
sible within the scope of the invention, as those skilled in the
relevant art will recognize.
These modifications can be made to the invention in light
of the above detailed description. The terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed in the specifica-
tion and the claims. Rather, the scope of the invention is to
be determined entirely by the following claims, which are to
be construed in accordance with established doctrines of
claim interpretation.
What is claimed is:
1. A method, comprising:
executing a software self test engine buffered within an
on-die cache of a processor with an execution engine of
the processor to execute a physical layer self test; and

transmitting a test vector from the execution engine under
control of the self test engine to an input/output (“I/O”)
unit of the processor along a datapath coupling the
execution engine to the I/O unit, the test vector trans-
mitted along a loop back path including the /O unit and
the datapath to test a hardware device along the loop
back path.

2. The method of claim 1, further comprising:

receiving a response vector at the executing engine from

the loop back path in response to transmitting the test
vector; and

analyzing the response vector to test the hardware device

along the loop back path.

3. The method of claim 2, wherein analyzing the response
vector comprises comparing the response vector against the
test vector to determine whether the response vector is
identical to the test vector.

4. The method of claim 2, wherein analyzing the response
vector to test the hardware device comprises testing the
hardware device for at least one of a manufacturing flaw and
design validation.

5. The method of claim 2, further comprising:

transferring the software self test engine into the on-die

cache of the processor via a test access port (“TAP”).

6. The method of claim 2, further comprising:

loading the software self test engine into the on-die cache

of the processor under control of an operating system
executing on the processor.

7. The method of claim 2, further comprising:

accessing a command and status register (“CSR”) of the

1/O unit via the datapath; and
writing to the CSR of the 1/0O unit to place the I/O unit into
a loop back test mode.

8. The method of claim 2, further comprising routing the
test vector through at least one slave device coupled to the
1/O unit, and wherein the hardware device comprises the
slave device.

9. The method of claim 8, further comprising setting a
CSR of the slave device to place the slave device into the
loop back test mode.

10. The method of claim 2, further comprising adjusting
operating parameters of the /O unit under control of the
software self test engine.

11. The method of claim 10, wherein adjusting the oper-
ating parameters of the /O unit includes adjusting sampling
timing of the 1/O unit on the datapath to determine signal
margins.

12. The method of claim 1, wherein the software self test
engine comprises a virtual /O built-In Self-Test (“IBIST”)
engine.

20

25

30

35

40

45

50

55

60

65

8

13. The method of claim 1, further comprising generating
the test vectors under control of the software self test engine
according to an test vector generation algorithm.
14. A machine-accessible medium that provides instruc-
tions that, if executed by a machine, will cause the machine
to perform operations comprising:
transmitting a test vector from an execution engine of a
processor to an input/output (“I/O) unit of the proces-
sor along a datapath coupling the execution engine to
the I/O unit, the test vector transmitted along a loop
back path including the I/O unit and the datapath;

receiving a response vector from the datapath at the
execution engine in response to transmitting the test
vector; and

analyzing the response vector to execute a physical layer

self test on a hardware device along the loop back path.
15. The machine-accessible medium of claim 14, provid-
ing further instructions that, if executed by the machine, will
cause the machine to perform further operations, compris-
ing:
accessing at least one command and status register
(“CSR”) of the I/O unit; and

writing to the at least one command and status register
(“CSR”) of the 1/0O unit to place the I/O unit into a loop
back test mode.

16. The machine-accessible medium of claim 14, provid-
ing further instructions that, if executed by the machine, will
cause the machine to perform further operations, compris-
ing:

routing the test vector through a first slave device coupled

to the 1/O unit to perform the physical layer self test on
the first slave device, the loop back path including the
first slave device.
17. The machine-accessible medium of claim 16, provid-
ing further instructions that, if executed by the machine, will
cause the machine to perform further operations, compris-
ing:
accessing at least one command and status register
(“CSR”) of the slave device via the datapath; and

writing to the at least one command and status register
(“CSR”) of the slave device to place the slave device
into a loop back test mode.

18. The machine-accessible medium of claim 17, wherein
the slave device comprises a memory controller.

19. The machine-accessible medium of claim 16, provid-
ing further instructions that, if executed by the machine, will
cause the machine to perform further operations, compris-
ing:

routing the test vector through the first slave device and a

second slave device coupled to the first slave device to
perform the physical layer self test on the second slave
device, the loop back path including the first and
second slave devices.

20. The machine-accessible medium of claim 14, wherein
the physical layer self test comprises a virtual input/output
built in self test (“IBIST”) executed from a software self test
engine buffered within the cache.

21. A processor, comprising:

a cache to receive a software self test engine;

an execution engine coupled to the cache to execute the

software self test engine from the cache;

a datapath coupled to the execution engine; and

an input/output (“I/0”) unit coupled to the datapath, the

1/O unit to couple the processor to external circuitry, the
execution engine to transmit test vectors across the
datapath to the 1/O unit and to analyze response vectors

US 7,203,872 B2

9

received from the datapath under control of the soft-
ware self test engine to test at least one of the datapath
and the I/O unit.

22. The processor of claim 21, wherein the I/O unit further
comprises:

command and status registers (“CSRs”) to selectively
configure the I/O unit into a loop back test mode and to
hold status information about the I/O unit; and

decode logic coupled to the CSRs and coupled to the
datapath, the decode logic to provide the execution
engine access to the CSRs through the datapath when
executing the software self test engine.

23. The processor of claim 22, further comprising a test
access port (“TAP”) coupled to load the software self test
engine into the cache.

24. The processor of claim 22, wherein the CSRs are to
selectively configure the I/O unit into the loop back test
mode to route the test vectors back over the datapath as the
response vectors.

25. A system, comprising:

a motherboard;

a memory interface disposed on the motherboard and
communicatively coupled to synchronous dynamic ran-
dom access memory (“SDRAM”); and

a processor disposed on the motherboard and communi-
catively coupled to the memory interface to access the
SDRAM, the processor including:

a cache to receive a software self test engine to run
physical layer self tests;

an execution engine to execute the software self test
engine;

a datapath coupled to the execution engine; and

20

25

30

10

an input/output (“I/O”) unit communicatively coupled
to the datapath and to the memory interface, the
execution engine to transmit first test vectors across
the datapath and I/O unit along a loop back path
under control of the software self test engine.

26. The system of claim 25, wherein the execution engine
compares the first test vectors with second test vectors
received on the datapath under the control of the software
self test engine to determine whether a hardware flaw exists
along the loop back path.

27. The system of claim 26, wherein each of the 1/O unit
and the memory interface include control and status registers
(“CSRs”) to configure the each of the /O unit and the
memory interface into a loop back test mode, the CSRs
accessible by the execution engine via the datapath.

28. The system of claim 27, wherein the loop back path
selectively includes the datapath, the I/O unit, and the
memory interface in response to the software self test engine
to test hardware along the loop back path.

29. The system of claim 25, further comprising a test
access point (“TAP”) coupled to the processor to transfer the
software self test engine into the cache.

30. The system of claim 25, further comprising a graphics
interface coupled to the 1/O unit and wherein the loop back
path selectively includes the datapath, the 1/O unit, and the
graphics interface to test hardware along the loop back path.

31. The system of claim 25, further comprising an I/O
interface coupled to the 1/O unit and wherein the loop back
path selectively includes the datapath, the 1/O unit, and the
1/O interface to test hardware along the loop back path.

#* #* #* #* #*

