INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number:	PCT/US98/15909
(22) International Filing Date:	30 July 1998 (30.07.98)
(30) Priority Data:	60/054,249 30 July 1997 (30.07.97) US
(41) Priority Data:	
(43) International Publication Date:	11 February 1999 (11.02.99)
(51) International Patent Classification 6:	A61K 31/40
(72) Inventors:	and
(75) Inventors/Applicants (for US only):	LEE, Dennis [CA/US]; 205 Haverford Avenue, Swarthmore, PA 19081 (US). LONG, Scott, A. [US/US]; 724 Mill Grove Drive, Norristown, PA 19403 (US).
(74) Agents:	VENETIANER, Stephen et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

Title: CASPASES AND APOPTOSIS

Abstract

The present invention is to the novel compounds of Formula (I), their pharmaceutical compositions, and to the novel inhibition of Caspases for use in the treatment of apoptosis, and disease states caused by excessive or inappropriate cell death.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CI</td>
<td>Cote d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
Caspases and Apoptosis

FIELD OF THE INVENTION

The present invention is to the discovery of a new method to block excessive or inappropriate apoptosis in a mammal.

BACKGROUND

It has been recognized for over a century that there are different forms of cell death. One form of cell death, necrosis, is usually the result of severe trauma and is a process that involves loss of membrane integrity and uncontrolled release of cellular contents, often giving rise to inflammatory responses. In contrast, apoptosis is a more physiological process that occurs in a controlled manner and is generally non-inflammatory in nature. For this reason apoptosis is often referred to as programmed cell death. The name itself (apoptosis: Greek for "dropping off", for example leaves from trees) implies a cell death that is part of a normal physiological process (Kerr et al., Br. J. Cancer, 26: 239-257 (1972)).

Apoptosis appears to be a carefully controlled series of cellular events which ultimately leads to death of the cell. This process for elimination of unwanted cells is active and requires expenditure of cellular energy. The morphological characteristics of apoptosis include cell shrinkage and loss of cell-cell contact, condensation of nuclear chromatin followed by fragmentation, the appearance of membrane ruffling, membrane blebbing and apoptotic bodies. At the end of the process, neighboring cells and macrophages phagocytose the fragments from the apoptotic cell. The process can be very fast, occurring in as little as a few hours (Bright et al., Biosci. Rep., 14: 67-82 (1994)).

The best defined biochemical event of apoptosis involves the orderly destruction of nuclear DNA. Signals for apoptosis promote the activation of specific calcium- and magnesium-dependent endonucleases that cleave the double stranded DNA at linker regions between nucleosomes. This results in production of DNA fragments that are multiples of 180-200 base pair fragments (Bergamaschi et al., Haematologica, 79: 86-93 (1994); Stewart, JNCI, 86: 1286-1296 (1994)). When examined by agarose gel electrophoresis, these multiple fragments form a ladder pattern that is characteristic for most cells undergoing apoptosis.

There are numerous stimuli that can signal cells to initiate or promote cellular apoptosis, and these can be different in different cells. These stimuli can include glucocorticoids, TNFα, growth factor deprivation, some viral proteins, radiation and anticancer drugs. Some of these stimuli can induce their signals through a variety of cell surface receptors, such as the TNF / nerve growth factor family of receptors, which
include CD40 and Fas/Apo-1 (Bright et al., supra). Given this diversity in stimuli that cause apoptosis it has been difficult to map out the signal transduction pathways and molecular factors involved in apoptosis. However, there is evidence for specific molecules being involved in apoptosis.

The best evidence for specific molecules that are essential for apoptosis comes from the study of the nematode C. elegans. In this system, genes that appear to be required for induction of apoptosis are Ced-3 and Ced-4. These genes must function in the dying cells and, if either gene is inactivated by mutation, cell death fails to occur (Yuan et al., Devel. Biol., 138: 33-41 (1990)). In mammals, genes that have been linked with induction of apoptosis include the proto-oncogene c-myc and the tumor suppressor gene p53 (Bright et al., supra; Symonds et al., Cell, 78: 703-711 (1994)).

In this critical determination of whether or not to undergo apoptosis, it is not surprising that these are genes that program for proteins that inhibit apoptosis. An example in C. elegans is Ced-9. When it is abnormally activated, cells survive that would normally die and, conversely, when Ced-9 is inactivated cells die that would normally live (Stewart, B.W., supra). A mammalian counterpart is bcl-2, which had been identified as a cancer-causing oncogene. This gene inhibits apoptosis when its product is overexpressed in a variety of mammalian cells, rendering them less sensitive to radiation, cytotoxic drugs and apoptotic signals such as c-myc (Bright et al., supra). Some virus proteins have taken advantage of this ability of specific proteins to block apoptosis by producing homologous viral proteins with analogous functions. An example of such a situation is a protein produced by the Epstein Barr virus that is similar to bcl-2, which prevents cell death and thus enhances viral production (Wells et al., J. Reprod. Fertil., 101: 385-391 (1994)). In contrast, some proteins may bind to and inhibit the function of bcl-2 protein, an example being the protein bax (Stewart, B.W., supra). The overall picture that has developed is that entry into apoptosis is regulated by a careful balancing act between specific gene products that promote or inhibit apoptosis (Barinaga, Science, 263: 754-756 (1994)).

Apoptosis is an important part of normal physiology. The two most often cited examples of this are fetal development and immune cell development. In development of the fetal nervous system, over half of the neurons that exist in the early fetus are lost by apoptosis during development to form the mature brain (Bergamaschi et al., Haematologica, 79: 86-93 (1994)). In the production of immune competent T cells (and to a lesser extent evidence exists for B cells), a selection process occurs that eliminates cells that recognize and react against self. This selection process is thought to occur in an apoptotic manner within areas of immune cell maturation (Williams, G. T., J. Pathol., 173: 1-4 (1994); Krammer et al., Curr. Opin. Immunol., 6: 279-289 (1994)).
Dysregulation of apoptosis can play an important role in disease states, and diseases can be caused by both excessive or too little apoptosis occurring. An example of diseases associated with too little apoptosis would be certain cancers. There is a follicular B-cell lymphoma associated with an aberrant expression of functional bcl-2 and an inhibition of apoptosis in that cell (Bergamaschi et al., supra). There are numerous reports that associate deletion or mutation of p53 with the inhibition of apoptosis and the production of cancerous cells (Kerr et al., *Cancer*, 73: 2013-2026 (1994); Ashwell et al., *Immunol. Today*, 15: 147-151, (1994)). In contrast, one example of excessive or inappropriate apoptosis is the loss of neuronal cells that occurs in Alzheimer disease, possible induced by b-amyloid peptides (Barr et al., *BioTechnology*, 12: 487-493 (1994)). Other examples include excessive apoptosis of CD4+ T cells that occurs in HIV infection, of cardiac myocytes during infarction / reperfusion and of neuronal cells during ischemia (Bergamaschi et al., supra; Barr et al., supra).

Some pharmacological agents attempt to counteract the lack of apoptosis that is observed in cancers. Examples include topoisomerase II inhibitors, such as the epipodophyllotoxins, and antimetabolites, such as ara-c, which have been reported to enhance apoptosis in cancer cells (Ashwell et al., supra). In many cases with these anti-cancer drugs, the exact mechanism for the induction of apoptosis remains to be elucidated.

In the last few years, evidence has built that ICE and proteins homologous to ICE (Caspases) play a key role in apoptosis. This area of research has been spurred by the observation of homology between the protein coded by Ced-3, a gene known to be critical for C. Elegans apoptosis, and ICE (Caspase 1). These two proteins share 29% amino acid identity, and complete identity in the 5 amino acid portion thought to be responsible for protease activity (QACRG) (Yuan et al., *Cell*, 75: 641-652 (1993)). Additional homologies are observed between ICE and the product of the nedd-2 gene in mice, a gene suspected of involvement in apoptosis in the developing brain (Kumar et al., *Genes Dev.*, 8: 1613-1626 (1994)) and Ich-1 (Caspase 2) and CPP32 (Caspase 3), human counterparts of nedd-2 isolated from human brain cDNA libraries (Wang et al., *Cell*, 78: 739-750 (1994); Fernandes-Alnemiri et al., *J. Biol. Chem.*, 269: 30761-30764 (1994)).

Further proof for the role of these proteins in apoptosis comes from transfection studies. Over expression of murine ICE caused fibroblasts to undergo programmed cell death in a transient transfection assay (Miura et al., *Cell*, 75: 653-660 (1993)). Cell death could be prevented by point mutations in the transfected gene in the region of greatest homology between ICE and Ced-3. As very strong support for the role of ICE in apoptosis, the authors showed that ICE transfection-induced apoptosis could be antagonized by overexpression of bcl-2, the mammalian oncogene that can prevent programmed cell death (Miura et al., supra). Additional experiments were performed using the crmA gene. This
gene of the cowpox virus encodes a serpin protein, a family of proteins that are inhibitors of proteases (Ray et al., Cell, 69: 597-604 (1992)). Specifically, the protein of crmA has been shown to inhibit processing of pro-interleukin -1b by ICE. (Gagliardini et al. Science, 263: 826-828 (1994)) showed that microinjection of the crmA gene into dorsal root ganglion neurons prevented cell death induced by nerve growth factor deprivation. This result shows that ICE is involved in neuronal cell apoptosis. A more direct demonstration of ICE involvement comes from experiments in which ICE transfection is coupled with the co-expression of crmA, demonstrating a crmA-induced suppression of the ICE-induced apoptosis response (Miura et al., supra; Wang et al., supra).

In addition to ICE, researchers have examined the ability of Caspases to promote apoptosis. (Kumar et al. supra) demonstrated that over expression of nedd-2 in fibroblasts and neuroblastoma cells resulted in cell death by apoptosis and that this apoptosis could also be suppressed by expression of the bcl-2 gene. Most recently, Wang et al., (Wang et al. supra) examined the over expression of Ich-1 in a number of mammalian cells. Expression resulted in cell apoptosis, which could be antagonized by bcl-2 co-expression. Mutation of a cysteine residue, contained within the QACRG motif and presumed to be critical for protease function, to serine abolished apoptotic activity.

Further evidence for a role of a cysteine protease in apoptosis comes from a recent report by Lazebnik et al. (Nature, 371: 346-347 (1994)). These authors have used a cell-free system to mimic and study apoptosis. In their system there is a protease activity that cleaves the enzyme poly(ADP-ribose) polymerase at a site identical to a cleavage site in pre-interleukin-1b. However, this yet to be isolated protease and ICE appear to be different and to act on different substrate proteins. Blockade of protease activity in the system, using non-selective cysteine protease inhibitors, resulted in inhibition of apoptosis.

To date, no useful therapeutic strategies have blocked excessive or inappropriate apoptosis. In one patent application, EPO 0 533 226 a novel peptide structure is disclosed which is said to be useful for determining the activity of ICE, and therefore useful in the diagnoses and monitoring of IL-1 mediated diseases. Therefore, a need exists to find better therapeutic agents which have non-toxic pharmacological and toxicological profiles for use in mammals. These compounds should block excessive or inappropriate apoptosis cells, and hence provide treatment for diseases and conditions in which this condition appears.

10 SUMMARY OF THE INVENTION

The present invention is to the novel compounds of Formula (I), their pharmaceutical compositions, and to the novel inhibition of Caspases for use in the treatment of apoptosis, and disease states caused by excessive or inappropriate cell death. The compounds of Formula I are most effective in inhibiting Caspases three and seven.

Another aspect of the present invention is to a pharmaceutical composition comprising a compound of Formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

Another aspect of the present invention is to a method for the treatment of diseases or disorders associated with excessive IL-1b convertase activity, in a mammal in need thereof, which method comprises administering to said mammal an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

Another aspect of the present invention is to a method of preventing or reducing apoptosis in a mammal, preferably a human, in need of such treatment which method comprises administering to said mammal or human an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

Another aspect of the present invention is to a method of blocking or decreasing the production of IL-1b and/or TNF, in a mammal, preferably a human, in need of such treatment which method comprises administering to said mammal or human an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

The compounds of Formula I are represented by the structure

![Chemical Structure](image)/
wherein
R₁ is hydrogen, or C₁₋₄ alkyl;
R₂ is C₁₋₁₀ alkyl, optionally substituted arylC₁₋₄ alkyl, optionally substituted heteroaryl
C₁₋₄ alkyl, optionally substituted C₃₋₇ cycloalkyl, or R₁ and R₂ together with the nitrogen to which they are attached from a 3 to 10 membered ring which optionally contains an additional heteroatom selected from oxygen, nitrogen or sulfur;
R₃ and R₄ are C₁₋₆ alkyl, hydrogen, nitro, or halogen and
R₅ is C₁₋₆ alkyl, hydrogen, arylalkyl or heteroarylmethyl.

Preferably R₁ and R₂ are joined for form a five membered nitrogen containing ring. It is recognized that the alkyl group in the arylalkyl or heteroalkyl moiety may be branched or straight, such as a methylene or a substituted methylene group, i.e., -CH(CH₃)- aryl. The optionally substituted aryl moiety of the arylalkyl group, may be substituted one to three times independently by hydroxy, halogen, alkyl or alkoxy. R₅ is preferably benzyl.

Compounds exemplified by Formula (I) include, but are not limited to:

5-Chlorosulfonyl-3,3-dichloro-2-oxindole

5-Benzylaminosulfonyl-3,3-dichloro-2-oxindole
5-[N-(1-Methyl-3-phenylpropylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Benzyl-2-cyanoethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(2-(3-Pyridyl)ethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(2-Furfurylamino)sulfonyl]-3,3-dichloro-2-oxindole

5-[N-(2-Isopropoxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(2-Methoxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(2-Tetrahydrofuranylaminosulfonyl]-3,3-dichloro-2-oxindole
(−)-5-[N-(cis-3-Methylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[(1-Benzylpiperidinyl-4-aminosulfonyl]-3,3-dichloro-2-oxindole

5-[N-(2-Indanamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(Cyclopropylmethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(1.5-Dimethylhexylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methylbenzylamino)sulfonyl]-3,3-dichloro-2-oxindole
(++-)-5-[N-(3-(N-Acetyl-N-methylamino)pyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[2-(1.2.3,4-Tetrahydroisoquinolinyl)sulfonyl]-3,3-dichloro-2-oxindole
(−⁺⁺)-5-[1-(Decahydroisoquinolinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methyl-2-cyclohexylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-{N-(N-Methylcyanomethylamino)sulfonyl}-3,3-dichloro-2-oxindole
5-{N-(Pyrrolidinyl)sulfonyl}-3,3-dichloro-2-oxindole
5-{N-(N-Methylphenethylamino)sulfonyl}-3,3-dichloro-2-oxindole
5-{N-(Azacyclooctane)sulfonyl}-3,3-dichloro-2-oxindole
5-{N-(3-Azabicyclo[3.2.2]nonane)sulfonyl}-3,3-dichloro-2-oxindole
5-{[2-(Ethyloxy-carbonyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-{N-(Morpholino)sulfonyl]-3,3-dichloro-2-oxindole
(S)-(+-)-5-{[1-(2-Methoxy-methylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-{N-(N-Methyl-2-(4-pyridinyl)ethylamino)sulfonyl]-3,3-dichloro-2-oxindole
10
(S)-(+-)-5-{N-(2-Hydroxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole
(+/-)-5-{[1-(3-Hydroxy-methylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(+/-)-5-{[1-(3-amino-carbonyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(+/-)-5-{[1-(2-Methylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
15
(+/-)-5-{[1-(4-Methylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-{[1-(4-Hydroxy-piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(+/-)-5-{[1-(2-Hydroxyethyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(+/-)-5-{[1-(3-Hydroxymethyl) piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-{[1-(4-Phenylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
20
5-{[1-(4-Benzylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-{[1-(4-(1-Piperidinyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-Benzylaminosulfonyl-N-methyl-3,3-dichloro-2-oxindole
5-Chlorosulfonyl-N-methyl-3,3-dichloro-2-oxindole
5-Benzylaminosulfonyl-N-methyl-3,3-dichloro-2-oxindole
25
N-Methyl-5-(1-piperidinylsulfonyl)-3,3-dichloro-2-oxindole

The term "excessive IL-1b convertase activity" is used herein to mean an excessive expression of the protein, or activation of the enzyme.

The term "C_1-6 alkyl" or "alkyl" is used herein to mean both straight and branched chain radicals of 1 to 6 carbon atoms, unless the chain length is otherwise specified, including, but not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, and the like.

The term "heteroaryl" (on its own or in any combination, such as "heteroaryloxy", or "heteroaryl alkyl") is used herein to mean a 5-10 membered aromatic ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O or S, such as, but not limited, to pyrrole, pyrazole, furan, thiophene, quinoline, isoquinoline,
quinazolinyl, pyridine, pyrimidine, oxazole, oxadiazole, tetrazole, thiazole, thiadiazole, triazole, imidazole, benzimidazole, benzothiophene, benzopyrrole, or benzofuran.

The term "aryl" (on its own or in any combination, such as "aryloxy", or "arylalkyl") is used herein to mean a phenyl and naphthyl ring.

The term "cycloalkyl" is used herein to mean cyclic radicals, preferably of 3 to 7 carbons, including but not limited to cyclopropyl, cyclopentyl, cyclohexyl, and the like.

The term "halo" or "halogens", is used herein to include, unless otherwise specified, chloro, fluoro, bromo and iodo.

The present invention contains the inhibition of Caspases by compounds of Formula (I). What is meant by the term "Caspases" are fragment, homologs, analogs and derivatives of the polypeptides Interleukin-1 b converting enzyme (or convertase). These analogs are structurally related to the Caspase family. They generally encode a protein(s) which exhibits high homology to the human ICE over the entire sequence. Preferably, the pentapeptide QACRG is conserved. The Caspases, which may include many natural allelic variants (such as substitutions, deletion or addition of nucleotides) does not substantially alter the function of the encoded polypeptide. That is they retain essentially the same biological function or activity as the ICE protease, although it is recognized that the biological function may be enhanced or reduced activity. The suitable activity is not IL-1b convertase activity, but the ability to induce apoptosis or involved in programmed cell death in some manner. Suitable Caspases encompasses within this invention are those described in PCT US94/07127 filed 23 June 1994, Attorney Docket No.: 325800-184; and in USSN 08/334,251, filed 1 November 1994, Attorney Docket No.: 325800-249 whose disclosures are incorporated herein by reference in their entirety.

The term "blocking or inhibiting, or decreasing the production of IL-1b and/or TNF" as used herein refers to:

a) a decrease of excessive levels, or a down regulation, of the cytokine in a human to normal or sub-normal levels by inhibition of the in vivo release of the cytokine; or
b) a down regulation, at the genomic level, of excessive in vivo levels of the cytokine (IL-1 or TNF) in a human to normal or sub-normal levels; or
c) a down regulation, by inhibition of the direct synthesis of the cytokine (IL-1, or TNF) as a posttranslational event; or
d) a down regulation, at the translational level, of excessive in vivo levels of the cytokine (IL-1, or TNF) in a human to normal or sub-normal levels.

The blocking or inhibiting, or decreasing the production of IL-1b and/or TNF is a discovery that the compounds of Formula (I) are inhibitors of the cytokines, IL-1 and TNF is
based upon the effects of the compounds of Formulas (I) on the production of the IL-1 and TNF in *in vitro* and *in vivo* assays which are well known and recognized in the art, some of which are described herein.

5 Compound of the present invention may be synthesized in accordance with the schemes illustrated below.

5-Alkylaminosulfonyl-3,3-dichloro-2-oxindoles

![Chemical Structure](attachment:image)

Isatin or its N-alkyl derivative is treated with chlorosulfonic acid at temperatures ranging from 0-10°C in order to obtain 5-chlorosulfonyl-3,3-dichloro-2-oxindole, the direct precursor to the compounds of this invention. Treatment of the chlorosulfonyl derivative with a primary or secondary amine in organic solvents such as tetrahydrofuran, methylene chloride or dimethylformamide with or without the addition of a tertiary amine base such as triethylamine yields the 5-alkylaminosulfonyl-3,3-dichloro-2-oxindole.

Example 1 (SB263831)

a) 5-Chlorosulfonyl-3,3-dichloro-2-oxindole

A solution of isatin (1.6 g, 10 mmol) in chlorosulfonic acid (6.6 mL) was heated to 70°C for 3 h. After cooling to RT, the solution was poured into ice and extracted with methylene chloride. The organic solution was dried over magnesium sulfate, filtered, and the solvent was removed under reduced pressure to afford the title compound as an orange solid in quantitative yield. H NMR (400 MHz, CDCl3) d 7.25 (d, J=10.5 Hz, 1H), 8.12 (d, J=10.5 Hz, 1H), 8.29 (s, 1H), 8.74 (br s, 1H).

b) 5-Benzylaminosulfonyl-3,3-dichloro-2-oxindole

To a solution of 5-chlorosulfonyl-3,3-dichloro-2-oxindole (100 mg, 400 umol) in methylene chloride (3 mL) was added benzylamine (135 μL, 1.2 mmol) dropwise. After stirring for 4 h. 3 N hydrochloric acid was added along with an additional volume of methylene chloride (20 mL). The organic layer was dried over magnesium sulfate, filtered, and silica gel flash chromatography (25 to 35% ethyl acetate/hexanes) yielded the title compound. ES (-) MS m/e = 369 (M-H).
Example 2 (SB264862)

5-[N-(1-Methyl-3-phenylpropylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 1-methyl-3-phenylpropylamine for benzylamine afforded the title compound as a yellow foam in 32% yield. ES (+) MS m/e = 413 (M+H).

Example 3 (SB264860)

5-[N-(N-Benzyl-2-cyanoethylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting N-(2-cyanoethyl)benzylamine for benzylamine afforded the title compound as a white solid in 19% yield. ES (+) MS m/e = 424 (M-H).

Example 4 (SB265240)

5-[N-(2-(3-Pyridyl)ethylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 2-(3-pyridyl)ethylamine for benzylamine afforded the title compound as a yellow oil in 4% yield. ES (+) MS m/e = 386 (M+H).

Example 5 (SB265241)

5-[N-(2-Furfurylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 2-furfurylamine for benzylamine afforded the title compound as a yellow solid in 17% yield. ES (-) MS m/e = 359 (M-H).

Example 6 (SB265242)

5-[N-(2-Isopropoxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 2-isopropoxyethylamine for benzylamine afforded the title compound as a yellow foam in 33% yield. ES (-) MS m/e = 365 (M-H).

Example 7 (SB265243)

5-[N-(2-Methoxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 2-methoxyethylamine for benzylamine afforded the title compound as a yellow foam in 27% yield. ES (-) MS m/e = 337 (M-H).
Example 8 (SB265244)
5-[(N-(2-Tetrahydrofurfuryl)amino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 2-tetrahydrofurfurylamine for benzylamine afforded the title compound as a light yellow foam in 30% yield. ES (-) MS m/e = 363 (M-H).

Example 9 (SB265246)
(-)-5-[(N-(cis-Myrtanyl)amino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting (-)-cis-myrtanylamine for benzylamine afforded the title compound as a light yellow foam in 8% yield. ES (-) MS m/e = 415 (M-H).

Example 10 (SB265247)
5-[(1-Benzylpiperidinyl-4-aminosulfonyl)]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 4-amino-1-benzylpiperidine for benzylamine afforded the title compound as a yellow oil in 5% yield. ES (-) MS m/e = 452 (M-H).

Example 11 (SB265248)
5-[(N-(2-Indanamino)sulfonyl)]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 2-indanamine for benzylamine afforded the title compound as a brown foam in 50% yield. ES (-) MS m/e = 395 (M-H).

Example 12 (SB265249)
5-[(N-(Cyclopropylmethylamino)sulfonyl)]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting cyclopropylmethylamine for benzylamine afforded the title compound as a yellow foam in 21% yield. ES (-) MS m/e = 333 (M-H).

Example 13 (SB265250)
5-[(N-(1,5-Dimethylhexyl)amino)sulfonyl)]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 1,5-dimethylhexylamine for benzylamine afforded the title compound as a yellow foam in 12% yield. ES (-) MS m/e = 391 (M-H).
Example 14 (SB265550)
5-[N-(N-Methylbenzylamino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting N-
methylbenzylamine for benzylamine afforded the title compound as a yellow solid in 38%
yield. ES (-) MS m/e = 384 (M-H).

Example 15 (SB265551)
(+/-)-5-[N-(3-(N-Acetyl-N-methylamino)pyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 3-(N-
acetyl-N-methylamino)pyrrolidine for benzylamine afforded the title compound as a yellow
foam in 39% yield. ES (-) MS m/e = 404 (M-H).

Example 16 (SB265594)
5-[2-(1,2,3,4-Tetrahydroisoquinolinol)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 1,2,3,4-
tetrahydroisoquinoline for benzylamine afforded the title compound as a yellow solid in
47% yield. ES (-) MS m/e = 395 (M-H).

Example 17 (SB265595)
(+/-)-5-[1-(Decahydroisoquinolinol)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting
decahydroisoquinoline for benzylamine afforded the title compound as a yellow foam in
27% yield. ES (-) MS m/e = 401 (M-H).

Example 18 (SB265596)
5-[N-(N-Methyl-2-cyanoethylamino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting N-methyl-
beta-alaninonitrile for benzylamine afforded the title compound as a light yellow solid in
28% yield. ES (-) MS m/e = 346 (M-H).

Example 19 (SB265597)
5-[N-(N-Methyl[cyanoethylamino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting N-
methylaminoacetonitrile for benzylamine afforded the title compound as a yellow solid in
7% yield. ES (-) MS m/e = 332 (M-H).
Example 20 (SB265598)
5-[N-(Pyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting pyrrolidine for benzylamine afforded the title compound as a light yellow solid in 21% yield. ES (-) MS m/e = 333 (M-H).

Example 21 (SB265599)
5-[N-(N-Methylphenethylamino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting N-Methylphenethylamine for benzylamine afforded the title compound as a light yellow foam in 45% yield. ES (-) MS m/e = 397 (M-H).

Example 22 (SB265600)
5-[N-(Azacyclooctane)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting azacyclooctane for benzylamine afforded the title compound as a yellow foam in 49% yield. ES (-) MS m/e = 375 (M-H).

Example 23 (SB265601)
5-[N-(3-Azabicyclo[3.2.2]nonane)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 3-azabicyclo[3.2.2]nonane for benzylamine afforded the title compound as a yellow foam in 60% yield. ES (-) MS m/e = 387 (M-H).

Example 24 (SB265602)
5-[1-(2-Ethoxycarbonylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting ethyl piperidine-2-carboxylate for benzylamine afforded the title compound as a light yellow foam in 69% yield. ES (-) MS m/e = 419 (M-H).

Example 25 (SB265603)
5-[N-(Morpholino)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting morpholine for benzylamine afforded the title compound as a light yellow solid in 56% yield. ES (-) MS m/e = 349 (M-H).
Example 26 (SB265604)

(S)-(+)-5-[1-(2-Methoxymethylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting (S)-(+)/-2-(methoxymethyl)pyrrolidine for benzylamine afforded the title compound as a light yellow foam in 38% yield. ES (-) MS m/e = 377 (M-H).

Example 27 (SB265605)

5-[N-(N-Methyl-2-(4-pyridine)ethylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting N-methyl-2-(4-pyridine)ethylamine for benzylamine afforded the title compound as a brown solid in 38% yield. ES (-) MS m/e = 398 (M-H).

Example 28 (SB265606)

5-[N-(N-Methyl-2-hydroxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting N-(methyl)amoethanol for benzylamine afforded the title compound as a light yellow foam in 27% yield. ES (-) MS m/e = 337 (M-H).

Example 29 (SB265607)

(S)-(+)5-[N-(2-Hydroxymethylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting (S)-(+)/-2-(hydroxymethyl)pyrrolidine for benzylamine afforded the title compound as a light yellow foam in 31% yield. ES (-) MS m/e = 363 (M-H).

Example 30 (SB265608)

(+/-)-5-[1-(3-Hydroxypropyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 3-hydroxypropyrrolidine for benzylamine afforded the title compound as a white solid in 9% yield. ES (+) MS m/e = 351 (M+H).

Example 31 (SB265609)

(+/-)-5-[1-(3-aminocarbonylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole

Prepared according to the procedure of example 1b) except substituting 3-carboxamide piperidine for benzylamine afforded the title compound as a white solid in 53% yield. ES (-) MS m/e = 390 (M-H).
Example 32 (SB266638)
(+/-)-5-{1-[2-(Methyl)piperidinyl)sulfonyl]1,3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 2-
methylpiperidine for benzyamine afforded the title compound as a white foam in 10%
yield. ES (-) MS m/e = 361 (M-H).

Example 33 (SB266639)
(+/-)-5-{1-[4-(Methyl)piperidinyl)sulfonyl]1,3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 4-
methylpiperidine for benzyamine afforded the title compound as an off white solid in 32%
yield. ES (-) MS m/e = 361 (M-H).

Example 34 (SB264732)
5-{1-[4-Hydroxy(piperidinyl)sulfonyl]1,3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 4-
hydroxypiperidine for benzyamine afforded the title compound as an off white solid. ES
(+)+ MS m/e = 365 (M+H).

Example 35 (SB264733)
(+/-)-5-{1-[2-(2-Hydroxyethyl)piperidinyl)sulfonyl]1,3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting (+/-)-2-(2-
hydroxyethyl)piperidine for benzyamine afforded the title compound as an off white solid. ES
(-) MS m/e = 391 (M-H).

Example 36 (SB264734)
(+/-)-5-{1-[3-Hydroxymethyl(piperidinyl)sulfonyl]1,3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting (+/-)-3-
hydroxymethylpiperidine for benzyamine afforded the title compound as an off white
solid. ES (-) MS m/e = 377 (M-H).

Example 37 (SB264735)
5-{1-[4-(Phenyl)piperidinyl)sulfonyl]1,3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting (+/-)-3-
hydroxymethylpiperidine for benzyamine afforded the title compound as an off white
solid. ES (-) MS m/e = 423 (M-H).
Example 38 (SB264736)
5-(4-Benzylpiperidinyl)sulfonyl)-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 4-
benzylpiperidine for benzylamine afforded the title compound as an off white solid. ES (-) MS m/e = 437 (M-H).

Example 39 (SB264863)
5-[1-(4-(1-Piperidinyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 1b) except substituting 4-(1-
piperidinyl)piperidine for benzylamine afforded the title compound as an off white solid. ES (-) MS m/e = 430 (M-H).

Example 40 (SB263985)
5-Benzylaminosulfonyl-N-methyl-3,3-dichloro-2-oxindole

a) 5-Chlorosulfonyl-N-methyl-3,3-dichloro-2-oxindole
The title compound was prepared according to the procedure of 1a) except substituting N-methylisatin for isatin. The product was obtained as an orange solid in quantitative yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(d\)3.37 (s, 3H), 7.09 (d, J=10.5 Hz, 1H), 8.16 (d, J=10.5 Hz, 1H), 8.28 (s, 1H).

b) 5-Benzylaminosulfonyl-N-methyl-3,3-dichloro-2-oxindole
To a solution of 5-chlorosulfonyl-N-methyl-3,3-dichloro-2-oxindole (120 mg, 382
\(\mu \)mol) in methylene chloride (5 mL) was added benzyl amine (50 \(\mu \)L, 458 \(\mu \)mol) dropwise. After stirring overnight, 3 N hydrochloric acid was added along with an additional volume of methylene chloride (20 mL). The organic layer was dried over magnesium sulfate, filtered, and silica gel flash chromatography (35 to 55% ethyl acetate/hexanes) yielded the title compound. ES (-) MS m/e = 383 (M-H).

Example 41 (SB263921)
N-Methyl-5-(1-piperidinylsulfonyl)-3,3-dichloro-2-oxindole
Prepared according to the procedure of example 41b) except substituting piperidine for benzylamine. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(d\)1.45 (m, 2H), 1.67 (m, 4H), 3.00 (m, 4H), 3.36 (s, 3H), 7.01 (d, J=10.5 Hz, 1H), 7.84 (d, J=10.5 Hz, 1H), 7.99 (s, 1H).

Preparation of Active Caspase 3
Full length Caspase 3 was expressed intracellularly in E.coli with N-terminal hexa His tag. E.coli cells were lysed in 10 ml/g of cells of lysis buffer (50 mM Na phosphate pH 7.2, 0.1
M NaCl, 0.1 % Tween 20, and 10 mM b-mercaptoethanol) using Microfluidics M110Y homogenizer at 10,000 psi. After centrifugation, Caspase 3 activity was detected in lysate supernatant. The supernatant was buffer-exchanged on Sephadex G25 column equilibrated with 20 mM TrisHCl, 10 % Sucrose, 0.1 % CHAPS, 2 mM DTT, pH 7.8 (TSCD). Fractions containing Caspase 3 activity was applied to DEAE Toyopearl 650 M (Supelec Inc) equilibrated with Buffer TSCD. The column was eluted with a linear gradient of 20 mM to 120 mM of Tris Hcl pH 7.8 in TSCD. Caspase 3 was eluted in early of the gradient before the majority of impurities eluted. This partially purified Caspase 3 was used for inhibitor screening. All operations were performed at 4°C and Caspase activity was measured using substrate, DEVD-AMC, and DynaFach Fluolite 1000 plate reader.

Caspase 3 Inhibition Assay

Caspase 3 was assayed at 30 degrees C in 96-well plates using the fluorogenic tetrapeptide substrate N-acetyl-L-aspartyl-L-glutamyl-L-valyl-L-aspartyl-7-amido-4-methylcoumarin (Ac-DEVD-AMC). The assays were conducted at pH 7.5 in a buffered system containing 25 mM Hepes, 10% sucrose, 0.1% CHAPS, and 1-50 uM DTT. The concentration of substrate was fixed at 10 uM. Fluorescence of the liberated 7-amino-4-methylcoumarin was continuously monitored at 460 nm following excitation at 360 nm.

Compound Testing

Compounds were tested at a single dose of 50 to 100 uM. Activity was monitored as described above over a 30 to 60-minute time period following the simultaneous addition of substrate and inhibitor to enzyme to initiate the reaction. The progress curves thus generated were fit by computer to Eq. 1 in order to assess potency and/or time-dependency:

\[
y = \frac{V_{o} \left(1 - e^{-k_{obs}t}\right)}{k_{obs}}
\]

(1)

Representative compounds of formula (I) have demonstrated positive inhibitory activity in the above noted assay.

Apoptosis Assay (Jurkat Cells):

Materials : Compounds

Compounds were made as stocks (5-100 mM) in dimethylsulfoxide (DMSO) and diluted in DMSO to provide final concentrations, with DMSO concentrations ranging from 0.1-1%.
Preparation of cells

Jurkat cells were obtained from American Type Culture Collection and grown in RPMI-1640 media supplemented with 10% fetal bovine serum at 37℃, 5% CO₂. Cells were seeded in T-flasks at 0.03 to 0.08 x 10⁶ cells / ml and used for experiments at 0.5 to 1.0 x 10⁶ cells / ml. Other proliferative cells can be used with apoptosis induced by anti-fas, camptothecine, ceramide or TNF.

Apoptosis Assay

A method for measuring apoptosis is to quantitate the amount of broken DNA fragments using a fluorescent end-labeling method, a system used in the ApopTag kit from Oncor (Gaithersburg, MD). In brief, the enzyme terminal deoxynucleotidyl transferase extends the DNA fragments with digoxigenin-containing nucleotides, which are then detected with an antidigoxigenin antibody carrying fluorescein to allow detection by fluorescence (494 nm excitation and 523 nm emission). Propidium iodide is used as counter stain to measure total DNA content. Flow cytometric analysis was done on Becton-Dickinson (Rutherford, NJ) FACScan instrument using CellQuest software.

METHODS OF TREATMENT

For therapeutic use the compounds of the present invention will generally be administered in a standard pharmaceutical composition obtained by admixture with a pharmaceutical carrier or diluent selected with regard to the intended route of administration and standard pharmaceutical practice. For example, they may be administered orally in the form of tablets containing such excipients as starch or lactose, or in capsule, ovules or lozenges either alone or in admixture with excipients, or in the form of elixirs or suspensions containing flavouring or colouring agents. They may be injected parenterally, for example, intravenously, intramuscularly or subcutaneously. For parenteral administration, they are best used in the form of a sterile aqueous solution which may contain other substances, for example, enough salts or glucose to make the solution isotonic with blood. The choice of form for administration as well as effective dosages will vary depending, inter alia, on the condition being treated. The choice of mode of administration and dosage is within the skill of the art.

The compounds of the present invention, particularly those noted herein or their pharmaceutically acceptable salts which are active when given orally, can be formulated as liquids, for example syrups, suspensions or emulsions, tablets, capsules and lozenges.

A liquid formulation will generally consist of a suspension or solution of the compound or pharmaceutically acceptable salt in a suitable liquid carrier(s) for example, ethanol, glycerin, non-aqueous solvent, for example polyethylene glycol, oils, or water with a suspending agent, preservative, flavouring or colouring agent.
A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations. Examples of such carriers include magnesium stearate, starch, lactose, sucrose and cellulose.

A composition in the form of a capsule can be prepared using routine encapsulation procedures. For example, pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), for example aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule. Preferably the composition is in unit dose form such as a tablet or capsule.

Typical parenteral compositions consist of a solution or suspension of the compound or pharmaceutically acceptable salt in a sterile aqueous carrier or parenterally acceptable oil, for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil. Alternatively, the solution can be lyophilized and then reconstituted with a suitable solvent just prior to administration.

A typical suppository formulation comprises a compound or a pharmaceutically acceptable salt thereof which is active when administered in this way, with a binding and/or lubricating agent such as polymeric glycols, gelatins or cocoa butter or other low melting vegetable or synthetic waxes or fats.

The pharmaceutically acceptable compounds of the invention will normally be administered to a subject in a daily dosage regimen. For a patient this may be, for example, from about .001 to about 100mg/kg, preferably from about 0.001 to about 10mg/kg animal body weight. A daily dose, for a larger mammal is preferably from about 1 mg to about 1000 mg, preferably between 1 mg and 500 mg or a pharmaceutically acceptable salt thereof, calculated as the free base, the compound being administered 1 to 4 times per day. Unit dosage forms may contain from about 25µg to about 500mg of the compound.

There are many diseases and conditions in which dysregulation of apoptosis plays an important role. All of these conditions involve undesired, deleterious loss of specific cells with resulting pathological consequences.

Bone remodeling involves the initial resorption by osteoclasts, followed by bone formation by osteoblasts. Recently, there have been a number of reports of apoptotic events occurring during this process. Apoptotic events have been observed in both the bone forming and bone resorbing cells in vitro and indeed at the sites of these remodeling units in vivo.
Apoptosis has been suggested as one of the possible mechanisms of osteoclast disappearance from reversal sites between resorption and formation. TGF-β1 induces apoptosis (approx. 30%) in osteoclasts of murine bone marrow cultures grown for 6 days in vitro. (Hughes, et al., J. Bone Min. Res. 9, S138 (1994)). The anti-resorptive bisphosphonates (clodronate, pamidronate or residronate) promote apoptosis in mouse osteoclasts in vitro and in vivo. (Hughes, et al., supra at S347). M-CSF, which has previously been found to be essential for osteoclast formation can suppress apoptosis, suggesting not only that maintenance of osteoclast populations, but also that formation of these multinucleated cells may be determined by apoptosis events. (Fuller, et al., J. Bone Min. Res. 8, S384 (1993); Perkins, et al., J. Bone Min. Res. 8, S390 (1993)). Local injections of IL-1 over the calvaria of mice once daily for 3 days induces intense and aggressive remodeling. (Wright, et al., J. Bone Min. Res. 9, S174 (1994)). In these studies, 1% of osteoclasts were apoptotic 1 day after treatment, which increased 3 days later to 10%. A high percentage (95%) of these apoptotic osteoclasts were at the reversal site.

This data suggests that Caspases are functionally very important in osteoclast apoptosis. Therefore, one aspect of the present invention is the promotion of apoptosis in osteoclasts as a novel therapy for inhibiting resorption in diseases of excessive bone loss, such as osteoporosis, using compounds of Formula (I) as defined herein.

Apoptosis can be induced by low serum in highly differentiated rat osteoblast-like (Ros 17/2.8) cells (Ibhe, et al., (1994) J. Bone Min. Res. 9, S167). This was associated with a temporal loss of osteoblast phenotype, suggesting that maintenance of lineage specific gene expression and apoptosis are physiologically linked. Fetal rat calvaria derived osteoblasts grown in vitro undergo apoptosis and this is localized to areas of nodule formation as indicated by in situ end-labeling of fragmented DNA. (Lynch, et al., (1994) J. Bone Min. Res. 9, S352). It has been shown that the immediate early genes c-fos and c-jun are expressed prior to apoptosis; c-fos and c-jun-Lac Z transgenic mice show constitutive expression of these transcription factors in very few tissues, one of which is bone (Smyeyne, et al., (1992) Neuron. 8, 13-23; and Morgan, J. (1993) Apoptotic Cell Death: Functions and Mechanisms. Cold Spring Harbor 13-15th October). Apoptosis was observed in these animals in the epiphyseal growth plate and chondrogenic zones as the petula ligament calcifies. Chondrogenic apoptosis has also been observed in PTHRP-less mice and these transgenics exhibit abnormal endochondral bone formation (Lee, et al., (1994) J. Bone Min. Res. 9, S159). A very recent paper examined a human osteosarcoma cell line which undergoes spontaneous apoptosis. Using this cell line, LAP-4, but not ICE, could be detected and in vitro apoptosis could be blocked by inhibition or depletion of LAP-4 (Nicholson, et al., (1995) Nature 376, 37-43). Thus, apoptosis may play a role in
loss of osteoblasts and chondrocytes and inhibition of apoptosis could provide a mechanism to enhance bone formation.

Therefore, another aspect of the present invention is the inhibition of apoptosis as a novel therapy to enhance bone formation using compounds of Formula (I) as defined herein.

Osteoarthritis (OA) is a degenerative disease characterized by progressive erosion of articular cartilage. Chondrocytes are the single cell-type found in articular cartilage and perturbations in metabolism of these cells may be involved in the pathogenesis of OA. Injury to cartilage initiates a specific reparative response which involves an increase in the production of proteoglycan and collagen in an attempt to reestablish normal matrix homeostasis. However, with the progress of the disease, the 3-dimensional collagen network is disrupted and cell death of chondrocytes occurs in OA lesions (Malemud, et al.: Regulation of chondrocytes in osteoarthritis. In: Adolphe, M. ed. Biological Regulation of Chondrocytes. Boca Raton: CRC Press, 1992, 295-319). It has been shown that in OA, chondrocytes adjacent to cartilage defects express high levels of bcl-2 (Erlacher, et al., (1995) J. of Rheumatology. 926-931). This represents an attempt to protect chondrocytes from apoptosis induced by the disease process.

Protection of chondrocytes during early degenerative changes in cartilage by inhibition of apoptosis may provide a novel therapeutic approach to this common disease.

Therefore, another aspect of the present invention is the inhibition of apoptosis as a novel therapy to treat osteoarthritis, using compounds of Formula (I) as defined herein.

466-467). Together, this evidence supports that hepatocellular apoptosis is central to
degenerative liver diseases.

Therefore, another aspect of the present invention is the inhibition of apoptosis as a
novel therapy to treat degenerative liver diseases., using compounds of Formula (I) as
defined herein.

Apoptosis is recognized as a fundamental process within the immune system where
cell death shapes the immune system and effects immune functions. Apoptosis also is
implicated in viral diseases (e.g AIDS). Recent reports indicate that HIV infection may
produce an excess of apoptosis, contributing to the loss of CD4⁺ T cells. Of additional
interest is the observation that APO-1/Fas shares sequence homology with HIV-1 gp120.

Therefore, another aspect of the present invention is the inhibition of apoptosis as a
novel therapy to treat viral diseases, using compounds of Formula (I) as defined herein.

Additional therapeutic directions and other indications in which inhibition of
apoptotic cysteine proteases is of therapeutic utility, along with relevant citations in support
of the involvement for apoptosis in each indication, are presented below in Table 1.

Table 1: Therapeutic Indications Related to Apoptosis

<table>
<thead>
<tr>
<th>Indication</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>Barr et al supra; and Thompson, C., supra</td>
</tr>
<tr>
<td>Glomerulo-nephritis</td>
<td>Barr et al., supra</td>
</tr>
<tr>
<td>Erythropoiesis / Aplastic anemia</td>
<td>Thompson, C., supra; Koury et al., (1990) Science 248, 378-381</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td>Savill, J., supra; Thompson, C., supra</td>
</tr>
<tr>
<td>Type I diabetes</td>
<td>Barr et al., supra</td>
</tr>
</tbody>
</table>

The IL-1 and TNF inhibiting effects of compounds of the present invention are determined by the following *in vitro* assays:

Interleukin - 1 (IL-1)

5 Human peripheral blood monocytes are isolated and purified from either fresh blood preparations from volunteer donors, or from blood bank buffy coats, according to the procedure of Colotta *et al*, *J Immunol.* **132**, 936 (1984). These monocytes (1x10⁶) are plated in 24-well plates at a concentration of 1-2 million/ml per well. The cells are allowed to adhere for 2 hours, after which time non-adherent cells are removed by gentle washing. Test compounds are then added to the cells for about 1 hour before the addition of lipopolysaccharide (50 ng/ml), and the cultures are incubated at 37°C for an additional 24 hours. At the end of this period, culture supernatants are removed and clarified of cells and all debris. Culture supernatants are then immediately assayed for IL-1 biological activity, either by the method of Simon *et al.*, *J. Immunol. Methods*, **84**, 85, (1985) (based on ability of IL-1 to stimulate a Interleukin 2
producing cell line (EL-4) to secrete IL-2, in concert with A23187 ionophore) or the method of Lee et al., J. Immunother., 6 (1), 1-12 (1990) (ELISA assay).

Tumour Necrosis Factor (TNF):

Human peripheral blood monocytes are isolated and purified from either blood bank buffy coats or plateletpheresis residues, according to the procedure of Colotta, R. et al., J Immunol, 132(2), 936 (1984). The monocytes are plated at a density of 1x10^6 cells/ml medium/well in 24-well multi-dishes. The cells are allowed to adhere for 1 hour after which time the supernatant is aspirated and fresh medium (1ml, RPMI-1640, Whitaker Biomedical Products, Whitaker, CA) containing 1% fetal calf serum plus penicillin and streptomycin (10 units/ml) added. The cells are incubated for 45 minutes in the presence or absence of a test compound at 1nM-10mM dose ranges (compounds are solubilized in dimethyl sulfoxide/ethanol, such that the final solvent concentration in the culture medium is 0.5% dimethyl sulfoxide/0.5% ethanol). Bacterial lipopoly-saccharide (E. coli 055:B5 [LPS] from Sigma Chemicals Co.) is then added (100 ng/ml in 10 ml phosphate buffered saline) and cultures incubated for 16-18 hours at 37°C in a 5% CO_2 incubator. At the end of the incubation period, culture supernatants are removed from the cells, centrifuged at 3000 rpm to remove cell debris. The supernatant is then assayed for TNF activity using either a radio-immuno or an ELISA assay, as described in WO 92/10190 and by Becker et al., J Immunol. 1991, 147, 4307.

The above description fully discloses the invention including preferred embodiments thereof. Modifications and improvements of the embodiments specifically disclosed herein are within the scope of the following claims. Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. Therefore the Examples herein are to be construed as merely illustrative and not a limitation of the scope of the present invention in any way. The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows.
What is claimed is:

1. A compound of formula

\[
\begin{array}{c}
\text{R}_1 \\
\text{O} \\
\text{N} \\
\text{S} \\
\text{O} \\
\text{R}_2 \\
\text{Cl} \\
\text{Cl} \\
\text{R}_3 \\
\text{N} \\
\text{O} \\
\text{R}_4 \\
\text{R}_5
\end{array}
\]

(I)

wherein

- R\(_1\) is hydrogen, or C\(_{1-4}\) alkyl;
- R\(_2\) is C\(_{1-10}\) alkyl, optionally substituted arylC\(_{1-4}\) alkyl, optionally substituted heteroaryl C\(_{1-4}\) alkyl, optionally substituted C\(_{3,7}\) cycloalkyl, or R\(_1\) and R\(_2\) together with the nitrogen to which they are attached from a 3 to 10 membered ring which optionally contains an additional heteroatom selected from oxygen, nitrogen or sulfur;
- R\(_3\) and R\(_4\) are C\(_{1-6}\) alkyl, hydrogen, nitro, or halogen and
- R\(_5\) is C\(_{1-6}\) alkyl, hydrogen, arylalkyl or heteroarylalkyl.

2. A compound according to Claim 1 wherein R\(_5\) is substituted benzyl.

3. A compound according to Claim 1 wherein R\(_1\) is hydrogen or methyl.

4. A compound wherein R\(_1\) and R\(_2\) are joined to form a five membered nitrogen containing ring.

5. The compound according to claim 1 which is
- 5-Chlorosulfonyl-3,3-dichloro-2-oxindole
- 5-Benzylaminosulfonyl-3,3-dichloro-2-oxindole
- 5-[N-(1-Methyl-3-phenylpropylamino)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[N-(N-Benzyl-2-cyanoethylamino)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[N-(2-(3-Pyridyl)ethylamino)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[N-(2-Furfurylamino)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[N-(2-Isopropanoylamino)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[N-(2-Methoxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[N-(2-Tetrahydrofurfurylamino)sulfonyl]-3,3-dichloro-2-oxindole
- (-)-5-[N-(cis-Myrtanylamine)sulfonyl]-3,3-dichloro-2-oxindole
- 5-[1-Benzylpiperidinyl-4-amino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(2-Indanamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(Cyclopropylmethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(1,5-Dimethylhexylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methylbenzylamino)sulfonyl]-3,3-dichloro-2-oxindole

5 (++)-5-[N-(3-(N-Acetyl-N-methylamino)pyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[2-(1,2,3,4-Tetrahydroisoquinolino)sulfonyl]-3,3-dichloro-2-oxindole
(++)-5-[1-(Decahydroisoquinolino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methyl-2-cyanoethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methylcyanomethylamino)sulfonyl]-3,3-dichloro-2-oxindole

10 5-[N-(Pyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methylphenethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(Azacyclooctane)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(3-Azabicyclo[3.2.2]nonane)sulfonyl]-3,3-dichloro-2-oxindole
5-[1-(2-Ethoxycarbonylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole

15 5-[N-(Morpholino)sulfonyl]-3,3-dichloro-2-oxindole
(S)(++)-5-[1-(2-Methoxymethylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methyl-2-(4-pyridinyl)ethylamino)sulfonyl]-3,3-dichloro-2-oxindole
5-[N-(N-Methyl-2-hydroxyethylamino)sulfonyl]-3,3-dichloro-2-oxindole
(S)-(++)-5-[N-(2-Hydroxymethylpyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole

20 (++)-5-[1-(3-Hydroxypyrrolidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(++)-5-[1-(3-Aminocarbonylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(++)-5-[1-(2-Methylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(++)-5-[1-(4-Methylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[1-(4-Hydroxypiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole

25 (++)-5-[1-(2-Hydroxyethyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
(++)-5-[1-(3-Hydroxymethylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[1-(4-Phenylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[1-(4-Benzylpiperidinyl)sulfonyl]-3,3-dichloro-2-oxindole
5-[1-(4-(1-Piperidinyl)piperidinyl)sulfonyl]-3,3-dichloro-2-oxindole

30 5-Benzylaminosulfonyl-N-methyl-3,3-dichloro-2-oxindole
5-Chlorosulfonyl-N-methyl-3,3-dichloro-2-oxindole
5-Benzylaminosulfonyl-N-methyl-3,3-dichloro-2-oxindole
N-Methyl-5-(1-piperidinylsulfonyl)-3,3-dichloro-2-oxindole

6. A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically acceptable carrier or diluent.
7. A method of blocking excess or inappropriate apoptosis in a mammal in need of such treatment which method comprises administering to said mammal or human an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

8. The method according to Claim 7 wherein the excessive or inappropriate apoptosis occurs in Alzheimer disease.

9. The method according to Claim 7 wherein the excessive or inappropriate apoptosis occurs in viral infections.

10. The method according to Claim 7 wherein the excessive or inappropriate apoptosis occurs during infarction or reperfusion injury.

11. The method according to Claim 7 wherein the excessive or inappropriate apoptosis occurs during ischemia.

12. The method according to Claim 7 wherein the excessive or inappropriate apoptosis results in excessive bone loss.

13. The method according to Claim 7 wherein the excessive or inappropriate apoptosis results in the disease of osteoarthritis.

14. The method according to Claim 7 wherein the excessive or inappropriate apoptosis results in hepatocellular degeneration.

15. A method for the treatment of diseases or disorders associated with excessive IL-1β convertase activity, in a mammal in need thereof, which method comprises administering to said mammal an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

16. A method of blocking or decreasing the production of IL-1β and/or TNF, in a mammal in need of such treatment, which method comprises administering to said mammal an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
17. A method for inhibiting the production of caspase three and seven in a mammal in need of such treatment, which method comprises administering to said mammal an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof.
A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : A61K 31/40
US CL : 514/490
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 514/490

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
STN CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,E</td>
<td>US 5,763,220 A (HILLMAN et al) 06 September 1998, Col. 1, lines 10-45.</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 30 SEPTEMBER 1998
Date of mailing of the international search report: 22 OCT 1998

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
KEITH MACMILLAN

Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet) (July 1992)