(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開 曰
2011 年 12 月 22 日(22.12.2011)

(51) 国際特許分類:
C01B 33/035 (2006.01)

(21) 国際出願番号:
PCT/JP2011/002764

(22) 国際出願日:
2011 年 3 月 7 日 (07.03.2011)

(54) Title: METHOD FOR CLEANING BELL JAR, METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON AND DEVICE FOR DRYING BELL JAR

(57) Abstract: A bell jar comprises a metallic bell jar (1) and a metallic base plate (2) for placing the bell jar (1) thereon, wherein a packing (3) seals the inside of the container. The base plate (2) is connected with a pressure gauge (4), a gas introduction line (5) and a gas discharge line (6), thereby enabling the monitoring of the inner pressure of the bell jar (1) and introduction and discharge of gas. A vacuum pump (7) is provided on the path of the gas discharge line (6) and reduces the inner pressure of the bell jar such that it is lower than the vapor pressure of water. The vacuum pump (7) reduces the inner pressure of the bell jar such that it is lower than the vapor pressure of water and thereby water is removed effectively and drying of the bell jar is finished in a short time. Thus, a technique contributing to the manufacture of high purity polycrystalline silicon by increasing the cleanliness of the bell jar inner surface is provided.

(74) [国名]

発明の名称：ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
指定国 表示のない限り、全ての種類の広域保護が可能：ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI

添付公開書類：
- 国際調査報告 (条約第21条(3))
明細書

発明の名称：ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置

技術分野

[0001] 本発明は、多結晶シリコンの製造に用いられるベルジャーの清浄化技術に関し、より詳細には、多結晶シリコン中への不純物混入の原因となるベルジャーの内壁面の水分を効率的に除去することを可能とする方法および装置に関する。

背景技術

[0002] 高純度多結晶シリコンは、半導体デバイス製造用の単結晶シリコン基板や太陽電池製造用の原料である。高純度多結晶シリコンは、一般に、原料ガスであるケイ素含有反応ガスを熱分解又は水素還元により高純度珪素とし、これを細い珪素フィラメントトロッド上に析出させる手法（ジーメンス法）によりバッチ式に製造される。ここで、珪素含有反応ガスとしては、モノシリラン、ジクロロシラン、トリクロロシラン、テトラクロロシランなどのガスや、一般的にSiHₙX₄-n（n = 0, 1, 2, 3; X = B, r, l）で標記されるハロゲンガスが用いられる。

[0003] 高純度多結晶シリコンの製造に用いられる一般的な析出反応容器は、金属性の台板（ベースプレート）と当該ベースプレート上に設置される金属性のベルジャーとで構成され、ベルジャーの内部が反応空間となる。析出反応容器は冷却可能であるとともに、ベルジャー内部のガスを密閉可能なものでなければならない。これは、上述の反応ガスは腐食性を有し、また、空気との混合により発火や爆発を起こす傾向があるからである。

[0004] ところで、析出反応容器にて多結晶シリコンの析出反応を行うと、CVDプロセス中に、均一核形成プロセスによって無定形のシリコン・ダストが形成され、析出反応容器の内面にシリコンが付着等する。このシリコン・ダスト
トは高水準の汚染物質を含有しており、製品となる多結晶シリコン上に沈降して表面欠陥や汚染をもたらす（特開平6-216036号公報：特許文献1を参照）。

[0005]また、上述の多結晶シリコンの析出反応はパッチ式にて行われるため、多結晶シリコンをベルジャーから取り出す際には、ベルジャーの内表面が大気と接触することは避けられない。多結晶シリコン析出反応後のベルジャー内表面には、原料ガスである珪素含有反応ガスおよび析出反応によって副生されたクロロシリラン類やハロゲンガス類が残存しているが、これらが大気中の水分と反応すると強い腐食性を示すガスとなることが知られている。

[0006]上述した腐食性ガスは、上記ベルジャーの内表面の構造部材から、多結晶シリコンの品質を低下させる有害物質（例えば、ホウ素、アルミニウム、リリウム、ヒ素、アンチモンなど）を表出活性化する。

[0007]そして、このような有害物質は、次パッチの析出反応プロセス中に多結晶シリコン中に取り込まれ、多結晶シリコンの品質を低下させてしまう（例えば、特開2008-37748号公報：特許文献2を参照）。

[0008]このような事情から、パッチ毎もしくは数パッチ毎に、高純度な水や二酸化炭素ペレットを用いて析出ベルジャーの洗浄が行われ、内表面の清浄化が図られる。

[0009]一方、ベルジャーについては、内表面積が広いことや構造上拭き取り作業が困難であるなどの理由から、一般に、自動化された洗浄装置が使用される。上掲の特許文献1および2の特開2009—196882号公報（特許文献3）には、かかる洗浄装置およびこれを用いた洗浄方法の発明が開示されている。

先行技術文献

特許文献

[0010]特許文献1：特開平6-216036号公報
特許文献2：特開2008-37748号公報
特許文献3：特開2009—196882号公報
発明の概要
発明が解決しようとする課題

[001] 多結晶シリコン製造のための析出反応炉（ベルジャー）は、内部から製品を取り出すために1バッチ毎に開放される。そして、1バッチ毎に数バッチ毎に洗浄が行われて内表面の清浄化が図られる。

[002] 洗浄により取り除かれるべきものはベルジャーの内表面に付着したアモルファスシリコンや塩化シランポリマーなどであるが、これらは水分と反応して最終的には微粉状の物質となることが知られており、当該微粉状物質に取り込まれた水分を完全に除去することは非常に困難である。

[003] また、本発明者らの検討したところによれば、スチームなどを用いてベルジャーを加熱すると同時に高純度窒素ガスなどでベルジャー内部を置換する従来の洗浄方法では、短時間に水分を完全に除去することは困難である一方で、乾燥時間を長くすると次バッチで製造される多結晶シリコンの品質が低下し易いことが明らかとなった。

[004] 本発明は、上述した従来のベルジャー清浄化技術の問題に鑑みてなされたもので、その目的とするところは、ベルジャー内表面から水分を効率的に除去し、ベルジャーの清浄化を短時間で終了させ、その結果、ベルジャー内表面の清浄度を高めて高純度多結晶シリコンの製造に寄与することとなる技術を提供することにある。

課題を解決するための手段

[005] このような課題を解決するために、本発明に係るベルジャーの清浄化方法は、ジーメンス法による多結晶シリコン製造に用いられるベルジャーの清浄化方法であって、前記ベルジャーの水を用いる洗浄工程後に、該ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する乾燥工程を備えている。

[006] 好ましくは、前記乾燥工程は、200Pa以下の真空到達能力を有する真空ポンプを用い、前記ベルジャー内部の気圧が1000Pa以下となる減圧操作を行う乾燥工程である。
本発明に係るベルジャーの清浄化方法は、好ましくは、前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている。

本発明に係る多結晶シリコンの製造方法は、ジーメンス法による多結晶シリコンの析出工程を複数回繰り返して行う多結晶シリコンの製造方法であって、前記析出工程の終了後であって、次のバッチの析出工程の前に、前記多結晶シリコンの析出に用いられるベルジャーを清浄化する工程を有し、該ベルジャーの清浄化工程は、前記ベルジャーを水を入れて洗浄する水洗浄工程と該水洗浄工程に続く乾燥工程とを備え、前記乾燥工程は、前記水洗浄工程後に、2000Pa以下にすることがができる真空ポンプを用いて前記ベルジャー内部の気圧が1000Pa以下となる減圧操作を行うことにより、前記ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する工程であり、且つ、前記水洗浄工程終了後から乾燥工程終了までの時間を1〜2時間以下とする、ことを特徴とする。

好ましくは、前記ベルジャーの清浄化工程は、さらに、前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている。

また、好ましくは、前記水洗浄工程終了後から乾燥工程終了までの時間を0.8時間以下とする。さらに好ましくは、前記水洗浄工程終了後から乾燥工程終了までの時間を0.4時間以下とする。

本発明では、例えば、前記乾燥工程を、前記ベルジャー内部の気圧が1000Pa以下となった後5分経過した時点で終了させる。

本発明に係るベルジャー用乾燥装置は、ジーメンス法による多結晶シリコン製造に用いられるベルジャーを乾燥させるための装置であり、該装置は、前記ベルジャーを載置することによって気密空間を形成することができると共に、前記気密空間内の気圧を減圧するための真空ラインと、前記気密空間内の気圧を常圧に戻すための乾燥気体ラインを有することを特徴とする。

発明の効果
本発明では、ベルジャー表面の温度を高めることで水分を取り除くという従来の手法に代えて、ベルジャー内部の圧力を水の沸点以下に下げるということにより効率的に水分を取り除くという手法を採用することとしたので、ベルジャー内部表面から水分を効率的に除去され、しかも、ベルジャーの清浄化を短時間で終了させることが可能となる。その結果、ベルジャー内部表面の清浄度が高められ、製造される高純度多結晶シリコンの品質向上に大きく寄与することとなる。

図面の簡単な説明

[図1] 本発明のベルジャー乾燥装置の構成例について説明するための図である。
[図2] ベルジャーの開放時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。
[図3] ベルジャーの水洗浄工程終了後から次バッチの多結晶シリコン製造用反応炉として組み立てて内部を真空状態にするまでの時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。
[図4] スチーム乾燥に用いたベルジャー乾燥装置の構成例について説明するための図である。

発明を実施するための形態

以下の図面を参照して、本発明のベルジャー清浄化方法およびベルジャー乾燥装置について説明する。

図1は、本発明のベルジャー乾燥装置の構成例について説明するための図である。このベルジャー乾燥装置は、多結晶シリコン製造に用いられるベルジャーの乾燥装置であって、ベルジャーは、金属板のベルジャー1とこのベルジャー1を設置するための金属板の台板（ベースプレート）2を備えており、符号3で示したバッキンにより容器内部が密閉される。ベースプレート2上に設置された状態のベルジャー1の内部が多結晶シリコンの析出反応のための空間となる。

ベースプレート2には、ベルジャー1の内部圧力のモニタおよびガスの導
入及び排気が可能となるように、圧力計4、ガス導入ライン5、ガス排気ライン6が接続されている。ガス排気ライン6の経路には真空ポンプ7が設けられており、この真空ポンプ7によってベルジャーの内部圧力が水の蒸気圧よりも低くなるように減圧される。

0028 通常、真空ポンプ7の吸引側には、自動弁などを設置して真空ポンプ7の停止時において真空ポンプ7内の油分などがベルジャー1側に逆流しないように配慮される。しかし、真空ポンプの運転と停止を何度も繰り返しているうちに、配管内表面を伝わって油分などが逆流する現象なども知られている。従って、真空ポンプ7は、ドライ真空ポンプなどの低汚染タイプのものであることが望ましい。また、真空ポンプの能力は、用いるベルジャーの大きさにあわせて排気能力を選択すればよく、概ね200 Pa以下の真空到達能力をもつものであれば良い。

0029 なお、図1に示した様様では、多結晶シリコン製造に用いられるベルジャーそのものも乾燥装置の一部を構成していることなるが、本発明は当該様様に限定されるものではない。

0030 上述したように、本発明においては、真空ポンプ7によってベルジャーの内部圧力が水の蒸気圧よりも低くなるように減圧され、これによって効率的に水分の除去が行われ、短時間でベルジャーの乾燥が終了することとなる。

0031 上述したように、多結晶シリコンの析出反応に用いたベルジャーの内表面には微量のアモルファスシリコンや塩化シランポリマーなどが付着しているが、これらは水分の存在下にベルジャー表面から上述のポリシリコンの品質に対する有害物質を表す活性化し、ベルジャーの清浄化の妨げとなっている。このため、高純度の多結晶シリコンを製造するためには、洗浄終了後、ベルジャーの内表面に付着した水分を効率的に除去して上記汚染物質の発生を抑制することが必要となる。

0032 本発明者らは検討を重ね、ベルジャー表面の温度を高めることで水分を取り除くという従来の手法に代えて、ベルジャー内部の圧力を水の沸点以下に下げることにより効率的に水分を除去するという手法を採用することとした
この手法を採用することの利点は、第1に、水分除去の効率化による乾燥時間の短縮化である。

ベルジャーの清浄化作業時間が長くなると、必然的に、ベルジャー内部が開放状態にある時間が長くなり、ベルジャー内壁の清浄度を下げる要因となることが考えられる。乾燥時間の短縮化は清浄化作業時間の短縮化を意味するから、ベルジャー内壁の清浄度の向上に有効である。

また、本発明者らの検討によれば、多結晶シリコン製造工程の終了後にベルジャーを清浄化した後に、次の多結晶シリコン製造工程の準備に入れる段階でのベルジャー内壁の清浄度は、この間におけるベルジャー内部の総開放時間をよりも、事々、ベルジャー洗浄後から乾燥終了までの時間に依存する。従って、従来の乾燥方法のように乾燥工程に長時間を要する場合には、ベルジャー内壁を清浄に維持することができず、次製造工程において多結晶シリコンの品質を低下させてしまう危険性が高まる。この意味においても、ベルジャー内表面の水分除去を効率化して乾燥時間を短縮化することは、高純度な多結晶シリコンを製造するために極めて有効である。

なお、ベルジャーの乾燥状態は、最も簡便な手法として、減圧ゲージによりモニタすることができる。より正確な乾燥状態の判定は、減圧度により行うことができる。具体的には、水分の蒸発終了により、減圧度が真空ポンプとベルジャーを含む乾燥装置固有の値となることにより判定できる。

また、ベルジャーの減圧乾燥を途中で打ち切り、乾燥ガスで常圧に戻し、その後、常圧になった乾燥装置内のガスの露点を測定することで、装置の乾燥状態を確認することもできる。このようなデータを基に、例えば、露点を－40℃以下あるいは－60℃以下とするための乾燥工程の操作基準を作成することもできる。

大型のベルジャー、特に1m³以上の容量のベルジャーの乾燥を行う場合には、上述したような減圧解除による乾燥状態の確認は実用上難しい。そこで、減圧状態のまま乾燥状態をモニタすることが好ましい。そのような場合に
は、減圧度により乾燥状態の確認を行い、例えば、減圧度が1000Pa以下となり5分経過した時点を、露点が－40℃以下となっているものとして、乾燥終了とするなどする。

[0039]上記乾燥時間の短縮化という利点に加え、加熱のためのステーチが不要となるという利点もある。ベルジャーは年々大型化してきているが、この大型化はベルジャー自身の熱容量を大きくする。加えて、一般に、ベルジャーには冷却水や熱媒を内部に含むジャケットが設けられているため、ベルジャーを加熱するための全熱容量はさらに大きくなる。

[0040]このような大きな熱容量のものをステーチ加熱により乾燥させようとすると、ステーチ温度を高める必要性が生じるばかりではなく、設備も大掛かりなものとなってしまう。また、ジャケットにステーチを直接導入する場合には、その後の抜き取り作業等も必要となる。

[0041]これに対して、本発明のようにベルジャー内部の圧力を水の沸点以下に下げることにより効率的に水分を除去するという手法を採用する場合には、ベルジャー全体の熱容量は大きい方が好ましい。これは、水分の蒸発により熱が奪われても、ベルジャー内表面の温度は変化し難いためである。

[0042]ベルジャー内圧力を水の沸点以下に下げることで水分を除去するという手法を採用することの利点は、乾燥作業で消費する高純度ガスの量を大幅に節約できる点にもある。従来のステーチ加熱方式では、蒸発した水分をベルジャー外部へと排出するためのキャリアガスや水分除去後のベルジャー内部に水分が再吸着等することを防止するための置換ガスとして高純度の不活性ガスを大量に必要とする。

[0043]これに対し、ベルジャー内部を減圧状態にすることで水分を除去する上記手法によれば、水分をベルジャー外部へと排出するためにわずかずつキャリアガスを用いることは不要となり、更に、ベルジャー内部の不活性ガスへの置換も、乾燥作業の終了後にベルジャー内部を大気圧に戻す際に高純度不活性ガスを用いるのみで十分に目的が達成される。

[0044]以下に、本発明による清浄化工程に要する時間短縮化による多結晶シリコ
Table 1 shows that, when the opening time and water washing time after the second batch of polycrystalline silicon manufacturing are kept within 2 hours, polycrystalline silicon with an electrical resistance of 1500 Ω cm or more can be obtained. Furthermore, when the time from the end of water washing to the end of drying is kept within 0.8 hours, the electrical resistance of the obtained polycrystalline silicon is 2000 Ω cm or more.
m以上となっている。さらに、水洗浄工程終了後から乾燥工程終了までの時間が0.4時間以下の場合は、得られる多結晶シリコンの電気抵抗率は2500Ωcm以上である。

図2は、ベルジャープロセスの時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。ここで、ベルジャープロセスの時間とは、多結晶シリコン製造工程の終了後から次の多結晶シリコン製造工程を開始するまでにベルジャーが開放状態にあった時間を意味する。具体的には、先のバッチの多結晶シリコン製造工程が終了した後にベルジャーを開放して多結晶シリコンを取り出し、ベルジャーの清浄化（搬送、水洗浄、搬送、内表面の水分除去、ベルジャー内部の高純度不活性ガス置換）を行い、次のバッチの多結晶シリコン製造工程用の反応炉として組み立てを完了するまでの時間をベルジャーの開放時間である。

図2によれば、開放時間が長くなるにつれて多結晶シリコンの電気抵抗率が低くなる傾向が読み取れる。電気抵抗率の低下は、多結晶シリコン内部に取り込まれる電気的に活性な不純物のレベルが高くなることを意味しており、開放時間が長くなるにつれて多結晶シリコンの高純度化が阻害される傾向にあることが分かる。つまり、上述したベルジャープロセスの時間の短縮は、高純度多結晶シリコンの製造にとって有効であることが読み取れる。

図3は、ベルジャープロセスの水洗浄終了後から乾燥終了までの時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。ここで乾燥工程終了は、上述の真空ポンプによる減圧下に、圧力ゲージが一定値になった後、10分間真空を維持した時点で乾燥工程終了とされている。

図3においては、ベルジャープロセスの水洗浄終了後から乾燥終了までの時間と多結晶シリコンの電気抵抗率は、最小二乗法により得られる直線で近似可能であるが、時間が長くなるにつれて多結晶シリコンの電気抵抗率が低くなることが読み取れる。つまり、多結晶シリコンの品質を管理するためには、ベルジャープロセスの開放時間そのものよりも水洗浄工程終了後から乾燥工程終了までの時間を短縮することが有効であり、真空ポンプを用いて乾燥工程の時間を短縮する
ことが、ベルジャー高純度多結晶シリコンの製造にとって極めて有効な手法であることが分かる。

実施例

[0052]以下に、本発明に係る清浄化技術を、実施例により説明する。

[0053]先ず、多結晶シリコンの析出工程が終了した後にベルジャー 1 を開放し、ベルジャー 1 を洗浄装置に移動して、通常の手順により洗浄作業を行う。この洗浄作業の終了後、クレーンなどによりベルジャー 1 をベースプレート 2 上に載せ、乾燥装置を組み上げる。この状態で、真空ポンプ 7 を運転してベルジャー 1 内の圧力を水の蒸気圧以下にする。この減圧により、洗浄工程でベルジャー 1 の内表面に付着した水分はベルジャー 1 の外へと排出される。

[0054]上記減圧時の設定圧力は、ベルジャー 1 の内部が常温で水の蒸気圧よりも低くなるように設定する必要があるが、概ね 200 Pa 以下の真空到達能力を有する真空ポンプを用いた場合には、特に温度を気にすることなく、短時間で目的の乾燥状態に到達させることができる。

[0055]なお、ベルジャー 1 の内表面の水分や付着物が蒸発する際、ベルジャー 1 およびベースプレート 2 からは蒸発熱が奪われるが、これらの熱容量は十分に大きいため温度低下は事実上無視することができる。

[0056]ベルジャー 1 の内表面の水分や付着物は圧力の低下に伴って速やかに蒸発するが、圧カゲージで乾燥状態となったことを確認する場合、ベルジャー 1 の内部圧力が 1000 Pa 以下に到達後、好ましくは 5 分経過した時点を乾燥終了とすることができるが、装置の安定性等を考慮した場合、好ましくは更に 5 分以上減圧を持続する。この持続時間の圧カゲージの挙動を観察することで、モニタ系に異常が生じていないことの確認もできる。

[0057]ベルジャー 1 内部を所定の圧力で一定時間保持する乾燥工程の終了後、真空ポンプ 7 の運転を停止し、水分を含まない高純度不活性ガスをベルジャー 1 内に導入して内部圧力を大気圧とする。この高純度不活性ガスの導入は、ベルジャー 1 内部への水分の再浸入を抑制するためのもので、露点が－40 0 C 以下のガスが望ましい。不活性ガスとしては、窒素ガスが望ましい。
そして、清浄化されたペルジャ_1とベースプレート2をなるべく早めに多結晶シリコン製造用反応炉として組み立て、次のバッチの製造を行うための待機状態、即ち水素や窒素等の不活性ガスで清浄性が保たれた状態とすることが好ましい。

表2は、本発明の手法により内容積3.5m³のペルジャーの乾燥を行った際の乾燥状態の減圧維持時間との関係を調べた結果である。なお、このとき用いた真空ポンプの装置自体が持つ仕様上の真空到達度は20Paであるが7分を過ぎた段階で内部の真空度は1000Pa以下となり、以後1000Pa以下が維持された。また、乾燥状態は、減圧終了後に高純度窒素ガスをチャンバー内に導入して大気圧に戻し、さらに、流量200ノルマルリットル/分の窒素ガス（キャリアガス）を流して露点を測定した。これにより、バッチ毎もしくは数バッチ毎に、高純度な水やニ酸化炭素ペレットを用いて析出ペルジャーの洗浄が行われ、内表面の清浄化が図られる。

<table>
<thead>
<tr>
<th>時間(min)</th>
<th>露点(℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-35</td>
</tr>
<tr>
<td>7</td>
<td>-42</td>
</tr>
<tr>
<td>10</td>
<td>-61</td>
</tr>
<tr>
<td>20</td>
<td>-65</td>
</tr>
<tr>
<td>30</td>
<td>-72</td>
</tr>
<tr>
<td>40</td>
<td>-72</td>
</tr>
</tbody>
</table>

表2に示したように、減圧保持時間7分で、減圧をキャリアガスで解除した際のキャリアガスの露点が-40℃に下回り、10分以上で-61℃に達しており、十分な乾燥状態にあることが確認された。

これに対し、スチーム加熱による乾燥では、上記と同等の乾燥状態を得るためには長時間を要する。

表3は、上記と同じ内容積のペルジャーのジャケットにスチーム加熱によ
熱媒を導入して、ベルジャーを約110°Cに加熱保持し、当該ベルジャー内に200ノルマルリットル/分（露点—72°C）の高純度窒素ガスを供給し、当該当該窒素ガス（キャリアガス）の露点を露点計で評価した結果である。

図4は、この測定で用いたベルジャー乾燥系の構成を説明するための図で、図中、符号8はジャケット、符号9は熱媒循環経路、符号10および11はそれぞれ、熱交換器および熱媒循環ポンプである。

<table>
<thead>
<tr>
<th>時間（hr）</th>
<th>露点（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>＞-30</td>
</tr>
<tr>
<td>2</td>
<td>＞-30</td>
</tr>
<tr>
<td>3</td>
<td>-32</td>
</tr>
<tr>
<td>4</td>
<td>-41</td>
</tr>
<tr>
<td>5</td>
<td>-49</td>
</tr>
<tr>
<td>6</td>
<td>-55</td>
</tr>
<tr>
<td>7</td>
<td>-58</td>
</tr>
<tr>
<td>8</td>
<td>-61</td>
</tr>
<tr>
<td>9</td>
<td>-62</td>
</tr>
<tr>
<td>10</td>
<td>-64</td>
</tr>
<tr>
<td>12</td>
<td>-64</td>
</tr>
</tbody>
</table>

キャリアガスの露点が、乾燥の目安である－60°C以下になるまでの時間は8時間以上であり、本願発明に比較して50倍程度の長時間を要する。産業上の利用可能性

本発明によれば、ベルジャー内表面から水分が効率的に除去され、ベルジャーの清浄化の短時間化が図られる。その結果、ベルジャー内表面の清浄度を高めて高純度多結晶シリコンの製造に寄与することとなる技術が提供される。
符号の説明

[0068] 1 ベルジャー
2 ベースプレート
3 パッキン
4 真空計
5 ガス導入ライン
6 ガス排気ライン
7 真空ポンプ
8 ジャケット
9 熱媒循環経路
10 熱交換器
11 熱媒循環ポンプ
請求の範囲

[請求項1] ジーメンス法による多結晶シリコン製造に用いられるベルジャーの清浄化方法であって、

前記ベルジャーの水を用いる洗浄工程後に、該ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する乾燥工程を備えているベルジャー清浄化方法。

[請求項2] 前記乾燥工程は、200 Pa以下の真空到達能力を有する真空ポンプを用い、前記ベルジャー内部の気圧が1000 Pa以下となる減圧操作を行う乾燥工程である請求項1記載のベルジャー清浄化方法。

[請求項3] 前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている請求項1又は2に記載のベルジャー清浄化方法。

[請求項4] ジーメンス法による多結晶シリコンの析出工程を複数回繰り返して行う多結晶シリコンの製造方法であって、

前記析出工程の終了後であって、次のバッチの析出工程の前に、前記多結晶シリコンの析出に用いられるベルジャーを清浄化する工程を有し、

該ベルジャーの清浄化工程は、前記ベルジャーを水を用いて洗浄する水洗浄工程と該水洗浄工程に続く乾燥工程とを備え、

前記乾燥工程は、前記水洗浄工程後に、200 Pa以下の真空到達能力を有する真空ポンプを用いて前記ベルジャー内部の気圧が1000 Pa以下となる減圧操作を行うことにより、前記ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する工程であり、且つ、前記水洗浄工程終了後から乾燥工程終了までの時間を1.2時間以下とする、ことを特徴とする多結晶シリコンの製造方法。

[請求項5] 前記ベルジャーの清浄化工程は、さらに、前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して
内圧を大気圧に戻す工程を備えている請求項4に記載の多結晶シリコンの製造方法。

[請求項6] 前記水洗浄工程終了後から乾燥工程終了までの時間を0.8時間以下とする請求項4又は5に記載の多結晶シリコンの製造方法。

[請求項7] 前記水洗浄工程終了後から乾燥工程終了までの時間を0.4時間以下とする請求項6に記載の多結晶シリコンの製造方法。

[請求項8] 前記乾燥工程を、前記ベルジャー内部の気圧が1000パascal以下となった後5分経過した時点で終了させる請求項4又は5に記載の多結晶シリコンの製造方法。

[請求項9] ジーメンス法による多結晶シリコン製造に用いられるベルジャーを乾燥させるための装置であり、該装置は、前記ベルジャーを載置することによって気密空間を形成することができると共に、前記気密空間内の気圧を減圧するための真空ラインと、前記気密空間内の気圧を常圧に戻すための乾燥気体ラインを有することを特徴とするベルジャー用乾燥装置。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C01B33/035

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

B.1 Minimum documentation searched (classification system followed by classification symbols)
C01B33/00-33/193, C23C16/00-16/56

B.2 Document searched other than minimum documentation to the extent that such documents are included in the fields searched

<table>
<thead>
<tr>
<th>Date of publication</th>
<th>Classification</th>
<th>Author</th>
<th>Class</th>
<th>Country</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2009</td>
<td>C01B33/00-33</td>
<td>Mitsubishi Materials Corp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 2009</td>
<td>C01B33/00-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 2009</td>
<td>C01B33/00-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2009-256200 A (Mitsubishi Materials Corp.), 05 November 2009 (05.11.2009), paragraph [0028]</td>
<td>1-9</td>
</tr>
</tbody>
</table>

D. DOCUMENTS NOT CONSIDERED TO BE RELEVANT

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority data claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "S" documents member of the same patent family

Date of the actual completion of the international search: 25 May 2011 (25.05.11)
Date of mailing of the international search report: 07 June 2011 (07.06.11)

Name and mailing address of the ISA:
Japanese Patent Office

Facsimile No.
Telephone No.
国際調査報告

国際出願番号 PCT／JP 2011/001319

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C01B33/035 (2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C01B33/00- 33/193, C23C16/00- 16/56

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922—1996年
日本国公開実用新案公報 1971—2011年
日本国実用新案登録公報 1996—2011年
日本国登録実用新案公報 1994—2011年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献
引用文献のカテゴリーハイポイント

<table>
<thead>
<tr>
<th>関連する 請求書の番号</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>A JP 2009-256200 A（三菱マテリアル株式会社）2009.11.05. [0028]</td>
</tr>
<tr>
<td></td>
<td>& KR 10-2009-103797 A & CN 101544371 A</td>
</tr>
</tbody>
</table>

特許請求の範囲、図面（ファミリーなし）

"引用文献のカテゴリーハイポイント"の日後の公表された文献
特に関連のある文献ではなく、一般的技術水準を示すもの
国際出願日後の出版または特許であるが、国際出願日以後に公表されたもの
「出願」と「特許」の表記を含む文献は他の文献の発表日若しくは他の特別な理由を確立するために引用する文献
「口頭による開示、使用、展示等に言及する文献」
国際出願日前で、かつ優先権の主張の基礎となる出版物

国際調査を完了した日 25.05.2011
国際調査報告の発送日 07.06.2011

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100-8915
永田史季
電話番号03-3581-1101 内線3416

様式 PCT／ISA／210（第2ページ）（2009年7月）