wo 2011/0442771 A2 [0KV 00 OO RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/044271 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
14 April 2011 (14.04.2011) PCT
(51) International Patent Classification:
HO04L 12/56 (2006.01) HO04L 29/02 (2006.01)
GO6F 15/16 (2006.01)
(21) International Application Number:
PCT/US2010/051676
(22) International Filing Date:
6 October 2010 (06.10.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/575,175 7 October 2009 (07.10.2009) US
(71) Applicant (for all designated States except US): FUL-
CRUM MICROSYSTEMS, INC. [US/US]; 26630
Agoura Road, Calabasas, California 91302 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): DAVIES, Michael
[US/US]; 2519 4th Street, #11, Santa Monica, California
90405 (US). SOUTHWORTH, Robert [US/US]; 9306
Chima de Lago, Chatsworth, California 91311 (US).
(74) Agents: VILLENEUVE, Joseph, M. et al; Weaver

Austin Villeneuve & Sampson LLP, P.O. Box 70250,
Oakland, California 94612-0250 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: CONFIGURABLE FRAME PROCESSING PIPELINE IN A PACKET SWITCH

o vE

612 614

— 600

Achion Apphesidon
iFiyd=-Funaion Chraing

Generic Action Stage
el TCAM classification)

FIG. 6

(57) Abstract: Highly configurable frame processing pipelines are enabled in packet switches in an efficient manner which satis-
fies stringent area and power requirements. Frame processing pipelines are described that enable dynamic processing of ditferent

types of frames on a per frame basis.

10

15

20

WO 2011/044271 PCT/US2010/051676

CONFIGURABLE FRAME PROCESSING
PIPELINE IN A PACKET SWITCH

RELATED APPLICATION DATA

[0001] The present application claims priority under 35 U.S.C. 120 to U.S. Patent
Application No. 12/575,175 for CONFIGURABLE FRAME PROCESSING PIPELINE IN
A PACKET SWITCH filed October 7, 2009 (Attorney Docket No. FULCP022), the entire

disclosure of which is incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to packet switches and, in particular, to configurable

frame processing pipelines in packet switches.

[0003] Packet switches are the building blocks for many network devices and switch
fabric architectures, receiving data frames on ingress ports, temporarily storing the frames in
a shared memory or datapath crossbar, and transmitting each frame on one or more egress
ports. Some packet switches implement only very basic functionality, e.g., simple
forwarding of received frames, while others provide relatively more sophisticated frame

processing capabilities, ¢.g., implementing the terms of a service level agreement.

[0004] Regardless of the level of sophistication, packet switches typically include a
resource that determines how each frame should be handled with reference to information
stored in the frame header, i.e., a frame processing pipeline. Conventionally, frame
processing pipelines are implemented as complex, but relatively static, functions that
perform predetermined, fixed logical operations on frame header data. This conventional

approach makes it difficult implement a switch that dynamically handles different types of

10

15

20

WO 2011/044271 PCT/US2010/051676

data frames. In addition, the static nature of such designs presents significant obstacles to
fixing bugs or updating designs to incorporate new functionality, often requiring significant

redesign.

SUMMARY OF THE INVENTION

[0005] According to one class of embodiments, a packet switch is provided that includes
a multi-ported switch datapath. A plurality of ingress ports receives incoming data frames.
Ingress interconnection circuitry selectively connects the ingress ports to the switch
datapath. A plurality of egress ports transmits outgoing data frames. Egress interconnection
circuitry selectively connects the egress ports to the switch datapath. Control circuitry
controls operation of the ingress and egress interconnection circuitry and the switch datapath
to facilitate writing the incoming data frames to the switch datapath and reading the outgoing
data frames from the switch datapath. Frame processing pipeline circuitry determines
forwarding behavior for and modifications to apply to each of the incoming frames with
reference to incoming header data associated with the incoming data frames. The frame
processing pipeline circuitry also generates outgoing header data for association with the
outgoing data frames. The frame processing pipeline circuitry includes a plurality of
pipeline stages. The pipeline stages include parsing circuitry configured to vector portions
of the incoming header data into data fields in a data fields channel. Selected ones of the
pipeline stages include a programmable structure configured to dynamically select one or
more operands from the data fields channel and one or more operations to perform using the
one or more operands. Selection of the one or more operands and the one or more

operations is done with reference to one or more keys derived from the data fields channel

10

15

20

WO 2011/044271 PCT/US2010/051676

on a per frame basis. The pipeline stages further including modify circuitry configured to

generate the outgoing header data with reference to the data fields channel.

[0006] According to another class of embodiments, switch fabrics configured to
interconnect a plurality of computing devices are provided that include a plurality of
interconnected packet switches, at least some of which are implemented in accordance with

the invention.

[0007] According to yet another class of embodiments, a network processing device for
use in a multi-chip switch system that includes a central switch fabric is provided. The
network processing device is configured for deployment between the central switch fabric
and an external device configured to transmit and receive frames of data to and from the
central switch fabric via the network processing device. The network processing device
includes a pipelined circuit configured to operate on data fields in a data fields channel to
determine forwarding behavior for and modifications to apply to the frames of data
corresponding to the data fields in the data fields channel. The pipelined circuit includes a
plurality of pipeline stages. Selected ones of the pipeline stages include a programmable
structure configured to dynamically select one or more operands from the data fields channel
and one or more operations to perform using the one or more operands. Selection of the one
or more operands and the one or more operations is done with reference to one or more keys

derived from the data fields channel.

[0008] A further understanding of the nature and advantages of the present invention

may be realized by reference to the remaining portions of the specification and the drawings.

10

15

20

WO 2011/044271 PCT/US2010/051676

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a diagram of a shared memory switch that may be implemented in

accordance with various embodiments of the invention.

[0010] FIG. 2 is a diagram of an example of a frame processing pipeline that may be

implemented in accordance with various embodiments of the invention.

[0011] FIG. 3 illustrates a generalized representation of a stage of frame processing

pipeline computation.

[0012] FIG. 4 illustrates a computation structure that refines the representation of FIG. 3

in accordance with specific embodiments of the invention.

[0013] FIG. 5 illustrates a computation structure that further refines the representation of

FIG. 3 in accordance with specific embodiments of the invention.

[0014] FIG. 6 is a block diagram of a configurable frame processing pipeline stage

according to a specific embodiment of the invention.

[0015] FIG. 7 is a block diagram of a configurable frame processing pipeline stage

according to another specific embodiment of the invention.

[0016] FIG. 8 is a block diagram of a configurable frame processing pipeline stage

according to yet another specific embodiment of the invention.

[0017] FIG. 9 is a block diagram of a configurable frame processing pipeline stage
configured to implement Layer 2 frame processing according to a more specific embodiment

of the invention.

[0018] FIG. 10 is a block diagram of a configurable frame parser according to a specific

embodiment of the invention

10

15

20

WO 2011/044271 PCT/US2010/051676

[0019] FIG. 11 is a block diagram of a portion of the parser of FIG. 10.

[0020] FIG. 12 is a block diagram of a configurable action resolution pipeline stage

according to a specific embodiment of the invention.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

[0021] Reference will now be made in detail to specific embodiments of the invention
including the best modes contemplated by the inventors for carrying out the invention.
Examples of these specific embodiments are illustrated in the accompanying drawings.
While the invention is described in conjunction with these specific embodiments, it will be
understood that it is not intended to limit the invention to the described embodiments. On
the contrary, it is intended to cover alternatives, modifications, and equivalents as may be
included within the spirit and scope of the invention as defined by the appended claims. In
the following description, specific details are set forth in order to provide a thorough
understanding of the present invention. The present invention may be practiced without
some or all of these specific details. In addition, well known features may not have been

described in detail to avoid unnecessarily obscuring the invention.

[0022] According to various embodiments of the invention, highly configurable frame
processing pipelines are enabled in high-performance packet switches. In such switch
architectures, the frame processing pipeline (FPP) is a centralized processing resource which
is responsible for parsing, classifying, and modifying the packet headers associated with
cach frame handled by the switch, and providing the necessary forwarding and quality-of-
service (QoS) directives to the switch datapath. Pipelines designed in accordance with such

embodiments employ programmable circuit structures that enable this configurability in an

10

15

20

WO 2011/044271 PCT/US2010/051676

efficient manner which satisfies stringent area and power requirements. In contrast with
previous architectures that implement relatively static pipelines with little or no
configurability, embodiments of the invention employ a generalizable, highly configurable
approach for implementing frame processing functionality. Frame processing pipelines
implemented in accordance with such embodiments can perform the same basic functions as
previous pipelines, but much of the underlying hardware is more generic so that the behavior
of the pipeline is easier to adapt to changing requirements. In addition, troubleshooting and
the fixing of bugs is greatly facilitated. According to specific embodiments, the
configurability of frame processing pipelines enables dynamic processing of different types

of frames by the same circuits on a per frame basis.

[0023] It should be noted that the terms “frame” and “packet” may be used
interchangeably in that both are standard terms referring to the basic units of data transfer in
various protocols (e.g., Ethernet, IP, Fibre Channel, Fibre Channel over Ethernet,
InfiniBand, etc.) with which embodiments of the present invention may be employed. It
should also be noted that reference to particular types of frames or packets and/or specific
data transmission or network communication protocols is provided by way of example, and
is not intended to limit the scope of the invention. Rather, those of skill in the art will
appreciate the broad applicability of the configurable circuit structures and pipelines enabled

by the present invention.

[0024] FIG. 1 shows a shared memory switch implemented in accordance with a specific
embodiment of the invention. Shared memory switch 100 has a shared memory 102, ingress
and egress crossbars 104 and 106 connecting ingress and egress ports 108 and 110 to
memory 102, and a scheduler 111 that controls the crossbars and the memory. Frame

processing pipeline (FPP) 112 parses incoming frames and performs the header calculations

6

10

15

20

WO 2011/044271 PCT/US2010/051676

that determine how the frame is handled. A frame (e.g., an Ethernet frame) comes into the
switch and the port logic replicates the header and sends it to FPP 112. The logic in the FPP
determines the set of egress port(s) to which the frame is to be forwarded, what
modifications to apply to its Layer 2-4 header fields, and any quality-of-service directives

supported by the switch scheduler 111.

[0025] Embodiments of the invention provide targeted programmability to the FPP by
exploiting at least some of the following salient properties common to such processing

stages over a wide variety of packet switching applications:

e Very little frame-to-frame state. The great majority of computation applied to each
frame depends only on the specific data fields contained within each frame and not on

the history of past frames handled by the device.

e Restricted formats of headers. Although the frame lengths that a switch must handle are
typically variable and may be very large (10KB or more), the packet header formats and
associated processing requirements are far less variable. Since packet headers, by
definition, are located at the beginning of each data frame, the FPP need only process
some fixed maximum number of initial bytes of each frame, typically no more than 64-
128 bytes. Furthermore, only a specific subset of the bytes in each header is of relevance

to the FPP computation.

e Repeated stages of classification followed by field modification. The general pattern of
computation that arises in most frame processing pipelines is one or more stages of
header classification followed by data field modification rules that are dependent on the

classification results. For example, the frame parsing that occurs at the beginning of the

10

15

20

WO 2011/044271 PCT/US2010/051676

pipeline follows this pattern, as does the final egress header field modification stage, as

well as various intermediate address lookup stages.

e Restricted set of frame profiles that a particular switch instance must support. A given
switch instance need only support a limited number of frame types as identified by their
protocol or as classified by specific header fields dependent on the protocol. The

specific frame types that must be supported depend on several factors:

o Generic properties of the application context. For example, an Ethernet switch
deployed in a Layer 2 network might need to support all standard Ethernet
forwarding functionality (flooding, learning, etc.) but may not require any
processing of higher-layer header protocols or an awareness of other Layer 2

protocols.

o Specific instance-dependent properties. For example, an IP router must identify
frames to be routed based on a specific test of each frame’s Layer 2 destination

address against a single router address configured for that instance.

o Role within a particular network deployment. For example, in a provider
backbone network, the switches at the network edge may need to recognize a
wide variety of packet types and support methods for encapsulation and
decapsulation of those packets, whereas switches deployed in the interior of such

a network need only support the more restricted set of encapsulated frame types.

Each different category of frames that a particular switch must handle, along with the
category’s associated processing rules, is referred to as a frame profile. The more profiles
that a given switch device supports, the more application contexts into which the switch can

be deployed. Given the rising VLSI semiconductor fabrication costs in processes supporting

10

15

20

WO 2011/044271 PCT/US2010/051676

ever-increasing port speed and integration requirements, it therefore becomes increasingly
important for a single switch device to support a wide range of frame profiles without

requiring per-application design customization.

[0026] A high-level illustration of an FPP that may be implemented in accordance with
embodiments of the invention is provided in FIG. 2 which provides a conceptual depiction of
some common, high-level FPP functions in a Layer 2/3 router device, each of which may be
implemented (to one degree or another) using the configurable circuit structures described
herein. FPP 200 includes a parser 202 which receives the frame header, identifies the
various frame header data fields, and vectors the header data into various positions in a data
fields channel 204 of the FPP. As will be discussed, the data fields channel includes the data
on which the various downstream pipeline stages operate, as well as the control and/or index

information provided to those downstream stages.

[0027] The fact that frame formats are fundamentally variable makes the parsing
function challenging in that the relevant information for each of these fields may be in
different locations in successive packets. As will be discussed, the configurability of FPPs
designed in accordance with embodiments of the present invention meet this challenge

effectively by enabling dynamic processing of different types of frames on a per frame basis.

[0028] A Layer 3 lookup 206 receives input in the form of the header data vectored into
predetermined positions in data fields channel 204. These vectored data may be thought of
as an n-tuple comprising n fields. The resulting output is a set of conditions, and a set of
indices for use by subsequent stages in the pipeline. As will be discussed below, lookup 206
is an associative lookup (which may comprise n stages of associative lookup) in that the

input data map to location(s) in one or more associated tables.

10

15

20

WO 2011/044271 PCT/US2010/051676

[0029] “Next Hop” stage 208 employs a routing index from the associative lookup to
identify a new set of fields representing the next routing “hop” for the frame being
processed. The new set of fields are then applied in an associative lookup in the next
pipeline stage, i.e., MAC stage 210. MAC stage 210 is a Layer 2 associative lookup stage
which results in another set of forwarding conditions and indices for the final Modify stage
212 which modifies the data in data fields channel 204 to result in a new header for the
frame reflecting the new source and destination addresses. Modify stage 212 essentially
performs the inverse operation of parser 202, i.c., it takes the data fields in the data fields
channel and determines how to pack those fields into the outgoing packet header at variable

locations (depending on the frame or packet type).

[0030] It will be understood that the diagram of FIG. 2 and the foregoing description is a
simplified representation of an FPP showing only some of the basic functionality for
illustrative purposes, and that different levels of granularity would show fewer or more
stages and/or functions. More generally, and regardless of the particular functionality, an
FPP designed in accordance with the present invention typically has multiple instances of an
n-tuple associative lookup(s) followed by direct-mapped table lookups using the indices
from the associative lookup(s). In addition, it will also be understood that each of the stages
shown in FIG. 2 may be implemented as one or more stages, each of which may be pipelined
to satisfy the frame processing throughput requirements of the switch, and at least some of
these stages will employ the circuit structures described herein. Examples of some of the

basic programmable circuit structures implementing such functionality are provided below.

[0031] A general technique for implementing an iterative algorithm (e.g., such as the
functionalities of an FPP) to achieve higher throughput is to “unroll” the algorithm, and to

pipeline each iteration as a discrete stage of logic. However, such an approach is not always

10

10

15

20

WO 2011/044271 PCT/US2010/051676

practical. For example, if one were to attempt to do this with a general purpose CPU, the
implementation would be impracticably large in terms of chip area. On the other hand, and
according to specific embodiments of the invention, by carefully selecting particular
functions performed in an FPP for implementation in this manner, a highly configurable FPP
may be implemented that satisfies both throughput and area constraints. In the paragraphs
that follow, an exemplary design analysis process is described that leads to the circuit
implementations associated with embodiments of the invention. Such circuit
implementations satisfy the requirements of a wide range of frame processing profiles while
preserving a suitable degree of programmability, yet offer efficient circuit implementations

in terms of area, power, and performance.

[0032] The most general representation of a stage of FPP computation is illustrated in
FIG. 3. A set of data fields {Xi, Xs, ... Xm}, {Y1, Y2, ... Yy}, etc. is transformed from one
stage to the next. The total aggregate bit width of these fields may vary from stage to stage,
but remains less than some maximum value imposed by implementation efficiency
considerations (typically on the order of the maximum number of frame header fields that
must be processed over all profiles). The operation of each computation stage can be

expressed mathematically as a system Fy of functions:

Y1 = Fl(Xl, Xz, Xm)

Y2 = FQ(Xl, Xz, Xm)

Yn = Fn(Xl, Xz, Xm)

[0033] Each of these functions F; may be implemented in a fully-general, fully-
programmable manner as a table lookup mapping the input m-tuple (X, Xa, ...Xn) to cach

output value Y;. Such a table Ty(X1, Xz, ...Xm) contains 25*! entries of width Y| each. For
11

10

15

20

WO 2011/044271 PCT/US2010/051676

small aggregate bit widths Z;|X;| and Z;|Y;| (on the order of 16), general direct-mapped table
lookups, e.g. implemented as a static random-access memory (SRAM), provide a very
reasonable and maximally configurable implementation. However, for switches
implementing processing profiles of practical interest, these bit sums reach thousands of bits

and therefore may not be implemented so simply.

[0034] Fortunately, the frame processing profiles of practical interest require nowhere
near this degree of generality. According to the present invention, a number of general
properties may be exploited to partition and simplify this fully-general representation leading
to an implementable architecture that preserves sufficient programmability to span a wide

range of frame profiles.

[0035] First, many FPP stages may be partitioned into one or more sub-stages that
operate on a specific subset of input and output data fields. For example, a Layer 2 address
lookup stage requires only as many input bits as the maximum lookup key requires over all
applications and need only produce a relatively small set of outputs representing a specific
set of physical ports and associated handling directives. Both input and output bit widths
can be very reasonably bounded to values much smaller than the total aggregate bit width of

all fields passing through that stage of the pipeline.

[0036] Second, it is very common for one or more inputs to a particular FPP
computation to be used symmetrically but mutually exclusively with another set of inputs.
The selection of which input set to use may be an output of some prior processing stage,
typically a function of the specific processing profile to be applied to the frame. This
property motivates a multiplexor (“mux”’) decomposition at the input of such stages.
Oftentimes a symmetric decomposition may be applied to the outputs of such stages, with

one of a number of specific output fields to be modified selected by a profile-dependent data
12

10

15

20

WO 2011/044271 PCT/US2010/051676

field generated by that stage. The computation structure that results from these
simplifications is illustrated in FIG. 4. Note that the resulting structure comprises wires and
muxes, which are both extremely cheap to implement, and a generic function F’y that has far
fewer input and output bits than the original function Fy. If these reduced numbers of input
and output bits are sufficiently small, then the fully general table lookup implementation

may now be applied.

[0037] For many processing stages, F’'y remains too complex to admit a simple table
lookup implementation. The next common property that can be exploited is the guarded,
priority-encoded nature of each computation stage. Specifically, many F’y comprise a
function F"y with a specific number of variations, or cases, selected by an if-then-else

construct. In pseudocode form, a wide range of profiles may match the following:

IF (g1(X1, X2, ... Xm)) THEN
case .= 1

ELSE IF (g2(X1, X2, ...Xm)) THEN

case ;=2
ELSETF ...
ELSE

case =k

Each guard function gj(Xi, X», ...Xm) may commonly be represented as a disjunction (OR)
of conjunctive (ANDed) exact-match tests of profile-dependent bit slices of the input fields
{Xi}. For example, an IP router’s Layer 2 DMAC assignment stage may require the

following guards:

13

10

15

20

WO 2011/044271 PCT/US2010/051676

IF (ValidRoute==1 A Mcast==0 A (EtherType==(IPv4) v EtherType==(IPv6)))

case =1 Look up and reassign DMAC based on matching routing rule
ELSE
case =0 Leave DMAC as-is

The “ValidRoute” and “Mcast” bits are conditions computed at earlier stages in the pipeline,
and the “EtherType” variable is a 16-bit header field identified by the parsing stage and
mapped to some specific data field. In a programmable FPP, these fields may be encoded in
any number of specific data field bits according to profile configuration. Thus the generic

representation of the guard in the above pseudocode might be
Xi[0]==1 A X [4]==0 A (X;3[15:0]==(1Pv4) v X;5[15:0]==(IPv0))

(where Xj[n] and Xj[n:m] notation represents, respectively, bit n of field X; and bit slice n:m
of field X;.) A very large space of such generic guards may be implemented efficiently and
programmably with a ternary content addressable memory (TCAM), followed by a priority
hit detect stage, followed by a table lookup (RAM) indexed by the hit detect output. The
input bit width of the TCAM may be quite large (e.g. 100 bits or more), but as long as the
number of entries can be kept small (on the order of 32), the size and power of the TCAM
and RAM remain acceptably low. The number of entries (or rules) corresponds to the sum
of the maximum number of disjunctive terms over all guards of all profiles to be supported.
As the example above suggests (which requires only three rules), a number on the order of
32 does commonly provide ample flexibility to encode a wide variety of processing profiles.
A computation structure refined to include this input TCAM classification stage is provided

in FIG. 5.

14

10

15

20

WO 2011/044271 PCT/US2010/051676

[0038] After applying the transformations described above, the final computation kernel
F", in FIG. 5 represents the processing function, or action, applied by the stage. In some
cases, the function may be implemented fully generically as a RAM table lookup. Even
when this is not possible, the above transformations surround the fixed-function kernel with
sufficient configurable circuitry to allow the action to be applied in a wide variety of profile-
dependent manners. For example, F”y may be an associative Layer 2 MAC address lookup
table. Depending on the profile configuration, the same lookup table resource may be
configured to implement a destination MAC lookup, a source MAC lookup, a lookup of
these fields from an inner encapsulated frame, or the lookup of a next hop DMAC address as
assigned by an earlier stage. Furthermore, the output bits of the table lookup may be left up
to programmable interpretation. Depending on the configuration of downstream FPP stages,
they may be interpreted as indices for subsequent forwarding table lookups, tags for network

statistics monitoring, bits encoding security handling cases, etc.

[0039] In addition to providing each individual stage with a great deal of useful
programmability, the transformation techniques described above provide a secondary and
equally valuable “cross-product” of programmable flexibility. For example, suppose one
processing stage, so transformed, provides the flexibility to associate a 10-bit tag field with a
number of frame header fields, such as its Layer 2 DMAC address, its outer VLAN ID, its
inner VLAN ID, or its Layer 4 destination port, and further suppose that a downstream stage
so transformed provides 1,024 entries that may be individually configured to either police or
count the frames mapped to each policer/counter by a selection of multiplexed 10-bit tags.
The cross-product of this configurability now provides the overall FPP with a large number

of new features, such as counting by outer VLAN, policing by Layer 4 destination port, etc.

15

10

15

20

WO 2011/044271 PCT/US2010/051676

Moreover, these features may be enabled on a per-switch-instance, per-profile, or per-frame

basis.

[0040] FIG. 6 shows a generalized example of programmable circuit structure 600, also
referred to herein as an “action stage,” variations of which are employed as the basic
building blocks of the various stages of a dynamically configurable FPP designed in
accordance with specific embodiments of the invention. Data fields channel 602 represents
fixed data transmission resources on the chip, ¢.g., actual conductor carrying bits of
information. One approach would be to send the entire packet header through every stage of
the pipeline. However, such an approach would require a high number of bits to be
processed every stage which may not be practical to implement. Therefore, according to
various embodiments of the invention, the number of bits processed at each stage is reduced
to a manageable number of bits, and that total bit width is maintained through the pipeline.
This is accomplished by each stage determining which of the bits in the data fields channel
no longer need to be processed, and overwriting them. As the header data in these fields 602
progress down the pipeline, some of the bits may correspond to derived fields while others
correspond to literal header data. Depending on the implementation, these latter bits may
persist as literal header data, or may be overwritten with the data of intermediate terms. In
the context of an FPP, the data fields channel begins as the literal fields of the ingress packet
header and, over time, gets overwritten in various pipeline stages to represent various
intermediate states of the header data, ultimately getting mapped to forwarding directives

needed by the switch scheduler and to the appropriate egress packet header values.

[0041] An associative lookup mechanism 604 receives input keys and provides input to
one or more Action Tables 606 that each represent a specification for how to transform the

data in data fields channel 602 (e.g., via Apply block 608). In the example shown in FIG. 6,

16

10

15

20

WO 2011/044271 PCT/US2010/051676

the input keys are derived from data in the data fields channel. However, as will be
discussed, variations in this regard are contemplated. Associative lookup 604 may be
thought of as a frame classification which, according to a particular class of embodiments, is
implemented as a ternary content-addressable memory (TCAM). It should be noted that in
some applications, simpler circuit implementations, such as a binary content-addressable

memory, may suffice.

[0042] This is to be contrasted with conventional approaches in which a lookup may be
performed to identify some value which has a static relationship to a specific operation to be
performed. According to various embodiments of the invention, the data derived from the
associative lookup (e.g., the TCAM) is used to dynamically select which of the data from the

data fields channel to manipulate, and how to manipulate that data on a per frame basis.

Such flexibility enables, for example, a single pipeline circuit structure to process different

types of frames (e.g., Fibre Channel vs. IP) differently as they are encountered in real time.

[0043] Data from the data fields channel are used as the keys to the associative lookup,
e.g., as the TCAM input. According to some embodiments, these data may be dynamically
selected (Select 610). According to other embodiments, data from a preceding stage and/or
the data fields channel itself may be used to select which data are used as keys to the TCAM.
According to some implementations, the data from the data fields channel that are used as
the keys for the associative lookup (for a current or succeeding stage) may be hardwired. As
yet another alternative, some combination of these approaches may provide varying levels of

configurability in this regard.

[0044] The results of the associative lookup are used by Action Table 606 to determine
(Input table to Select block 612) from which of the data in the data fields channel the input

operand(s) for the stage will be derived. Action Table 606 may also be configured to specify
17

10

15

20

WO 2011/044271 PCT/US2010/051676

a masking function (Mask table to Mask block 614) to determine which bits of the input
operand(s) are to be masked or otherwise modified, i.c., further selection of the input

operand(s). This may involve, for example, the specification of particular bit values directly

from the Mask table in Action Table 606.

[0045] The resulting operand(s) are provided as input to some operation (Op table to OP
block 616) which might involve, for example, yet another table or TCAM lookup,
application of a logical function (e.g., a hash, a checksum, or a logical or arithmetic

operation), or any of a variety of alternatives.

[0046] Rather than the conventional approach of hard coding at cach stage of an FPP
which results from the previous stage are visible and used by that stage, the visibility and use
of results from a previous stage are dynamically configured on a per frame basis.
Conventional approaches commit such decisions to fixed hardware circuitry at the design
stage. By contrast, embodiments of the invention not only allow modifications to the
programming of each stage, but allow dynamic configurability of individual pipeline stages

during operation.

[0047] An associative lookup mechanism, e.g., a TCAM, is typically a relatively high
power structure that consumes nontrivial area resources. Therefore, according to some
embodiments, a level of indirection may be introduced in the form of “profile indices” to
reduce or mitigate such overhead. According to such embodiments, and as illustrated in
FIG. 7, the TCAM 702 specifies one or more profiles of possible action operations to apply.
This effectively is a compression in which TCAM 702, by the indirection of an Action
Profile Table 704, specifies a profile number, which is then used to index into Action Tables

706-710.

18

10

15

20

WO 2011/044271 PCT/US2010/051676

[0048] According to some embodiments, and as illustrated in both FIG. 7 and FIG. 8,
selected profiles may persist and be employed by subsequent pipeline stages. This reduces
or even climinates the need for associative lookup resources in downstream stages.
Alternatively, even where the compression represented by the use of profiles is not used, the
results of an associative lookup (e.g., by a TCAM) from one stage may be employed by one
or more subsequent stages to have a similar effect in terms of the reduction in required

resources.

[0049] An example of a particular context in which various of the functionalities and
structures discussed above may be employed is in a multi-stage destination mask
transformation (e.g., as might be implemented in an L2 processing block) as illustrated in
FIG. 9. Each DMASK transformation stage 902 has the basic structure shown at the right
which is characterized by the programmability and dynamic configurability described above
with reference to the more generic structures of FIGs. 6-8. In this example, a single profile
index is determined by an earlier TCAM lookup (not shown) and is shared among all
DMASK stages, with the specific actions for each stage mapped from its Action Table. The
“OP” action transformation in this example is a 4096-entry lookup table followed by a
functional block that transforms the DMASK channel based on the action configuration and
the result of the table lookup. Basic logical operations, such as AND and OR, are supported.
By selecting the specific data field encoding the frame’s 12-bit egress VLAN ID as the table
index and an “AND” logical operation, for example, one of these stages can be configured to

implement VLAN membership filtering, a fundamental feature of a Layer 2 switch.

[0050] An even more flexible architecture would include a TCAM lookup in each stage,

allowing the profile index of one stage to be mapped independently of the others. However,

19

10

15

20

WO 2011/044271 PCT/US2010/051676

in the specific application of Ethernet switching, such an enhanced degree of flexibility is

not commonly necessary and therefore may not justify the cost of additional TCAMs.

[0051] A representation of a specific implementation of a configurable parser 1000 for
use in configurable FPPs designed in accordance with various embodiments of the invention
is shown in FIG. 10. Each parser slice or stage 1002 is a specific implementation of at least
one of the generic structures of FIGs. 6-8 and operates on some subset of the bits of frame
header data. An example of a particular implementation of a parser slice is shown in FIG.
11. In this structure, the set of constant-width fields modified by each slice are divided into
two categories: (1) fields directly assigned or derived from the input frame data (labeled
“FLAGS”, “CHECKSUM?”, and “FIELDS”), and (2) temporary data fields used to
communicate parsing state from slice to slice (labeled “STATE”). The FLAGS field
comprises a collection of bits that the Action SRAM may set individually in order to
communicate properties of interest to later stages of the FPP (e.g. if the frame has an IPv4
header). The CHECKSUM field is the result of a one’s complement adder used for
verifying the header checksum contained within Layer 3 or Layer 4 packet headers. The
FIELDS data bytes are directly assigned from header fields of interest, e.g. from a six-byte
Layer 2 destination MAC address or a 16-byte IPv6 source address. The STATE output of
the depicted stage is transformed according to one of a handful of operations, as selected by
the Action RAM, and becomes part of the key for the TCAM lookup 804 in the following
stage. The one’s complement adder is the only component of the depicted structure which
has a fixed definition motivated by the specific requirements of the Layer 3-4 protocols to be
supported. Otherwise, all circuit components are fully generic. As a result, a parser so

implemented can be configured to process a diverse set of widely used packet protocol

20

10

15

20

WO 2011/044271 PCT/US2010/051676

headers (e.g. IEEE 802.3 Ethernet, IPv4, IPv6, TCP, UDP, FCoE) as well as any number of

other protocols not yet defined or standardized.

[0052] A representation of a specific implementation of a configurable Action
Resolution stage 1200 for use in configurable FPPs designed in accordance with various
embodiments of the invention is shown in FIG. 12. The depicted Action Resolution stage
may be employed at various locations in a configurable FPP where architecturally significant
processing decisions are made. It may be regarded as a scaled-up version of the structure of
FIG. 6, suitable for the comprehensive reassignment of large numbers of data fields in
response to configurable conditions evaluated over a large number of classification and
lookup inputs generated by earlier stages. One example application of such a stage in an IP
router FPP falls after the Access Control List (ACL) and next hop routing table classification
stages and immediately before the Layer 2 MAC address lookup table. Although each ACL
and routing lookup stage may follow the structures of FIGs. 6-8, thus providing a large
degree of profile-dependent programmability, for efficiency reasons many of those stages
might produce their outputs independently of each other. The Layer 2 destination MAC
lookup that follows these stages is fundamentally dependent on the Layer 3 next hop routing
decision, so some configurable stage must resolve the necessary data dependencies (namely,
in this example, the next hop DMAC and VLAN fields) with an awareness of all earlier

classification and lookup results.

[0053] Each Action Resolution slice 1202 is a specific implementation of at least one of
the generic structures of FIGs. 6-8. The slices sequentially modify the data in the data fields
channel which are then mapped back to the data fields channel via the output channel
multiplexing. As shown, the operation of each stage of the output channel multiplexing is

governed by configurable profiles (e.g., as described above with reference to FIG. 7) which

21

10

15

20

WO 2011/044271 PCT/US2010/051676

are selected by profile indices generated by the slices. The mux action tables shown in FIG.
12 map the profile indices to multiplexor control values for a specific set of multiplexors.
The mux action tables may also provide profile-dependent constant values that override the
output data fields when selected by certain multiplexor control cases. For extra flexibility,
the tables may specify these constants as (mask,value)-pairs which serve to restrict the
multiplexing to the specific masked bits of the output data fields, with the unmasked bits
assigned from the constant value. It should be noted that embodiments of the present
invention are contemplated in which the output channel multiplexing may be generalized to
a logical transformation structure in which the multiplexors are replaced by logical
transformation circuits or blocks configured to apply any of a wide variety of logical
transformations of their input data fields as configured by the control values generated by the

associated profile tables.

[0054] In the depicted implementation, the same key is applied to each of the associative
lookups (i.e., e.g., TCAM 1204) in each stage, but the lookups themselves are not iterative in
that the results of the lookup in any given stage are not visible or available as a key to
subsequent stages. However, as can be seen, the sequential transformation of the data fields
channel at the bottom of the depicted structure are iterative in that one stage’s transformation

is visible to the following stage.

[0055] The output channel multiplexing stages may follow major architectural lookup
and classification operations for the purpose of determining how the results of some number
of prior lookup and classification stages are applied to the frame. That is, the output channel
multiplexing stages determine how to modify or overwrite the data fields in the data field
channel given the results of the lookup operations performed by the Action Resolution

slices. Often, these major lookup and classification stages produce a large number of data

22

10

15

20

WO 2011/044271 PCT/US2010/051676

fields with complex inter-dependencies in their interpretation. The Action Resolution slices
process these inter-dependencies and specify the appropriate multiplexing for these fields.
Effectively, an Action Resolution stage implements a major decision point in the pipeline in
which a large number of data fields are transformed together. Were it not for Action
Resolution stages, the derived classification and lookup fields would successively
accumulate, demanding increasingly expensive routing and operand multiplexing resources

in downstream FPP stages.

[0056] An example of the operation of such an Action Resolution stage is in the context
of Layer 3 frame processing in a router which may involve, for example, replacing the
source and destination MAC addresses and potentially the VLAN tags in a frame header
based on a destination address lookup. After performing all of the relevant lookups and
getting the required values, it is the Action Resolution stage that provides the logic to effect
the actual replacement of corresponding fields in the data field channel which are then used
by the subsequent Layer 2 address lookup and Modify stages of the FPP to construct the

frame header.

[0057] Various embodiments of the present invention provide FPPs which allow
significant programmability in functionalities beyond the various table lookups, ¢.g.,
functionalities relating to the transformation of header data to vectored fields (which are
used in lookups to generate conditions), and the use of conditions to effect the
transformation back to header data. As discussed above, traditional general purpose CPUs
are not suitable to implement such programmability in an FPP context in that they are
iterative (i.e., slow). Field Programmable Gate Array (FPGA) technology is another
implementation option which offers even more configurability than a general purpose CPU

while maintaining high performance, but an FPGA implementation of any real-world FPP of

23

10

15

20

WO 2011/044271 PCT/US2010/051676

interest suffers from impracticably high area and power requirements. Also, unless it were
to employ circuit structures similar to those enabled by embodiments of the present
invention, an FPGA implementation would not provide much support for dynamic frame
profile-dependent processing. At the other end of the spectrum, conventional FPP
implementations (e.g., fully integrated ASICs which implement a static state machine that

perform fixed functions on packets) have very little configurability.

[0058] FPPs implemented in accordance with specific embodiments of the invention
provide significant programmability and are capable of providing frame processing at full
line rate on a per frame basis. FPPs designed in accordance with embodiments of the
invention can operate like ASIC state machines in that they perform pipelined, pre-planned
discrete operations on the packet header. However, embodiments of the invention provide
circuit structures and an architecture which enable efficient implementation of such
operations while still allowing them to be programmable. Therefore they may span a much
wider range of functional behavior than that of a fixed-function ASIC while delivering

comparable levels of performance and cost.

[0059] While the invention has been particularly shown and described with reference to
specific embodiments thereof, it will be understood by those skilled in the art that changes in
the form and details of the disclosed embodiments may be made without departing from the
spirit or scope of the invention. For example, the functionalities described herein may be
implemented in a wide variety of contexts using a wide variety of technologies without
departing from the scope of the invention. That is, embodiments of the invention may be
implemented in processes and circuits which, in turn, may be represented (without
limitation) in software (object code or machine code), in varying stages of compilation, as

one or more netlists, in a simulation language, in a hardware description language, by a set

24

10

15

20

WO 2011/044271 PCT/US2010/051676

of semiconductor processing masks, and as partially or completely realized semiconductor
devices. The various alternatives for each of the foregoing as understood by those of skill in
the art are also within the scope of the invention. For example, the various types of
computer-readable media, software languages (e.g., Verilog, VHDL), simulatable
representations (e.g., SPICE netlist), semiconductor processes (e.g., CMOS, GaAs, SiGe,
etc.), and device types (e.g., frame switches) suitable for designing and manufacturing the

processes and circuits described herein are within the scope of the invention.

[0060] Embodiments of the invention are described herein with reference to packet or
frame switching devices. According to such embodiments and as described above, some or
all of the functionalities described may be implemented in the hardware of highly-integrated
semiconductor devices, e.g., 1-Gigabit and 10-Gigabit Ethernet switches, various switch
system switches, and similar devices. In addition, references herein to shared memory
switches are merely by way of example. Those of skill in the art will understand that the
present invention applies more generally to a wider variety of packet or frame switching

devices.

[0061] In another example, embodiments of the invention might include multi-chip
switch systems in which an FPP implemented according to the invention might replace one
or more discrete network processor (NPU) devices (also known as “traffic managers”)
connected between each port’s PHY device and the central switch fabric (which, in such
systems, does not typically perform any protocol-specific frame header processing). An FPP
implemented as described herein may be configured to provide an efficient, programmable

implementation for some or all of the functionality in such devices.

[0062] In addition, although various advantages, aspects, and objects of the present

invention have been discussed herein with reference to various embodiments, it will be
25

WO 2011/044271 PCT/US2010/051676

understood that the scope of the invention should not be limited by reference to such

advantages, aspects, and objects. Rather, the scope of the invention should be determined

with reference to the appended claims.

26

10

15

20

WO 2011/044271 PCT/US2010/051676

What is claimed is:

1. A packet switch, comprising:
a multi-ported switch datapath;
a plurality of ingress ports for receiving incoming data frames;

ingress interconnection circuitry configured to selectively connect each of the ingress

ports to the switch datapath;
a plurality of egress ports for transmitting outgoing data frames;

egress interconnection circuitry configured to selectively connect each of the egress

ports to the switch datapath;

control circuitry configured to control operation of the ingress and egress
interconnection circuitry and the switch datapath to facilitate writing the incoming data
frames to the switch datapath and reading the outgoing data frames from the switch datapath;

and

frame processing pipeline circuitry configured to determine forwarding behavior for
and modifications to apply to each of the incoming frames with reference to incoming header
data associated with the incoming data frames, and to generate outgoing header data for
association with the outgoing data frames, the frame processing pipeline circuitry
comprising a plurality of pipeline stages, the pipeline stages including parsing circuitry
configured to vector portions of the incoming header data into data fields in a data fields
channel, selected ones of the pipeline stages comprising a programmable structure

configured to dynamically select one or more operands from the data fields channel and one

27

10

15

20

WO 2011/044271 PCT/US2010/051676

or more operations to perform using the one or more operands, selection of the one or more
operands and the one or more operations being done with reference to one or more keys
derived from the data fields channel on a per frame basis, the pipeline stages further
including modify circuitry configured to generate the outgoing header data with reference to

the data fields channel.

2. The packet switch of claim 1 wherein the programmable structure comprises
an associative lookup mechanism configured to receive the one or more keys as input and
generate one or more indices, the programmable structure further comprising one or more
action tables configured to select the one or more operands from the data fields channel and

the one or more operations with reference to the one or more indices.

3. The packet switch of claim 2 wherein the one or more action tables are further
configured to facilitate selection of how one or more results from the one or more operations

are written into the fields of the data fields channel with reference to the one or more indices.

4. The packet switch of claim 2 wherein the one or more action tables are further
configured to facilitate selection of one or more bits of the one or more operands to modify

with reference to the one or more indices.

5. The packet switch of claim 2 wherein the associative lookup mechanism

comprises a ternary content addressable memory.

28

10

15

20

WO 2011/044271 PCT/US2010/051676

6. The packet switch of claim 2 wherein at least one other pipeline stage is
configured to employ the one or more indices generated by the associative lookup

mechanism in a previous one of the selected pipeline stages as input.

7. The packet switch of claim 2 wherein the one or more indices generated by
the associative lookup mechanism comprise one or more action profile numbers, the
programmable structure further comprising one or more action profile tables configured to
receive the one or more action profile numbers as input and generate one or more action

table indices for use by the one or more action tables.

8. The packet switch of claim 1 wherein at least some of the selected pipeline
stages further comprise selection circuitry configured to select the one or more keys from the

data fields channel with reference to the data fields channel.

9. The packet switch of claim 1 wherein the one or more keys input to at least

some of the selected pipeline stages are hardwired to the programmable structure.

10. The packet switch of claim 1 wherein one or more of the selected pipeline
stages comprises an action resolution stage comprising multiple instances of the
programmable structure configured sequentially, each instance being configured to generate

one or more profile indices and one or more data field outputs, each successive instance of

29

10

15

20

WO 2011/044271 PCT/US2010/051676

the programmable structure being configured to overwrite the profile indices and data field
outputs received from an immediately preceding instance of the programmable structure in
the action resolution stage, the action resolution stage further comprising a logical
transformation structure including at least one profile table for each of the indices generated
by a final instance of the programmable structure, each profile table being configured to
control a logical transformation block receiving one or more of the data field outputs
generated by the final instance of the programmable structure according to a profile selected

in accordance with a corresponding one of the profile indices.

11. A network processing device for use in a multi-chip switch system that
includes a central switch fabric, the network processing device being configured for
deployment between the central switch fabric and an external device configured to transmit
and receive frames of data to and from the central switch fabric via the network processing
device, the network processing device comprising a pipelined circuit configured to operate
on data fields in a data fields channel to determine forwarding behavior for and
modifications to apply to the frames of data corresponding to the data fields in the data fields
channel, the pipelined circuit comprising a plurality of pipeline stages, selected ones of the
pipeline stages comprising a programmable structure configured to dynamically select one or
more operands from the data fields channel and one or more operations to perform using the
one or more operands, selection of the one or more operands and the one or more operations

being done with reference to one or more keys derived from the data fields channel.

30

10

15

20

WO 2011/044271 PCT/US2010/051676

12. The network processing device of claim 11 wherein the programmable
structure comprises an associative lookup mechanism configured to receive the one or more
keys as input and generate one or more indices, the programmable structure further
comprising one or more action tables configured to select the one or more operands from the

data fields channel and the one or more operations with reference to the one or more indices.

13. The network processing device of claim 12 wherein the one or more action
tables are further configured to facilitate selection of how one or more results from the one
or more operations are written into the fields of the data fields channel with reference to the

one or more indices.

14. The network processing device of claim 12 wherein the one or more action
tables are further configured to facilitate selection of one or more bits of the one or more

operands to modify with reference to the one or more indices.

15. The network processing device of claim 12 wherein the associative lookup

mechanism comprises a ternary content addressable memory.

16. The network processing device of claim 12 wherein at least one other pipeline
stage is configured to employ the one or more indices generated by the associative lookup

mechanism in a previous one of the selected pipeline stages as input.

31

10

15

20

WO 2011/044271 PCT/US2010/051676

17. The network processing device of claim 12 wherein the one or more indices
generated by the associative lookup mechanism comprise one or more action profile
numbers, the programmable structure further comprising one or more action profile tables
configured to receive the one or more action profile numbers as input and generate one or

more action table indices for use by the one or more action tables.

18. The network processing device of claim 11 wherein at least some of the
selected pipeline stages further comprise selection circuitry configured to select the one or

more keys from the data fields channel with reference to the data fields channel.

19. The network processing device of claim 11 wherein the one or more keys
input to at least some of the selected pipeline stages are hardwired to the programmable

structure.

20. A switch fabric configured to interconnect a plurality of computing devices,
the switch fabric comprising a plurality of interconnected packet switches, one or more of

the packet switches comprising:
a switch datapath;
a plurality of ingress ports for receiving incoming data frames;

ingress interconnection circuitry configured to selectively connect each of the ingress

ports to the switch datapath;

a plurality of egress ports for transmitting outgoing data frames;

32

10

15

20

WO 2011/044271 PCT/US2010/051676

egress interconnection circuitry configured to selectively connect each of the egress

ports to the switch datapath;

control circuitry configured to control operation of the ingress and egress
interconnection circuitry and the switch datapath to facilitate writing the incoming data
frames to the switch datapath and reading the outgoing data frames from the switch datapath;

and

frame processing pipeline circuitry configured to determine forwarding behavior for
and modifications to apply to each of the incoming frames with reference to incoming header
data associated with the incoming data frames, and to generate outgoing header data for
association with the outgoing data frames, the frame processing pipeline circuitry
comprising a plurality of pipeline stages, the pipeline stages including parsing circuitry
configured to vector portions of the incoming header data into data fields in a data fields
channel, selected ones of the pipeline stages comprising a programmable structure
configured to dynamically select one or more operands from the data fields channel and one
or more operations to perform using the one or more operands, selection of the one or more
operands and the one or more operations being done with reference to one or more keys
derived from the data fields channel on a per frame basis, the pipeline stages further
including modify circuitry configured to generate the outgoing header data with reference to

the data fields channel.

33

PCT/US2010/051676

1/12

WO 2011/044271

L "OI4

auljedid buisseoold swel

ar— 1

y

Jo|npayos

90l

oo_‘K«

148"

Jeqgx
Xy

\Iwov

Hod
Xy

PCT/US2010/051676

2/12

WO 2011/044271

¥0¢Z

elep
Japeay
ssaiba

ZLe
Aipoy

e
//_|/

1] 74
Buisseo01d

Cl

s90IpUl
pue
uonipuoo

00¢ 7

¥0¢

spIdy
mau

¢ ‘OId
80¢ 90¢
doH v0Z Buisseooid
IXON €1
SO21pUl
pue
uonIpuod

¥0¢

elep

c0¢
esled

Jopesy
P8I0J0BA

02
ejep
Japeay
ssalbul

PCT/US2010/051676

3/12

WO 2011/044271

- e

7

g
* |

K

4
& Y

",
w.;\v
P ..\..!..3.\.
e)
B - %,
T, ;
- ae, \\N.\h-

€ 9l

sheig
suljsdild jersuss Aljnd

. 7 n o
\\»c\.\\.) B \!%\
e »ﬁ
! i
“ -
/
: ;

S

; 3

£ 4

_,

% F

% ¥

F..r. y
N, 1\“
-\qw.m «M \..{..\.
% \..\
QT

Cd e
E A

o
N

PCT/US2010/051676

4/12

WO 2011/044271

v "Old

suciisodiionsg
ybBnongj -snoy pue xng indinoanduyg
yi sbelg suljsdld jeisusg

. P /
\ S T,
! 5 b
4 N
p 5.
. [P —
PN /
.v..[- \.\,:.\\.
.
®
&

PCT/US2010/051676

5/12

WO 2011/044271

g ‘Old

uopisodwedsg WYNMNYDL I2UCBIPPY

Ui sfieig suladid pasoduloasi-¥ny

PCT/US2010/051676

6/12

WO 2011/044271

9 '9Id

{uonesyisse> Wy oL i)
abeyg uonoYy suBUag

DWWkl

TR

209
P S

“, ,

009 v

PCT/US2010/051676

712

WO 2011/044271

OB EEUNOD J0F ~a

L°9OI4

{uoisadipu] fjge] 2140ld /M)
afieis uonoYy 2LBUSS

o

walbenE

e

200~/

90L —

PCT/US2010/051676

8/12

WO 2011/044271

8 'Ol

fuonesssely WYl Seaedad Jsgung soid)
sheys UOIYY J1BUSS

Bath e R ite e

SRR} 2

PCT/US2010/051676

9/12

WO 2011/044271

6 OId

suljsthd Bunsipg g ede,

5.
RO

L

i LS

HETE 8

BoIG

PCT/US2010/051676

10/12

WO 2011/044271

{sa011s z¢) sinponne iesied |sas7 ybiy

1H0Gd D8

0L "OId

1-200L —

z-200L — |

£-200L — 887}
ey

b—————— & 23]
p-200L —| seunll W

GOk WNENIZHD
88 ‘50734
40F SOV H

WRISDETY 0001

WO 2011/044271 11/12 PCT/US2010/051676

FIELDE

)
&

L4
TE?

A

Pa

{Per Byte of ST,

voe=11

p
&

21
{Fromm prior

FIG. 11

PCT/US2010/051676

12/12

WO 2011/044271

SR EER
SpuesRds
peranhiag

BIBBYBIY
sy Ay

o M i mnom e e

¢l Ol

— ¥0Cl

A,
Rt y_.\:"f‘."-\\'-m,\\._
e

SRR 23R
Fag

VT

ST
T 3 -

s T N

1 i
1 1 e e~
w saberg ey (eyuankay c0cl
4
L SpEE BYRE

N

| wngy

/oowv

isnoausBosicens SRbeyg Ky

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings

