(54) 发明名称

一种 Ivacaftor 的合成方法及中间体

(57) 摘要

本发明涉及一种 Ivacaftor 的合成方法及中间体，通过如下式方法实施，本发明合成路线新颖，操作简便，收率高，安全性好，适合工业化生产。还包括如式 7 或 8 所示的新型中间体，其中 X 为氯或溴，R 为氢或 C1 ~ C5 的烷基，优选为氢、甲基或乙基。
1. 一种 Ivacaftor 的制备方法，其特征在于，该方法以化合物 II 为原料，R 不为氢时，化合物 II 在有机溶剂中，脱除保护基 R，然后在碱性条件下得到 Ivacaftor；当 R 为氢时，化合物 II 直接在酸性条件下得到 Ivacaftor，

其中 X 为氯或溴，R 为氢或本领域常规基基保护基，所述脱除保护基方法为本领域常规脱保护基方法。

2. 根据权利要求 1 所述的方法，其特征在于，所述的酸为无机酸或有机酸，所述无机酸选自盐酸、硫酸、硝酸、磷酸，所述有机酸选自甲酸、乙酸、乙二酸、乙磺酸、乙磺酸，酸与化合物 II 的摩尔比为 10～40：1；所述的溶剂为乙腈、四氢呋喃、二氯甲烷、二氧六环、2-甲基四氢呋喃、甲苯、N,N-二甲基甲酰胺、甲基叔丁基醚、乙醚、二甲亚砜，或者上述溶剂的任意混合；所述的反应时间以检测反应完成为止；所述的反应温度为 0～100℃。

3. 根据权利要求 1 所述的方法，其特征在于，化合物 II 由如下步骤制备：化合物 5 与化合物 6 在碱性条件下反应得到化合物 II，

4. 如权利要求 3 所述的方法，其特征在于，所述的化合物 6 与化合物 5 的摩尔投料比为 1～5：1；所述的碱可以是碳酸钠，碳酸钾，碳酸铯，碳酸氢钠，碳酸氢钾，氢氧化钠，氢氧化钾，氢氧化锂，氢氧化钡，或二异丙基乙基胺、三乙胺、二异丙胺、三乙烯二胺 (DABCO)、1,8-二氮杂双环 [5.4.0] 十一碳-7-烯 (DBU)、1,5-二氮杂双环 [4.3.0] 壬-5-烯 (DBN)、4-二甲氨基吡啶 (DMAP)、吡啶、N-甲基吗啉、四甲基乙二胺、四甲基胍 (TMG)；所述碱与化合物 5 的摩尔投料比为 1～10：1；所述的溶剂为四氢呋喃、二氯甲烷、乙腈、二氧六环、2-甲基四氢呋喃、甲苯、N,N-二甲基甲酰胺、甲基叔丁基醚、乙醚、二甲亚砜，或者上述溶剂的任意混合；所述的反应时间以检测反应完成为止；所述的反应温度为 0～100℃。

5. 根据权利要求 3 所述的方法，其特征在于，化合物 5 由以下步骤制备：化合物 3 在卤化试剂的作用下，得到化合物 5。
6. 根据权利要求 5 所述的方法，其特征在于，所述的卤化试剂选自氯化氯、氯化亚砜、三溴化磷、三氯氧磷；所述卤化试剂与化合物 3 的摩尔投料比为 2～10:1；所述的溶剂为二氯甲烷、四氢呋喃、甲苯、氯仿、二氧六环、N,N- 二甲基甲酰胺、二甲亚砜；所述的反应时间以检测完成为止，通常为 1～24 小时，所述的反应温度为 0～100℃。

7. 根据权利要求 5 所述的方法，其特征在于，所述的卤化试剂为氯化亚砜，其与化合物 3 的摩尔投料比为 4～6:1；所述的溶剂为二氯甲烷；所述的反应时间为 3～6 小时；所述的反应温度为 40～60℃。

8. 根据权利要求 5 所述的方法，其特征在于，所述的卤化试剂为氯化亚砜，其与化合物 3 的摩尔投料比为 4～6:1；所述的溶剂为二氯甲烷；所述的反应时间为 3～6 小时；所述的反应温度为 40～60℃。

9. 一种如下式 II 所示的中间体化合物，

其中 X 为氯或溴，R 定义如权利要求 1。

10. 如权利要求 9 所述化合物，其中 R 选自氢、THP、硅烷基、酰基或酰基烷基醚。
一种 Ivacaftor 的合成方法及其中间体

技术领域:
[0001] 本发明涉及一种囊性纤维化治疗药物 Ivacaftor 的合成方法及其新型中间体，属于有机合成领域。

背景技术:
[0002] 囊性纤维化 (cystic fibrosis, CF) 是一种遗传疾病，主要以慢性梗阻性肺部病变、胰腺外分泌功能不足和汗液电解质异常升高为主要特征，是白人中最常见的影响生存寿命的遗传性疾病，由囊性纤维化跨膜传导调节因子(cystic fibrosis transmembrane conductance regulator, CFTR) 的突变产生。以下式 1 化合物通用名 为 Ivacaftor; 商品名为 Kalydeco; 化学名为 N-(2,4-二叔丁基-5-羟基苯基)-4-氧代-1,4-二氢喹啉-3-甲酰胺（英文化学名为 N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide) 是由 Vertex Pharmaceuticals 公司开发，2012 年 1 月 31 日 FDA 批准上市，用于治疗囊性纤维化的药物。该药物正是通过提高 CFTR 的作用来达到治疗目的。口服该药可以增加细胞表面 CFTR 通道的开放时间。体外实验证明该药可以提高 6551D-CFTR 蛋白的氯离子转运活性，从而在源头上阻断 CF 的发病。

![化合物 1]

[0003] 文献报道的 Ivacaftor 合成方法中，喹啉酮部分主要通过 4-氧代-1,4-二氢喹啉-3-甲酰胺引入，(WO2006002421, WO2010108162CN103042463, CN103787968); 例如 Vertex 公司的原研专利 WO2006002421，以和 2,4-二叔丁基-5-羟基苯胺缩合得到 Ivacaftor，该步反应收率仅有 8%，且反应用到缩合剂 HATU，后处理不易除去。

![反应 1]

[0005] WO2010108162 在原研专利的基础上进行了工艺优化，以 4-氧代-1,4-二氢喹啉-3-甲酰和化合物 3 硒合后脱保护得到 Ivacaftor，反应以丙基磷酸二酯 (T3P) 为缩合剂，反应收率得到一定提高，但该缩合剂易引起环境污染，且价格昂贵。

[0006]
发明内容

本发明提供一种新类型的中间体并用以合成 Ivacaftor，合成路线新颖，操作简便，反应率高，安全性好，环境友好，成本低，有利于工艺化生产。

其中 X 为氯或溴，R 为氢或本领域常规保护基，优选的，R 为氢、四氢吡喃基（THP）、硅烷基、酰基或酰基烷基醚。更优选的，R 为氢、三甲基硅基、甲酰基甲酯或甲酰基乙酯。

本发明的另一个目的为提供了通过化合物 II 制备 Ivacaftor 的方法。

R 不为氢时，化合物 II 在有机溶剂中，脱除保护基 R，然后在酸性条件下得到 Ivacaftor；所述的脱羟基保护基的方法和条件可以为本领域此类反应的常规方法和条件。当 R 为氢时，化合物 II 直接在酸性条件下得到 Ivacaftor。

所示的酸为无机酸或有机酸，所述无机酸选自盐酸、硫酸、硝酸、磷酸，所述有机酸选自甲酸、乙酸、乙二酸、甲磺酸、苯磺酸，与化合物 II 的摩尔比为 10 ~ 40:1；所述的溶剂为乙醇、四氢呋喃、二氯甲烷、二氧六环、2-甲基四氢呋喃、甲苯、N,N-二甲基甲酰胺、甲
基态丁基醚、乙醚、二甲亚砜，或者上述溶剂的任意混合；所述的反应时间以检测反应完成为止；所述的反应温度为0-100℃。

[0016] 所述化合物II通过化合物5与化合物6在碱性条件下反应得到。

[0017]

[0018] 所述的化合物6与化合物5的摩尔投料比为1:5:1；所述的碱可以是碳酸钠，碳酸钾，碳酸铵，碳酸氢钠，碳酸氢钾，氢氧化钠，氢氧化钾，氢氧化锂，氢氧化钡等，或者二异丙基乙基胺、三乙胺、二异丙胺、三乙基二胺（DABCO）、1,8-二氮杂双环[5.4.0]十一碳-7-烯（DBU）、1,5-二氮杂双环[4.3.0]壬-5-烯（DBN）、4-二甲氨基吡啶（DMAP）、吡啶、N-甲基吗啉、四甲基乙二胺、四甲基胍（TMG），优选为三乙胺；所述碱与化合物5的摩尔投料比为1:10:1，优选为2:4:1；所述的溶剂为四氢呋喃、二氯甲烷、乙腈、二氧六环、2-甲基四氢呋喃、甲苯、N,N-二甲基甲酰胺、甲基叔丁基醚、乙醚、二甲亚砜，或者上述溶剂的任意混合，优选为四氢呋喃。

[0019] 所述的反应时间以检测反应完成为止，通常为1-24小时，优选为2-5小时。

[0020] 所述的反应温度为0-100℃，优选为20-30℃。

[0021] 所述化合物6参考文献WO2006002421制得。

[0022] 所述式5化合物由以下步骤制备，化合物3在卤化试剂的作用下，得到化合物5；

[0023]

[0024] 所述的卤化试剂为草酰氯、氯化亚砜、三溴化磷、三氯氧磷，优选为氯化亚砜，所述卤化试剂与化合物3的摩尔投料比为2:10:1，优选为4:6:1。

[0025] 所述的溶剂为二氯甲烷、四氢呋喃、甲苯、氯仿、二氧六环、N,N-二甲基甲酰胺、二甲亚砜，优选为二氯甲烷。

[0026] 所述的反应时间以检测完成为止，通常为1-24小时，优选为3-6小时。

[0027] 所述的反应温度为0-100℃，优选为40-60℃。

[0028] 所述化合物3参考文献WO2006002421制得。

[0029] 本发明方法的优点主要在于：

[0030] 1. 本发明提供了一条全新的可工业化的路线用于合成Ivacaftor；

[0031] 2. 该合成路线：路线短，收率高，总收率65%；
3. 该合成路线;操作简单、环境友好,适合工业生产；

4. 公开了一种新的合成 Ivacator 的中间体 II, 其中 X 为氯或溴, R 为氢或 C1-C5 的烷基,优选为氢、甲基或乙基；

5. 为类似化合物的合成提供方法学参考。

本方法是一条全新的可工业化的合成路线。同时,该路线对开发新的囊性纤维化治疗药物具有很好的方法学意义。

具体实施例：

下面结合具体实施例, 进一步阐述本发明。应理解, 这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法, 通常按照常规条件进行。

实施例中所用的原料或试剂在特别说明之外, 均市售可得。

实施例中所述的室温均指 20-35℃。除非特别指出, 所述的试剂不经纯化直接使用。所有溶剂均购自商业化供应商, 例如奥德里奇 (Aldrich), 并且不经处理即可使用。反应通过 TLC 分析和 / 或通过 LC-MS 分析, 通过起始材料的消耗来判断反应的终止。分析用的薄层层析 (TLC) 是在涂覆硅胶 60F254 25 毫米板的玻璃板 (EMD 化学品公司 (EMD Chemicals)) 上进行的, 用 UV 光 (254nm) 和 / 或硅胶上的碘显像, 和 / 或与 TLC 染色物如铁制磷钼酸、水合茚三酮溶液、高锰酸钾溶液或硫酸高铈溶液一起加热。

实施例 1

500mL 三口瓶中加入化合物 3 (15g, 79.37mmol, 1.0 eq) 和二氯甲烷 (300.0ml), 室温搅拌下滴加 SOCl₂ (47.2g, 396.8mmol, 5.0 eq), 然后滴加 DMF (1.7g, 24mmol, 0.3 eq)。将反应液升温至 40-45℃, 在 40-45℃下反应 3 小时, 反应液浓缩得到黄色固体, 将 50.0mL 乙腈加入到烧瓶中, 搅拌 1 小时, 过滤, 固体烘干得淡黄色粉末状固体 19g (纯度 95%, 直接用于下一步)。

[1H NMR (400MHz, DMSO)]: δ = 9.22 (s, 1H), 8.6 (d, 1H), 8.05 (d, 1H), 7.89 (t, 1H), 7.76 (t, 1H) ppm。
[0047] 500mL三口瓶中加入化合物5-1(10g, 44.25mmol, 1.0 eq)、化合物6-1(12.35g, 44.25mmol, 1.0 eq)和四氢呋喃(200mL),滴加三乙胺(8.94g, 88.5mmol, 2.0 eq), 该反应体系在室温下反应2小时。加入H2O(100.0mL), 用1N HCl调pH值至3-4, 乙酸乙酯萃取(100.0mL), 有机相用饱和食盐水洗一次、干燥、浓缩, 加入二氯甲烷(20mL), 搅拌30min, 过滤、烘干, 得到化合物7-1为类白色固体(16.9g, 收率: 81%, 纯度: 97%)。

[0048] 1H NMR(400MHz, DMSO): δ = 10.20(s, 1H), 9.02(s, 1H), 8.33(d, 1H), 8.20(d, 1H), 7.96(t, 1H), 7.86(t, 1H), 7.41(s, 1H), 7.21(s, 1H), 3.85(s, 3H), 1.40(s, 9H), 1.31(s, 9H) ppm; ESI/MS: m/z = 469 (M+)+.

[0049] 实施例3

[0050]

[0051] 250mL反应瓶中加入化合物7-1(10g, 21mmol, 1 eq)和THF(50mL), 搅拌下加入2N NaOH(63.0mL, 126mmol, 6.0 eq), 该反应体系在室温下反应2小时。加H2O(150mL), 用乙酸乙酯萃取两次(75mL×2), 有机相干燥、浓缩, 得到化合物8-1为类白色固体(8g, 收率: 91%, 纯度: 94%), 直接用于下一步。

[0052] 1H NMR(400MHz, DMSO): δ = 9.99(s, 1H), 9.94(s, 1H), 8.86(s, 1H), 8.34(d, 1H), 8.15(d, 1H), 7.94(m, 1H), 7.85(m, 1H), 7.18(s, 1H), 6.74(s, 1H), 1.34(s, 18H) ppm, ESI/MS: m/z = 411 (M+)+.

[0053] 实施例4

[0054]

[0055] 1L三口瓶中加入化合物8-1(8g, 20mmol, 1 eq)和乙腈(25.0mL), 滴加1N HCl(400mL, 20 eq), 反应液升温至75-85℃, 反应6小时。降温, 用乙酸乙酯萃取2次
干燥有机相，浓缩得到黄色油状物，加入乙腈（15mL）搅拌30min，过滤，烘干，得到IVACAFTR为白色固体（6.7g，收率：88%，纯度：98.1%）。

[0056] ^1H NMR（400MHz, DMSO）：δ = 12.88 (s, 1H), 11.77 (s, 1H), 9.17 (s, 1H), 8.83 (d, 1H), 8.28 (d, 1H), 7.79 (t, 1H), 7.71 (t, 1H), 7.48 (t, 1H), 7.12 (s, 1H), 7.06 (s, 1H), 1.34 (s, 1H) ppm; ESI/MS: m/z = 393 (M+H)^+.

[0057] 实施例5

[0058]

250mL三口瓶中加入化合物5-1（6.8g, 30.1mmol, 1eq）和四氢呋喃（70mL），加入三乙胺（6.1g, 60.2mmol, 2.0eq），将化合物6-2（7.3g, 33.1mmol, 1.1eq）溶于四氢呋喃（70.0mL）中缓慢滴加到反应体系，室温下反应2小时。加入H_2O（150.0mL），用1NHCl调pH值至3-4, 用乙酸乙酯萃取两次（200mL×2），合并有机相，干燥，浓缩，得到红色固体。加入DCM（20mL），搅拌30min，过滤，烘干，得化合物8-1为浅黄色固体（8.8g, 收率：62%, 纯度：95.1%）。

[0059] ^1H NMR（400MHz, DMSO）：δ = 9.99 (s, 1H), 9.94 (s, 1H), 8.86 (s, 1H), 8.34 (d, 1H), 8.15 (d, 1H), 7.94 (m, 1H), 7.85 (m, 1H), 7.18 (s, 1H), 6.74 (s, 1H), 1.34 (s, 18H) ppm; ESI/MS: m/z = 411 (M+H)^+.

[0060] 实施例6

[0061]

500mL三口瓶中加入化合物3（20g, 0.106mol, 1.0eq）和二氯甲烷（300mL），室温搅拌下滴加PBr_3（57g, 0.212mol, 2eq），然后滴加DMF（1.5g, 21mmol, 0.2eq），将反应液升温至40-45℃, 在40-45℃下反应3小时, 降温, 反应液滴加三乙胺（21.4g), 搅拌30min, 过滤, 滤液浓缩得到黄色固体将40.0mL乙醚加入装固体的烧瓶中, 搅拌1小时, 过滤, 固体烘干得化合物5-2为淡黄色粉末状固体，35g（纯度92%, 直接用于下一步）。

[0062] ^1H NMR（400MHz, DMSO）：δ = 9.17 (s, 1H), 8.57 (d, 1H), 8.03 (d, 1H), 7.86 (t, 1H), 7.73 (t, 1H) ppm.

[0063] 实施例7

[0064]
【0067】500mL三口瓶中加入化合物5-2(35g,0.106mol,1.0eq)、化合物6-3(31g,0.106mol,1.0eq)和四氢呋喃(350mL)，滴加二异丙胺(21.4g,0.212mol,2.0eq)，该反应体系在室温下反应2小时。加入H₂O(1000mL)，用1N HCl调PH值至3~4，乙酸乙酯萃取(300mL×2)，有机相用饱和食盐水洗一次，干燥、浓缩，加入二氯甲烷(20mL)，搅拌30min，过滤，烘干，得到化合物7-2为类白色固体(29g,收率:52%,纯度:99%)。

【0068】¹H NMR(400MHz, DMSO): δ = 10.12(s, 1H), 8.98(s, 1H), 8.31(d, 1H), 8.18(d, 1H), 7.94(t, 1H), 7.86(t, 1H), 7.41(s, 1H), 7.21(s, 1H), 4.21(m, 2H), 1.40(s, 9H), 1.31(s, 9H), 1.27(t, 3H) ppm; ESI/MS:m/z = 527 (M+H)+.

【0069】实施例8

【0070】

【0071】500mL反应瓶中加入化合物7-2(29g,55mmol)和THF(150mL)，搅拌下加入2N NaOH(165mL,330mmol,6.0eq)，该反应体系在室温下反应2小时，加H₂O(250mL)，用乙酸乙酯萃取两次(150mL×2)，有机相干燥、浓缩，得到化合物8-2为类白色固体(22g,收率:88%,纯度:94.6%），直接用于下一步。

【0072】¹H NMR(400MHz, DMSO) δ = 10.02(s, 1H), 9.97(s, 1H), 8.91(s, 1H), 8.43(d, 1H), 8.20(d, 1H), 7.90(m, 1H), 7.81(m, 1H), 7.16(s, 1H), 6.73(s, 1H), 1.34(s, 18H) ppm; ESI/MS:m/z = 455 (M+H)+.

【0073】实施例9

【0074】

【0075】1L三口瓶中加入化合物8-2(22g,48mmol)和乙腈(100mL)，滴加1N HCl(480mL,10eq)，反应液升温至75~85℃,反应6小时。降温,用乙酸乙酯萃取2次(200mL×2),干燥
有机相，浓缩得到黄色油状物，加入乙腈（30mL）搅拌30min，过滤，烘干，得到lvacafort为白色固体（16.5g，收率：87%，纯度：97.5%）。

[0076] 1H NMR (400MHz, DMSO)：δ = 12.88 (s, 1H), 11.77 (s, 1H), 9.17 (s, 1H), 8.83 (d, 1H), 8.28 (d, 1H), 7.79 (t, 1H), 7.1 (t, 1H), 7.48 (t, 1H), 7.12 (s, 1H), 7.06 (s, 1H), 1.34 (s, 1H) ppm; ESI/MS: m/z = 393 (M+H)⁺.

[0077] 实施例10

[0078] 1. 三口瓶中加入化合物5-2(35g, 0.106mol, 1.0eq)和四氢呋喃 (350mL)，加入三乙胺 (21.4g, 0.212mol, 2.0eq)，将化合物6-2(23.5g, 0.106mol, 1eq) 溶于四氢呋喃 (100mL) 中缓慢滴加到反应体系，室温下反应2小时。加入H₂O(1L)，用1N HCl 调pH值至3-4，用乙酸乙酯萃取两次 (400mL×2)，合并有机相，干燥、浓缩，得到红色固体。加入DCM(20mL)，搅拌30min，过滤、烘干，得化合物8-2为类白色固体 (28.5g，收率：59%，纯度：95.4%)。

[0080] 1H NMR (400MHz, DMSO)：δ = 10.02 (s, 1H), 9.97 (s, 1H), 8.91 (s, 1H), 8.43 (d, 1H), 8.20 (d, 1H), 7.90 (m, 1H), 7.81 (m, 1H), 7.16 (s, 1H), 6.73 (s, 1H), 1.34 (s, 18H) ppm; ESI/MS: m/z = 455 (M+H)⁺.

[0081] 实施例11

[0082] 500mL 三口瓶中加入化合物5-1(10g, 44.25mmol, 1.0eq)、化合物6-4(15.51g, 44.25mmol, 1.0eq)和四氢呋喃 (200mL)，滴加三乙胺 (8.94g, 88.5mmol, 2.0eq)，该反应体系在室温下反应2小时。加入H₂O(100.0mL)，乙酸乙酯萃取 (100.0 mL)，有机相用饱和食盐水洗一次，干燥、浓缩，加入二氯甲烷 (20mL)，搅拌30min，过滤，烘干，得到化合物7-4为类白色固体 (18.1g，收率：83%，纯度：97.6%)。

[0084] 1H NMR (400MHz, DMSO)：δ = 10.10 (s, 1H), 9.01 (s, 1H), 8.31 (d, 1H), 8.23 (d, 1H), 7.92 (t, 1H), 7.85 (t, 1H), 7.43 (s, 1H), 7.20 (s, 1H), 5.84 (t, 1H), 3.55-3.65 (m, 2H), 1.87-2.01 (m, 2H), 1.57-1.63 (m, 2H), 1.45-1.55 (m, 2H), 1.40 (s, 9H), 1.31 (s, 9H) ppm; ESI/MS: m/z
实施例 12

250mL 反应瓶中加入化合物 7-4（18.1g, 36.6mmol, 1eq）和甲醇（60mL），搅拌下加入三氯乙酸 (25.0g, 219.6mmol, 6.0eq)，该反应体系在室温下反应 2 小时，加碳酸钠的水溶液，调节 pH 至 8-9，用乙酸乙酯萃取两次 (75mL×2)，有机相干燥，浓缩，得到化合物 8-1 为类白色固体 (13.4g, 收率 :89.4%, 纯度 :95.7%)，直接用于下一步。

实施例 13

实施例 14
[0095] 250mL反应瓶中加入化合物 7-5(18.3g, 38mmol, 1eq) 和甲醇 (60mL), 搅拌下加入四正丁基氯化铵 (20g, 76mmol, 2.0eq), 该反应体系在室温下反应 2 小时, 加 200mL水溶液,调节 pH 至 8-9, 用乙酸乙酯萃取两次 (75mL×2), 有机相干燥, 浓缩, 得到化合物 8-1 为类白色固体 (13.5g, 收率: 86.7%, 纯度: 94.2%), 直接用于下一步。

[0096] 1H NMR (400MHz, DMSO) δ = 9.99 (s, 1H), 9.94 (s, 1H), 8.86 (s, 1H), 8.34 (d, 1H) , 8.15 (d, 1H), 7.94 (m, 1H), 7.85 (m, 1H), 7.18 (s, 1H), 6.74 (s, 1H), 1.34 (s, 18H) ppm, ESI/MS:m/z = 411 (M+H)+.

[0097] 实施例 15

[0099] 500mL三口瓶中加入化合物 5-1(10g, 44.25mmol, 1.0eq)、化合物 6-6(11.6g, 44.25mmol, 1.0eq) 和四氢呋喃 (200mL), 滴加三乙胺 (8.94g, 88.5mmol, 2.0eq), 该反应体系在室温下反应 2 小时。加入 H2O(100.0mL), 乙酸乙酯萃取 (100.0mL), 有机相用饱和食盐水洗一次, 干燥, 浓缩, 加入二氯甲烷 (20mL), 搅拌 30min, 过滤、烘干, 得到化合物 7-6 为类白色固体 (16.5g, 收率: 82.5%, 纯度: 97.2%)。

[0100] 1H NMR (400MHz, DMSO): δ = 10.18 (s, 1H), 9.06 (s, 1H), 8.31 (d, 1H), 8.22 (d, 1H) , 7.94 (t, 1H), 7.81 (t, 1H), 7.51 (s, 1H), 7.48 (s, 1H), 2.28 (s, 3H), 1.40 (s, 3H), 1.31 (s, 9H) ppm; ESI/MS:m/z = 453 (M+H)+.

[0101] 实施例 16

[0103] 500mL反应瓶中加入化合物 7-6(16.5g, 36.5mmol, 1.0eq) 和THF(150mL), 搅拌下加入 2NaOH(110mL, 0.219mmol, 6.0eq), 该反应体系在室温下反应 2 小时, 加 H2O(250mL),
用乙酸乙酯萃取两次（150mL×2），有机相干燥、浓缩，得到化合物8-1为类白色固体（12.8g，收率：85.4％，纯度：97.2％），直接用于下一步。

[0104] 1H NMR (400MHz, DMSO) δ = 9.99 (s, 1H), 9.94 (s, 1H), 8.86 (s, 1H), 8.34 (d, 1H), 8.15 (d, 1H), 7.94 (m, 1H), 7.85 (m, 1H), 7.18 (s, 1H), 6.74 (s, 1H), 1.34 (s, 18H) ppm, ESI/MS: m/z = 411 (M+H)^+.

[0105] 在本发明提及的所有文献都在本申请中引用作为参考，就如同每一篇文献被单独引用作为参考那样。此外应理解，在阅读了本发明的上述讲授内容之后，本领域技术人员可以对本发明作各种改动或修改，这些等价形式同样落于本申请所附权利要求书所限定的。