发明名称
具有薄膜的铝散热器热管

摘要
本发明涉及一种具有薄膜的铝散热器热管，其特征在于铝散热器热管由在铝或铝基底表面上涂覆有具有涂层组合物形成薄膜，该涂层组合物具有氧化锌、亚硫酸钠、三氟树脂、醇和水。本发明的具有薄膜的铝散热器热管能够保证充分的亲水性、耐腐蚀性。
1. 一种具有薄膜的铝散热器热管，其特征在于铝散热器热管由在铝或铝基底表面上涂覆具有涂层组合物形成薄膜，该涂层组合物具有氧化锌、亚硫酸钠、三氟树脂、醇和水。
2. 权利要求1所述的铝散热器热管，其特征在于所述的氧化锌的含量为4.8–25 wt%。
3. 权利要求1所述的铝散热器热管，其特征在于所述的亚硫酸钠的含量为1.2–8.5 wt%。
4. 权利要求1所述的铝散热器热管，其特征在于所述的三氟树脂为三氯氟乙烯/乙烯醚共聚物。
5. 权利要求1所述的铝散热器热管，其特征在于所述的三氟树脂的含量为0.8–5.5 wt%。
6. 权利要求1所述的铝散热器热管，其特征在于所述的醇选自异丙醇、二甘醇、二丙二醇、聚乙二醇、1,2-丙二醇、1,3-丁二醇、1,4-丁二醇、甘油的一种或几种。
7. 权利要求6所述的铝散热器热管，其特征在于所述的醇的含量为5.0–18.5 wt%。
8. 权利要求1所述的铝散热器热管，其特征在于所述的薄膜的膜厚为0.2–2.0 μm。
具有薄膜的铝散热器热管

技术领域
[0001] 本发明涉及一种在表面上形成亲水性出色的有机薄膜的铝或铝合金的散热器热管材料，例如涉及对于作为热交换器等的散热器热管材料而言为优选的、可长期维持结露水容易湿润的表面性状的铝制散热器热管材料。

背景技术
[0002] 热交换器广泛使用热传导性、可加工性、耐腐蚀性等出色的铝材，为了有效地进行热交换，另外，还为了使空间紧凑（compact），采用以狭窄的间隔并设铝制散热器热管件的结构。因此，在空调机的运转时，如果散热器热管材料表面的温度达到空气的露点以下，则附着于散热器热管材料表面上的结露水发生凝结，有时会使相邻的散热器热管之间闭塞。此时，如果铝制散热器热管材料表面的亲水性低，则由于与水的接触角变大，所以附着的结露水成为半球状，从而使散热器热管的闭塞状态进一步变差。结果，热交换功能受到妨碍或者由于风压造成的结露水在空调机外飞散等以往为人所知的问题。
[0003] 为了改善上述的结露水的问题，开发了通过对铝板自身的表面进行亲水化处理，以使得在加工成散热器热管材料并使用时，结露水不会在散热器热管表面上停留而容易被除去、排出的技术。例如，现有技术中公开了用合成二氧化硅和水性涂料的技术。但是，如果使用合成二氧化硅，则得到的涂膜变硬，所以在散热器热管材料的成形加工时，存在工具或金属型等的磨损严重的问题。另外，还存在二氧化硅特有的水泥味或灰尘味，这些臭味被认为是由于被吸附于二氧化硅上的物质或二氧化硅微粒的飞散引起的，会给人体带来不快感。因此，例如，现有技术中公开了使用氧化铝溶胶替代二氧化硅的高亲水性涂料。在该技术中，与应用二氧化硅的情况相比，尽管有所减轻，但依然可观测到臭味，而且如果长期使用，则臭味增大，所以在抑制臭味的这一点上仍然不充分。
[0004] 另一方面，现有技术中公开了为了抑制附着于散热器热管材料表面上的结露水长时间滞留而诱发水合反应或腐蚀反应，使用以羧甲基纤维素的盐和 N- 羟甲基丙烯酰胺作为主要成分的表面处理剂的技术。另外，现有技术中公开了为了向散热器热管材料赋予耐腐蚀性和亲水性，使用以聚乙烯醇和聚乙烯吡咯烷酮为主要成分的表面处理剂是有效的。在这些以往技术中，由于没有使用二氧化硅等，所以不会引起发生臭味或金属型的磨损之类的问题。
[0005] 另外，本申请人持续对形成有有机系的亲水性树脂被膜的热交换器用铝制散热器热管材料进行了探讨。形成以聚乙烯醇和水溶性尼龙、水溶性苯酚等、聚丙烯酸、聚乙二醇等为主要成分的有机系树脂涂覆层的方法。这些树脂涂覆层可以不发生难闻臭气且维持亲水性。
[0006] 这些有机系树脂涂覆层的亲水被膜的加工性出色且没有工具磨损等问题，另外，也没有二氧化硅引起的臭气发生，但即使不像无机系那样严重，但不可否认存在有机系树脂来源的轻微的臭气的发生。
[0007] 有机系树脂涂覆层在铝板上的形成通常利用涂胶辊等在铝板上涂装含有树脂涂
覆盖的构成成分的涂料，然后进行加热干燥来实施。接着，制造出的水性铝酸盐散热器热管
经过加压加工或铜管插入、扩管、钎焊等工序而成为换热器。认为在该一系列制造工序中，
在树脂涂覆层形成时或换热器制造时所加的热会引起树脂涂覆层的一部分发生热分解劣
化从而产生臭气。

发明内容

根据说明书，本发明的目的在于，提供一种可靠地阻止无机系涂覆的铝酸盐散热器热管材料，而且
该换热器热管材料能够保证充分的亲水性，耐腐蚀性。

为此，本发明提供了一种可以长期使用也可以持续亲水性或耐腐蚀性的具有树脂
薄膜的铝酸盐散热器热管材料。本发明的技术方案如下：

一种具有薄膜的铝酸盐散热器热管，其特征在于铝酸盐散热器热管由在铝或铝基底表面上涂覆
有具有涂覆组合物形成薄膜，该涂层组合物具有氧化锌、亚硫酸钠、三氟树脂、醇和水。

其中，氧化锌的含量为 4.8-25 wt%；优选地，氧化锌的含量为 7.5-22.5 wt%；更优
选地，氧化锌的含量为 12.5-20 wt%。

亚硫酸钠的含量为 1.2-8.5 wt%；优选地，亚硫酸钠的含量为 1.5-7.5 wt%；
更优选地，亚硫酸钠的含量为 1.8-7.2 wt%。

其中，所述的三氟树脂为三氟氯乙烯 / 乙烯醚共聚物。优选地，三氟树脂的含量为
0.8-5.5 wt%；更优选地，三氟树脂的含量为 1.2-4.5 wt%。

其中，所述的醇可选自异丙醇、二甘醇、二丙二醇、聚乙二醇、1,2- 丙二醇、1,3- 丁
二醇、1,4- 丁二醇、甘油的一种或几种，并且优选地，所述的醇的含量为 5.0-18.5 wt%；
优选地，所述的醇的含量为 7.5-15.5 wt%；更优选地，所述的醇的含量为 9.0-13.5 wt%。

其中，所述的薄膜的膜厚优选为 0.2-2.0 μm；优选地，其厚度为 0.5-1.5 μm；在
膜厚为下限值以下的情况下，亲水性下降，在为上限值以下的情况下，换热效率下降。

铝材料本来为耐腐蚀性高的材料，但铝散热器热管由于结露水的存在而处于湿润
气候下，所以被暴露出容易发生腐蚀的环境中。所以，在不设置任何耐腐蚀性层面只涂覆亲
水性树脂层的情况下，腐蚀容易在该亲水性树脂层下的铝材中进行，因此导致薄膜的性能
降低。因而，本发明中添加有作为耐腐蚀组分的氧化锌和三氟树脂。

本发明的涂覆组合物中的亚硫酸钠具有水溶性或一定的亲水性，所以如果在铝基
材料上附着配合含有亚硫酸钠的薄膜，则该薄膜的亲水性不会变差。因此，换热器的运转中
发生的凝结水会很好地适应铝散热器热管表面的亲水性而容易流动，从而加速凝结水的排
出，散热器热管不会因为被凝结而封锁，因而可以有效地避免换热效率的变差。

在实施本发明时，对薄膜的形成方法没有限定，例如只要形成上述涂覆组合物，然
后将其涂布于铝板上之后进行加热等公知的方法涂覆形成薄膜。另外，在实施本发明时，对
涂装方法也没有限定。

此外，也可以在不妨碍本发明的性能的范围内，在用于形成薄膜的组合物中添加
用于改善涂装性或操作性等各种涂料添加剂，例如任意地适用表面活性剂、表面加工剂、
交联剂、脱泡剂、流平剂、抗菌剂、其他抗霉剂等即可。

另外，在为了进一步提高耐腐蚀性而在涂布薄膜之前，也可以对铝材实施磷酸盐和
/ 或铬酸盐表面处理或进行微弧氧化处理。
具体实施方式
[0020] 利用现有技术中已有的制造方法，制造 JISAA-1000 的铝材基体。使用碱性洗液首先对该铝材进行除油，然后进行微弧氧化处理。
[0021] 将经过上述处理后的铝材作为试验用材料，利用现有技术将其加工成铝散热器热管。然后，将管在涂覆后经涂覆组合物，即；按照表 1 记载的比例，涂布在铝散热器热管的内表面，涂布厚度为 0.5 mm，加热处理温度为 160 ℃，形成所述的具有薄膜的铝散热器热管。
[0022] 对制备得到的各铝散热器热管材料进行下面的各种性能的测试。
[0023] 亲水性测试

在流量为 1 L/min 的自来水中浸泡 8 小时铝散热器热管材料，然后在 80℃ 下干燥 16 小时，将这些工序作为 1 个循环（cycle），进行 5 个循环。然后，在铝散热器热管材料的内表面上滴落约 0.5 微升 (microliter) 的水滴，使用接触角测定器测定接触角。
[0024] 接着，按照以下标准进行基于这些接触角的测定值的铝散热器热管材料的亲水性评价。
[0025] 优秀：接触角小于 20°
 良好：接触角为 20° 至 40°（包括 20°，但不包括 40°）
 合格：接触角为 40° 至 60°（包括 40°，但不包括 60°）
 不良：接触角为 60° 以上。
[0026] 耐腐蚀性评价

对制备的各铝散热器热管材料实施中性盐雾试验 (GB 6458-86)，实验周期为 720 h。在进行这些试验之后，目视观察各试片的外观，计数腐蚀部分的面积相对铝散热器热管材料的全部表面积的比例，按上述标准，评价铝散热器热管材料的腐蚀程度。
[0027] 优秀：腐蚀面积的比例小于 10%；
 良好：腐蚀面积的比例为 10% - 30%（不包括 30%）；
 合格：腐蚀面积的比例为 30% 以上。
[0028] 表 1 涂覆组合物的组分含量 (wt%)，其中余量为水。

<table>
<thead>
<tr>
<th>实验编号</th>
<th>氧化镍</th>
<th>亚硫酸钠</th>
<th>丙烯酸酯</th>
<th>二甘醇</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.8</td>
<td>1.2</td>
<td>0.8</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>7.2</td>
<td>2.4</td>
<td>1.5</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>10.8</td>
<td>3.5</td>
<td>2.4</td>
<td>9.5</td>
</tr>
<tr>
<td>4</td>
<td>13.5</td>
<td>4.5</td>
<td>3.2</td>
<td>11.5</td>
</tr>
<tr>
<td>5</td>
<td>15.8</td>
<td>5.5</td>
<td>3.8</td>
<td>13.5</td>
</tr>
<tr>
<td>6</td>
<td>18.5</td>
<td>6.5</td>
<td>4.5</td>
<td>15.0</td>
</tr>
<tr>
<td>7</td>
<td>21.8</td>
<td>7.5</td>
<td>5.0</td>
<td>16.8</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>8.5</td>
<td>5.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

[0029] 表 2 测试评价结果

<table>
<thead>
<tr>
<th>实验编号</th>
<th>亲水性</th>
<th>耐蚀性</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>良好</td>
<td>良好</td>
</tr>
<tr>
<td>2</td>
<td>良好</td>
<td>良好</td>
</tr>
<tr>
<td>3</td>
<td>优秀</td>
<td>良好</td>
</tr>
<tr>
<td>4</td>
<td>优秀</td>
<td>良好</td>
</tr>
<tr>
<td>5</td>
<td>优秀</td>
<td>良好</td>
</tr>
<tr>
<td>6</td>
<td>优秀</td>
<td>良好</td>
</tr>
<tr>
<td></td>
<td>优秀</td>
<td>良好</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>