A device for monitoring an environment of a vehicle, wherein the environment is captured via a plurality of image capturing units, the capture ranges (2) thereof at least partially overlapping each other and forming an overlap range (3). An overall image is generated from the individual images captured via the image capturing units using an image processing unit, the overall image showing the vehicle and the environment thereof from a bird’s-eye view. The image capturing units are wafer-level cameras (1).
DEVICE FOR MONITORING AN ENVIRONMENT OF A VEHICLE

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention
[0002] The invention relates to a device for monitoring an environment of a vehicle according to the characteristics of the preamble of claim 1.
[0003] 2. Description of the Related Art
[0004] Utility vehicles for goods or people transport are often characterized by large vehicle dimensions and a low viewing clarity. Modern passenger motor vehicles often also have a low viewing clarity due to their outer design. From this, it results that particularly a maneuvering of these vehicles is very difficult for a driver. It is thus advantageous, to depict vehicles and their environment from a bird’s-eye view on a screen, so that the vehicle and its entire environment are visible to the driver.

[0005] From the state of the art are known different methods and devices for such a monitoring and depiction of an environment of a vehicle, wherein particularly an image of the vehicle and the environment thereof is issued to a driver of the vehicle from a bird’s eye view. A better panorama view is thereby created for the driver, which view serves him as an assistance function or support during the drive operation, for example when maneuvering the vehicle. Furthermore, accidents can be avoided, which often occur due to a bad panorama view, particularly with large vehicles and those whose view is limited.

[0006] From the state of the art is known a monitoring device for a vehicle, as described in DE 100 59 786 B4. A device for monitoring an environment that cannot be viewed directly and/or for the forward-looking monitoring of the vehicle lane comprises a camera arranged in the front and/or rear region of the vehicle, a signal processing device and a display device in the viewing field of the driver. Furthermore, the device has means for transferring the at least one camera into a protected resting position with non-use and into at least one defined operating position in use and means for the forward-looking monitoring of the drive lane, on which the wheels of the vehicle roll, wherein these means comprise at least one sensing device at the vehicle for sensing ground unevenness, and an evaluation unit, which converts the signals of the at least one sensing unit into display signals and/or control commands for vehicle assemblies that can be controlled actively. The at least one sensing device of the means for the forward-looking monitoring of the drive lane is formed by at least one camera present for monitoring the environment of a vehicle that cannot be viewed directly, wherein the means cooperating with the at least one camera for transferring the at least one camera into a protected resting position in non-use and into at least one defined operating position in use have a pivot device for the vertical and/or horizontal pivoting of the at least one camera.

[0007] From EP 1 145 905 A2 is known a camera with a viewing field control for the dead angle monitoring with motor vehicles. A prism for the reflection of incident light from a left and right image capturing device is arranged at a vehicle. An alignment of an image capturing unit can be pivoted vertically and obliquely to a horizontal plane, so that objects above or below this horizontal plane can be captured with the image capturing unit.

[0008] A device for monitoring an environment of a movable body is known from DE 601 01 440 T2, wherein the movable body preferably transports persons or freight, that is, is a vehicle in particular. The device comprises an image processor, which can be operated in such a manner that it transforms image data captured by at least one image capturing unit to a display of the mobile body and its environment in a bird’s eye view in such a manner that a display unit displays an image of the body and its environment in the bird’s eye view. The displayed image can thereby also be determined by means of a combination of a first perspective image of a first image capturing unit and a second perspective image of a second image capturing unit. For the transformation of the image data, a look-up table, also known as look-up table or conversion table, is used.

[0009] U.S. Pat. No. 2,008,043 113 A1 further discloses a device and a method, by means of which individual images from a front camera and a lateral camera, which are arranged at a front and left side of the vehicle, are converted to overall images, which show the vehicle and its environment from a bird’s eye view. For a capturing of the environment of the vehicle as completely as possible, the capturing ranges of the cameras overlap, wherein the overall image shown in a bird’s eye view is formed by means of a combination of the individual images. The conversion of the individual images to the overall image takes place by means of data of a conversion table.

[0010] Furthermore, a so-called WLC technology (wafer-level camera) is known from the state of the art. With the WLC technology, the optical lenses are placed directly on a wafer. The production of the wafer-level cameras functions similar to applying circuits onto a wafer. Thereby, thousands of optical lenses are simultaneously applied onto a wafer, aligned thereafter and adhered thereto. By means of a so-called wafer stack technology, the necessary but cost-intensive individual assembly and alignment of the lenses with the conventional production method is omitted. The individual wafer-level cameras are finally cut out from the wafer and placed on a sensor module. The big advantage of this technique are the low costs of production. Furthermore, the wafer-level cameras with a size of 2.5 millimeters are only approximately half the size of the smallest conventional camera modules.

BRIEF SUMMARY OF THE INVENTION

[0011] The invention is based on the object to give an improved device for monitoring an environment of a vehicle.

[0012] This object is solved according to the invention by a device with the characteristics of claim 1.

[0013] Preferred designs and further developments of the invention are given in the dependent claims.

[0014] With a device for monitoring an environment of a vehicle according to the invention, the environment is captured by means of a plurality of image capturing units, the capture ranges thereof overlapping at least partially and forming an overlap range, wherein an overall image is generated from the individual images captured by means of the image capturing units by means of an image processing unit, which overall image shows the vehicle and the environment thereof from a bird’s-eye view. The image capturing units are formed as wafer-level cameras according to the invention.

[0015] The wafer-level cameras advantageously cause low production costs. The installation space requirement of the camera is so low that several of these wafer-level cameras can be arranged adjacent to each other in the form of a line.

[0016] By means of a large number of installed wafer-level cameras, a complete environment of the vehicle can conve-
Detaiingly be captured without requiring complicated pivot mechanisms for an individual camera.

[0017] An improved panorama view is thereby created for the driver, which serves him as an assistance function or support during the drive operation, for example when maneuvering the vehicle. Furthermore, accidents can be avoided, which often occur due to a bad panorama view, particularly with large vehicles and whose view is limited.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0018] An embodiment of the invention is explained in more detail in the following by means of a drawing.

DETAILED DESCRIPTION OF THE INVENTION

[0019] The only FIG. 1 thereby shows a schematic depiction of a line of several wafer-level cameras according to the invention.

[0020] Several, particularly 10 or more wafer-level cameras are arranged in a line and integrated at the sides of a vehicle body, not shown in detail.

[0021] By means of the large number of wafer-level cameras, an environment of the vehicle, not shown in detail, is captured completely. Dead angles in the capture are avoided thereby.

[0022] The wafer-level cameras are produced by means of a so-called WLC technology (wafer-level camera). With the WLC technology, the optical lenses are placed directly onto a wafer. The production of the wafer-level camera functions similar to applying circuits onto the wafer. Thousands of optical lenses are thereby applied simultaneously onto a wafer, aligned thereafter and adhered thereto. By means of a so-called wafer stuck technology, the necessary but cost-intensive individual assembly and alignment of the lenses with the conventional production method is omitted. The individual wafer-level cameras are finally cut out from the wafer and placed on a sensor module. The big advantage of this technique are the low costs of production. Furthermore, the wafer-level cameras with a size of 2.5 millimeters are only approximately half the size of the smallest conventional camera modules.

[0023] In order to reproduce the environment of the vehicle or at least critical regions of this environment, which are not in the direct viewing field of the motorist, thus in the so-called dead angle, as completely as possible, the wafer-level cameras are arranged and aligned in such a manner that their respectively reproduced capture ranges 2 superpose partially, that is, partial regions of the reproduced environment of the vehicle are captured by several cameras and form an overlap range 3.

[0024] In order to in particular ease the maneuvering of the vehicle for the driver or to for example to enable an improved overview of objects next or behind the vehicle at traffic light crossings, an image processing unit, not shown in detail, generates an overall image from individual images captured by means of the wafer-level cameras 1, which overall image shows the vehicle and its environment from a bird’s eye view. This overall image can preferably be issued to the driver of the vehicle on a screen.

[0025] The overall image is transferred to a display device, not shown in detail, which is arranged in the vehicle in view-

LIST OF REFERENCE NUMERALS

[0034] 1 Wafer-level camera

[0035] 2 Capture range

[0036] 3 Overlap range

[0037] 4 Optical lens

[0038] 5 Wafer

[0039] 6 Sensor module

[0040] B Base width

1. A device for monitoring an environment of a vehicle, wherein the environment is captured by means of a plurality of image capturing units, the capture ranges (2) thereof at least partially overlapping each other and forming an overlap range (3), wherein an overall image is generated from the individual images captured by means of the image capturing
units by means of an image processing unit, which overall image shows the vehicle and the environment thereof from a bird’s-eye view,
wherein the image capturing units are wafer-level cameras (1),
wherein several wafer-level cameras (1) are arranged parallel adjacent to each other in the form of a line,
wherein the wafer-level cameras (1) of a line are equipped with optical lenses (4) having different focal widths, and
wherein the image processing unit selects different wafer-level cameras (1) to obtain images with different focal widths.

2. The device according to claim 1, wherein the wafer-level cameras (1) are arranged at the sides of a vehicle body in an integrated manner.

3. The device according to claim 1, wherein two wafer-level cameras (1) of a line simultaneously record an image and transfer it to the image processing unit.

4. The device according to claim 1, wherein the display device for depicting the overall image is provided.

5. The device according to claim 1, wherein the image processing unit is arranged in the immediate spatial proximity to the wafer level cameras (1) in the vehicle.