
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2008/0033682 A1 

Blancha et al. 

US 20080033682A1 

(43) Pub. Date: Feb. 7, 2008 

(54) 

(76) 

(21) 

(22) 

(60) 

(51) 

(52) 

User 

SYSTEMAND METHOD FOR PERFORMING 
PROCESSING IN A TESTING SYSTEM 

Inventors: Barry E. Blancha, Boxborough, MA 
(US); Leszek Janusz Lechowicz, 
Bridgewater, MA (US); Stephen S. 
Helm, Marlborough, MA (US); Sean 
Patrick Adam, Wrentham, MA (US); 
Jorge Camargo, Westford, MA (US); 
Carlos Heil, Norwood, MA (US); 
Paulo Mendes, Hopkinton, MA (US) 

Correspondence Address: 
LOWRIE, LANDO & ANASTASI 
RVERFRONT OFFICE 
ONE MAIN STREET, ELEVENTH FLOOR 
CAMBRIDGE, MA 02142 (US) 

Appl. No.: 11/827,094 

Filed: Jul. 10, 2007 

Related U.S. Application Data 

Provisional application No. 60/819,610, filed on Jul. 
10, 2006. Provisional application No. 60/819,762, 
filed on Jul. 10, 2006. 

Publication Classification 

Int. C. 
G06F 9/00 (2006.01) 
U.S. Cl. .............................................................. 7O2A108 

(57) ABSTRACT 

A system and method is provided for performing processing 
in a test system. A flexible platform may be provided for 
developing test programs for performing automated testing. 
In one Such platform, the tester and its instruments are 
isolated from the tester operating system, permitting any 
tester operating system to be used. In another example 
implementation, a user layer of the platform is isolated from 
the physical layer of the architecture, permitting hardware 
independent test programs that can be created and used 
among different testers having different test hardware and 
Software. In yet another implementation, execution of a test 
program is isolated from a tester platform operating system, 
permitting the test program to function independent from the 
tester platform. In another embodiment, functionality is 
implemented on the platform Such that functions are only 
added, and that existing links to functions are not broken, 
ensuring continued test system operation when new soft 
ware, hardware and/or features are added to the platform. 
The test system may include a non-deterministic computer 
system. In one example test system, the system forces 
execution of one or more computer instructions performed 
by the non-deterministic computer system to execute within 
a constant execution time. A deterministic engine, if neces 
sary, waits a variable amount of time to ensure that the 
execution of the computer instructions is performed over the 
constant execution time. Because the execution time is 
constant, the execution is deterministic and therefore may be 
used in applications requiring deterministic behavior. For 
example, such a deterministic engine may be used in auto 
mated test equipment (ATE) applications. 

Test System 
OO 

fot 

Test System 
Softwore 

104B 

Instrument 

104A 

Test system Hardware 

Device 
Under 
Test 

  

    

  

  

  

    

  



US 2008/0033682 A1 Patent Application Publication Feb. 7, 2008 Sheet 1 of 21 

| 60/-/ 

/** 

| 

33}^ºC]· · · ·|- -þ/?>O ! 

|---------+---------@, 
{ 

004 
uue?sÁS } se 1 

  



Patent Application Publication Feb. 7, 2008 Sheet 2 of 21 US 2008/0033682 A1 

201A 2012 

Test 
Application 

Test 
Application 
Version Z 

2O2A 2O2Z 
Driver Driver A 

Version Z 

2O3A -2O3Z 
Driver O. O. O. Driver B 

B Version Z 

2O4A 2O4Z 
Test Test 

System to System OS 
OS Version 7 

Softwore 

Hord wore 

2O5A 

Test Test 
Hardwore Hord wore A 

A Version 7 

2O6A 2O6Z 

Test Test 
Hordwore () ) () Hord wore 8 

B Version Z 

  

  

  

  

    

    

  

  

  

  

  

  

  

    

  

  

  

  

  

    

  

    

  



Patent Application Publication Feb. 7, 2008 Sheet 3 of 21 US 2008/0033682 A1 

Architecture 

300 N 
O1 3O2 3O3 JO4 

Softwore Virtuo Physical instrument 
Application Instrument Instrument 

Driver 

F/G, 3 

  



Patent Application Publication Feb. 7, 2008 Sheet 4 of 21 US 2008/0033682 A1 

Architectu re 
- 400 

  



Patent Application Publication Feb. 7, 2008 Sheet 5 of 21 US 2008/0033682 A1 

Architecture 
5OO 21 

N 

Interfaces 
5. Of 504A 504B 

: 
Plot form 
Softwore 

instrument instrument Instrument 

FIG. 5 

  



US 2008/0033682 A1 2008 Sheet 6 of 21 9 Patent Application Publication Feb. 7 

yº :OLJ 

U 

  

    

  

  

    

  

  

  

  



Patent Application Publication Feb. 7, 2008 Sheet 7 of 21 US 2008/0033682 A1 

Test 
Application 

Hordwore 

FIG. 60 

  





Patent Application Publication Feb. 7, 2008 Sheet 9 of 21 US 2008/0033682 A1 

702A 

Physical 
instrument 
Version 1.0 

Test 
Application 

Physical 
instrument 
Version Z 

  

  

    

    

  

    

  

  



Patent Application Publication Feb. 7, 2008 Sheet 10 of 21 US 2008/0033682 A1 

Address 
of Method 

85O2 

£301A 

801B 

eorc 
8OiD 

8O1E 

FIG. 8 

  



US 2008/0033682 A1 Patent Application Publication Feb. 7, 2008 Sheet 11 of 21 

74, ’9/-/ 

106 

00.4% 2,575;&#ffffwy 
  



Patent Application Publication Feb. 7, 2008 Sheet 12 of 21 US 2008/0033682 A1 

914B 
Modified 
Function 
915 
Added 

Functions 
916 

  





Patent Application Publication Feb. 7, 2008 Sheet 14 of 21 US 2008/0033682 A1 

/COf 
WCO2 

instrument 
V.O 

instrument 
W.2.0 

faO3 

FIG. /O 

  



US 2008/0033682 A1 Feb. 7, 2008 Sheet 15 of 21 

ssaoou? 60°T DADO 

Patent Application Publication 

  

  

  

  

  

    

  

  







Patent Application Publication Feb. 7, 2008 Sheet 18 of 21 US 2008/0033682 A1 

14OO Check if Power Polling 
N Timer Has Expired 

14O4. 14O6 

True / If Power Polling is i? continue Main 
Timer has Expired Thredd Execution 

1403 
POtform Stote 
Variable(s) System P Returns 2 

Call to System Pl Bits of informotion 

14O2 

"System Power State" 
Ond Updates System Bit 1: Power Interrupted 

Power Status() (1 = Interrupted) 
System Power 8 

Interrupted" Update Bit O: Power Stote 
(1 = Power On) 

1410 
() Dispatcher Reads 
Moilbox ond Cedrs it. 

() Dispatcher Takes Latest Did Dispatcher Receive 
Configuration (if Any) New Config FIG. 14A 
() Compare Configuration 
to Current Configuration f412 F/G, 14B 

f 
14.f4 True Configuration Folse 

Different? 

Folse If PIs True 
Were Deleted 

in Config 
1416 

Call PowerOn in it() 
on All Deleted Pls 

Unlood 
Deleted Pl 

to 
Loading Provides 
PO for Free 

(A) F/G, 14A CB) 

f413 

  

    

  



Patent Application Publication Feb. 7, 2008 Sheet 19 of 21 US 2008/0033682 A1 

1424 

If Power WOS Off 
or Interrupted 

lf Configuration F 
Changed 

Coll to Al PS 
PowerOn in it() 

True 
If Program Folse 
Looded 

143O 

Coll to All VMls 
ls Mapping OK() 

If Mapping is 
OK for A VM's 

Update State 
Vorioble 

Program Not Valid 
Continue Moin 

Thredd Execution 

F/G, 14B 

  

  

  

  

  

  

  

  





Patent Application Publication Feb. 7, 2008 Sheet 21 of 21 US 2008/0033682 A1 

16O2 

PowerOnlinitialization() 
Colled 

16O4 

1600 N 

If Pl/Hardware is \false 
Dependent. Upon 

System Power State 
1606 

Use GetPlotform 
State Information() 
in P Bose Closs 

Check System 
Power Stotus 

1603 

True f 
System Power 

is On 
161O 

Process of 
Resetting Given 
Hord wore is 
Pl/Hardware 
Dependent 

Reset 
Hordwore 

Set P Locol 
Coche to 

initiolize Stote 

f614 

PI Resources Hove 
Either O Stote 
of PowerOn 
or PowerOff 

F/G, 16 

Update State 
of Published 
Resources 

  

  

  

  

  

  

    

    

  

  

    

  



US 2008/0033682 A1 

SYSTEMAND METHOD FOR PERFORMING 
PROCESSING IN A TESTING SYSTEM 

REFERENCE TO RELATED APPLICATIONS 

0001. This application claims priority under 35 U.S.C. 
S119(e) to U.S. Provisional Application Ser. No. 60/819, 
610, entitled “SYSTEMAND METHOD FOR PERFORM 
ING PROCESSING IN A TESTING SYSTEM, filed Jul. 
10, 2006, and to U.S. Provisional Application Ser. No. 
60/819,762, entitled “SYSTEMAND METHOD FOR PRO 
CESSING IN A TEST SYSTEM, filed Jul. 10, 2006, each 
of which applications are incorporated by reference in their 
entirety. 

BACKGROUND OF THE INVENTION 

0002) 
0003. The invention relates generally to test systems, and 
more specifically, to test systems in the automatic test 
equipment (ATE) area. 
0004 2. Discussion of the Related Art 

1. Field of the Invention 

0005 Today, most test equipment in the ATE area 
involves one or more computer systems. A computer system 
that implements testing steps must be reliable and must 
generate test steps in a deterministic way. That is, the 
computer systems must be capable of producing consistent 
results. One problem with Such a computer is cost—design 
of a complete computing system suitable for use in testing 
(e.g., one that produces consistent results) requires not only 
the expensive hardware design and maintenance but also 
expensive software design involving operating system, user 
interface, drivers, tools, etc. More particularly, deterministic 
execution can be achieved using expensive computing hard 
ware and software and/or distributed hardware within the 
tester, Such as individual control processors within the 
instrument or other testing resource. As a result, computer 
systems suitable for ATE are prohibitively expensive for 
most companies to purchase and maintain. 
0006 Automated test equipment (ATE) is computer-con 
trolled equipment that tests electronic devices for function 
ality and performance. ATE devices also conduct stress 
testing with minimal human interaction. A typical ATE tester 
includes control hardware, sensors, and software that col 
lects and analyzes the test results. Such an ATE tester relies 
on particular test instruments to perform the testing and 
return results to the control software. Conventional ATE 
testers and methodologies are widely considered to only be 
cost efficient for high-volume testing. 
0007. This widely held belief stems, in part, from the 
design and operation of conventional ATE testers. As it 
stands now, a manufacturer can create a new device or 
system. A key element in the design and construction of any 
new device or system is the ability to test the device or 
system for quality, functionality, and serviceability. The first 
step in testing that new device is to determine if anyone 
already has a tester designed and working that may cover the 
new device. If one does not exist, the only option is to have 
a Suitable tester built. The current marketplace takes a long 
time to determine if a new tester should be built, let alone to 
begin actual construction of Such a tester. Determining 
whether or not a new tester covering the new device would 
have wide demand, or any at all beyond the single use, 

Feb. 7, 2008 

ultimately determines whether the new tester will be made. 
If it does not, that often ends the possibility of getting a new 
tester. If it does, the new tester still must be designed and 
fabricated. An average time for completing Such a process is 
on the order of years. For instance, it is not uncommon for 
it to take two or more years to produce a new tester. In that 
time frame, most manufacturers are already looking to test 
a newer device, so such tester may be obsolete even before 
it is released. 

SUMMARY OF THE INVENTION 

0008 According to one aspect of the present invention, it 
is appreciated that such ATE Systems are expensive due to 
the fact that they are specially-developed systems that have 
limited applications, among other reasons. Because they are 
highly specialized, they do not lend themselves to be mass 
produced, or include mass-produced hardware and software 
components. In one aspect of the invention, it is appreciated 
that it would be beneficial to produce an ATE system using 
less expensive, more general-purpose components. 

0009 Further, according to one aspect of the present 
invention, it is appreciated that the total cost of ATE systems 
are expensive due primarily to the tight coupling between 
Software and hardware. More specifically, components of 
the ATE System such as the operating systems, test plat 
forms, their associated applications, and underlying test 
hardware depend on each other, and when one of these 
components are changed, the ATE system may not function 
in the same manner prior to the change. In a deterministic 
system such as an ATE System, such a change may cause a 
test program to perform differently, producing non-deter 
ministic test results. 

0010 Practically, in a production test environment, this 
results in user (e.g., test engineers) being reluctant to imple 
ment new features in existing production test systems. For 
instance, if a new software-based test function is made 
available in an existing test system, introduction of that new 
software may break the operation of the current software. 
For instance, if a software driver is replaced by a later 
version driver, the test system may not function in the same 
way, and test results may be affected. Similarly, if an 
improved hardware (e.g., a test instrument) is added to an 
existing ATE system, the hardware and/or software of the 
existing system may not function in the same way or at all. 
As a result, test engineers generally do not disturb existing 
test systems to implement new functionality, but rather 
would purchase new hardware and Software for performing 
new test functions. This results in inefficient use of testing 
resources, and limited reuse of testing platforms. Further, the 
test hardware and software producer must rigorously test all 
possible permutations of components to prohibit problems 
from occurring in the field, thus increasing production costs 
and the overall cost of the test equipment. 
0011 Further, test engineers may develop their own 
testing programs that use hardware and Software of the ATE. 
Because their programs use the tightly-coupled hardware 
and Software, their programs are also highly dependent on 
this tightly-coupled system, and any changes in the under 
lying system may cause their test programs to operate 
differently than expected. Because of this, test engineers are 
generally unwilling to consider new software and/or hard 
ware changes to existing production test environments. Such 



US 2008/0033682 A1 

test equipment may be used, for example, in manufacturing 
of electronic devices, and a failure of Such equipment may 
impact manufacturing schedules. 
0012. According to one aspect of the present invention, a 
platform is provided that permits components (e.g., hard 
ware, Software) to be changed without affecting the opera 
tion of other components. For instance, in a test environ 
ment, a test development platform may include test system 
software, software drivers used to communicate with vari 
ous test instruments, and operating system software. Accord 
ing to one aspect, an architecture is provided that isolates the 
function of Such components to reduce the amount of 
coupling between the components. In this way, the changing 
of one component does not affect the operation of other 
components. 

0013 For instance, when adding a component, the addi 
tion of the component does not disturb the function of other 
components. In one specific example, a portion of test 
hardware (e.g., a test instrument) fails which needs to be 
replaced. However, only a new version of the test hardware 
is available. This new version has a different interface than 
the failed test hardware, and it follows that the software and 
applications that access the new hardware need to be 
changed to adapt to the new interface. Unfortunately, this 
change results in increased maintenance costs for the test 
system, as all test programs and applications that used the 
old hardware will need to be changed and retested, as the 
communication between hardware and Software was broken. 
However, in Some cases, the user has no choice, as equip 
ment manufacturers frequently change hardware and soft 
ware, causing the overall system not to work. 
0014. According to one aspect of the present invention, it 

is appreciated that testing applications and their associated 
software (e.g., platform OS, drivers) and hardware are 
tightly coupled. In one embodiment, an abstraction layer is 
provided that decouples the testing application from hard 
ware. According to one embodiment, a virtual instrument is 
provided that presents a common interface to a user. The 
interface, according to one embodiment, does not change 
when the underlying hardware changes, reducing the pos 
sibility that the application will not work when changes are 
made. Further, it follows that an application developed using 
the virtual instrument can be used among systems having 
different hardware types and/or versions, as hardware-spe 
cific implementations are, according to one embodiment, 
abstracted from the application. 
0015. In one implementation, a system architecture is 
provide that is modular, linked by interfaces. In one imple 
mentation, modules are linked by add-only interfaces, 
wherein functionality can be only added to particular inter 
faces, thereby ensuring that existing code and test programs 
are not “broken.” In another implementation, such interfaces 
are abstracted to only those functions that are specifically 
necessary. 

0016 Further, according to another aspect of the present 
invention, it is realized that there is a significant benefit to 
bringing new automated testing Solutions to market faster. In 
particular, an automated test equipment platform that 
reduces the time it takes to create a new tester would be 
beneficial. Further, it is appreciated that it would be benefi 
cial to have the ability to produce testers without requiring 
wide applicability before fabrication. Moreover, a tester that 

Feb. 7, 2008 

could incorporate new functionality without requiring the 
design of a new tester would be beneficial. 

0017. A flexible tester that can be fabricated in a shorter 
time, that is cost efficient, and adaptable to cover new 
devices will meet the needs of the marketplace. Although, 
there have been attempts to design Such testers, conventional 
architectures still result in hardware specific code being 
incorporated with system code making them dependant on 
specific hardware and rendering them useful in only a 
narrow range of applications. The interdependence and 
intermingling of function and software limits conventional 
ATE testers. Under conventional methodologies any change 
(additions or Subtractions of hardware, and in Some cases 
replacement of identical parts) can result in a tester that does 
not function properly. Restoring the changed ATE tester to 
proper function requires additional expenses and increases 
time to market for the devices to be tested. 

0018. The inflexibility of conventional ATE testers 
increases the costs associated with developing and main 
taining testers. With conventional methods, development of 
new testers generally requires construction from scratch and 
fails to leverage what is already in place. One aspect of the 
present invention describes an instrument developer plat 
form defining a set of architecture standards that enable the 
timely development of new ATE testers that can test a 
virtually unlimited range of devices. This architecture also 
allows for the modification of existing testers to include new 
instrumentation without requiring changes to existing test 
functionality and its related software. This test system 
architecture is able to incorporate new instrumentation into 
an existing tester, and thus leverage what is in place. This is 
accomplished through the abstraction of sets of functionality 
in an ATE tester. 

0019. In one implementation of the present invention, an 
instrument incorporated into a particular tester is abstracted 
into a functional module. This abstracted module manages 
the functions of the particular instrument while remaining 
independent of the rest of the ATE tester. In particular, 
interfaces defined at a platform level allow for independence 
of the test platform itself. When the functionality of the 
instrument is employed to test a particular device, the 
module is called by other independent abstraction layers. 
The module, independent of the abstraction layer(s) which 
called it, manages the functions of the instrument and the 
module returns the results to the that abstraction layer. In this 
example, the tester interacts with the module only through 
other independent abstraction layers, the module and its 
related instrument is permitted to be “plugged-in' to any 
tester that employs the same architecture. For instance, the 
module and the related instrument can be removed from one 
tester and by installing the same module and instrument on 
another tester (of the same architecture), the functionality of 
the second tester is enhanced without impacting the existing 
functions of the second tester. Moreover, in this example, the 
first tester, from which a module and instrument were 
extracted, will continue to function with the remaining 
instruments available to it. Adhering to the architecture 
standards enables flexibility on existing testers, cost effi 
ciency, and greater speed to completion of new testers. 

0020. In another aspect on the present invention, each 
level of functionality of an ATE tester is abstracted, enabling 
sets of functions and functionalities to be separated in 



US 2008/0033682 A1 

different layers encompassing the functions of an ATE tester. 
In one embodiment, users interact with test programs, which 
bundle visualizations and graphically display results and 
options from tests performed, or to be performed, on a 
particular device. For instance, a single test program or 
multiple programs may be employed by the user to test any 
particular device or devices. In aspect of the present inven 
tion, the abstraction of the functions and functionality pro 
vided by test program(s) forms the highest layer of the ATE 
tester architecture. 

0021 Additionally, according to one aspect of the present 
invention, a system is provided in which virtual instruments 
can be created and managed. In one embodiment, the virtual 
instrument being modeled includes behavior that based on 
the functionality that is desired by the user, rather than 
hardware-specific implementations. For instance, if a par 
ticular function is not natively performed in a software 
driver, that functionality can be performed in software 
associated with the virtual instrument. In this way, capabili 
ties of test hardware and their associated drivers may be 
extended in a standard way. Further, according to another 
embodiment, because virtual instruments are created from 
the user perspective, applications are more easily created. 

0022. Also, testers and their applications can be created 
more quickly, as testers are not tied to their hardware. 
Similarly, hardware associated with a tester can be improved 
more easily, as Software is not so rigidly tied to hardware, 
and therefore, hardware can be added/changed without 
affecting software (software will more easily work with 
hardware). It is appreciated that such a flexible platform for 
creating and maintaining Software and hardware is beneficial 
to the developer and maintainer of software, and the amount 
of cost and effort for creating and maintaining testing 
programs is reduced. 

0023. According to another aspect of the present inven 
tion, a method for providing Software functions is provided 
that permits compatibility across Software and hardware 
versions. According to one aspect of the present invention, 
functions of a virtual instrument that refer to hardware 
functions are unchanged from version to version. More 
particularly, as functions are added to the virtual instrument, 
old functions are maintained, and functionality is added to a 
predetermined memory structure. Functionality to software 
modules are added without changing references of preex 
isting functions in memory. Because function references are 
unchanged, additional functionality, when added to the 
memory structure does not "break' existing connections. 
Thus, when a test program is created, the program’s func 
tionality is frozen in time, as the functions that the test 
program accesses remain unchanged going forward, unless 
the user decides to change the test program. In this way, 
development and maintenance costs for creating and main 
taining test programs is significantly reduced. 

0024. According to one embodiment of the present inven 
tion, a virtual function table (e.g., in the C++ programming 
language, the well-known virtual method table (“vtable')) is 
maintained for a virtual instrument. In one embodiment, in 
one version of the virtual instrument vitable, a base set of 
functionality is included having a defined location in the 
vitable. In a subsequent version of the virtual instrument 
table, additional functions are added to the vitable, while 
maintaining the same location in the Vtable for the base set 

Feb. 7, 2008 

of functionality. In this way, functions and their connections 
to other software are maintained without breaking existing 
programs when additional functions are added. 
0025. According to another embodiment of the present 
invention, what is referred to herein as a virtual multisite 
instrument is provided that facilitates management of mul 
tiple testing sites. In a traditional testing environment, it is 
appreciated that a site is managed as a singular entity in that 
if a particular testing site is configured, a test program is 
developed for the particular site, specific to the particular 
testing hardware used. If multiple sites are needed to per 
form additional testing (e.g., to satisfy an increased testing 
capacity), then additional test hardware configurations are 
purchased, and the test program is matriculated to the 
additional sites. According to one aspect of the present 
invention, because details of the underlying hardware is 
abstracted from test programs via an abstraction layer (e.g., 
a virtual instrument layer), test programs can be managed 
independent of test hardware, and the abstraction layer may 
be capable of managing the administration of a test program 
to multiple sites via the abstraction layer. In one embodi 
ment, the virtual instrument may have capability to map to 
multiple instrument sites. In this way, the time needed to 
maintain and administer test programs to multiple sites is 
reduced. 

0026. According to another aspect of the present inven 
tion, it is appreciated that test programs software is used by 
different types of users—some users develop test applica 
tions, and others use the developed applications for the 
administration and management of test processes. However, 
these separate types of users may need to use a specific user 
interface (UI), depending on what functions are performed. 
It is appreciated that multiple types of testers have different 
user interfaces, forcing the user to understand the specific 
type of interface necessary to run the equipment. Also, it is 
appreciated that in the ATE industry, the application and 
drivers are tightly coupled, and the user interfaces are tied to 
the system software. According to one aspect of the present 
invention, a standard user interface may be used to access 
multiple tester types, reducing the amount of training nec 
essary for the user. To further reduce the amount of training 
required, a user-specific interface is provided that allows the 
user to perform testing functions related to their role. 
0027) Further, according to another aspect of the present 
invention, a testing architecture is provided that permits a 
user to perform testing functions from any location. In one 
specific implementation, the user interface is accessed 
through a browser program, and a user may perform testing 
functions from any location coupled to a testing system 
through a communications network. In a traditional envi 
ronment, the UI is normally tied to the machine, however, if 
the UI is made available over a network, the user can 
perform testing from another location. 
0028. Further features and advantages of the present 
invention as well as the structure and operation of various 
embodiments of the present invention are described in detail 
below with reference to the accompanying drawings. In the 
drawings, like reference numerals indicate like or function 
ally similar elements. Additionally, the left-most one or two 
digits of a reference numeral identifies the drawing in which 
the reference numeral first appears. 
0029. According to one aspect of the present invention, a 
system comprises a test program, an platform adapted to 



US 2008/0033682 A1 

generate a plurality of function calls in response to requests 
from the test program, an abstraction layer that is adapted to 
map the plurality of function calls into instructions to be 
executed on test hardware. According to one embodiment of 
the present invention, the abstraction layer further comprises 
a virtual instrument (“VI') interface to the platform. Accord 
ing to another embodiment of the invention, the abstraction 
layer further comprises a virtual multisite (“VMI) interface 
to the platform. According to another embodiment of the 
invention, the abstraction layer further comprises a system 
physical instrument ("SystemPI) interface to the platform. 
According to another embodiment of the invention, the 
abstraction layer further comprises a physical instrument 
(“PI) interface to the platform. According to another 
embodiment of the invention, the abstraction layer further 
includes a virtual instrument (“VI') to physical instrument 
(“PI) interface. 
0030. According to one embodiment of the present inven 
tion, the abstraction layer further includes a system physical 
instrument (“SystemPI) to virtual instrument (“VI') inter 
face. According to another embodiment of the invention, the 
abstraction layer further includes a system physical instru 
ment ("SystemPI) to physical instrument (“PI) interface. 
According to another embodiment of the invention, the 
abstraction layer further includes a test program to virtual 
instrument (“VI') interface. According to another embodi 
ment of the invention, the abstraction layer further includes 
a test program to physical instrument (“PI) interface. 
According to another embodiment of the invention, the 
abstraction layer further includes a platform to virtual instru 
ment (“VI') interface. According to another embodiment of 
the invention, the abstraction layer further includes a plat 
form to physical instrument (“PI) interface. According to 
another embodiment of the invention, the abstraction layer 
further includes a platform to virtual multisite instrument 
(“VMI) interface. 
0031. According to one embodiment of the present inven 
tion, the abstraction layer further comprises an interface 
generation engine. According to another embodiment of the 
invention, the interface generation engine includes a graphi 
cal user interface adapted to guide a user through generation 
of an interface. According to another embodiment of the 
invention, the interface generation engine generates an inter 
face to manage communication between components of the 
system. According to another embodiment of the invention, 
the interface generation engine generates an interface to 
manage communication between components of the abstrac 
tion layer. According to another embodiment of the inven 
tion, the interface generation engine generates an interface to 
manage communication between the platform and the 
abstraction layer. According to another embodiment of the 
invention, managing communication between the platform 
and the abstraction layer includes mapping the plurality of 
function calls to instructions to be executed on test hard 
ware. According to another embodiment of the invention, 
mapping the plurality of function calls includes mapping the 
plurality of function calls to a virtual instrument (“VI') 
module. According to another embodiment of the invention, 
mapping the plurality of function calls includes mapping the 
plurality of function calls to a system physical instrument 
(“System PI) module. According to another embodiment of 
the invention, mapping the plurality of function calls 
includes mapping the plurality of function calls to a physical 
instrument (“PI) module. 

Feb. 7, 2008 

0032. According to one embodiment of the present inven 
tion, mapping the plurality of function calls includes map 
ping a base class of physical instrument function calls to a 
physical instrument (“PI) module. According to another 
embodiment of the invention, mapping the plurality of 
function calls includes mapping a base class of physical 
instrument function calls to a physical instrument (“PI) 
module. According to another embodiment of the invention, 
the abstraction layer further comprises a rules checking 
engine. According to another embodiment of the invention, 
the rules checking engine is adapted to verify the mapping 
of function calls to instructions on the test hardware. 
According to another embodiment of the invention, the rules 
checking engine verifies the mapping by simulating a 
request for the function call. According to another embodi 
ment of the invention, the rules checking engine verifies the 
mapping by accepting a response as a result of the simulated 
function call in an expected format. According to another 
embodiment of the invention, the rules checking engine 
returns a code to the operating platform indicating that the 
function call was mapped properly. According to another 
embodiment of the invention, the rules checking engine 
identifies an improper mapping by accepting a return code in 
response to the simulated function call that is not in the 
expected format. According to another embodiment of the 
invention, the system further comprises an interface between 
the test program and the platform. 
0033 According to one embodiment of the present inven 
tion, the test program provides a graphical user interface to 
a user. According to another embodiment of the invention, 
the test program enables a user to define tests to be executed 
upon a device. According to another embodiment of the 
invention, the test program enables a user to define tests to 
be executed upon a device to occur at any time. According 
to another embodiment of the invention, the abstraction 
layer further comprises an physical instrument abstraction 
layer representing the functionality of hardware resources of 
the test system. According to another embodiment of the 
invention, the physical instrument abstraction layer includes 
a physical instrument module that maps to a hardware 
resource. According to another embodiment of the inven 
tion, the PI module causes execution of instructions on a 
hardware resource in response to requests. According to 
another embodiment of the invention, a hardware resource 
includes at least one function available on the test hardware. 
According to another embodiment of the invention, the 
hardware resource is adapted to cause the generation of a 
synchronization signal. According to another embodiment of 
the invention, the hardware resource is adapted to causes a 
device state query. 
0034. According to one embodiment of the present inven 
tion, the PI module includes a function call that will cause 
a device to power on and/or initialize in dependence upon a 
device starting State. According to another embodiment of 
the invention, the physical instrument module includes a 
base class of PI function calls. According to another embodi 
ment of the invention, the base class of PI function calls 
includes the power on and/or initialize function. According 
to another embodiment of the invention, the abstraction 
layer further comprises a virtual instrument abstraction layer 
that represents a virtualization of hardware functions that 
may be performed on the test system. According to another 
embodiment of the invention, the virtual instrument abstrac 
tion layer includes a virtual instrument (“VI') module, to 



US 2008/0033682 A1 

which at least one hardware resource is mapped. According 
to another embodiment of the invention, the VI module is 
adapted to cause the execution of instructions on a hardware 
resource in response to requests. According to another 
embodiment of the invention, the mapping to at least one 
resource is mapped through at least one PI module for each 
of the at least one hardware resource. According to another 
embodiment of the invention, the VI module is mapped to a 
plurality of PI modules to render a virtual representation of 
a set of predefined hardware resources employed to test a 
particular device. 
0035. According to one embodiment of the present inven 
tion, the VI module is adapted to be modified to include an 
additional PI module, expanding the set of hardware 
resources available to test a device through the VI module. 
According to another embodiment of the invention, the VI 
module is adapted to include a base class of functions that 
map to test hardware resources necessary for any ATE tester. 
According to another embodiment of the invention, the 
abstraction layer further comprises a system abstraction 
layer adapted to manage requests to hardware resources. 
According to another embodiment of the invention, the 
system abstraction layer is further adapted to map requests 
from a physical instrument layer so that hardware resources 
perform their functions in response to requests. According to 
another embodiment of the invention, the system abstraction 
layer is further adapted to define a base set of system 
function calls available to other components of the abstrac 
tion layer. According to another embodiment of the inven 
tion, the system layer further comprises a SystemPI module 
adapted to define a base set of system function calls that 
cause operations to be performed any the other components 
of the abstraction layer. According to another embodiment 
of the invention, the system abstraction layer is further 
adapted to perform queries on components of the abstraction 
layer. 

0036). According to one embodiment of the present inven 
tion, the system abstraction layer includes a system physical 
instrument module. According to another embodiment of the 
invention, the platform layer includes an “off the shelf 
operating system. According to another embodiment of the 
invention, the “off the shelf operating system is enhanced 
to perform deterministically. According to another embodi 
ment of the invention, the “off the shelf operating system 
is Windows XP, and it is enhanced using the Tenasys INtime 
operating system to operate deterministically. 

0037 According to one aspect of the present invention, 
an automated test equipment system is provided. The system 
comprises a platform abstraction layer adapted to manage 
the operation of abstraction layers of the automated test 
equipment system, a physical instrument ('PI) abstraction 
layer adapted to map PI function calls to hardware so that the 
hardware performs a function in response to a PI function 
call, a virtual instrument (“VI') abstraction layer adapted to 
map to the PI abstraction layer so that the VI abstraction 
layer represents a virtualization of hardware functions that 
may be performed, a system abstraction layer adapted to 
map system function calls to enable the hardware to perform 
functions in response to PI function calls, and a test program 
abstraction layer adapted to interact with the virtual instru 
ment layer to initiate functions performed on hardware. 
According to one embodiment of the present invention, the 
system abstraction layer is further abstracted into a system 

Feb. 7, 2008 

physical instrument ("SystemPI) module that receives 
requests from the PI abstraction layer and causes hardware 
to perform its function in response. According to another 
embodiment of the invention, the SystemPI module is fur 
ther adapted to aggregate information reported by the other 
abstraction layers of the automated test equipment system. 
According to another embodiment of the invention, the 
information aggregated includes success or failure of func 
tion calls made in the other abstraction layers of the auto 
mated test equipment system. According to another embodi 
ment of the invention, the information aggregated includes 
reporting by operations in the other abstraction layers of the 
automated test equipment system. According to another 
embodiment of the invention, SystemPI module is further 
adapted to accept queries on the information aggregated. 
0038 According to one embodiment of the present inven 
tion, SystemPI module is further adapted to report on the 
information aggregated. According to another embodiment 
of the invention, the test program abstraction layer includes 
a test program adapted to present a graphical user interface 
to a user. According to another embodiment of the invention, 
the test program layer is further adapted to permit a user to 
interact with the virtual instrument layer. According to 
another embodiment of the invention, the test program layer 
is further adapted to permit a user to define tests to be 
performed on a device. According to another embodiment of 
the invention, the test program is further adapted to graphi 
cally render the results of performed tests. According to 
another embodiment of the invention, the test program layer 
is further adapted to permit a user to define tests to be 
performed on a device, wherein the tests to be performed 
occurat a scheduled time. According to another embodiment 
of the invention, tests to be performed can occur on any user 
defined schedule. According to another embodiment of the 
invention, the virtual instrument abstraction layer includes a 
VI module, wherein the VI module includes a mapping to at 
least one hardware resource. 

0039. According to one embodiment of the present inven 
tion, the VI module is adapted to cause the at least one 
hardware resource to perform its function in response to 
requests. According to another embodiment of the invention, 
the VI module causes the at least one hardware resource to 
perform its function in response to a request from the test 
program abstraction layer. According to another embodi 
ment of the invention, the mapping to the at least one 
hardware resource is mapped through the PI instrument 
layer. According to another embodiment of the invention, 
the mapping to the at least one hardware resource is mapped 
through a PI module. According to another embodiment of 
the invention, the VI module is mapped to a plurality of PI 
modules so that the VI module renders a virtual represen 
tation of a plurality of hardware resources employed to test 
a device. According to another embodiment of the invention, 
the mapping between the VI Module and the PI module is 
managed by an interface. According to another embodiment 
of the invention, the interface is a graphical user interface. 
According to another embodiment of the invention, the 
interface manages communication between the VI Module 
and the PI module in a predetermined format. According to 
another embodiment of the invention, the VI module is 
adapted to be modified to include a mapping to an additional 
PI module. According to another embodiment of the inven 
tion, the VI module is adapted to include a base class of 
functions that map to test hardware resources necessary for 



US 2008/0033682 A1 

any ATE tester. According to another embodiment of the 
invention, the physical instrument abstraction layer includes 
a PI module that contains the implementation details of a 
hardware resource. 

0040 According to one embodiment of the present inven 
tion, the physical instrument abstraction layer includes a PI 
module that contains the implementation details of each 
hardware resource. According to another embodiment of the 
invention, the physical instrument abstraction layer is 
adapted incorporate the implementation details of a new 
hardware resource. According to another embodiment of the 
invention, the new hardware resource is mapped to by a new 
PI module. According to another embodiment of the inven 
tion, the PI module causes execution of the hardware 
resource’s functionality in response to requests. According 
to another embodiment of the invention, the request comes 
from a VI module. According to another embodiment of the 
invention, the hardware resource's functionality includes a 
synchronization signal. According to another embodiment of 
the invention, the physical instrument module includes a 
function call that will cause a hardware resource to power on 
and/or initialize. According to another embodiment of the 
invention, the function call includes the PowerOnlinitialize 
function. According to another embodiment of the invention, 
the PI abstraction layer includes a base class of PI function 
calls. According to another embodiment of the invention, the 
base class of PI function calls includes the function call 
adapted to cause a hardware resource to power on and/or 
initialize. 

0041 According to one embodiment of the present inven 
tion, the function call adapted to cause a hardware resource 
to power on and/or initialize includes the PowerOnlinitialize 
function. According to another embodiment of the invention, 
the platform abstraction layer includes an “off the shelf 
operating system. According to another embodiment of the 
invention, the “off the shelf operating system is enhanced 
to perform deterministically. According to another embodi 
ment of the invention, the “off the shelf operating system 
is Windows XP. According to another embodiment of the 
invention, the operating system is enhanced to perform 
deterministically using real-time extensions. According to 
another embodiment of the invention, the real-time exten 
sions are provided through the “Tenasys INtime' operating 
system. According to another embodiment of the invention, 
the platform abstraction layer operates deterministically. 

0042. According to another embodiment of the invention, 
the system further comprises an interface abstraction layer 
adapted to manage the communication between the abstrac 
tion layers. According to another embodiment of the inven 
tion, the interface abstraction layer is further adapted to 
insure standardized communication between the abstraction 
layers. According to another embodiment of the invention, 
the interface abstraction layer includes a interface between 
the platform abstraction layer and the VI abstraction layer. 
According to another embodiment of the invention, the 
interface abstraction layer includes a interface between the 
platform abstraction layer and the system abstraction layer. 

0043. According to one embodiment of the present inven 
tion, the interface abstraction layer includes a interface 
between the platform abstraction layer and the physical 
instrument abstraction layer. According to another embodi 
ment of the invention, the interface abstraction layer 

Feb. 7, 2008 

includes a interface between a VI module and a PI module. 
According to another embodiment of the invention, the 
interface abstraction layer includes an interface between a 
SystemPI module and a VI module. According to another 
embodiment of the invention, the interface abstraction layer 
includes an interface between a SystemPI module and a PI 
module. According to another embodiment of the invention, 
the interface abstraction layer includes a interface between 
the platform abstraction layer and the VI abstraction layer. 
According to another embodiment of the invention, the 
system further comprises a module generation engine 
adapted to guide a user through the creation of one of a PI 
module and a VI module so that the automated test system 
is capable incorporating new test hardware resources. 
According to another embodiment of the invention, the 
system further comprise an interface generation engine 
adapted to guide a user through the creation of an interface, 
wherein the interface will manage communication between 
modules by standardizing the format of communication 
without consideration of the hardware, software or platform 
being employed on the automated test system. 

0044 According to one embodiment of the present inven 
tion, the system further comprises a rule checking engine 
adapted to verify the test functionality of a generated module 
and its generated interface. According to another embodi 
ment of the invention, the system further comprises an 
installation module adapted to permit a user to install the 
generated module so that the test program could direct 
requests to the generated module and have test functions 
performed. According to another embodiment of the inven 
tion, the system further comprises an installation module 
adapted to permit a user to install the generated interface so 
that the test program may direct requests to the test hardware 
resources mapped to by the generated module and have test 
functions performed. According to one aspect of the present 
invention, a system for performing a testing process is 
provided. The system comprises a test program that, when 
executed, performs a procedure on one or more test instru 
ments, the one or more test instruments having respective 
one or more driver programs, and a virtual instrument entity 
adapted to execute the procedure on the one or more test 
instruments, wherein the virtual instrument entity accesses 
the one or more test instruments through the respective one 
or more driver programs. According to another embodiment 
of the invention, the virtual instrument entity includes one or 
more functions. According to another embodiment of the 
invention, the test program is adapted to access the one or 
more test instruments by accessing the one or more func 
tions of the virtual instrument. According to another 
embodiment of the invention, the test program is pro 
grammed to access the one or more instruments only 
through the virtual instrument. According to another 
embodiment of the invention, the test program is pro 
grammed to access a system physical interface to gain 
access to tester resources. According to another embodiment 
of the invention, the virtual instrument entity isolates the test 
program from programming interfaces specific to the one or 
more test hardware. According to another embodiment of 
the invention, the virtual instrument includes a virtual instru 
ment programming interface. According to another embodi 
ment of the invention, a change in the one or more test 
instruments does not produce a corresponding change in the 
virtual instrument programming interface. 



US 2008/0033682 A1 

0045 According to one embodiment of the present inven 
tion, a change in the virtual instrument entity does not 
produce a corresponding change in the one or more func 
tions. According to another embodiment of the invention, a 
change in a physical tester resource does not produce a 
corresponding change in the one or more functions. Accord 
ing to another embodiment of the invention, a change in a 
testing development platform does not require a change in 
the test platform. According to another embodiment of the 
invention, the one or more functions are loaded in a memory 
structure of a computer system. According to another 
embodiment of the invention, the change in the virtual 
instrument entity does not produce a corresponding change 
in the memory structure of the computer system. According 
to another embodiment of the invention, the one or more 
functions are located in a first location in the memory 
structure of the computer system. According to another 
embodiment of the invention, the change in the virtual 
instrument entity includes adding one or more additional 
functions. According to another embodiment of the inven 
tion, the change in the virtual instrument entity includes 
modifying at least one of the one or more functions. Accord 
ing to another embodiment of the invention, the one or more 
additional functions are added in a second location follow 
ing the first location in the memory structure of the computer 
system. According to another embodiment of the invention, 
the addition of the one or more additional functions does not 
change the location of the one or more functions in the first 
location in the memory structure of the computer system. 
According to another embodiment of the invention, the 
memory structure of the computer system further comprises 
a vitable. According to another embodiment of the invention, 
the addition of the one or more additional functions does not 
change a location of the one or more functions in the Vtable. 
According to another embodiment of the invention, the 
change in the virtual instrument entity includes adding at 
least one modified function. 

0046 According to one embodiment of the present inven 
tion, the at least one modified function is modified from the 
at least one of the one or more functions. According to 
another embodiment of the invention, the at least one 
modified function is added in a second location following 
the first location in the memory structure of the computer 
system. According to another embodiment of the invention, 
the addition of the at least one modified function does not 
change the location of the one or more functions in the first 
location in the memory structure of the computer system. 
According to another embodiment of the invention, the 
memory structure of the computer system further comprises 
a vitable. According to another embodiment of the invention, 
the addition of the at least one modified function does not 
change a location of the one or more functions in the Vtable. 
0047 According to another embodiment of the invention, 
the one or more functions is included in a base programming 
class of functions, and the base programming class is 
inherited from an extended class of functions including the 
one or more additional functions. According to another 
embodiment of the invention, the one or more functions is 
included in a base programming class of functions, and the 
base programming class is inherited from an extended class 
of functions including the at least one modified function. 
According to another embodiment of the invention, the 
computer system includes a general-purpose computer sys 
tem. According to another embodiment of the invention, the 

Feb. 7, 2008 

one or more test instruments are coupled to one or more 
devices under test. According to another embodiment of the 
invention, at least one of the one or more test instruments is 
programmed by the test program to apply a test signal to at 
least one of the one or more devices under test. 

0048. According to one aspect of the present invention a 
system for performing a testing process is provided. The 
system comprises one or more test instruments, each having 
respective one or more driver programs and wherein at least 
one of the driver programs includes one or more functions, 
a test program that, when executed, performs a procedure on 
the one or more test instruments, the test program accessing 
the one or more test instruments through the one or more 
driver programs, and a memory structure, wherein the one or 
more functions of the at least one of the driver programs are 
contained within a fixed location with the memory structure. 
According to one embodiment of the present invention, the 
memory structure is included in a memory of a computer 
system, and wherein the one or more functions are loaded in 
the memory of the computer system. According to another 
embodiment of the invention, a change in the at least one of 
the driver programs does not produce a corresponding 
change in the memory structure. According to another 
embodiment of the invention, the one or more functions are 
located in a first location in the memory structure. According 
to another embodiment of the invention, the change in the at 
least one of the driver programs includes adding one or more 
additional functions. According to another embodiment of 
the invention, the change in the at least one of the driver 
programs includes modifying at least one of the one or more 
functions. 

0049 According to one embodiment of the present inven 
tion, the one or more additional functions are added in a 
second location following the first location in the memory 
structure. According to another embodiment of the inven 
tion, the addition of the one or more additional functions 
does not change the location of the one or more functions in 
the first location in the memory structure. According to 
another embodiment of the invention, the memory structure 
further comprises a vitable. According to another embodi 
ment of the invention, the addition of the one or more 
additional functions does not change a location of the one or 
more functions in the Vtable. According to another embodi 
ment of the invention, the change in the virtual instrument 
entity includes adding at least one modified function. 
According to another embodiment of the invention, a change 
in a platform entity includes adding at least one modified 
function. According to another embodiment of the invention, 
a change in a physical instrument driver includes adding at 
least one modified function. According to another embodi 
ment of the invention, the at least one modified function is 
modified from the at least one of the one or more functions. 

0050. According to one embodiment of the present inven 
tion, the at least one modified function is added in a second 
location following the first location in the memory structure. 
According to another embodiment of the invention, the 
addition of the at least one modified function does not 
change the location of the one or more functions in the first 
location in the memory structure. According to another 
embodiment of the invention, the memory structure further 
comprises a vitable. According to another embodiment of the 
invention, the addition of the at least one modified function 
does not change a location of the one or more functions in 



US 2008/0033682 A1 

the vitable. According to another embodiment of the inven 
tion, the one or more functions is included in a base 
programming class of functions, and the base programming 
class is inherited from an extended class of functions includ 
ing the one or more additional functions. According to 
another embodiment of the invention, the one or more 
functions is included in a base programming class of func 
tions, and the base programming class is inherited from an 
extended class of functions including the at least one modi 
fied function. According to another embodiment of the 
invention, the computer system includes a general-purpose 
computer system. According to another embodiment of the 
invention, the one or more test instruments are coupled to 
one or more devices under test. According to another 
embodiment of the invention, at least one of the one or more 
test instruments is programmed by the test program to apply 
a test signal to at least one of the one or more devices under 
teSt. 

0051. According to one embodiment of the present inven 
tion, the system is part of an automated test system. Accord 
ing to another embodiment of the invention, the system 
further comprises a virtual instrument entity adapted to 
execute the procedure on the one or more test instruments, 
wherein the virtual instrument entity accesses the one or 
more test instruments through the respective one or more 
driver programs. According to another embodiment of the 
invention, the virtual instrument entity includes one or more 
functions. According to another embodiment of the inven 
tion, the test program is adapted to access the one or more 
test instruments by accessing the one or more functions of 
the virtual instrument. According to another embodiment of 
the invention, the test program is programmed to access the 
one or more instruments only through the virtual instrument. 
According to another embodiment of the invention, the 
virtual instrument entity isolates the test program from 
programming interfaces specific to the one or more test 
hardware. According to another embodiment of the inven 
tion, the virtual instrument includes a virtual instrument 
programming interface. According to another embodiment 
of the invention, a change in the one or more test instruments 
does not produce a corresponding change in the virtual 
instrument programming interface. According to another 
embodiment of the invention, a change in the virtual instru 
ment entity does not produce a corresponding change in the 
one or more functions. According to another embodiment of 
the invention, the one or more functions are loaded in a 
memory structure of a computer system. 
0.052 According to one embodiment of the present inven 
tion, the change in the virtual instrument entity does not 
produce a corresponding change in the memory structure of 
the computer system. According to another embodiment of 
the invention, the one or more functions are located in a first 
location in the memory structure of the computer system. 
According to another embodiment of the invention, the 
change in the virtual instrument entity includes adding one 
or more additional functions. According to another embodi 
ment of the invention, the change in the virtual instrument 
entity includes modifying at least one of the one or more 
functions. According to another embodiment of the inven 
tion, the one or more additional functions are added in a 
second location following the first location in the memory 
structure of the computer system. According to another 
embodiment of the invention, the addition of the one or more 
additional functions does not change the location of the one 

Feb. 7, 2008 

or more functions in the first location in the memory 
structure of the computer system. According to another 
embodiment of the invention, the memory structure of the 
computer system further comprises a vitable. According to 
another embodiment of the invention, the addition of the one 
or more additional functions does not change a location of 
the one or more functions in the Vtable. According to another 
embodiment of the invention, the change in the virtual 
instrument entity includes adding at least one modified 
function. According to another embodiment of the invention, 
the at least one modified function is modified from the at 
least one of the one or more functions. According to another 
embodiment of the invention, the at least one modified 
function is added in a second location following the first 
location in the memory structure of the computer system. 
0053 According to one embodiment of the present inven 
tion, the addition of the at least one modified function does 
not change the location of the one or more functions in the 
first location in the memory structure of the computer 
system. According to another embodiment of the invention, 
the memory structure of the computer system further com 
prises a vitable. According to another embodiment of the 
invention, the addition of the at least one modified function 
does not change a location of the one or more functions in 
the vitable. According to another embodiment of the inven 
tion, the change in the virtual instrument entity includes 
adding one or more additional functions. According to 
another embodiment of the invention, the one or more 
functions is included in a base programming class of func 
tions, and the base programming class is inherited from an 
extended class of functions including the one or more 
additional functions. According to another embodiment of 
the invention, the one or more functions is included in a base 
programming class of functions, and the base programming 
class is inherited from an extended class of functions includ 
ing the at least one modified function. According to another 
embodiment of the invention, the computer system includes 
a general-purpose computer system. 
0054 According to one aspect of the present invention, a 
system for performing a testing process is provided. The 
system comprises a test program that, when executed, per 
forms a procedure on a plurality of test instruments, the one 
or more test instruments having respective one or more 
driver programs, and a virtual multisite instrument entity 
adapted to execute the procedure on the plurality of test 
instruments, wherein the virtual instrument entity accesses 
the plurality of test instruments through the respective one or 
more driver programs, wherein the virtual multisite instru 
ment entity is adapted to execute the procedure on the 
plurality of test instruments transparently to the test pro 
gram. According to one embodiment of the present inven 
tion, the virtual multisite instrument includes functionality 
that controls a plurality of instrument sites. According to 
another embodiment of the invention, the virtual multisite 
instrument entity includes one or more functions. According 
to another embodiment of the invention, the test program is 
adapted to access the plurality of instruments by accessing 
the one or more functions of the virtual instrument. Accord 
ing to another embodiment of the invention, the test program 
is programmed to access the plurality of instruments only 
through the virtual instrument. According to another 
embodiment of the invention, the virtual multisite instru 
ment isolates the test program from programming interfaces 
specific to the plurality of instruments. According to another 



US 2008/0033682 A1 

embodiment of the invention, the virtual multisite instru 
ment includes a virtual multisite instrument programming 
interface. 

0.055 According to one embodiment of the present inven 
tion, a change in at least one of the plurality of test 
instruments does not produce a corresponding change in the 
virtual multisite instrument programming interface. Accord 
ing to another embodiment of the invention, a change in the 
virtual multisite instrument entity does not produce a cor 
responding change in the one or more functions. According 
to another embodiment of the invention, the one or more 
functions are loaded in a memory structure of a computer 
system. According to another embodiment of the invention, 
the change in the virtual multisite instrument entity does not 
produce a corresponding change in the memory structure of 
the computer system. According to another embodiment of 
the invention, the virtual multisite instrument entity is 
adapted to execute the procedure Substantially in parallel on 
the plurality of test instruments. 
0056. According to one aspect of the present invention, a 
system for performing a testing process is provided. The 
system comprises a test system, and at least one client 
computer coupled to the test system by a communication 
network, wherein a user operating the client computer is 
capable of executing a plurality of testing functions on the 
test system. According to one embodiment of the present 
invention, the system further comprises a test program that, 
when executed, performs a procedure on one or more test 
instruments, the one or more test instruments having respec 
tive one or more driver programs. According to another 
embodiment of the invention, the system further comprises 
a process that receives one or more requests from client 
computers through the communication network. According 
to another embodiment of the invention, the at least one 
client computer includes a user interface component for 
accessing the test system. According to another embodiment 
of the invention, the user interface component is operated 
using a browser program executing on the at least one client 
computer. According to another embodiment of the inven 
tion, the test system further comprises a virtual multisite 
instrument entity adapted to execute the procedure on the 
plurality of test instruments, wherein the virtual instrument 
entity accesses the plurality of test instruments through the 
respective one or more driver programs, wherein the virtual 
multisite instrument entity is adapted to execute the proce 
dure on the plurality of test instruments transparently to the 
test program. 

0057 According to one embodiment of the present inven 
tion, the test system further comprises a virtual instrument 
entity adapted to execute the procedure on the one or more 
test instruments, wherein the virtual instrument entity 
accesses the one or more test instruments through the 
respective one or more driver programs. According to 
another embodiment of the invention, the user interface 
component is configured based on the user operating the 
client computer. According to another embodiment of the 
invention, the test system is adapted to store a plurality of 
user interfaces, and is adapted to provide at least one user 
interface to the user based on a user interface configuration 
associated with the user. According to another embodiment 
of the invention, the virtual instrument entity includes one or 
more functions. According to another embodiment of the 
invention, the test program is adapted to access the one or 

Feb. 7, 2008 

more test instruments by accessing the one or more func 
tions of the virtual instrument. According to another 
embodiment of the invention, the test program is pro 
grammed to access the one or more instruments only 
through the virtual instrument. According to another 
embodiment of the invention, the virtual instrument entity 
isolates the test program from programming interfaces spe 
cific to the one or more test hardware. According to another 
embodiment of the invention, the virtual instrument includes 
a virtual instrument programming interface. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0058. The accompanying drawings are not intended to be 
drawn to scale. In the drawings, each identical or nearly 
identical component that is illustrated in various figures is 
represented by a like numeral. For purposes of clarity, not 
every component may be labeled in every drawing. In the 
drawings: 

0059 FIG. 1 shows a block diagram of an example 
conventional test system architecture; 
0060 FIG. 2 shows a block diagram of another example 
conventional test system architecture; 
0061 FIG. 3 shows a block diagram of a test system 
architecture according to one embodiment of the present 
invention; 

0062 FIG. 4 is a block diagram of a test system archi 
tecture according to one embodiment of the present inven 
tion; 

0063 FIG. 5 is a block diagram of a test system archi 
tecture according to another embodiment of the present 
invention; 

0064 FIG. 6A is a block diagram of a test system 
architecture according to another embodiment of the present 
invention; 

0065 FIG. 6B is a block diagram of a test system 
architecture according to another embodiment of the present 
invention; 

0066 FIG. 6C is a block diagram of a test system 
architecture according to another embodiment of the present 
invention; 

0067 FIG. 6D is a block diagram of a test system 
architecture according to another embodiment of the present 
invention; 

0068 FIG. 7 is a block diagram of a test system platform 
according to one embodiment of the present invention; 

0069 FIG. 8 is a block diagram of a memory structure 
which may be used to implement aspects of the present 
invention; 

0070 FIG. 9A is a block diagram of a test system 
architecture according to one embodiment of the present 
invention; 

0071 FIG.9B is a block diagram of a memory structure 
according to one embodiment of the present invention; 

0072 FIG. 9C is a block diagram of a memory structure 
according to another embodiment of the present invention; 



US 2008/0033682 A1 

0.073 FIG. 10 is a block diagram of a memory structure 
according to another embodiment of the present invention; 
0074 FIG. 11 is a block diagram of a test system archi 
tecture according to another embodiment of the present 
invention; 
0075 FIG. 12 is a block diagram of a general-purpose 
computer system with which various aspects of the present 
invention may be practiced; 
0.076 FIG. 13 is a block diagram of a test system test 
system architecture according to another embodiment of the 
present invention; 
0.077 FIG. 14 is a diagram of an example test system 
process according to one embodiment of the present inven 
tion; 
0078 FIG. 15 is a block diagram of an example alarm 
processing function according to one embodiment of the 
present invention; and 
0079 FIG. 16 is a flow diagram of an example power 
initialize function according to one embodiment of the 
present invention. 

DETAILED DESCRIPTION 

0080. This invention is not limited in its application to the 
details of construction and the arrangement of components 
set forth in the following description or illustrated in the 
drawings. The invention is capable of other embodiments 
and of being practiced or of being carried out in various 
ways. Also, the phraseology and terminology used herein is 
for the purpose of description and should not be regarded as 
limiting. The use of “including.”"comprising,” or “having, 
'containing,”“involving, and variations thereof herein, is 
meant to encompass the items listed thereafter and equiva 
lents thereof as well as additional items. 

0081. A system and method is provided for performing 
processing in a testing system such as an ATE System. 
According to one aspect of the present invention, it is 
appreciated that conventional ATE Systems are expensive 
due primarily to the tight coupling between Software and 
hardware. According to one aspect of the present invention, 
an improved method for performing processing in an ATE 
system is provided which reduces the overall cost of soft 
ware. For instance, in an ATE System, it may be useful to 
implement general-purpose computer systems, processors, 
and/or software to reduce the cost of ownership and main 
tenance of Such systems. In one example, various aspects of 
the invention may be embodied using off-the-shelf hardware 
and Software (e.g., a general-purpose computer system, a 
commodity operating system (e.g., Windows NT), etc.). 
Thus, the cost of developing an ATE System may be a 
fraction of the cost of a specially-designed system using 
specifically-developed hardware and software. Thus, any 
method for reducing the overall cost of developing Such a 
system is beneficial. 
0082 FIG. 1 shows a block diagram of an example 
conventional test system architecture. For example, a con 
ventional test system 100 generally includes one or more 
portions of test system software 101 along with any corre 
sponding test system hardware 102. The test system soft 
ware may include, for example, an operating system, which 
is generally a special-purpose operating system, one or more 

Feb. 7, 2008 

test system software drivers (e.g., 104A-104B), and any 
testing applications developed for testing one or more 
devices under test 106A-106B. In the case of an automated 
test system 100, test system software 101 includes software 
drivers (e.g., 104A) that are implementation-specific to the 
instrument (e.g., instrument 105A) to which the driver 
communicates. It follows that the test system software 101 
which communicates with one or more software drivers is 
specifically-programmed to communicate with test system 
hardware 102 through such drivers (e.g., drivers 104A 
104B). 
0083. According to one aspect of the present invention, it 

is appreciated that each time a driver or its corresponding 
instrument is changed, there must be a corresponding 
change to the driver and/or instrument. Because the test 
system software 101 Such as, for instance, an operating 
system, test applications, or other software entities are 
written specifically to communicate through Such drivers, 
that a corresponding change in the driver or hardware forces 
a change in the test system software 101. Because of this 
coupling, the test system software 101 must be recertified to 
work with software drivers and/or instruments which have 
been changed or added to test system 100. Further, a user 
103 that writes test programs to work on test system 100 
must perform additional effort to ensure that their test 
programs work with the changed environment. 

0084 FIG. 2 shows a block diagram of another example 
conventional test system architecture that describes in more 
detail some of the problems in the conventional test pro 
gramming environment. For example, a test system 100 may 
include test system software 101 that comprises one or more 
test applications 201A-201Z. each of which may have 
different versions having varying capabilities to work with 
one or more types of software and hardware. Similarly, there 
may be on a particular test system one or more drivers (e.g., 
driver A 202A and driver B203A) each of which may have 
one or more versions associated with it (e.g., driver A 
versions 202A-202Z and driver B versions 203A-203Z). 
Further complication includes the test system operating 
system which itself may have one or more versions 204A 
204Z and which may be configured to work with any 
number of other Software entities including drivers, appli 
cations, or other entities. 

0085 Similarly, test system hardware 102 may include 
one or more test hardware entities (e.g., test hardware A 
205A, test hardware B206A) that may include one or more 
versions (e.g., test hardware A versions 205A-205Z, test 
hardware B versions 206A-206Z) that may have various 
interfaces and features. According to one aspect of the 
present invention, a modification in any one of these entities 
may cause communication or function to perform differently 
and cause the overall test system 100 to fail. In an ATE 
environment which requires that test programs be performed 
in a deterministic way, Such a non-deterministic operation 
would not be desired. 

0086 According to one aspect of the present invention, a 
virtual instrument is provided that isolates software appli 
cations from the underlying drivers and hardware (e.g., a test 
instrument) such that a change in the driver or instrument 
does not affect the function of higher layer software such as 
an operating system, a testing application or other software 
entity. 



US 2008/0033682 A1 

0087 FIG. 3 shows a block diagram of a test system 
architecture according to one embodiment of the present 
invention that provides isolation between entities of a test 
system. An architecture 300 is provided wherein a software 
application 301, which may include, for example, a test 
system application, an operating system, or any other type of 
software entity which is isolated from details of the physical 
instrument driver 303 and physical instrument 304 by a 
virtual instrument 302. 

0088 Virtual instrument 302 may become, for example, 
an abstraction layer that isolates the Software application 
301 and physical instrument driver 303 layers. Virtual 
instrument 302 may include, for example, code that per 
forms a mapping between an abstract virtual instrument 
interface (not shown) and functions and data existing within 
the physical instrument driver 303. 
0089. According to one embodiment of the present inven 
tion, the interface presented by the virtual instrument is a 
standard instrument interface that is independent of the 
underlying hardware. In one example system, the virtual 
instrument interface is written from the perspective of 
functionality that a user would generally like to perform (for 
instance, generate a wave form for a device under test 
(DUT)). Generally, the user is not concerned with specifics 
of the hardware, and they are only concerned with providing 
predictable stimuli and receiving predictable results. There 
fore, an interface is provided that presents to the user 
hardware-independent functional interfaces that can be 
accessed by users’ test programs in a standard way. Because 
of Such a standardization of a virtual instrument, underlying 
physical instrument drivers and their corresponding instru 
ments may be added or substituted without affecting the 
operation of upper layer software applications 301. 

System Platform Architecture 
0090. Various aspects of the present invention may be 
implemented as a part of an overall system architecture that 
permits developers, equipment manufacturers, test equip 
ment companies and other types of users to program test 
programs used for testing various devices under test (DUTS). 

0091. In one specific architecture 400 as shown in FIG. 4. 
one or more test programs 405A-405Z are developed by one 
or more users to operate on platform software 401. In 
particular, test programs 405A-405Z may be programmed to 
access test hardware through a virtual multisite instrument 
layer 404A-404Z. Such virtual multi-site instruments are 
discussed in more detail below, but in general are similar to 
virtual instruments above in function in that they provide a 
virtual interface to one or more hardware devices. Such 
interfaces, according to one embodiment, may be capable of 
presenting a hardware-independent interface for performing 
test functions in an ATE System. 

0092. In one embodiment, the software interface to a 
physical piece of hardware is implemented to what is 
referred to herein as a “Physical Instrument” (PI) module. 
Each piece of instrumentation hardware is accompanied by 
an associated PI module that implements the basic function 
ality provided by the hardware. According to one embodi 
ment, the user's test program (TP) does not interact directly 
with a PI layer (403 A-403Z) entities (e.g., a PI module). 
Rather, from the user test program's point of view, interac 
tion with the test instrumentation is made through what is 

Feb. 7, 2008 

referred to herein as a “Virtual Multisite Instrument” (VMI) 
discussed further below. In one implementation, VMIs 
implement their functionality by using one or more PIs. 
which in turn, access one or more instruments. 
0093. According to another embodiment of the present 
invention, what is referred to herein as a Virtual Multisite 
Instrument (VMI) is provided that facilitates management of 
multiple testing sites. In a traditional testing environment, it 
is appreciated that a site is managed as a singular entity in 
that if a particular testing site is configured, a test program 
is developed for the particular site, specific to the particular 
testing hardware used. If multiple sites are needed to per 
form additional testing (e.g., to satisfy an increased testing 
capacity), then additional test hardware configurations are 
purchased, and the test program is matriculated to the 
additional sites. 

0094. According to one aspect of the present invention, 
because details of the underlying hardware is abstracted 
from test programs via an abstraction layer (e.g., a virtual 
instrument layer), test programs can be managed indepen 
dent of test hardware, and the abstraction layer may be 
capable of managing the administration of a test program to 
multiple sites via the abstraction layer. In one embodiment, 
the virtual instrument may have capability to map to mul 
tiple instrument sites. In this way, the time needed to 
maintain and administer test programs to multiple sites is 
reduced. 

0.095. In one example, PIs can access test system 
resources through a specially-defined PI referred to hereinas 
the “System PI. According to one embodiment, the System 
PI layer (e.g., layers 402A-402Z) provides an interface that 
allows other PIs to use test system resources such as for 
example, system memory, system triggers, and other 
resources. In another embodiment, the System PI may 
provide a communication interface to other instruments in a 
test system. 

0096 Practically, PIs may be implemented, for example, 
in a general purpose computer system as a software library 
function (e.g., a Dynamic Linked Library (DLL) as well 
known in the Windows NT operating system). Appropriate 
PI modules may be loaded as needed, depending on the 
hardware present in the test system. 
0097. In one implementation, each PI is uniquely iden 

tified by a unique identifier. In one example, the unique 
identifier may be unique across the test system to uniquely 
identify a particular PI implementation. Such identification 
may be useful, for example, for communicating with PIs by 
other entities within the test system. 
0098. According to one embodiment, the system layer 
(e.g., as implemented by a system driver) interfaces that 
allow for VMI and PI to be built upon the system layer. In 
another implementation, the VMI layer provides an abstrac 
tion layer from the hardware, which is encapsulated by the 
PI and System Driver software. In another embodiment, the 
system layer can also expose functions to the test program 
for system specific resources (e.g., a calibration meter). 
0099. In another embodiment, the Test Program exposes 
any VMI functions to the user—as a Virtual Instrument, the 
test program provides these functions in a manner which 
captures what the user wants the test solution to look like. 
The interfaces are guided by rules: add only, existing func 



US 2008/0033682 A1 

tions do not change in execution functionality or perfor 
mance. Also, in one implementation each module performs 
version checking on module being interacted with so that 
adequate performance between modules is ensured. 

0100 Such rules may allow, for example, for complete 
forward-backward compatibility of the modules. That is, 
each module can be versioned independently and all ver 
sions can work interchangeably. This permits, for example, 
test programs designed with a given version of VMIS can use 
any PI and System Driver (of the same type) version 
equal-to or greater-than the versions used to when the test 
program was created and compiled. 

0101 According to another embodiment, architecture 
400 may include platform software 401. In one embodiment, 
the functionality provided by a conventional computer oper 
ating system is abstracted to be part of the platform Software 
layer. According to one embodiment, the platform layer is 
abstracted so that almost any operating system can be used 
with an ATE tester, Such as general-purpose operating sys 
tems as discussed further below. In one embodiment, the 
platform software layer 401 provides the basic functionality 
required by all the various components of the ATE tester to 
operate and communicate. In one embodiment, the Windows 
XP or Windows Vista operating systems may be used as the 
base operating system, which may govern basic functions 
required by the various ATE tester components. However, it 
should be appreciated that other operating systems may be 
used. 

0102 FIG. 5 shows a more detailed example of a test 
system architecture 400 according to one embodiment of the 
present invention. As discussed, an architecture 500 may 
include a platform software entity 501 that performs basic 
functions of the test system platform, and may be Supported 
by a general purpose operating system such as, for example, 
the Windows XP or Windows Vista operating systems. In 
one embodiment of the present invention, a virtual repre 
sentation of a particular test instrument is abstracted so that 
the functions and functionalities of any virtual instrument 
are segregated from the other abstraction layers of the test 
system. By isolating layers with well-defined programming 
interfaces, as discussed above, maintaining interfaces 
between versions of PIs, VMIs, etc., and their function 
locations in memory, test programs developed on the plat 
form continue to function even if elements of the platform 
are modified. 

0103). According to another embodiment of the present 
invention, what is referred to herein as a virtual multisite 
instrument (VMI) is provided that facilitates management of 
multiple testing sites. In a traditional testing environment, it 
is appreciated that a site is managed as a singular entity in 
that if a particular testing site is configured, a test program 
is developed for the particular site, specific to the particular 
testing hardware used. If multiple sites are needed to per 
form additional testing (e.g., to satisfy an increased testing 
capacity), then additional test hardware configurations are 
purchased, and the test program is matriculated to the 
additional sites. According to one aspect of the present 
invention, because details of the underlying hardware is 
abstracted from test programs via an abstraction layer (e.g., 
a virtual instrument layer), test programs can be managed 
independent of test hardware, and the abstraction layer may 
be capable of managing the administration of a test program 

Feb. 7, 2008 

to multiple sites via the abstraction layer. In one embodi 
ment, the virtual instrument may have capability to map to 
multiple instrument sites. In this way, the time needed to 
maintain and administer test programs to multiple sites is 
reduced. 

0104. In architecture 500, one or more virtual multisite 
instruments (504A, 504B) may be defined, and resources 
(e.g., one or more instruments or sites (505A-505C)) may be 
mapped to a virtual multisite instrument (VMI). Similar to 
virtual instruments, virtual multisite instruments communi 
cate with instruments 505A-505C through one or more 
physical instrument driver programs (e.g., PIs 503A-503C). 
Similar to a virtual instrument, a virtual multisite instrument 
is not hardware implementation-specific, but rather, func 
tionality is abstracted, and mapped to functions for particu 
lar hardware. 

0105. According to one embodiment, it should be appre 
ciated that executing a test program on virtual instrument 
504A, for example, the test program may be executed at 
multiple instrument sites (instruments 505A and 505C). A 
modification of the test program would, according to one 
embodiment, cause the test program to be updated at mul 
tiple sites, as a result of the abstraction of multiple sites into 
a single entity. Because of this capability, management of 
test programs on multiple sites is simplified. 
0106 According to one aspect of the present invention, 
the functionality of an ATE tester are abstracted in a series 
of abstraction layers as shown in FIG. 4. According to one 
approach, the test program layer represents an abstraction of 
the functions and functionality employed by the ATE tester 
to interact with a user (typically through test programs). In 
another aspect of the present invention, the physical instru 
ment layer represents an abstraction of the hardware imple 
mentation details necessary to communicate with physical 
hardware instruments on the ATE tester. In another embodi 
ment of the present invention, the functions of an ATE tester 
are broken down into a virtual instrument layer, that repre 
sents an abstraction of the functionality employed to map 
test requests from the test program layer to the physical 
instrument layer; a system layer, that represents an abstrac 
tion of the functionality employed by the physical instru 
ment layer to communicate with the physical hardware it 
represents; and a platform layer, that represents an abstrac 
tion of the function and functionalities employed to provide 
a platform on which the other abstraction layers can operate. 
In another embodiment not shown in FIG. 4, the functions 
of an ATE tester are further abstracted into an interface layer, 
which represents an abstraction of the functionality 
employed to manage and Standardize communication 
between the various abstraction layers. The layers shown in 
FIG. 4 will be discussed in greater detail below. 
0.107. In a typical embodiment, an ATE tester is described 
with reference to abstraction layers that represent the func 
tions of the ATE tester. In one embodiment, the abstraction 
layers form the basis for the system architecture. In one 
example, a test program forms a part of the test program 
layer. In another embodiment, a user interacts through the 
test program layer with the results of performed tests. In 
another example, a user may schedule test requests to be 
performed on specific instruments of the ATE tester, through 
the test program layer. It should be well understood by those 
of skill in the art that multiple test programs can easily be 
incorporated into the test program layer. 



US 2008/0033682 A1 

Platform Abstraction Layer 
0108. In another embodiment, the functionality provided 
by a conventional computer operating system is abstracted 
to be part of the platform layer. In one example, the platform 
layer is abstracted so that almost any operating system can 
be employed for use with an ATE tester. According to one 
aspect of the invention, the platform layer provides the basic 
functionality employed by the various components of the 
ATE tester to operate and communicate. In the example 
shown by FIG. 4, the platform layer forms the base of the 
architecture. In another embodiment, Windows XP is 
employed as the operating system that forms a part of the 
platform layer. In this instance, the operating system man 
ages basic functions employed by the various ATE tester 
components. 

0109. In another embodiment, a library of C++ classes 
and C routines provide operating system services to the 
various components of the ATE tester. According to one 
embodiment, the library of C++ classes and C routines are 
part of the platform layer which allows for the use of almost 
any base operating system as part of the platform layer. In 
another embodiment, Windows XP and INtime operating 
systems provide the base functionality employed by the ATE 
tester, although it should be appreciated that any real time 
operating system or general-purpose operating system with 
real-time extensions may be used. Also, it should be appre 
ciated by one skilled in the art that many programming 
languages and many class libraries can be employed to 
provide system services for the various components of the 
ATE tester, and the platform layer is not restricted to a 
library of C++ classes and C routines to provide operating 
system services. 
0110. In one example, the platform layer has the capa 
bility of providing deterministic function. In one embodi 
ment of the invention, deterministic function is provided by 
employing an "off the shelf operating system enhanced to 
be deterministic. For instance, Windows XP is employed as 
the off the shelf operating system, and is made deterministic 
by employing real-time extensions. In another embodiment, 
the INtime operating system provides the real-time exten 
sions that make operations deterministic, however, it should 
be appreciated that any other real-time extensions may be 
used. 

0111. In a typical embodiment, the platform layer man 
ages the operation of the other abstraction layers of the ATE 
tester. 

Virtual Instrument Abstraction Layer 
0112 In one embodiment of the present invention, the 
functions of a particular test instruments are abstracted into 
a virtual representation so that their functions are segregated 
from the other abstraction layers of the test system. For 
example, the functions of one instrument can be represented 
in the virtual layer allowing other abstraction layers to 
access the instruments functionality through a virtualization. 
According to aspect of the present invention, communica 
tion with the virtualization can be standardized without 
being tied to any particular hardware implementation 
details. In a typical embodiment, the virtual instrument layer 
is further abstracted into virtual instrument modules (“VI 
modules') used to represent a virtualization of a group of 
instruments employed to test a device. According to one 

Feb. 7, 2008 

aspect of the present invention, a virtual instrument module 
can represent any number of physical pieces of hardware. In 
one embodiment, the VI module represents the functionality 
made available by the physical hardware of the ATE tester. 
In another embodiment, a user interfaces with a VI module 
through test programs, with the VI module managing the 
functions and function calls that cause any number of 
physical pieces of hardware to perform their respective test 
functions. 

0113. According to one aspect of the invention, the 
virtual instrument layer does not contain any hardware 
specific implementation details. Rather, in one example, the 
virtual instrument layer contains the functionality employed 
to call another abstraction layer that does contain specific 
hardware implementation details. The separation described 
in the example allows for the easy incorporation of addi 
tional instruments into a VI module. In another embodiment, 
when new hardware is added to a tester, the addition of new 
function calls that map to the abstraction layer that contains 
the specific hardware implementation details enables the 
tester to employ the new functionality. In another aspect of 
the present invention, new functionality may be added by 
creating a new virtual instrument module. It should be 
realized that by creating new virtual instrument modules, 
adding new functionality has no impact on the existing 
functions of the ATE tester. In one embodiment, virtual 
modules can represent various versions of Software, allow 
ing Software versioning to take place on an ATE tester while 
assuring that older versions and functionality are not 
impacted. In one embodiment, a virtual instrument module 
is implemented as a dynamic link library. In yet another 
embodiment, the virtual instrument module may be imple 
mented as a runtime system library (RSL). 
Physical Instrument Abstraction Layer 
0114. In one embodiment, the physical instrument layer 
represents the abstraction of hardware specific implementa 
tion details of an ATE test system. In another embodiment, 
the physical instrument layer is further abstracted into 
physical instrument modules (“PI modules'). In one 
example, every piece of actual hardware is accompanied by 
a PI module that implements the basic functionality of that 
piece of hardware. The functionality made available by a 
particular piece of hardware is often referred to as a 
resource. In one embodiment consistent with the principles 
of the present invention, a PI module is implemented as a 
dynamic link library. Alternatively, the PI module may be 
implemented as an RSL. 
0115 According to one aspect of the present invention, 
the virtual instrument layer calls the physical instrument 
layer to access the specific hardware implementation details 
of the hardware installed in the ATE tester. In one embodi 
ment, this is accomplished by a VI module calling a PI 
module to access the hardware specific details that the PI 
module represents. In one example, a PI module represents 
the specific hardware implementation details of a physical 
piece of hardware capable of providing clock synchroniza 
tion signals to the ATE tester. In one embodiment, a VI 
module manages the function calls to the PI module that 
cause the physical piece of hardware to generate a clock 
synchronization signal. 

0.116) The interaction between the various abstraction 
layers can be seen in greater detail with reference to the 



US 2008/0033682 A1 

exemplary FIGS. 6A and 6B. As these illustrations show, the 
test program layer (User application/Test Application) 
directs requests to VI modules of the virtual instrument layer 
(Virtual Instrument/VI), which in turn directs requests to PI 
modules of the physical instrument layer (Physical Instru 
ment/PI). 
0117 FIG. 6A shows another example architecture show 
ing an example test system architecture according to one 
embodiment of the present invention. A user application 601 
accesses one or more Virtual Instruments (e.g., virtual 
instruments 602A-602N). As discussed, a virtual instrument 
may include any number of physical instruments (e.g., 
physical instruments 603A-603N). This permits, for 
example, the test system to implement functions that would 
otherwise be dispersed in the individual physical instru 
mentS. 

0118. In one implementation, the VMI has no specific 
knowledge of any actual hardware implementation. This 
knowledge resides with the “physical instrument module' 
(PI, e.g., physical instruments 603A-603N). According to 
one example implementation, each piece of actual hardware 
is accompanied by a PI module that implements all the basic 
functionality of that hardware. The VMI uses the function 
ality provided by one or more PIs to implement the func 
tionality that will be presented to the user. In other embodi 
ments, the VMI may have some knowledge, depending on 
the requirements of the test system developers and/or appli 
cation. 

0119) According to one embodiment, PI modules them 
selves do not communicate directly to the hardware but 
rather through a "System PI' entity (e.g., system PI 604). 
System PI 604 implements functionality that allows the PI to 
communicate with the instruments that reside on the test 
head of the test system hardware. In another embodiment, a 
VMI may communicate directly to hardware through the 
System PI. In this embodiment, the VMI may also inform 
the PI of the communication so that the PI matches the 
hardware state as necessary. 
0120) It should be appreciated that FIGS. 6A-6B are 
presented by way of illustration and not by limitation. FIG. 
6A, also incorporates one example interaction between the 
physical instrument layer and the system layer to be dis 
cussed further below. 

0121. In one embodiment, as can be seen from FIGS. 
6A-6B, a VI module can incorporate a number of PI 
modules, and even share PI modules. According to one 
aspect of the present invention, by modularizing hardware 
resources into PI modules the present invention provides 
flexibility and adaptability for any tester based on this 
model. According to another aspect of the invention, new PI 
modules can be easily programmed in response to additional 
testing needs, and old PI modules can be leveraged in the 
design and fabrication of new testers. In one embodiment, a 
base class of function calls are provided that represent 
functionality typically employed for the testing of any 
device. In one embodiment, these base function calls can be 
incorporated into a PI Module and made available for use by 
test programs through a VI module. 
System Abstraction Layer 
0122) According to one aspect of the present invention, 
the physical instrument layer does not communicate directly 

Feb. 7, 2008 

to physical pieces of hardware they describe. In one embodi 
ment, a PI module passes requests, function calls, and/or 
data to the system layer. According to one aspect of the 
invention, the system layer represents an abstraction of the 
functions and functionality that allows the PI layer to 
communicate with the physical pieces of hardware (i.e. 
instruments) that are installed in the ATE tester. 
0123. As can be seen from the example in FIG. 6C, a PI 
module of the physical instrument layer (shown as PI) 
communicates to the system layer (show as System PI) 
which maps calls to the physical hardware of the ATE tester. 
In one embodiment, the system layer includes a SystemPI 
module. According to another aspect of the present inven 
tion, the system layer represents an abstraction of the 
functionality employed to request and communicate infor 
mation from other abstraction layers for reporting to the 
platform layer. 
Interfaces 

0.124. According to another aspect of the present inven 
tion, the functionality that manages passing of function calls, 
requests, and data transfers between the abstraction layers is 
also abstracted in an interface layer. In one embodiment of 
the invention, the interface layer includes the abstraction of 
the functionality used to manage communication in between 
and amongst the various other abstraction layers. In one 
embodiment, the interface layer manages the communica 
tion of function calls, the transfer of data, and any other 
communications between modules contained within each 
abstraction layer. According to one aspect of the present 
invention, the interface layer insures that communications 
between the various modules of the ATE tester occur in an 
expected format. It should be appreciated that by ensuring 
communications occur in an expected format, various mod 
ules will communicate in the same way regardless of the 
hardware implemented on any particular tester. 
Virtual Machines 

0.125. According to one aspect of the present invention, it 
is appreciated that there is a benefit from implementing 
various components of the tester system on one or more 
virtual machines. Such virtual machines, as known in the art, 
may be implemented as part of a virtual machine Supported 
by one or more computer systems. Many different types of 
platforms Support virtualization and virtual machines, and 
the invention is not limited to any particular one. One Such 
type of system architecture that implements virtualization is 
shown by way of example in FIG. 6C. 
0.126. According to one aspect of the present invention, it 

is appreciated that by separating functionality of the user 
layer (e.g., the tester interface) from the physical layer (e.g., 
the VMI and PI implementations), that more generalized 
hardware and Software may be used for user layer compo 
nents, or any other type of component that does not require 
specialized hardware and Software. Because the system may 
be architected in this way, the cost for producing Such a 
tester can be significantly reduced, as off-the-shelf hardware 
(e.g., PCs) and Software (e.g., OSS) may be used instead of 
specialized components. 

0.127) Further, it is appreciated that by separating user 
layer components (including, for example, test programs), 
that the tester platform OS and associated tester components 
may be modified without affecting user layer components. 



US 2008/0033682 A1 

That is, if the tester interfaces presented to the user layer are 
maintained, the test program and other user layer compo 
nents function consistently across changes. In this way, the 
user layer components such as test programs may be ported 
more easily among test systems having different system 
components such as Software and hardware. Further, test 
programs that are developed on Such systems are more 
useful over time, as they need not be reprogrammed and 
tested when the underlying hardware and software related to 
the test system needs to be changed. To this end, more than 
one virtual machine may be provided, at least one for 
user-level components and another that executes at least one 
component of the tester platform. As discussed previously, 
in a normal ATE implementation, the test system, test 
program and the associated components are developed and 
maintained as a single entity, requiring retest and certifica 
tion upon the occurrence of the slightest changes. As a result, 
it is appreciated that normal ATE implementations are less 
flexible, require greater effort to maintain, and are less useful 
as a result. 

Versioning 

0128 FIG. 7 shows a block diagram of a test system 
platform according to one embodiment of the present inven 
tion illustrating changes in physical instrument versions. For 
example, a user may develop a test application 701 that is 
tailored to work with an example physical instrument ver 
sion 1.0 (item 702A). At some time later, a physical instru 
ment version may be made available that is different than an 
earlier version. For instance, physical instruments may have 
an additional capability that has been added in a later version 
of the hardware. Similarly, a physical instrument driver may 
be provided that includes a different interface to the new 
version of the physical instrument. 
0129. In one example, a physical instrument version 1.0 
(702A) may, by default, produce an output voltage to a 
device under test of 5 volts. In a physical instrument version 
Z (item 702Z), the default value of the output voltage may 
be different (e.g., 64 volts). Because of this change, the test 
application 701 may not work in the manner indicated. Thus, 
according to one embodiment of the invention, a virtual 
instrument entity is provided that is independent of physical 
instrument versions, however, but is designed to Support 
additional functionality as later hardware and driver soft 
ware becomes available. 

0130. Similarly, if a new version of a software platform 
becomes available, it may be useful to use Such a new 
version with one or more versions of a particular physical 
instrument. Indeed, in Some testing configurations, there 
may be a need to mix multiple versions of physical instru 
ments and test applications that are not configured to work 
together. According to one embodiment of the invention, a 
virtual instrument is provided that decouples test hardware 
from its associated software applications 301. 
Maintaining Function References 
0131 According to one aspect of the present invention, a 
method for providing software functions is provided that 
permits compatibility across Software and hardware ver 
sions. In one embodiment, functions of a virtual instrument 
are provided which remain unchanged between versions. 
More particularly, as functions are added to the virtual 
instrument, old functions are maintained, and functionality 

Feb. 7, 2008 

is added to a predetermined memory structure. Functionality 
to Software modules are added without changing references 
to preexisting functions in memory. Because function ref 
erences are unchanged, additional functionality, when added 
to the memory structure does not break existing connections. 
0.132. According to one embodiment of the present inven 
tion, a virtual function table (e.g., in the C++ programming 
language, the well-known virtual method table “vtable')) is 
maintained for a virtual instrument. In one embodiment, in 
one version of the virtual instrument vitable, a base set of 
functionalities included having a defined location in the 
vitable. In a subsequent version of the virtual instrument 
table, additional functions are added to the vitable, while 
maintaining the same location of the vitable for the base set 
of functionality. In this way, functions and their connections 
to other software entities are maintained without breaking 
existing programs when additional functions are added. For 
instance, a base vitable may be followed by a derived vitable 
including the additional functionality. Although a vitable 
may be used as discussed below to maintain function 
references, it should be appreciated that other methods may 
be used to ensure function references are not broken (e.g., a 
function arbitration or tracking function). 
0.133 FIG. 8 shows a block diagram of a vitable memory 
structure which may be used to implement various aspects of 
the present invention. As shown, Vtable 800 includes one or 
more methods 801A-801E which correspond to functions 
associated with particular instrument driver. In a conven 
tional scenario when a particular function (e.g., method E 
(801E)) is modified, the behavior of the method changes, 
and thus any hardware or Software that communicates using 
the function does not perform in the manner originally 
planned for in the earlier version. For example, if method E 
is called incorrectly, includes different default values, or 
returns data in a different format, the calling function will 
perform differently than expected. According to one aspect 
of the present invention, a memory structure is provided that 
permits software features to be added without breaking 
existing connections. 
Example Versioning Architecture 

0134 FIG. 9A shows one architecture 900 according to 
one embodiment of the present invention. In particular, 
application 901 may use one or more virtual instruments, 
each of which may have varying feature sets that facilitates 
Software compatibility among software modules of a testing 
system. For instance, a virtual instrument V.1.0 (Item 902A) 
may be provided that is mapped to one or more physical 
instrument (PI) drivers. That is, a particular virtual instru 
ment may be permitted to access one or more versions of a 
physical instrument driver. 
0.135 Conventionally, when an instrument is added to a 
system, the driver associated with that new instrument 
replaces previous versions of the instrument driver. Accord 
ing to one aspect of the present invention, a method is 
provided wherein different version instruments may be used 
within the same test system, and are accessed via a single 
virtual instrument. 

0.136. In one example, virtual instrument V.1.0 (item 
902A) may be configured to communicate to instrument 
V.1.0 (item 904A) via physical instrument driver V.1.0 (item 
903A) having a function set of elements a, b, c, d, e. 



US 2008/0033682 A1 

Further, virtual instrument V.1.0 (item 902A) may be capable 
of communicating to instrument Vy (item 904Z) having 
functions set a, b, c, d, e', f, g) using physical instrument 
driver Vy (item 903Z). Therefore, an application 901 may be 
capable, depending on the application, may use any version 
of an instrument and its associated driver without conflict. 

0137 FIG. 9B shows a block diagram of a memory 
structure according to one embodiment of the present inven 
tion. As discussed according to one aspect of the present 
invention, it may be beneficial to introduce additional hard 
ware that may include one or more modified functions over 
previous functions or take advantage of additional function 
ality in nearly-introduced hardware and Software. As shown 
in FIG. 9B, a vitable 901 associated with a physical instru 
ment version V.1.0 includes one or more functions a, b, c, 
d, e. At a later point, a later version of a physical instrument 
is made available having a corresponding vitable 912 includ 
ing functions set a, b, c, d, e', f, g). 
0138 According to one aspect of the invention, a further 
version of the vitable associated with a physical instrument 
includes maintaining the same function references from 
previous versions to ensure that Software that calls a par 
ticular function can locate that same function in the same 
location. So, for example, the function A (item 913A) is 
mapped to function A of the next version of the vitable, and 
is located in the same memory location. Further, in another 
example wherein a particular function is modified in the 
later version, the existing function (e.g., function E (item 
914A)) is maintained in the same memory location in the 
later-version of the vitable. In this way, a newer version of a 
physical instrument may be added to the system without 
effecting existing software and applications that access the 
later version. 

0139 According to one aspect of the present invention, 
modified and/or added functionality is added to the follow 
ing portions of the vitable so that the connections between 
old applications and newer versions of the physical instru 
ment are maintained. According to one embodiment, these 
modified or added functions are added after previous ver 
sions functionality. For example, as shown in FIG. 9B, a 
modified function 915 e' is added after the original function 
914B e. Further, as shown in FIG. 9B, additional functions 
fand g are added functions 916 which can be added after the 
base functions a through e. In this manner, functionality, 
whether changed or added, does not disturb existing refer 
ences within the Vtable. Because of this, existing connec 
tions between old applications and new versions of the 
physical instrument are not broken. 
0140. Further, it should be appreciated that a later version 
of a PI vitable may be used to access the same or previous 
versions of a particular instrument hardware by adhering to 
the conventions discussed above. 

0141 FIG. 10 shows a block diagram of a memory 
structure according to another embodiment of the present 
invention showing how backwards compatibility is main 
tained using the program and conventions as described 
above. In particular, a version 2.0 of the PI vitable (item 
1001) includes a number of methods including the set a, b, 
c, d, e, e', f, g). Because the later version of the vitable 
includes all of the functionality from previous versions of 
the PI, and their locations within the PI vitable are main 
tained, the later-version PI is capable of communicating with 

Feb. 7, 2008 

current and earlier versions of the instrument hardware. For 
instance, the methoda, which is used by instrument version 
1.0 (item 1002) and instrument version 2.0 (item 1003) are 
the same, and backward compatibility between the version 
2.0 PI (item 1001) and previous versions of the instrument 
are maintained. 

0142. In the case where a new method is added in a later 
version of an instrument (e.g., instrument version 2.0 (item 
1003)), according to one embodiment, that additional func 
tionality is added to the end of the new version of the vitable. 
Therefore, in the example as shown in FIG. 10, previously 
defined methode maps to instrument version 1.0 (item 1002) 
without breaking the communication between the new ver 
sion of the PI vitable, while still supporting a modified 
method e' used for communicating with version 2.0 of the 
instrument (item 1003). As long as the VMI knows what to 
call (e.g., what version of PI to call (e.g., version number 
identified in abstract class)), then the connection between 
the elements will not break. 

0.143 Such backward compatibility can be performed, for 
example, by providing an abstract class which is inherited by 
later classes that include the modified or added functionality. 
In this way, Vtables are constructed such that the base data 
structure and associated methods include the same Vitable 
function locations. 

0144. Therefore, in summary, for each successive revi 
sion of the software a standard vitable structure may be used 
which maintains the structure of a previous versions vitable. 
Because the structure is maintained, the applications or other 
programs that use the standard Vtable structure can access 
newer and older methods as well as newer or older versions 
of hardware. However, it should be appreciated that other 
methods may be used for maintaining function references, 
and that a vitable need not be used. 

0145 Similarly, if a virtual instrument is revised to take 
advantage of newer functions, the same programming rules 
may be used to ensure that older versions of software (and 
therefore, hardware) can communicate with the virtual 
instrument version. For example, if a virtual instrument 
version X (item 902Z) is introduced, the virtual instrument 
version X will maintain the same vitable structure as previ 
ous versions, and in addition, may include additional func 
tionality within the virtual instrument. Thus, certain func 
tions provided in various versions of a virtual instrument 
may have forward and backward compatibility between 
different versions of physical interface drivers. 
0146). As shown with particularity in FIG. 9C, a VI 
version 1.0 vitable (item 921) may be capable of accessing 
certain functions provided by various versions of a physical 
interface driver. A particular function created in the VI may 
call one or more functions in the PI that perform the 
higher-layer function of the VI. As shown, functions A-E 
(items 925A-925E) use functions a-e in either PI version 1.0 
(item 922) or PI version 2.0 (item 924). In this way, a 
physical instrument driver may be replaced that is compat 
ible with the virtual instrument methods, as function refer 
ences are maintained within the Vtable structure. Although a 
one-to-one mapping is shown between functions of the VI 
and PI, it should be appreciated that there may be other 
calling patterns between functions, and the shown mapping 
is provided to illustrate various aspects of the present 
invention and is provided for example only. 



US 2008/0033682 A1 

0147. It can be shown that a later version of a vitable 
associated with a virtual instrument is compatible with both 
earlier versions of a physical instrument driver as well as 
later versions of a physical instrument driver. For instance, 
as shown in FIG. 9C, a modified method E (item 926A) is 
added to the virtual instrument vitable which corresponds to 
e' function of version 2.0 of the physical instrument driver 
(item 924). For example, a new version of a VI may be 
provided that takes advantage of additional functionality in 
a later version of a physical instrument driver. 
0148. Further, in much the same way as changes made to 
a physical instrument driver, modified and/or additional 
functionality may be added to the end of the vitable structure 
Such that original functionality is not modified. Thus, an 
older version of a physical instrument driver (e.g., PI version 
1.0) is capable of working with a later version of the VI (e.g., 
version 2.0). That is, a later version of the VI may commu 
nicate with an earlier version of the PI. In this way, both 
forward and backward compatibility is maintained between 
software entities within the ATE system. 
Programming Example 
0149 Instrument independence is an important feature of 
a test system architecture, according to one embodiment of 
the present invention. This feature allows independent 
improvements or modifications of each instrument without 
the need for coordinated simultaneous upgrades. In order to 
maintain this independence, the test system provides a 
system driver function via the system PI to manage the 
synchronization and triggering Subsystem. In this scheme, 
the system PI acts as a mediator between instruments. The 
system PI manages the use and availability of signal lines, 
sets trigger connections and modes, and keeps delay infor 
mation and does other housekeeping functions. 
0150 Starting with the user program or application (e.g., 
901), the user program calls functions of the virtual multisite 
instruments (VMIs) which in turn call functions of the 
instrument physical drivers (or PIs). When PIs are created, 
they are provided access to the system PI for system level 
functions, calibration and the use of system resources (e.g., 
memory, trigger Subsystem, etc.). The following discusses a 
practical example of a user program that accesses hardware 
through the test architecture shown in FIG. 10. 
0151 Consider a digital instrument resource mapped to a 
VMI called “Control’ that generates a pulse when a pattern 
is run. The digital instrument is connected to a V/I resource 
which is mapped to a VMI called Vcc that uses the 
instrument as a measurement strobe to measure the Idd 
current at that point in the pattern. The test code may look 
Something similar to: 

0152) 
O153) 
0154) 
0.155 Control->ConnectTrigger(9, Iddmeas); 

0156 Vcc->SetModeIMeasure(100 ma); 
O157 Vcc->ConnectMeasStrobe(Iddmeas'); 
0158 Control->RunPattern(“mypat); 

0159) Wait (100 ms); 

Feb. 7, 2008 

0160 Vcc->GetMeas(&Idd); 
0161) 
0162 
0163) 

0164. In the first line, Control->ConnectTrigger(9, Id 
dmeas); the VMI first makes a call to the resource mapped 
to it (the resource being in the PI) and the PI requests a 
connection of a specific Trigger Line to a Signal Line via the 
system PI for each site named Iddmeassite. If they do not 
and Sufficient signal lines are available, then the signal lines 
are reserved (by name) and the connection counter is set to 
1, if the signal lines already exist the connection counter is 
incremented. In the event that there are insufficient signal 
lines available, an alarm may be generated. Upon Successful 
reservation of signal lines, the VMI then instructs the 
Instrument PI(s) for each site to connect pattern bit 9 to the 
signal Iddmeassite. 
0.165. Each PI checks for an available trigger line and 
make the connection on board. The PI then requests the 
System PI to make the connection of its chosen trigger line 
to the signal named Iddmeassite. The Instrument PI does 
this by sending information to the System PI as to its 
location, trigger line selected and direction of the connection 
(in this case Asynchronous Dive) and the signal to be 
connected to. The system PI sets the appropriate connection 
in the cross-point function and set the mode for the selected 
trigger line. Now we have pattern bit 9 driving the signal line 
named Iddmeassite. 
0166 In the second line, the VMI called Vcc is set to 
current measure mode on the 100 marange. In the third line, 
the VMI called Vcc is instructed to set the measurement 
strobe to trigger mode and connect the strobe to the signal 
named Iddmeas in receive mode. This may be accom 
plished, for example, by having the Vcc VMI making a call 
to the System PI to reserve the Signal lines but since they 
were already reserved, the connection counter may be sim 
ply incremented. Then the Vcc VMI calls the individual 
instrument PIs to make the connection. 

0.167 The VMI instruments makes the connection of the 
strobe to an available trigger line on-board and request the 
System PI to connect the selected trigger line to Iddmeas 
in Asynchronous Receive mode. 
0168 Next, the pattern is run and the measurement is 
stored on the board. This may be followed by a delay and 
then the measurement(s) are retrieved. The connections 
persist and can be used in Subsequent tests So it is not 
necessary to re-program the connection if the connection is 
needed again. A situation may arise where there are no 
longer enough signal lines available for use in Subsequent 
tests. In this case, a Disconnect function may be used to free 
up signal lines that are no longer needed. The system PI may 
maintain a count of connections and any disconnect function 
call from a VMI will be honored if the count is zero. To free 
up Iddmeas' in the example, the following lines may be 
added: 

0.169 Control->DisconnectTrigger(9, Iddmeas): 

0170 Vcc->DisconnectMeasStrobe(Iddmeas); 
0171 In the first line above, the Digital VMI “Control, 
may instruct the instrument PIs to disconnect, The PIs 



US 2008/0033682 A1 

request the disconnect from the System PI, Then the Control 
VMI requests the disconnect of the Signal named Iddmeas. 
The system PI decrements the connection counter but does 
not free up the signal lines because a connection still exists. 
In the second line above, the Vcc VMI similarly instructs the 
instrument PIs to disconnect, then request a disconnect from 
the system PI. In this instance the System PI decrements the 
connection counter to Zero and de-allocate the signal line for 
later use. 

0172 According to one embodiment, the System PI 
manages the resources (signal lines) in a robust way. For 
example, all signal lines may be de-allocated at program 
load and at start of test. Also, since tools might be able to 
control connection state and users may quit at breakpoints 
etc., signal lines should not be locked out in error. 
0173 By use of this example, a basic connection scheme 

is performed between two instruments. As can be seen, the 
instrument function in no way depends on the implementa 
tion of the function in the instrument to which it is connect 
ing. A drawback of this scheme is that there are two lines of 
user code needed to make a connection. However, the 
architecture provides the ability for multiple instruments to 
connect to a single source. 
0174 FIG. 11 shows another example of a test system 
architecture which may be used to implement various 
aspects of the present invention. Deterministic operation is 
one basic requirement to achieve a high level of repeatability 
in test applications. By reducing the jitter associated with the 
execution time of individual tests in a test application, 
measurements made across multiple devices will be much 
more consistent and accurate. The ATE industry has solved 
this problem by using dedicated processors running real 
time operating systems to execute individual tests. The 
drawback with this approach is that deterministic operation 
is achieved at a very high cost. 
0175. This creates a problem for low-cost test systems 
where usually only a single processor is available to control 
all tasks relating to a test environment (e.g., user-interface, 
datalogging, test execution, etc.). To complicate matters 
even further, the availability of real-time operating systems 
(RTOSs) for low-cost platforms is relatively small and these 
operating systems are not tailored to provide users with 
friendly and “nice-looking user-interfaces. Usually the 
interface provided by these RTOSs is text-based and gen 
erally based on very cryptic commands for the lay user. 
0176 FIG. 11 shows an example architecture that 
includes both real-time and non-real time components. For 
example, the architecture may include a graphical user 
interface 1101 which is used by the user to perform and 
maintain test programs. Further, the architecture may 
include a data log process 1102 that stores test results 
retrieved from devices under test (DUTs). Further, the 
system may include a non-real-time function 1103 that 
performs flow control relating to executed test procedures. 
Further, the architecture may perform any number of non 
realtime-tasks 1104 relating to testing, Such as reporting, 
alarms, or other tasks. 

0177. In one embodiment of the present invention, real 
time and non-real-time components may be implemented on 
separate virtual machines. These separate virtual machines 
may be, for example, executed on the same or different 

Feb. 7, 2008 

processors as is known in the art. The virtual machines may 
perform inter-virtual machine communication to implement 
various distributed functionality. According to one aspect, 
by implementing non-real-time components on a separate 
system entity (e.g., a separate virtual machine), the cost of 
Such a system may be reduced, as off-the-shelfhardware and 
Software may be used to implement such non-real-time 
components. 

0.178 Further, the architecture provides real-time pro 
cesses for performing functions relating to testing one or 
more DUTS. For instance, a test execution control compo 
nent 1106 may be provided that governs the execution of test 
functions on the one or more DUTs. The system may have 
defined one or more virtual multisite instruments (e.g., VMIs 
1108A-1108C) that can be used to implement one or more 
test programs provided by a user. Also, the architecture may 
include other ancillary real-time tasks 1107 that are per 
formed to Support the testing procedures. Such tasks may 
include, for example, signaling or other time-dependent 
tasks. 

0.179 To facilitate communication between real and non 
real-time processes, an inter-OS communication area 1105 
(or an inter-virtual machine communication area in the case 
of using separate virtual machines) may be provided which 
allows real-time tasks to communicate with and access 
resources in the non-real-time domain. 

0180 Although the Windows XP operating system has a 
well-known graphical user interface, the Windows XP oper 
ating system is not a real-time operating system. This 
basically means that the Windows XP operating system 
cannot guarantee that a particular operating system request 
will be serviced in a particular amount of time, or that tasks 
running under the operating system are guaranteed to 
execute in a predetermined period of time. According to one 
embodiment, the Windows XP operating system may be 
modified to allow the operating system (or any other oper 
ating system) to provide real-time capabilities. 
0181. According to one embodiment of the present inven 
tion, Tenasys real time extensions (INtime extensions prod 
uct) may be used, but it should be appreciated that other 
types of extensions or any other real-time operating system 
(RTOS) may be used. Tenasys offers a solution that provides 
the ability to run two completely different operating systems 
in a single processor while allowing communication 
between the two OSs. Tenasys technology that allows both 
operating systems to run on an x86 platform without inter 
ference. This technology also guarantees that failures (even 
catastrophic failures) in one environment do not cause any 
side effects on the other environment. This allows for a very 
high degree of reliability. 

0182. The INtime product provides a real-time environ 
ment in which the Windows NT operating system itself is a 
low-priority task. This way all real-time tasks take prece 
dence over Windows NT operating system so it is possible 
to guarantee consistent execution times regardless of any 
activity in the Windows environment. According to one 
embodiment, the test system architecture relies on a real 
time environment where all time critical tasks are executed 
and a non-real-time environment where relatively low 
priority tasks will execute. Both of these operating system 
environments would share a single processor System and 
communicate with each other when necessary. 



US 2008/0033682 A1 

0183 According to one embodiment of the present inven 
tion, a test architecture may be adapted to perform deter 
ministic processing as discussed in U.S. patent application 
Ser. No. 11/218,915 filed Sep. 2, 2005, entitled “SYSTEM 
AND METHOD FOR PERFORMING DETERMINISTIC 
PROCESSING”, the contents of which are incorporated 
herein by reference. However, it should be appreciated that 
other operating systems may be used with real-time capa 
bilities, and the invention is not limited to any particular type 
of operating system. 
General Purpose Computer System 

0184 Various embodiments according to the present 
invention may be implemented on one or more computer 
systems. These computer systems may be, for example, 
general-purpose computers such as those based on Intel 
PENTIUM-type processor, Motorola PowerPC, AMD Ath 
lon or Turion, Sun UltraSPARC, Hewlett-Packard PA-RISC 
processors, or any other type of processor. It should be 
appreciated that one or more of any type computer system 
may be used to perform processing according to various 
embodiments of the invention. Further, the system may be 
located on a single computer or may be distributed among a 
plurality of computers attached by a communications net 
work. 

0185. A general-purpose computer system according to 
one embodiment of the invention is configured to perform 
any of the described functions, including but not limited to, 
performing processing associated with a test program. It 
should be appreciated that the system may perform other 
functions, and the invention is not limited to having any 
particular function or set of functions. 
0186 FIG. 12 shows a block diagram of a general pur 
pose computer and network system in which various aspects 
of the present invention may be practiced. For example, 
various aspects of the invention may be implemented as 
specialized software executing in one or more computer 
systems including general-purpose computer system 1201 
shown in FIG. 12. Computer system 1201 may include a 
processor 1204 connected to one or more memory devices 
1205, such as a disk drive, memory, or other device for 
storing data. Memory 1205 is typically used for storing 
programs and data during operation of the computer system 
1201. Components of computer system 1201 may be 
coupled by an interconnection mechanism Such as network 
1210, which may include one or more busses (e.g., between 
components that are integrated within a same machine) 
and/or a network (e.g., between components that reside on 
separate discrete machines). The interconnection mecha 
nism enables communications (e.g., data, instructions) to be 
exchanged between system components of system 1201. 

0187 Computer system 1201 also includes one or more 
input/output (I/O) devices 1206, for example, a keyboard, 
mouse, trackball, microphone, touch screen, a printing 
device, display screen, speaker, etc. In addition, computer 
system 1201 may contain one or more interfaces (e.g., 
network communication device 1208) that connect com 
puter system 1201 to a communication network (in addition 
or as an alternative to the network 1210. 

0188 The storage system 1209, typically includes a 
computer readable and writeable nonvolatile recording 
medium in which signals are stored that define a program to 

Feb. 7, 2008 

be executed by the processor or information stored on or in 
the medium to be processed by the program. The medium 
may, for example, be a disk or flash memory. Typically, in 
operation, the processor causes data to be read from the 
nonvolatile recording medium into another memory that 
allows for faster access to the information by the processor 
than does the medium. This memory is typically a volatile, 
random access memory Such as a dynamic random access 
memory (DRAM) or static memory (SRAM). The memory 
may be located in storage system 1209, as shown, or in 
memory system 105. The processor 104 generally manipu 
lates the data within the integrated circuit memory 104, and 
then copies the data to the medium associated with storage 
1209 after processing is completed. A variety of mechanisms 
are known for managing data movement between the 
medium and integrated circuit memory element and the 
invention is not limited thereto. The invention is not limited 
to a particular memory system or storage system. 
0189 The computer system may include specially-pro 
grammed, special-purpose hardware, for example, an appli 
cation-specific integrated circuit (ASIC). Aspects of the 
invention may be implemented in Software, hardware or 
firmware, or any combination thereof. Further, such meth 
ods, acts, systems, system elements and components thereof 
may be implemented as part of the computer system 
described above or as an independent component. 
0.190 Although computer system 1201 is shown by way 
of example as one type of computer system upon which 
various aspects of the invention may be practiced, it should 
be appreciated that aspects of the invention are not limited 
to being implemented on the computer system as shown in 
FIG. 12. Various aspects of the invention may be practiced 
on one or more computers having a different architectures or 
components that that shown in FIG. 12. 
0191 Computer system 1201 may be a general-purpose 
computer system that is programmable using a high-level 
computer programming language. Computer system 1201 
may be also implemented using specially programmed, 
special purpose hardware. In computer system 1201, pro 
cessor 1204 is typically a commercially available processor 
such as the well-known Pentium class processor available 
from the Intel Corporation. Many other processors are 
available. 

0.192 Such a processor usually executes an operating 
system which may be, for example, the Windows-based 
operating systems (e.g., Windows NT, Windows 2000 (Win 
dows ME), Windows XP, Windows Vista operating systems) 
available from the Microsoft Corporation, MAC OS System 
X operating system available from Apple Computer, the 
Solaris operating system available from Sun MicroSystems, 
UNIX operating systems available from various sources, 
INtime and Tenasys as mentioned above, among others. 
Many other operating systems may be used, and the inven 
tion is not limited to any particular operating system or 
operating system extensions to perform any real-time or 
non-real-time functions according to various embodiments. 
0193 The processor and operating system together define 
a computer platform for which application programs in 
high-level programming languages are written. It should be 
understood that the invention is not limited to a particular 
computer system platform, processor, operating system, or 
network, unless specified by one or more claims. Also, it 



US 2008/0033682 A1 

should be apparent to those skilled in the art that the present 
invention is not limited to a specific programming language 
or computer system. Further, it should be appreciated that 
other appropriate programming languages and other appro 
priate computer systems could also be used. 
0194 One or more portions of the computer system may 
be distributed across one or more computer systems coupled 
to a communications network. These computer systems also 
may be general-purpose computer systems. For example, 
various aspects of the invention may be distributed among 
one or more computer systems (e.g., servers) configured to 
provide a service to one or more client computers, or to 
perform an overall task as part of a distributed system. For 
example, various aspects of the invention may be performed 
on a client-server or multi-tier system that includes compo 
nents distributed among one or more server systems that 
perform various functions according to various embodi 
ments of the invention. These components may be execut 
able, intermediate (e.g., IL) or interpreted (e.g., Java) code 
which communicate over a communication network (e.g., 
the Internet) using a communication protocol (e.g., TCP/IP). 
0.195. It should be appreciated that the invention is not 
limited to executing on any particular system or group of 
systems. Also, it should be appreciated that the invention is 
not limited to any particular distributed architecture, net 
work, or communication protocol. 
0196. Various embodiments of the present invention may 
be programmed using an object-oriented programming lan 
guage, such as SmallTalk, Java, C++. Ada, or C# (C-Sharp). 
Other object-oriented programming languages may also be 
used. Alternatively, functional, Scripting, assembly lan 
guage, and/or logical programming languages may be used. 
Various aspects of the invention may be implemented in a 
non-programmed environment (e.g., documents created in 
HTML, XML or other format that, when viewed in a 
window of a browser program, render aspects of a graphical 
user interface (GUI) or perform other functions). Various 
aspects of the invention may be implemented as pro 
grammed or non-programmed elements, or any combination 
thereof. 

0197) Various aspects of this system can be implemented 
by one or more systems within system 100. For instance, the 
system may be a single or multiprocessor System. In one 
example, the system includes Software processes executing 
on a system such as a personal computer (PC). Such a 
system, for example, may permit the user to perform one or 
more functions in a test system that tests a device under test 
(DUT). Such systems may include, for example, test sys 
tems, control systems, among others. 
Example Client-Server Architecture 
0198 According to another aspect of the present inven 
tion, it is appreciated that test programs Software is used by 
different types of user—some users develop test applica 
tions, and others use the developed applications for the 
administration and management of test processes. However, 
these separate types of users may need to use a specific user 
interface (UI), depending on what functions are performed. 
It is appreciated that multiple types of testers have different 
user interfaces, forcing the user to understand the specific 
type of interface necessary to run the equipment. Also, it is 
appreciated that in the ATE industry, the application and 

20 
Feb. 7, 2008 

drivers are tightly coupled, and the user interfaces are tied to 
the system software. According to one aspect of the present 
invention, a standard user interface may be used to access 
multiple tester types, reducing the amount of training nec 
essary for the user. To further reduce the amount of training 
required, a user-specific interface is provided that allows the 
user to perform testing functions related to their role. 
0199 Further, according to another aspect of the present 
invention, a testing architecture is provided that permits a 
user to perform testing functions from any location. In one 
specific implementation, the user interface is accessed 
through a browser program, and a user may perform testing 
functions from any location coupled to a testing system 
through a communications network. In a traditional envi 
ronment, the UI is normally tied to the machine, however, if 
the UI is made available over a network, the user can 
perform testing from another location. 
0200 FIG. 13 shows an architecture diagram of an 
example system 1300 according to one embodiment of the 
invention that includes a server that executes test functions, 
and one or more client systems that render user interfaces 
used to perform test functions. It should appreciated that 
FIG. 13 is used for illustration purposes only, and that other 
architectures may be used to facilitate one or more aspects 
of the present invention. 
0201 As shown in FIG. 13, a computer system 200 (e.g., 
a general-purpose computer system as described above with 
reference to FIG. 12) may be used to implement a test 
system. Computer system 1301 may include one or more 
software processes 1305 that perform test system functions, 
database functions, and interface functions as discussed 
below. According to one embodiment of the present inven 
tion, System 1301 may be a general-purpose computer 
system as discussed above with reference to FIG. 12. To this 
end, System 1301 may include an operating system, one or 
more processors, and one or more I/O components. 
0202) According to one embodiment, system 1301 per 
mits one or more client systems (e.g., systems 1307A 
1307D) and their associated users (e.g., users 1308A 
1308D) to access test functions. According to one 
embodiment, the test system 1301 and its associated hard 
ware and Software are communicated with via one or more 
communication networks 1304. Network 1304 may include, 
for instance, the Internet, a corporate enterprise network or 
other communication network type. Notably, users can 
access test system functions at disparate locations through 
communication network 1304. 

0203. In one embodiment, the test system user interface 
is a web-based interface, capable of being downloaded and 
viewed over a communication network. In one embodiment, 
a client (e.g., client 1307D) includes a browser program 
(e.g., the Microsoft Internet Explorer browser program). The 
user may log into test system 1301, and system 1301 may 
provide one or more software programs or components 1303 
that may be used by a client to access test system functions. 
According to one embodiment, test system functions are 
performed using the well known Windows forms interface 
available from the Microsoft Corporation, and may be 
accessible through a browser program (e.g., 1309). Indeed, 
the client may download and store any application program 
1310 software and/or database elements (e.g., elements 
stored in database 1311) to render the user interfaces dis 



US 2008/0033682 A1 

cussed. However, although Windows forms may be used, it 
should be appreciated that any type of software and/or 
communication methods may be used (e.g., CGI, Perl, 
XML, etc.), and the invention is not limited to any particular 
method. 

0204. Notably, the user can, from any web-enabled client, 
perform test functions. Using web services, for example, a 
user can control any tester from any location as long as the 
user has a connection to the test system 1301. Convention 
ally, user interfaces are tied to and are specific to the testing 
hardware, and thus are executed locally to the test equip 
ment. According to one embodiment of the present inven 
tion, a user logs into the test system 1301 through a 
communications network (e.g., the Internet). 
0205 Further, according to another embodiment, each 
user is presented their own set of GUIs to control testing. In 
the case where users perform different functions (program 
ming, maintenance, etc.), the test system 1301 may store 
different UIs (e.g., as an entry 1306 in database 1302), and 
depending on the user that logs in, different UIs may be 
presented to that user. The UIs may include one or more 
programs (e.g., application program 1310) having one or 
more locally-stored components. Further, the UIs may 
include one or more databases in which to store UI con 
figuration data. Thus, the user can view custom UIs at any 
location having network connectivity, and the custom UIs 
are tailored to suit the particular role of the user. 
Processes in the ATE Tester 

0206. In one embodiment of the present invention, the 
PowerPoll process, 1400, as shown in FIG. 14, illustrates the 
interaction between some of the modules within the abstrac 
tion layer architecture. The following is an example process 
that may be performed, for example, using the process flow, 
1400, described with respect to FIG. 15. It should be 
appreciated that the process discussed below is made by way 
of example only and not by limitation. 

0207. The PowerPoll process, 1400, is typically initiated 
in the platform layer by the expiration of a timer at 1402. 
Optionally, the PowerPoll process may also check to see if 
an end of time (EOT) event has occurred or if a program has 
reached a break point. If the power polling timer has not 
expired 1404 (FALSE), main thread execution continues at 
1406. If the power polling timer has expired, 1404 (TRUE), 
the platform layer passes a call to the system layer, including 
two platform state variables "System PowerState' and “Sys 
tem Power Interrupted.” In response the system layer 
through a SystemPI Module calls the Update SystemPow 
erStatus function, at 1408. In one embodiment, after the 
entire data flow has been completed the SystemPI will return 
2 bits of data to the platform layer; Bit 1: reflecting Power 
Interrupted & Bit 0: reflecting PowerState. By this abstrac 
tion, the platform does not need to know how to actually 
check the power (e.g., determine the state of a power Switch, 
determine the existence of Voltage, etc.), but rather, the 
SystemPI performs this checking function. 

0208. The process flow optionally continues by determin 
ing if the platform state variable is at “Program AtEreak 
Point.” (not shown), if not a dispatcher control component 
reads the mailbox and clears it at step 1410. The dispatcher 
control component takes the latest configuration (if any) and 
compares that configuration to the current configuration, at 

Feb. 7, 2008 

step 1410. Upon determining a different configuration exists 
1412 (TRUE), a check is done to determine if PI modules 
were deleted at 1414, if PI modules were not deleted, 1414 
(FALSE) the new PI modules are loaded at 1420, where PI 
modules were deleted 1414 (TRUE) PowerOnlnit function 
(within the physical instrument layer) is called on all deleted 
PI modules at 1416 and the deleted PI modules are unloaded 
at 1418. New PIs are loaded at step 1420. Alternatively, after 
step 1408's call to SystemPI Update the process may 
proceed directly to 1410 to determine if dispatcher received 
new configurations. 
0209. The alternative forks of the process 1412 (TRUE) 
and 1412 (FALSE) meet again and the process determines 
whether power is available at the hardware represented by 
the PI modules at 1422. If power is off 1422 (FALSE), the 
PowerOnlnit function is called at 1428, if power is available 
1422 (TRUE), the system checks to see if power was off or 
interrupted at 1424. If power was off or interrupted 1424 
(TRUE) the PowerOnlnit function is called at 1428. If power 
was not off or interrupted 1424 (FALSE), the process 
continues to check if the configuration is different at 1426. 
The previous forks meet again at the configuration test. If the 
configuration is not different 1426 (FALSE) the process 
returns to main thread execution at 1438. If the configuration 
is different 1426 (TRUE) the system will optionally re 
qualify and update the platform state variable “StateReci 
peOualified.” (not shown). Alternatively, in response to the 
identification of a different configuration 1426 (TRUE), a 
check to determine if the program is loaded is performed at 
step 1430. If the program is not loaded 1430 (FALSE) main 
thread execution will continue at 1438. If the program is 
loaded 1430 (TRUE) a function call IsMappingCK( ) is 
made for all VMIs at 1432. If the mapping is ok for all VMIs. 
1434 (TRUE) main thread execution continues at 1438. If 
mapping is not ok for all VMIs 1434 (FALSE), state variable 
ProgramNotValid is updated at 1436. 
0210. In summary, the exemplary process determines if a 
system is in a powered on State. Also, if in the powered-on 
state, the test program and VMIs can Successfully meet their 
requirements to test on the hardware existing post-power 
cycle or reconfiguration. The VMI holds the responsibility 
of this checking, providing another abstraction of responsi 
bility away from the platform and provided to the modules. 
0211. Once the power state of a system is determined, the 
next check is to validate the actual configuration of the 
system. As a result of this process, configured PI modules 
with missing or incorrect hardware will put themselves into 
a disabled state and publish their resources as “PoweredOff.” 
If additional hardware is detected that does not correspond 
to a configured PI module, then a ValidateConfiguration 
process (not shown) will publish a warning message. The 
warning message can be returned to a platform user mes 
saging window or to a platform configurator to display an 
intelligent display name if available or an “unknown hard 
ware” message if not. 
Alarm Processing 
0212. The interaction between the various layers can be 
further described with respect to FIG. 15 with an illustration 
of one embodiment's handling of alarm processing. FIG. 15 
is presented by way of illustration and not by way of 
limitation. 

0213 As can be seen in the embodiment shown in FIG. 
15, the various abstraction layers have been further 



US 2008/0033682 A1 

abstracted into their respective modules. In addition, this 
example shows at the boundary of each respective module is 
at least one interface (1534-1552) designed to manage 
communication between the modules. For instance, the 
SystemPI 1504 module has an interface 1538 with the 
platform layer interface 1532 (shown as Platform Software 
w/Dispatcher) that manages the bi-directional communica 
tion with respect to the CheckAlarms function call. In this 
example, the SystemPI module 1504 also has an interface 
1540 for managing communication and functions with the PI 
module’s interface 1542. 

0214. In another aspect of the present invention, the 
platform layer represents an abstraction of the functionality 
employed to log the results of a process flow. As can be seen 
with reference to FIG. 15, in one embodiment various 
function calls performed as part of a process flow report their 
results to the platform layer. In one embodiment, the plat 
form layer represents an abstraction of the functionality 
employed to log the reported results of the various function 
calls from the other abstraction layers. 
0215. The various function calls and functionality is 
described with reference to exemplary alarm process 1500. 
Exemplary process 1500 is presented by way of illustration 
and not by limitation. Alarm process 1500 begins with a 
Check Alarms( ) call at 1502 to the SystemPI. In one 
embodiment, the SystemPI 1504 has full knowledge of the 
configuration of the tester and holds a list of all occupied 
locations (location is a platform concept and may be repre 
sented by a 32-bit number acting as an index into a list). The 
Platform/dispatcher 1508 expects a return of a list of Loca 
tions form the SystemPI 1504 which may have alarmed. At 
1506, the SystemPI returns a list containing locations that 
may have alarmed to the Platform/dispatcher 1508. In one 
embodiment, this list may be filtered by the SystemPI 1504. 
In one example, filtering is done based on the SystemPI's 
1504 ability to determine is a PI 1512 is under its purview. 
In another example the system is configured to return PIS 
1512 that are not within a SystemPI's 1504 purview auto 
matically. To illustrate, a Ceres Native Instrument is within 
the purview of the Ceres SystemPI. 

0216 A key concept here is that instruments which are 
not native to a tester can be easily integrated into an overall 
test solution the platforms interface with the PI module 
has no expectations of hardware implementation. Therefore, 
in one specific example, a GPIB or PCIExpress-based solu 
tion can be integrated exactly as a native-built Solution 
allowing for a hardware-independent Solution. 

0217. At 1510, the ServiceAlarms() call is made to each 
location returned in the Check Alarms() call to the SystemPI 
(1502 & 1506). The ServiceAlarms() is received and the PI 
1512 (or alternatively the SystemPI 1504 (not shown)) 
accesses its hardware to determine whether an actual alarm 
state exists. In one embodiment, filtering of alarms by the 
SystemPI aids in execution time, assisting in maintaining the 
deterministic nature of the test platform. In another embodi 
ment, the system is configured to not generate Alarms that 
are not relevant to the accuracy of a measurement or do not 
indicate that the hardware is in an invalid state. The PI 1512 
(alternatively the SystemPI 1504 (not shown)) reads back 
the alarm state of the hardware at 1514. Step 1514 may also 
include clearing local alarm cache?(s), and may include 
placing hardware into a safe state. 

22 
Feb. 7, 2008 

0218. On reading back the alarm state, the PI 1512 
(alternatively the SystemPI 1504 (not shown)) caches alarms 
by resource, as well as AllSite alarms (global alarms). In one 
embodiment the cache is maintained until the next Service 
Alarms( ) call is made. Caching enables alarms to be 
available for tool display. 

0219. At 1516, the ReportAlarms( ) call is made to each 
instantiated VMI 1518. In one embodiment, this call is made 
independent of whether any locations were returned in the 
Check Alarms() call to the SystemPI 1504 at 1502 and 1506. 
According to one example, independent calls to ReportA 
larms( ) is beneficial because it accounts for alarms treated 
as persistent by a PI (e.g. 1512) and when the hardware may 
not indicate an Alarm to the SystemPI 1504 (this may occur 
in embodiments where the SystemPI filters alarms based on 
PIs within its purview) or because a software-level alarm 
may have occurred either in the VMI or with the VMI's 
mapped resources. The VMI 1518 queries each of its 
resources, for example PI 1512 at 1520, to determine if an 
alarm exists. It should be understood that VMI 1518 may 
have one or more PIs with which it interacts, and figure 
should not be interpreted as limiting a VMI to any number 
of PI interactions and their associated resources. 

0220. In response to the VMI query PI 1512 responds 
with the requested alarm information at 1522 and marks the 
alarm as reported. PI 1512 may filter out alarms reported 
back based on design or based on configurations of the PI 
1512. In addition VMI 1518 may also filter reported alarms 
based on design or based on configuration of the VMI 1518. 
The VMI 1518 provides a response regarding its resources 
with a ms bool at 1524. In one embodiment, a response is 
performed with a bool which is multisite deep. That is, 
multisite objects (e.g., ms bool, ms float, etc) may be 
created which are sized by the number of sites the program 
is developed to support. VMI 1518 may compile alarms by 
site as VMI object may be designed with comprehension of 
site. The response from ReportAlarms is reported to the 
Datalogging service 1554 at 1530. Alternatively, the 
response from ReportAlarms may be combined with other 
information and reported to the Datalogging service 1554. 

0221) GetUnreported Alarms( ) call is made at 1526 to 
each instantiated PI 1512 (shown is one PI, however many 
PIs are possible) and the SystemPI 1054. The GetUnreport 
edAlarms( ) call may be made independent of whether any 
locations were returned in the Check Alarms( ) call (1502 
and 1506) and alternatively to the SystemPI 1504 (not 
shown). In one embodiment, the GetUnReported Alarms( ) 
call is only made to the SystemPI and the PIs. The GetUn 
Reported Alarms( ) call allows for reporting of Alarms by 
resources which are not mapped to a VMI the ReportA 
larms( ) call to the VMI may be adapted to handle all the 
alarms for resources mapped to the VMI, whether they are 
persistent or non-persistent. Persistent alarms or Software 
Alarms are handled by the fact that even if the SystemPI 
returns a empty Location List to the Check Alarms( ) call— 
the ReportAlarms and GetUnreported Alarms are still carried 
Out. 

0222. In one embodiment, PI 1512 returns a 2-bit number 
in response at 1526 where the MSB indicates an AllSites 
Alarm and the LSB indicates and unreported resource alarm. 
The response from GetUnreported Alarms( ) reported to the 
Datalogging Service 1554 at 1532. Alternatively, the 



US 2008/0033682 A1 

response may be combined with other information and 
reported to the Datalogging service 1554, for example the 
response from ReportAlarms and GetUnreported Alarms 
may be combined and sent together to Datalogging service 
1554. 

PowerOnlintitialize (POI) Function 
0223) In one embodiment of the present invention, the 
physical instrument layer calls a PowerOnlinitialize function 
as part of the system process that polls a system's power 
state. In one embodiment of the present invention, the 
PowerOnlinitialize function is included in a physical instru 
ment base class of methods. According to one aspect of the 
invention, the PowerOnlinitialize function is designed to 
place a PI module and its hardware into an known initial 
power state. According to another aspect of the invention, it 
is important that the test hardware powers into a known safe 
state because there is no guarantee that the platform layer is 
running or that a PI module is configured and loaded. In one 
embodiment, the PowerOnlinitialize function is a member of 
a base class of functions defined in the physical instrument 
abstraction layer. 
0224 FIG. 16 shows an example illustration of one 
embodiments implementation of the PowerOnlinitialize 
function, 1600. FIG. 16 describes an exemplary data flow, 
and should not be read to limit the present invention either 
to the one function illustrated or this particular data flow. 

0225. PowerOnlinitialization() call is made at 1602. At 
1604 a determination is made whether the PI/Hardware 
device is dependent upon its system power state in order to 
perform its test functions. If it is not 1604 (FALSE) then the 
PI local cache is set to initialized state at 1612 and state of 
published resources is updated at 1614. If a PI/Hardware 
device is dependent upon system power state 1604 (TRUE) 
then a power status check for the system is performed at 
1606. In one embodiment a GetPlatform StateInformation() 
call is made to obtain the system power status. In another 
embodiment the GetPlatform StateInformation() call is part 
of the PI Base Class of functions. If the system power is not 
on 1608 (FALSE) then the PI local cache is set to initialized 
state at 1612 and state of published resources is updated at 
1614. If the system power in on 1608 (TRUE) that PI/hard 
ware device is reset. In one embodiment, resetting is per 
formed to guaranty the PI/hardware device is in a known 
state for testing. Once the PI/hardware device is reset the PI 
local cache is set to initialized state at 1612 and state of 
published resources is updated at 1614. In one embodiment 
PI resources have either a State of PowerOn or PowerOff to 
identify their power state. 

0226. In another embodiment, the virtual instrument 
layer includes a base class of functions that define basic 
functionality employed to perform its functions. In one 
example, a VI module calls the GetPlaformInformation 
function to get platform state information. In one embodi 
ment, the virtual instrument layer includes a function for 
reporting a list of alarms against its resources. In another 
embodiment, the alarm reporting function is included in the 
base class of functions. 

0227. According to another aspect of the present inven 
tion, the system layer includes a base class of functions that 
define basic functionality employed to perform its functions. 
In one example, the platform calls the UpdateSystemPow 

Feb. 7, 2008 

erStatus function as part of the PowerPoll process shown in 
FIG. 14. In embodiment, the UpdateSystemPowerStatus 
function is included in the system layer base class of 
functions. In another example, the base class of functions 
includes a Check Alarm function, adapted to check whether 
locations have alarms returning a list of alarms. 
Software Wizards and Rules Checking Engines 
0228. According to one aspect of the invention, the 
abstraction of functionality includes abstracting the func 
tionality employed to operate Software wizards adapted to 
generate interfaces between the various abstraction layers. 
In one embodiment, the abstraction of functionality includes 
an interface generation engine adapted to generate interfaces 
that manage communication between the various abstraction 
layers. In one embodiment, the interface generation engine 
represents the abstraction of the functionality employed to 
define an interface between a module in the system layer and 
a module in the physical instrument layer. In one embodi 
ment, the interface generation engine represents the abstrac 
tion of the functionality employed to define an interface 
between a module in the virtual instrument layer and a 
module in the physical instrument layer. In one embodiment, 
the interface generation engine represents the abstraction of 
the functionality employed to define an interface between a 
module in the virtual instrument layer and a module in the 
system layer. In another embodiment, the interface genera 
tion engine represents the abstraction of the functionality 
employed to define an interface between a SystemPI mod 
ule, PI Module, VI Module and the platform layer. 
0229. In another embodiment, the abstraction of func 
tionality includes abstraction of the functionality employed 
to operate software wizards adapted to generate modules of 
the various abstraction layers. In one embodiment, the 
abstraction of functionality includes a module generation 
engine adapted to define a module in one of the abstraction 
layers. In one embodiment, the module generation engine 
represents the abstraction of the functionality employed to 
define a VI module. In another embodiment, the module 
generation engine represents the abstraction of the function 
ality employed to define a PI module. In another embodi 
ment, the module generation engine represents the abstrac 
tion of the functionality employed to define a SystemPI 
module. In another embodiment, the module generation 
engine may represent the abstraction of the functionality 
employed to define a platform module. 
0230. According to one aspect of the present invention, 
the generated modules need to be verified to insure appro 
priate mapping between the various abstraction layers. 
According to another aspect of the present invention, gen 
erated modules must be verified to insure appropriate func 
tionality. In one embodiment, a rules checking engine rep 
resents an abstraction of the functionality employed to verify 
the appropriate mapping of generated modules and to insure 
appropriate functionality. For instance, in one implementa 
tion, the SystemPI and PI perform rule checking to verify 
that they can work with each without adverse interaction. 
The VMI may perform rule checking to verify that the 
mapping of resources to it maintains needed rules to func 
tion correctly. 
0231. It should be appreciated that the invention is not 
limited to each of the embodiments listed above and 
described herein, but rather, various embodiments of the 
invention may be practiced alone or in combination with 
other embodiments. 



US 2008/0033682 A1 

0232 Having thus described several aspects of at least 
one embodiment of this invention, it is to be appreciated 
various alterations, modifications, and improvements will 
readily occur to those skilled in the art. Such alterations, 
modifications, and improvements are intended to be part of 
this disclosure, and are intended to be within the spirit and 
Scope of the invention. Accordingly, the foregoing descrip 
tion and drawings are by way of example only. 

What is claimed is: 
1. A system for performing a testing process, the system 

comprising: 

one or more test instruments, each having respective one 
or more driver programs and wherein at least one of the 
driver programs includes one or more functions; 

a test program that, when executed, performs a procedure 
on the one or more test instruments, the test program 
accessing the one or more test instruments through the 
one or more driver programs; and 

a memory structure, wherein the one or more functions of 
the at least one of the driver programs are contained 
within a fixed location with the memory structure. 

2. The system according to claim 1, wherein the memory 
structure is included in a memory of a computer system, and 
wherein the one or more functions are loaded in the memory 
of the computer system. 

3. The system according to claim 1, wherein a change in 
the at least one of the driver programs does not produce a 
corresponding change in the memory structure. 

4. The system according to claim 3, wherein the one or 
more functions are located in a first location in the memory 
Structure. 

5. The system according to claim 4, wherein the change 
in the at least one of the driver programs includes adding one 
or more additional functions. 

6. The system according to claim 4, wherein the change 
in the at least one of the driver programs includes modifying 
at least one of the one or more functions. 

7. The system according to claim 4, wherein the one or 
more additional functions are added in a second location 
following the first location in the memory structure. 

8. The system according to claim 7, wherein the addition 
of the one or more additional functions does not change the 
location of the one or more functions in the first location in 
the memory structure. 

9. The system according to claim 8, wherein the memory 
structure further comprises a vitable. 

10. The system according to claim 9, wherein the addition 
of the one or more additional functions does not change a 
location of the one or more functions in the vitable. 

11. The system according to claim 6, wherein the change 
in the virtual instrument entity includes adding at least one 
modified function. 

12. The system according to claim 11, wherein a change 
in a platform entity includes adding at least one modified 
function. 

13. The system according to claim 11, wherein a change 
in a physical instrument driver includes adding at least one 
modified function. 

14. The system according to claim 11, wherein the at least 
one modified function is modified from the at least one of the 
one or more functions. 

24 
Feb. 7, 2008 

15. The system according to claim 14, wherein the at least 
one modified function is added in a second location follow 
ing the first location in the memory structure. 

16. The system according to claim 15, wherein the addi 
tion of the at least one modified function does not change the 
location of the one or more functions in the first location in 
the memory structure. 

17. The system according to claim 16, wherein the 
memory structure further comprises a vitable. 

18. The system according to claim 17, wherein the addi 
tion of the at least one modified function does not change a 
location of the one or more functions in the vitable. 

19. The system according to claim 5, wherein the one or 
more functions is included in a base programming class of 
functions, and the base programming class is inherited from 
an extended class of functions including the one or more 
additional functions. 

20. The system according to claim 11, wherein the one or 
more functions is included in a base programming class of 
functions, and the base programming class is inherited from 
an extended class of functions including the at least one 
modified function. 

21. The system according to claim 2, wherein the com 
puter system includes a general-purpose computer system. 

22. The system according to claim 1, wherein the one or 
more test instruments are coupled to one or more devices 
under test. 

23. The system according to claim 22, wherein at least one 
of the one or more test instruments is programmed by the 
test program to apply a test signal to at least one of the one 
or more devices under test. 

24. The system according to claim 1, wherein the system 
is part of an automated test system. 

25. The system according to claim 1, further comprising 
a virtual instrument entity adapted to execute the procedure 
on the one or more test instruments, wherein the virtual 
instrument entity accesses the one or more test instruments 
through the respective one or more driver programs. 

26. The system according to claim 25, wherein the virtual 
instrument entity includes one or more functions. 

27. The system according to claim 26, wherein the test 
program is adapted to access the one or more test instru 
ments by accessing the one or more functions of the virtual 
instrument. 

28. The system according to claim 27, wherein the test 
program is programmed to access the one or more instru 
ments only through the virtual instrument. 

29. The system according to claim 25, wherein the virtual 
instrument entity isolates the test program from program 
ming interfaces specific to the one or more test hardware. 

30. The system according to claim 25, wherein the virtual 
instrument includes a virtual instrument programming inter 
face. 

31. The system according to claim 30, wherein a change 
in the one or more test instruments does not produce a 
corresponding change in the virtual instrument program 
ming interface. 

32. The system according to claim 26, wherein a change 
in the virtual instrument entity does not produce a corre 
sponding change in the one or more functions. 

33. The system according to claim 32, wherein the one or 
more functions are loaded in a memory structure of a 
computer system. 



US 2008/0033682 A1 

34. The system according to claim 33, wherein the change 
in the virtual instrument entity does not produce a corre 
sponding change in the memory structure of the computer 
system. 

35. The system according to claim 34, wherein the one or 
more functions are located in a first location in the memory 
structure of the computer system. 

36. The system according to claim 35, wherein the change 
in the virtual instrument entity includes adding one or more 
additional functions. 

37. The system according to claim 35, wherein the change 
in the virtual instrument entity includes modifying at least 
one of the one or more functions. 

38. The system according to claim 36, wherein the one or 
more additional functions are added in a second location 
following the first location in the memory structure of the 
computer system. 

39. The system according to claim 38, wherein the addi 
tion of the one or more additional functions does not change 
the location of the one or more functions in the first location 
in the memory structure of the computer system. 

40. The system according to claim 39, wherein the 
memory structure of the computer system further comprises 
a vitable. 

41. The system according to claim 40, wherein the addi 
tion of the one or more additional functions does not change 
a location of the one or more functions in the vitable. 

42. The system according to claim 37, wherein the change 
in the virtual instrument entity includes adding at least one 
modified function. 

43. The system according to claim 42, wherein the at least 
one modified function is modified from the at least one of the 
one or more functions. 

Feb. 7, 2008 

44. The system according to claim 43, wherein the at least 
one modified function is added in a second location follow 
ing the first location in the memory structure of the computer 
system. 

45. The system according to claim 44, wherein the addi 
tion of the at least one modified function does not change the 
location of the one or more functions in the first location in 
the memory structure of the computer system. 

46. The system according to claim 45, wherein the 
memory structure of the computer system further comprises 
a vitable. 

47. The system according to claim 46, wherein the addi 
tion of the at least one modified function does not change a 
location of the one or more functions in the vitable. 

48. The system according to claim 35, wherein the change 
in the virtual instrument entity includes adding one or more 
additional functions. 

49. The system according to claim 36, wherein the one or 
more functions is included in a base programming class of 
functions, and the base programming class is inherited from 
an extended class of functions including the one or more 
additional functions. 

50. The system according to claim 42, wherein the one or 
more functions is included in a base programming class of 
functions, and the base programming class is inherited from 
an extended class of functions including the at least one 
modified function. 

51. The system according to claim 33, wherein the com 
puter system includes a general-purpose computer system. 


