

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 October 2001 (18.10.2001)

PCT

(10) International Publication Number
WO 01/76381 A1

(51) International Patent Classification⁷: **A23D 7/00**,
A61K 9/107, A23L 1/24, 1/39, 1/38, A23J 3/08, 3/16

(74) Agent: **KENNEDYS PATENT AGENCY LIMITED**;
Floor 5, Queens House, 29 St Vincent Place, Glasgow G1
2DT (GB).

(21) International Application Number: **PCT/GB01/01482**

(22) International Filing Date: 5 April 2001 (05.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0008375.8 6 April 2000 (06.04.2000) GB
0031739.6 28 December 2000 (28.12.2000) GB

(71) Applicant (for all designated States except US): **HANNAH RESEARCH INSTITUTE [GB/GB]**; AYR, Ayrshire KA6 5HL (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MUIR, Donald** [GB/GB]; Hannah Research Institute, AYR, Ayrshire KA6 5HL (GB). **CONNOR, Shirley** [GB/GB]; Hannah Research Institute, AYR, Ayrshire KA6 5HL (GB). **McGREGOR, Nancy** [GB/GB]; Hannah Research Institute, AYR, Ayrshire KA6 5HL (GB). **NAHRAIN, Chanchal** [GB/GB]; Hannah Research Institute, AYR, Ayrshire KA6 5HL (GB).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/76381 A1

(54) Title: PROTEIN STABILISED EMULSIONS

(57) Abstract: A method of producing protein stabilised emulsions comprising the steps of decreasing the pH of a protein solution by the addition of an acidic solution to convert it to a cationic form, heating the solution until the protein is solubilised, and then adding a lipid. The lipid is typically any fractionated or partially purified protein but may also comprise a mixture of proteins. The protein must be in a cationic form. There is also provided an oil in water emulsion and water in oil in water emulsion, made by the method.

1 Protein Stabilised Emulsions

2

3 The present invention relates to protein stabilised
4 emulsions which are stable at low pH and in simulations
5 of the gastric environment and which can be used in
6 foodstuffs and in the oral administration of bio-active
7 agents, probiotic organisms, and nutrients. The
8 emulsions may also be used to transport drugs, peptides,
9 hormones, vaccines, and gene therapeutics through the
10 upper gastrointestinal tract to the small intestine.

11

12 Without doubt, the most convenient route for
13 administering bioactive agents is by oral administration.
14 Oral administration does not require skilled medical
15 personnel or strict sterile conditions, as are required
16 with other modes of administration such as intravenous
17 injection.

18

19 However there are inherent problems associated with the
20 oral route of administration, which are well known to the
21 art. In order to be absorbed into the systemic
22 circulation, the administered agent must pass through
23 the gastrointestinal tract to the small intestine where

1 most absorption into the bloodstream takes place.
2 However agents administered in this manner are often
3 rapidly broken down in the upper gastro-intestinal tract.
4 Orally administered material first encounters saliva in
5 the buccal cavity, which is mildly alkaline and contains
6 the digestive enzyme amylase. Thereafter the material
7 passes down the oesophagus to the gut, where it is
8 subject to highly acidic conditions and degradation by
9 powerful digestive enzymes such as pepsin, rennin and
10 lipase. This is particularly problematic with proteins
11 and peptides which are becoming increasingly prevalent as
12 therapeutic and pharmacological agents, but which are
13 rapidly broken down by proteases in the upper gastro-
14 intestinal tract. Finally, before passing into the small
15 intestine the material is subjected to pancreatic fluid,
16 which contains a number of proteases, lipases and
17 carbohydrate degrading enzymes, bile and intestinal
18 fluid.

19
20 There have been numerous attempts to protect agents
21 against the hostile conditions of the upper gastro-
22 intestinal tract so as to increase the proportion of the
23 administered agent which passes to the small intestine,
24 that is to increase the bioavailability of orally
25 administered agents. Conventional approaches included
26 administering particular enzyme inhibitors with the agent
27 to reduce the amount of enzymatic degradation. However
28 this approach can detrimentally impair normal gastric
29 functioning. Furthermore altering the acidity of the gut
30 is not desirable as acid conditions are required for
31 digestion, and any disruption of the normal pH can
32 promote inflammation and infection. More recently,
33 elaborate pharmacological systems have been produced,

1 such as sustained release preparations and specialised
2 protective enteric coatings which protect the enclosed
3 agent from the stomach environment. Other approaches
4 have used liposomes, which are minute phospholipid
5 vesicles and which can be filled with, for example, non-
6 lipid soluble drugs, which are retained until the
7 liposome is disrupted. However these approaches are
8 highly sophisticated and consequently are expensive.
9 There is therefore a need in the art for simple and
10 inexpensive delivery systems which have low toxicity.

11 .
12 Stabilising emulsions for transport through the hostile
13 conditions of the upper gastro-intestinal tract requires
14 the use of complex emulsifying systems which are costly
15 and require extensive toxicological testing during
16 clinical trials to ensure they are safe before use. It is
17 a first aim of the present invention to provide a method
18 for manufacturing emulsions which are stable in simulated
19 gastric environments, for example at low pH and in the
20 presence of enzymes such as are commonly found in the
21 gut, but retain their bio-activity or nutritive value and
22 can be used to transport a variety of agents through the
23 upper gastro-intestinal tract to the small intestine. A
24 linked aim is to make emulsions from food grade materials
25 and readily available processing methods, which are
26 inexpensive, and easy to produce and do not require the
27 extensive toxicological testing which is necessary for
28 synthetic delivery systems.

29
30 When developing agents for oral administration it is
31 important that the palatability and 'mouthfeel' of the
32 agent is considered. It is well known that if an agent
33 administered by mouth has an unpleasant taste, poor

1 patient compliance may result. It is therefore a further
2 linked aim of the present invention to provide palatable
3 emulsions which can be used to protect orally
4 administered agents in the upper gastro-intestinal tract
5 and which masks the flavour of said agents.

6

7 It is a yet further aim is to provide palatable emulsions
8 for protecting orally administered agents in the upper
9 gastro-intestinal tract, which are stable in the presence
10 of ethanol and can be used to form the base of new
11 compound beverages, food dressings and sauces.

12

13 Sauces containing egg and butter are difficult to
14 manufacture as emulsions including these ingredients are
15 destabilised by the process of freezing and thawing.
16 Inevitably this places a serious limitation on their
17 long-term preservation as it is not possible to freeze-
18 store such sauces, and also on their widespread use as an
19 ingredient. For example, examination of the properties
20 of Hollandaise type sauces - both fresh and reconstituted
21 from dry ingredients - has revealed that this defect is a
22 common feature of all sauces currently available in the
23 local retail market. In addition, systematic experiments
24 utilising conventional technology and traditional
25 formulation have failed to achieve a significant
26 improvement in freeze-thaw performance.

27

28 The problem appears to be associated with the nature of
29 the interfacial material stabilising the butterfat
30 emulsion. This interfacial material is disrupted by ice
31 crystal formation during the freezing process and, as a
32 result, the emulsion aggregates forming lumps that are
33 both unsightly and detrimental to mouth feel. It would

1 therefore be a advantage to be able to manufacture a
2 sauce based on an ingredient such as egg or butter, which
3 retains the essential sensory character- i.e., buttery
4 flavour and acidity - of traditional sauces such as
5 Hollandaise Sauce but is little changed by the process of
6 freezing and thawing. As a result, new types of sauce
7 could be developed with hitherto unknown stability.

8

9 In the present Application, references to APSET (acid-
10 stable protein stabilised emulsion technology) refer to
11 the process emulsifying an edible fat in a solution of an
12 edible protein or mixture of proteins or a mixture of
13 proteins, phospholopids and phosphoproteins, either in or
14 converted to the cationic form (i.e., with a net positive
15 charge). Emulsions so formed are inherently stable to
16 the process of freezing and thawing, and are thus
17 superior ingredients for a wide range of foodstuffs and
18 beverages including sauces and dressings. Additionally
19 the appearance and mouth feel of the emulsions, which
20 form the base of such foodstuffs, are superior. Other
21 ingredients, typically flavourings or spices may also be
22 added to the emulsion formed using APSET to tailor the
23 aroma and flavour to any specific requirements.

24

25 According to a first aspect of the present invention
26 there is provided a method of producing protein
27 stabilised emulsions, the method comprising the steps of
28 decreasing the pH of a protein solution, to convert it to
29 a cationic form, heating the solution until the protein
30 is solubilised, and then adding a lipid.

31

32

33

1 Preferably in the step where the protein solution is
2 heated, the protein solution is heated to approximately
3 65°C.

4

5 Preferably in the step where the pH value is decreased,
6 the pH value is decreased to between 1.5 and 3.5.

7

8 Optionally the protein solution comprises fractionated or
9 partially purified food grade proteins.

10

11 Alternatively the protein solution comprised a protein
12 mixture.

13

14 Optionally the protein in the solution is soya protein.

15

16 Alternatively the protein in the solution is egg white
17 protein.

18

19 Alternatively the protein in the solution is egg yolk
20 protein.

21

22 Optionally the lipid is of animal origin.

23

24 Alternatively the lipid is of vegetable origin.

25

26 Alternatively the lipid is of fish origin.

27

28 Preferably the fat:protein ratio of the final emulsions
29 lies between 10:1 and 20:1.

30

31 Preferably a pre-emulsion is made from the protein
32 solution and lipid by high speed mixing.

33

1 Preferably the pre-emulsion is treated with a high
2 efficiency dispersion technique to prevent creaming.

3

4 Optionally the high efficiency dispersion technique is a
5 valve homogeniser.

6

7 Alternatively the high efficiency dispersion technique is
8 a high shear mixer.

9

10 Alternatively the high efficiency dispersion technique
11 is a microfluidiser.

12

13 Alternatively the high efficiency dispersion technique
14 is ultrasonification.

15

16 Preferably the pH of the solution is lowered by the
17 addition of an acidic solution.

18

19 Optionally the acidic solution is hydrochloric acid.

20

21 Alternatively the acidic solution is citric acid.

22

23 Preferably the pH of the final solution is increased by
24 the addition of an alkali solution.

25

26 Preferably the alkali solution is sodium hydroxide.

27

28 A sugar may be added.

29

30 According to a second aspect of the present invention
31 there is provided an oil in water emulsion which is
32 stable at low pH and in aqueous ethanol, wherein the

1 emulsion is comprised of a lipid stabilised by a protein
2 in a cationic form.

3

4 The lipid may contain one or more bioactive compound.

5

6 The lipid may contain lipid soluble compounds.

7

8 The lipid may contain a nutrient.

9

10 The lipid may contain a vitamin.

11

12 The lipid may contain a pharmaceutical agent.

13

14 The lipid may contain a hormone.

15

16 The lipid may contain a vaccine.

17

18 The lipid may contain a protein or peptide.

19

20 According to a third aspect of the present invention
21 there is provided a water in oil in water emulsion which
22 is stable at low pH and in aqueous ethanol, wherein the
23 emulsion is comprised of a lipid stabilised by a protein
24 in a cationic form wherein the lipid also comprises one
25 or more aqueous inclusions stabilised at the water oil
26 interface by a protein, and wherein the aqueous
27 inclusions contain inserted material.

28

29 The inserted material may include water soluble
30 compounds.

31

32 The inserted material may include a nutrient.

33

- 1 The inserted material may include a vitamin.
- 2
- 3 The inserted material may include bacteria.
- 4
- 5 The inserted material may include a pharmaceutical agent.
- 6
- 7 The inserted material may include a protein or peptide.
- 8
- 9 Preferably where the inserted material is bacteria, the
- 10 lipid contain nutrients which promote bacteria growth.
- 11
- 12 Preferably the size of the aqueous inclusions is not
- 13 limited and can be adapted to suit the size of the
- 14 inserted material.
- 15
- 16 A soluble hydrocolloid may be added.
- 17
- 18 A carbohydrate may be added.
- 19
- 20 According to a fourth aspect of the present invention
- 21 there is provided a food or beverage comprising protein
- 22 stabilised emulsions according to the second or third
- 23 aspect.
- 24
- 25 According to the fifth aspect of the present invention
- 26 there is provided acidic, freeze-thaw stable edible
- 27 sauces or dressings comprising protein stabilised
- 28 emulsions according to the second or third aspect.
- 29
- 30 Preferably the protein and lipid are edible.
- 31

1 Figure 1 is a schematic illustration of the various forms
2 of emulsions which may be produced by the described
3 method;

4 Figure 2 is a graph showing the effect of multiple passes
5 through a Microfluidiser on the particle size
6 distribution of caseinateate stabilised emulsions;

7 Figure 3 is a schematic depiction of the isoelectric
8 properties of the protein stabilised emulsions,

9 Figure 4 is a graph showing the effect of pH, heat-
10 treatment and fat:protein ratio on emulsifying efficiency
11 measured by the specific surface area;

12 Figure 5 is a graph comparing the emulsifying efficiency
13 for whey protein stabilised emulsions in different acids
14 and for two heat treatments;

15 Figure 6 is a plot of the stability of protein stabilised
16 emulsions in simulated gastric fluid, for changes in
17 time, fat content and the fat:protein ratio;

18 Figure 7 is a graph demonstrating the lipolysis of
19 emulsified fat when exposed to simulated ileal juice,
20 and;

21 Figure 8 is a main effects plot for the effect of changes
22 in pH, fat content, fat:protein ratio and storage
23 temperature on the stability of protein stabilised
24 emulsions over a period of three days.

25

26 Initial studies on APSET focused on the use of proteins
27 derived from milk - caseins and whey proteins - for the
28 manufacture of emulsions that were acid-stable and
29 exhibited novel properties. However, the principles of
30 APSET are not limited to the use of milk protein but can
31 be applied to any edible protein provided it is converted
32 into the cationic form (i.e., with a net positive
33 charge). Thus stable emulsions can be formed by

1 dispersing an edible fat in a solution of an edible
2 protein that is or is subsequently converted to the
3 cationic form.

4

5 The exact pH at which protein changes from neutral charge
6 (at its iso-electric point) to net positive charge is a
7 function of the amino acid composition of the particular
8 protein and varies from protein to protein. Therefore,
9 the effective pH at which the application of APSET is
10 optimal varies from protein to protein.

11

12 Nevertheless, emulsions formed by APSET have common and
13 novel properties that differ only in degree rather than
14 in kind. For example, soya protein, egg white protein
15 and egg yolk protein have all been shown to endow the
16 emulsion with acid stability in ethanol solutions and
17 resistance to exposure to simulated gastric fluid. Thus,
18 emulsions from APSET have applications in the manufacture
19 of novel beverages and alcoholic liqueurs and also as
20 vehicles for orally administrated drugs, nutrients,
21 vitamins and the like.

22

23 **Example Method 1**

24

25 Preparation of soya protein isolate stabilised emulsions
26 was carried out by warming 500ml of distilled water to
27 70°C and slowly adding soya protein isolate while stirring
28 vigorously. Once dissolved, 3M Hydrochloric Acid was
29 added until the pH was lowered to 1.5, whilst maintaining
30 the temperature at 70C and stirring. Oil and sugar were
31 added and mixed until dissolved. Weight was made up to 1
32 kilo with warm distilled water. The solution was then
33 treated with a Silverson mixer for 2 minutes at low speed

1 and then treated with a high efficiency dispersion
2 technique, typically a microfluidiser at 10,000 psi for
3 five passes.

4

5 **Example Method 2**

6

7 Egg white protein emulsions were formed as follows:
8 Egg white protein is added to distilled water at room
9 temperature and mixed with a Silverson mixer at high
10 speed for 2 minutes. pH is slowly lowered to 1.5 with
11 Hydrochloric Acid whilst stirring gently. Soya oil and
12 sugar are added and mixed for 2 minutes using a Silverson
13 mixer. The solution is then treated with a high
14 efficiency dispersion technique, typically a
15 microfluidiser at 10,000 psi for five passes.

16

17 Table 1 gives examples of basic recipes which can be used
18 in the production of protein stabilised emulsions. Whey
19 protein concentrate, sodium caseinate, soy protein
20 isolate and egg-white protein were used.

21

22 **Table 1. Formulation of emulsions (12 in total)**

23

Code	Protein, %	Fat, %	pH	Ratio	Sugar
5	5	25	1.5	5/1	170
7.5	5	35.7	1.5	7.5/1	157.5
10	5	50	1.5	10/1	145

24

25 Table 2 shows the stability of emulsions manufactured by
26 APSET using a range of protein types at pH 1.5.

27

28 The results were obtained by mixing a portion of emulsion
29 with two parts of an aqueous ethanol solution - ranging

1 in concentration from 20 - 100% - and the stability of
2 the mixture assessed by visual examination.

3

4 Table 2. Ethanol stability at pH 1.5 of emulsions made
5 using the APSET principle but with different protein
6 types.

7

	Ethanol	20%	30%	40%	50%	60%	70%	80%	90%	100%
WPC5		-	-	-	-	-	-	-	-	-
WPC7.5		-	-	-	-	-	-	-	-	-
WPC10		-	-	-	-	-	-	-	-	-
CAS5		-	-	-	-	-	-	-	-	-
CAS7.5		-	-	-	-	-	-	-	-	-
CAS10		-	-	-	-	-	-	-	-	-
SOY5		-	-	-	-	-	-	-	-	-
SOY7.5		-	-	-	-	-	-	-	-	-
SOY10		-	-	-	-	-	-	-	-	-
EGG5		-	-	-	-	-	-	-	-	-
EGG7.5		-	-	-	-	-	-	-	-	-
EGG10		-	-	-	-	-	-	-	-	-

8
9 Code: - denotes no evidence of instability; WPC= whey
10 protein concentrate; Cas = sodium caseinate; SOY = soya
11 protein isolate; EGG = egg white protein.

12

13 Irrespective of the origin of the protein the emulsions
14 were all stable in aqueous ethanol solutions up to a
15 concentration of 66%. The pH levels of three of the
16 above proteins were raised to 2.5 and the ethanol
17 stability test repeated. The results are shown in Table
18 3. A portion of emulsion was mixed with two parts of an
19 aqueous ethanol solution - ranging in concentration from
20 20 - 100% - and the stability of the mixture assessed by
21 visual examination.

22

1 Table 3. Ethanol stability at pH 2.5 of emulsions made
 2 using the APSET principle but with different protein
 3 types.

4

		20%	30%	40%	50%	60%	70%	80%	90%	100%
<i>WPC5</i>		-	-	-	-	-	-	-	-	-
<i>WPC7.5</i>		-	-	-	-	-	-	-	-	-
<i>WPC10</i>		-	-	-	-	-	-	-	-	-
<i>CAS5</i>		-	-	-	-	-	-	-	-	-
<i>CAS7.5</i>		-	-	-	-	-	-	-	-	-
<i>CAS10</i>		-	-	-	-	-	-	-	-	-
<i>SOY5</i>		-	-	-	-	-	-	-	-	-
<i>SOY7.5</i>		-	-	-	-	-	-	-	-	-
<i>SOY10</i>		-	-	-	-	-	-	-	-	-

5

6 Code - denotes no evidence of instability; WPC= whey
 7 protein concentrate; Cas = sodium caseinate; SOY = soya
 8 protein isolate.

9

10 It was also found that emulsions prepared by application
 11 of APSET were stable in simulated gastric fluid for at
 12 least 6 hours.

13

14 These results demonstrate that APSET is a generic
 15 technology, which can be carried out using any protein in
 16 a cationic form. APSET is widely applicable and provided
 17 the protein used to stabilise the emulsion has been
 18 converted by acidification into a state in which it has a
 19 net positive charge, novel functionality will be
 20 exhibited.

21

22 APSET can also be used for the manufacture of acidic,
 23 freeze-thaw stable edible sauces or dressings based on
 24 the emulsification of edible fat in a solution of edible
 25 protein, either alone or mixed with other food

1 components, in or subsequently converted to a cationic
2 form.

3

4 **Example Method 3**

5

6 A freeze-thaw stable Hollandaise type sauce is produced
7 as follows.

8 Butterfat (300g), starch (20g) and dried egg yolk (10g)
9 are pre-weighed into separate containers. Water (570g)
10 and glucose syrup (100g) are heated to 40°C. The dried
11 egg yolk is blended using a high speed mixer, maintaining
12 the temperature of the mixture at 40°C. The pH of this
13 mixture is adjusted to a pH value around 3.7 using a
14 solution of citric acid. The blend is heated to 55°C and
15 melted butterfat is blended into the acid solution
16 containing egg-yolk protein using a high speed mixer
17 (typically, a process time of 5 minutes is sufficient to
18 form a stable, coarse pre-emulsion). The pre-emulsion is
19 then homogenised to form a disperse emulsion. A
20 convenient way to carry out this operation is to pass the
21 pre-emulsion 3 times through a microfluidiser at a
22 pressure of 5000 psi and at 55°C. At this stage it is
23 convenient to blend in spices [for example, salt (0.5%)
24 and pepper (0.03%)]. Finally the whole product is heated
25 to 85°C, held at this temperature for 10 mins, with
26 stirring, (to ensure microbiological stability), packed
27 into sterile containers with lids and cooled. Products
28 made using the APSET principle (in this case using egg
29 proteins), have a delicious buttery taste combined with a
30 fresh acid note but show no deterioration in stability
31 after freezing and thawing.

32

1 In general, the method involves first the dissolution of
2 a protein in a volume of water, followed by the addition
3 of a suitable acid to lower the pH, heating until the
4 protein is solubilised, adding an oil to form a pre-
5 emulsion and then treating the pre-emulsion with a high
6 efficiency dispersion technique to inhibit creaming. It
7 is preferred that the emulsions have a fat:protein ration
8 which lies between 10:1 and 20:1. The protein must be
9 in a cationic form.

10

11 The protein stabilised emulsions produced by the
12 described method have novel properties in that they are
13 stable in pH values below 3.5 and in solutions of aqueous
14 ethanol. Furthermore as the pH is lowered, the ethanol
15 stability of the protein stabilised emulsions increases.

16

17 Furthermore there are provided protein stabilised
18 emulsions which are stable in simulated gastric fluid and
19 for short times in human saliva and which destabilise
20 when mixed with simulated ileal fluid. Accordingly the
21 emulsions can be used to afford protection in the upper
22 gastro-intestinal tract to agents included in the oil
23 phase in oil-in-water emulsions or to agents included
24 within the aqueous phase which is within the oil phase in
25 water-in-oil-water emulsions.

26

27 There is also provided protein-stabilised emulsions, made
28 from food-grade materials which are safe to use and have
29 commercial value.

30

31 The protein stabilised emulsions are palatable, have a
32 pleasant taste and mask the flavour of any inclusions.
33 They may therefore be useful as food ingredients to form

1 the base of new compound beverages, sauces, and food
2 dressings. The emulsions may also be used in alcoholic
3 drinks as they are stable in aqueous ethanol. The
4 protein stabilised emulsions can be used to enhance the
5 palatability of preparations containing bioactive agents,
6 nutrients or otherwise unpalatable material such as
7 medical tinctures and fish oil. It is recognised that in
8 the present invention that further enhancement of the
9 flavour could be achieved by adding sweeteners or flavour
10 and colour compounds.

11

12 Figure 1 is a schematic representation of the types of
13 emulsions that can be formed by the disclosed method.
14 More particularly Figures 1a and 1b are schematic
15 representations of possible oil-in-water type emulsions,
16 and Figures 1c and 1d are schematic representations of
17 possible water-in-oil-in-water type emulsions. Referring
18 firstly to Figure 1b one possible type of emulsion is
19 oil-in-water which comprises a lipid core of vegetable,
20 animal or fish origin 1, which is stabilised by an
21 interfacial protein 2, in cationic form which could be
22 milk protein such as caseinate or whey protein, soya
23 protein, egg white or egg yolk protein or a combination
24 therefore. The lipid core may contain compounds
25 including but not limited to drugs, nutrients, vitamins,
26 hormones, vaccines and other lipid soluble compounds.
27 The lipid core may alternatively comprise an oil phase
28 with nutritional value for example fish oil, cod liver
29 oil (Figure 1a). Another type of emulsion is shown in
30 Figure 1c, comprising an interfacial protein 2 which
31 protects a lipid core 1 of animal, vegetable or fish
32 origin, wherein the lipid core has a plurality of aqueous
33 inclusions 5. The aqueous inclusion 5 may contain agents

1 including but not limited to drugs, proteins, gene
2 products and water soluble compounds 6 (Figure 1c), which
3 could not otherwise be transported by the emulsions of 1a
4 and 1b, or bacteria 7 which have useful or beneficial
5 properties (Figure 1d). For example there is a
6 significant body of evidence to suggest that colonisation
7 of the lower digestive tract by certain types of lactic
8 acid bacteria for example Bifidobacteria and Acidophilus
9 spp. has health benefits. These cultures are present in
10 the guts of infants and protect the gut from invasion by
11 other, less desirable bacteria. Normally it is difficult
12 to administer these bacterium, as they are rapidly
13 inactivated by low pH and intestinal fluid and cant be
14 given orally. In the present invention, Lactic acid
15 bacteria can be encapsulated in the protective oil
16 coating of the described emulsions, by including them in
17 internal aqueous inclusions. It is also recognised in
18 the present invention that nutrients which promote
19 bacteria growth can be included in the lipid core of
20 bacteria carrying emulsions. Furthermore, the size of
21 the aqueous inclusions can be adjusted to accommodate the
22 additional matter for example, relatively large bacteria.
23

24 The oil is dispersed in the aqueous phase by
25 emulsification and the newly formed fat surface is
26 stabilised by absorption of protein from the aqueous
27 phase. It will be appreciated to those skilled in the
28 art that it is particularly important that the particle
29 size distribution after emulsification is significantly
30 disperse to avoid creaming. This is achieved by the use
31 of a high efficiency dispersion technique, typically a
32 valve homogeniser, Microfluidiser, high-shear mixer or by
33 ultrasonification. For oil-in-water emulsions creaming

1 is inhibited by reduction of the particle size by
2 repeated treatment in a Microfluidiser, to a range where
3 natural dispersive forces e.g. Brownian Motion) overcome
4 the propensity of creaming. Figure 2 illustrates the
5 particle size and percentage of particles that are below
6 the threshold for creaming after a repeated number of
7 passes through a Microfluidiser. The appropriate
8 particle size depends on the Application. For example,
9 if comparatively large particles, for example bacteria
10 are to be included in the aqueous phase of a water-in-
11 oil-in-water emulsion, the overall size of the protein
12 stabilised globules must be larger to accommodate the
13 inserted material. In this case, creaming is determined
14 by the viscosity of the non-fat phase of the emulsion and
15 may be controlled by the addition of any suitable food
16 ingredient such as hydrocolloid or carbohydrate.

17
18 Proteins such as milk proteins are known to have
19 isoelectric points in the range pH 4.5 - 5.0. At neutral
20 pH the proteins are stabilised by a net negative charge
21 as shown schematically in Figure 3. This charge
22 diminishes as the pH is reduced and, by definition, is
23 zero at the isoelectric point, the point where there is
24 no net charge. In the region around the isoelectric
25 point, the isoelectric 'well' the solubility of the
26 protein is reduced and its ability to stabilise fat
27 droplets is severely reduced. Below the isoelectric well
28 there is a positive net charge. The specific surface
29 area (SSA) is a measure of the efficiency of
30 emulsification and a guide to potential long-term
31 stability. Figure 4 shows the SSA of emulsions produced
32 by the described method when subjected to a temperature
33 (ToC) of either 65°C or 85°C and with a fat:protein ratio

1 (F/P) of 10:1 or 20:1. Above the isoelectric well, that
2 is above pH 5.0, higher heat treatment at 85°C reduces
3 the efficiency of emulsification. However, it can be
4 seen from Figure 4 that below the isoelectric well, that
5 is below pH 4.0 the temperature used in the present
6 method is unimportant. The protein stabilised emulsions
7 produced by the described method become more disperse as
8 the pH is lowered. Any temperature between 65°C and 85°C
9 could be used in acidic conditions without reducing the
10 efficiency of emulsification. However it is important
11 that an appropriate fat:protein ratio is used during the
12 described method in order to achieve a finely dispersed
13 emulsion ($SSA > 20 \text{ m}^2\text{g}^{-1}$). That is, protein stabilised
14 emulsions made with a fat:protein ration of 10:1 are
15 significantly more disperse than samples made with a
16 fat:protein ration of 20:1 although any ration between
17 this range typically produces a stable emulsion.

18

19 The surprising discovery that protein stabilised
20 emulsions, produced by the method described herein, are
21 stable for considerable lengths of time in ethanol and
22 low pH is an antithesis to the existing body of knowledge
23 in this area (MOHANTY et al.1988; HUNT et al 1994;
24 ABGOOLA et al 1996). Notwithstanding the stability of
25 the protein stabilised emulsions at low pH, the discovery
26 that the emulsions produced by the method described
27 herein are stable in simulated gastric fluid, in the
28 presence of digestive enzymes such a s pepsin and renin
29 was unexpected.

30

31 Examples of methods for making emulsions stabilised by
32 whey protein and caseinate are described in depth below.

1

2 Example Method 4

3

4 Preparation of whey protein stabilised emulsions (oil in
5 water) was carried out wherein the emulsions contained
6 50, 100 or 150 gkg⁻¹ fat and had fat:protein rations of
7 10:1 or 20:1.

8 Whey protein concentrate (75%) was added to distilled
9 water, warmed to 50°C and dissolved with stirring. The
10 pH of the solution is then adjusted to the required pH
11 value using citric acid solution (0.1M i.e. 19.2gL⁻¹). A
12 suitable oil, in this case a vegetable oil and sugar was
13 added. The addition of a sugar is to maintain a constant
14 solids level and may be omitted from the procedure. A
15 coarse emulsion is then formed using a Silverson high-
16 speed mixer (ca. 2 min at 50°C). The coarse emulsion is
17 then heated to either 65°C (equivalent to pasteurisation)
18 or to 85°C (a high heat treatment) for 30 minutes. The
19 emulsion is then cooled to 50°C and treated with a high
20 efficiency dispersion technique; in this case a
21 Microfluidiser at 5 passes at 10,000 psi.

22

23 Example Method 5

24

25 Sodium caseinateate stabilised emulsions were obtained as
26 follows.

27 An appropriate amount of sodium caseinateate was added to
28 500ml warm (65°C) distilled water to achieve a
29 fat:protein ration in the range 10:1 to 15:1 and
30 vigorously stirred. The pH is then adjusted to 1.5 by
31 the gradual addition of HCl (3.0M), maintaining the
32 temperature at 65°C. Fat and sucrose are then added
33 (typically to yield a fat content of 10-15%). Sucrose
34 can be omitted from the procedure if desired. The

1 mixture is then treated with a high shear Silverston
2 mixer for 2 minutes at 65°C. The final volume was
3 adjusted by addition of distilled water and treated with
4 a high efficiency dispersion technique, in this instance
5 using a Microfluidiser, typically at 5 passes at 10,000
6 psi.

7

8 It is recognised that although examples 5 and 6 have been
9 given for emulsions stabilised by either whey protein or
10 caseinateate, the emulsions may be stabilised by an
11 isolated milk protein, egg white protein, egg yolk
12 protein, soya protein or a mixture of proteins.

13

14 Figure 5 shows that irrespective of the acid which is
15 used to lower the pH of the protein solution, it is the
16 pH used in the method of producing the emulsions which
17 governs the efficiency of the protein stabilised
18 emulsions. However emulsions made by the present method
19 in hydrochloric acid solutions are slightly more disperse
20 than emulsions made in citric acid solutions. In
21 particular there is no significant effect of heating
22 temperature when citric acid is the acidulant, but with
23 hydrochloric acid the higher heat treatment results in a
24 more highly dispersed emulsion.

25

26 Previous examples of protein-stabilised emulsions have
27 described the use of fractionated or partially purified
28 food grade proteins. Mixtures of proteins can also be
29 used successfully. For example, whole milk protein may
30 be used to produce a stable emulsion at acid pH values.
31 There is advantage in carrying out preliminary treatment
32 to reduce the lactose and mineral content as follows.
33 Fat is removed from whole-milk by centrifugal separation

1 at high-speed (standard cream separator, 35° - 68°C). The
2 skim-milk is pasteurized (72°C/15s) to ensure microbial
3 stability then concentrated to half volume by
4 ultrafiltration (hollow fibre membrane, cut off 30,000
5 Daltons). Distilled water is added to restore the volume
6 and the mixture re-concentrated to half volume. An equal
7 volume of distilled water is added and the volume
8 reduction repeated. The resulting solution is depleted
9 of both carbohydrate and minerals and typically contains
10 >4% true protein. The protein solution is then treated
11 with citric acid to reduce the pH to 2.4. A stable
12 emulsion exhibiting the special characteristics
13 associated with the APSET technique may be made by
14 emulsifying lipid directly into the protein solution
15 using a Microfluidiser or traditional pump homogeniser.
16 The pre-treatment described above is inexpensive and
17 versatile because the protein content and degree of
18 purification may be readily adjusted by changing the
19 ratio of retentate to dilutant and by manipulating the
20 concentration further during ultrafiltration. In
21 addition, because the protein used for emulsification is
22 not dried significant cost savings accrue.

23

24 **Properties of the protein stabilised emulsions**

25

26 It was found that the protein stabilised emulsions
27 produced by this method were not destabilised by short-
28 term exposure to human saliva. The emulsions (pH 1.5)
29 were mixed with saliva, held for 15 seconds and then
30 decanted into simulated gastric fluid with no loss in
31 stability or visual change to the emulsion.

32

1 The protein stabilised emulsions were tested for
2 stability in gastric fluid using a simulated gastric
3 fluid. The simulated gastric fluid was prepared by
4 dissolving the following compounds in distilled water and
5 adjusting pH to pH 1.5 using Hydrochloric Acid.

6

7 Table 1 Compounds used to form simulated gastric fluid

8

Compound	gL ⁻¹
proteose peptone	8.3
d-glucose	3.5
sodium chloride	2.05
di-hydrogen potassium phosphate	0.6
calcium chloride	0.11
potassium chloride	0.37
pepsin	13.3
lysozyme	0.1
porcine bile	0.05

9

10 A range of emulsions was manufactured and warmed to 37°C
11 before mixing with the simulated gastric fluid in the
12 ratio 1:4. The mixture was incubated at 37°C for up to 5
13 hours and particle size distribution was monitored
14 regularly. The main effects over time for up to 5 hours,
15 on fat content, and fat:protein ratio of the emulsion
16 when incubated in simulated gastric fluid are shown in
17 Figure 6. When incubated in the simulated gastric fluid
18 there is a sharp decrease in the Specific surface area
19 within the first hour but very little thereafter. The
20 fat content of the emulsions has little effect on their
21 stability in simulated gastric fluid, however emulsions
22 with a fat:protein ratio of 10:1 are more stable in the
23 simulated gastric fluid than emulsions with a fat:protein
24 ration of 20:1. The latter can also be seen in Figure 4.

1 At a ratio of 10:1 there is no, or negligible significant
2 change in the emulsion particle size over a 5 hour
3 period. This is important as typically, this is within
4 the range of typical transit times for foods to pass from
5 the stomach to the lower digestive tract.

6

7 However, regardless of the stability of the emulsions in
8 the acidic conditions of the stomach, it will be
9 appreciated that in order for a bio active agent to be
10 absorbed into the systemic circulation it will be
11 necessary for the emulsions to be degraded in the small
12 intestine to release the bioactive material contained
13 within. A milk protein stabilised emulsion prepared by
14 the described method was tested in simulated ileal fluid
15 in order to analyse the potential of the emulsion to be
16 degraded in the small intestine. The simulated ileal
17 fluid with a pH of 7 was prepared using the ingredients
18 set out in Table 2:

19

20 Table 2 . Ingredients of simulated ileal fluid

21

Substance	Quantity
proteose peptide	5.7gL ⁻¹
D-Glucose	2.4 gL ⁻¹
NaCl	6.14gL ⁻¹
KH ₂ PO ₄	0.68gL ⁻¹
Na _{H2} PO ₄	0.30gL ⁻¹
Na _{HCO3}	1.01gL ⁻¹
Porcine Bile	11.2gL ⁻¹
alpha-amylase	1000 units/l
chymotrypsin	380 units/l
trypsin	110 units/l
lipase	960 units/l
Lysozyme	0.20gL ⁻¹

22

1 The emulsions were tested in the simulated gastric fluid,
2 as previously described at a 1:4 ratio at pH 1.5, for 3
3 hours at 37 °C. Then portions of the gastric content,
4 including the emulsion, were mixed with the simulated
5 ileal fluid (1:4 ratio pH 7.0) and incubated at 37 °C for
6 up to 4 hours. Lipids are usually degraded to free fatty
7 acids by enzymes in the small intestine. Therefore to
8 measure degradation in the small intestine, the free
9 fatty acid content of the mixture was measured at hourly
10 intervals, the results of which are shown in Figure 7. A
11 progressive increase in free fatty acid content was
12 observed.

13

14 Therefore the protein stabilised emulsions made by the
15 present method are stable in a simulated gastric
16 environment for up to 5 hours but degrade in conditions
17 close to those in the ileum. More particularly oil-in-
18 water emulsions become susceptible to lipase attack and
19 liberate free fatty acid whereas water-in-oil-in-water
20 emulsions release the encapsulated aqueous insertions as
21 a result of destabilisation of the outer protective
22 protein layer.

23

24 The novel emulsions described here are stable in
25 solutions of aqueous ethanol. Figure 8a is a main
26 effects plot for the effect of changes in pH, fat
27 content, fat:protein ration (f/p) and storage temperature
28 on the stability of the protein stabilised emulsions in
29 ethanol one day after manufacture whilst Figure 8b shows
30 the effects of the aforementioned features on ethanol
31 stability 3 days after manufacture. It can be seen from
32 the Figures 8a and 8b that the pH used when preparing the
33 emulsions is the predominant influence on ethanol

1 stability with modest secondary effects of the fat
2 content and fat:protein ratio of the emulsions. The
3 ethanol stability is also higher after 3 days.

4

5 In one form of the invention the emulsions can be used in
6 alcoholic drinks such as cream liqueurs.

7

8 **Example Method 7**

9

10 Sodium caseinateate equivalent to a final concentration
11 of 5% is added to distilled water that is warmed to 65°C,
12 and stirred. 5M of Hydrochloric Acid is then added drop
13 by drop until the protein solution is fully solubilised.

14 The pH is then adjusted back to 2.5 using 2M sodium
15 hydroxide solution and sucrose, equivalent to a final
16 concentration of 10% is added. A pre-emulsion is made
17 using a high shear mixer, and then homogenised using a
18 Microfluidiser (65°C 10,000psi, 5 passes). The emulsion
19 is cooled on ice to below 6°C and ethanol added to a
20 final concentration of 10%. The resulting product has a
21 very strong alcohol content and was found to have no
22 significant deterioration when stored for 21 days at
23 30°C.

24

25 The protein stabilised emulsions and methods for
26 manufacturing protein stabilised emulsions described in
27 the present invention can be used to stabilise sensitive
28 bio-active compounds for example retinol. Inclusion of
29 the compounds in the oil phase ensures a fine dispersion
30 of the bio-active material and aids assimilation.

31 Additionally the emulsions are both microbiologically
32 stable due to the acidity and heat treatment used in
33 their manufacture. In other instances the emulsification

1 process can be carried out at slightly lower temperatures
2 for example 50°C to restrict heat damage to the bioactive
3 compound.

4

5 The manufacture of micro-emulsions with a particle
6 droplet size of less than 1 μ is comparatively simple to
7 achieve. Emulsions of this type produced by the APSET
8 process are both physically stable and Brownian motion
9 ensures that creaming takes place very slowly, ie over a
10 period of years. Micro-emulsions are ideal for carrying
11 lipid-soluble material but cannot encapsulate particles
12 of the dimensions associated with bacteria (0.5 - 2 μ).

13 To protect such particles the emulsions must have a
14 droplet diameter in excess of the particle to be
15 protected. Ideally, the particles would have diameters
16 in the range 5 - 20 μ . Stable emulsions of this kind can
17 be made by the APSET principle. For example, macro
18 emulsions can be made in the following way:

19

20 Whey protein concentration (WPC 75, 17.5 g) is dissolved
21 in distilled water (50°, 250 g). The pH is adjusted to pH
22 1.5 using hydrochloric acid. Soya oil (170 g) is blended
23 in by a high speed laboratory mixer (Silverson Machines,
24 Chesham, Bucks) fitted with an emulsifying head. The
25 total mass is adjusted to 500 g by addition of water (at
26 50°C). Starch (0.1%) is blended in and gelatinised by
27 treatment at 80°C for 15 minutes. The resulting emulsion
28 is transferred to sterile pots, with lids, cooled rapidly
29 to <20°C and stored. The emulsions are stable for at
30 least several weeks at 6°C. A typical particle size
31 distribution is:

1

Threshold diameter (μ)	Particles below threshold (%)	Particle s in range (%)
43	98.5	2.4
35	96.1	3.7
28	92.4	15.2
19	77.2	13.4
15	63.8	28.2
10	35.6	14.1
6	21.5	9.8
3.5	12.0	

2

3

4 The procedure alone is by way of example only. The
5 starch is not essential and may be replaced by any
6 hydrocolloid or food grade material that is stable in the
7 pH range 1.5 - 4.0 and which increases the viscosity of
8 the emulsion sufficiently to inhibit creaming during
9 extended storage.

10

11 The emulsions may also be used to transport a variety of
12 agents including but not limited to bacterium, protein
13 and peptides, hormones, vaccines, gene therapeutics,
14 conventional drugs nutrients and vitamins through the
15 upper gastro-intestinal tract.

16

17 Further modifications and improvements may be
18 incorporated without departing from the scope of the
19 invention herein intended.

1 **CLAIMS**

2

3 1. A method of producing protein stabilised emulsions,
4 comprising the steps of decreasing the pH of a
5 protein solution, to convert it to a cationic form,
6 heating the solution until the protein is
7 solubilised, and then adding a lipid.

8

9 2. A method as claimed in Claim 1, wherein the protein
10 solution is heated to approximately 65°C.

11

12 3. A method as claimed in any one of the preceding
13 Claims, wherein the pH value is decreased to between
14 1.5 and 3.5.

15

16 4. A method as claimed in any one of Claims 1-3 wherein
17 the protein solution comprises fractionated or
18 partially purified food grade proteins.

19

20 5. A method as claimed in any one of Claims 1-3 wherein
21 the protein solution comprises a protein mixture.

22

23 6. A method as claimed in any one of the preceding
24 Claims, wherein the protein in the protein solution
25 is soya protein.

26

27 7. A method as claimed in any one of Claims 1 -3,
28 wherein the protein in the protein solution is egg
29 white protein.

30

31 8. A method a claimed in any one of Claims 1 - 3,
32 wherein the protein in the protein solution is egg
33 yolk protein.

1

2 9. A method as claimed in any one of the preceding
3 Claims, wherein the lipid is of animal origin.

4

5 10. A method as claimed in any one of Claims 1 - 8,
6 wherein the lipid is of vegetable origin.

7

8 11. A method as claimed in any one of Claims 1 - 8,
9 wherein the lipid is of fish origin.

10

11 12. A method as claimed in any one of the preceding
12 Claims, wherein the fat:protein ratio of the final
13 emulsions lies between 10:1 and 20:1.

14

15 13. A method as claimed in any one of the preceding
16 Claims, wherein a pre-emulsion is made from the
17 protein solution and lipid by high speed mixing.

18

19 14. A method as claimed in Claim 13, wherein the pre-
20 emulsion is treated with a high efficiency
21 dispersion technique to prevent creaming.

22

23 15. A method as claimed in Claim 14, wherein the high
24 efficiency dispersion technique is a valve
25 homogeniser.

26

27 16. A method as claimed in Claim 14, wherein the high
28 efficiency dispersion technique is a high shear
29 mixer.

30

31 17. A method as claimed in Claim 14, wherein the high
32 efficiency dispersion technique is a microfluidiser.

33

- 1 18. A method as claimed in Claim 14, wherein the high
- 2 efficiency dispersion technique is
- 3 ultrasonification.
- 4
- 5 19. A method as claimed in any one of the preceding
- 6 Claims, wherein the pH of the solution is lowered by
- 7 the addition of an acidic solution.
- 8
- 9 20. A method as claimed in Claim 19, wherein the acidic
- 10 solution is hydrochloric acid.
- 11
- 12 21. A method as claimed in Claim 19, wherein the acidic
- 13 solution is citric acid.
- 14
- 15 22. A method as claimed in any one of the preceding
- 16 Claims, wherein the pH of the final solution is
- 17 increased by the addition of an alkali solution.
- 18
- 19 23. A method as claimed in Claim 22, wherein the alkali
- 20 solution is sodium hydroxide.
- 21
- 22 24. A method as claimed in any one of the preceding
- 23 Claims, wherein a sugar is added.
- 24
- 25 25. An oil and water emulsion which is stable at low pH
- 26 and in aqueous ethanol, wherein the emulsion is
- 27 comprised of a lipid stabilised by a protein in a
- 28 cationic form.
- 29
- 30 26. An oil and water emulsion which is stable at low pH
- 31 and in aqueous ethanol, wherein the emulsion is
- 32 comprised of a lipid stabilised by a protein in a

1 cationic form by the method described in Claims 1 -
2 24.

3

4 27. An oil and water emulsion as claimed in Claim 25-26,
5 wherein the lipid contains one or more bioactive
6 compounds.

7

8 28. An oil and water emulsion as claimed in Claims 25 -
9 26, wherein the lipid contains lipid soluble
10 compounds.

11

12 29. An oil and water emulsion as claimed in Claims 25 -
13 26, wherein the lipid contains a nutrient.

14

15 30. An oil and water emulsion as claimed in Claims 25 -
16 26, wherein the lipid contains a vitamin.

17

18 31. An oil and water emulsion as claimed in Claims 25 -
19 26, wherein the lipid contains a pharmaceutical
20 agent.

21

22 32. An oil and water emulsion as claimed in Claims 25 -
23 26, wherein the lipid contains a hormone.

24

25 33. An oil and water emulsion as claimed in Claims 25 -
26, wherein the lipid contains a vaccine.

27

28 34. An oil and water emulsion as claimed in Claims 25 -
29 26, wherein the lipid contains a protein or peptide.

30

31 35. A water and oil in water emulsion which is stable at
32 low pH and in aqueous ethanol, wherein the emulsion
33 is comprised of a lipid stabilised by a protein in a

1 cationic form, wherein the lipid also comprises one
2 or more aqueous inclusions stabilised at the water
3 oil interface by a protein, and wherein the aqueous
4 inclusions contain inserted material.

5

6 36. A water and oil in water emulsion which is stable at
7 low pH and in aqueous ethanol, wherein the emulsion
8 is comprised of a lipid stabilised by a protein in a
9 cationic form by the method described in Claims 1-
10 24, wherein the lipid also comprises one or more
11 aqueous inclusions stabilised at the water oil
12 interface by a protein, and wherein the aqueous
13 inclusions contain inserted material.

14

15 37. A water in oil in water emulsion as claimed in
16 Claims 35-36, wherein the inserted material includes
17 water soluble compounds.

18

19 38. A water in oil in water emulsion as claimed in
20 Claims 35-36, wherein the inserted material includes
21 a nutrient.

22

23 39. A water in oil in water emulsion as claimed in
24 Claims 35-36, wherein the inserted material includes
25 a vitamin.

26

27 40. A water in oil in water emulsion as claimed in
28 Claims 35-36, wherein the inserted material includes
29 bacteria.

30

31 41. A water in oil in water emulsion as claimed in
32 Claims 35-36, wherein the inserted material includes
33 a pharmaceutical agent.

1

2 42. A water in oil in water emulsion as claimed in
3 Claims 35-36, wherein the inserted material includes
4 a protein or peptide.

5

6 43. A water in oil in water emulsion as claimed in Claim
7 40, wherein the lipid contains nutrients which
8 promote bacterial growth.

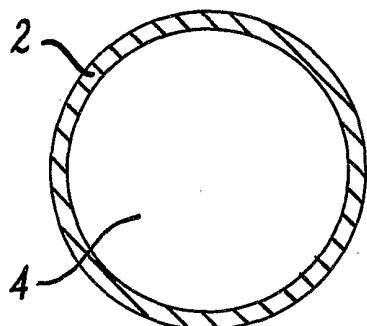
9

10 44. A water in oil in water emulsion as claimed in
11 Claims 35- 43, wherein the size of the aqueous
12 inclusions is not limited and can be adapted to suit
13 the size of the inserted material.

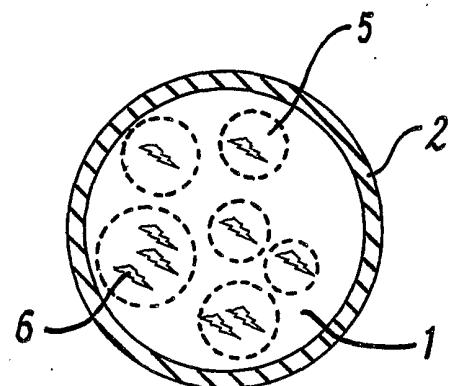
14

15 45. A water in oil in water emulsion as claimed in
16 Claims 35 - 44, wherein a soluble hydrocolloid may
17 be added.

18


19 46. A water in oil in water emulsion as claimed in
20 Claims 35 - 45, wherein a carbohydrate is added.

21


22 47. A food or beverage comprising protein stabilised
23 emulsions according to Claims 25 - 46.

24

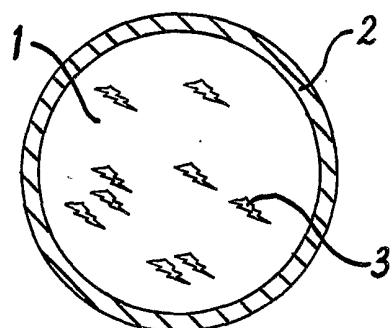

25 48. Acidic, freeze-thaw stable edible sauces or
26 dressings comprising protein stabilised emulsions
27 according to Claims 25 - 46.

Fig. 1a

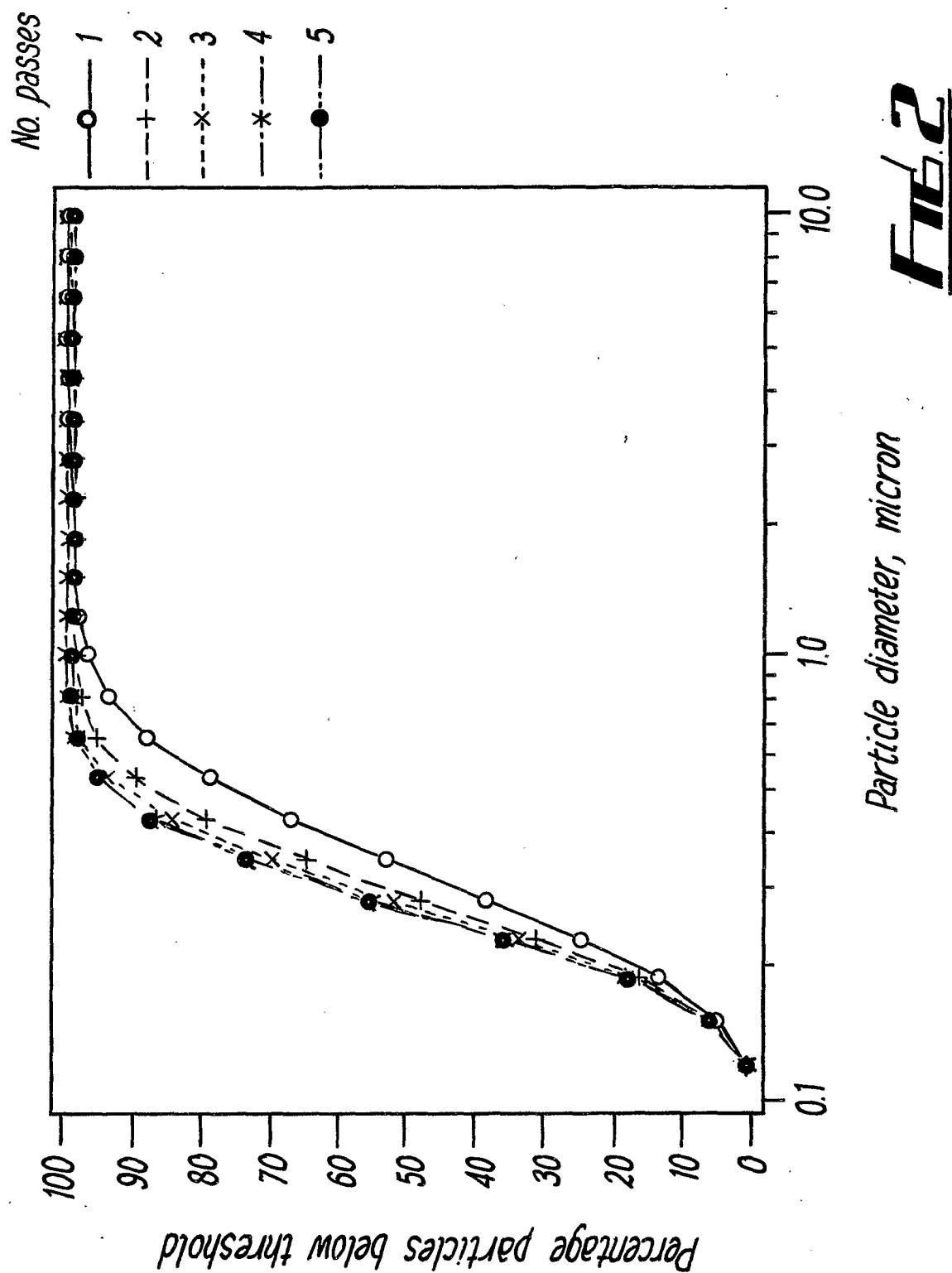

Fig. 1c

Fig. 1b

Fig. 1d

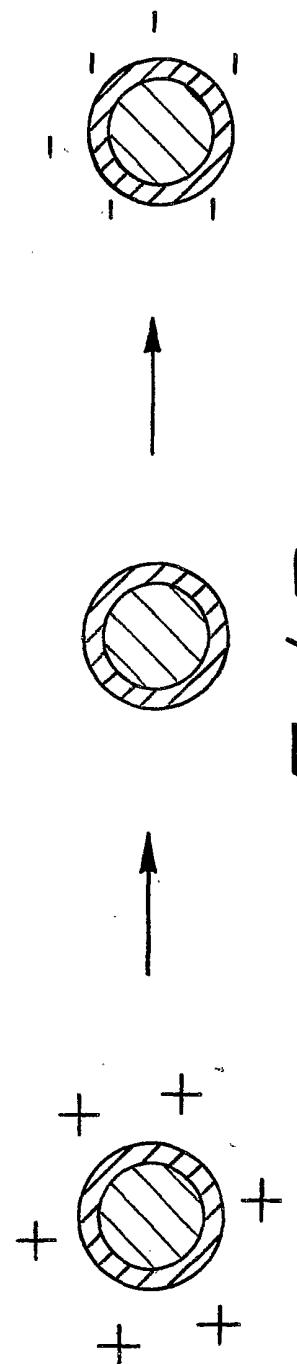
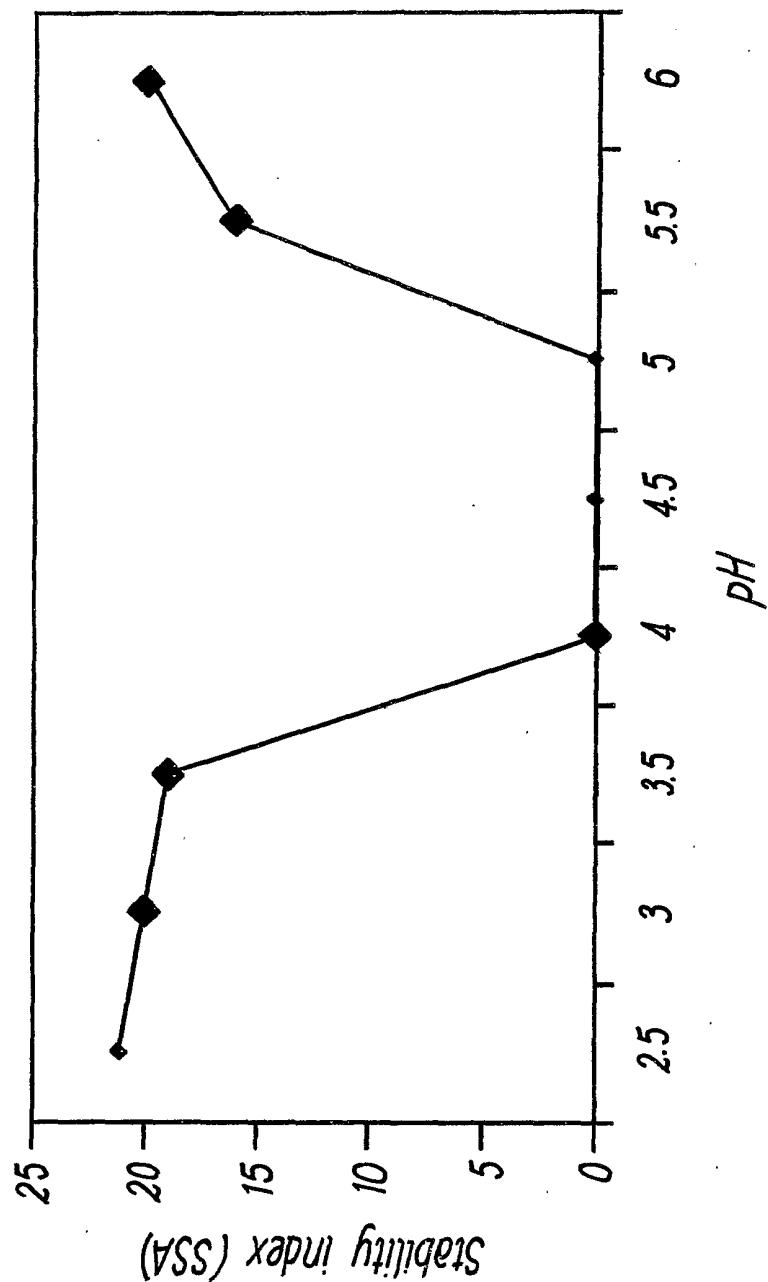
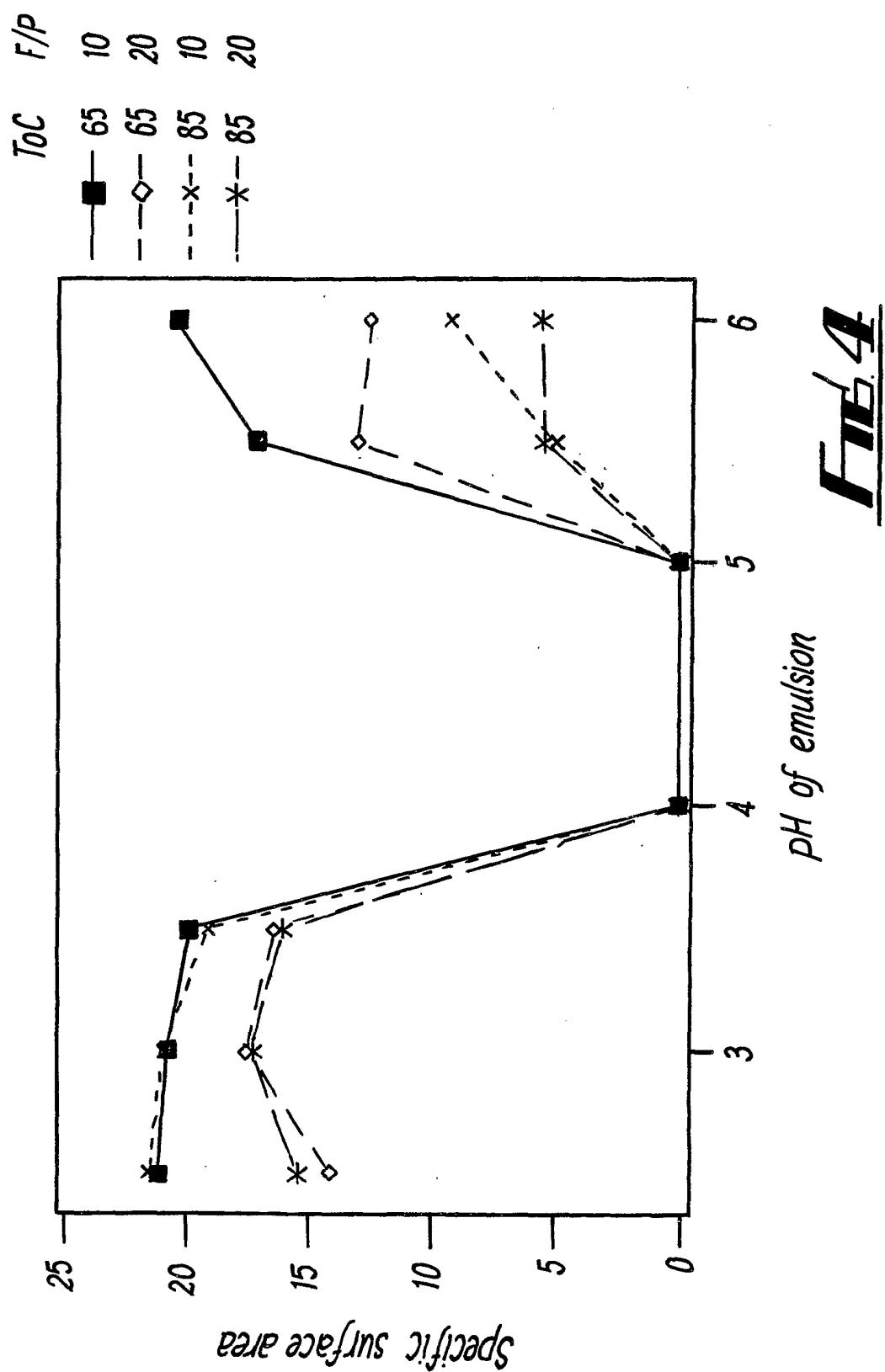
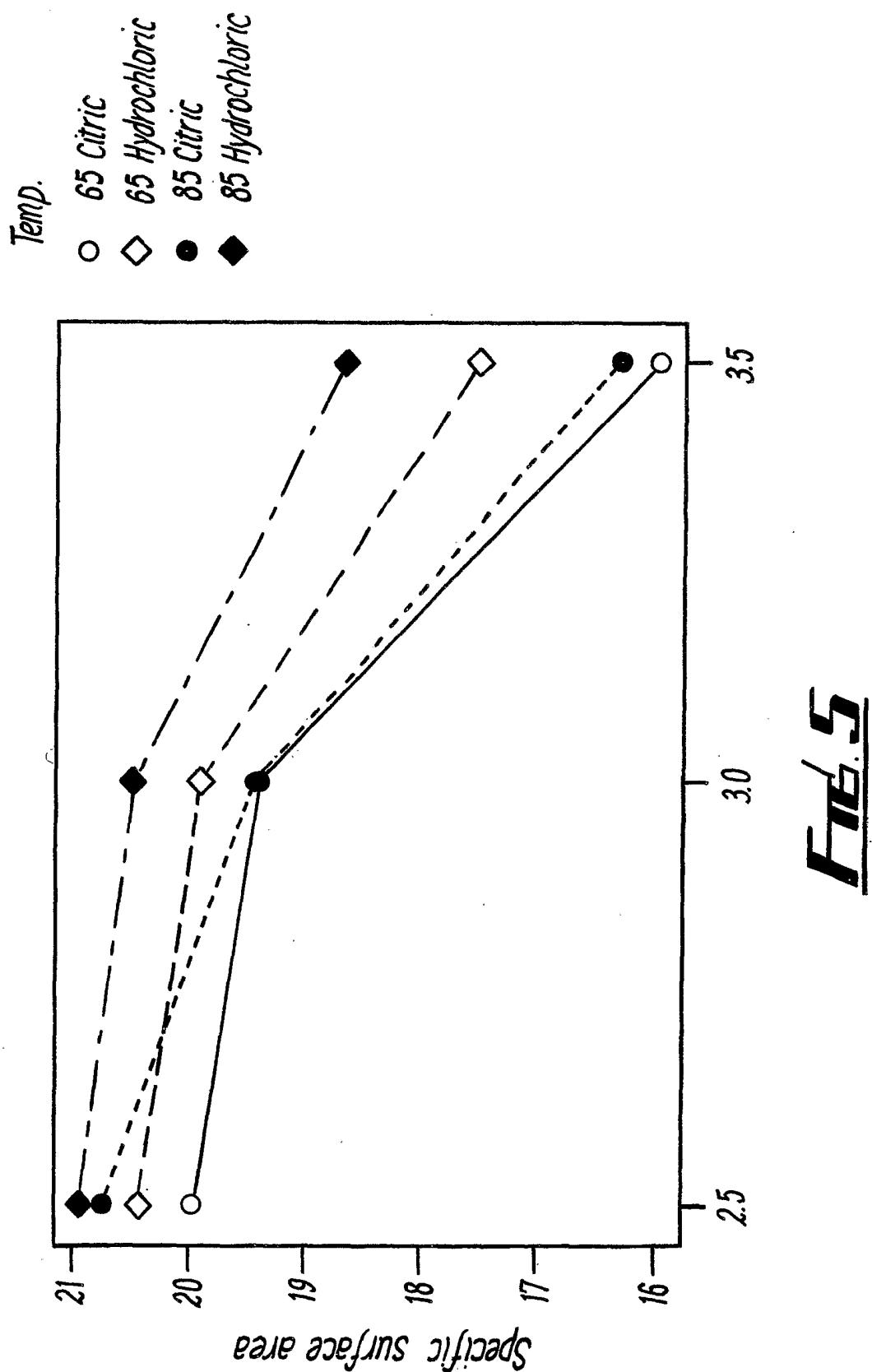





FIG. 3

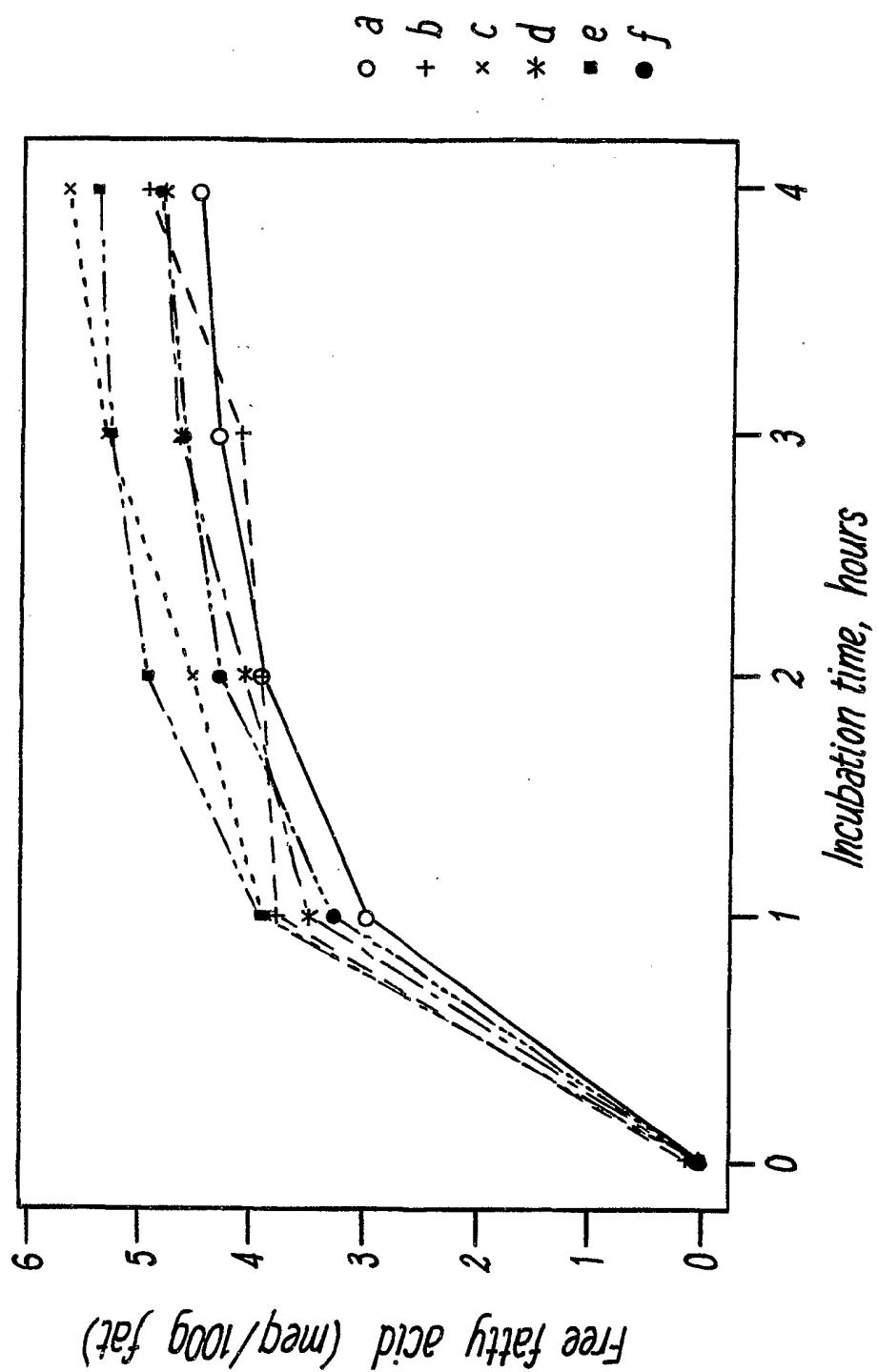
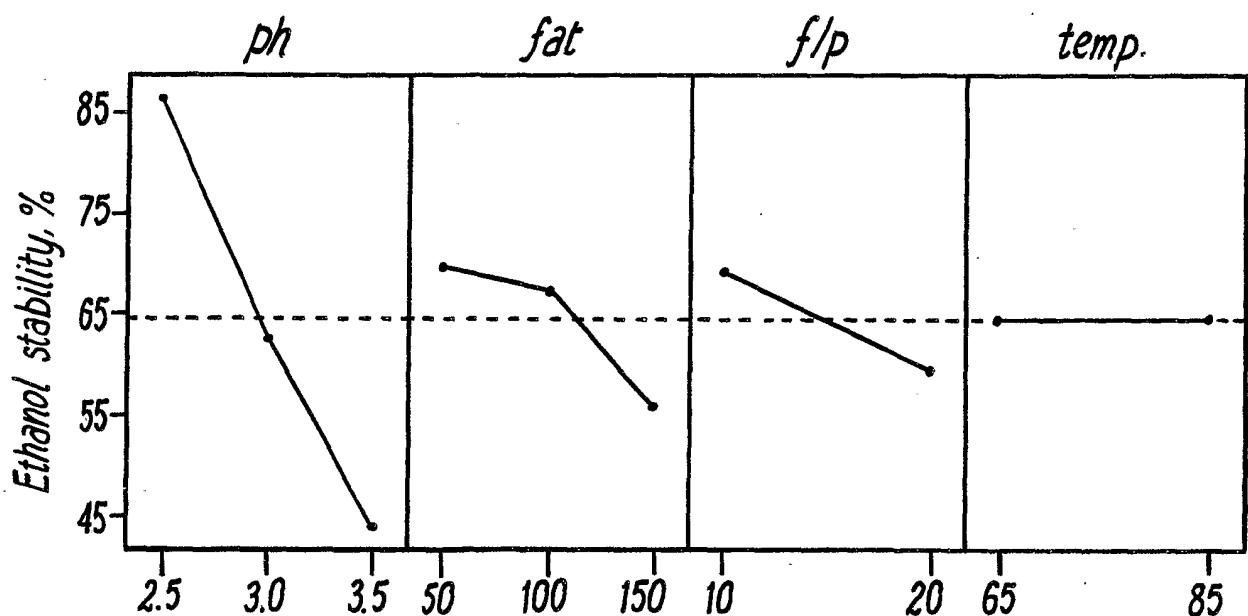
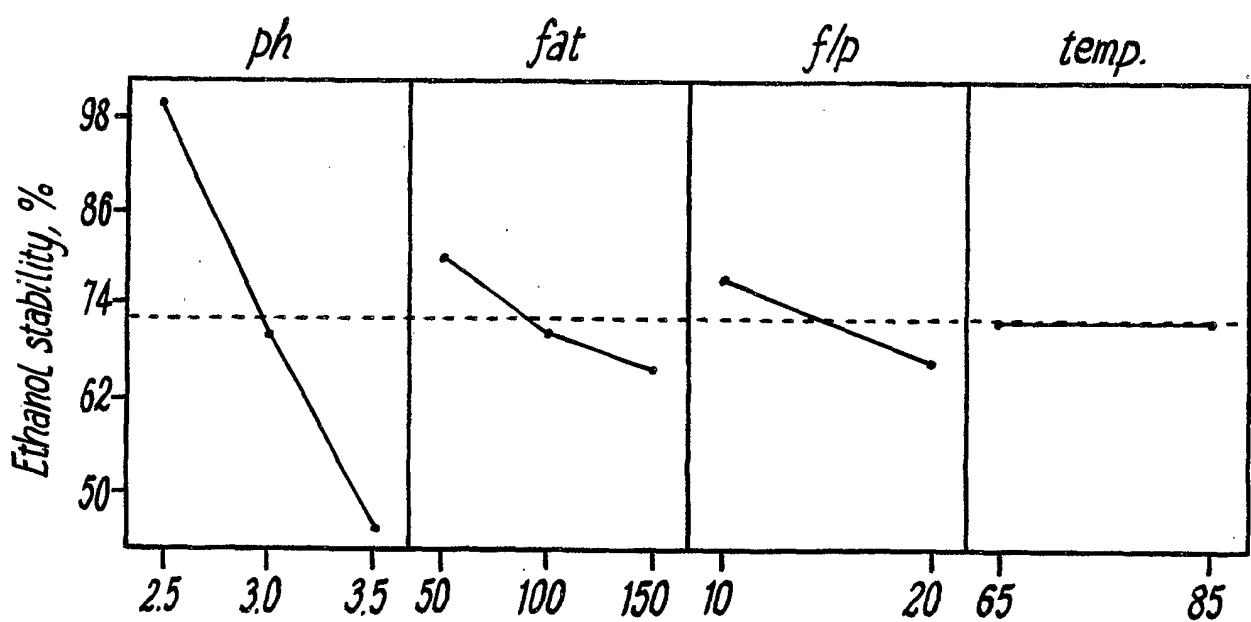




Fig. 7

FitBa

Фільми

INTERNATIONAL SEARCH REPORT

I tional Application No
PCT/GB 01/01482

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A23D7/00 A61K9/107 A23L1/24 A23L1/39 A23L1/38
A23J3/08 A23J3/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A23D A61K A23L A23J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, PAJ, FSTA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 304 795 A (TAKADA MORITAKA ET AL) 8 December 1981 (1981-12-08) the whole document ----	1-48
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 09, 30 July 1999 (1999-07-30) & JP 11 098960 A (FUJI OIL CO LTD), 13 April 1999 (1999-04-13) abstract ----	1-48
A	EP 0 702 902 A (NESTLE SA) 27 March 1996 (1996-03-27) the whole document ----	1-48 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

7 August 2001

Date of mailing of the international search report

14/08/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

De Jong, E

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 01/01482

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10, 31 October 1997 (1997-10-31) & JP 09 149772 A (Q P CORP), 10 June 1997 (1997-06-10) abstract ----	1-48
A	EP 0 914 777 A (KYOWA HAKKO KOGYO KK) 12 May 1999 (1999-05-12) page 2, line 1 -page 5, line 20; example 14 ----	1-48
A	EP 0 776 657 A (HENKEL KGAA) 4 June 1997 (1997-06-04) claims 1-7 ----	1-48
A	US 4 183 960 A (VOGLER TINA C ET AL) 15 January 1980 (1980-01-15) claims 1-48 ----	1-48
A	EP 0 212 875 A (TUCKER W G) 4 March 1987 (1987-03-04) page 10-14; claims 1-13 ----	1-48
A	DICKINSON E: "PROTEINS AT INTERFACES AND IN EMULSIONS. STABILITY, RHEOLOGY AND INTERACTIONS" JOURNAL OF THE CHEMICAL SOCIETY. FARADAY TRANSACTIONS, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 94, no. 12, 21 June 1998 (1998-06-21), pages 1657-1669, XP000781909 ISSN: 0956-5000 the whole document -----	1-48

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/GB 01/01482

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 4304795	A 08-12-1981	JP 55099173 A			28-07-1980
JP 11098960	A 13-04-1999	NONE			
EP 0702902	A 27-03-1996	AT 198121 T			15-01-2001
		BR 9504127 A			06-08-1996
		DE 69426450 D			25-01-2001
		DK 702902 T			05-03-2001
		ES 2153400 T			01-03-2001
		US 5837308 A			17-11-1998
JP 09149772	A 10-06-1997	NONE			
EP 0914777	A 12-05-1999	AU 6599098 A			27-05-1999
		CN 1216686 A			19-05-1999
		JP 11215956 A			10-08-1999
		US 6066352 A			23-05-2000
EP 0776657	A 04-06-1997	DE 19542139 A			15-05-1997
		DE 29520750 U			14-03-1996
US 4183960	A 15-01-1980	NONE			
EP 0212875	A 04-03-1987	AU 6083686 A			19-02-1987
		DK 381886 A			13-02-1987
		JP 62089617 A			24-04-1987