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(57) Abstract: A video encoder divides a picture into a plurality of picture partitions, such as tiles or wavefront parallel processing 
(WPP) waves. The picture partitions are associated with non-overlapping subsets of the treeblocks of the picture. The video encoder 
generates a coded slice network abstraction layer (NAL) unit that includes encoded representations of the treeblocks associated with 
a slice of the picture. The coded treeblocks are grouped within the coded slice NAL unit into segments associated with different ones 
of the picture partitions. The video encoder pads one or more of the segments such that each of the segments begins on a byte 
boundary.
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PADDING OF SEGMENTS IN CODED SLICE NAL UNITS

[0001] This application claims the benefit of U.S. Provisional Application No. 

61/557,259, filed November 8, 2011, the entire content of which is incorporated herein 

by reference. This application also claims the benefit of U.S. Provisional Application 

61/555,932, filed November 4, 2011.

TECHNICAL FIELD

[0002] This disclosure relates to video coding (i.e., encoding or decoding of video data).

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, digital 

cameras, digital recording devices, digital media players, video gaming devices, video 

game consoles, cellular or satellite radio telephones, video teleconferencing devices, and 

the like. Digital video devices implement video compression techniques, such as those 

described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T 

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video 

Coding (HEVC) standard presently under development, and extensions of such 

standards, to transmit, receive and store digital video information more efficiently.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice may be partitioned into video 

blocks, which may also be referred to as treeblocks, coding units (CUs) and/or coding 

nodes. Video blocks in an intra-coded (I) slice of a picture are encoded using spatial 

prediction with respect to reference samples in neighboring blocks in the same picture. 

Video blocks in an inter-coded (P or B) slice of a picture may use spatial prediction with 

respect to reference samples in neighboring blocks in the same picture or temporal 

prediction with respect to reference samples in other reference pictures. Pictures may 

be referred to as frames, and reference pictures may be referred to a reference frames.



2
20

12
33

24
17

 
26

 Ju
n2

01
5

SUMMARY

[0005] In general, this disclosure describes techniques for encoding and decoding video 

data. A video encoder may divide a picture into a plurality of picture partitions. The 

picture partitions include non-overlapping subsets of the treeblocks of the picture. 

Example types of picture partitions include tiles and wavefront parallel processing 

(WPP) waves. The video encoder may generate a coded slice network abstraction layer 

(NAL) unit that includes encoded representations of the treeblocks associated with a 

slice of the picture. The video encoder generates the coded slice NAL unit such that the 

coded treeblocks are grouped within the coded slice NAL unit by the picture partitions 

to which the treeblocks belong. The video encoder may pad one or more of the 

segments such that each of the segments begins on a byte boundary. A video decoder 

may decode coded treeblocks of the coded slice NAL unit.

[0006] In one aspect, this disclosure describes a method for encoding video data, the 

method including:

generating a coded slice network abstraction layer (NAL) unit that includes 

encoded representations of video blocks that are associated with a slice of the picture, 

wherein the picture is divided into a plurality of slices; and

encoding the picture,

wherein the method further includes:

dividing the picture into a plurality of wavefront parallel processing

(WPP) waves, each of the WPP waves corresponding to a different row of video 

blocks in the picture, wherein the encoded representations of the video blocks 

are grouped within the coded slice NAL unit into segments associated with 

different ones of the WPP waves; and

padding one or more of the segments, such that each of the segments 

begins on a byte boundary, 

wherein the picture is encoded using WPP.

[0007] In another aspect, this disclosure describes a method of decoding video data, the 

method including:

storing a coded slice network abstraction layer (NAL) unit that includes encoded 

representations of video blocks associated with a slice of a picture, the picture 

partitioned into a plurality wavefront parallel processing (WPP) waves, each of the 

WPP waves corresponding to a different row of video blocks in the picture, the encoded
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of the WPP waves, wherein one or more of the segments are padded such that each of 

the segments begins at a byte boundary; and

decoding the picture using WPP.
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Paragraphs [0008] to [0013] have been intentionally deleted.

[0014] The details of one or more examples are set forth in the accompanying drawings 

and the description below. Other features, objects, and advantages will be apparent 

from the description and drawings, and from the claims.--------------------------------------7
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treeblocks of the picture. The one or more processors are also configured to generate a 

coded slice NAL unit that includes encoded representations of the treeblocks that are 

associated with a slice of the picture. The encoded representations of the treeblocks are 

grouped within the coded slice NAL unit into segments associated with different ones of 

the picture partitions. One or more of the segments are padded such that each of the 

segments begins on a byte boundary.

[0009] In another aspect, this disclosure describes a video decoding device that decodes 

video data. The video decoding device comprises a memory that stores a coded slice 

NAL unit that includes encoded representations of treeblocks associated with a slice of a 

picture. The picture is divided into a plurality of picture partitions. The encoded 

representations of the treeblocks are grouped into segments associated with different 

ones of the picture partitions. One or more of the segments are padded such that each of 

the segments begins at a byte boundary. The video decoding device also comprises one 

or more processors that are configured to decode the encoded representations of the 

treeblocks.

[0010] In another aspect, this disclosure describes a computer program product that 

comprises one or more computer-readable storage media that store instructions that, 

when executed by one or more processors, configure a video encoding device to divide 

a picture into a plurality of picture partitions. The picture has a plurality of treeblocks. 

The picture partitions are associated with non-overlapping subsets of the treeblocks of 

the picture. The instructions also configure the video encoding device to generate a 

coded slice NAL unit that includes encoded representations of the treeblocks that are 

associated with a slice of the picture. The encoded representations of the treeblocks are 

grouped within the coded slice NAL unit into segments associated with different ones of 

the picture partitions. One or more of the segments are padded such that each of the 

segments begins on a byte boundary.
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BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 is a block diagram illustrating an example video coding system that may 

utilize the techniques of this disclosure.

[0016] FIG. 2 is a block diagram illustrating an example video encoder that is 

configured to implement the techniques of this disclosure.

[0017] FIG. 3 is a block diagram illustrating an example video decoder that is 

configured to implement the techniques of this disclosure.

[0018] FIG. 4 is a flowchart that illustrates an example operation to generate slice data 

for a slice of a picture.

[0019] FIG. 5 is a flowchart that illustrates an example operation to decode a coded 

slice NAL unit.

[0020] FIG. 6 is a conceptual diagram that illustrates wavefront parallel processing. 

[0021] FIG. 7 is a conceptual diagram that illustrates an example coding order when a 

picture is partitioned into a plurality of tiles.

[0022] FIG. 8 is a conceptual diagram that illustrates an example coded slice NAL unit.

DETAILED DESCRIPTION

[0023] A picture includes a plurality of treeblocks. The treeblocks are associated with 

two-dimensional video blocks within the picture. A video encoder divides the picture 

into a plurality of picture partitions. For example, the video encoder may divide the 

picture into tiles or wavefront parallel processing (WPP) waves. In other words, this 

disclosure may use the term “picture partition” to refer generically to tiles or WPP 

waves. The picture partitions are associated with non-overlapping subsets of the 

treeblocks of the picture. For instance, each treeblock of the picture may be associated 

with exactly one of the picture partitions.

[0024] The video encoder may generate a coded slice Network Abstraction Layer 

(NAL) unit. The coded slice NAL unit may include encoded representations of each 

treeblock associated with a slice of the picture. This disclosure may refer to an encoded 

representation of a treeblock as a coded treeblock. A coded treeblock may include a 

sequence of bits that represent the video block associated with a treeblock. The 

sequence of bits in a coded treeblock may represent a sequence of syntax elements. 

[0025] The video encoder may group the coded treeblocks within the coded slice NAL 

unit into segments. The segments are associated with different ones of the picture
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partitions. Each of the segments may be a consecutive series of bits, such as bits 

representing a series of one or more coded treeblocks and associated data. Thus, the 

coded slice NAL unit may include each coded treeblock associated with a first picture 

partition followed by each coded treeblock associated with a second picture partition, 

followed by each coded treeblock associated with a third picture partition, and so on. 

[0026] In accordance with the techniques of this disclosure, the video encoder may pad 

one or more of the segments such that each of the segments begins on a byte boundary. 

When the video encoder pads a segment, the video encoder may append padding bits to 

the segment. The padding bits may not have any semantic meaning, but may serve to 

ensure that a next segment begins at a byte boundary. In this way, the video encoder 

may provide byte alignment of tiles or WPP waves when the tiles or WPP waves are 

included in one coded slice NAL unit for parallel processing purposes.

[0027] A video decoder may store the coded slice NAL unit in byte addressed memory. 

The video decoder may then assign two or more of the segments to different decoding 

threads that operate in parallel. Each decoding thread decodes the coded treeblocks of 

the segment assigned to the decoding thread. Because each of the segments begins at a 

byte boundary, the video decoder may provide a memory address of a segment to a 

decoding thread when assigning the segment to the decoding thread. In this way, 

ensuring that each of the segments begins at a byte boundary may enable the video 

decoder to decode the segments in parallel in a simpler fashion than when the segments 

may begin at non-byte-boundary positions.

[0028] This may stand in contrast to conventional video encoders and conventional 

video decoders that do not ensure that the segments begin at byte boundaries. Because 

the segments may not begin at byte boundaries, a conventional video decoder that uses 

byte-wise memory addressing may be unable to decode the coded treeblocks in the 

segments in parallel. A conventional video decoder may use bit-wise memory 

addressing or byte-wise plus bit-wise addressing to enable decoding the coded 

treeblocks in the segments in parallel but with increased implementation and 

computation complexities.

[0029] The attached drawings illustrate examples. Elements indicated by reference 

numbers in the attached drawings correspond to elements indicated by like reference 

numbers in the following description. In this disclosure, elements having names that 

start with ordinal words (e.g., “first,” “second,” “third,” and so on) do not necessarily 

imolv that the elements have a particular order. Rather, such ordinal words are merely
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used to refer to different elements of a same or similar type. Furthermore, in the

following description, the “current picture” may refer to a picture that is currently being

encoded or decoded.

[0030] FIG. 1 is a block diagram that illustrates an example video coding system 10 that 

may utilize the techniques of this disclosure. As used described herein, the term “video 

coder” refers generically to both video encoders and video decoders. In this disclosure, 

the terms “video coding” or “coding” may refer generically to video encoding and video 

decoding.

[0031] As shown in FIG. 1, video coding system 10 includes a source device 12 and a 

destination device 14. Source device 12 generates encoded video data. Accordingly, 

source device 12 may be referred to as a video encoding device. Destination device 14 

may decode the encoded video data generated by source device 12. Accordingly, 

destination device 14 may be referred to as a video decoding device. Source device 12 

and destination device 14 may be examples of video coding devices.

[0032] Source device 12 and destination device 14 may comprise a wide range of 

devices, including desktop computers, mobile computing devices, notebook (e.g., 

laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called 

“smart” phones, televisions, cameras, display devices, digital media players, video 

gaming consoles, in-car computers, or the like. In some examples, source device 12 and 

destination device 14 may be equipped for wireless communication.

[0033] Destination device 14 may receive encoded video data from source device 12 via 

a channel 16. Channel 16 may comprise a type of medium or device capable of moving 

the encoded video data from source device 12 to destination device 14. In one example, 

channel 16 may comprise a communication medium that enables source device 12 to 

transmit encoded video data directly to destination device 14 in real-time. In this 

example, source device 12 may modulate the encoded video data according to a 

communication standard, such as a wireless communication protocol, and may transmit 

the modulated video data to destination device 14. The communication medium may 

comprise a wireless or wired communication medium, such as a radio frequency (RF) 

spectrum or one or more physical transmission lines. The communication medium may 

form part of a packet-based network, such as a local area network, a wide-area network, 

or a global network such as the Internet. The communication medium may include 

routers, switches, base stations, or other equipment that facilitates communication from 

source device 12 to destination device 14.
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[0034] In another example, channel 16 may correspond to a storage medium that stores 

the encoded video data generated by source device 12. In this example, destination 

device 14 may access the storage medium via disk access or card access. The storage 

medium may include a variety of locally accessed data storage media such as Blu-ray 

discs, DVDs, CD-ROMs, flash memory, or other suitable digital storage media for 

storing encoded video data. In a further example, channel 16 may include a file server 

or another intermediate storage device that stores the encoded video generated by source 

device 12. In this example, destination device 14 may access encoded video data stored 

at the file server or other intermediate storage device via streaming or download. The 

file server may be a type of server capable of storing encoded video data and 

transmitting the encoded video data to destination device 14. Example file servers 

include web servers (e.g., for a website), file transfer protocol (FTP) servers, network 

attached storage (NAS) devices, and local disk drives. Destination device 14 may 

access the encoded video data through a standard data connection, including an Internet 

connection. Example types of data connections may include wireless channels (e.g., 

Wi-Fi connections), wired connections (e.g., DSL, cable modem, etc.), or combinations 

of both that are suitable for accessing encoded video data stored on a file server. The 

transmission of encoded video data from the file server may be a streaming 

transmission, a download transmission, or a combination of both.

[0035] The techniques of this disclosure are not limited to wireless applications or 

settings. The techniques may be applied to video coding in support of any of a variety 

of multimedia applications, such as over-the-air television broadcasts, cable television 

transmissions, satellite television transmissions, streaming video transmissions, e.g., via 

the Internet, encoding of digital video for storage on a data storage medium, decoding of 

digital video stored on a data storage medium, or other applications. In some examples, 

video coding system 10 may be configured to support one-way or two-way video 

transmission to support applications such as video streaming, video playback, video 

broadcasting, and/or video telephony.

[0036] In the example of FIG. 1, source device 12 includes a video source 18, video 

encoder 20, and an output interface 22. In some cases, output interface 22 may include 

a modulator/demodulator (modem) and/or a transmitter. In source device 12, video 

source 18 may include a source such as a video capture device, e.g., a video camera, a 

video archive containing previously captured video data, a video feed interface to
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receive video data from a video content provider, and/or a computer graphics system for

generating video data, or a combination of such sources.

[0037] Video encoder 20 may encode the captured, pre-captured, or computer-generated 

video data. The encoded video data may be transmitted directly to destination device 14 

via output interface 22 of source device 12. The encoded video data may also be stored 

onto a storage medium or a file server for later access by destination device 14 for 

decoding and/or playback.

[0038] In the example of FIG. 1, destination device 14 includes an input interface 28, a 

video decoder 30, and a display device 32. In some cases, input interface 28 may 

include a receiver and/or a modem. Input interface 28 of destination device 14 receives 

encoded video data over channel 16. The encoded video data may include a variety of 

syntax elements generated by video encoder 20 that represent the video data. Such 

syntax elements may be included with the encoded video data transmitted on a 

communication medium, stored on a storage medium, or stored a file server.

[0039] Display device 32 may be integrated with or may be external to destination 

device 14. In some examples, destination device 14 may include an integrated display 

device and may also be configured to interface with an external display device. In other 

examples, destination device 14 maybe a display device. In general, display device 32 

displays the decoded video data to a user. Display device 32 may comprise any of a 

variety of display devices such as a liquid crystal display (LCD), a plasma display, an 

organic light emitting diode (OLED) display, or another type of display device.

[0040] Video encoder 20 and video decoder 30 may operate according to a video 

compression standard, such as the High Efficiency Video Coding (HEVC) standard 

presently under development, and may conform to a HEVC Test Model (HM). A recent 

draft of the upcoming HEVC standard, referred to as “HEVC Working Draft 6” or 

“WD6,” is described in document JCTVC-H1003, Bross et al., “High efficiency video 

coding (HEVC) text specification draft 6,” Joint Collaborative Team on Video Coding 

(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 8th Meeting: San 

Jose, California, USA, February, 2012, which, as of May 1, 2012, is downloadable 

from: http://phenix.int-

evry.fr/jct/doc_end_user/documents/8_San%20Jose/wgll/JCTVC-H1003-v22.zip, the 

entire content of which is incorporated herein by reference. Alternatively, video 

encoder 20 and video decoder 30 may operate according to other proprietary or industry 

standards, such as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part

http://phenix.int-
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10, Advanced Video Coding (AVC), or extensions of such standards, when picture 

partitioning techniques like tiles or wavefront parallel processing are included. The 

techniques of this disclosure, however, are not limited to any particular coding standard 

or technique. Other examples of video compression standards and techniques include 

MPEG-2, ITU-T H.263 and proprietary or open source compression formats such as 

VP8 and related formats, when picture partitioning techniques like tiles or wavefront 

parallel processing are included.

[0041] Although not shown in the example of FIG. 1, video encoder 20 and video 

decoder 30 may each be integrated with an audio encoder and decoder, and may include 

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding 

of both audio and video in a common data stream or separate data streams. If 

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223 

multiplexer protocol, or other protocols such as the user datagram protocol (UDP). 

[0042] Again, FIG 1 is merely an example and the techniques of this disclosure may 

apply to video coding settings (e.g., video encoding or video decoding) that do not 

necessarily include any data communication between the encoding and decoding 

devices. In other examples, data can be retrieved from a local memory, streamed over a 

network, or the like. An encoding device may encode and store data to memory, and/or 

a decoding device may retrieve and decode data from memory. In many examples, the 

encoding and decoding is performed by devices that do not communicate with one 

another, but simply encode data to memory and/or retrieve and decode data from 

memory.

[0043] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. When the 

techniques are implemented partially in software, a device may store instructions for the 

software in a suitable, non-transitory computer-readable storage medium and may 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be 

included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.

[0044] As mentioned briefly above, video encoder 20 encodes video data. The video 

data mav comnrise one or more pictures. Each of the pictures is a still image forming
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part of a video. In some instances, a picture may be referred to as a video “frame” or a

video "field". When video encoder 20 encodes the video data, video encoder 20 may

generate a bitstream. The bitstream may include a sequence of bits that form a coded

representation of the video data. The bitstream may include coded pictures and

associated data. A coded picture is a coded representation of a picture.

[0045] To generate the bitstream, video encoder 20 may perform encoding operations 

on each picture in the video data. When video encoder 20 performs encoding operations 

on the pictures, video encoder 20 may generate a series of coded pictures and associated 

data. The associated data may include sequence parameter sets, picture parameter sets, 

adaptation parameter sets, and other syntax structures. A sequence parameter set (SPS) 

may contain parameters applicable to zero or more sequences of pictures. Sequences of 

pictures may also be referred to as coded video sequences, as in H.264/AVC and 

HEVC. A picture parameter set (PPS) may contain parameters applicable to zero or 

more pictures. An adaptation parameter set (APS) may contain parameters applicable to 

zero or more pictures. Parameters in an APS may be parameters that are more likely to 

change than parameters in a PPS.

[0046] To generate a coded picture, video encoder 20 may partition a picture into 

equally-sized video blocks. A video block may be a two-dimensional array of samples. 

Each of the video blocks is associated with a treeblock. In some instances, a treeblock 

may be referred to as a largest coding unit (LCU) or a coding treeblock. The treeblocks 

of HEVC may be broadly analogous to the macroblocks of previous standards, such as 

H.264/AVC. However, a treeblock is not necessarily limited to a particular size and 

may include one or more coding units (CUs). Video encoder 20 may use quadtree 

partitioning to partition the video blocks of treeblocks into video blocks associated with 

CUs, hence the name “treeblocks.”

[0047] In some examples, video encoder 20 may partition a picture into a plurality of 

slices. Each of the slices may include an integer number of consecutively coded 

treeblocks. In some instances, each of the slices may include an integer number of 

consecutively coded CUs. As part of performing an encoding operation on a picture, 

video encoder 20 may perform encoding operations on each slice of the picture. When 

video encoder 20 performs an encoding operation on a slice, video encoder 20 may 

generate encoded data associated with the slice. The encoded data associated with the 

slice may be referred to as a “coded slice.”
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[0048] To generate a coded slice, video encoder 20 may perform encoding operations 

on each treeblock in a slice. When video encoder 20 performs an encoding operation on 

a treeblock, video encoder 20 may generate a coded treeblock. The coded treeblock 

may comprise data representing an encoded version of the treeblock.

[0049] When video encoder 20 generates a coded slice, video encoder 20 may perform 

encoding operations on (i.e., encode) the treeblocks in the slice according to a raster 

scan order. In other words, video encoder 20 may encode the treeblocks of the slice in 

an order that proceeds from left to right across a topmost row of treeblocks in the slice, 

then proceeds from left to right across a next lower row of treeblocks, and so on until 

video encoder 20 has encoded each of the treeblocks in the slice.

[0050] As a result of encoding the treeblocks according to the raster scan order, the 

treeblocks above and to the left of a given treeblock may have been encoded, but 

treeblocks below and to the right of the given treeblock have not yet been encoded. 

Consequently, video encoder 20 may be able to access information generated by 

encoding treeblocks above and to the left of the given treeblock when encoding the 

given treeblock. However, video encoder 20 may be unable to access information 

generated by encoding treeblocks below and to the right of the given treeblock when 

encoding the given treeblock.

[0051] To generate a coded treeblock, video encoder 20 may recursively perform 

quadtree partitioning on the video block of the treeblock to divide the video block into 

progressively smaller video blocks. Each of the smaller video blocks may be associated 

with a different CU. For example, video encoder 20 may partition the video block of a 

treeblock into four equally-sized sub-blocks, partition one or more of the sub-blocks 

into four equally-sized sub-sub-blocks, and so on. A partitioned CU may be a CU 

whose video block is partitioned into video blocks associated with other CUs. A non- 

partitioned CU may be a CU whose video block is not partitioned into video blocks 

associated with other CUs.

[0052] One or more syntax elements in the bitstream may indicate a maximum number 

of times video encoder 20 may partition the video block of a treeblock. A video block 

of a CU may be square in shape. The size of the video block of a CU (i.e., the size of 

the CU) may range from 8x8 pixels up to the size of a video block of a treeblock (i.e., 

the size of the treeblock) with a maximum of 64x64 pixels or greater.

[0053] Video encoder 20 may perform encoding operations on (i.e., encode) each CU of 

a treeblock according to a z-scan order. In other words, video encoder 20 may encode a
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top-left CU, a top-right CU, a bottom-left CU, and then a bottom-right CU, in that order. 

When video encoder 20 performs an encoding operation on a partitioned CU, video 

encoder 20 may encode CUs associated with sub-blocks of the video block of the 

partitioned CU according to the z-scan order. In other words, video encoder 20 may 

encode a CU associated with a top-left sub-block, a CU associated with a top-right sub­

block, a CU associated with a bottom-left sub-block, and then a CU associated with a 

bottom-right sub-block, in that order.

[0054] As a result of encoding the CUs of a treeblock according to a z-scan order, the 

CUs above, above-and-to-the-left, above-and-to-the-right, left, and below-and-to-the left 

of a given CU may have been encoded. CUs below and to the right of the given CU 

have not yet been encoded. Consequently, video encoder 20 may be able to access 

information generated by encoding some CUs that neighbor the given CU when 

encoding the given CU. However, video encoder 20 may be unable to access 

information generated by encoding other CUs that neighbor the given CU when 

encoding the given CU.

[0055] When video encoder 20 encodes a non-partitioned CU, video encoder 20 may 

generate one or more prediction units (PUs) for the CU. Each of the PUs of the CU 

may be associated with a different video block within the video block of the CU. Video 

encoder 20 may generate a predicted video block for each PU of the CU. The predicted 

video block of a PU may be a block of samples. Video encoder 20 may use intra 

prediction or inter prediction to generate the predicted video block for a PU.

[0056] When video encoder 20 uses intra prediction to generate the predicted video 

block of a PU, video encoder 20 may generate the predicted video block of the PU 

based on decoded samples of the picture associated with the PU. If video encoder 20 

uses intra prediction to generate predicted video blocks of the PUs of a CU, the CU is an 

intra-predicted CU. When video encoder 20 uses inter prediction to generate the 

predicted video block of the PU, video encoder 20 may generate the predicted video 

block of the PU based on decoded samples of one or more pictures other than the 

picture associated with the PU. If video encoder 20 uses inter prediction to generate 

predicted video blocks of the PUs of a CU, the CU is an inter-predicted CU.

[0057] Furthermore, when video encoder 20 uses inter prediction to generate a 

predicted video block for a PU, video encoder 20 may generate motion information for 

the PU. The motion information for a PU may indicate one or more reference blocks of 

the PU. Each reference block of the PU may be a video block within a reference
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picture. The reference picture may be a picture other than the picture associated with

the PU. In some instances, a reference block of a PU may also be referred to as the

“reference sample” of the PU. Video encoder 20 may generate the predicted video

block for the PU based on the reference blocks of the PU.

[0058] After video encoder 20 generates predicted video blocks for one or more PUs of 

a CU, video encoder 20 may generate residual data for the CU based on the predicted 

video blocks for the PUs of the CU. The residual data for the CU may indicate 

differences between samples in the predicted video blocks for the PUs of the CU and the 

original video block of the CU.

[0059] Furthermore, as part of performing an encoding operation on a non-partitioned 

CU, video encoder 20 may perform recursive quadtree partitioning on the residual data 

of the CU to partition the residual data of the CU into one or more blocks of residual 

data (i.e., residual video blocks) associated with transform units (TUs) of the CU. Each 

TU of a CU may be associated with a different residual video block.

[0060] Video coder 20 may apply one or more transforms to residual video blocks 

associated with the TUs to generate transform coefficient blocks (i.e., blocks of 

transform coefficients) associated with the TUs. Conceptually, a transform coefficient 

block may be a two-dimensional (2D) matrix of transform coefficients.

[0061] After generating a transform coefficient block, video encoder 20 may perform a 

quantization process on the transform coefficient block. Quantization generally refers 

to a process in which transform coefficients are quantized to possibly reduce the amount 

of data used to represent the transform coefficients, providing further compression. The 

quantization process may reduce the bit depth associated with some or all of the 

transform coefficients. For example, an «-bit transform coefficient may be rounded 

down to an m-bit transform coefficient during quantization, where n is greater than m. 

[0062] Video encoder 20 may associate each CU with a quantization parameter (QP) 

value. The QP value associated with a CU may determine how video encoder 20 

quantizes transform coefficient blocks associated with the CU. Video encoder 20 may 

adjust the degree of quantization applied to the transform coefficient blocks associated 

with a CU by adjusting the QP value associated with the CU.

[0063] After video encoder 20 quantizes a transform coefficient block, video encoder 

20 may generate sets of syntax elements that represent the transform coefficients in the 

quantized transform coefficient block. Video encoder 20 may apply entropy encoding
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operations, such as Context Adaptive Binary Arithmetic Coding (CABAC) operations,

to some of these syntax elements.

[0064] The bitstream generated by video encoder 20 may include a series of Network 

Abstraction Layer (NAL) units. Each of the NAL units may be a syntax structure 

containing an indication of a type of data in the NAL unit and bytes containing the data. 

For example, a NAL unit may contain data representing a sequence parameter set, a 

picture parameter set, a coded slice, one or more supplemental enhancement information 

(SEI) messages, an access unit delimiter, filler data, or another type of data. The data in 

a NAL unit may include various syntax structures.

[0065] Video decoder 30 may receive the bitstream generated by video encoder 20.

The bitstream may include a coded representation of the video data encoded by video 

encoder 20. When video decoder 30 receives the bitstream, video decoder 30 may 

perform a parsing operation on the bitstream. When video decoder 30 performs the 

parsing operation, video decoder 30 may extract syntax elements from the bitstream. 

Video decoder 30 may reconstruct the pictures of the video data based on the syntax 

elements extracted from the bitstream. The process to reconstruct the video data based 

on the syntax elements may be generally reciprocal to the process performed by video 

encoder 20 to generate the syntax elements.

[0066] After video decoder 30 extracts the syntax elements associated with a CU, video 

decoder 30 may generate predicted video blocks for the PUs of the CU based on the 

syntax elements. In addition, video decoder 30 may inverse quantize transform 

coefficient blocks associated with TUs of the CU. Video decoder 30 may perform 

inverse transforms on the transform coefficient blocks to reconstruct residual video 

blocks associated with the TUs of the CU. After generating the predicted video blocks 

and reconstructing the residual video blocks, video decoder 30 may reconstruct the 

video block of the CU based on the predicted video blocks and the residual video 

blocks. In this way, video decoder 30 may reconstruct the video blocks of CUs based 

on the syntax elements in the bitstream.

[0067] Video encoder 20 may divide the current picture into a plurality of picture 

partitions. The picture partitions may be associated with non-overlapping subsets of the 

treeblocks of the current picture. Video encoder 20 may divide the current picture into a 

plurality of picture partitions in various ways. As described below, video encoder 20 

may divide the current picture into a plurality of tiles or into a plurality of wavefront 

narallel nrocessine fWPP) waves. This disclosure may use the term “picture partition”
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to refer generically to both tiles and WPP waves. The process of dividing the current

picture into picture partitions may be referred to as “partitioning” the current picture

into picture partitions.

[0068] As mentioned above, video encoder 20 may divide the current picture into one 

or more tiles. Each of the tiles may comprise an integer number of treeblocks in the 

current picture. Video encoder 20 may divide the current picture into tiles by defining 

two or more vertical tile boundaries and two or more horizontal tile boundaries. Each 

vertical side of the current picture may be considered to be a vertical tile boundary.

Each horizontal side of the current picture may be considered to be a horizontal tile 

boundary. For example, if video encoder 20 defines four vertical tile boundaries and 

three horizontal tile boundaries for the current picture, the current picture is divided into 

six tiles.

[0069] A video coder, such as video encoder 20 or video decoder 30, may code the tiles 

of the current picture according to raster scan order. Furthermore, when the video coder 

codes a tile, the video coder may code each treeblock within the tile according to a 

raster scan order. In this way, the video coder may code each treeblock of a given tile 

of the current picture before coding any treeblock of another tile of the current picture. 

Consequently, the order in which the video coder codes the treeblocks of the current 

picture may be different when the video coder partitions the current picture into multiple 

tiles than when the video coder does not partition the current picture into multiple tiles. 

[0070] Furthermore, in some instances, the video coder may use information associated 

with spatially-neighboring CUs to perform intra prediction on a given CU in the current 

picture, so long as the given CU and the spatially-neighboring CUs belong to the same 

tile. The spatially-neighboring CUs are CUs that belong to the current slice of the 

current picture. In some instances, the video coder may use information associated with 

spatially-neighboring CUs to select a context for CABAC encoding a syntax element of 

the given CU, so long as the given CU and the spatially-neighboring CUs are within the 

same tile. Because of these restrictions, the video coder may be able to code in parallel 

treeblocks of multiple tiles.

[0071] In other examples, the video coder may code the current picture using wavefront 

parallel processing (WPP). When the video coder codes the current picture using WPP, 

the video coder may divide the treeblocks of the current picture into a plurality of “WPP 

waves.” Each of the WPP waves may correspond to a different row of treeblocks in the 

current picture. When the video coder codes the current picture using WPP, the video
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coder may start coding a top row of treeblocks. When the video coder has coded two or 

more treeblocks of the top row, the video coder may start coding a second to top row of 

treeb locks in parallel with coding the top row of treeblocks. When the video coder has 

coded two or more treeblocks of the second to top row, the video coder may start coding 

a third to top row of treeblock in parallel with coding the higher rows of treeblocks.

This pattern may continue down the rows of treeblocks in the current picture.

[0072] When the video coder is coding the current picture using WPP, the video coder 

may use information associated with spatially-neighboring CUs outside a current 

treeblock to perform intra prediction on a given CU in the current treeblock, so long as 

the spatially-neighboring CUs are left, above-left, above, or above-right of the current 

treeblock. If the current treeblock is the leftmost treeblock in a row other than the 

topmost row, the video coder may use information associated with the second treeblock 

of the immediately higher row to select a context for CABAC encoding a syntax 

element of the current treeblock. Otherwise, if the current treeblock is not the leftmost 

treeblock in the row, the video coder may use information associated with a treeblock to 

the left of the current treeblock to select a context for CABAC encoding a syntax 

element of the current treeblock. In this way, the video coder may initialize CABAC 

states of a row based on the CABAC states of the immediately higher row after 

encoding two or more treeblocks of the immediately higher row.

[0073] In some examples, when the video coder is coding the current picture using 

WPP, the only tile boundaries of the current picture are horizontal and vertical borders 

of the current picture. Thus, the only tile of the current picture may be the same size as 

the current picture. The video coder may divide the current picture, and hence the 

single tile of the current picture, into multiple WPP waves.

[0074] As mentioned above, video encoder 20 may generate a coded slice NAL unit 

that includes an encoded representation of a slice. The slice may be associated with an 

integer number of consecutively coded treeblocks. The coded slice NAL unit may 

include a slice header and slice data. The slice data may include encoded

representations of each treeblock associated with the slice. Video encoder 20 may 

generate the coded slice NAL unit that such encoded representations of the treeblocks 

are grouped within the slice data into segments according to the picture partitions with 

which the treeblocks belong. For example, the coded slice NAL unit may include each 

coded treeblock associated with a first picture partition followed by each coded
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treeblock associated with a second picture partition, followed by each coded treeblock 

associated with a third picture partition, and so on.

[0075] In accordance with the techniques of this disclosure, video encoder 20 may pad 

one or more of the segments such that each of the segments begins on a byte boundary. 

The coded slice NAL unit may be divided into a series of bytes. A segment may begin 

on a byte boundary when a first bit of the segment is the first bit of one of the bytes of 

the coded slice NAL unit. Lurthermore, a segment may be byte aligned if the first bit of 

a segment is the first bit of one of the bytes of the coded slice NAL unit. When video 

encoder 20 pads a segment, video encoder 20 may append padding bits to the segment. 

Lor instance, video encoder 20 may add one or more padding bits to a segment such that 

the number of bits in the segment is divisible by eight without leaving a remainder. The 

padding bits may not have any semantic meaning, but may serve to ensure that a next 

segment begins at a byte boundary.

[0076] When video decoder 30 receives the coded slice NAL unit, video encoder 30 

may store the coded slice NAL unit in memory. To decode the picture partitions in 

parallel, video decoder 30 may assign the segments to different decoding threads that 

run in parallel. In order to assign the segments to different decoding threads, video 

decoder 30 may need to indicate memory addresses associated with the beginnings of 

the segments. Video decoder 30 may use byte-wise memory addressing. Accordingly, 

video decoder 30 may be unable to indicate the memory address associated with the 

start of a segment if the start of the segment occurs within a byte. Hence, video decoder 

30 may not be able to decode the coded treeblocks in the segments in parallel if one or 

more of the segments begins within a byte. Alternatively, video decoder 30 may use bit­

wise memory addressing or byte-wise plus bit-wise addressing to enable decoding the 

coded treeblocks in the segments in parallel but with increased implementation and 

computation complexities.

[0077] In this way, video encoder 20 may divide a picture into a plurality of picture 

partitions. The picture has a plurality of treeblocks. The picture partitions are 

associated with non-overlapping subsets of the treeblocks of the picture. Video encoder 

20 may generate a coded slice NAL unit that includes encoded representations of the 

treeblocks that are associated with a slice of the picture. The encoded representations of 

the treeblocks are grouped within the coded slice NAL unit into segments associated 

with different ones of the picture partitions. One or more of the segments are padded 

such that each of the segments begins on a byte boundary.
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[0078] Moreover, video decoder 30 may store a coded slice NAL unit that includes 

encoded representations of treeblocks associated with a slice of a picture. The picture 

may be divided into a plurality of picture partitions. The encoded representations of the 

treeblocks may be grouped into segments associated with different ones of the picture 

partitions. One or more of the segments are padded such that each of the segments 

begins at a byte boundary. Video decoder 30 may decode the encoded representations 

of the treeblocks. In some instances, video decoder 30 may decode the encoded 

representations of the treeblocks in two or more of the segments in parallel.

[0079] LIG. 2 is a block diagram that illustrates an example video encoder 20 that is 

configured to implement the techniques of this disclosure. LIG. 2 is provided for 

purposes of explanation and should not be considered limiting of the techniques as 

broadly exemplified and described in this disclosure. Lor purposes of explanation, this 

disclosure describes video encoder 20 in the context of HEVC coding. However, the 

techniques of this disclosure may be applicable to other coding standards or methods. 

[0080] In the example of LIG. 2, video encoder 20 includes a plurality of functional 

components. The functional components of video encoder 20 include a prediction 

module 100, a residual generation module 102, a transform module 104, a quantization 

module 106, an inverse quantization module 108, an inverse transform module 110, a 

reconstruction module 112, a filter module 113, a decoded picture buffer 114, and an 

entropy encoding module 116. Prediction module 100 includes an inter prediction 

module 121, motion estimation module 122, amotion compensation module 124, and 

an intra prediction module 126. In other examples, video encoder 20 may include more, 

fewer, or different functional components. Lurthermore, motion estimation module 122 

and motion compensation module 124 may be highly integrated, but are represented in 

the example of LIG. 2 separately for purposes of explanation.

[0081] Video encoder 20 may receive video data. Video encoder 20 may receive the 

video data from various sources. Lor example, video encoder 20 may receive the video 

data from video source 18 (LIG. 1) or another source. The video data may represent a 

series of pictures. To encode the video data, video encoder 20 may perform an 

encoding operation on each of the pictures. As part of performing the encoding 

operation on a picture, video encoder 20 may perform encoding operations on each slice 

of the picture. As part of performing an encoding operation on a slice, video encoder 20 

may perform encoding operations on treeblocks in the slice.
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[0082] As part of performing an encoding operation on a treeblock, prediction module 

100 may perform quadtree partitioning on the video block of the treeblock to divide the 

video block into progressively smaller video blocks. Each of the smaller video blocks 

may be associated with a different CU. For example, prediction module 100 may 

partition a video block of a treeblock into four equally-sized sub-blocks, partition one or 

more of the sub-blocks into four equally-sized sub-sub-blocks, and so on.

[0083] The sizes of the video blocks associated with CUs may range from 8x8 samples 

up to the size of the treeblock with a maximum of 64x64 samples or greater. In this 

disclosure, “NxN” and “N by N” may be used interchangeably to refer to the sample 

dimensions of a video block in terms of vertical and horizontal dimensions, e.g., 16x16 

samples or 16 by 16 samples. In general, a 16x16 video block has sixteen samples in a 

vertical direction (y = 16) and sixteen samples in a horizontal direction (x = 16). 

Likewise, an NxN block generally has N samples in a vertical direction and N samples 

in a horizontal direction, where N represents a nonnegative integer value.

[0084] Furthermore, as part of performing the encoding operation on a treeblock, 

prediction module 100 may generate a hierarchical quadtree data structure for the 

treeblock. For example, a treeblock may correspond to a root node of the quadtree data 

structure. If prediction module 100 partitions the video block of the treeblock into four 

sub-blocks, the root node has four child nodes in the quadtree data structure. Each of 

the child nodes corresponds to a CU associated with one of the sub-blocks. If prediction 

module 100 partitions one of the sub-blocks into four sub-sub-blocks, the node 

corresponding to the CU associated with the sub-block may have four child nodes, each 

of which corresponds to a CU associated with one of the sub-sub-blocks.

[0085] Each node of the quadtree data structure may contain syntax data (e.g., syntax 

elements) for the corresponding treeblock or CU. For example, a node in the quadtree 

may include a split flag that indicates whether the video block of the CU corresponding 

to the node is partitioned (i.e., split) into four sub-blocks. Syntax elements for a CU 

may be defined recursively, and may depend on whether the video block of the CU is 

split into sub-blocks. A CU whose video block is not partitioned may correspond to a 

leaf node in the quadtree data structure. A coded treeblock may include data based on 

the quadtree data structure for a corresponding treeblock.

[0086] Video encoder 20 may perform encoding operations on each non-partitioned CU 

of a treeblock. When video encoder 20 performs an encoding operation on a non-
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partitioned CU, video encoder 20 generates data representing an encoded representation

of the non-partitioned CU.

[0087] As part of performing an encoding operation on a CU, prediction module 100 

may partition the video block of the CU among one or more PUs of the CU. Video 

encoder 20 and video decoder 30 may support various PU sizes. Assuming that the size 

of a particular CU is 2Nx2N, video encoder 20 and video decoder 30 may support PU 

sizes of 2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, 

Nx2N, NxN, 2NxnU, nLx2N, nRx2N, or similar. Video encoder 20 and video decoder 

30 may also support asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, 

and nRx2N. In some examples, prediction module 100 may perform geometric 

partitioning to partition the video block of a CU among PUs of the CU along a boundary 

that does not meet the sides of the video block of the CU at right angles.

[0088] Inter prediction module 121 may perform inter prediction on each PU of the CU. 

Inter prediction may provide temporal compression. To perform inter prediction on a 

PU, motion estimation module 122 may generate motion information for the PU.

Motion compensation module 124 may generate a predicted video block for the PU 

based the motion information and decoded samples of pictures other than the picture 

associated with the CU (i.e., reference pictures). In this disclosure, a predicted video 

block generated by motion compensation module 124 may be referred to as an inter­

predicted video block.

[0089] Slices may be I slices, P slices, or B slices. Motion estimation module 122 and 

motion compensation module 124 may perform different operations for a PU of a CU 

depending on whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs 

are intra predicted. Hence, if the PU is in an I slice, motion estimation module 122 and 

motion compensation module 124 do not perform inter prediction on the PU.

[0090] If the PU is in a P slice, the picture containing the PU is associated with a list of 

reference pictures referred to as “list 0.” Each of the reference pictures in list 0 contains 

samples that may be used for inter prediction of other pictures. When motion 

estimation module 122 performs the motion estimation operation with regard to a PU in 

a P slice, motion estimation module 122 may search the reference pictures in list 0 for a 

reference block for the PU. The reference block of the PU may be a set of samples, e.g., 

a block of samples, that most closely corresponds to the samples in the video block of 

the PU. Motion estimation module 122 may use a variety of metrics to determine how 

closelv a set of samples in a reference picture corresponds to the samples in the video
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block of a PU. For example, motion estimation module 122 may determine how closely 

a set of samples in a reference picture corresponds to the samples in the video block of a 

PU by sum of absolute difference (SAD), sum of square difference (SSD), or other 

difference metrics.

[0091] After identifying a reference block of a PU in a P slice, motion estimation 

module 122 may generate a reference index that indicates the reference picture in list 0 

containing the reference block and a motion vector that indicates a spatial displacement 

between the PU and the reference block. In various examples, motion estimation 

module 122 may generate motion vectors to varying degrees of precision. For example, 

motion estimation module 122 may generate motion vectors at one-quarter sample 

precision, one-eighth sample precision, or other fractional sample precision. In the case 

of fractional sample precision, reference block values may be interpolated from integer- 

position sample values in the reference picture. Motion estimation module 122 may 

output the reference index and the motion vector as the motion information of the PU. 

Motion compensation module 124 may generate a predicted video block of the PU 

based on the reference block identified by the motion information of the PU.

[0092] If the PU is in a B slice, the picture containing the PU may be associated with 

two lists of reference pictures, referred to as “list 0” and “list 1.” In some examples, a 

picture containing a B slice may be associated with a list combination that is a 

combination of list 0 and list 1.

[0093] Furthermore, if the PU is in a B slice, motion estimation module 122 may 

perform uni-directional prediction or bi-directional prediction for the PU. When motion 

estimation module 122 performs uni-directional prediction for the PU, motion 

estimation module 122 may search the reference pictures of list 0 or list 1 for a 

reference block for the PU. Motion estimation module 122 may then generate a 

reference index that indicates the reference picture in list 0 or list 1 that contains the 

reference block and a motion vector that indicates a spatial displacement between the 

PU and the reference block. Motion estimation module 122 may output the reference 

index, a prediction direction indicator, and the motion vector as the motion information 

of the PU. The prediction direction indicator may indicate whether the reference index 

indicates a reference picture in list 0 or list 1. Motion compensation module 124 may 

generate the predicted video block of the PU based on the reference block indicated by 

the motion information of the PU.
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[0094] When motion estimation module 122 performs bi-directional prediction for a 

PU, motion estimation module 122 may search the reference pictures in list 0 for a 

reference block for the PU and may also search the reference pictures in list 1 for 

another reference block for the PU. Motion estimation module 122 may then generate 

reference indexes that indicate the reference pictures in list 0 and list 1 containing the 

reference blocks and motion vectors that indicate spatial displacements between the 

reference blocks and the PU. Motion estimation module 122 may output the reference 

indexes and the motion vectors of the PU as the motion information of the PU. Motion 

compensation module 124 may generate the predicted video block of the PU based on 

the reference blocks indicated by the motion information of the PU.

[0095] In some instances, motion estimation module 122 does not output a full set of 

motion information for a PU to entropy encoding module 116. Rather, motion 

estimation module 122 may signal the motion information of a PU with reference to the 

motion information of another PU. For example, motion estimation module 122 may 

determine that the motion information of the PU is sufficiently similar to the motion 

information of a neighboring PU. In this example, motion estimation module 122 may 

indicate, in a syntax structure associated with the PU, a value that indicates to video 

decoder 30 that the PU has the same motion information as the neighboring PU. In 

another example, motion estimation module 122 may identify, in a syntax structure 

associated with the PU, a neighboring PU and a motion vector difference (MVD). The 

motion vector difference indicates a difference between the motion vector of the PU and 

the motion vector of the indicated neighboring PU. Video decoder 30 may use the 

motion vector of the indicated neighboring PU and the motion vector difference to 

determine the motion vector of the PU. By referring to the motion information of a first 

PU when signaling the motion information of a second PU, video encoder 20 may be 

able to signal the motion information of the second PU using fewer bits.

[0096] As part of performing an encoding operation on a CU, intra prediction module 

126 may perform intra prediction on PUs of the CU. Intra prediction may provide 

spatial compression. When intra prediction module 126 performs intra prediction on a 

PU, intra prediction module 126 may generate prediction data for the PU based on 

decoded samples of other PUs in the same picture. The prediction data for the PU may 

include a predicted video block and various syntax elements. Intra prediction module 

126 may perform intra prediction on PUs in I slices, P slices, and B slices.
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[0097] To perform intra prediction on a PU, intra prediction module 126 may use 

multiple intra prediction modes to generate multiple sets of prediction data for the PU. 

When intra prediction module 126 uses an intra prediction mode to generate a set of 

prediction data for the PU, intra prediction module 126 may extend samples from video 

blocks of neighboring PUs across the video block of the PU in a direction and/or 

gradient associated with the intra prediction mode. The neighboring PUs may be above, 

above and to the right, above and to the left, or to the left of the PU, assuming a left-to- 

right, top-to-bottom encoding order for PUs, CUs, and treeblocks. Intra prediction 

module 126 may use various numbers of intra prediction modes, e.g., 33 directional 

intra prediction modes, depending on the size of the PU.

[0098] Prediction module 100 may select the prediction data for a PU from among the 

prediction data generated by motion compensation module 124 for the PU or the 

prediction data generated by intra prediction module 126 for the PU. In some examples, 

prediction module 100 selects the prediction data for the PU based on rate/distortion 

metrics of the sets of prediction data.

[0099] If prediction module 100 selects prediction data generated by intra prediction 

module 126, prediction module 100 may signal the intra prediction mode that was used 

to generate the prediction data for the PUs, i.e., the selected intra prediction mode. 

Prediction module 100 may signal the selected intra prediction mode in various ways. 

For example, it is probable the selected intra prediction mode is the same as the intra 

prediction mode of a neighboring PU. In other words, the intra prediction mode of the 

neighboring PU may be the most probable mode for the current PU. Thus, prediction 

module 100 may generate a syntax element to indicate that the selected intra prediction 

mode is the same as the intra prediction mode of the neighboring PU.

[0100] After prediction module 100 selects the prediction data for PUs of a CU, residual 

generation module 102 may generate residual data for the CU by subtracting the 

predicted video blocks of the PUs of the CU from the video block of the CU. The 

residual data of a CU may include 2D residual video blocks that correspond to different 

sample components of the samples in the video block of the CU. For example, the 

residual data may include a residual video block that corresponds to differences between 

luminance components of samples in the predicted video blocks of the PUs of the CU 

and luminance components of samples in the original video block of the CU. In 

addition, the residual data of the CU may include residual video blocks that correspond 

to the differences between chrominance components of samples in the predicted video
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blocks of the PUs of the CU and the chrominance components of the samples in the

original video block of the CU.

[0101] Prediction module 100 may perform quadtree partitioning to partition the 

residual video blocks of a CU into sub-blocks. Each undivided residual video block 

may be associated with a different TU of the CU. The sizes and positions of the 

residual video blocks associated with TUs of a CU may or may not be based on the sizes 

and positions of video blocks associated with the PUs of the CU. A quadtree structure 

known as a “residual quad tree” (RQT) may include nodes associated with each of the 

residual video blocks. The TUs of a CU may correspond to leaf nodes of the RQT. 

[0102] Transform module 104 may generate one or more transform coefficient blocks 

for each TU of a CU by applying one or more transforms to a residual video block 

associated with the TU. Each of the transform coefficient blocks may be a 2D matrix of 

transform coefficients. Transform module 104 may apply various transforms to the 

residual video block associated with a TU. For example, transform module 104 may 

apply a discrete cosine transform (DCT), a directional transform, or a conceptually 

similar transform to the residual video block associated with a TU.

[0103] After transform module 104 generates a transform coefficient block associated 

with a TU, quantization module 106 may quantize the transform coefficients in the 

transform coefficient block. Quantization module 106 may quantize a transform 

coefficient block associated with a TU of a CU based on a QP value associated with the 

CU.

[0104] Video encoder 20 may associate a QP value with a CU in various ways. For 

example, video encoder 20 may perform a rate-distortion analysis on a treeblock 

associated with the CU. In the rate-distortion analysis, video encoder 20 may generate 

multiple coded representations of the treeblock by performing an encoding operation 

multiple times on the treeblock. Video encoder 20 may associate different QP values 

with the CU when video encoder 20 generates different encoded representations of the 

treeblock. Video encoder 20 may signal that a given QP value is associated with the 

CU when the given QP value is associated with the CU in a coded representation of the 

treeblock that has a lowest bitrate and distortion metric.

[0105] Inverse quantization module 108 and inverse transform module 110 may apply 

inverse quantization and inverse transforms to the transform coefficient block, 

respectively, to reconstruct a residual video block from the transform coefficient block. 

Reconstruction module 112 may add the reconstructed residual video block to
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corresponding samples from one or more predicted video blocks generated by prediction 

module 100 to produce a reconstructed video block associated with a TU. By 

reconstructing video blocks for each TU of a CU in this way, video encoder 20 may 

reconstruct the video block of the CU.

[0106] After reconstruction module 112 reconstructs the video block of a CU, filter 

module 113 may perform a deblocking operation to reduce blocking artifacts in the 

video block associated with the CU. After performing the one or more deblocking 

operations, filter module 113 may store the reconstructed video block of the CU in 

decoded picture buffer 114. Motion estimation module 122 and motion compensation 

module 124 may use a reference picture that contains the reconstructed video block to 

perform inter prediction on PUs of subsequent pictures. In addition, intra prediction 

module 126 may use reconstructed video blocks in decoded picture buffer 114 to 

perform intra prediction on other PUs in the same picture as the CU.

[0107] Entropy encoding module 116 may receive data from other functional 

components of video encoder 20. For example, entropy encoding module 116 may 

receive transform coefficient blocks from quantization module 106 and may receive 

syntax elements from prediction module 100. When entropy encoding module 116 

receives the data, entropy encoding module 116 may perform one or more entropy 

encoding operations to generate entropy encoded data. For example, video encoder 20 

may perform a context adaptive variable length coding (CAVFC) operation, a CABAC 

operation, a variable-to-variable (V2V) length coding operation, a syntax-based context- 

adaptive binary arithmetic coding (SBAC) operation, a Probability Interval Partitioning 

Entropy (PIPE) coding operation, or another type of entropy encoding operation on the 

data. Entropy encoding module 116 may output a bitstream that includes the entropy 

encoded data.

[0108] As part of performing an entropy encoding operation on data, entropy encoding 

module 116 may select a context model. If entropy encoding module 116 is performing 

a CABAC operation, the context model may indicate estimates of probabilities of 

particular bins having particular values. In the context of CABAC, the term “bin” is 

used to refer to a bit of a binarized version of a syntax element.

[0109] Video encoder 20 may generate a coded slice NAF unit for each slice of the 

current picture. The coded slice NAF unit for a slice may include a slice header and 

slice data. The slice data may include a plurality of segments. Each of the segments 

includes coded treeblocks associated with a different picture partition. Video encoder
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20 may pad the segments such that each of the segments begins at a byte boundary 

within the slice data. For example, the segments in a coded slice NAL unit may include 

a given segment. In this example, video encoder 20 may generate the coded slice NAL 

unit at least in part by performing a padding operation that appends bits to the given 

segment if a next treeblock is inside the current slice and is associated with a different 

picture partition than the given segment.

[0110] In some examples, video encoder 20 may generate the slice header of a coded 

slice NAL unit such that the slice header indicates entry points for the segments in the 

slice data of the coded slice NAL unit. The entry points may indicate the positions 

within the slice data of the segments. For example, the entry points may indicate byte 

offsets of the segments. In this example, the byte offsets may be relative to the first bit 

of the coded slice NAL unit, the first bit of the slice data, or another bit in the coded 

slice NAL unit. In another example, the entry points may indicate the numbers of bits 

or bytes within each of the segments. In some examples, the slice header does not 

indicate an entry point for a first segment in the slice data.

[0111] In some examples, video encoder 20 may determine whether a flag has a first 

value (e.g., 1). If the flag has the first value, video encoder 20 may pad one or more of 

the segments such that each segment begins at a byte boundary. When the flag has a 

second value (e.g., 0), video encoder 20 does not pad the segments. As a result, the 

segments may or may not begin at byte-aligned positions. In such examples, a sequence 

parameter set, a picture parameter set, an adaptation parameter set, or a slice header may 

include the flag. Thus, in some examples, video encoder 20 may generate a parameter 

set associated with the current picture, the parameter set including a flag. When the flag 

has a first value, one or more of the segments are padded such that the segments begin 

at byte boundaries. When the flag has a second value, the segments may or may not 

begin at byte boundaries.

[0112] Furthermore, in some examples, video encoder 20 may partition the current 

picture into a plurality of tiles. If video encoder 20 allows in-picture prediction across 

tile boundaries (i.e., when two or more of tiles are dependent on each other), video 

encoder 20 does not pad the segments. As a result, the segments may or may not begin 

at byte-aligned positions. However, if video encoder 20 does not allow in-picture 

prediction across tile boundaries, video encoder 20 may pad one or more of the 

segments such that each of the segments begins at a byte boundary. Thus, video 

encoder 20 mav generate a coded slice NAL unit at least in part by performing a
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padding operation that ensures that the segments begin at byte boundaries only after 

determining that the tiles are independent of one another.

[0113] FIG. 3 is a block diagram that illustrates an example video decoder 30 that is 

configured to implement the techniques of this disclosure. FIG. 3 is provided for 

purposes of explanation and is not limiting on the techniques as broadly exemplified 

and described in this disclosure. For purposes of explanation, this disclosure describes 

video decoder 30 in the context of HEVC coding. However, the techniques of this 

disclosure may be applicable to other coding standards or methods.

[0114] In the example of FIG. 3, video decoder 30 includes a plurality of functional 

components. The functional components of video decoder 30 include an entropy 

decoding module 150, a prediction module 152, an inverse quantization module 154, an 

inverse transform module 156, a reconstruction module 158, a filter module 159, and a 

decoded picture buffer 160. Prediction module 152 includes a motion compensation 

module 162 and an intra prediction module 164. In some examples, video decoder 30 

may perform a decoding pass generally reciprocal to the encoding pass described with 

respect to video encoder 20 of FIG. 2. In other examples, video decoder 30 may include 

more, fewer, or different functional components.

[0115] Video decoder 30 may receive a bitstream that comprises encoded video data. 

The bitstream may include a plurality of syntax elements. When video decoder 30 

receives the bitstream, entropy decoding module 150 may perform a parsing operation 

on the bitstream. As a result of performing the parsing operation on the bitstream, 

entropy decoding module 150 may extract syntax elements from the bitstream. As part 

of performing the parsing operation, entropy decoding module 150 may entropy decode 

entropy encoded syntax elements in the bitstream. Prediction module 152, inverse 

quantization module 154, inverse transform module 156, reconstruction module 158, 

and filter module 159 may perform a reconstruction operation that generates decoded 

video data based on the syntax elements extracted from the bitstream.

[0116] As discussed above, the bitstream may comprise a series of NAL units. The 

NAL units of the bitstream may include sequence parameter set NAL units, picture 

parameter set NAL units, SEI NAL units, and so on. As part of performing the parsing 

operation on the bitstream, entropy decoding module 150 may perform parsing 

operations that extract and entropy decode sequence parameter sets from sequence 

parameter set NAL units, picture parameter sets from picture parameter set NAL units, 

SEI data from SEI NAL units, and so on.
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[0117] In addition, the NAL units of the bitstream may include coded slice NAL units.

As part of performing the parsing operation on the bitstream, video decoder 30 may

perform parsing operations that extract and entropy decode coded slices from the coded

slice NAL units. Each of the coded slices may include a slice header and slice data.

The slice header may contain syntax elements pertaining to a slice. The syntax elements 

in the slice header may include a syntax element that identifies a picture parameter set 

associated with a picture that contains the slice.

[0118] The slice data of a coded slice NAL unit may include multiple segments. Each 

of the segments may include coded treeblocks associated with a different picture 

partition (e.g., a tile or a WPP wave). One or more of the segments in the slice data may 

be padded such that each of the segments begins at a byte boundary. The slice header of 

the coded slice NAL unit may indicate entry points for the segments. In this case, 

because the segments always begin at byte boundaries, video decoder 30 may be able to 

assign different ones of the segments to different decoding threads in a simple fashion 

by using byte-wise memory addressing. The different decoding threads may parse the 

coded treeblocks of the segments and reconstruct the video data associated with the 

corresponding treeblocks in parallel.

[0119] As part of extracting the slice data from coded slice NAL units, entropy 

decoding module 150 may perform parsing operations that extract syntax elements from 

coded CUs. The extracted syntax elements may include syntax elements associated 

with transform coefficient blocks. Entropy decoding module 150 may then perform 

CABAC decoding operations on some of the syntax elements.

[0120] After entropy decoding module 150 performs a parsing operation on a non- 

partitioned CU, video decoder 30 may perform a reconstruction operation on the non- 

partitioned CU. To perform the reconstruction operation on a non-partitioned CU, 

video decoder 30 may perform a reconstruction operation on each TU of the CU. By 

performing the reconstruction operation for each TU of the CU, video decoder 30 may 

reconstruct a residual video block associated with the CU.

[0121] As part of performing a reconstruction operation on a TU, inverse quantization 

module 154 may inverse quantize, i.e., de-quantize, a transform coefficient block 

associated with the TU. Inverse quantization module 154 may inverse quantize the 

transform coefficient block in a manner similar to the inverse quantization processes 

proposed for HEVC or defined by the H.264 decoding standard. Inverse quantization 

module 154 mav use a quantization parameter QP calculated by video encoder 20 for a
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CU of the transform coefficient block to determine a degree of quantization and, 

likewise, a degree of inverse quantization for inverse quantization module 154 to apply. 

[0122] After inverse quantization module 154 inverse quantizes a transform coefficient 

block, inverse transform module 156 may generate a residual video block for the TU 

associated with the transform coefficient block. Inverse transform module 156 may 

apply an inverse transform to the transform coefficient block in order to generate the 

residual video block for the TU. For example, inverse transform module 156 may apply 

an inverse DCT, an inverse integer transform, an inverse Karhunen-Loeve transform 

(KLT), an inverse rotational transform, an inverse directional transform, or another 

inverse transform to the transform coefficient block.

[0123] In some examples, inverse transform module 156 may determine an inverse 

transform to apply to the transform coefficient block based on signaling from video 

encoder 20. In such examples, inverse transform module 156 may determine the inverse 

transform based on a signaled transform at the root node of a quadtree for a treeblock 

associated with the transform coefficient block. In other examples, inverse transform 

module 156 may infer the inverse transform from one or more coding characteristics, 

such as block size, coding mode, or the like. In some examples, inverse transform 

module 156 may apply a cascaded inverse transform.

[0124] In some examples, motion compensation module 162 may refine the predicted 

video block of a PU by performing interpolation based on interpolation filters.

Identifiers for interpolation filters to be used for motion compensation with sub-sample 

precision may be included in the syntax elements. Motion compensation module 162 

may use the same interpolation filters used by video encoder 20 during generation of the 

predicted video block of the PU to calculate interpolated values for sub-integer samples 

of a reference block. Motion compensation module 162 may determine the 

interpolation filters used by video encoder 20 according to received syntax information 

and use the interpolation filters to produce the predicted video block.

[0125] If a PU is encoded using intra prediction, intra prediction module 164 may 

perform intra prediction to generate a predicted video block for the PU. For example, 

intra prediction module 164 may determine an intra prediction mode for the PU based 

on syntax elements in the bitstream. The bitstream may include syntax elements that 

intra prediction module 164 may use to determine the intra prediction mode of the PU. 

[0126] In some instances, the syntax elements may indicate that intra prediction module 

164 is to use the intra prediction mode of another PU to determine the intra prediction
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mode of the current PU. For example, it may be probable that the intra prediction mode 

of the current PU is the same as the intra prediction mode of a neighboring PU. In other 

words, the intra prediction mode of the neighboring PU may be the most probable mode 

for the current PU. Hence, in this example, the bitstream may include a small syntax 

element that indicates that the intra prediction mode of the PU is the same as the intra 

prediction mode of the neighboring PU. Intra prediction module 164 may then use the 

intra prediction mode to generate prediction data (e.g., predicted samples) for the PU 

based on the video blocks of spatially neighboring PUs.

[0127] Reconstruction module 158 may use the residual video blocks associated with 

TUs of a CU and the predicted video blocks of the PUs of the CU, i.e., either intra­

prediction data or inter-prediction data, as applicable, to reconstruct the video block of 

the CU. Thus, video decoder 30 may generate a predicted video block and a residual 

video block based on syntax elements in the bitstream and may generate a video block 

based on the predicted video block and the residual video block.

[0128] After reconstruction module 158 reconstructs the video block of the CU, filter 

module 159 may perform a deblocking operation to reduce blocking artifacts associated 

with the CU. After filter module 159 performs a deblocking operation to reduce 

blocking artifacts associated with the CU, video decoder 30 may store the video block 

of the CU in decoded picture buffer 160. Decoded picture buffer 160 may provide 

reference pictures for subsequent motion compensation, intra prediction, and 

presentation on a display device, such as display device 32 of FIG. 1. For instance, 

video decoder 30 may perform, based on the video blocks in decoded picture buffer 

160, intra prediction or inter prediction operations on PUs of other CUs.

[0129] FIG. 4 is a flowchart that illustrates an example operation 200 to generate slice 

data for a slice. A video encoder, such as video encoder 20 (FIGs. 1 and 2), may 

perform operation 200. The example of FIG. 4 is merely one example. Other example 

operations may generate slice data in other ways.

[0130] After the video encoder starts operation 200, the video encoder may initialize a 

treeblock address such that the treeblock address identifies an initial treeblock of a 

current slice (202). The current slice may be a slice that the video encoder is currently 

encoding. The initial treeblock of the current slice may be the first treeblock associated 

with the current slice according to a treeblock coding order for the current picture. For 

ease of explanation, this disclosure may refer to the treeblock identified by the treeblock 

address as the current treeblock.
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[0131] The video encoder may append syntax elements for the current treeblock to the 

slice data of a coded slice NAL unit for the current slice (204). The syntax elements for 

the current treeblock may include syntax elements in the quadtree of the current 

treeblock. Syntax elements in the quadtree of the current treeblock may include syntax 

elements that indicate intra prediction modes, motion information, syntax elements that 

indicate transform coefficient levels, and so on.

[0132] Furthermore, the video encoder may determine whether there is more data in the 

current slice (206). There may be more data in the current slice if the treeblock 

indicated by the treeblock address is within the current slice. In response to determining 

that there is no more data in the current slice (“NO” of 206), the video encoder may end 

operation 200 because the video encoder has added all of the necessary syntax elements 

to the slice data.

[0133] The video encoder may determine whether there is more data in the current slice 

in various ways. For example, the video encoder may invoke a function “coding_tree(

)” to output the syntax elements for a treeblock. In this example, the function 

“coding_tree( )” may return a “moreDataFlag” that indicates whether there is more 

data in the current slice.

[0134] In response to determining that there is more data associated with the current 

slice (“YES” of 206), the video encoder may determine whether tiles of the current 

picture are independent and whether the next treeblock of the current slice is in a 

different tile than the current treeblock of the current slice (208). As described above, 

the tiles of a picture may be independent if in-picture prediction (e.g., intra prediction, 

inter prediction using data in the current picture, and CABAC context selection based 

on data from other tiles of the current picture) is prohibited. The video encoder may 

determine whether the tiles of the current picture are independent in various ways. For 

example, a sequence parameter set associated with the current picture may include a 

syntax element “tileboundaryindependenceidc.” In this example, if 

“tileboundaryindependenceidc” is equal to 0, the tiles of the current picture are not 

independent and in-picture prediction across tile boundaries is allowed. If 

“tile boundary independence idc” is equal to 0, in-picture prediction across slice 

boundaries may still be prohibited. If “tile boundary independence idc” is equal to 1, 

the tiles of the current picture are independent and in-picture prediction across tile 

boundaries is not allowed.
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[0135] The video encoder may determine in various ways whether the next treeblock of 

the current slice is in a different tile than the current treeblock of the current slice. For 

example, the video encoder may determine the treeblock address of the next treeblock 

of the current slice. In this example, the video encoder may invoke a function 

“NewTile(...)” that takes the treeblock address of the next treeblock as a parameter and 

returns a value “newTileFlag” that indicates whether the next treeblock is in a different 

tile than the current treeblock.

[0136] If the tiles of the current picture are not independent or the next treeblock is not 

in a different tile than the current treeblock (“NO” of 208), the video encoder may 

determine whether the current picture is being encoded using WPP and the next 

treeblock of the current slice is in a different WPP wave than the current treeblock of 

the current slice (210). The video encoder may determine in various ways whether the 

next treeblock of the current slice is in a different WPP wave than the current treeblock 

of the current slice. For example, the video encoder may determine the treeblock 

address of the next treeblock of the current slice. In this example, the video encoder 

may invoke a function “NewWave(...)” that takes the treeblock address of the next 

treeblock as a parameter and returns a value “newWaveFlag” that indicates whether the 

next treeblock is in a different WPP wave than the current treeblock.

[0137] In response to determining that the current picture is being encoded using WPP 

and the next treeblock is in a different WPP wave than the current treeblock (“YES” of 

210) or in response to determining that the tiles of the current picture are independent 

and the next treeblock is in a different tile than the current treeblock (“YES” of 208), the 

video encoder may determine whether the current segment is byte aligned (212). In 

other words, the video encoder may determine whether the current segment ends on a 

byte boundary. The current segment is the segment associated with the picture partition 

(e.g., tile or WPP wave) with which the current treeblock is associated. In response to 

determining that the current segment is not byte aligned (“NO” of 212), the video 

encoder may append a padding bit to the end of the current segment (214). The padding 

bit may have various values. For example, the padding bit may always have a value 

equal to 1. In other examples, the padding bit may always have a value equal to 0. 

[0138] After appending the padding bit to the end of the current segment, the video 

encoder may again determine whether the current segment is byte aligned (212). In this 

way, the video encoder may continue appending padding bits to the end of the slice data 

until the current segment is byte aligned.
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[0139] In response to determining that the slice data is byte aligned (“YES” of 212), the 

video encoder may update the treeblock address (216). The video encoder may update 

the treeblock address such that the treeblock address indicates the next treeblock 

according to a treeblock coding order of the current picture. For instance, when the 

video encoder updates the treeblock address, the treeblock address may identify a 

treeblock to the right of the treeblock previously indicated by the treeblock address.

FIG. 7, described in detail below, is a conceptual diagram that illustrates an example 

treeblock coding order for a picture that is partitioned into multiple tiles.

[0140] After updating the treeblock address, the video encoder may determine whether 

there is more data in the current slice (218). In response to determining that there is 

more data in the current slice (“YES” of 218) or in response to determining that the 

current picture is not being encoded using WPP and the next treeblock is not in a 

different tile than the current treeblock (“NO” of 210), the video encoder may append 

the syntax elements for the current treeblock to the slice data (204). In this way, the 

video encoder may append the syntax elements for each treeblock of the current slice to 

the slice data and may ensure that segments associated with different picture partitions 

are padded such that the segments begin at byte boundaries.

[0141] In response to determining that there is no more data in the current slice (“NO” 

of 218), the video encoder may end operation 200 because the video encoder may have 

appended all of the syntax elements of the current slice to the slice data.

[0142] FIG. 5 is a flowchart that illustrates an example operation 250 to decode a coded 

slice NAL unit. A video decoder, such as video decoder 30 (FIGs. 1 and 3), may 

perform operation 250. The example of FIG. 5 is merely one example. Other example 

operations may perform other operations to decode coded slice NAL units.

[0143] In the example of FIG. 5, the video decoder may store a coded slice NAL unit in 

byte addressed memory (252). The coded slice NAL unit may include a slice header 

and slice data. The slice data may include a plurality of segments. One or more of the 

segments may be padded such that each segment begins at a byte boundary.

[0144] After storing the coded slice NAL unit in memory, the video decoder may 

identify positions of the segments within the slice data of the coded slice NAL unit 

(254). The video decoder may identify the positions of the segments in various ways. 

For example, the video decoder may identify the positions of the segments based on 

syntax elements in the slice header of the coded slice NAL unit that indicate byte offsets 

of the segments. In this example, the slice header may not include a byte offset for the



WO 2013/067158 PCT/US2012/063027
35

first segment of the slice data because the position of the first segment may immediately 

follow the end of the slice header. In another example, the video decoder may identify 

the positions of the segments based on entry point markers in the slice data. The entry 

point markers may be values disposed between the segments.

[0145] After identifying the positions of the segments within the slice data, the video 

decoder may assign two or more of the segments to two or more different decoding 

threads (256). Each of the decoding threads may parse the syntax elements of coded 

treeblocks in the segment assigned to the decoding thread and reconstruct video blocks 

for the corresponding treeblocks as described above.

[0146] FIG. 6 is a conceptual diagram that illustrates wavefront parallel processing. As 

described above, a picture may be partitioned into video blocks, each of which is 

associated a treeblock. FIG. 6 illustrates the video blocks associated with the treeblocks 

as a grid of white squares. The picture includes treeblock rows 300A-300E 

(collectively, “treeblock rows 300”).

[0147] A first thread may be coding treeblocks in treeblock row 300A. Concurrently, 

other threads may be coding treeblocks in treeblock rows 300B, 300C, and 300D. In the 

example of FIG. 6, the first thread is currently coding a treeblock 302A, a second thread 

is currently coding a treeblock 302B, a third thread is currently coding a treeblock 

302C, and a fourth thread is currently coding a treeblock 302D. This disclosure may 

refer to treeblocks 302A, 302B, 302C, and 302D collectively as “current treeblocks 

302.” Because the video coder may begin coding a treeblock row after more than two 

treeblocks of an immediately higher row have been coded, current treeblocks 302 are 

horizontally displaced from each other by the widths of two treeblocks.

[0148] In the example of FIG. 6, the threads may use data from treeblocks indicated by 

the thick gray arrows when performing intra prediction or inter prediction for CUs in 

current treeblocks 302. (When the threads perform inter prediction for CUs, the threads 

may also use data from one or more reference frames.) When a thread codes a given 

treeblock, the thread may select one or more CABAC contexts based on information 

associated with previously coded treeblocks. The thread may use the one or more 

CABAC contexts to perform CABAC coding on syntax elements associated with the 

first CU of the given treeblock. If the given treeblock is not the leftmost treeblock of a 

row, the thread may select the one or more CABAC contexts based on information 

associated with a last CU of the treeblock to the left of the given treeblock. If the given 

treeblock is the leftmost treeblock of a row, the thread may select the one or more
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CABAC contexts based on information associated with a last CU of a treeblock that is

above and two treeblocks right of the given treeblock. The threads may use data from

the last CUs of the treeblocks indicated by the thin black arrows to select CABAC

contexts for the first CUs of current treeblocks 302.

[0149] FIG. 7 is a conceptual diagram that illustrates an example treeblock coding order 

for a picture 350 that is partitioned into multiple tiles 352A, 352B, and 352C. Each 

square white block in picture 350 represents a video block associated with a treeblock. 

The thick vertical dashed lines indicate example vertical tile boundaries. The thick gray 

line indicates an example slice boundary.

[0150] The numbers in the video blocks indicate positions of the corresponding 

treeblocks (LCUs) in a treeblock coding order for picture 350. As illustrated in the 

example of FIG. 7, each of the treeblocks in the leftmost tile 352A occurs in the 

treeblock coding order before any treeblock in the middle tile 352B. Each of the 

treeblocks in the middle tile 352B occurs in the treeblock coding order before any 

treeblock in the rightmost tile 352C. Within each of tiles 352A, 352B, and 352C, the 

treeblocks are coded according to a raster scan order.

[0151] A video encoder may generate two coded slice NAL units for picture 350. The 

first coded slice NAL unit may be associated with the left slice of picture 350. The first 

coded slice NAL unit may include encoded representations of treeblocks 1-23. The 

slice data of the first coded slice NAL unit may include two segments. The first 

segment may include the encoded representations of treeblocks 1-15. The second 

segment may include the encoded representations of treeblocks 16-30. In accordance 

with the techniques of this disclosure, the first segment may be padded such that the 

second segment begins at a byte boundary.

[0152] A second coded slice NAL unit may be associated with the right slice of picture 

350. The second coded slice NAL unit may include encoded representations of 

treeblocks 24-45. The slice data of the second coded slice NAL unit may include two 

segments. The first segment may include the encoded representations of treeblocks 24­

30. The second segment may include the encoded representations of treeblocks 31-45. 

The first segment may be padded such that the second segment begins at a byte 

boundary.

[0153] FIG. 8 is a conceptual diagram that illustrates an example coded slice NAL unit 

400. As illustrated in the example of FIG. 8, coded slice NAL unit 400 includes a slice 

header 402 and slice data 404. Slice data 404 includes a first segment 406 and a second
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segment 408. Segment 406 includes coded treeblocks 410A-410N and padding data 

412. Segment 408 includes coded treeblocks 414A-414N.

[0154] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over, as one or more instructions or code, 

a computer-readable medium and executed by a hardware-based processing unit. 

Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer- 

readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.

[0155] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSF), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSF, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transient 

media, but are instead directed to non-transient, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, 

while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.
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[0156] Instructions may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other 

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as 

used herein may refer to any of the foregoing structure or any other structure suitable 

for implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or 

software modules configured for encoding and decoding, or incorporated in a combined 

codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.

[0157] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware. 

[0158] Various examples have been described. These and other examples are within 

the scope of the following claims.

[0159] It will be understood that the term “comprise” and any of its derivatives (eg 

comprises, comprising) as used in this specification is to be taken to be inclusive of 

features to which it refers, and is not meant to exclude the presence of any additional 

features unless otherwise stated or implied.

[0160] The reference to any prior art in this specification is not, and should not be taken 

as, an acknowledgement of any form of suggestion that such prior art forms part of the 

common general knowledge.
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WHAT IS CLAIMED IS:

1. A method for encoding video data, the method including:

generating a coded slice network abstraction layer (NAL) unit that includes 

encoded representations of video blocks that are associated with a slice of the picture, 

wherein the picture is divided into a plurality of slices; and

encoding the picture,

wherein the method further includes:

dividing the picture into a plurality of wavefront parallel processing

(WPP) waves, each of the WPP waves corresponding to a different row of video 

blocks in the picture, wherein the encoded representations of the video blocks 

are grouped within the coded slice NAL unit into segments associated with 

different ones of the WPP waves; and

padding one or more of the segments, such that each of the segments 

begins on a byte boundary, 

wherein the picture is encoded using WPP.

2. The method of claim 1, wherein generating the coded slice NAL unit includes 

generating a slice header that indicates entry points for one or more of the segments.

3. The method of claim 2, wherein the entry points for the segments indicate byte 

offsets of the segments.

4. The method of any one of claims 1 to 3, further including generating a parameter 

set associated with the picture, the parameter set including a flag that has a first value, 

the first value indicating that the one or more of the segments are padded such that each 

of the segments begins at a byte boundary, and

wherein when the flag has a second value, the segments may or may not begin at 

byte boundaries.

5. The method of any one of claims 1 to 4, 

wherein the segments include a given segment; and
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wherein generating the coded slice NAL unit includes performing a padding 

operation that appends bits to the given segment if a next video block is inside the slice 

and is associated with a different WPP wave than the given segment.

6. A method of decoding video data, the method including:

storing a coded slice network abstraction layer (NAL) unit that includes encoded 

representations of video blocks associated with a slice of a picture, the picture 

partitioned into a plurality wavefront parallel processing (WPP) waves, each of the WPP 

waves corresponding to a different row of video blocks in the picture, the encoded 

representations of the video blocks grouped into segments associated with different ones 

of the WPP waves, wherein one or more of the segments are padded such that each of 

the segments begins at a byte boundary; and

decoding the picture using WPP.

7. The method of claim 6, wherein the coded slice NAL unit includes a slice header 

that indicates entry points for one or more of the segments.

8. The method of claim 7, wherein the entry points for the segments indicate byte 

offsets of the segments.

9. The method of any one of claims 6 to 8, further including storing a parameter set 

associated with the picture, the parameter set including a flag that has a first value, the 

first value indicating that the one or more of the segments are padded such that each of 

the segments begin at a byte boundary, and

wherein when the flag has a second value, the segments may or may not begin at 

byte boundaries.

10. The method of any one of claims 6 to 9, wherein decoding the picture includes 

decoding the encoded representations of the video blocks in two or more of the 

segments in parallel.

11. A video encoding device including means for carrying out a method according 

to any one of claims 1 to 5.
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12. A video decoding device including means for carrying out a method according 

to any one of claims 6 to 10.

13. A computer program product that includes one or more computer-readable 

storage media that store instructions that, when executed by one or more processors, 

configure a device to carry out a method according to any one of claims 1 to 9.
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