
(12) STANDARD PATENT (11) Application No. AU 2012332417 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Padding of segments in coded slice NAL units

(51)

(21)

(87)

(30)

(31)

International Patent Classification(s)
H04N 19/00 (2014.01)

Application No: 2012332417

WIPO No: WO13/067158

Priority Data

(22) Date of Filing: 2012.11.01

(43)
(44)

(71)

Number
61/557,259
61/555,932
13/548,825

Publication Date:
Accepted Journal Date:

Applicant(s)
Qualcomm Incorporated

(32) Date
2011.11.08
2011.11.04
2012.07.13

2013.05.10
2015.08.20

(33) Country
US
US
US

(72) Inventor(s)
Wang, Ye-Kui;Coban, Muhammed Zeyd;Karczewicz, Marta

(74) Agent / Attorney
Madderns Patent & Trade Mark Attorneys, GPO Box 2752, ADELAIDE, SA, 5001

(56) Related Art
US 5,471,248 A
BROSS, B. et al., "WD4: Working Draft 4 of High-Efficiency Video Coding", Joint
Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WG11, 6th Meeting:
Torino, IT, 14-22 July, 2011
US 7,375,661 B2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date
10 May 2013 (10.05.2013)

(10) International Publication Number

WIPOIPCT
WO 2013/067158 Al

(51) International Patent Classification:
H04N 7/26 (2006.01)

(21) International Application Number:
PCT/US2012/063027

(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

1 November 2012 (01.11.2012)

English

English

(30) Priority Data:
61/555,932 4 November 2011 (04.11.2011) US
61/557,259 8 November 2011 (08.11.2011) US
13/548,825 13 July 2012 (13.07.2012) US

(71) Applicant: QUALCOMM INCORPORATED [US/US];
Attn: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(72) Inventors: WANG, Ye-Kui; 5775 Morehouse Drive, San
Diego, California 92121 (US). COBAN, Muhammed
Zeyd; 5775 Morehouse Drive, San Diego, California
92121 (US). KARCZEWICZ, Marta; 5775 Morehouse
Drive, San Diego, California 92121 (US).

(74) Agents: VREDEVELD, Albert W. et al.; Shumaker and
Sieffert, P.A., 1625 Radio Drive, Suite 300, Woodbury,
Minnesota 55125 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available)·. AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available)·. ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

(54) Title: PADDING OF SEGMENTS IN CODED SLICE NAL UNITS

W
O

 20
13

/0
67

15
8 A

l

FIG. 8

(57) Abstract: A video encoder divides a picture into a plurality of picture partitions, such as tiles or wavefront parallel processing
(WPP) waves. The picture partitions are associated with non-overlapping subsets of the treeblocks of the picture. The video encoder
generates a coded slice network abstraction layer (NAL) unit that includes encoded representations of the treeblocks associated with
a slice of the picture. The coded treeblocks are grouped within the coded slice NAL unit into segments associated with different ones
of the picture partitions. The video encoder pads one or more of the segments such that each of the segments begins on a byte
boundary.

1
PCT/US2012/063027WO 2013/067158

PADDING OF SEGMENTS IN CODED SLICE NAL UNITS

[0001] This application claims the benefit of U.S. Provisional Application No.

61/557,259, filed November 8, 2011, the entire content of which is incorporated herein

by reference. This application also claims the benefit of U.S. Provisional Application

61/555,932, filed November 4, 2011.

TECHNICAL FIELD

[0002] This disclosure relates to video coding (i.e., encoding or decoding of video data).

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, digital

cameras, digital recording devices, digital media players, video gaming devices, video

game consoles, cellular or satellite radio telephones, video teleconferencing devices, and

the like. Digital video devices implement video compression techniques, such as those

described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video

Coding (HEVC) standard presently under development, and extensions of such

standards, to transmit, receive and store digital video information more efficiently.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice may be partitioned into video

blocks, which may also be referred to as treeblocks, coding units (CUs) and/or coding

nodes. Video blocks in an intra-coded (I) slice of a picture are encoded using spatial

prediction with respect to reference samples in neighboring blocks in the same picture.

Video blocks in an inter-coded (P or B) slice of a picture may use spatial prediction with

respect to reference samples in neighboring blocks in the same picture or temporal

prediction with respect to reference samples in other reference pictures. Pictures may

be referred to as frames, and reference pictures may be referred to a reference frames.

2
20

12
33

24
17

26

 Ju
n2

01
5

SUMMARY

[0005] In general, this disclosure describes techniques for encoding and decoding video

data. A video encoder may divide a picture into a plurality of picture partitions. The

picture partitions include non-overlapping subsets of the treeblocks of the picture.

Example types of picture partitions include tiles and wavefront parallel processing

(WPP) waves. The video encoder may generate a coded slice network abstraction layer

(NAL) unit that includes encoded representations of the treeblocks associated with a

slice of the picture. The video encoder generates the coded slice NAL unit such that the

coded treeblocks are grouped within the coded slice NAL unit by the picture partitions

to which the treeblocks belong. The video encoder may pad one or more of the

segments such that each of the segments begins on a byte boundary. A video decoder

may decode coded treeblocks of the coded slice NAL unit.

[0006] In one aspect, this disclosure describes a method for encoding video data, the

method including:

generating a coded slice network abstraction layer (NAL) unit that includes

encoded representations of video blocks that are associated with a slice of the picture,

wherein the picture is divided into a plurality of slices; and

encoding the picture,

wherein the method further includes:

dividing the picture into a plurality of wavefront parallel processing

(WPP) waves, each of the WPP waves corresponding to a different row of video

blocks in the picture, wherein the encoded representations of the video blocks

are grouped within the coded slice NAL unit into segments associated with

different ones of the WPP waves; and

padding one or more of the segments, such that each of the segments

begins on a byte boundary,

wherein the picture is encoded using WPP.

[0007] In another aspect, this disclosure describes a method of decoding video data, the

method including:

storing a coded slice network abstraction layer (NAL) unit that includes encoded

representations of video blocks associated with a slice of a picture, the picture

partitioned into a plurality wavefront parallel processing (WPP) waves, each of the

WPP waves corresponding to a different row of video blocks in the picture, the encoded

3
26

 Ju
n

20
15 representations of the video blocks grouped into segments associated with different ones

of the WPP waves, wherein one or more of the segments are padded such that each of

the segments begins at a byte boundary; and

decoding the picture using WPP.

CM
CO
CO
CM

o

Paragraphs [0008] to [0013] have been intentionally deleted.

[0014] The details of one or more examples are set forth in the accompanying drawings

and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.--------------------------------------7

WO 2013/067158 PCT/US2012/063027
3

treeblocks of the picture. The one or more processors are also configured to generate a

coded slice NAL unit that includes encoded representations of the treeblocks that are

associated with a slice of the picture. The encoded representations of the treeblocks are

grouped within the coded slice NAL unit into segments associated with different ones of

the picture partitions. One or more of the segments are padded such that each of the

segments begins on a byte boundary.

[0009] In another aspect, this disclosure describes a video decoding device that decodes

video data. The video decoding device comprises a memory that stores a coded slice

NAL unit that includes encoded representations of treeblocks associated with a slice of a

picture. The picture is divided into a plurality of picture partitions. The encoded

representations of the treeblocks are grouped into segments associated with different

ones of the picture partitions. One or more of the segments are padded such that each of

the segments begins at a byte boundary. The video decoding device also comprises one

or more processors that are configured to decode the encoded representations of the

treeblocks.

[0010] In another aspect, this disclosure describes a computer program product that

comprises one or more computer-readable storage media that store instructions that,

when executed by one or more processors, configure a video encoding device to divide

a picture into a plurality of picture partitions. The picture has a plurality of treeblocks.

The picture partitions are associated with non-overlapping subsets of the treeblocks of

the picture. The instructions also configure the video encoding device to generate a

coded slice NAL unit that includes encoded representations of the treeblocks that are

associated with a slice of the picture. The encoded representations of the treeblocks are

grouped within the coded slice NAL unit into segments associated with different ones of

the picture partitions. One or more of the segments are padded such that each of the

segments begins on a byte boundary.

4
20

12
33

24
17

26

 Ju
n2

01
5

THIS PAGE HAS BEEN INTENTIONALLY DELETED

WO 2013/067158 PCT/US2012/063027
5

BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 is a block diagram illustrating an example video coding system that may

utilize the techniques of this disclosure.

[0016] FIG. 2 is a block diagram illustrating an example video encoder that is

configured to implement the techniques of this disclosure.

[0017] FIG. 3 is a block diagram illustrating an example video decoder that is

configured to implement the techniques of this disclosure.

[0018] FIG. 4 is a flowchart that illustrates an example operation to generate slice data

for a slice of a picture.

[0019] FIG. 5 is a flowchart that illustrates an example operation to decode a coded

slice NAL unit.

[0020] FIG. 6 is a conceptual diagram that illustrates wavefront parallel processing.

[0021] FIG. 7 is a conceptual diagram that illustrates an example coding order when a

picture is partitioned into a plurality of tiles.

[0022] FIG. 8 is a conceptual diagram that illustrates an example coded slice NAL unit.

DETAILED DESCRIPTION

[0023] A picture includes a plurality of treeblocks. The treeblocks are associated with

two-dimensional video blocks within the picture. A video encoder divides the picture

into a plurality of picture partitions. For example, the video encoder may divide the

picture into tiles or wavefront parallel processing (WPP) waves. In other words, this

disclosure may use the term “picture partition” to refer generically to tiles or WPP

waves. The picture partitions are associated with non-overlapping subsets of the

treeblocks of the picture. For instance, each treeblock of the picture may be associated

with exactly one of the picture partitions.

[0024] The video encoder may generate a coded slice Network Abstraction Layer

(NAL) unit. The coded slice NAL unit may include encoded representations of each

treeblock associated with a slice of the picture. This disclosure may refer to an encoded

representation of a treeblock as a coded treeblock. A coded treeblock may include a

sequence of bits that represent the video block associated with a treeblock. The

sequence of bits in a coded treeblock may represent a sequence of syntax elements.

[0025] The video encoder may group the coded treeblocks within the coded slice NAL

unit into segments. The segments are associated with different ones of the picture

WO 2013/067158 PCT/US2012/063027
6

partitions. Each of the segments may be a consecutive series of bits, such as bits

representing a series of one or more coded treeblocks and associated data. Thus, the

coded slice NAL unit may include each coded treeblock associated with a first picture

partition followed by each coded treeblock associated with a second picture partition,

followed by each coded treeblock associated with a third picture partition, and so on.

[0026] In accordance with the techniques of this disclosure, the video encoder may pad

one or more of the segments such that each of the segments begins on a byte boundary.

When the video encoder pads a segment, the video encoder may append padding bits to

the segment. The padding bits may not have any semantic meaning, but may serve to

ensure that a next segment begins at a byte boundary. In this way, the video encoder

may provide byte alignment of tiles or WPP waves when the tiles or WPP waves are

included in one coded slice NAL unit for parallel processing purposes.

[0027] A video decoder may store the coded slice NAL unit in byte addressed memory.

The video decoder may then assign two or more of the segments to different decoding

threads that operate in parallel. Each decoding thread decodes the coded treeblocks of

the segment assigned to the decoding thread. Because each of the segments begins at a

byte boundary, the video decoder may provide a memory address of a segment to a

decoding thread when assigning the segment to the decoding thread. In this way,

ensuring that each of the segments begins at a byte boundary may enable the video

decoder to decode the segments in parallel in a simpler fashion than when the segments

may begin at non-byte-boundary positions.

[0028] This may stand in contrast to conventional video encoders and conventional

video decoders that do not ensure that the segments begin at byte boundaries. Because

the segments may not begin at byte boundaries, a conventional video decoder that uses

byte-wise memory addressing may be unable to decode the coded treeblocks in the

segments in parallel. A conventional video decoder may use bit-wise memory

addressing or byte-wise plus bit-wise addressing to enable decoding the coded

treeblocks in the segments in parallel but with increased implementation and

computation complexities.

[0029] The attached drawings illustrate examples. Elements indicated by reference

numbers in the attached drawings correspond to elements indicated by like reference

numbers in the following description. In this disclosure, elements having names that

start with ordinal words (e.g., “first,” “second,” “third,” and so on) do not necessarily

imolv that the elements have a particular order. Rather, such ordinal words are merely

WO 2013/067158 PCT/US2012/063027
7

used to refer to different elements of a same or similar type. Furthermore, in the

following description, the “current picture” may refer to a picture that is currently being

encoded or decoded.

[0030] FIG. 1 is a block diagram that illustrates an example video coding system 10 that

may utilize the techniques of this disclosure. As used described herein, the term “video

coder” refers generically to both video encoders and video decoders. In this disclosure,

the terms “video coding” or “coding” may refer generically to video encoding and video

decoding.

[0031] As shown in FIG. 1, video coding system 10 includes a source device 12 and a

destination device 14. Source device 12 generates encoded video data. Accordingly,

source device 12 may be referred to as a video encoding device. Destination device 14

may decode the encoded video data generated by source device 12. Accordingly,

destination device 14 may be referred to as a video decoding device. Source device 12

and destination device 14 may be examples of video coding devices.

[0032] Source device 12 and destination device 14 may comprise a wide range of

devices, including desktop computers, mobile computing devices, notebook (e.g.,

laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called

“smart” phones, televisions, cameras, display devices, digital media players, video

gaming consoles, in-car computers, or the like. In some examples, source device 12 and

destination device 14 may be equipped for wireless communication.

[0033] Destination device 14 may receive encoded video data from source device 12 via

a channel 16. Channel 16 may comprise a type of medium or device capable of moving

the encoded video data from source device 12 to destination device 14. In one example,

channel 16 may comprise a communication medium that enables source device 12 to

transmit encoded video data directly to destination device 14 in real-time. In this

example, source device 12 may modulate the encoded video data according to a

communication standard, such as a wireless communication protocol, and may transmit

the modulated video data to destination device 14. The communication medium may

comprise a wireless or wired communication medium, such as a radio frequency (RF)

spectrum or one or more physical transmission lines. The communication medium may

form part of a packet-based network, such as a local area network, a wide-area network,

or a global network such as the Internet. The communication medium may include

routers, switches, base stations, or other equipment that facilitates communication from

source device 12 to destination device 14.

WO 2013/067158 PCT/US2012/063027
8

[0034] In another example, channel 16 may correspond to a storage medium that stores

the encoded video data generated by source device 12. In this example, destination

device 14 may access the storage medium via disk access or card access. The storage

medium may include a variety of locally accessed data storage media such as Blu-ray

discs, DVDs, CD-ROMs, flash memory, or other suitable digital storage media for

storing encoded video data. In a further example, channel 16 may include a file server

or another intermediate storage device that stores the encoded video generated by source

device 12. In this example, destination device 14 may access encoded video data stored

at the file server or other intermediate storage device via streaming or download. The

file server may be a type of server capable of storing encoded video data and

transmitting the encoded video data to destination device 14. Example file servers

include web servers (e.g., for a website), file transfer protocol (FTP) servers, network

attached storage (NAS) devices, and local disk drives. Destination device 14 may

access the encoded video data through a standard data connection, including an Internet

connection. Example types of data connections may include wireless channels (e.g.,

Wi-Fi connections), wired connections (e.g., DSL, cable modem, etc.), or combinations

of both that are suitable for accessing encoded video data stored on a file server. The

transmission of encoded video data from the file server may be a streaming

transmission, a download transmission, or a combination of both.

[0035] The techniques of this disclosure are not limited to wireless applications or

settings. The techniques may be applied to video coding in support of any of a variety

of multimedia applications, such as over-the-air television broadcasts, cable television

transmissions, satellite television transmissions, streaming video transmissions, e.g., via

the Internet, encoding of digital video for storage on a data storage medium, decoding of

digital video stored on a data storage medium, or other applications. In some examples,

video coding system 10 may be configured to support one-way or two-way video

transmission to support applications such as video streaming, video playback, video

broadcasting, and/or video telephony.

[0036] In the example of FIG. 1, source device 12 includes a video source 18, video

encoder 20, and an output interface 22. In some cases, output interface 22 may include

a modulator/demodulator (modem) and/or a transmitter. In source device 12, video

source 18 may include a source such as a video capture device, e.g., a video camera, a

video archive containing previously captured video data, a video feed interface to

WO 2013/067158 PCT/US2012/063027
9

receive video data from a video content provider, and/or a computer graphics system for

generating video data, or a combination of such sources.

[0037] Video encoder 20 may encode the captured, pre-captured, or computer-generated

video data. The encoded video data may be transmitted directly to destination device 14

via output interface 22 of source device 12. The encoded video data may also be stored

onto a storage medium or a file server for later access by destination device 14 for

decoding and/or playback.

[0038] In the example of FIG. 1, destination device 14 includes an input interface 28, a

video decoder 30, and a display device 32. In some cases, input interface 28 may

include a receiver and/or a modem. Input interface 28 of destination device 14 receives

encoded video data over channel 16. The encoded video data may include a variety of

syntax elements generated by video encoder 20 that represent the video data. Such

syntax elements may be included with the encoded video data transmitted on a

communication medium, stored on a storage medium, or stored a file server.

[0039] Display device 32 may be integrated with or may be external to destination

device 14. In some examples, destination device 14 may include an integrated display

device and may also be configured to interface with an external display device. In other

examples, destination device 14 maybe a display device. In general, display device 32

displays the decoded video data to a user. Display device 32 may comprise any of a

variety of display devices such as a liquid crystal display (LCD), a plasma display, an

organic light emitting diode (OLED) display, or another type of display device.

[0040] Video encoder 20 and video decoder 30 may operate according to a video

compression standard, such as the High Efficiency Video Coding (HEVC) standard

presently under development, and may conform to a HEVC Test Model (HM). A recent

draft of the upcoming HEVC standard, referred to as “HEVC Working Draft 6” or

“WD6,” is described in document JCTVC-H1003, Bross et al., “High efficiency video

coding (HEVC) text specification draft 6,” Joint Collaborative Team on Video Coding

(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 8th Meeting: San

Jose, California, USA, February, 2012, which, as of May 1, 2012, is downloadable

from: http://phenix.int-

evry.fr/jct/doc_end_user/documents/8_San%20Jose/wgll/JCTVC-H1003-v22.zip, the

entire content of which is incorporated herein by reference. Alternatively, video

encoder 20 and video decoder 30 may operate according to other proprietary or industry

standards, such as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part

http://phenix.int-

WO 2013/067158 PCT/US2012/063027
10

10, Advanced Video Coding (AVC), or extensions of such standards, when picture

partitioning techniques like tiles or wavefront parallel processing are included. The

techniques of this disclosure, however, are not limited to any particular coding standard

or technique. Other examples of video compression standards and techniques include

MPEG-2, ITU-T H.263 and proprietary or open source compression formats such as

VP8 and related formats, when picture partitioning techniques like tiles or wavefront

parallel processing are included.

[0041] Although not shown in the example of FIG. 1, video encoder 20 and video

decoder 30 may each be integrated with an audio encoder and decoder, and may include

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding

of both audio and video in a common data stream or separate data streams. If

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223

multiplexer protocol, or other protocols such as the user datagram protocol (UDP).

[0042] Again, FIG 1 is merely an example and the techniques of this disclosure may

apply to video coding settings (e.g., video encoding or video decoding) that do not

necessarily include any data communication between the encoding and decoding

devices. In other examples, data can be retrieved from a local memory, streamed over a

network, or the like. An encoding device may encode and store data to memory, and/or

a decoding device may retrieve and decode data from memory. In many examples, the

encoding and decoding is performed by devices that do not communicate with one

another, but simply encode data to memory and/or retrieve and decode data from

memory.

[0043] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable circuitry, such as one or more microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. When the

techniques are implemented partially in software, a device may store instructions for the

software in a suitable, non-transitory computer-readable storage medium and may

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0044] As mentioned briefly above, video encoder 20 encodes video data. The video

data mav comnrise one or more pictures. Each of the pictures is a still image forming

WO 2013/067158 PCT/US2012/063027
11

part of a video. In some instances, a picture may be referred to as a video “frame” or a

video "field". When video encoder 20 encodes the video data, video encoder 20 may

generate a bitstream. The bitstream may include a sequence of bits that form a coded

representation of the video data. The bitstream may include coded pictures and

associated data. A coded picture is a coded representation of a picture.

[0045] To generate the bitstream, video encoder 20 may perform encoding operations

on each picture in the video data. When video encoder 20 performs encoding operations

on the pictures, video encoder 20 may generate a series of coded pictures and associated

data. The associated data may include sequence parameter sets, picture parameter sets,

adaptation parameter sets, and other syntax structures. A sequence parameter set (SPS)

may contain parameters applicable to zero or more sequences of pictures. Sequences of

pictures may also be referred to as coded video sequences, as in H.264/AVC and

HEVC. A picture parameter set (PPS) may contain parameters applicable to zero or

more pictures. An adaptation parameter set (APS) may contain parameters applicable to

zero or more pictures. Parameters in an APS may be parameters that are more likely to

change than parameters in a PPS.

[0046] To generate a coded picture, video encoder 20 may partition a picture into

equally-sized video blocks. A video block may be a two-dimensional array of samples.

Each of the video blocks is associated with a treeblock. In some instances, a treeblock

may be referred to as a largest coding unit (LCU) or a coding treeblock. The treeblocks

of HEVC may be broadly analogous to the macroblocks of previous standards, such as

H.264/AVC. However, a treeblock is not necessarily limited to a particular size and

may include one or more coding units (CUs). Video encoder 20 may use quadtree

partitioning to partition the video blocks of treeblocks into video blocks associated with

CUs, hence the name “treeblocks.”

[0047] In some examples, video encoder 20 may partition a picture into a plurality of

slices. Each of the slices may include an integer number of consecutively coded

treeblocks. In some instances, each of the slices may include an integer number of

consecutively coded CUs. As part of performing an encoding operation on a picture,

video encoder 20 may perform encoding operations on each slice of the picture. When

video encoder 20 performs an encoding operation on a slice, video encoder 20 may

generate encoded data associated with the slice. The encoded data associated with the

slice may be referred to as a “coded slice.”

WO 2013/067158 PCT/US2012/063027
12

[0048] To generate a coded slice, video encoder 20 may perform encoding operations

on each treeblock in a slice. When video encoder 20 performs an encoding operation on

a treeblock, video encoder 20 may generate a coded treeblock. The coded treeblock

may comprise data representing an encoded version of the treeblock.

[0049] When video encoder 20 generates a coded slice, video encoder 20 may perform

encoding operations on (i.e., encode) the treeblocks in the slice according to a raster

scan order. In other words, video encoder 20 may encode the treeblocks of the slice in

an order that proceeds from left to right across a topmost row of treeblocks in the slice,

then proceeds from left to right across a next lower row of treeblocks, and so on until

video encoder 20 has encoded each of the treeblocks in the slice.

[0050] As a result of encoding the treeblocks according to the raster scan order, the

treeblocks above and to the left of a given treeblock may have been encoded, but

treeblocks below and to the right of the given treeblock have not yet been encoded.

Consequently, video encoder 20 may be able to access information generated by

encoding treeblocks above and to the left of the given treeblock when encoding the

given treeblock. However, video encoder 20 may be unable to access information

generated by encoding treeblocks below and to the right of the given treeblock when

encoding the given treeblock.

[0051] To generate a coded treeblock, video encoder 20 may recursively perform

quadtree partitioning on the video block of the treeblock to divide the video block into

progressively smaller video blocks. Each of the smaller video blocks may be associated

with a different CU. For example, video encoder 20 may partition the video block of a

treeblock into four equally-sized sub-blocks, partition one or more of the sub-blocks

into four equally-sized sub-sub-blocks, and so on. A partitioned CU may be a CU

whose video block is partitioned into video blocks associated with other CUs. A non-

partitioned CU may be a CU whose video block is not partitioned into video blocks

associated with other CUs.

[0052] One or more syntax elements in the bitstream may indicate a maximum number

of times video encoder 20 may partition the video block of a treeblock. A video block

of a CU may be square in shape. The size of the video block of a CU (i.e., the size of

the CU) may range from 8x8 pixels up to the size of a video block of a treeblock (i.e.,

the size of the treeblock) with a maximum of 64x64 pixels or greater.

[0053] Video encoder 20 may perform encoding operations on (i.e., encode) each CU of

a treeblock according to a z-scan order. In other words, video encoder 20 may encode a

WO 2013/067158 PCT/US2012/063027
13

top-left CU, a top-right CU, a bottom-left CU, and then a bottom-right CU, in that order.

When video encoder 20 performs an encoding operation on a partitioned CU, video

encoder 20 may encode CUs associated with sub-blocks of the video block of the

partitioned CU according to the z-scan order. In other words, video encoder 20 may

encode a CU associated with a top-left sub-block, a CU associated with a top-right sub­

block, a CU associated with a bottom-left sub-block, and then a CU associated with a

bottom-right sub-block, in that order.

[0054] As a result of encoding the CUs of a treeblock according to a z-scan order, the

CUs above, above-and-to-the-left, above-and-to-the-right, left, and below-and-to-the left

of a given CU may have been encoded. CUs below and to the right of the given CU

have not yet been encoded. Consequently, video encoder 20 may be able to access

information generated by encoding some CUs that neighbor the given CU when

encoding the given CU. However, video encoder 20 may be unable to access

information generated by encoding other CUs that neighbor the given CU when

encoding the given CU.

[0055] When video encoder 20 encodes a non-partitioned CU, video encoder 20 may

generate one or more prediction units (PUs) for the CU. Each of the PUs of the CU

may be associated with a different video block within the video block of the CU. Video

encoder 20 may generate a predicted video block for each PU of the CU. The predicted

video block of a PU may be a block of samples. Video encoder 20 may use intra

prediction or inter prediction to generate the predicted video block for a PU.

[0056] When video encoder 20 uses intra prediction to generate the predicted video

block of a PU, video encoder 20 may generate the predicted video block of the PU

based on decoded samples of the picture associated with the PU. If video encoder 20

uses intra prediction to generate predicted video blocks of the PUs of a CU, the CU is an

intra-predicted CU. When video encoder 20 uses inter prediction to generate the

predicted video block of the PU, video encoder 20 may generate the predicted video

block of the PU based on decoded samples of one or more pictures other than the

picture associated with the PU. If video encoder 20 uses inter prediction to generate

predicted video blocks of the PUs of a CU, the CU is an inter-predicted CU.

[0057] Furthermore, when video encoder 20 uses inter prediction to generate a

predicted video block for a PU, video encoder 20 may generate motion information for

the PU. The motion information for a PU may indicate one or more reference blocks of

the PU. Each reference block of the PU may be a video block within a reference

WO 2013/067158 PCT/US2012/063027
14

picture. The reference picture may be a picture other than the picture associated with

the PU. In some instances, a reference block of a PU may also be referred to as the

“reference sample” of the PU. Video encoder 20 may generate the predicted video

block for the PU based on the reference blocks of the PU.

[0058] After video encoder 20 generates predicted video blocks for one or more PUs of

a CU, video encoder 20 may generate residual data for the CU based on the predicted

video blocks for the PUs of the CU. The residual data for the CU may indicate

differences between samples in the predicted video blocks for the PUs of the CU and the

original video block of the CU.

[0059] Furthermore, as part of performing an encoding operation on a non-partitioned

CU, video encoder 20 may perform recursive quadtree partitioning on the residual data

of the CU to partition the residual data of the CU into one or more blocks of residual

data (i.e., residual video blocks) associated with transform units (TUs) of the CU. Each

TU of a CU may be associated with a different residual video block.

[0060] Video coder 20 may apply one or more transforms to residual video blocks

associated with the TUs to generate transform coefficient blocks (i.e., blocks of

transform coefficients) associated with the TUs. Conceptually, a transform coefficient

block may be a two-dimensional (2D) matrix of transform coefficients.

[0061] After generating a transform coefficient block, video encoder 20 may perform a

quantization process on the transform coefficient block. Quantization generally refers

to a process in which transform coefficients are quantized to possibly reduce the amount

of data used to represent the transform coefficients, providing further compression. The

quantization process may reduce the bit depth associated with some or all of the

transform coefficients. For example, an «-bit transform coefficient may be rounded

down to an m-bit transform coefficient during quantization, where n is greater than m.

[0062] Video encoder 20 may associate each CU with a quantization parameter (QP)

value. The QP value associated with a CU may determine how video encoder 20

quantizes transform coefficient blocks associated with the CU. Video encoder 20 may

adjust the degree of quantization applied to the transform coefficient blocks associated

with a CU by adjusting the QP value associated with the CU.

[0063] After video encoder 20 quantizes a transform coefficient block, video encoder

20 may generate sets of syntax elements that represent the transform coefficients in the

quantized transform coefficient block. Video encoder 20 may apply entropy encoding

WO 2013/067158 PCT/US2012/063027
15

operations, such as Context Adaptive Binary Arithmetic Coding (CABAC) operations,

to some of these syntax elements.

[0064] The bitstream generated by video encoder 20 may include a series of Network

Abstraction Layer (NAL) units. Each of the NAL units may be a syntax structure

containing an indication of a type of data in the NAL unit and bytes containing the data.

For example, a NAL unit may contain data representing a sequence parameter set, a

picture parameter set, a coded slice, one or more supplemental enhancement information

(SEI) messages, an access unit delimiter, filler data, or another type of data. The data in

a NAL unit may include various syntax structures.

[0065] Video decoder 30 may receive the bitstream generated by video encoder 20.

The bitstream may include a coded representation of the video data encoded by video

encoder 20. When video decoder 30 receives the bitstream, video decoder 30 may

perform a parsing operation on the bitstream. When video decoder 30 performs the

parsing operation, video decoder 30 may extract syntax elements from the bitstream.

Video decoder 30 may reconstruct the pictures of the video data based on the syntax

elements extracted from the bitstream. The process to reconstruct the video data based

on the syntax elements may be generally reciprocal to the process performed by video

encoder 20 to generate the syntax elements.

[0066] After video decoder 30 extracts the syntax elements associated with a CU, video

decoder 30 may generate predicted video blocks for the PUs of the CU based on the

syntax elements. In addition, video decoder 30 may inverse quantize transform

coefficient blocks associated with TUs of the CU. Video decoder 30 may perform

inverse transforms on the transform coefficient blocks to reconstruct residual video

blocks associated with the TUs of the CU. After generating the predicted video blocks

and reconstructing the residual video blocks, video decoder 30 may reconstruct the

video block of the CU based on the predicted video blocks and the residual video

blocks. In this way, video decoder 30 may reconstruct the video blocks of CUs based

on the syntax elements in the bitstream.

[0067] Video encoder 20 may divide the current picture into a plurality of picture

partitions. The picture partitions may be associated with non-overlapping subsets of the

treeblocks of the current picture. Video encoder 20 may divide the current picture into a

plurality of picture partitions in various ways. As described below, video encoder 20

may divide the current picture into a plurality of tiles or into a plurality of wavefront

narallel nrocessine fWPP) waves. This disclosure may use the term “picture partition”

WO 2013/067158 PCT/US2012/063027
16

to refer generically to both tiles and WPP waves. The process of dividing the current

picture into picture partitions may be referred to as “partitioning” the current picture

into picture partitions.

[0068] As mentioned above, video encoder 20 may divide the current picture into one

or more tiles. Each of the tiles may comprise an integer number of treeblocks in the

current picture. Video encoder 20 may divide the current picture into tiles by defining

two or more vertical tile boundaries and two or more horizontal tile boundaries. Each

vertical side of the current picture may be considered to be a vertical tile boundary.

Each horizontal side of the current picture may be considered to be a horizontal tile

boundary. For example, if video encoder 20 defines four vertical tile boundaries and

three horizontal tile boundaries for the current picture, the current picture is divided into

six tiles.

[0069] A video coder, such as video encoder 20 or video decoder 30, may code the tiles

of the current picture according to raster scan order. Furthermore, when the video coder

codes a tile, the video coder may code each treeblock within the tile according to a

raster scan order. In this way, the video coder may code each treeblock of a given tile

of the current picture before coding any treeblock of another tile of the current picture.

Consequently, the order in which the video coder codes the treeblocks of the current

picture may be different when the video coder partitions the current picture into multiple

tiles than when the video coder does not partition the current picture into multiple tiles.

[0070] Furthermore, in some instances, the video coder may use information associated

with spatially-neighboring CUs to perform intra prediction on a given CU in the current

picture, so long as the given CU and the spatially-neighboring CUs belong to the same

tile. The spatially-neighboring CUs are CUs that belong to the current slice of the

current picture. In some instances, the video coder may use information associated with

spatially-neighboring CUs to select a context for CABAC encoding a syntax element of

the given CU, so long as the given CU and the spatially-neighboring CUs are within the

same tile. Because of these restrictions, the video coder may be able to code in parallel

treeblocks of multiple tiles.

[0071] In other examples, the video coder may code the current picture using wavefront

parallel processing (WPP). When the video coder codes the current picture using WPP,

the video coder may divide the treeblocks of the current picture into a plurality of “WPP

waves.” Each of the WPP waves may correspond to a different row of treeblocks in the

current picture. When the video coder codes the current picture using WPP, the video

WO 2013/067158 PCT/US2012/063027
17

coder may start coding a top row of treeblocks. When the video coder has coded two or

more treeblocks of the top row, the video coder may start coding a second to top row of

treeb locks in parallel with coding the top row of treeblocks. When the video coder has

coded two or more treeblocks of the second to top row, the video coder may start coding

a third to top row of treeblock in parallel with coding the higher rows of treeblocks.

This pattern may continue down the rows of treeblocks in the current picture.

[0072] When the video coder is coding the current picture using WPP, the video coder

may use information associated with spatially-neighboring CUs outside a current

treeblock to perform intra prediction on a given CU in the current treeblock, so long as

the spatially-neighboring CUs are left, above-left, above, or above-right of the current

treeblock. If the current treeblock is the leftmost treeblock in a row other than the

topmost row, the video coder may use information associated with the second treeblock

of the immediately higher row to select a context for CABAC encoding a syntax

element of the current treeblock. Otherwise, if the current treeblock is not the leftmost

treeblock in the row, the video coder may use information associated with a treeblock to

the left of the current treeblock to select a context for CABAC encoding a syntax

element of the current treeblock. In this way, the video coder may initialize CABAC

states of a row based on the CABAC states of the immediately higher row after

encoding two or more treeblocks of the immediately higher row.

[0073] In some examples, when the video coder is coding the current picture using

WPP, the only tile boundaries of the current picture are horizontal and vertical borders

of the current picture. Thus, the only tile of the current picture may be the same size as

the current picture. The video coder may divide the current picture, and hence the

single tile of the current picture, into multiple WPP waves.

[0074] As mentioned above, video encoder 20 may generate a coded slice NAL unit

that includes an encoded representation of a slice. The slice may be associated with an

integer number of consecutively coded treeblocks. The coded slice NAL unit may

include a slice header and slice data. The slice data may include encoded

representations of each treeblock associated with the slice. Video encoder 20 may

generate the coded slice NAL unit that such encoded representations of the treeblocks

are grouped within the slice data into segments according to the picture partitions with

which the treeblocks belong. For example, the coded slice NAL unit may include each

coded treeblock associated with a first picture partition followed by each coded

WO 2013/067158 PCT/US2012/063027
18

treeblock associated with a second picture partition, followed by each coded treeblock

associated with a third picture partition, and so on.

[0075] In accordance with the techniques of this disclosure, video encoder 20 may pad

one or more of the segments such that each of the segments begins on a byte boundary.

The coded slice NAL unit may be divided into a series of bytes. A segment may begin

on a byte boundary when a first bit of the segment is the first bit of one of the bytes of

the coded slice NAL unit. Lurthermore, a segment may be byte aligned if the first bit of

a segment is the first bit of one of the bytes of the coded slice NAL unit. When video

encoder 20 pads a segment, video encoder 20 may append padding bits to the segment.

Lor instance, video encoder 20 may add one or more padding bits to a segment such that

the number of bits in the segment is divisible by eight without leaving a remainder. The

padding bits may not have any semantic meaning, but may serve to ensure that a next

segment begins at a byte boundary.

[0076] When video decoder 30 receives the coded slice NAL unit, video encoder 30

may store the coded slice NAL unit in memory. To decode the picture partitions in

parallel, video decoder 30 may assign the segments to different decoding threads that

run in parallel. In order to assign the segments to different decoding threads, video

decoder 30 may need to indicate memory addresses associated with the beginnings of

the segments. Video decoder 30 may use byte-wise memory addressing. Accordingly,

video decoder 30 may be unable to indicate the memory address associated with the

start of a segment if the start of the segment occurs within a byte. Hence, video decoder

30 may not be able to decode the coded treeblocks in the segments in parallel if one or

more of the segments begins within a byte. Alternatively, video decoder 30 may use bit­

wise memory addressing or byte-wise plus bit-wise addressing to enable decoding the

coded treeblocks in the segments in parallel but with increased implementation and

computation complexities.

[0077] In this way, video encoder 20 may divide a picture into a plurality of picture

partitions. The picture has a plurality of treeblocks. The picture partitions are

associated with non-overlapping subsets of the treeblocks of the picture. Video encoder

20 may generate a coded slice NAL unit that includes encoded representations of the

treeblocks that are associated with a slice of the picture. The encoded representations of

the treeblocks are grouped within the coded slice NAL unit into segments associated

with different ones of the picture partitions. One or more of the segments are padded

such that each of the segments begins on a byte boundary.

WO 2013/067158 PCT/US2012/063027
19

[0078] Moreover, video decoder 30 may store a coded slice NAL unit that includes

encoded representations of treeblocks associated with a slice of a picture. The picture

may be divided into a plurality of picture partitions. The encoded representations of the

treeblocks may be grouped into segments associated with different ones of the picture

partitions. One or more of the segments are padded such that each of the segments

begins at a byte boundary. Video decoder 30 may decode the encoded representations

of the treeblocks. In some instances, video decoder 30 may decode the encoded

representations of the treeblocks in two or more of the segments in parallel.

[0079] LIG. 2 is a block diagram that illustrates an example video encoder 20 that is

configured to implement the techniques of this disclosure. LIG. 2 is provided for

purposes of explanation and should not be considered limiting of the techniques as

broadly exemplified and described in this disclosure. Lor purposes of explanation, this

disclosure describes video encoder 20 in the context of HEVC coding. However, the

techniques of this disclosure may be applicable to other coding standards or methods.

[0080] In the example of LIG. 2, video encoder 20 includes a plurality of functional

components. The functional components of video encoder 20 include a prediction

module 100, a residual generation module 102, a transform module 104, a quantization

module 106, an inverse quantization module 108, an inverse transform module 110, a

reconstruction module 112, a filter module 113, a decoded picture buffer 114, and an

entropy encoding module 116. Prediction module 100 includes an inter prediction

module 121, motion estimation module 122, amotion compensation module 124, and

an intra prediction module 126. In other examples, video encoder 20 may include more,

fewer, or different functional components. Lurthermore, motion estimation module 122

and motion compensation module 124 may be highly integrated, but are represented in

the example of LIG. 2 separately for purposes of explanation.

[0081] Video encoder 20 may receive video data. Video encoder 20 may receive the

video data from various sources. Lor example, video encoder 20 may receive the video

data from video source 18 (LIG. 1) or another source. The video data may represent a

series of pictures. To encode the video data, video encoder 20 may perform an

encoding operation on each of the pictures. As part of performing the encoding

operation on a picture, video encoder 20 may perform encoding operations on each slice

of the picture. As part of performing an encoding operation on a slice, video encoder 20

may perform encoding operations on treeblocks in the slice.

WO 2013/067158 PCT/US2012/063027
20

[0082] As part of performing an encoding operation on a treeblock, prediction module

100 may perform quadtree partitioning on the video block of the treeblock to divide the

video block into progressively smaller video blocks. Each of the smaller video blocks

may be associated with a different CU. For example, prediction module 100 may

partition a video block of a treeblock into four equally-sized sub-blocks, partition one or

more of the sub-blocks into four equally-sized sub-sub-blocks, and so on.

[0083] The sizes of the video blocks associated with CUs may range from 8x8 samples

up to the size of the treeblock with a maximum of 64x64 samples or greater. In this

disclosure, “NxN” and “N by N” may be used interchangeably to refer to the sample

dimensions of a video block in terms of vertical and horizontal dimensions, e.g., 16x16

samples or 16 by 16 samples. In general, a 16x16 video block has sixteen samples in a

vertical direction (y = 16) and sixteen samples in a horizontal direction (x = 16).

Likewise, an NxN block generally has N samples in a vertical direction and N samples

in a horizontal direction, where N represents a nonnegative integer value.

[0084] Furthermore, as part of performing the encoding operation on a treeblock,

prediction module 100 may generate a hierarchical quadtree data structure for the

treeblock. For example, a treeblock may correspond to a root node of the quadtree data

structure. If prediction module 100 partitions the video block of the treeblock into four

sub-blocks, the root node has four child nodes in the quadtree data structure. Each of

the child nodes corresponds to a CU associated with one of the sub-blocks. If prediction

module 100 partitions one of the sub-blocks into four sub-sub-blocks, the node

corresponding to the CU associated with the sub-block may have four child nodes, each

of which corresponds to a CU associated with one of the sub-sub-blocks.

[0085] Each node of the quadtree data structure may contain syntax data (e.g., syntax

elements) for the corresponding treeblock or CU. For example, a node in the quadtree

may include a split flag that indicates whether the video block of the CU corresponding

to the node is partitioned (i.e., split) into four sub-blocks. Syntax elements for a CU

may be defined recursively, and may depend on whether the video block of the CU is

split into sub-blocks. A CU whose video block is not partitioned may correspond to a

leaf node in the quadtree data structure. A coded treeblock may include data based on

the quadtree data structure for a corresponding treeblock.

[0086] Video encoder 20 may perform encoding operations on each non-partitioned CU

of a treeblock. When video encoder 20 performs an encoding operation on a non-

WO 2013/067158 PCT/US2012/063027
21

partitioned CU, video encoder 20 generates data representing an encoded representation

of the non-partitioned CU.

[0087] As part of performing an encoding operation on a CU, prediction module 100

may partition the video block of the CU among one or more PUs of the CU. Video

encoder 20 and video decoder 30 may support various PU sizes. Assuming that the size

of a particular CU is 2Nx2N, video encoder 20 and video decoder 30 may support PU

sizes of 2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN,

Nx2N, NxN, 2NxnU, nLx2N, nRx2N, or similar. Video encoder 20 and video decoder

30 may also support asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N,

and nRx2N. In some examples, prediction module 100 may perform geometric

partitioning to partition the video block of a CU among PUs of the CU along a boundary

that does not meet the sides of the video block of the CU at right angles.

[0088] Inter prediction module 121 may perform inter prediction on each PU of the CU.

Inter prediction may provide temporal compression. To perform inter prediction on a

PU, motion estimation module 122 may generate motion information for the PU.

Motion compensation module 124 may generate a predicted video block for the PU

based the motion information and decoded samples of pictures other than the picture

associated with the CU (i.e., reference pictures). In this disclosure, a predicted video

block generated by motion compensation module 124 may be referred to as an inter­

predicted video block.

[0089] Slices may be I slices, P slices, or B slices. Motion estimation module 122 and

motion compensation module 124 may perform different operations for a PU of a CU

depending on whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs

are intra predicted. Hence, if the PU is in an I slice, motion estimation module 122 and

motion compensation module 124 do not perform inter prediction on the PU.

[0090] If the PU is in a P slice, the picture containing the PU is associated with a list of

reference pictures referred to as “list 0.” Each of the reference pictures in list 0 contains

samples that may be used for inter prediction of other pictures. When motion

estimation module 122 performs the motion estimation operation with regard to a PU in

a P slice, motion estimation module 122 may search the reference pictures in list 0 for a

reference block for the PU. The reference block of the PU may be a set of samples, e.g.,

a block of samples, that most closely corresponds to the samples in the video block of

the PU. Motion estimation module 122 may use a variety of metrics to determine how

closelv a set of samples in a reference picture corresponds to the samples in the video

WO 2013/067158 PCT/US2012/063027
22

block of a PU. For example, motion estimation module 122 may determine how closely

a set of samples in a reference picture corresponds to the samples in the video block of a

PU by sum of absolute difference (SAD), sum of square difference (SSD), or other

difference metrics.

[0091] After identifying a reference block of a PU in a P slice, motion estimation

module 122 may generate a reference index that indicates the reference picture in list 0

containing the reference block and a motion vector that indicates a spatial displacement

between the PU and the reference block. In various examples, motion estimation

module 122 may generate motion vectors to varying degrees of precision. For example,

motion estimation module 122 may generate motion vectors at one-quarter sample

precision, one-eighth sample precision, or other fractional sample precision. In the case

of fractional sample precision, reference block values may be interpolated from integer-

position sample values in the reference picture. Motion estimation module 122 may

output the reference index and the motion vector as the motion information of the PU.

Motion compensation module 124 may generate a predicted video block of the PU

based on the reference block identified by the motion information of the PU.

[0092] If the PU is in a B slice, the picture containing the PU may be associated with

two lists of reference pictures, referred to as “list 0” and “list 1.” In some examples, a

picture containing a B slice may be associated with a list combination that is a

combination of list 0 and list 1.

[0093] Furthermore, if the PU is in a B slice, motion estimation module 122 may

perform uni-directional prediction or bi-directional prediction for the PU. When motion

estimation module 122 performs uni-directional prediction for the PU, motion

estimation module 122 may search the reference pictures of list 0 or list 1 for a

reference block for the PU. Motion estimation module 122 may then generate a

reference index that indicates the reference picture in list 0 or list 1 that contains the

reference block and a motion vector that indicates a spatial displacement between the

PU and the reference block. Motion estimation module 122 may output the reference

index, a prediction direction indicator, and the motion vector as the motion information

of the PU. The prediction direction indicator may indicate whether the reference index

indicates a reference picture in list 0 or list 1. Motion compensation module 124 may

generate the predicted video block of the PU based on the reference block indicated by

the motion information of the PU.

WO 2013/067158 PCT/US2012/063027
23

[0094] When motion estimation module 122 performs bi-directional prediction for a

PU, motion estimation module 122 may search the reference pictures in list 0 for a

reference block for the PU and may also search the reference pictures in list 1 for

another reference block for the PU. Motion estimation module 122 may then generate

reference indexes that indicate the reference pictures in list 0 and list 1 containing the

reference blocks and motion vectors that indicate spatial displacements between the

reference blocks and the PU. Motion estimation module 122 may output the reference

indexes and the motion vectors of the PU as the motion information of the PU. Motion

compensation module 124 may generate the predicted video block of the PU based on

the reference blocks indicated by the motion information of the PU.

[0095] In some instances, motion estimation module 122 does not output a full set of

motion information for a PU to entropy encoding module 116. Rather, motion

estimation module 122 may signal the motion information of a PU with reference to the

motion information of another PU. For example, motion estimation module 122 may

determine that the motion information of the PU is sufficiently similar to the motion

information of a neighboring PU. In this example, motion estimation module 122 may

indicate, in a syntax structure associated with the PU, a value that indicates to video

decoder 30 that the PU has the same motion information as the neighboring PU. In

another example, motion estimation module 122 may identify, in a syntax structure

associated with the PU, a neighboring PU and a motion vector difference (MVD). The

motion vector difference indicates a difference between the motion vector of the PU and

the motion vector of the indicated neighboring PU. Video decoder 30 may use the

motion vector of the indicated neighboring PU and the motion vector difference to

determine the motion vector of the PU. By referring to the motion information of a first

PU when signaling the motion information of a second PU, video encoder 20 may be

able to signal the motion information of the second PU using fewer bits.

[0096] As part of performing an encoding operation on a CU, intra prediction module

126 may perform intra prediction on PUs of the CU. Intra prediction may provide

spatial compression. When intra prediction module 126 performs intra prediction on a

PU, intra prediction module 126 may generate prediction data for the PU based on

decoded samples of other PUs in the same picture. The prediction data for the PU may

include a predicted video block and various syntax elements. Intra prediction module

126 may perform intra prediction on PUs in I slices, P slices, and B slices.

WO 2013/067158 PCT/US2012/063027
24

[0097] To perform intra prediction on a PU, intra prediction module 126 may use

multiple intra prediction modes to generate multiple sets of prediction data for the PU.

When intra prediction module 126 uses an intra prediction mode to generate a set of

prediction data for the PU, intra prediction module 126 may extend samples from video

blocks of neighboring PUs across the video block of the PU in a direction and/or

gradient associated with the intra prediction mode. The neighboring PUs may be above,

above and to the right, above and to the left, or to the left of the PU, assuming a left-to-

right, top-to-bottom encoding order for PUs, CUs, and treeblocks. Intra prediction

module 126 may use various numbers of intra prediction modes, e.g., 33 directional

intra prediction modes, depending on the size of the PU.

[0098] Prediction module 100 may select the prediction data for a PU from among the

prediction data generated by motion compensation module 124 for the PU or the

prediction data generated by intra prediction module 126 for the PU. In some examples,

prediction module 100 selects the prediction data for the PU based on rate/distortion

metrics of the sets of prediction data.

[0099] If prediction module 100 selects prediction data generated by intra prediction

module 126, prediction module 100 may signal the intra prediction mode that was used

to generate the prediction data for the PUs, i.e., the selected intra prediction mode.

Prediction module 100 may signal the selected intra prediction mode in various ways.

For example, it is probable the selected intra prediction mode is the same as the intra

prediction mode of a neighboring PU. In other words, the intra prediction mode of the

neighboring PU may be the most probable mode for the current PU. Thus, prediction

module 100 may generate a syntax element to indicate that the selected intra prediction

mode is the same as the intra prediction mode of the neighboring PU.

[0100] After prediction module 100 selects the prediction data for PUs of a CU, residual

generation module 102 may generate residual data for the CU by subtracting the

predicted video blocks of the PUs of the CU from the video block of the CU. The

residual data of a CU may include 2D residual video blocks that correspond to different

sample components of the samples in the video block of the CU. For example, the

residual data may include a residual video block that corresponds to differences between

luminance components of samples in the predicted video blocks of the PUs of the CU

and luminance components of samples in the original video block of the CU. In

addition, the residual data of the CU may include residual video blocks that correspond

to the differences between chrominance components of samples in the predicted video

WO 2013/067158 PCT/US2012/063027
25

blocks of the PUs of the CU and the chrominance components of the samples in the

original video block of the CU.

[0101] Prediction module 100 may perform quadtree partitioning to partition the

residual video blocks of a CU into sub-blocks. Each undivided residual video block

may be associated with a different TU of the CU. The sizes and positions of the

residual video blocks associated with TUs of a CU may or may not be based on the sizes

and positions of video blocks associated with the PUs of the CU. A quadtree structure

known as a “residual quad tree” (RQT) may include nodes associated with each of the

residual video blocks. The TUs of a CU may correspond to leaf nodes of the RQT.

[0102] Transform module 104 may generate one or more transform coefficient blocks

for each TU of a CU by applying one or more transforms to a residual video block

associated with the TU. Each of the transform coefficient blocks may be a 2D matrix of

transform coefficients. Transform module 104 may apply various transforms to the

residual video block associated with a TU. For example, transform module 104 may

apply a discrete cosine transform (DCT), a directional transform, or a conceptually

similar transform to the residual video block associated with a TU.

[0103] After transform module 104 generates a transform coefficient block associated

with a TU, quantization module 106 may quantize the transform coefficients in the

transform coefficient block. Quantization module 106 may quantize a transform

coefficient block associated with a TU of a CU based on a QP value associated with the

CU.

[0104] Video encoder 20 may associate a QP value with a CU in various ways. For

example, video encoder 20 may perform a rate-distortion analysis on a treeblock

associated with the CU. In the rate-distortion analysis, video encoder 20 may generate

multiple coded representations of the treeblock by performing an encoding operation

multiple times on the treeblock. Video encoder 20 may associate different QP values

with the CU when video encoder 20 generates different encoded representations of the

treeblock. Video encoder 20 may signal that a given QP value is associated with the

CU when the given QP value is associated with the CU in a coded representation of the

treeblock that has a lowest bitrate and distortion metric.

[0105] Inverse quantization module 108 and inverse transform module 110 may apply

inverse quantization and inverse transforms to the transform coefficient block,

respectively, to reconstruct a residual video block from the transform coefficient block.

Reconstruction module 112 may add the reconstructed residual video block to

WO 2013/067158 PCT/US2012/063027
26

corresponding samples from one or more predicted video blocks generated by prediction

module 100 to produce a reconstructed video block associated with a TU. By

reconstructing video blocks for each TU of a CU in this way, video encoder 20 may

reconstruct the video block of the CU.

[0106] After reconstruction module 112 reconstructs the video block of a CU, filter

module 113 may perform a deblocking operation to reduce blocking artifacts in the

video block associated with the CU. After performing the one or more deblocking

operations, filter module 113 may store the reconstructed video block of the CU in

decoded picture buffer 114. Motion estimation module 122 and motion compensation

module 124 may use a reference picture that contains the reconstructed video block to

perform inter prediction on PUs of subsequent pictures. In addition, intra prediction

module 126 may use reconstructed video blocks in decoded picture buffer 114 to

perform intra prediction on other PUs in the same picture as the CU.

[0107] Entropy encoding module 116 may receive data from other functional

components of video encoder 20. For example, entropy encoding module 116 may

receive transform coefficient blocks from quantization module 106 and may receive

syntax elements from prediction module 100. When entropy encoding module 116

receives the data, entropy encoding module 116 may perform one or more entropy

encoding operations to generate entropy encoded data. For example, video encoder 20

may perform a context adaptive variable length coding (CAVFC) operation, a CABAC

operation, a variable-to-variable (V2V) length coding operation, a syntax-based context-

adaptive binary arithmetic coding (SBAC) operation, a Probability Interval Partitioning

Entropy (PIPE) coding operation, or another type of entropy encoding operation on the

data. Entropy encoding module 116 may output a bitstream that includes the entropy

encoded data.

[0108] As part of performing an entropy encoding operation on data, entropy encoding

module 116 may select a context model. If entropy encoding module 116 is performing

a CABAC operation, the context model may indicate estimates of probabilities of

particular bins having particular values. In the context of CABAC, the term “bin” is

used to refer to a bit of a binarized version of a syntax element.

[0109] Video encoder 20 may generate a coded slice NAF unit for each slice of the

current picture. The coded slice NAF unit for a slice may include a slice header and

slice data. The slice data may include a plurality of segments. Each of the segments

includes coded treeblocks associated with a different picture partition. Video encoder

WO 2013/067158 PCT/US2012/063027
27

20 may pad the segments such that each of the segments begins at a byte boundary

within the slice data. For example, the segments in a coded slice NAL unit may include

a given segment. In this example, video encoder 20 may generate the coded slice NAL

unit at least in part by performing a padding operation that appends bits to the given

segment if a next treeblock is inside the current slice and is associated with a different

picture partition than the given segment.

[0110] In some examples, video encoder 20 may generate the slice header of a coded

slice NAL unit such that the slice header indicates entry points for the segments in the

slice data of the coded slice NAL unit. The entry points may indicate the positions

within the slice data of the segments. For example, the entry points may indicate byte

offsets of the segments. In this example, the byte offsets may be relative to the first bit

of the coded slice NAL unit, the first bit of the slice data, or another bit in the coded

slice NAL unit. In another example, the entry points may indicate the numbers of bits

or bytes within each of the segments. In some examples, the slice header does not

indicate an entry point for a first segment in the slice data.

[0111] In some examples, video encoder 20 may determine whether a flag has a first

value (e.g., 1). If the flag has the first value, video encoder 20 may pad one or more of

the segments such that each segment begins at a byte boundary. When the flag has a

second value (e.g., 0), video encoder 20 does not pad the segments. As a result, the

segments may or may not begin at byte-aligned positions. In such examples, a sequence

parameter set, a picture parameter set, an adaptation parameter set, or a slice header may

include the flag. Thus, in some examples, video encoder 20 may generate a parameter

set associated with the current picture, the parameter set including a flag. When the flag

has a first value, one or more of the segments are padded such that the segments begin

at byte boundaries. When the flag has a second value, the segments may or may not

begin at byte boundaries.

[0112] Furthermore, in some examples, video encoder 20 may partition the current

picture into a plurality of tiles. If video encoder 20 allows in-picture prediction across

tile boundaries (i.e., when two or more of tiles are dependent on each other), video

encoder 20 does not pad the segments. As a result, the segments may or may not begin

at byte-aligned positions. However, if video encoder 20 does not allow in-picture

prediction across tile boundaries, video encoder 20 may pad one or more of the

segments such that each of the segments begins at a byte boundary. Thus, video

encoder 20 mav generate a coded slice NAL unit at least in part by performing a

WO 2013/067158 PCT/US2012/063027
28

padding operation that ensures that the segments begin at byte boundaries only after

determining that the tiles are independent of one another.

[0113] FIG. 3 is a block diagram that illustrates an example video decoder 30 that is

configured to implement the techniques of this disclosure. FIG. 3 is provided for

purposes of explanation and is not limiting on the techniques as broadly exemplified

and described in this disclosure. For purposes of explanation, this disclosure describes

video decoder 30 in the context of HEVC coding. However, the techniques of this

disclosure may be applicable to other coding standards or methods.

[0114] In the example of FIG. 3, video decoder 30 includes a plurality of functional

components. The functional components of video decoder 30 include an entropy

decoding module 150, a prediction module 152, an inverse quantization module 154, an

inverse transform module 156, a reconstruction module 158, a filter module 159, and a

decoded picture buffer 160. Prediction module 152 includes a motion compensation

module 162 and an intra prediction module 164. In some examples, video decoder 30

may perform a decoding pass generally reciprocal to the encoding pass described with

respect to video encoder 20 of FIG. 2. In other examples, video decoder 30 may include

more, fewer, or different functional components.

[0115] Video decoder 30 may receive a bitstream that comprises encoded video data.

The bitstream may include a plurality of syntax elements. When video decoder 30

receives the bitstream, entropy decoding module 150 may perform a parsing operation

on the bitstream. As a result of performing the parsing operation on the bitstream,

entropy decoding module 150 may extract syntax elements from the bitstream. As part

of performing the parsing operation, entropy decoding module 150 may entropy decode

entropy encoded syntax elements in the bitstream. Prediction module 152, inverse

quantization module 154, inverse transform module 156, reconstruction module 158,

and filter module 159 may perform a reconstruction operation that generates decoded

video data based on the syntax elements extracted from the bitstream.

[0116] As discussed above, the bitstream may comprise a series of NAL units. The

NAL units of the bitstream may include sequence parameter set NAL units, picture

parameter set NAL units, SEI NAL units, and so on. As part of performing the parsing

operation on the bitstream, entropy decoding module 150 may perform parsing

operations that extract and entropy decode sequence parameter sets from sequence

parameter set NAL units, picture parameter sets from picture parameter set NAL units,

SEI data from SEI NAL units, and so on.

WO 2013/067158 PCT/US2012/063027
29

[0117] In addition, the NAL units of the bitstream may include coded slice NAL units.

As part of performing the parsing operation on the bitstream, video decoder 30 may

perform parsing operations that extract and entropy decode coded slices from the coded

slice NAL units. Each of the coded slices may include a slice header and slice data.

The slice header may contain syntax elements pertaining to a slice. The syntax elements

in the slice header may include a syntax element that identifies a picture parameter set

associated with a picture that contains the slice.

[0118] The slice data of a coded slice NAL unit may include multiple segments. Each

of the segments may include coded treeblocks associated with a different picture

partition (e.g., a tile or a WPP wave). One or more of the segments in the slice data may

be padded such that each of the segments begins at a byte boundary. The slice header of

the coded slice NAL unit may indicate entry points for the segments. In this case,

because the segments always begin at byte boundaries, video decoder 30 may be able to

assign different ones of the segments to different decoding threads in a simple fashion

by using byte-wise memory addressing. The different decoding threads may parse the

coded treeblocks of the segments and reconstruct the video data associated with the

corresponding treeblocks in parallel.

[0119] As part of extracting the slice data from coded slice NAL units, entropy

decoding module 150 may perform parsing operations that extract syntax elements from

coded CUs. The extracted syntax elements may include syntax elements associated

with transform coefficient blocks. Entropy decoding module 150 may then perform

CABAC decoding operations on some of the syntax elements.

[0120] After entropy decoding module 150 performs a parsing operation on a non-

partitioned CU, video decoder 30 may perform a reconstruction operation on the non-

partitioned CU. To perform the reconstruction operation on a non-partitioned CU,

video decoder 30 may perform a reconstruction operation on each TU of the CU. By

performing the reconstruction operation for each TU of the CU, video decoder 30 may

reconstruct a residual video block associated with the CU.

[0121] As part of performing a reconstruction operation on a TU, inverse quantization

module 154 may inverse quantize, i.e., de-quantize, a transform coefficient block

associated with the TU. Inverse quantization module 154 may inverse quantize the

transform coefficient block in a manner similar to the inverse quantization processes

proposed for HEVC or defined by the H.264 decoding standard. Inverse quantization

module 154 mav use a quantization parameter QP calculated by video encoder 20 for a

WO 2013/067158 PCT/US2012/063027
30

CU of the transform coefficient block to determine a degree of quantization and,

likewise, a degree of inverse quantization for inverse quantization module 154 to apply.

[0122] After inverse quantization module 154 inverse quantizes a transform coefficient

block, inverse transform module 156 may generate a residual video block for the TU

associated with the transform coefficient block. Inverse transform module 156 may

apply an inverse transform to the transform coefficient block in order to generate the

residual video block for the TU. For example, inverse transform module 156 may apply

an inverse DCT, an inverse integer transform, an inverse Karhunen-Loeve transform

(KLT), an inverse rotational transform, an inverse directional transform, or another

inverse transform to the transform coefficient block.

[0123] In some examples, inverse transform module 156 may determine an inverse

transform to apply to the transform coefficient block based on signaling from video

encoder 20. In such examples, inverse transform module 156 may determine the inverse

transform based on a signaled transform at the root node of a quadtree for a treeblock

associated with the transform coefficient block. In other examples, inverse transform

module 156 may infer the inverse transform from one or more coding characteristics,

such as block size, coding mode, or the like. In some examples, inverse transform

module 156 may apply a cascaded inverse transform.

[0124] In some examples, motion compensation module 162 may refine the predicted

video block of a PU by performing interpolation based on interpolation filters.

Identifiers for interpolation filters to be used for motion compensation with sub-sample

precision may be included in the syntax elements. Motion compensation module 162

may use the same interpolation filters used by video encoder 20 during generation of the

predicted video block of the PU to calculate interpolated values for sub-integer samples

of a reference block. Motion compensation module 162 may determine the

interpolation filters used by video encoder 20 according to received syntax information

and use the interpolation filters to produce the predicted video block.

[0125] If a PU is encoded using intra prediction, intra prediction module 164 may

perform intra prediction to generate a predicted video block for the PU. For example,

intra prediction module 164 may determine an intra prediction mode for the PU based

on syntax elements in the bitstream. The bitstream may include syntax elements that

intra prediction module 164 may use to determine the intra prediction mode of the PU.

[0126] In some instances, the syntax elements may indicate that intra prediction module

164 is to use the intra prediction mode of another PU to determine the intra prediction

WO 2013/067158 PCT/US2012/063027
31

mode of the current PU. For example, it may be probable that the intra prediction mode

of the current PU is the same as the intra prediction mode of a neighboring PU. In other

words, the intra prediction mode of the neighboring PU may be the most probable mode

for the current PU. Hence, in this example, the bitstream may include a small syntax

element that indicates that the intra prediction mode of the PU is the same as the intra

prediction mode of the neighboring PU. Intra prediction module 164 may then use the

intra prediction mode to generate prediction data (e.g., predicted samples) for the PU

based on the video blocks of spatially neighboring PUs.

[0127] Reconstruction module 158 may use the residual video blocks associated with

TUs of a CU and the predicted video blocks of the PUs of the CU, i.e., either intra­

prediction data or inter-prediction data, as applicable, to reconstruct the video block of

the CU. Thus, video decoder 30 may generate a predicted video block and a residual

video block based on syntax elements in the bitstream and may generate a video block

based on the predicted video block and the residual video block.

[0128] After reconstruction module 158 reconstructs the video block of the CU, filter

module 159 may perform a deblocking operation to reduce blocking artifacts associated

with the CU. After filter module 159 performs a deblocking operation to reduce

blocking artifacts associated with the CU, video decoder 30 may store the video block

of the CU in decoded picture buffer 160. Decoded picture buffer 160 may provide

reference pictures for subsequent motion compensation, intra prediction, and

presentation on a display device, such as display device 32 of FIG. 1. For instance,

video decoder 30 may perform, based on the video blocks in decoded picture buffer

160, intra prediction or inter prediction operations on PUs of other CUs.

[0129] FIG. 4 is a flowchart that illustrates an example operation 200 to generate slice

data for a slice. A video encoder, such as video encoder 20 (FIGs. 1 and 2), may

perform operation 200. The example of FIG. 4 is merely one example. Other example

operations may generate slice data in other ways.

[0130] After the video encoder starts operation 200, the video encoder may initialize a

treeblock address such that the treeblock address identifies an initial treeblock of a

current slice (202). The current slice may be a slice that the video encoder is currently

encoding. The initial treeblock of the current slice may be the first treeblock associated

with the current slice according to a treeblock coding order for the current picture. For

ease of explanation, this disclosure may refer to the treeblock identified by the treeblock

address as the current treeblock.

WO 2013/067158 PCT/US2012/063027
32

[0131] The video encoder may append syntax elements for the current treeblock to the

slice data of a coded slice NAL unit for the current slice (204). The syntax elements for

the current treeblock may include syntax elements in the quadtree of the current

treeblock. Syntax elements in the quadtree of the current treeblock may include syntax

elements that indicate intra prediction modes, motion information, syntax elements that

indicate transform coefficient levels, and so on.

[0132] Furthermore, the video encoder may determine whether there is more data in the

current slice (206). There may be more data in the current slice if the treeblock

indicated by the treeblock address is within the current slice. In response to determining

that there is no more data in the current slice (“NO” of 206), the video encoder may end

operation 200 because the video encoder has added all of the necessary syntax elements

to the slice data.

[0133] The video encoder may determine whether there is more data in the current slice

in various ways. For example, the video encoder may invoke a function “coding_tree(

)” to output the syntax elements for a treeblock. In this example, the function

“coding_tree()” may return a “moreDataFlag” that indicates whether there is more

data in the current slice.

[0134] In response to determining that there is more data associated with the current

slice (“YES” of 206), the video encoder may determine whether tiles of the current

picture are independent and whether the next treeblock of the current slice is in a

different tile than the current treeblock of the current slice (208). As described above,

the tiles of a picture may be independent if in-picture prediction (e.g., intra prediction,

inter prediction using data in the current picture, and CABAC context selection based

on data from other tiles of the current picture) is prohibited. The video encoder may

determine whether the tiles of the current picture are independent in various ways. For

example, a sequence parameter set associated with the current picture may include a

syntax element “tileboundaryindependenceidc.” In this example, if

“tileboundaryindependenceidc” is equal to 0, the tiles of the current picture are not

independent and in-picture prediction across tile boundaries is allowed. If

“tile boundary independence idc” is equal to 0, in-picture prediction across slice

boundaries may still be prohibited. If “tile boundary independence idc” is equal to 1,

the tiles of the current picture are independent and in-picture prediction across tile

boundaries is not allowed.

WO 2013/067158 PCT/US2012/063027
33

[0135] The video encoder may determine in various ways whether the next treeblock of

the current slice is in a different tile than the current treeblock of the current slice. For

example, the video encoder may determine the treeblock address of the next treeblock

of the current slice. In this example, the video encoder may invoke a function

“NewTile(...)” that takes the treeblock address of the next treeblock as a parameter and

returns a value “newTileFlag” that indicates whether the next treeblock is in a different

tile than the current treeblock.

[0136] If the tiles of the current picture are not independent or the next treeblock is not

in a different tile than the current treeblock (“NO” of 208), the video encoder may

determine whether the current picture is being encoded using WPP and the next

treeblock of the current slice is in a different WPP wave than the current treeblock of

the current slice (210). The video encoder may determine in various ways whether the

next treeblock of the current slice is in a different WPP wave than the current treeblock

of the current slice. For example, the video encoder may determine the treeblock

address of the next treeblock of the current slice. In this example, the video encoder

may invoke a function “NewWave(...)” that takes the treeblock address of the next

treeblock as a parameter and returns a value “newWaveFlag” that indicates whether the

next treeblock is in a different WPP wave than the current treeblock.

[0137] In response to determining that the current picture is being encoded using WPP

and the next treeblock is in a different WPP wave than the current treeblock (“YES” of

210) or in response to determining that the tiles of the current picture are independent

and the next treeblock is in a different tile than the current treeblock (“YES” of 208), the

video encoder may determine whether the current segment is byte aligned (212). In

other words, the video encoder may determine whether the current segment ends on a

byte boundary. The current segment is the segment associated with the picture partition

(e.g., tile or WPP wave) with which the current treeblock is associated. In response to

determining that the current segment is not byte aligned (“NO” of 212), the video

encoder may append a padding bit to the end of the current segment (214). The padding

bit may have various values. For example, the padding bit may always have a value

equal to 1. In other examples, the padding bit may always have a value equal to 0.

[0138] After appending the padding bit to the end of the current segment, the video

encoder may again determine whether the current segment is byte aligned (212). In this

way, the video encoder may continue appending padding bits to the end of the slice data

until the current segment is byte aligned.

WO 2013/067158 PCT/US2012/063027
34

[0139] In response to determining that the slice data is byte aligned (“YES” of 212), the

video encoder may update the treeblock address (216). The video encoder may update

the treeblock address such that the treeblock address indicates the next treeblock

according to a treeblock coding order of the current picture. For instance, when the

video encoder updates the treeblock address, the treeblock address may identify a

treeblock to the right of the treeblock previously indicated by the treeblock address.

FIG. 7, described in detail below, is a conceptual diagram that illustrates an example

treeblock coding order for a picture that is partitioned into multiple tiles.

[0140] After updating the treeblock address, the video encoder may determine whether

there is more data in the current slice (218). In response to determining that there is

more data in the current slice (“YES” of 218) or in response to determining that the

current picture is not being encoded using WPP and the next treeblock is not in a

different tile than the current treeblock (“NO” of 210), the video encoder may append

the syntax elements for the current treeblock to the slice data (204). In this way, the

video encoder may append the syntax elements for each treeblock of the current slice to

the slice data and may ensure that segments associated with different picture partitions

are padded such that the segments begin at byte boundaries.

[0141] In response to determining that there is no more data in the current slice (“NO”

of 218), the video encoder may end operation 200 because the video encoder may have

appended all of the syntax elements of the current slice to the slice data.

[0142] FIG. 5 is a flowchart that illustrates an example operation 250 to decode a coded

slice NAL unit. A video decoder, such as video decoder 30 (FIGs. 1 and 3), may

perform operation 250. The example of FIG. 5 is merely one example. Other example

operations may perform other operations to decode coded slice NAL units.

[0143] In the example of FIG. 5, the video decoder may store a coded slice NAL unit in

byte addressed memory (252). The coded slice NAL unit may include a slice header

and slice data. The slice data may include a plurality of segments. One or more of the

segments may be padded such that each segment begins at a byte boundary.

[0144] After storing the coded slice NAL unit in memory, the video decoder may

identify positions of the segments within the slice data of the coded slice NAL unit

(254). The video decoder may identify the positions of the segments in various ways.

For example, the video decoder may identify the positions of the segments based on

syntax elements in the slice header of the coded slice NAL unit that indicate byte offsets

of the segments. In this example, the slice header may not include a byte offset for the

WO 2013/067158 PCT/US2012/063027
35

first segment of the slice data because the position of the first segment may immediately

follow the end of the slice header. In another example, the video decoder may identify

the positions of the segments based on entry point markers in the slice data. The entry

point markers may be values disposed between the segments.

[0145] After identifying the positions of the segments within the slice data, the video

decoder may assign two or more of the segments to two or more different decoding

threads (256). Each of the decoding threads may parse the syntax elements of coded

treeblocks in the segment assigned to the decoding thread and reconstruct video blocks

for the corresponding treeblocks as described above.

[0146] FIG. 6 is a conceptual diagram that illustrates wavefront parallel processing. As

described above, a picture may be partitioned into video blocks, each of which is

associated a treeblock. FIG. 6 illustrates the video blocks associated with the treeblocks

as a grid of white squares. The picture includes treeblock rows 300A-300E

(collectively, “treeblock rows 300”).

[0147] A first thread may be coding treeblocks in treeblock row 300A. Concurrently,

other threads may be coding treeblocks in treeblock rows 300B, 300C, and 300D. In the

example of FIG. 6, the first thread is currently coding a treeblock 302A, a second thread

is currently coding a treeblock 302B, a third thread is currently coding a treeblock

302C, and a fourth thread is currently coding a treeblock 302D. This disclosure may

refer to treeblocks 302A, 302B, 302C, and 302D collectively as “current treeblocks

302.” Because the video coder may begin coding a treeblock row after more than two

treeblocks of an immediately higher row have been coded, current treeblocks 302 are

horizontally displaced from each other by the widths of two treeblocks.

[0148] In the example of FIG. 6, the threads may use data from treeblocks indicated by

the thick gray arrows when performing intra prediction or inter prediction for CUs in

current treeblocks 302. (When the threads perform inter prediction for CUs, the threads

may also use data from one or more reference frames.) When a thread codes a given

treeblock, the thread may select one or more CABAC contexts based on information

associated with previously coded treeblocks. The thread may use the one or more

CABAC contexts to perform CABAC coding on syntax elements associated with the

first CU of the given treeblock. If the given treeblock is not the leftmost treeblock of a

row, the thread may select the one or more CABAC contexts based on information

associated with a last CU of the treeblock to the left of the given treeblock. If the given

treeblock is the leftmost treeblock of a row, the thread may select the one or more

WO 2013/067158 PCT/US2012/063027
36

CABAC contexts based on information associated with a last CU of a treeblock that is

above and two treeblocks right of the given treeblock. The threads may use data from

the last CUs of the treeblocks indicated by the thin black arrows to select CABAC

contexts for the first CUs of current treeblocks 302.

[0149] FIG. 7 is a conceptual diagram that illustrates an example treeblock coding order

for a picture 350 that is partitioned into multiple tiles 352A, 352B, and 352C. Each

square white block in picture 350 represents a video block associated with a treeblock.

The thick vertical dashed lines indicate example vertical tile boundaries. The thick gray

line indicates an example slice boundary.

[0150] The numbers in the video blocks indicate positions of the corresponding

treeblocks (LCUs) in a treeblock coding order for picture 350. As illustrated in the

example of FIG. 7, each of the treeblocks in the leftmost tile 352A occurs in the

treeblock coding order before any treeblock in the middle tile 352B. Each of the

treeblocks in the middle tile 352B occurs in the treeblock coding order before any

treeblock in the rightmost tile 352C. Within each of tiles 352A, 352B, and 352C, the

treeblocks are coded according to a raster scan order.

[0151] A video encoder may generate two coded slice NAL units for picture 350. The

first coded slice NAL unit may be associated with the left slice of picture 350. The first

coded slice NAL unit may include encoded representations of treeblocks 1-23. The

slice data of the first coded slice NAL unit may include two segments. The first

segment may include the encoded representations of treeblocks 1-15. The second

segment may include the encoded representations of treeblocks 16-30. In accordance

with the techniques of this disclosure, the first segment may be padded such that the

second segment begins at a byte boundary.

[0152] A second coded slice NAL unit may be associated with the right slice of picture

350. The second coded slice NAL unit may include encoded representations of

treeblocks 24-45. The slice data of the second coded slice NAL unit may include two

segments. The first segment may include the encoded representations of treeblocks 24­

30. The second segment may include the encoded representations of treeblocks 31-45.

The first segment may be padded such that the second segment begins at a byte

boundary.

[0153] FIG. 8 is a conceptual diagram that illustrates an example coded slice NAL unit

400. As illustrated in the example of FIG. 8, coded slice NAL unit 400 includes a slice

header 402 and slice data 404. Slice data 404 includes a first segment 406 and a second

WO 2013/067158 PCT/US2012/063027
37

segment 408. Segment 406 includes coded treeblocks 410A-410N and padding data

412. Segment 408 includes coded treeblocks 414A-414N.

[0154] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,

the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer-

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0155] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSF), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSF, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

38
20

12
33

24
17

26

 Ju
n2

01
5

[0156] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as

used herein may refer to any of the foregoing structure or any other structure suitable

for implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0157] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0158] Various examples have been described. These and other examples are within

the scope of the following claims.

[0159] It will be understood that the term “comprise” and any of its derivatives (eg

comprises, comprising) as used in this specification is to be taken to be inclusive of

features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0160] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement of any form of suggestion that such prior art forms part of the

common general knowledge.

39

20
12

33
24

17

26
 Ju

n2
01

5

WHAT IS CLAIMED IS:

1. A method for encoding video data, the method including:

generating a coded slice network abstraction layer (NAL) unit that includes

encoded representations of video blocks that are associated with a slice of the picture,

wherein the picture is divided into a plurality of slices; and

encoding the picture,

wherein the method further includes:

dividing the picture into a plurality of wavefront parallel processing

(WPP) waves, each of the WPP waves corresponding to a different row of video

blocks in the picture, wherein the encoded representations of the video blocks

are grouped within the coded slice NAL unit into segments associated with

different ones of the WPP waves; and

padding one or more of the segments, such that each of the segments

begins on a byte boundary,

wherein the picture is encoded using WPP.

2. The method of claim 1, wherein generating the coded slice NAL unit includes

generating a slice header that indicates entry points for one or more of the segments.

3. The method of claim 2, wherein the entry points for the segments indicate byte

offsets of the segments.

4. The method of any one of claims 1 to 3, further including generating a parameter

set associated with the picture, the parameter set including a flag that has a first value,

the first value indicating that the one or more of the segments are padded such that each

of the segments begins at a byte boundary, and

wherein when the flag has a second value, the segments may or may not begin at

byte boundaries.

5. The method of any one of claims 1 to 4,

wherein the segments include a given segment; and

40
20

12
33

24
17

26

 Ju
n2

01
5

wherein generating the coded slice NAL unit includes performing a padding

operation that appends bits to the given segment if a next video block is inside the slice

and is associated with a different WPP wave than the given segment.

6. A method of decoding video data, the method including:

storing a coded slice network abstraction layer (NAL) unit that includes encoded

representations of video blocks associated with a slice of a picture, the picture

partitioned into a plurality wavefront parallel processing (WPP) waves, each of the WPP

waves corresponding to a different row of video blocks in the picture, the encoded

representations of the video blocks grouped into segments associated with different ones

of the WPP waves, wherein one or more of the segments are padded such that each of

the segments begins at a byte boundary; and

decoding the picture using WPP.

7. The method of claim 6, wherein the coded slice NAL unit includes a slice header

that indicates entry points for one or more of the segments.

8. The method of claim 7, wherein the entry points for the segments indicate byte

offsets of the segments.

9. The method of any one of claims 6 to 8, further including storing a parameter set

associated with the picture, the parameter set including a flag that has a first value, the

first value indicating that the one or more of the segments are padded such that each of

the segments begin at a byte boundary, and

wherein when the flag has a second value, the segments may or may not begin at

byte boundaries.

10. The method of any one of claims 6 to 9, wherein decoding the picture includes

decoding the encoded representations of the video blocks in two or more of the

segments in parallel.

11. A video encoding device including means for carrying out a method according

to any one of claims 1 to 5.

41

20
12

33
24

17

26
 Ju

n2
01

5

12. A video decoding device including means for carrying out a method according

to any one of claims 6 to 10.

13. A computer program product that includes one or more computer-readable

storage media that store instructions that, when executed by one or more processors,

configure a device to carry out a method according to any one of claims 1 to 9.

WO 2013/067158 PCT/US2012/063027

Page 1 / 8

10

FIG. 1

WO 2013/067158 PCT/US2012/063027

Page 2 / 8

FI
G

. 2

WO 2013/067158 PCT/US2012/063027

Page 3 / 8

FI
G

. 3

WO 2013/067158 PCT/US2012/063027

Page 4 / 8
200

c START
'202

IDENTIFY INITIAL TREEBLOCK OF
CURRENT SLICE

ί ^204
APPEND SYNTAX ELEMENTS FOR

CURRENT TREEBLOCK TO SLICE DATA

NO
MORE DATA?

'206

YES
INDEPENDENT TILES

AND DIFFERENT TILE?

'208
YES

NO
CURRENT PICTURE ENCODED

USING WPP AND DIFFERENT WAVE?

'210
NO

YES
YES

BYTE ALIGNED?

'212

'214NO
APPEND PADDING BIT TO CURRENT

SEGMENT

216

FIG. 4

WO 2013/067158 PCT/US2012/063027

Page 5/8

250

FIG. 5

WO 2013/067158 PCT/US2012/063027

Page 6 / 8

<ooto

FI
G

. 6

WO 2013/067158 PCT/US2012/063027

Page 7 / 8

35
0

FI
G

. 7

WO 2013/067158 PCT/US2012/063027

Page 8 / 8

o

ooo

\

to
o

\

Q
LUQ
OO

*
O
o

co
LU
LU
0£

C
O

D
ED

TR

EE
B

LO
C

K
41

4A

C
O

D
ED

TR
EE

B
LO

C
K

41
0N

00

0

Q
LU
Q
OO

*
O
o_i
co
LU
LU
0£

<o
5

LU
O
_l
(Z)

Q£
LU
Q
<
LU
X

CMlO

