(12) STANDARD PATENT (11) Application No. AU 2012332417 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)

(21)
(87)
(30)

(31)

(74)

(56)

Title
Padding of segments in coded slice NAL units

International Patent Classification(s)
HO4N 19/00 (2014.01)

Application No: 2012332417 (22) Date of Filing: 2012.11.01
WIPO No: WO13/067158

Priority Data

Number (32) Date (33) Country
61/557,259 2011.11.08 us
61/555,932 2011.11.04 us
13/548,825 2012.07.13 us
Publication Date: 2013.05.10

Accepted Journal Date: 2015.08.20

Applicant(s)
Qualcomm Incorporated

Inventor(s)
Wang, Ye-Kui;Coban, Muhammed Zeyd;Karczewicz, Marta

Agent / Attorney
Madderns Patent & Trade Mark Attorneys, GPO Box 2752, ADELAIDE, SA, 5001

Related Art

US 5,471,248 A

BROSS, B. et al., "WD4: Working Draft 4 of High-Efficiency Video Coding", Joint
Collaborative

Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WG11, 6th Meeting:

Torino, IT, 14-22 July, 2011

UsS 7,375,661 B2

20137067158 A1 | [V 000 O ARC 010 OO

C

W

(43) International Publication Date

(19) World Intellectual Property
Organization
International Bureau

\

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2013/067158 Al

(CD)

(e3))

(22)

(25)
(26)
(30)

(71)

(72)

74

81

10 May 2013 (10.05.2013) WIPOIPCT
International Patent Classification:
HO04N 7/26 (2006.01)
International Application Number:
PCT/US2012/063027

International Filing Date:
1 November 2012 (01.11.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/555,932 4 November 2011 (04.11.2011) us
61/557,259 8 November 2011 (08.11.2011) us
13/548,825 13 July 2012 (13.07.2012) Us

Applicant: QUALCOMM INCORPORATED [US/US];
Attn: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: WANG, Ye-Kui; 5775 Morehouse Drive, San
Diego, California 92121 (US). COBAN, Muhammed
Zeyd; 5775 Morehouse Drive, San Diego, California
92121 (US). KARCZEWICZ, Marta; 5775 Morehouse
Drive, San Diego, California 92121 (US).

Agents: VREDEVELD, Albert W. et al.; Shumaker and
Sieffert, P.A., 1625 Radio Drive, Suite 300, Woodbury,
Minnesota 55125 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: PADDING OF SEGMENTS IN CODED SLICE NAL UNITS

/400
_-404
.
.
412
i 406 e 408
SLICE CODED CODED CODED CODED
HEADER | TREEBLOCK |@ @ @ | TREEBLOCK TREEBLOCK | @ @ @ | TREEBLOCK
402 410A 410N 414A 414N
. 1
. .
. 1
FIG. 8

(57) Abstract: A video encoder divides a picture into a plurality of picture partitions, such as tiles or wavefront parallel processing
(WPP) waves. The picture partitions are associated with non-overlapping subsets of the treeblocks of the picture. The video encoder
generates a coded slice network abstraction layer (NAL) unit that includes encoded representations of the treeblocks associated with
a slice of the picture. The coded treeblocks are grouped within the coded slice NAL unit into segments associated with different ones
of the picture partitions. The video encoder pads one or more of the segments such that each of the segments begins on a byte
boundary.

WO 2013/067158 PCT/US2012/063027

PADDING OF SEGMENTS IN CODED SLICE NAL UNITS

[0001] This application claims the benefit of U.S. Provisional Application No.
61/557,259, tiled November 8, 2011, the entire content of which is incorporated herein
by reference. This application also claims the benefit of U.S. Provisional Application

61/555,932, filed November 4, 2011.

TECHNICAL FIELD

[0002] This disclosure relates to video coding (i.e., encoding or decoding of video data).

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, digital
cameras, digital recording devices, digital media players, video gaming devices, video
game consoles, cellular or satellite radio telephones, video teleconferencing devices, and
the like. Digital video devices implement video compression techniques, such as those
described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and extensions of such
standards, to transmit, receive and store digital video information more efficiently.
[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice may be partitioned into video
blocks, which may also be referred to as treeblocks, coding units (CUs) and/or coding
nodes. Video blocks in an intra-coded (I) slice of a picture are encoded using spatial
prediction with respect to reference samples in neighboring blocks in the same picture.
Video blocks in an inter-coded (P or B) slice of a picture may use spatial prediction with
respect to reference samples in neighboring blocks in the same picture or temporal
prediction with respect to reference samples in other reference pictures. Pictures may

be referred to as frames, and reference pictures may be referred to a reference frames.

2012332417 26 Jun 2015

SUMMARY

[0005] In general, this disclosure describes techniques for encoding and decoding video
data. A video encoder may divide a picture into a plurality of picture partitions. The
picture partitions include non-overlapping subsets of the treeblocks of the picture.
Example types of picture partitions include tiles and wavefront parallel processing
(WPP) waves. The video encoder may generate a coded slice network abstraction layer
(NAL) unit that includes encoded representations of the treeblocks associated with a
slice of the picture. The video encoder generates the coded slice NAL unit such that the
coded treeblocks are grouped within the coded slice NAL unit by the picture partitions
to which the treeblocks belong. The video encoder may pad one or more of the
segments such that each of the segments begins on a byte boundary. A video decoder
may decode coded treeblocks of the coded slice NAL unit.
[0006] In one aspect, this disclosure describes a method for encoding video data, the
method including:

generating a coded slice network abstraction layer (NAL) unit that includes
encoded representations of video blocks that are associated with a slice of the picture,
wherein the picture is divided into a plurality of slices; and
encoding the picture,

wherein the method further includes:

dividing the picture into a plurality of wavefront parallel processing

(WPP) waves, each of the WPP waves corresponding to a different row of video

blocks in the picture, wherein the encoded representations of the video blocks

are grouped within the coded slice NAL unit into segments associated with

different ones of the WPP waves; and

padding one or more of the segments, such that each of the segments

begins on a byte boundary,

wherein the picture is encoded using WPP.
[0007] In another aspect, this disclosure describes a method of decoding video data, the
method including:

storing a coded slice network abstraction layer (NAL) unit that includes encoded
representations of video blocks associated with a slice of a picture, the picture
partitioned into a plurality wavefront parallel processing (WPP) waves, each of the

WPP waves corresponding to a different row of video blocks in the picture, the encoded

2012332417 26 Jun 2015

representations of the video blocks grouped into segments associated with different ones
of the WPP waves, wherein one or more of the segments are padded such that each of
the segments begins at a byte boundary; and

decoding the picture using WPP.

Paragraphs [0008] to [0013] have been intentionally deleted.

[0014] The details of one or more examples are set forth in the accompanying drawings

and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

WO 2013/067158 PCT/US2012/063027

treeblocks of the picture. The one or more processors are also configured to generate a
coded slice NAL unit that includes encoded representations of the treeblocks that are
associated with a slice of the picture. The encoded representations of the treeblocks are
grouped within the coded slice NAL unit into segments associated with different ones of
the picture partitions. One or more of the segments are padded such that each of the
segments begins on a byte boundary.

[0009] In another aspect, this disclosure describes a video decoding device that decodes
video data. The video decoding device comprises a memory that stores a coded slice
NAL unit that includes encoded representations of treeblocks associated with a slice of a
picture. The picture is divided into a plurality of picture partitions. The encoded
representations of the treeblocks are grouped into segments associated with different
ones of the picture partitions. One or more of the segments are padded such that each of
the segments begins at a byte boundary. The video decoding device also comprises one
or more processors that are configured to decode the encoded representations of the
treeblocks.

[0010] In another aspect, this disclosure describes a computer program product that
comprises one or more computer-readable storage media that store instructions that,
when executed by one or more processors, configure a video encoding device to divide
a picture into a plurality of picture partitions. The picture has a plurality of treeblocks.
The picture partitions are associated with non-overlapping subsets of the treeblocks of
the picture. The instructions also configure the video encoding device to generate a
coded slice NAL unit that includes encoded representations of the treeblocks that are
associated with a slice of the picture. The encoded representations of the treeblocks are
grouped within the coded slice NAL unit into segments associated with different ones of
the picture partitions. One or more of the segments are padded such that each of the

segments begins on a byte boundary.

2012332417 26 Jun 2015

THIS PAGE HAS BEEN INTENTIONALLY DELETED

WO 2013/067158 PCT/US2012/063027

BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 is a block diagram illustrating an example video coding system that may
utilize the techniques of this disclosure.

[0016] FIG. 2 is a block diagram illustrating an example video encoder that is
configured to implement the techniques of this disclosure.

[0017] FIG. 3 is a block diagram illustrating an example video decoder that is
configured to implement the techniques of this disclosure.

[0018] FIG. 4 is a flowchart that illustrates an example operation to generate slice data
for a slice of a picture.

[0019] FIG. 5 is a flowchart that illustrates an example operation to decode a coded
slice NAL unit.

[0020] FIG. 6 is a conceptual diagram that illustrates wavefront parallel processing.
[0021] FIG. 7 is a conceptual diagram that illustrates an example coding order when a
picture is partitioned into a plurality of tiles.

[0022] FIG. 8 is a conceptual diagram that illustrates an example coded slice NAL unit.

DETAILED DESCRIPTION
[0023] A picture includes a plurality of treeblocks. The treeblocks are associated with
two-dimensional video blocks within the picture. A video encoder divides the picture
into a plurality of picture partitions. For example, the video encoder may divide the
picture into tiles or wavefront parallel processing (WPP) waves. In other words, this
disclosure may use the term “picture partition” to refer generically to tiles or WPP
waves. The picture partitions are associated with non-overlapping subsets of the
treeblocks of the picture. For instance, each treeblock of the picture may be associated
with exactly one of the picture partitions.
[0024] The video encoder may generate a coded slice Network Abstraction Layer
(NAL) unit. The coded slice NAL unit may include encoded representations of each
treeblock associated with a slice of the picture. This disclosure may refer to an encoded
representation of a treeblock as a coded treeblock. A coded treeblock may include a
sequence of bits that represent the video block associated with a treeblock. The
sequence of bits in a coded treeblock may represent a sequence of syntax elements.
[0025] The video encoder may group the coded treeblocks within the coded slice NAL

unit into segments. The segments are associated with different ones of the picture

WO 2013/067158 PCT/US2012/063027

partitions. Each of the segments may be a consecutive series of bits, such as bits
representing a series of one or more coded treeblocks and associated data. Thus, the
coded slice NAL unit may include each coded treeblock associated with a first picture
partition followed by each coded treeblock associated with a second picture partition,
followed by each coded treeblock associated with a third picture partition, and so on.
[0026] In accordance with the techniques of this disclosure, the video encoder may pad
one or more of the segments such that each of the segments begins on a byte boundary.
When the video encoder pads a segment, the video encoder may append padding bits to
the segment. The padding bits may not have any semantic meaning, but may serve to
ensure that a next segment begins at a byte boundary. In this way, the video encoder
may provide byte alignment of tiles or WPP waves when the tiles or WPP waves are
included in one coded slice NAL unit for parallel processing purposes.

[0027] A video decoder may store the coded slice NAL unit in byte addressed memory.
The video decoder may then assign two or more of the segments to different decoding
threads that operate in parallel. Each decoding thread decodes the coded treeblocks of
the segment assigned to the decoding thread. Because each of the segments begins at a
byte boundary, the video decoder may provide a memory address of a segment to a
decoding thread when assigning the segment to the decoding thread. In this way,
ensuring that each of the segments begins at a byte boundary may enable the video
decoder to decode the segments in parallel in a simpler fashion than when the segments
may begin at non-byte-boundary positions.

[0028] This may stand in contrast to conventional video encoders and conventional
video decoders that do not ensure that the segments begin at byte boundaries. Because
the segments may not begin at byte boundaries, a conventional video decoder that uses
byte-wise memory addressing may be unable to decode the coded treeblocks in the
segments in parallel. A conventional video decoder may use bit-wise memory
addressing or byte-wise plus bit-wise addressing to enable decoding the coded
treeblocks in the segments in parallel but with increased implementation and
computation complexities.

[0029] The attached drawings illustrate examples. Elements indicated by reference
numbers in the attached drawings correspond to elements indicated by like reference
numbers in the following description. In this disclosure, elements having names that

9% ¢

start with ordinal words (e.g., “first,” “second,” “third,” and so on) do not necessarily

imply that the elements have a particular order. Rather, such ordinal words are merely

WO 2013/067158 PCT/US2012/063027

used to refer to different elements of a same or similar type. Furthermore, in the
following description, the “current picture” may refer to a picture that is currently being
encoded or decoded.

[0030] FIG. 1 is a block diagram that illustrates an example video coding system 10 that
may utilize the techniques of this disclosure. As used described herein, the term “video
coder” refers generically to both video encoders and video decoders. In this disclosure,
the terms “video coding” or “coding” may refer generically to video encoding and video
decoding.

[0031] As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device. Destination device 14
may decode the encoded video data generated by source device 12. Accordingly,
destination device 14 may be referred to as a video decoding device. Source device 12
and destination device 14 may be examples of video coding devices.

[0032] Source device 12 and destination device 14 may comprise a wide range of
devices, including desktop computers, mobile computing devices, notebook (e.g.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video
gaming consoles, in-car computers, or the like. In some examples, source device 12 and
destination device 14 may be equipped for wireless communication.

[0033] Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise a type of medium or device capable of moving
the encoded video data from source device 12 to destination device 14. In one example,
channel 16 may comprise a communication medium that enables source device 12 to
transmit encoded video data directly to destination device 14 in real-time. In this
example, source device 12 may modulate the encoded video data according to a
communication standard, such as a wireless communication protocol, and may transmit
the modulated video data to destination device 14. The communication medium may
comprise a wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or other equipment that facilitates communication from

source device 12 to destination device 14.

WO 2013/067158 PCT/US2012/063027

[0034] In another example, channel 16 may correspond to a storage medium that stores
the encoded video data generated by source device 12. In this example, destination
device 14 may access the storage medium via disk access or card access. The storage
medium may include a variety of locally accessed data storage media such as Blu-ray
discs, DVDs, CD-ROMs, flash memory, or other suitable digital storage media for
storing encoded video data. In a further example, channel 16 may include a file server
or another intermediate storage device that stores the encoded video generated by source
device 12. In this example, destination device 14 may access encoded video data stored
at the file server or other intermediate storage device via streaming or download. The
file server may be a type of server capable of storing encoded video data and
transmitting the encoded video data to destination device 14. Example file servers
include web servers (e.g., for a website), file transfer protocol (FTP) servers, network
attached storage (NAS) devices, and local disk drives. Destination device 14 may
access the encoded video data through a standard data connection, including an Internet
connection. Example types of data connections may include wireless channels (e.g.,
Wi-Fi connections), wired connections (e.g., DSL, cable modem, etc.), or combinations
of both that are suitable for accessing encoded video data stored on a file server. The
transmission of encoded video data from the file server may be a streaming
transmission, a download transmission, or a combination of both.

[0035] The techniques of this disclosure are not limited to wireless applications or
settings. The techniques may be applied to video coding in support of any of a variety
of multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, streaming video transmissions, €.g., via
the Internet, encoding of digital video for storage on a data storage medium, decoding of
digital video stored on a data storage medium, or other applications. In some examples,
video coding system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0036] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20, and an output interface 22. In some cases, output interface 22 may include
a modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, ¢.g., a video camera, a

video archive containing previously captured video data, a video feed interface to

WO 2013/067158 PCT/US2012/063027

receive video data from a video content provider, and/or a computer graphics system for
generating video data, or a combination of such sources.

[0037] Video encoder 20 may encode the captured, pre-captured, or computer-generated
video data. The encoded video data may be transmitted directly to destination device 14
via output interface 22 of source device 12. The encoded video data may also be stored
onto a storage medium or a file server for later access by destination device 14 for
decoding and/or playback.

[0038] In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some cases, input interface 28 may
include a receiver and/or a modem. Input interface 28 of destination device 14 receives
encoded video data over channel 16. The encoded video data may include a variety of
syntax elements generated by video encoder 20 that represent the video data. Such
syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0039] Display device 32 may be integrated with or may be external to destination
device 14. In some examples, destination device 14 may include an integrated display
device and may also be configured to interface with an external display device. In other
examples, destination device 14 may be a display device. In general, display device 32
displays the decoded video data to a user. Display device 32 may comprise any of a
variety of display devices such as a liquid crystal display (LCD), a plasma display, an
organic light emitting diode (OLED) display, or another type of display device.

[0040] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development, and may conform to a HEVC Test Model (HM). A recent
draft of the upcoming HEVC standard, referred to as “HEVC Working Draft 6” or
“WD6,” is described in document JCTVC-H1003, Bross et al., “High efficiency video
coding (HEVC) text specification draft 6,” Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG1 1, 8th Meeting: San
Jose, California, USA, February, 2012, which, as of May 1, 2012, is downloadable
from: http://phenix.int-

evry.fr/jct/doc_end user/documents/8 San%20Jose/wgl1/JCTVC-H1003-v22.zip, the
entire content of which is incorporated herein by reference. Alternatively, video
encoder 20 and video decoder 30 may operate according to other proprietary or industry

standards. such as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part

http://phenix.int-

WO 2013/067158 PCT/US2012/063027
10

10, Advanced Video Coding (AVC), or extensions of such standards, when picture
partitioning techniques like tiles or wavefront parallel processing are included. The
techniques of this disclosure, however, are not limited to any particular coding standard
or technique. Other examples of video compression standards and techniques include
MPEG-2, ITU-T H.263 and proprietary or open source compression formats such as
VP8 and related formats, when picture partitioning techniques like tiles or wavefront
parallel processing are included.

[0041] Although not shown in the example of FIG. 1, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0042] Again, FIG. 1 is merely an example and the techniques of this disclosure may
apply to video coding settings (e.g., video encoding or video decoding) that do not
necessarily include any data communication between the encoding and decoding
devices. In other examples, data can be retrieved from a local memory, streamed over a
network, or the like. An encoding device may encode and store data to memory, and/or
a decoding device may retrieve and decode data from memory. In many examples, the
encoding and decoding is performed by devices that do not communicate with one
another, but simply encode data to memory and/or retrieve and decode data from
memory.

[0043] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. When the
techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable storage medium and may
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0044] As mentioned briefly above, video encoder 20 encodes video data. The video

data mav comprise one or more pictures. Each of the pictures is a still image forming

WO 2013/067158 PCT/US2012/063027
11

part of a video. In some instances, a picture may be referred to as a video “frame” or a
video "field". When video encoder 20 encodes the video data, video encoder 20 may
generate a bitstream. The bitstream may include a sequence of bits that form a coded
representation of the video data. The bitstream may include coded pictures and
associated data. A coded picture is a coded representation of a picture.

[0045] To generate the bitstream, video encoder 20 may perform encoding operations
on each picture in the video data. When video encoder 20 performs encoding operations
on the pictures, video encoder 20 may generate a series of coded pictures and associated
data. The associated data may include sequence parameter sets, picture parameter sets,
adaptation parameter sets, and other syntax structures. A sequence parameter set (SPS)
may contain parameters applicable to zero or more sequences of pictures. Sequences of
pictures may also be referred to as coded video sequences, as in H.264/AVC and
HEVC. A picture parameter set (PPS) may contain parameters applicable to zero or
more pictures. An adaptation parameter set (APS) may contain parameters applicable to
zero or more pictures. Parameters in an APS may be parameters that are more likely to
change than parameters in a PPS.

[0046] To generate a coded picture, video encoder 20 may partition a picture into
equally-sized video blocks. A video block may be a two-dimensional array of samples.
Each of the video blocks is associated with a treeblock. In some instances, a treeblock
may be referred to as a largest coding unit (LCU) or a coding treeblock. The treeblocks
of HEVC may be broadly analogous to the macroblocks of previous standards, such as
H.264/AVC. However, a treeblock is not necessarily limited to a particular size and
may include one or more coding units (CUs). Video encoder 20 may use quadtree
partitioning to partition the video blocks of treeblocks into video blocks associated with
CUs, hence the name “treeblocks.”

[0047] In some examples, video encoder 20 may partition a picture into a plurality of
slices. Each of the slices may include an integer number of consecutively coded
treeblocks. In some instances, each of the slices may include an integer number of
consecutively coded CUs. As part of performing an encoding operation on a picture,
video encoder 20 may perform encoding operations on each slice of the picture. When
video encoder 20 performs an encoding operation on a slice, video encoder 20 may
generate encoded data associated with the slice. The encoded data associated with the

slice may be referred to as a “coded slice.”

WO 2013/067158 PCT/US2012/063027
12

[0048] To generate a coded slice, video encoder 20 may perform encoding operations
on each treeblock in a slice. When video encoder 20 performs an encoding operation on
a treeblock, video encoder 20 may generate a coded treeblock. The coded treeblock
may comprise data representing an encoded version of the treeblock.

[0049] When video encoder 20 generates a coded slice, video encoder 20 may perform
encoding operations on (i.c., encode) the treeblocks in the slice according to a raster
scan order. In other words, video encoder 20 may encode the treeblocks of the slice in
an order that proceeds from left to right across a topmost row of treeblocks in the slice,
then proceeds from left to right across a next lower row of treeblocks, and so on until
video encoder 20 has encoded each of the treeblocks in the slice.

[0050] As a result of encoding the treeblocks according to the raster scan order, the
treeblocks above and to the left of a given treeblock may have been encoded, but
treeblocks below and to the right of the given treeblock have not yet been encoded.
Consequently, video encoder 20 may be able to access information generated by
encoding treeblocks above and to the left of the given treeblock when encoding the
given treeblock. However, video encoder 20 may be unable to access information
generated by encoding treeblocks below and to the right of the given treeblock when
encoding the given treeblock.

[0051] To generate a coded treeblock, video encoder 20 may recursively perform
quadtree partitioning on the video block of the treeblock to divide the video block into
progressively smaller video blocks. Each of the smaller video blocks may be associated
with a different CU. For example, video encoder 20 may partition the video block of a
treeblock into four equally-sized sub-blocks, partition one or more of the sub-blocks
into four equally-sized sub-sub-blocks, and so on. A partitioned CU may be a CU
whose video block is partitioned into video blocks associated with other CUs. A non-
partitioned CU may be a CU whose video block is not partitioned into video blocks
associated with other CUs.

[0052] One or more syntax elements in the bitstream may indicate a maximum number
of times video encoder 20 may partition the video block of a treeblock. A video block
of a CU may be square in shape. The size of the video block of a CU (i.e., the size of
the CU) may range from 8x8 pixels up to the size of a video block of a treeblock (i.e.,
the size of the treeblock) with a maximum of 64x64 pixels or greater.

[0053] Video encoder 20 may perform encoding operations on (i.c., encode) each CU of

a treeblock according to a z-scan order. In other words, video encoder 20 may encode a

WO 2013/067158 PCT/US2012/063027
13

top-left CU, a top-right CU, a bottom-left CU, and then a bottom-right CU, in that order.
When video encoder 20 performs an encoding operation on a partitioned CU, video
encoder 20 may encode CUs associated with sub-blocks of the video block of the
partitioned CU according to the z-scan order. In other words, video encoder 20 may
encode a CU associated with a top-left sub-block, a CU associated with a top-right sub-
block, a CU associated with a bottom-left sub-block, and then a CU associated with a
bottom-right sub-block, in that order.

[0054] As a result of encoding the CUs of a treeblock according to a z-scan order, the
CUs above, above-and-to-the-left, above-and-to-the-right, left, and below-and-to-the left
of a given CU may have been encoded. CUs below and to the right of the given CU
have not yet been encoded. Consequently, video encoder 20 may be able to access
information generated by encoding some CUs that neighbor the given CU when
encoding the given CU. However, video encoder 20 may be unable to access
information generated by encoding other CUs that neighbor the given CU when
encoding the given CU.

[0055] When video encoder 20 encodes a non-partitioned CU, video encoder 20 may
generate one or more prediction units (PUs) for the CU. Each of the PUs of the CU
may be associated with a different video block within the video block of the CU. Video
encoder 20 may generate a predicted video block for each PU of the CU. The predicted
video block of a PU may be a block of samples. Video encoder 20 may use intra
prediction or inter prediction to generate the predicted video block for a PU.

[0056] When video encoder 20 uses intra prediction to generate the predicted video
block of a PU, video encoder 20 may generate the predicted video block of the PU
based on decoded samples of the picture associated with the PU. If video encoder 20
uses intra prediction to generate predicted video blocks of the PUs of a CU, the CU is an
intra-predicted CU. When video encoder 20 uses inter prediction to generate the
predicted video block of the PU, video encoder 20 may generate the predicted video
block of the PU based on decoded samples of one or more pictures other than the
picture associated with the PU. If video encoder 20 uses inter prediction to generate
predicted video blocks of the PUs of a CU, the CU is an inter-predicted CU.

[0057] Furthermore, when video encoder 20 uses inter prediction to generate a
predicted video block for a PU, video encoder 20 may generate motion information for
the PU. The motion information for a PU may indicate one or more reference blocks of

the PU. Each reference block of the PU may be a video block within a reference

WO 2013/067158 PCT/US2012/063027
14

picture. The reference picture may be a picture other than the picture associated with
the PU. In some instances, a reference block of a PU may also be referred to as the
“reference sample” of the PU. Video encoder 20 may generate the predicted video
block for the PU based on the reference blocks of the PU.

[0058] After video encoder 20 generates predicted video blocks for one or more PUs of
a CU, video encoder 20 may generate residual data for the CU based on the predicted
video blocks for the PUs of the CU. The residual data for the CU may indicate
differences between samples in the predicted video blocks for the PUs of the CU and the
original video block of the CU.

[0059] Furthermore, as part of performing an encoding operation on a non-partitioned
CU, video encoder 20 may perform recursive quadtree partitioning on the residual data
of the CU to partition the residual data of the CU into one or more blocks of residual
data (i.e., residual video blocks) associated with transform units (TUs) of the CU. Each
TU of a CU may be associated with a different residual video block.

[0060] Video coder 20 may apply one or more transforms to residual video blocks
associated with the TUs to generate transform coefficient blocks (i.e., blocks of
transform coefficients) associated with the TUs. Conceptually, a transform coefficient
block may be a two-dimensional (2D) matrix of transform coefficients.

[0061] After generating a transform coefficient block, video encoder 20 may perform a
quantization process on the transform coefficient block. Quantization generally refers
to a process in which transform coefficients are quantized to possibly reduce the amount
of data used to represent the transform coefficients, providing further compression. The
quantization process may reduce the bit depth associated with some or all of the
transform coefficients. For example, an n-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where # is greater than m.
[0062] Video encoder 20 may associate each CU with a quantization parameter (QP)
value. The QP value associated with a CU may determine how video encoder 20
quantizes transform coefficient blocks associated with the CU. Video encoder 20 may
adjust the degree of quantization applied to the transform coefficient blocks associated
with a CU by adjusting the QP value associated with the CU.

[0063] After video encoder 20 quantizes a transform coefficient block, video encoder
20 may generate sets of syntax elements that represent the transform coefficients in the

quantized transform coefficient block. Video encoder 20 may apply entropy encoding

WO 2013/067158 PCT/US2012/063027
15

operations, such as Context Adaptive Binary Arithmetic Coding (CABAC) operations,
to some of these syntax elements.

[0064] The bitstream generated by video encoder 20 may include a series of Network
Abstraction Layer (NAL) units. Each of the NAL units may be a syntax structure
containing an indication of a type of data in the NAL unit and bytes containing the data.
For example, a NAL unit may contain data representing a sequence parameter set, a
picture parameter set, a coded slice, one or more supplemental enhancement information
(SEI) messages, an access unit delimiter, filler data, or another type of data. The data in
a NAL unit may include various syntax structures.

[0065] Video decoder 30 may receive the bitstream generated by video encoder 20.

The bitstream may include a coded representation of the video data encoded by video
encoder 20. When video decoder 30 receives the bitstream, video decoder 30 may
perform a parsing operation on the bitstream. When video decoder 30 performs the
parsing operation, video decoder 30 may extract syntax elements from the bitstream.
Video decoder 30 may reconstruct the pictures of the video data based on the syntax
elements extracted from the bitstream. The process to reconstruct the video data based
on the syntax elements may be generally reciprocal to the process performed by video
encoder 20 to generate the syntax elements.

[0066] After video decoder 30 extracts the syntax elements associated with a CU, video
decoder 30 may generate predicted video blocks for the PUs of the CU based on the
syntax elements. In addition, video decoder 30 may inverse quantize transform
coefficient blocks associated with TUs of the CU. Video decoder 30 may perform
inverse transforms on the transform coefficient blocks to reconstruct residual video
blocks associated with the TUs of the CU. After generating the predicted video blocks
and reconstructing the residual video blocks, video decoder 30 may reconstruct the
video block of the CU based on the predicted video blocks and the residual video
blocks. In this way, video decoder 30 may reconstruct the video blocks of CUs based
on the syntax elements in the bitstream.

[0067] Video encoder 20 may divide the current picture into a plurality of picture
partitions. The picture partitions may be associated with non-overlapping subsets of the
treeblocks of the current picture. Video encoder 20 may divide the current picture into a
plurality of picture partitions in various ways. As described below, video encoder 20
may divide the current picture into a plurality of tiles or into a plurality of wavefront

parallel processing (WPP) waves. This disclosure may use the term “picture partition”

WO 2013/067158 PCT/US2012/063027
16

to refer generically to both tiles and WPP waves. The process of dividing the current
picture into picture partitions may be referred to as “partitioning” the current picture
into picture partitions.

[0068] As mentioned above, video encoder 20 may divide the current picture into one
or more tiles. Each of the tiles may comprise an integer number of treeblocks in the
current picture. Video encoder 20 may divide the current picture into tiles by defining
two or more vertical tile boundaries and two or more horizontal tile boundaries. Each
vertical side of the current picture may be considered to be a vertical tile boundary.
Each horizontal side of the current picture may be considered to be a horizontal tile
boundary. For example, if video encoder 20 defines four vertical tile boundaries and
three horizontal tile boundaries for the current picture, the current picture is divided into
six tiles.

[0069] A video coder, such as video encoder 20 or video decoder 30, may code the tiles
of the current picture according to raster scan order. Furthermore, when the video coder
codes a tile, the video coder may code each treeblock within the tile according to a
raster scan order. In this way, the video coder may code each treeblock of a given tile
of the current picture before coding any treeblock of another tile of the current picture.
Consequently, the order in which the video coder codes the treeblocks of the current
picture may be different when the video coder partitions the current picture into multiple
tiles than when the video coder does not partition the current picture into multiple tiles.
[0070] Furthermore, in some instances, the video coder may use information associated
with spatially-neighboring CUs to perform intra prediction on a given CU in the current
picture, so long as the given CU and the spatially-neighboring CUs belong to the same
tile. The spatially-neighboring CUs are CUs that belong to the current slice of the
current picture. In some instances, the video coder may use information associated with
spatially-neighboring CUs to select a context for CABAC encoding a syntax element of
the given CU, so long as the given CU and the spatially-neighboring CUs are within the
same tile. Because of these restrictions, the video coder may be able to code in parallel
treeblocks of multiple tiles.

[0071] In other examples, the video coder may code the current picture using wavefront
parallel processing (WPP). When the video coder codes the current picture using WPP,
the video coder may divide the treeblocks of the current picture into a plurality of “WPP
waves.” Each of the WPP waves may correspond to a different row of treeblocks in the

current picture. When the video coder codes the current picture using WPP, the video

WO 2013/067158 PCT/US2012/063027
17

coder may start coding a top row of treeblocks. When the video coder has coded two or
more treeblocks of the top row, the video coder may start coding a second to top row of
treeblocks in parallel with coding the top row of treeblocks. When the video coder has
coded two or more treeblocks of the second to top row, the video coder may start coding
a third to top row of treeblock in parallel with coding the higher rows of treeblocks.
This pattern may continue down the rows of treeblocks in the current picture.

[0072] When the video coder is coding the current picture using WPP, the video coder
may use information associated with spatially-neighboring CUs outside a current
treeblock to perform intra prediction on a given CU in the current treeblock, so long as
the spatially-neighboring CUs are left, above-left, above, or above-right of the current
treeblock. If the current treeblock is the leftmost treeblock in a row other than the
topmost row, the video coder may use information associated with the second treeblock
of the immediately higher row to select a context for CABAC encoding a syntax
element of the current treeblock. Otherwise, if the current treeblock is not the leftmost
treeblock in the row, the video coder may use information associated with a treeblock to
the left of the current treeblock to select a context for CABAC encoding a syntax
element of the current treeblock. In this way, the video coder may initialize CABAC
states of a row based on the CABAC states of the immediately higher row after
encoding two or more treeblocks of the immediately higher row.

[0073] In some examples, when the video coder is coding the current picture using
WPP, the only tile boundaries of the current picture are horizontal and vertical borders
of the current picture. Thus, the only tile of the current picture may be the same size as
the current picture. The video coder may divide the current picture, and hence the
single tile of the current picture, into multiple WPP waves.

[0074] As mentioned above, video encoder 20 may generate a coded slice NAL unit
that includes an encoded representation of a slice. The slice may be associated with an
integer number of consecutively coded treeblocks. The coded slice NAL unit may
include a slice header and slice data. The slice data may include encoded
representations of each treeblock associated with the slice. Video encoder 20 may
generate the coded slice NAL unit that such encoded representations of the treeblocks
are grouped within the slice data into segments according to the picture partitions with
which the treeblocks belong. For example, the coded slice NAL unit may include each

coded treeblock associated with a first picture partition followed by each coded

WO 2013/067158 PCT/US2012/063027
18

treeblock associated with a second picture partition, followed by each coded treeblock
associated with a third picture partition, and so on.

[0075] In accordance with the techniques of this disclosure, video encoder 20 may pad
one or more of the segments such that each of the segments begins on a byte boundary.
The coded slice NAL unit may be divided into a series of bytes. A segment may begin
on a byte boundary when a first bit of the segment is the first bit of one of the bytes of
the coded slice NAL unit. Furthermore, a segment may be byte aligned if the first bit of
a segment is the first bit of one of the bytes of the coded slice NAL unit. When video
encoder 20 pads a segment, video encoder 20 may append padding bits to the segment.
For instance, video encoder 20 may add one or more padding bits to a segment such that
the number of bits in the segment is divisible by eight without leaving a remainder. The
padding bits may not have any semantic meaning, but may serve to ensure that a next
segment begins at a byte boundary.

[0076] When video decoder 30 receives the coded slice NAL unit, video encoder 30
may store the coded slice NAL unit in memory. To decode the picture partitions in
parallel, video decoder 30 may assign the segments to different decoding threads that
run in parallel. In order to assign the segments to different decoding threads, video
decoder 30 may need to indicate memory addresses associated with the beginnings of
the segments. Video decoder 30 may use byte-wise memory addressing. Accordingly,
video decoder 30 may be unable to indicate the memory address associated with the
start of a segment if the start of the segment occurs within a byte. Hence, video decoder
30 may not be able to decode the coded treeblocks in the segments in parallel if one or
more of the segments begins within a byte. Alternatively, video decoder 30 may use bit-
wise memory addressing or byte-wise plus bit-wise addressing to enable decoding the
coded treeblocks in the segments in parallel but with increased implementation and
computation complexities.

[0077] In this way, video encoder 20 may divide a picture into a plurality of picture
partitions. The picture has a plurality of treeblocks. The picture partitions are
associated with non-overlapping subsets of the treeblocks of the picture. Video encoder
20 may generate a coded slice NAL unit that includes encoded representations of the
treeblocks that are associated with a slice of the picture. The encoded representations of
the treeblocks are grouped within the coded slice NAL unit into segments associated
with different ones of the picture partitions. One or more of the segments are padded

such that each of the segments begins on a byte boundary.

WO 2013/067158 PCT/US2012/063027
19

[0078] Moreover, video decoder 30 may store a coded slice NAL unit that includes
encoded representations of treeblocks associated with a slice of a picture. The picture
may be divided into a plurality of picture partitions. The encoded representations of the
treeblocks may be grouped into segments associated with different ones of the picture
partitions. One or more of the segments are padded such that each of the segments
begins at a byte boundary. Video decoder 30 may decode the encoded representations
of the treeblocks. In some instances, video decoder 30 may decode the encoded
representations of the treeblocks in two or more of the segments in parallel.

[0079] FIG. 2 is a block diagram that illustrates an example video encoder 20 that is
configured to implement the techniques of this disclosure. FIG. 2 is provided for
purposes of explanation and should not be considered limiting of the techniques as
broadly exemplified and described in this disclosure. For purposes of explanation, this
disclosure describes video encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other coding standards or methods.
[0080] In the example of FIG. 2, video encoder 20 includes a plurality of functional
components. The functional components of video encoder 20 include a prediction
module 100, a residual generation module 102, a transform module 104, a quantization
module 106, an inverse quantization module 108, an inverse transform module 110, a
reconstruction module 112, a filter module 113, a decoded picture buffer 114, and an
entropy encoding module 116. Prediction module 100 includes an inter prediction
module 121, motion estimation module 122, a motion compensation module 124, and
an intra prediction module 126. In other examples, video encoder 20 may include more,
fewer, or different functional components. Furthermore, motion estimation module 122
and motion compensation module 124 may be highly integrated, but are represented in
the example of FIG. 2 separately for purposes of explanation.

[0081] Video encoder 20 may receive video data. Video encoder 20 may receive the
video data from various sources. For example, video encoder 20 may receive the video
data from video source 18 (FIG. 1) or another source. The video data may represent a
series of pictures. To encode the video data, video encoder 20 may perform an
encoding operation on each of the pictures. As part of performing the encoding
operation on a picture, video encoder 20 may perform encoding operations on each slice
of the picture. As part of performing an encoding operation on a slice, video encoder 20

may perform encoding operations on treeblocks in the slice.

WO 2013/067158 PCT/US2012/063027
20

[0082] As part of performing an encoding operation on a treeblock, prediction module
100 may perform quadtree partitioning on the video block of the treeblock to divide the
video block into progressively smaller video blocks. Each of the smaller video blocks
may be associated with a different CU. For example, prediction module 100 may
partition a video block of a treeblock into four equally-sized sub-blocks, partition one or
more of the sub-blocks into four equally-sized sub-sub-blocks, and so on.

[0083] The sizes of the video blocks associated with CUs may range from 8x8 samples
up to the size of the treeblock with a maximum of 64x64 samples or greater. In this
disclosure, “NxN” and “N by N’ may be used interchangeably to refer to the sample
dimensions of a video block in terms of vertical and horizontal dimensions, e.g., 16x16
samples or 16 by 16 samples. In general, a 16x16 video block has sixteen samples in a
vertical direction (y = 16) and sixteen samples in a horizontal direction (x = 16).
Likewise, an NxN block generally has N samples in a vertical direction and N samples
in a horizontal direction, where N represents a nonnegative integer value.

[0084] Furthermore, as part of performing the encoding operation on a treeblock,
prediction module 100 may generate a hierarchical quadtree data structure for the
treeblock. For example, a treeblock may correspond to a root node of the quadtree data
structure. If prediction module 100 partitions the video block of the treeblock into four
sub-blocks, the root node has four child nodes in the quadtree data structure. Each of
the child nodes corresponds to a CU associated with one of the sub-blocks. If prediction
module 100 partitions one of the sub-blocks into four sub-sub-blocks, the node
corresponding to the CU associated with the sub-block may have four child nodes, each
of which corresponds to a CU associated with one of the sub-sub-blocks.

[0085] Each node of the quadtree data structure may contain syntax data (e.g., syntax
elements) for the corresponding treeblock or CU. For example, a node in the quadtree
may include a split flag that indicates whether the video block of the CU corresponding
to the node is partitioned (i.¢., split) into four sub-blocks. Syntax elements for a CU
may be defined recursively, and may depend on whether the video block of the CU is
split into sub-blocks. A CU whose video block is not partitioned may correspond to a
leaf node in the quadtree data structure. A coded treeblock may include data based on
the quadtree data structure for a corresponding treeblock.

[0086] Video encoder 20 may perform encoding operations on each non-partitioned CU

of a treeblock. When video encoder 20 performs an encoding operation on a non-

WO 2013/067158 PCT/US2012/063027
21

partitioned CU, video encoder 20 generates data representing an encoded representation
of the non-partitioned CU.

[0087] As part of performing an encoding operation on a CU, prediction module 100
may partition the video block of the CU among one or more PUs of the CU. Video
encoder 20 and video decoder 30 may support various PU sizes. Assuming that the size
of a particular CU is 2Nx2N, video encoder 20 and video decoder 30 may support PU
sizes of 2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN,
Nx2N, NxN, 2NxnU, nLx2N, nRx2N, or similar. Video encoder 20 and video decoder
30 may also support asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N,
and nRx2N. In some examples, prediction module 100 may perform geometric
partitioning to partition the video block of a CU among PUs of the CU along a boundary
that does not meet the sides of the video block of the CU at right angles.

[0088] Inter prediction module 121 may perform inter prediction on each PU of the CU.
Inter prediction may provide temporal compression. To perform inter prediction on a
PU, motion estimation module 122 may generate motion information for the PU.
Motion compensation module 124 may generate a predicted video block for the PU
based the motion information and decoded samples of pictures other than the picture
associated with the CU (i.e., reference pictures). In this disclosure, a predicted video
block generated by motion compensation module 124 may be referred to as an inter-
predicted video block.

[0089] Slices may be I slices, P slices, or B slices. Motion estimation module 122 and
motion compensation module 124 may perform different operations for a PU of a CU
depending on whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs
are intra predicted. Hence, if the PU is in an I slice, motion estimation module 122 and
motion compensation module 124 do not perform inter prediction on the PU.

[0090] If the PU is in a P slice, the picture containing the PU is associated with a list of
reference pictures referred to as “list 0.” Each of the reference pictures in list 0 contains
samples that may be used for inter prediction of other pictures. When motion
estimation module 122 performs the motion estimation operation with regard to a PU in
a P slice, motion estimation module 122 may search the reference pictures in list O for a
reference block for the PU. The reference block of the PU may be a set of samples, e.g.,
a block of samples, that most closely corresponds to the samples in the video block of
the PU. Motion estimation module 122 may use a variety of metrics to determine how

closelv a set of samples in a reference picture corresponds to the samples in the video

WO 2013/067158 PCT/US2012/063027
22

block of a PU. For example, motion estimation module 122 may determine how closely
a set of samples in a reference picture corresponds to the samples in the video block of a
PU by sum of absolute difference (SAD), sum of square difference (SSD), or other
difference metrics.

[0091] After identifying a reference block of a PU in a P slice, motion estimation
module 122 may generate a reference index that indicates the reference picture in list 0
containing the reference block and a motion vector that indicates a spatial displacement
between the PU and the reference block. In various examples, motion estimation
module 122 may generate motion vectors to varying degrees of precision. For example,
motion estimation module 122 may generate motion vectors at one-quarter sample
precision, one-eighth sample precision, or other fractional sample precision. In the case
of fractional sample precision, reference block values may be interpolated from integer-
position sample values in the reference picture. Motion estimation module 122 may
output the reference index and the motion vector as the motion information of the PU.
Motion compensation module 124 may generate a predicted video block of the PU
based on the reference block identified by the motion information of the PU.

[0092] If the PU is in a B slice, the picture containing the PU may be associated with
two lists of reference pictures, referred to as “list 0” and “list 1.” In some examples, a
picture containing a B slice may be associated with a list combination that is a
combination of list 0 and list 1.

[0093] Furthermore, if the PU is in a B slice, motion estimation module 122 may
perform uni-directional prediction or bi-directional prediction for the PU. When motion
estimation module 122 performs uni-directional prediction for the PU, motion
estimation module 122 may search the reference pictures of list 0 or list 1 for a
reference block for the PU. Motion estimation module 122 may then generate a
reference index that indicates the reference picture in list 0 or list 1 that contains the
reference block and a motion vector that indicates a spatial displacement between the
PU and the reference block. Motion estimation module 122 may output the reference
index, a prediction direction indicator, and the motion vector as the motion information
of the PU. The prediction direction indicator may indicate whether the reference index
indicates a reference picture in list 0 or list 1. Motion compensation module 124 may
generate the predicted video block of the PU based on the reference block indicated by

the motion information of the PU.

WO 2013/067158 PCT/US2012/063027
23

[0094] When motion estimation module 122 performs bi-directional prediction for a
PU, motion estimation module 122 may search the reference pictures in list 0 for a
reference block for the PU and may also search the reference pictures in list 1 for
another reference block for the PU. Motion estimation module 122 may then generate
reference indexes that indicate the reference pictures in list 0 and list 1 containing the
reference blocks and motion vectors that indicate spatial displacements between the
reference blocks and the PU. Motion estimation module 122 may output the reference
indexes and the motion vectors of the PU as the motion information of the PU. Motion
compensation module 124 may generate the predicted video block of the PU based on
the reference blocks indicated by the motion information of the PU.

[0095] In some instances, motion estimation module 122 does not output a full set of
motion information for a PU to entropy encoding module 116. Rather, motion
estimation module 122 may signal the motion information of a PU with reference to the
motion information of another PU. For example, motion estimation module 122 may
determine that the motion information of the PU is sufficiently similar to the motion
information of a neighboring PU. In this example, motion estimation module 122 may
indicate, in a syntax structure associated with the PU, a value that indicates to video
decoder 30 that the PU has the same motion information as the neighboring PU. In
another example, motion estimation module 122 may identify, in a syntax structure
associated with the PU, a neighboring PU and a motion vector difference (MVD). The
motion vector difference indicates a difference between the motion vector of the PU and
the motion vector of the indicated neighboring PU. Video decoder 30 may use the
motion vector of the indicated neighboring PU and the motion vector difference to
determine the motion vector of the PU. By referring to the motion information of a first
PU when signaling the motion information of a second PU, video encoder 20 may be
able to signal the motion information of the second PU using fewer bits.

[0096] As part of performing an encoding operation on a CU, intra prediction module
126 may perform intra prediction on PUs of the CU. Intra prediction may provide
spatial compression. When intra prediction module 126 performs intra prediction on a
PU, intra prediction module 126 may generate prediction data for the PU based on
decoded samples of other PUs in the same picture. The prediction data for the PU may
include a predicted video block and various syntax elements. Intra prediction module

126 may perform intra prediction on PUs in I slices, P slices, and B slices.

WO 2013/067158 PCT/US2012/063027
24

[0097] To perform intra prediction on a PU, intra prediction module 126 may use
multiple intra prediction modes to generate multiple sets of prediction data for the PU.
When intra prediction module 126 uses an intra prediction mode to generate a set of
prediction data for the PU, intra prediction module 126 may extend samples from video
blocks of neighboring PUs across the video block of the PU in a direction and/or
gradient associated with the intra prediction mode. The neighboring PUs may be above,
above and to the right, above and to the left, or to the left of the PU, assuming a left-to-
right, top-to-bottom encoding order for PUs, CUs, and treeblocks. Intra prediction
module 126 may use various numbers of intra prediction modes, ¢.g., 33 directional
intra prediction modes, depending on the size of the PU.

[0098] Prediction module 100 may select the prediction data for a PU from among the
prediction data generated by motion compensation module 124 for the PU or the
prediction data generated by intra prediction module 126 for the PU. In some examples,
prediction module 100 selects the prediction data for the PU based on rate/distortion
metrics of the sets of prediction data.

[0099] If prediction module 100 selects prediction data generated by intra prediction
module 126, prediction module 100 may signal the intra prediction mode that was used
to generate the prediction data for the PUs, i.e., the selected intra prediction mode.
Prediction module 100 may signal the selected intra prediction mode in various ways.
For example, it is probable the selected intra prediction mode is the same as the intra
prediction mode of a neighboring PU. In other words, the intra prediction mode of the
neighboring PU may be the most probable mode for the current PU. Thus, prediction
module 100 may generate a syntax element to indicate that the selected intra prediction
mode is the same as the intra prediction mode of the neighboring PU.

[0100] After prediction module 100 selects the prediction data for PUs of a CU, residual
generation module 102 may generate residual data for the CU by subtracting the
predicted video blocks of the PUs of the CU from the video block of the CU. The
residual data of a CU may include 2D residual video blocks that correspond to different
sample components of the samples in the video block of the CU. For example, the
residual data may include a residual video block that corresponds to differences between
luminance components of samples in the predicted video blocks of the PUs of the CU
and luminance components of samples in the original video block of the CU. In
addition, the residual data of the CU may include residual video blocks that correspond

to the differences between chrominance components of samples in the predicted video

WO 2013/067158 PCT/US2012/063027
25

blocks of the PUs of the CU and the chrominance components of the samples in the
original video block of the CU.

[0101] Prediction module 100 may perform quadtree partitioning to partition the
residual video blocks of a CU into sub-blocks. Each undivided residual video block
may be associated with a different TU of the CU. The sizes and positions of the
residual video blocks associated with TUs of a CU may or may not be based on the sizes
and positions of video blocks associated with the PUs of the CU. A quadtree structure
known as a “residual quad tree” (RQT) may include nodes associated with each of the
residual video blocks. The TUs of a CU may correspond to leaf nodes of the RQT.
[0102] Transform module 104 may generate one or more transform coefficient blocks
for each TU of a CU by applying one or more transforms to a residual video block
associated with the TU. Each of the transform coefficient blocks may be a 2D matrix of
transform coefficients. Transform module 104 may apply various transforms to the
residual video block associated with a TU. For example, transform module 104 may
apply a discrete cosine transform (DCT), a directional transform, or a conceptually
similar transform to the residual video block associated with a TU.

[0103] After transform module 104 generates a transform coefficient block associated
with a TU, quantization module 106 may quantize the transform coefficients in the
transform coefficient block. Quantization module 106 may quantize a transform
coefficient block associated with a TU of a CU based on a QP value associated with the
CuU.

[0104] Video encoder 20 may associate a QP value with a CU in various ways. For
example, video encoder 20 may perform a rate-distortion analysis on a treeblock
associated with the CU. In the rate-distortion analysis, video encoder 20 may generate
multiple coded representations of the treeblock by performing an encoding operation
multiple times on the treeblock. Video encoder 20 may associate different QP values
with the CU when video encoder 20 generates different encoded representations of the
treeblock. Video encoder 20 may signal that a given QP value is associated with the
CU when the given QP value is associated with the CU in a coded representation of the
treeblock that has a lowest bitrate and distortion metric.

[0105] Inverse quantization module 108 and inverse transform module 110 may apply
inverse quantization and inverse transforms to the transform coefficient block,
respectively, to reconstruct a residual video block from the transform coefficient block.

Reconstruction module 112 may add the reconstructed residual video block to

WO 2013/067158 PCT/US2012/063027
26

corresponding samples from one or more predicted video blocks generated by prediction
module 100 to produce a reconstructed video block associated with a TU. By
reconstructing video blocks for each TU of a CU in this way, video encoder 20 may
reconstruct the video block of the CU.

[0106] After reconstruction module 112 reconstructs the video block of a CU, filter
module 113 may perform a deblocking operation to reduce blocking artifacts in the
video block associated with the CU. After performing the one or more deblocking
operations, filter module 113 may store the reconstructed video block of the CU in
decoded picture buffer 114. Motion estimation module 122 and motion compensation
module 124 may use a reference picture that contains the reconstructed video block to
perform inter prediction on PUs of subsequent pictures. In addition, intra prediction
module 126 may use reconstructed video blocks in decoded picture buffer 114 to
perform intra prediction on other PUs in the same picture as the CU.

[0107] Entropy encoding module 116 may receive data from other functional
components of video encoder 20. For example, entropy encoding module 116 may
receive transform coefficient blocks from quantization module 106 and may receive
syntax elements from prediction module 100. When entropy encoding module 116
receives the data, entropy encoding module 116 may perform one or more entropy
encoding operations to generate entropy encoded data. For example, video encoder 20
may perform a context adaptive variable length coding (CAVLC) operation, a CABAC
operation, a variable-to-variable (V2V) length coding operation, a syntax-based context-
adaptive binary arithmetic coding (SBAC) operation, a Probability Interval Partitioning
Entropy (PIPE) coding operation, or another type of entropy encoding operation on the
data. Entropy encoding module 116 may output a bitstream that includes the entropy
encoded data.

[0108] As part of performing an entropy encoding operation on data, entropy encoding
module 116 may select a context model. If entropy encoding module 116 is performing
a CABAC operation, the context model may indicate estimates of probabilities of
particular bins having particular values. In the context of CABAC, the term “bin” is
used to refer to a bit of a binarized version of a syntax element.

[0109] Video encoder 20 may generate a coded slice NAL unit for each slice of the
current picture. The coded slice NAL unit for a slice may include a slice header and
slice data. The slice data may include a plurality of segments. Each of the segments

includes coded treeblocks associated with a different picture partition. Video encoder

WO 2013/067158 PCT/US2012/063027
27

20 may pad the segments such that each of the segments begins at a byte boundary
within the slice data. For example, the segments in a coded slice NAL unit may include
a given segment. In this example, video encoder 20 may generate the coded slice NAL
unit at least in part by performing a padding operation that appends bits to the given
segment if a next treeblock is inside the current slice and is associated with a different
picture partition than the given segment.

[0110] In some examples, video encoder 20 may generate the slice header of a coded
slice NAL unit such that the slice header indicates entry points for the segments in the
slice data of the coded slice NAL unit. The entry points may indicate the positions
within the slice data of the segments. For example, the entry points may indicate byte
offsets of the segments. In this example, the byte offsets may be relative to the first bit
of the coded slice NAL unit, the first bit of the slice data, or another bit in the coded
slice NAL unit. In another example, the entry points may indicate the numbers of bits
or bytes within each of the segments. In some examples, the slice header does not
indicate an entry point for a first segment in the slice data.

[0111] In some examples, video encoder 20 may determine whether a flag has a first
value (e.g., 1). If the flag has the first value, video encoder 20 may pad one or more of
the segments such that each segment begins at a byte boundary. When the flag has a
second value (e.g., 0), video encoder 20 does not pad the segments. As a result, the
segments may or may not begin at byte-aligned positions. In such examples, a sequence
parameter set, a picture parameter set, an adaptation parameter set, or a slice header may
include the flag. Thus, in some examples, video encoder 20 may generate a parameter
set associated with the current picture, the parameter set including a flag. When the flag
has a first value, one or more of the segments are padded such that the segments begin
at byte boundaries. When the flag has a second value, the segments may or may not
begin at byte boundaries.

[0112] Furthermore, in some examples, video encoder 20 may partition the current
picture into a plurality of tiles. If video encoder 20 allows in-picture prediction across
tile boundaries (i.e., when two or more of tiles are dependent on each other), video
encoder 20 does not pad the segments. As a result, the segments may or may not begin
at byte-aligned positions. However, if video encoder 20 does not allow in-picture
prediction across tile boundaries, video encoder 20 may pad one or more of the
segments such that each of the segments begins at a byte boundary. Thus, video

encoder 20 mav generate a coded slice NAL unit at least in part by performing a

WO 2013/067158 PCT/US2012/063027
28

padding operation that ensures that the segments begin at byte boundaries only after
determining that the tiles are independent of one another.

[0113] FIG. 3 is a block diagram that illustrates an example video decoder 30 that is
configured to implement the techniques of this disclosure. FIG. 3 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified
and described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

[0114] In the example of FIG. 3, video decoder 30 includes a plurality of functional
components. The functional components of video decoder 30 include an entropy
decoding module 150, a prediction module 152, an inverse quantization module 154, an
inverse transform module 156, a reconstruction module 158, a filter module 159, and a
decoded picture buffer 160. Prediction module 152 includes a motion compensation
module 162 and an intra prediction module 164. In some examples, video decoder 30
may perform a decoding pass generally reciprocal to the encoding pass described with
respect to video encoder 20 of FIG. 2. In other examples, video decoder 30 may include
more, fewer, or different functional components.

[0115] Video decoder 30 may receive a bitstream that comprises encoded video data.
The bitstream may include a plurality of syntax elements. When video decoder 30
receives the bitstream, entropy decoding module 150 may perform a parsing operation
on the bitstream. As a result of performing the parsing operation on the bitstream,
entropy decoding module 150 may extract syntax elements from the bitstream. As part
of performing the parsing operation, entropy decoding module 150 may entropy decode
entropy encoded syntax elements in the bitstream. Prediction module 152, inverse
quantization module 154, inverse transform module 156, reconstruction module 158,
and filter module 159 may perform a reconstruction operation that generates decoded
video data based on the syntax elements extracted from the bitstream.

[0116] As discussed above, the bitstream may comprise a series of NAL units. The
NAL units of the bitstream may include sequence parameter set NAL units, picture
parameter set NAL units, SEI NAL units, and so on. As part of performing the parsing
operation on the bitstream, entropy decoding module 150 may perform parsing
operations that extract and entropy decode sequence parameter sets from sequence
parameter set NAL units, picture parameter sets from picture parameter set NAL units,

SEI data from SEI NAL units, and so on.

WO 2013/067158 PCT/US2012/063027
29

[0117] In addition, the NAL units of the bitstream may include coded slice NAL units.
As part of performing the parsing operation on the bitstream, video decoder 30 may
perform parsing operations that extract and entropy decode coded slices from the coded
slice NAL units. Each of the coded slices may include a slice header and slice data.
The slice header may contain syntax elements pertaining to a slice. The syntax elements
in the slice header may include a syntax element that identifies a picture parameter set
associated with a picture that contains the slice.

[0118] The slice data of a coded slice NAL unit may include multiple segments. Each
of the segments may include coded treeblocks associated with a different picture
partition (e.g., a tile or a WPP wave). One or more of the segments in the slice data may
be padded such that each of the segments begins at a byte boundary. The slice header of
the coded slice NAL unit may indicate entry points for the segments. In this case,
because the segments always begin at byte boundaries, video decoder 30 may be able to
assign different ones of the segments to different decoding threads in a simple fashion
by using byte-wise memory addressing. The different decoding threads may parse the
coded treeblocks of the segments and reconstruct the video data associated with the
corresponding treeblocks in parallel.

[0119] As part of extracting the slice data from coded slice NAL units, entropy
decoding module 150 may perform parsing operations that extract syntax elements from
coded CUs. The extracted syntax elements may include syntax elements associated
with transform coefficient blocks. Entropy decoding module 150 may then perform
CABAC decoding operations on some of the syntax elements.

[0120] After entropy decoding module 150 performs a parsing operation on a non-
partitioned CU, video decoder 30 may perform a reconstruction operation on the non-
partitioned CU. To perform the reconstruction operation on a non-partitioned CU,
video decoder 30 may perform a reconstruction operation on each TU of the CU. By
performing the reconstruction operation for each TU of the CU, video decoder 30 may
reconstruct a residual video block associated with the CU.

[0121] As part of performing a reconstruction operation on a TU, inverse quantization
module 154 may inverse quantize, i.e., de-quantize, a transform coefficient block
associated with the TU. Inverse quantization module 154 may inverse quantize the
transform coefficient block in a manner similar to the inverse quantization processes
proposed for HEVC or defined by the H.264 decoding standard. Inverse quantization

module 154 mav use a quantization parameter QP calculated by video encoder 20 for a

WO 2013/067158 PCT/US2012/063027
30

CU of the transform coefficient block to determine a degree of quantization and,
likewise, a degree of inverse quantization for inverse quantization module 154 to apply.
[0122] After inverse quantization module 154 inverse quantizes a transform coefficient
block, inverse transform module 156 may generate a residual video block for the TU
associated with the transform coefficient block. Inverse transform module 156 may
apply an inverse transform to the transform coefficient block in order to generate the
residual video block for the TU. For example, inverse transform module 156 may apply
an inverse DCT, an inverse integer transform, an inverse Karhunen-Loeve transform
(KLT), an inverse rotational transform, an inverse directional transform, or another
inverse transform to the transform coefficient block.

[0123] In some examples, inverse transform module 156 may determine an inverse
transform to apply to the transform coefficient block based on signaling from video
encoder 20. In such examples, inverse transform module 156 may determine the inverse
transform based on a signaled transform at the root node of a quadtree for a treeblock
associated with the transform coefficient block. In other examples, inverse transform
module 156 may infer the inverse transform from one or more coding characteristics,
such as block size, coding mode, or the like. In some examples, inverse transform
module 156 may apply a cascaded inverse transform.

[0124] In some examples, motion compensation module 162 may refine the predicted
video block of a PU by performing interpolation based on interpolation filters.
Identifiers for interpolation filters to be used for motion compensation with sub-sample
precision may be included in the syntax elements. Motion compensation module 162
may use the same interpolation filters used by video encoder 20 during generation of the
predicted video block of the PU to calculate interpolated values for sub-integer samples
of a reference block. Motion compensation module 162 may determine the
interpolation filters used by video encoder 20 according to received syntax information
and use the interpolation filters to produce the predicted video block.

[0125] If a PU is encoded using intra prediction, intra prediction module 164 may
perform intra prediction to generate a predicted video block for the PU. For example,
intra prediction module 164 may determine an intra prediction mode for the PU based
on syntax elements in the bitstream. The bitstream may include syntax elements that
intra prediction module 164 may use to determine the intra prediction mode of the PU.
[0126] In some instances, the syntax elements may indicate that intra prediction module

164 is to use the intra prediction mode of another PU to determine the intra prediction

WO 2013/067158 PCT/US2012/063027
31

mode of the current PU. For example, it may be probable that the intra prediction mode
of the current PU is the same as the intra prediction mode of a neighboring PU. In other
words, the intra prediction mode of the neighboring PU may be the most probable mode
for the current PU. Hence, in this example, the bitstream may include a small syntax
element that indicates that the intra prediction mode of the PU is the same as the intra
prediction mode of the neighboring PU. Intra prediction module 164 may then use the
intra prediction mode to generate prediction data (e.g., predicted samples) for the PU
based on the video blocks of spatially neighboring PUs.

[0127] Reconstruction module 158 may use the residual video blocks associated with
TUs of a CU and the predicted video blocks of the PUs of the CU, i.e., either intra-
prediction data or inter-prediction data, as applicable, to reconstruct the video block of
the CU. Thus, video decoder 30 may generate a predicted video block and a residual
video block based on syntax elements in the bitstream and may generate a video block
based on the predicted video block and the residual video block.

[0128] After reconstruction module 158 reconstructs the video block of the CU, filter
module 159 may perform a deblocking operation to reduce blocking artifacts associated
with the CU. After filter module 159 performs a deblocking operation to reduce
blocking artifacts associated with the CU, video decoder 30 may store the video block
of the CU in decoded picture buffer 160. Decoded picture buffer 160 may provide
reference pictures for subsequent motion compensation, intra prediction, and
presentation on a display device, such as display device 32 of FIG. 1. For instance,
video decoder 30 may perform, based on the video blocks in decoded picture buffer
160, intra prediction or inter prediction operations on PUs of other CUs.

[0129] FIG. 4 is a flowchart that illustrates an example operation 200 to generate slice
data for a slice. A video encoder, such as video encoder 20 (FIGs. 1 and 2), may
perform operation 200. The example of FIG. 4 is merely one example. Other example
operations may generate slice data in other ways.

[0130] After the video encoder starts operation 200, the video encoder may initialize a
treeblock address such that the treeblock address identifies an initial treeblock of a
current slice (202). The current slice may be a slice that the video encoder is currently
encoding. The initial treeblock of the current slice may be the first treeblock associated
with the current slice according to a treeblock coding order for the current picture. For
ease of explanation, this disclosure may refer to the treeblock identified by the treeblock

address as the current treeblock.

WO 2013/067158 PCT/US2012/063027
32

[0131] The video encoder may append syntax elements for the current treeblock to the
slice data of a coded slice NAL unit for the current slice (204). The syntax elements for
the current treeblock may include syntax elements in the quadtree of the current
treeblock. Syntax elements in the quadtree of the current treeblock may include syntax
elements that indicate intra prediction modes, motion information, syntax elements that
indicate transform coefficient levels, and so on.

[0132] Furthermore, the video encoder may determine whether there is more data in the
current slice (206). There may be more data in the current slice if the treeblock
indicated by the treeblock address is within the current slice. In response to determining
that there is no more data in the current slice (“NO” of 206), the video encoder may end
operation 200 because the video encoder has added all of the necessary syntax elements
to the slice data.

[0133] The video encoder may determine whether there is more data in the current slice
in various ways. For example, the video encoder may invoke a function “coding_tree(
)” to output the syntax elements for a treeblock. In this example, the function
“coding_tree()” may return a “moreDataFlag” that indicates whether there is more
data in the current slice.

[0134] In response to determining that there is more data associated with the current
slice (““YES” of 206), the video encoder may determine whether tiles of the current
picture are independent and whether the next treeblock of the current slice is in a
different tile than the current treeblock of the current slice (208). As described above,
the tiles of a picture may be independent if in-picture prediction (e.g., intra prediction,
inter prediction using data in the current picture, and CABAC context selection based
on data from other tiles of the current picture) is prohibited. The video encoder may
determine whether the tiles of the current picture are independent in various ways. For
example, a sequence parameter set associated with the current picture may include a
syntax element “tile_boundary independence idc.” In this example, if

“tile_boundary independence idc” is equal to 0, the tiles of the current picture are not
independent and in-picture prediction across tile boundaries is allowed. If
“tile_boundary independence idc” is equal to 0, in-picture prediction across slice
boundaries may still be prohibited. If “tile_boundary independence idc” is equal to 1,
the tiles of the current picture are independent and in-picture prediction across tile

boundaries is not allowed.

WO 2013/067158 PCT/US2012/063027
33

[0135] The video encoder may determine in various ways whether the next treeblock of
the current slice is in a different tile than the current treeblock of the current slice. For
example, the video encoder may determine the treeblock address of the next treeblock
of the current slice. In this example, the video encoder may invoke a function
“NewTile(...)” that takes the treeblock address of the next treeblock as a parameter and
returns a value “newTileFlag” that indicates whether the next treeblock is in a different
tile than the current treeblock.

[0136] If the tiles of the current picture are not independent or the next treeblock is not
in a different tile than the current treeblock (“NO” of 208), the video encoder may
determine whether the current picture is being encoded using WPP and the next
treeblock of the current slice is in a different WPP wave than the current treeblock of
the current slice (210). The video encoder may determine in various ways whether the
next treeblock of the current slice is in a different WPP wave than the current treeblock
of the current slice. For example, the video encoder may determine the treeblock
address of the next treeblock of the current slice. In this example, the video encoder
may invoke a function “NewWave(...)” that takes the treeblock address of the next
treeblock as a parameter and returns a value “newWaveFlag” that indicates whether the
next treeblock is in a different WPP wave than the current treeblock.

[0137] In response to determining that the current picture is being encoded using WPP
and the next treeblock is in a different WPP wave than the current treeblock (“YES” of
210) or in response to determining that the tiles of the current picture are independent
and the next treeblock is in a different tile than the current treeblock (“YES” of 208), the
video encoder may determine whether the current segment is byte aligned (212). In
other words, the video encoder may determine whether the current segment ends on a
byte boundary. The current segment is the segment associated with the picture partition
(e.g., tile or WPP wave) with which the current treeblock is associated. In response to
determining that the current segment is not byte aligned (“NO” of 212), the video
encoder may append a padding bit to the end of the current segment (214). The padding
bit may have various values. For example, the padding bit may always have a value
equal to 1. In other examples, the padding bit may always have a value equal to 0.
[0138] After appending the padding bit to the end of the current segment, the video
encoder may again determine whether the current segment is byte aligned (212). In this
way, the video encoder may continue appending padding bits to the end of the slice data

until the current segment is byte aligned.

WO 2013/067158 PCT/US2012/063027
34

[0139] In response to determining that the slice data is byte aligned (“YES” of 212), the
video encoder may update the treeblock address (216). The video encoder may update
the treeblock address such that the treeblock address indicates the next treeblock
according to a treeblock coding order of the current picture. For instance, when the
video encoder updates the treeblock address, the treeblock address may identify a
treeblock to the right of the treeblock previously indicated by the treeblock address.
FIG. 7, described in detail below, is a conceptual diagram that illustrates an example
treeblock coding order for a picture that is partitioned into multiple tiles.

[0140] After updating the treeblock address, the video encoder may determine whether
there is more data in the current slice (218). In response to determining that there is
more data in the current slice (“YES” of 218) or in response to determining that the
current picture is not being encoded using WPP and the next treeblock is not in a
different tile than the current treeblock (“NO” of 210), the video encoder may append
the syntax elements for the current treeblock to the slice data (204). In this way, the
video encoder may append the syntax elements for each treeblock of the current slice to
the slice data and may ensure that segments associated with different picture partitions
are padded such that the segments begin at byte boundaries.

[0141] In response to determining that there is no more data in the current slice (“NO”
of 218), the video encoder may end operation 200 because the video encoder may have
appended all of the syntax elements of the current slice to the slice data.

[0142] FIG. 5 is a flowchart that illustrates an example operation 250 to decode a coded
slice NAL unit. A video decoder, such as video decoder 30 (FIGs. 1 and 3), may
perform operation 250. The example of FIG. 5 is merely one example. Other example
operations may perform other operations to decode coded slice NAL units.

[0143] In the example of FIG. 5, the video decoder may store a coded slice NAL unit in
byte addressed memory (252). The coded slice NAL unit may include a slice header
and slice data. The slice data may include a plurality of segments. One or more of the
segments may be padded such that each segment begins at a byte boundary.

[0144] After storing the coded slice NAL unit in memory, the video decoder may
identify positions of the segments within the slice data of the coded slice NAL unit
(254). The video decoder may identify the positions of the segments in various ways.
For example, the video decoder may identify the positions of the segments based on
syntax elements in the slice header of the coded slice NAL unit that indicate byte offsets

of the seements. In this example, the slice header may not include a byte offset for the

WO 2013/067158 PCT/US2012/063027
35

first segment of the slice data because the position of the first segment may immediately
follow the end of the slice header. In another example, the video decoder may identify
the positions of the segments based on entry point markers in the slice data. The entry
point markers may be values disposed between the segments.

[0145] After identifying the positions of the segments within the slice data, the video
decoder may assign two or more of the segments to two or more different decoding
threads (256). Each of the decoding threads may parse the syntax elements of coded
treeblocks in the segment assigned to the decoding thread and reconstruct video blocks
for the corresponding treeblocks as described above.

[0146] FIG. 6 is a conceptual diagram that illustrates wavefront parallel processing. As
described above, a picture may be partitioned into video blocks, each of which is
associated a treeblock. FIG. 6 illustrates the video blocks associated with the treeblocks
as a grid of white squares. The picture includes treeblock rows 300A-300E
(collectively, “treeblock rows 3007).

[0147] A first thread may be coding treeblocks in treeblock row 300A. Concurrently,
other threads may be coding treeblocks in treeblock rows 300B, 300C, and 300D. In the
example of FIG. 6, the first thread is currently coding a treeblock 302A, a second thread
is currently coding a treeblock 302B, a third thread is currently coding a treeblock
302C, and a fourth thread is currently coding a treeblock 302D. This disclosure may
refer to treeblocks 302A, 302B, 302C, and 302D collectively as “current treeblocks
302.” Because the video coder may begin coding a treeblock row after more than two
treeblocks of an immediately higher row have been coded, current treeblocks 302 are
horizontally displaced from each other by the widths of two treeblocks.

[0148] In the example of FIG. 6, the threads may use data from treeblocks indicated by
the thick gray arrows when performing intra prediction or inter prediction for CUs in
current treeblocks 302. (When the threads perform inter prediction for CUs, the threads
may also use data from one or more reference frames.) When a thread codes a given
treeblock, the thread may select one or more CABAC contexts based on information
associated with previously coded treeblocks. The thread may use the one or more
CABAC contexts to perform CABAC coding on syntax elements associated with the
first CU of the given treeblock. If the given treeblock is not the leftmost treeblock of a
row, the thread may select the one or more CABAC contexts based on information
associated with a last CU of the treeblock to the left of the given treeblock. If the given

treeblock is the leftmost treeblock of a row, the thread may select the one or more

WO 2013/067158 PCT/US2012/063027
36

CABAC contexts based on information associated with a last CU of a treeblock that is
above and two treeblocks right of the given treeblock. The threads may use data from
the last CUs of the treeblocks indicated by the thin black arrows to select CABAC
contexts for the first CUs of current treeblocks 302.

[0149] FIG. 7 is a conceptual diagram that illustrates an example treeblock coding order
for a picture 350 that is partitioned into multiple tiles 352A, 352B, and 352C. Each
square white block in picture 350 represents a video block associated with a treeblock.
The thick vertical dashed lines indicate example vertical tile boundaries. The thick gray
line indicates an example slice boundary.

[0150] The numbers in the video blocks indicate positions of the corresponding
treeblocks (LCUs) in a treeblock coding order for picture 350. As illustrated in the
example of FIG. 7, each of the treeblocks in the leftmost tile 352A occurs in the
treeblock coding order before any treeblock in the middle tile 352B. Each of the
treeblocks in the middle tile 352B occurs in the treeblock coding order before any
treeblock in the rightmost tile 352C. Within each of tiles 352A, 352B, and 352C, the
treeblocks are coded according to a raster scan order.

[0151] A video encoder may generate two coded slice NAL units for picture 350. The
first coded slice NAL unit may be associated with the left slice of picture 350. The first
coded slice NAL unit may include encoded representations of treeblocks 1-23. The
slice data of the first coded slice NAL unit may include two segments. The first
segment may include the encoded representations of treeblocks 1-15. The second
segment may include the encoded representations of treeblocks 16-30. In accordance
with the techniques of this disclosure, the first segment may be padded such that the
second segment begins at a byte boundary.

[0152] A second coded slice NAL unit may be associated with the right slice of picture
350. The second coded slice NAL unit may include encoded representations of
treeblocks 24-45. The slice data of the second coded slice NAL unit may include two
segments. The first segment may include the encoded representations of treeblocks 24-
30. The second segment may include the encoded representations of treeblocks 31-45.
The first segment may be padded such that the second segment begins at a byte
boundary.

[0153] FIG. 8 is a conceptual diagram that illustrates an example coded slice NAL unit
400. As illustrated in the example of FIG. &, coded slice NAL unit 400 includes a slice
header 402 and slice data 404. Slice data 404 includes a first segment 406 and a second

WO 2013/067158 PCT/US2012/063027
37

segment 408. Segment 406 includes coded treeblocks 410A-410N and padding data
412. Segment 408 includes coded treeblocks 414A-414N.

[0154] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0155] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

2012332417 26 Jun 2015

38

[0156] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable
for implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0157] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0158] Various examples have been described. These and other examples are within
the scope of the following claims.

[0159] It will be understood that the term “comprise” and any of its derivatives (eg
comprises, comprising) as used in this specification is to be taken to be inclusive of
features to which it refers, and is not meant to exclude the presence of any additional
features unless otherwise stated or implied.

[0160] The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement of any form of suggestion that such prior art forms part of the

common general knowledge.

2012332417 26 Jun 2015

39

WHAT IS CLAIMED IS:

l. A method for encoding video data, the method including:
generating a coded slice network abstraction layer (NAL) unit that includes
encoded representations of video blocks that are associated with a slice of the picture,
wherein the picture is divided into a plurality of slices; and
encoding the picture,
wherein the method further includes:
dividing the picture into a plurality of wavefront parallel processing
(WPP) waves, each of the WPP waves corresponding to a different row of video
blocks in the picture, wherein the encoded representations of the video blocks
are grouped within the coded slice NAL unit into segments associated with
different ones of the WPP waves; and
padding one or more of the segments, such that each of the segments
begins on a byte boundary,

wherein the picture is encoded using WPP.

2. The method of claim 1, wherein generating the coded slice NAL unit includes

generating a slice header that indicates entry points for one or more of the segments.

3. The method of claim 2, wherein the entry points for the segments indicate byte

offsets of the segments.

4. The method of any one of claims 1 to 3, further including generating a parameter
set associated with the picture, the parameter set including a flag that has a first value,
the first value indicating that the one or more of the segments are padded such that each
of the segments begins at a byte boundary, and

wherein when the flag has a second value, the segments may or may not begin at

byte boundaries.

5. The method of any one of claims 1 to 4,

wherein the segments include a given segment; and

2012332417 26 Jun 2015

40

wherein generating the coded slice NAL unit includes performing a padding
operation that appends bits to the given segment if a next video block is inside the slice

and is associated with a different WPP wave than the given segment.

6. A method of decoding video data, the method including:

storing a coded slice network abstraction layer (NAL) unit that includes encoded
representations of video blocks associated with a slice of a picture, the picture
partitioned into a plurality wavefront parallel processing (WPP) waves, each of the WPP
waves corresponding to a different row of video blocks in the picture, the encoded
representations of the video blocks grouped into segments associated with different ones
of the WPP waves, wherein one or more of the segments are padded such that each of
the segments begins at a byte boundary; and

decoding the picture using WPP.

7. The method of claim 6, wherein the coded slice NAL unit includes a slice header

that indicates entry points for one or more of the segments.

8. The method of claim 7, wherein the entry points for the segments indicate byte

offsets of the segments.

9. The method of any one of claims 6 to 8, further including storing a parameter set
associated with the picture, the parameter set including a flag that has a first value, the
first value indicating that the one or more of the segments are padded such that each of
the segments begin at a byte boundary, and

wherein when the flag has a second value, the segments may or may not begin at

byte boundaries.

10. The method of any one of claims 6 to 9, wherein decoding the picture includes
decoding the encoded representations of the video blocks in two or more of the

segments in parallel.

11. A video encoding device including means for carrying out a method according

to any one of claims 1 to 5.

2012332417 26 Jun 2015

41

12. A video decoding device including means for carrying out a method according

to any one of claims 6 to 10.

13. A computer program product that includes one or more computer-readable
storage media that store instructions that, when executed by one or more processors,

configure a device to carry out a method according to any one of claims 1 to 9.

WO 2013/067158 PCT/US2012/063027

Page 1/8
/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT
INTERFACE] > INPUT INTERFACE
28
z)
16

FIG. 1

PCT/US2012/063027

WO 2013/067158

Page 2/8

A ¢ 9ld
YL
¥dddna || 37NAon
3¥NLIId NOILOIAT¥d
WvY3INLSLIE omowomo VULNI
[
37NAon
m_m.__m__wo._a_u"__\,_ NOILVSNIdNOD
NOILOW
9Ll 801 oL
37NAOn 37Naon 37NAOn 37Naon
>
ONIGOONT | VA" |NOILVZILNVND INOASNVYL NOILVINILS3
AdOMINS ISHIANI ISHIANI - NOILOW
A
“ < < 37NAOW
'« | NOILOIaTNd ¥3LNI
37NAOW NOILOIAT¥Nd
— — 201
901 vor
3NdON }«— 3Indon | + V.1va 03aIA—
NOILVZILNVNO INNOASNVYL
0¢C

d43AOIN3 O3AIA

PCT/US2012/063027

WO 2013/067158

Page 3/8

€ 'Old

-
O3dIA
a3aoo3da

091
d344ng
FANLOId

d3aod3a

651
37NAOCN
l-ENRIE

9Gl1 ¥S1
< 31NAOW 37NAOW
INNOASNVYL NOILVZILNVNO
asi ISYIANI ISYIANI
A
o1
37NAOW
NOILOIQ3¥d
VLN
291 05T
3I1NAOW . SNAOW
NOILVSNIdINOD ONI093a
NOILOW AdOYLNT
k4%
3I1NAOW _
NOILOIQ3Nd oe

3¥3d0903a O3dlA

WO 2013/067158 PCT/US2012/063027

Page 4/8
200
(" START) e
v 202
IDENTIFY INITIAL TREEBLOCK OF
CURRENT SLICE
v 204

APPEND SYNTAX ELEMENTS FOR

CURRENT TREEBLOCK TO SLICE DATA
v 206
NO
{ MORE DATA? >
v YES _-208
INDEPENDENT TILES YES
AND DIFFERENT TILE?
v NO 210
CURRENT PICTURE ENCODED No |
USING WPP AND DIFFERENT WAVE?
¢ YES 212
YE
% BYTE ALIGNED? ><
y NO _214
APPEND PADDING BIT TO CURRENT

SEGMENT

_216
> UPDATE TREEBLOCK ADDRESS
v 218
YES

< MORE DATA? N

+ NO

»(END)

FIG. 4

WO 2013/067158

PCT/US2012/063027
Page 5/8

e
(START)
_ 252
STORE CODED SLICE NAL UNIT
v 254
IDENTIFY POSITIONS OF SEGMENTS WITHIN
SLICE DATA
v 256
ASSIGN SEGMENTS TO DECODING THREADS

y
(END)

FIG. 5

WO 2013/067158 PCT/US2012/063027

Page 6/8
< m (&} (] w
o o o o o
o (=] o (=] (=]
(32} (32} (32} (32} (32}

NN N NN

FIG. 6

WO 2013/067158 PCT/US2012/063027
Page 7/8

350
/

352C
/

352B
/

352A
/

FIG.7

PCT/US2012/063027

WO 2013/067158

Page 8/8

8 "OId

1457 44574
MO0T1933YL | @ @ @ | MO01933uL
a3aod a3aod

NOLY /1157
MO0T193 L | @ @ @ | 001933l
a3aod da3aod

t{117
y3dvaH
301718

80V~ 90V~
va\\\

V'------"------".------'.------'.'------.'------.'.------'.-------.'.

vOv

oov\\u‘

