Also disclosed are a method of its preparation and use, as well as a pharmaceutical composition containing the same.

Abstract: A MD-2:TLR4 complex agonist compound is disclosed whose structure corresponds to Formula (I), as defined within. Also disclosed are a method of its preparation and use, as well as a pharmaceutical composition containing the same.
NEOSEPTINS: SMALL MOLECULE ADJUVANTS

Description

GOVERNMENTAL SUPPORT

The present invention was made with governmental support pursuant to grant AI082657 from the National Institutes of Health/National Institute of Allergy and Infectious Diseases. The government has certain rights in the invention.

TECHNICAL FIELD

The present invention contemplates a small molecule adjuvant compound, and particularly a group of well-defined compounds that induce the secretion of TNF-α in macrophage preparations and thereby mimic some of the properties of LPS without the structural diversity or toxicity exhibited by LPS.

BACKGROUND ART

The innate immune system is the first line of defense against infection and is thought to primarily be mediated by phagocytic immune cells such as macrophages and dendritic cells. These cells recognize microorganisms via a limited number of germline-encoded pattern recognition receptors (PRRs) that recognize microbial components known as pathogen-associated molecular patterns, which are essential for the survival of the microorganism and, therefore, difficult for the microorganism to alter.

Several classes of PRRs, including cell surface-located Toll-like receptors (TLRs) and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells,
triggering intracellular signaling cascades that rapidly induce the expression of a variety of inflammatory cytokines that initiate a variety of overlapping immune responses. One of the best known PRRs is TLR4, which recognizes the major Gram-negative bacterial surface component lipopolysaccharide (LPS) [Akira et al., Cell 124:783-801 (2006)]. See also, Beutler, Blood, 113:1399-1407 (2009), and Moresco et al., Curr. Biol. 21(13):R488-93, (2011) and the citations therein for a historical perspective of the research done in finding TLRs and determining the function of TLRs.

Most of the TLRs are functional multimers. Some are heteromeric. Some appear to be homomeric, and in some cases, non-TLR subunits are part of the signaling complex. For example, TLR4 seems not to detect LPS directly, but only as a complex with MD-2, a small secreted protein that is tightly associated with the TLR4 ectodomain. Crystallographic analysis has shown the nature of the interaction between specific TLR ligands and the Toll-like receptors, including interactions between LPS and the MD-2:TLR4 complex. Beutler, Blood 113:1399-1407 (2009).

Studies on TLR4 signaling in monocytes, macrophages, and dendritic cells have revealed that engagement of the MD-2:TLR4 complex (hereinafter just "TLR4", for ease in expression) by LPS triggers a signaling cascade involving several intracytoplasmic and nuclear transcriptional factors. TLR4 activation first engages a set of adaptor family members that link TLR4 to the serine/threonine kinases. These kinases mediate phosphorylation and ubiquitination of various substrates, eventually resulting in the activation of the transcriptional factor NF-κB, which
regulates the expression of several immunomodulatory cytokines [Kawai et al., Cell Death Differ 13:816-825 (2006)].

Freund's adjuvant (mycobacteria in mineral or vegetable oils), aluminum hydroxide ("alum"), and LPS (lipopolysaccharide) have been used to augment antibody responses to co-administered proteins. In the US, only alum is approved for use in human vaccines.

Of these adjuvants, only LPS and its derived lipid A have a well-defined target--TLR4, but the toxicity of these TLR4 ligands is considerable as is their instability in vivo and they are not easily conjugated to antigens.

In work that provides a powerful paradigm for synthetic "unnatural" adjuvant discovery, we identified a new class of robust small molecule adjuvants that: (1) emerged from screening an oc-helix mimetic library, (2) act by a well-defined mechanism (TLR4 agonist), (3) are easy to produce and structurally manipulate, (4) are non-toxic, and (5) elicit improved and qualitatively different responses from LPS even though they share the same receptor. Such adjuvants may be used for co-administration or for covalently-tethered vaccination against any microbe susceptible to antibody-based protective immunization.

BRIEF SUMMARY OF THE INVENTION

The present invention contemplates a TLR4 receptor agonist compound that does not exhibit the toxicity of LPS while exhibiting activation of many similar cellular signaling pathways. A contemplated
compound corresponds in structure to Formula I, below, or its pharmaceutically acceptable salt, wherein X is 0, s, NR1, C4, where R1 is H, or C1-C4 hydrocarbyl, or X is absent and two atoms link the depicted phenyl rings. Y is 0, s, NR2 CH2, where R2 is H, or a C1-C4 hydrocarbyl group. R3 is a C1-C9 hydrocarbyl group. R4 and R5 are hydrido or hydroxyl, but only one of R4 and R5 is hydrido, or both of R4 and R5 are hydroxyl. W is a ring structure that contains one or two rings and includes 5 to 12 atoms in the ring structure. That ring structure W optionally contains: a) 1, 2, 3 or 4 heteroatoms that are independently oxygen, nitrogen or sulfur, and b) one or more substituent groups bonded to one or more ring atoms, in which the one or more substituents contain a total of up to 8 atoms that are selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof. A dotted line (- - - -) represents one or more optional double bonds.
In separate preferences as to a compound of Formula I, a) X is absent or 0; b) Y is CH2; c) ring structure W contains up to 10 atoms in the ring structure; and d) W is a single ring structure.

One preferred compound of Formula I is a compound of Formula II, below, its pharmaceutically acceptable salt. In Formula II, A, B, E, G, L and M of ring system W are carbon (C) or nitrogen (N), with no more than three of A, B, E, G, L and M being nitrogen. In addition, ring system W optionally contains one or more substituent groups bonded to one or more ring atoms, in which the one or more substituents contain a total of up to 8 atoms, selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof. X is 0, S, NR, CH2, where R1 is H, or C1-C4 hydrocarbyl, or X is absent and two atoms link the depicted phenyl rings. R3 is a C1-C6 hydrocarbyl group.

In further separate preferences as to a compound of Formula II, a) no more than two of A, B, E, G, L and M are nitrogen; X is absent or 0; b) R3
is a bulky hydrocarbyl group containing 4-6 carbon atoms; and c) ring structure \(W \) contains a substituent selected from the group consisting of azido, fluoro, methyl, methoxy and trifluoromethyl groups, and that substituent is present at 4-position of a 6-membered ring and the 3-position of a 5-membered ring counting from the position of attachment to the remainder of the molecule.

Particularly preferred compounds and salts of Formula II are compounds and pharmaceutically acceptable salts of a compound of Formula III or Formula IV, below, where \(A, B, E, G, L \) and \(M \) are carbon (C) or nitrogen (N) atoms, with no more than two of \(A, B, E, G, L \) and \(M \) being nitrogen, and \(\text{R}^3 \) is a bulky hydrocarbyl group containing 4-6 carbon atoms. In a compound of Formula III and Formula IV, \(\text{R}^3 \) is preferably a tert-butyl group, a neopentyl group, a cyclopentyl group or cyclohexyl group, and separately, \(W \) is preferably phenyl.

Particularly preferred compounds of Formula III and Formula IV are shown below and are named neoseptin-3 and neoseptin-4, respectively.
A pharmaceutical composition that contains an effective amount of a compound of Formula I or a pharmaceutically acceptable salt thereof dissolved or dispersed in a physiologically acceptable carrier is also contemplated.

An improved method of vaccination is also contemplated. Here, mammalian cells in need of vaccination are contacted with an immunizing composition that comprises an effective amount of an immunogen and an effective amount of an adjuvant. The improvement in this method comprises use of a compound or a pharmaceutically acceptable compound salt of Formula I as the adjuvant.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings forming a portion of this disclosure,

Fig. 1 in two parts as Fig. 1A and Fig. 1B are bar graphs that illustrate an assay of normalized TNF-a production in macrophages from mice containing disabling germline mutations or knockouts of genes encoding TLRs and downstream signaling proteins using 5 ng/ml of LPS or 50 mM neoseptin-3.

Fig. 2 is a graph that compares the activity of neosepin-3 and LPS and illustrates that neoseptin-3 much more effectively stimulates a type I
interferon response resulting in the release of INF-β (but not INF-α), representing a potential advantage to its use as an adjuvant.

Fig. 3, in two panels as Fig. 3A and Fig. 3B, are graphs that illustrate ELIZA results for the adjuvant effect of neoseptin-3. In Fig. 3A, adjuvants were mixed with ovalbumin (OVA, 100 µg) and injected intramuscularly into C57BL/6J mice at the indicated doses. Two immunizations were administered with a booster given at 7 days. In Fig. 3B, LPS (0.2 mg/kg), neoseptin-3 (250 mg/kg) or monophosphoryl lipid A from Salmonella minnesota R595 (MPLA) (0.2 mg/kg) were mixed with ovalbumin (OVA, 0, 1, 10, and 100 µg) Serum levels of OVA-specific IgG were measured (ELISA) on indicated days post-immunization.

Fig. 4 is a graph whose bars illustrate the stimulation of TNF-a (pg/mL) in a mouse peritoneal macrophage agonist assay by various potential TLR-4 agonists, including LPS at 5 ng/mL, neoseptin-3 and several of its analogues that are substituted with various groups at the carboxyl group as are identified by their alphanumeric identifiers and are present in the assay at 50 µM.

Fig. 5 is a graph similar to that of Fig. 4 in which the bars represent LPS (5 ng/mL), neoseptin-3 (twice) and further neoseptin-3 analogues (50 µM) that are substituted with differing substituents at the alpha-carbon atom as are identified by their alphanumeric identifiers.

Fig. 6 is a graph similar to that of Fig. 4 in which the bars represent LPS (5 ng/mL), neoseptin-4, neoseptin-3 and further neoseptin-3 analogues (50 µM) that are substituted with differing linker groups
between the phenolic and aniline ring portions as are identified by their alphanumeric identifiers.

Fig. 7 is a graph similar to that of Fig. 4 in which the bars represent LPS (5 ng/mL), neoseptin-3 and further neoseptin-3 analogues (50 µM) whose aniline ring amino group is present at differing positions, with and without further nitrogen-bonded substituents as are identified by their alphanumeric identifiers.

Fig. 8 is a graph similar to that of Fig. 4 in which the bars represent LPS (5 ng/mL), neoseptin-3 and further neoseptin-3 analogues (50 µM) whose phenolic ring hydroxyl group is present at differing positions as are identified by their alphanumeric identifiers.

Fig. 9 is a graph similar to Fig. 3 showing anti-olvalbumin titers at 14 days post immunization using adjuvants with ovalbumin (OVA, 100 µg) and injected intramuscularly into C57BL/6J mice. The adjuvants used were neoseptin-3, LPS, MPLA, and alum in the amounts shown.

Fig. 10 shows the results of an isothermal titration calorimetry study of the binding of 20 µM neoseptin-3 with 350 µM MD-2. The Kd of neoseptin-3 binding to MD-2 is 11.7 µM, whereas MPLA binds to MD-2 with a Kd of 14.4 µM.

Fig. 11, in three panels as Figs. 11A, 11-B and 11-C, provides a structural formula for particularly preferred embodiments of the invention in which Fig 11A shows a formula for such an embodiment divided by a line through the amide bond terminated by arrows to 11B and 11C, which Fig. 11B and Fig. 11C provide structure activity relationships.
determined to date for the preferred embodiments encompassed by compounds within the structural formula of Fig. 11A.

The present invention has several benefits and advantages. One benefit is that discovery of molecularly well defined and easily structurally manipulated adjuvants to replace the ill-defined Freund's adjuvant or alum (aluminum hydroxide) and toxic LPS is a major advance.

An advantage is that an adjuvant developed can be useful in the prevention of premature death by infections. The small molecules disclosed such as neoseptin-3 are more promising adjuvant candidates than the natural ligands (LPS or lipid A), being easier to produce and structurally manipulate, and they are less toxic, eliciting improved and qualitatively different responses than LPS or lipid A even though they share the same receptor (TLR4).

DEFINITIONS

In the context of the present invention and the associated claims, the following terms have the following meanings:

The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

The word "antigen" has been used historically to designate an entity that is bound by an antibody, and also to designate the entity that induces the production of the antibody. More current usage limits the meaning of antigen to that entity bound by an antibody, whereas the word "immunogen" is
used for the entity that induces antibody production. That more current usage will be followed herein.

The words "ortho", "meta" and "para" are used in their usual manner to describe benzenoid compounds that are substituted "1-2", "1-3" and "1-4", respectively. Those same words are also used herein as a convenience to describe those same substitution patterns in aliphatic compounds.

The word "hydrocarbyl" is used herein as a short hand term for a non-aromatic group that includes straight and branched chain aliphatic as well as alicyclic groups or radicals that contain only carbon and hydrogen. Thus, alkyl, alkenyl and alkynyl groups are contemplated, whereas aromatic hydrocarbons such as phenyl and naphthyl groups, which strictly speaking are also hydrocarbyl groups, are referred to herein as aryl groups or radicals, as discussed hereinafter.

Where a specific aliphatic hydrocarbyl substituent group is intended, that group is recited; i.e., C_1-C_4 alkyl, methyl or tert-butyl. Exemplary hydrocarbyl groups contain a chain of 1 to 4 carbon atoms, and preferably 1 or 2 carbon atoms.

A particularly preferred hydrocarbyl group is an alkyl group. As a consequence, a generalized, but more preferred substituent can be recited by replacing the descriptor "hydrocarbyl" with "alkyl" in any of the substituent groups enumerated herein.

Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl. Examples of suitable alkenyl radicals include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1,4-butadienyl, 1-butenyl, 2-butenyl, and 3-butenyl. Examples of alkynyl radicals include
ethynyl, 2-propynyl, 1-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, and 1-methyl-2-propynyl.

As a skilled worker will understand, a substituent that cannot exist such as a C_alkenyl group is not intended to be encompassed by the word "hydrocarbyl", although such substituents with two or more carbon atoms are intended.

Usual chemical suffix nomenclature is followed when using the word "hydrocarbyl" except that the usual practice of removing the terminal "yl" and adding an appropriate suffix is not always followed because of the possible similarity of a resulting name to one or more substituents. Thus, a hydrocarbyl ether is referred to as a "hydrocarbyloxy" group rather than a "hydrocarboxy" group as may possibly be more proper when following the usual rules of chemical nomenclature. Illustrative hydrocarbyloxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, allyloxy, n-butoxy, iso-butoxy, sec-butoxy, and tert-butoxy groups.

The term "ring structure" is used herein to mean a cyclic substituent that can contain a single ring such as an imidazolyl or phenyl group, or two fused rings as are present in a naphthyl, purinyl, or decalinyl group, or two linked rings as are present in a biphenyl group.

The term "cyclohydrocarbyl" or "carbocyclic", alone or in combination, means a cyclic hydrocarbyl radical (or ring) that contains 5 to about 12 carbon atoms, preferably about 5 to about 10 carbon atoms. Examples of such cyclohydrocarbyl radicals include cyclopropyl, cyclobutyl, cyclopentenyl, cyclohexyl, cycloheptynyl, 1- and 2-decalinyl and the like.
The term "aryl", alone or in combination, means an aromatic ring system. Such a ring system includes a phenyl, naphthyl and biphenyl ring system.

The heterocyclyl (heterocyclo) is a single 5- or 6-membered ring or a fused or linked 5,5-, 5,6-, 6,6-ring system that contains 1 to 4 hetero atoms (non-carbons) in the ring that independently are nitrogen, oxygen or sulfur atoms in a saturated or partially unsaturated ring. Examples of such heterocyclyl groups are pyrrolidinyl, piperidinyl, piperazinyl, morpholiny1, thiamorpholinyl, oxathiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, pyrazolyl, 1,2,4-oxadiazinyl and azepinyl groups and a bipiperidinyl group.

A "heteroaryl" group is an aromatic heterocyclic ring that preferably contains one, or two, or three or four atoms in the ring other than carbon. Those heteroatoms can independently be nitrogen, sulfur or oxygen. A heteroaryl group can contain a single 5- or 6-membered ring or a fused ring system having two 6-membered rings or a 5- and a 6-membered ring, or a linked 5,5-, 5,6- or 6,6-membered rings as in a bipyridinyl group. Exemplary additional heteroaryl groups include 6-membered ring substituents such as pyridyl, pyrazyl, pyrimidinyl, and pyridazinyl; 5-membered ring substituents such as 1,3,5-, 1,2,4- or 1,2,3-triazinyl, imidazyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl and isothiazolyl groups; 6-/5-membered fused ring substituents such as benzothiof uranyl, isobenzothiof uranyl, benzisoxazolyl, benzoxazolyl, purinyl and anthranilyl groups; and 6-/6-membered fused rings such as 1,2-, 1,4-, 2,3- and 2,1-
benzopyronyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and 1,4-benzoxazinyl groups.

Each of the four ring systems discussed above is encompassed by the ring system W. Each of those ring systems can optionally carry one or more substituent groups that contain a total of up to 8 atoms selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof. Hydrogens are not counted in the total number of atoms present in the one or more substituents.

DETAILED DESCRIPTION OF THE INVENTION

The present invention contemplates a Compound of Formula I or a pharmaceutically acceptable salt thereof, a pharmaceutical composition containing an effective amount of such a compound or its salt, and a method of using a compound or its pharmaceutically acceptable salt. More particularly, a contemplated compound is sometimes referred to herein as a neoseptin and corresponds in structure to Formula I, below.
In a Compound of Formula I, X is 0, S, NR^, CH2, where R^1 is H, or C1-C4 hydrocarbyl, or X is absent and two atoms link the depicted phenyl rings. Preferably, X is absent or 0.

Y is 0, S, NR^2, CH2, where R^2 is H, or a C1-C4 hydrocarbyl group. Preferably, Y is preferably CH2. R^3 is a C1-C9 hydrocarbyl group. R^4 and R^5 are hydrido or hydroxyl but at least one of R^4 and R^5 is hydroxyl, or both of R^4 and R^5 are hydroxyl.

W is a ring structure that contains one or two rings and includes 5 to 12 atoms in the ring structure, and preferably 5 to 10 atoms. W can Optionally contain: a) 1, 2, 3 or 4 heteroatoms in the ring structure that are independently oxygen, nitrogen or sulfur, and b) one or more substituent groups bonded to one or more ring atoms, in which the one or more substituents contain a total of up to 8 atoms, and preferably up to 6 atoms, selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof. Preferred substituents include azido, fluoro, methyl, methoxy and trifluoromethyl groups. Where W is a single ring structure, it is preferred that a substituent be in the 4-position of a 6-membered ring and the 3-position of a 5-membered ring counting from the position of attachment to the remainder of the molecule. For example, counting from Y in Formula I.

A dotted line (- - - -) represents one or more optional double bonds.

A ring system W is preferably aromatic or heteroaromatic, as compared to being cyclohydrocarbyl or heterocyclo, so that the optional double bonds are present. It is also preferred that up to three
hetero atoms are present and that those heteroatoms are each nitrogen. It is more preferred that there are one or two nitrogen atoms in ring system W.

Looking broadly, illustrative W ring systems include cyclopentenyl, cyclohexyl, cycloheptynyl, cyclooctyl, 1- and 2-decalinyl, phenyl, naphthyl biphenyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiamorpholinyl, oxathiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, pyrazolyl, 1,2,4-oxadiazinyl, azepinyl, bipyridinyl, pyridyl, pyrazyl, pyrimidinyl, pyridazinyl, 1,3,5- or 1,2,3-triazinyl, imidazyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl, isothiazolyl, benzothiofuranyl, isobenzothiofuranyl, benzisoxazolyl, benzoazolyl, purinyl, anthraniloyl, 1,2-, 1,4-, 2,3- and 2,1-benzopyronyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and 1,4-benzoazinyl groups.

Single ring-containing 6- or 5-membered ring W ring systems are preferred and include phenyl, pyridyl, pyrazyl, pyrimidinyl, pyridazinyl, imidazyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl and isothiazolyl groups. Phenyl, pyridyl, pyrazyl, pyrimidinyl, imidazyl and furanyl groups are more preferred, with phenyl being presently particularly preferred.

An R³ is a C₁₋₆ hydrocarbyl group.

Preferably, R³ is a bulky hydrocarbyl group containing 4-6 carbon atoms such as a tert-butyl (t-Bu) group, a neopentyl group or a cyclopentyl or
cyclohexyl group. R^3 is more preferably a tert-butyl group.

Following the above-described preferences, one preferred Compound of Formula I is a Compound of Formula II, below:

\[
\begin{array}{c}
\text{NH}_2 \\
| \\
\text{X} \\
\text{H} \\
\text{N} \\
\text{CO} \\
\text{R}^2\text{O}_2\text{C}
\end{array}
\]

wherein A, B, E, G, L and M are carbon (C) or nitrogen (N), with no more than three being nitrogen. As noted above, it is preferred that all of A, B, E, G, L and M are carbon so that W is a phenyl group. In a Compound of Formula II, X and R^3 are as previously defined, with R^3 preferably being a bulky hydrocarbyl group containing up 4-6 carbon atoms.

Particularly preferred Compounds of Formula II are those of Formula III and Formula IV, below:
In a Compound of Formula **III** and Formula **IV**, A, B, E, G, L and M are carbon (C) or nitrogen (N), with no more than two being nitrogen, and \(R^3 \) is as previously defined.

Neoseptin-3 and neoseptin-4 are particularly preferred Compounds of Formula **III** and Formula **IV**, respectively.

Neoseptin-3

Neoseptin-4

Pharmaceutical Composition and Methods

A contemplated Compound of Formula **I**, a neoseptin, can also be used in the manufacture of a medicament (pharmaceutical composition). When so used, a contemplated compound of Formula **I** is present in a TLR4 agonist-effective amount dissolved or dispersed in a pharmaceutically acceptable diluent (or carrier).

One use for such a composition is as an adjuvant for a vaccine. As such, an improved method of vaccination is contemplated in which a mammal in need of vaccination is administered an effective amount of an immunogen and an effective amount of an
Here, the improvement comprises using a Compound of Formula I or its pharmaceutically acceptable salt as the adjuvant.

For example, studies illustrated elsewhere herein, neoseptin-3 acts as a robust in vivo adjuvant or TLR4 agonist that evoked a more sustained immune response of equal or greater efficacy than LPS when co-injected with ovalbumin as immunogen by an intramuscular route. In addition, at the maximum doses capable of administration, neoseptin-3 did not display the overt toxicity that is characteristic of LPS administration when used as an adjuvant. Thus, a contemplated Compound of Formula I acts as an agonist at the TLR4 receptor in that it binds to the TLR4 receptor of a cell and triggers a response by that cell, thereby mimicking the action of LPS, without the toxic result from using LPS as an adjuvant.

A contemplated composition also typically contains pharmaceutically acceptable salts, buffers and the like excipients that collectively are referred to as pharmaceutically (or physiologically) acceptable diluents or carriers as compared to those that can be present in a composition that is not intended for pharmaceutical use, as in an in vitro assay.

A compound of the invention can be provided for use by itself, or as a pharmaceutically acceptable salt. A contemplated Compound of Formula I, an aniline, is a weak base. Parental anilinium ion has a reported pKa value of 4.6. A carboxyl group is also present in the molecule that is preferably esterified, but can be present as a salt.

Exemplary salts useful for a contemplated compound include but are not limited to the
following: sulfate, hydrochloride, hydro bromides, acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropi onate, dodecyl sulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, mesylate and undecanoate. Salts of the carboxylate group include sodium, potassium, magnesium, calcium, aluminum, ammonium, and the many substituted ammonium salts.

The reader is directed to Berge, J. Pharm. Sci. 1977 68(1):1-19 for lists of commonly used pharmaceutically acceptable acids and bases that form pharmaceutically acceptable salts with pharmaceutical compounds.

In some cases, the salts can also be used as an aid in the isolation, purification or resolution of the compounds of this invention. In such uses, the acid used and the salt prepared need not be pharmaceutically acceptable.

As is seen from the data that follow, a contemplated compound is active in in vivo and in in vitro assay studies at micromolar amounts. When used in an assay such as an in vitro assay, a contemplated compound is present in the composition in an amount that is sufficient to provide a concentration of about 10 µM to about 100 µM to contact cells to be assayed.
A contemplated pharmaceutical composition contains an effective amount of a Compound of Formula I or a pharmaceutically acceptable salt thereof dissolved or dispersed in a physiologically (pharmaceutically) acceptable carrier. In some embodiments, an adjuvant effective (TLR4 agonist effective) amount is utilized. Such a composition can be administered to mammalian cells in vitro as in a cell culture to contact those cells, or the cells can be contacted in vivo as in a living, host mammal in need.

When used as a vaccine adjuvant, a Compound of Formula I is preferably administered together with the selected immunogen. Both components are preferably present together in a single composition. However, the two ingredients can be present in separately administered compositions, and those separate compositions can be administered up to about one to about two hours apart. It is preferred when two separate compositions are administered, that they be administered as close together in time as possible.

A Compound of Formula I was illustratively administered in vivo in a weight of adjuvant per kilogram of subject animal at about 250 mg/kg. Usually, a Compound of Formula I contemplated here is administered parenterally in vivo in a weight amount per square meter of the recipient's body surface area (bsa). For adults, this amount is typically about 1 to about 20 mg/m^2 bsa, and about one-half those amounts for children.

A contemplated composition is typically administered in vivo to a subject in need thereof a plurality of times within one month, such as daily or
weekly, and can be administered over a period of several months to several years. More usually, a contemplated composition is administered a plurality of times over a course of treatment.

A contemplated pharmaceutical composition can be administered orally (perorally) or parenterally, which is preferred, in a formulation containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular (which is most preferred), intrasternal injection, or infusion techniques. Formulation of drugs is discussed in, for example, Hoover, John E., *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, Pennsylvania; 1975 and Liberman, H.A. and Lachman, L., Eds., *Pharmaceutical Dosage Forms*, Marcel Decker, New York, N.Y., 1980.

A contemplated pharmaceutical composition is preferably adapted for parenteral administration. Thus, a pharmaceutical composition is preferably in liquid form when administered, and most preferably, the liquid is an aqueous liquid, although other liquids are contemplated as discussed below, and a presently most preferred composition is an injectable preparation.

Thus, injectable preparations, for example, sterile injectable aqueous or oleaginous solutions or suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in
1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution, and isotonic sodium chloride solution, phosphate-buffered saline.

Other liquid pharmaceutical compositions include, for example, solutions suitable for parenteral administration. Sterile water solutions of a Compound of Formula I or sterile solution of a Compound of Formula I in solvents comprising water, ethanol, or propylene glycol are examples of liquid compositions suitable for parenteral administration. In some aspects, a contemplated Compound of Formula I is provided as a dry powder that is to be dissolved in an appropriate liquid medium such as sodium chloride for injection prior to use.

In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of an injectable composition. Dimethyl acetamide, surfactants including ionic and non-ionic detergents, polyethylene glycols can be used. Mixtures of solvents and wetting agents such as those discussed above are also useful. Sterile solutions can be prepared by dissolving the active component in the desired solvent system, and then passing the resulting solution through a membrane filter to sterilize it or, alternatively, by dissolving the sterile compound in a previously sterilized solvent under sterile conditions.

Solid dosage forms for oral administration can include capsules, tablets, pills, powders, and granules. The amount of a contemplated Compound of
Formula I (neoseptin) in a solid dosage form is as discussed previously, an amount sufficient to provide a concentration of about 10 mM to about 100 mM, preferably about 1 mM to about 50 mM, in the serum or blood plasma. A solid dosage form can also be administered a plurality of times during a one week time period.

In such solid dosage forms, a compound of this invention is ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds can be admixed with lactose, sucrose, starch powder, cellulose esters of alkanolic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets can contain a controlled-release formulation as can be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. In the case of capsules, tablets, and pills, the dosage forms can also comprise buffering agents such as sodium citrate, magnesium or calcium carbonate or bicarbonate. Tablets and pills can additionally be prepared with enteric coatings.

A mammal in need of treatment (a subject) and to which a pharmaceutical composition containing a Compound of Formula I is administered can be a primate such as a human, an ape such as a chimpanzee or gorilla, a monkey such as a cynomolgus monkey or a macaque, a laboratory animal such as a rat, mouse or rabbit, a companion animal such as a dog, cat, horse,
or a food animal such as a cow or steer, sheep, lamb, pig, goat, llama or the like.

Where an in vitro assay is contemplated, a sample to be assayed such as cells and tissue can be used. These in vitro compositions typically contain water, sodium or potassium chloride, and one or more buffer salts such as and acetate and phosphate salts, Hepes or the like, a metal ion chelator such as EDTA that are buffered to a desired pH value such as pH 4.0 -8.5, preferably about pH 7.2-7.4, depending on the assay to be performed, as is well known. Preferably, the pharmaceutical composition is in unit dosage form. In such form, the composition is divided into unit doses containing appropriate quantities of the active compound. The unit dosage form can be a packaged preparation, the package containing discrete quantities of the preparation, for example, in vials or ampules.

In another preferred embodiment, a contemplated Compound of Formula I is administered as an adjuvant along with one or more immunogenic materials as a vaccine. One such composition is illustrated herein in which olvalbumin was used as the immunogen in the vaccination of C57BL/6J mice.

Results

The mechanism by which Compound 1 (neoseptin-1) and related compounds were signaling was established to be TLR4 using macrophages derived from mice bearing disabling germline genetic mutations or knockouts of the genes encoding for each TLR or the downstream signaling molecules.
Representative of the SAR data available from the initial screening, activity was observed only with a central tyrosine side chain substituent and the closely related phenyl, 4-chlorophenyl, naphthyl, 4-methoxyphenyl, and indolyl derivative mixtures were inactive. Similarly, the two active mixtures contained either a homophenylalanine or methionine side chain at the carboxylic acid terminus and all other 18 residues were inactive including phenyl-, 4-chlorophenyl-, 4-methoxyphenyl-, naphthyl-alanine, tyrosine, tryptophan, leucine, valine, isoleucine, alanine, glycine, asparagine, lysine, serine, threonine, aspartate, histidine, and Abu.

In these two series, the amine terminus also exhibited a well-defined structural dependence where only those compounds containing a spatially well placed hydrophobic aromatic substituent exhibited activity. The activity of the initial screening lead, neoseptin-1, below, was optimized
Neoseptin-1

via preparation of about 850 compounds, probing the two end portions of the structure.

Upon exploring the central region of neoseptin-1 (80 compounds), a significant enhancement in TLR4 agonist efficacy was discovered with Compound MM-1-88, below, where a single atom change in

MM-1-88

neoseptin-1 (removal of a single oxygen atom) provided the increased efficacy. Nearly all other changes to this region of the molecule led to a complete loss in activity. Further optimization led to additional simplifying structural modifications and two proved to be even more efficacious TLR4-
dependent agonists (named neoseptin-3 and neoseptin-4), nearly matching the efficacy of LPS.

Systematic exploration of this more efficacious series (about 100 compounds) revealed that even minor changes to either compound completely disrupted activity. Key elements of the work include the observation of an exquisite SAR where the TLR4 agonist activity of neoseptin-3 and -4 is unique among many very closely related structures (>100 to date): that each of the components that make up the structure of neoseptin-3 is required for activity, and that both exhibit well-defined dose-response curves (EC\(_50\) 15-25 µM).

Additionally, close structurally related analogs in the series act as antagonists of neoseptin-3 (bind but do not activate TLR4), and azide substitution of neoseptin-3 on the C-terminus phenyl group provided an active agonist that serves as a photoaffinity cross-linking reagent.

With the use of macrophages from mice bearing germline genetic defects or knockouts of each of the genes encoding the TLRs or their downstream
signaling molecules uniquely available in the laboratories of Professor Bruce Beutler, (University of Texas Southwestern Medical Center, Dallas, TX) the induced TNF-cc production by neoseptin-3 was established to be nearly identical to that of LPS, being dependent on TLR4, MD-2, MyD88, Trif, TRAM, MAL, IRAK4, and IKBKG. Neoseptin-3 has been additionally shown to activate the NF-κB, P38 MAPK, JNK, and Erk signaling pathways. However, unlike LPS, neoseptin-3 is independent of CD14. See, (a) mutagenetix.utsouthwestern.edu.; (b) Arnold et al., (2012) ENU-induced phenovariance in mice: Inferences from 587 mutations. BMC Res. Notes. 5, 577-0500-5-577.

Like LPS (lipopolysaccharide, endotoxin) and MPLA (monophosphoryl lipid A), the TLR4 agonist activity of neoseptin-3 is blocked by the antagonist eritoran, suggesting that they bind to the same hydrophobic pocket of MD-2 in the activated MD-2/TLR4 complex. Consistent with this expectation, direct binding of neoseptin-3 to MD-2 was observed by isothermal titration calorimetry (figure x), displaying an affinity slightly better than that of MPLA itself.

Further distinguishing the activity of neoseptin-3 and LPS (Fig. 2), neoseptin-3 much more effectively stimulates a type I interferon response resulting in the release of INF-β (but not INF-α) , representing a potential advantage to its use as an adjuvant.

Neoseptin-3 behaves as a robust in vivo adjuvant that evokes a more sustained immune response of equal or greater efficacy than LPS when co-injected with ovalbumin by an intramuscular route.
Moreover and at the maximum doses capable of administration, neoseptin-3 does not display the overt toxicity that is characteristic of LPS administration. It is remarkable that such a small molecule can display such exquisite structural selectivity for activating the immune response and to do so in a way that is so mechanistically specific and well-defined. (See, (a) Vogel Clin. Infect. Dis. 30 (Suppl 3):S266-S270 (2000); (b) Guy, Nat. Rev. Microbiol. 5:505-517 (2007); (c) Johnson, Curr. Top. Med. Chem. 8:64-19 (2008); and (d) Persing et al., Trends Microbiol. 10:S32-S37 (2002) and the citations therein for the procedures utilized.)

Further comparison of the adjuvant activity of neospetin-3 with alum, the only US approved vaccination adjuvant, is illustrated in Fig. 9. Neoseptin-3 stimulates a much more robust immune response in vivo than does alum.

Mouse Peritoneal Macrophage Agonist Assay

Reagents:
Brewer's thioglycolate medium, 4%

4% (w/v) Brewer's thioglycolate medium powder (BBL Microbiology Systems, Cockeysville, MD) is added to distilled water pre-warmed to 37°C. The solution is autoclaved to sterilize and stored away from light.

PEC recovery solution
Hepes-buff ered saline solution (Gibco, Invitrogen, Carlsbad, CA)

5% (v/v) heat-inactivated fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA)
200 IU/mL penicillin (Gibco)
200 mg/mL streptomycin (Gibco)

PEC medium
Dulbecco's modified eagle medium (Mediatech Inc., Herndon, VA)
5% (v/v) heat-inactivated fetal bovine serum
200 IU/mL penicillin
200 mg/mL streptomycin

MTT solution
5 mg MTT (Sigma) /mL sterile PBS

DMSO

Mouse TNFa ELISA Ready-SET-Go ® (eBioscience:88-7324-76)

Wash Buffer: IX PBS, 0.05% Tween-20
Stop Solution: 2N HSO₄
96-well plate (Corning Costar 9018 or NUNC Maxisorp (#44-2404))
96-well ELISA plate reader
DI water

Peritoneal exudate cell (PEC) (peritoneal macrophages) isolation
Three to four days prior to PEC isolation, 3 mL syringes filled with Brewer's thioglycolate medium are used to inject mice intraperitoneally with 1.5-2 mL through a 25-gauge needle.
Immediately prior to isolation, mice are anaesthetized under isofluorane vapour (2-5% v/v, 2% O₂).
5 mL syringes filled with sterile PBS are used to recover PECs by lavage through an 18-gauge needle. Once obtained, exudate is added to 5 mL of PEC recovery solution in a 15 mL conical tube, and stored on ice.

Tubes containing exudate are centrifuged for 3 minutes at 1200 rpm in a tabletop centrifuge, and supernatant is replaced with 1-4 mL of PEC medium. Pelleted cells are resuspended by pipeting, and a 10 μL aliquot is taken for cell enumeration.

The concentration of each cell sample is adjusted to 1x10⁶ cells/mL using PEC medium, and 100 μL of each sample (1x10⁵ cells) is added to a tissue culture-treated 96 well flat-bottomed plate, leaving two columns (11 & 12) unoccupied per plate. Plates are incubated at 37°C/5%CO₂ in a humidified incubator for at least 1 hour to permit cells to adhere to the plate, during which time 125-03 solutions are prepared.

Compound screen

Following preincubation of PECs in the 96-well plate, non-adherent PECs are discarded along with residual medium, and 50 μM of compounds to be assayed are added to the cells. Plates are incubated for a further 4 hours.

Conditioned supernatant is collected into another 96 well plate and retained for TNF ELISA Assay. The cells are replaced with 100 μL/well of a 1:4 MTT solution: PEC medium solution (MTT 1 mg/mL final concentration) . PEC plates are incubated at 37°C/5%CO₂ overnight (about 18 hours) . Supernatants are removed and 100 μL DMSO is added to each well. The plate is shaken for 10 minutes and read at 570
nM. This value is used to measure the cytotoxicity of the compounds.

TNFα ELISA

Coat ELISA plate with 100 µL/well of capture antibody in Coating Buffer. Seal the plate and incubate overnight (about 18 hours) at 4°C.

Aspirate wells and wash 4X with 300 µL/well Wash Buffer. Blot plate on absorbent paper to remove residual buffer.

Dilute 1 part 5X concentrated Assay Diluent with 4 parts DI water. Block wells with 200 µL/well of IX Assay Diluent. Incubate at room temperature for 1 hour or 4°C overnight (about 18 hours).

Aspirate and wash at twice with Wash Buffer.

Using IX Assay Diluent to perform 2-fold serial dilutions of the top standards to make the standard curve for a total of 8 points: 1000, 500, 250, 125, 62.5, 31.25, 15.625, 0 pg/ml. Add 100 µL/well of top standard concentration to the appropriate wells. Add 65 µL/well assay diluent plus 35 µL samples to the wells. Seal the plate and incubate at room temperature for 2 hours [or overnight (about 18 hours) at 4°C].

Aspirate/wash 4 times with wash buffer.

Add 100 µL/well of detection antibody diluted in IX Assay diluent. Seal the plate and incubate at room temperature for 1 hour.

Aspirate/wash. Repeat for a total of 4 washes.

Add 100 µL/well of Avidin-HRP diluted in IX Assay diluent. Seal the plate and incubate at room temperature for 30 minutes.
Aspirate and wash. Repeat for a total of 5 washes.

Add 100 μL/well of Substrate Solution to each well. Incubate plate at room temperature for 2-3 minutes.

Add 50 yL/well of Stop Solution, and read plate at 450 nm.
Compound Preparation

A contemplated Compound of Formula I, a neoceptin molecule, can be readily prepared using standard organic chemistry procedures. An illustrative synthesis of neoseptin-3 is illustrated schematically below in Schemes 1A and 1B.
Scheme 1A

Reagents and Conditions:
1. MeOH, reflux, cat. H₂SO₄, 99%
2. Tf₂O, Et₃N, CH₂Cl₂, 0 °C, 70%
3. TIPSCI, imidazole, CH₂Cl₂, 96%
4. TMS-acetylene, PdCl₂(PPh₃)₂, CuI, Et₃N, PhMe (88%)
5. K₂CO₃, MeOH/CH₂Cl₂, (95%)
6. PdCl₂(PPh₃)₂, CuI, Et₃N/DMF, TBAI, 70 °C

Products:
- CO₂Me
- OTIPS
- CO₂Me
- OTIPS
- OTIPS
- OTIPS
- OTIPS
An alternative synthesis is set out in Schemes 2A and 2B, below.
Scheme 2A

1. $\text{MeOH, reflux\ cat. H}_2\text{SO}_4$
 - CO_2Me
 - 99%

2. TIPSCl, imidazole
 - CH_2Cl_2
 - 96%

3. TIPSO
 - TIPS
 - 1) TMS-acetylene
 - $\text{PdCl}_2(\text{PPh}_3)_2$, Cul,
 - $\text{Et}_3\text{N}\text{PhMe}$ (88%)
 - 2) K_2CO_3
 - $\text{MeOH/CH}_2\text{Cl}_2$, (95%)

4. $\text{PdCl}_2(\text{PPh}_3)_2$, Cul,
 - $\text{Et}_3\text{N/DMF}$, TBAI,
 - 70 °C
MATERIALS AND METHODS

General Procedure for the Preparation of TIPS phenolic Ethers

Iodophenol (11.4 mmol) was dissolved in anhydrous CH₂Cl₂ (50 mL). Imidazole (12.0 mmol, 1.05 equiv) was added to the mixture, followed by dropwise addition of TIPSCl (11.4 mmol, 1.00 equiv). After 16 hours, the cloudy reaction mixture was transferred to a 500 mL separatory funnel and washed with sat. NH₄Cl (25 mL) and H₂O (25 mL). The aqueous phase was extracted twice with CH₂Cl₂ (25 mL), and the combined extracts were dried over Na₂SO₄ and concentrated. Flash chromatography (SiO₂, hexanes to 10% EtOAc/hexanes) gave 4.12 g (96%) of the silyl ether.

(004-1-58) 4-Iodophenol (2.50 g, 11.4 mmol), CH₂Cl₂ (50 mL), imidazole (815 mg, 12.0 mmol, 1.05 equiv) and TIPSCl (2.50 mL, 11.4 mmol, 1.00 equiv)
were combined according to the general procedure.
Flash chromatography (SiO₂, hexanes to 10% EtOAc/hexanes) gave 4.12 g (96%) of the silyl ether.

\(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 7.50 (dd, \(J = 8.9, 0.7\) Hz, 2H), 6.67 (dd, \(J = 8.9, 0.7\) Hz, 2H), 1.36 - 1.16 (m, 3H), 1.10 (d, \(J = 6.9\) Hz, 18H).

TIPS

(\textbf{MM-1-234}) 3-Iodophenol (500 mg, 2.27 mmol), CH₂Cl₂ (10 mL), imidazole (162 mg, 2.39 mmol, 1.05 equiv) and TIPSCI (510 \(\mu\)L, 2.27 mmol, 1.00 equiv) were combined according to the general procedure. Flash chromatography (SiO₂, hexanes to 10% EtOAc/hexanes) gave 710 mg (83%) of the silyl ether.

OTIPS

(\textbf{MM-1-235}) 2-Iodophenol (500 mg, 2.27 mmol), CH₂Cl₂ (10 mL), imidazole (162 mg, 2.39 mmol, 1.05 equiv) and TIPSCI (510 \(\mu\)L, 2.27 mmol, 1.00 equiv) were combined according to the general procedure. Flash chromatography (SiO₂, hexanes to 10% EtOAc/hexanes) gave 632 mg (74%) of the silyl ether.

General Procedure for Sonogashira Cross-Coupling with TMS-Acetylene

TIPSO-\(\equiv\)TMS

-40-

SUBSTITUTE SHEET (RULE 26)
The TIPSO iodide (2.66 mmol) was dissolved in anhydrous toluene (12 mL). PdCl₂(PPh₃)₂ (0.133 mmol, 5 mol%) and Cul (0.266 mmol, 10 mol%) were added in one portion, followed by freshly distilled Et₃N (2.92 mmol, 1.1 equiv). After stirring for 15 minutes, trimethylsilylacetylene (2.92 mmol, 1.1 equiv) was added dropwise, upon complete addition of which the reaction mixture turned dark green. After 12 hours at room temperature, the solvent was removed in vacuo. Flash chromatography of the resulting dark oil (SiO₂, 0 to 4% EtOAc/hexanes) afforded the cross-coupled alkyne.

$$\text{TIPSO} \equiv \text{TMS}$$

MM-1-68) Compound **MM-1-58** (1.00 g, 2.66 mmol), toluene (12 mL), PdCl₂(PPh₃)₂ (94 mg, 0.133 mmol, 5 mol%), Cul (56 mg, 0.266 mmol, 10 mol%), Et₃N (0.41 mL, 2.92 mmol, 1.1 equiv) and trimethylsilylacetylene (0.42 mL, 2.92 mmol, 1.1 equiv) were used according to the general procedure. Flash chromatography (SiO₂, 0 to 4% EtOAc/hexanes) afforded 0.809 g (88%) of the cross-coupled alkyne. ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 6.83 – 6.77 (m, 2H), 1.30 – 1.18 (m, 3H), 1.10 (d, J = 3.6 Hz, 18H), 0.25 (s, 9H).

$$\text{TIPSO} \equiv \text{TMS}$$

(MM-1-271) Compound **MM-1-234** (1.00 g, 2.66 mmol), toluene (12 mL), PdCl₂(PPh₃)₂ (93 mg, 0.133 mmol, 5 mol%), Cul (51 mg, 0.266 mmol, 10 mol%), Et₃N
(0.41 mL, 2.92 mmol, 1.1 equiv) and trimethylsilylacetylene (0.42 mL, 2.92 mmol, 1.1 equiv) were used according to the general procedure. The reaction mixture was filtered, concentrated, and used unpurified in the next step.

General Procedure for Selective TMS Cleavage

TIPSO TMS-alkyne (2.00 mmol) was suspended in MeOH (10 mL). \(\text{CH}_2\text{Cl}_2 \) was added until a homogeneous mixture was obtained (approx. 1-2 mL) with stirring. \(\text{K}_2\text{CO}_3 \) (2.22 mmol, 1.10 equiv) was added. The mixture was stirred at room temperature for 3 hours, after which the reaction was observed to be complete by TLC (hexanes eluent). The mixture was diluted with \(\text{CH}_2\text{Cl}_2 \) (30 mL) and washed with \(\text{H}_2\text{O} \) (20 mL). The aqueous phase was extracted with \(\text{CH}_2\text{Cl}_2 \) (3 × 10 mL) and the combined organic phases were dried over Na\(_2\)SO\(_4\).
decanted and concentrated in vacuo to yield the terminal alkyne, which was used without further purification.

\[
\text{TIPS-O-} + \text{H}
\]

\[\text{MM-1-70} \text{ TMS-alkyne MM-1-68 (700 mg, 2.02 mmol), MeOH (10 mL), CH}_2\text{Cl}_2, \text{K}_2\text{CO}_3 (320 mg, 2.22 mmol, 1.10 equiv.) were combined according to the general procedure to yield 524 mg (95\%) of the terminal alkyne, which was used without further purification.} \]

\[\text{^1H NMR (300 MHz, CDC}_3\text{)} \delta 7.36 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 2.99 (s, 1H), 1.24 (m, 3H), 1.09 (d, J = 6.8 Hz, 18H).}

\[
\text{TIPS-O-} + \text{H}
\]

\[\text{MM-1-274} \text{ TMS-alkyne MM-1-271 (920 mg, 2.66 mmol), MeOH (10 mL), CH}_2\text{Cl}_2 (\sim 1 \text{ mL}), \text{K}_2\text{CO}_3 (370 mg, 2.68 mmol, 1.01 equiv) were combined according to the general procedure to yield 474 mg (65\%) of the terminal alkyne.} \]

\[\text{^1H NMR (400 MHz, CDC}_3\text{)} \delta 7.18 (td, J = 7.9, 2.6 Hz, 1H), 7.12 - 7.06 (m, 1H), 7.02 (d, J = 1.8 Hz, 1H), 6.92 - 6.87 (m, 1H), 3.05 (s, 1H), 1.27 (m, 3H), 1.11 (d, J = 7.3 Hz, 18H).}

\[
\text{OTIPS-} + \text{H}
\]

\[\text{MM-1-275} \text{ TMS-alkyne MM-1-272 (920 mg, 2.66 mmol), MeOH (10 mL), CH}_2\text{Cl}_2 (\sim 1 \text{ mL}), \text{K}_2\text{CO}_3 (370 mg, 2.68 mmol, 1.01 equiv) were combined according to the general procedure to yield 474 mg (65\%) of the terminal alkyne.} \]

\[\text{^1H NMR (400 MHz, CDC}_3\text{)} \delta 7.18 (td, J = 7.9, 2.6 Hz, 1H), 7.12 - 7.06 (m, 1H), 7.02 (d, J = 1.8 Hz, 1H), 6.92 - 6.87 (m, 1H), 3.05 (s, 1H), 1.27 (m, 3H), 1.11 (d, J = 7.3 Hz, 18H).} \]
mg, 2.68 mmol, 1.01 equiv) were combined according to the general procedure to yield 243 mg (33%) of the terminal alkyne. 1H NMR (400 MHz, CDCl$_3$) δ 7.43 (dt, J = 7.7, 2.2 Hz, 1H), 7.24 - 7.16 (m, 1H), 6.88 (dd, J = 8.0, 2.6 Hz, 2H), 3.20 (s, 1H), 1.33 (t, 3H), 1.15 (d, J = 7.5 Hz, 18H).

General Procedure for Benzoic Acid Fischer Esterification

![Chemical Structure](image)

3-Hydroxybenzoic acid (8.00 mmol) was dissolved in MeOH (60 mL) in a two-neck 250 mL round-bottom flask fitted with a reflux condenser and stir bar. Cone. H$_2$SO$_4$ (about 0.5 mL) was added, and the mixture was stirred at reflux for 18 hours. After cooling to room temperature, the reaction solvent was concentrated in vacuo to 1/5 volume, diluted with EtOAc (50 mL) and washed with sat. NaHCO$_3$ (30 mL). The aqueous phase was acidified with 1 N HCl until pH 2, then extracted with EtOAc (3 x 15 mL). The combined organic phases were dried over Na$_2$SO$_4$ and concentrated under high vacuum to afford the methyl ester (95-99%). Where further purification was necessary, products were subjected to flash chromatography (SiO$_2$, 50% EtOAc/hexanes). [Borger et al., *Synlett*, 11:1698-1702 (2008); Charrier et al., *Synthesis*, 20:3467-3477 (2006).]
The general procedure for Fischer esterification was followed: 3-hydroxy-4-nitrobenzoic acid (3.00 g, 16.4 mmol), MeOH (120 mL), and H₂SO₄ (about 1.0 mL, cone.) were employed. Methyl 3-hydroxy-4-nitrobenzoate, 3.2 g (99%), was obtained as a yellow solid, which was used without further purification.

The general procedure for Fischer esterification was followed: 3-hydroxy-5-nitrobenzoic acid (1.50 g, 8.19 mmol), MeOH (60 mL), and H₂SO₄ (~0.5 mL, cone.) were employed. Methyl 3-hydroxy-5-nitrobenzoate, 1.6 g (99%), was obtained as a yellow solid, which was used without further purification.

The general procedure for Fischer esterification was followed: 5-hydroxy-2-nitrobenzoic acid (1.5 g, 8.19 mmol), MeOH (60 mL), and H₂SO₄ (~0.5 mL) were employed. Methyl 5-hydroxy-2-nitrobenzoate, 1.6 g (99%), was obtained as an off-white solid, used without further purification. ¹H NMR (500 MHz, CDCl₃)
δ 7.99 (d, J = 8.7 Hz, 1H), 7.04 - 6.94 (m, 2H), 3.95 (s, 3H).

General Procedure for the Preparation of Aryl Triflates

Methyl hydroxybenzoate (8.00 mmol) was dissolved in anhydrous CH₂Cl₂ (40 mL) and cooled to 0 °C under N₂ atmosphere. Et₃N (16.0 mmol, 3 equiv) was slowly added. After 15 minutes, trifluoromethane-sulfonic anhydride (8.80 mmol, 1.1 equiv) was added dropwise, producing a dark reaction medium. After 16 hours, the reaction mixture was washed with sat. NH₄Cl (30 mL) and H₂O (40 mL). The aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL), and the combined extracts were dried over Na₂SO₄, decanted, and concentrated in vacuo. Flash chromatography (SiO₂, 10 to 20% EtOAc/hexanes) afforded the aryl triflate.

(MM-1-69) Methyl 3-hydroxy-4-nitrobenzoate (1.50 g, 7.61 mmol), CH₂Cl₂ (40 mL), Et₃N (2.21 mL, 15.2 mmol, 2.00 equiv), Tf₂O (1.45 mL, 8.37 mmol, 1.1 equiv) were employed according to the general procedure. Flash column chromatography (SiO₂, 10 → 20% EtOAc/hexanes) gave 1.98 g (79%) of the aryl triflate as a fluffy, off-white solid. ¹H NMR (300...
MHz, CDCl₃) δ 8.23 (t, J = 1.2 Hz, 1H), 8.12 - 8.07 (m, 2H), 4.02 (s, 3H).

(1M-1-494) Methyl 3-hydroxy-5-nitrobenzoate (1.50 g, 7.61 mmol), CH₂Cl₂ (40 mL), Et₃N (2.20 mL, 15.2 mmol, 2.00 equiv), Tf₂O (1.41 mL, 8.37 mmol, 1.10 equiv) were employed according to the general procedure. Flash chromatography (SiO₂, 10% EtOAc/hexanes) produced 2.31 g (92%) of the aryl triflate.

(1M-2-6) Methyl 5-hydroxy-2-nitrobenzoate (1.60 g, 8.12 mmol), CH₂Cl₂ (40 mL), Et₃N (2.26 mL, 16.2 mmol, 2.00 equiv), Tf₂O (1.50 mL, 8.93 mmol, 1.10 equiv) were employed according to the general procedure. Flash chromatography (SiO₂, hexanes → 30% EtOAc/hexanes) gave 2.39 g (90%) of the aryl triflate as a viscous orange oil.
Phenol MRS-3-35 (412 mg, 1.16 mmol), CH₂Cl₂ (40 mL), Et₃N (0.325 mL, 2.32 mmol, 2.00 equiv), Tf₂O (0.215 mL, 1.28 mmol, 1.10 equiv) were employed according to the general procedure. Flash chromatography (SiO₂, 20% EtOAc/hexanes) gave 118 mg (21%) of the aryl triflate as a viscous amber oil.

¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.44 (m, 1H), 7.15 - 6.97 (m, 7H), 6.86 (ddd, J = 8.4, 2.5, 1.1 Hz, 1H), 6.54 (t, J = 8.2 Hz, 1H), 4.62 (td, J = 7.1, 5.2 Hz, 1H), 2.67 - 2.44 (m, 2H), 2.25 - 2.08 (m, 1H), 2.06 - 1.90 (m, 1H), 1.36 (s, 9H).

General Procedure for 2nd Sonogashira Cross-Coupling and Hydrolysis

A 100 mL two-neck round-bottom flask was charged with triflate (7.29 mmol), PdCl₂(PPh₃)₂ (0.73 mmol, 10 mol%), Cul (2.18 mmol, 30 mol%), and TBAI (21.8 mmol, 3.00 equiv). The reagents were suspended in 5:1 DMF/Et₃N (30 mL/6 mL), and the reaction mixture was submerged in a preheated oil bath at 70 °C. Aryl alkyne (14.6 mmol, 2.00 equiv) was added dropwise to the vigorously stirred reaction mixture. After 3 hours, the mixture was cooled to room temperature, diluted with 1:1 EtOAc/hexanes (60 mL ea.) and washed with sat. NH₄Cl/H₂O (2 × 25 mL ea.) The aqueous phase
was extracted with the 1:1 mixture (3 × 30 mL), and combined organic phases were dried over Na₂SO₄, decanted and concentrated. The resultant dark oil was dissolved in 4:1:1 THF/MeOH/H₂O (20 mL/5 mL/5 mL, respectively). LiOH·H₂O (31.0 mmol, 4.25 equiv) was added, and the suspension stirred at room temperature overnight. After 16 hours, the reaction mixture was cooled to 0 °C and 2N HCl (approx. 8-10 mL) was added until a precipitate was observed. The mixture was diluted with EtOAc (100 mL) and washed with more aq. HCl until the aqueous phase remained pH about 2. The aqueous phase was extracted with EtOAc (2 × 30 mL), and the combined organic phases were dried over Na₂SO₄, decanted and concentrated in vacuo. Flash chromatography (SiO₂, 50:50:0.5 EtOAc:hexanes:AcOH) gave the cross-coupled carboxylic acid.

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{CO}_2\text{H} \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N}
\end{align*}
\]

(MM-1-52/457) Triflate MM-1-69 (100 mg, 0.304 mmol), PdCl₂(PPh₃)₂ (21 mg, 0.030 mmol, 10 mol%), Cul (17 mg, 0.091 mmol, 30 mol%), TBAI (337 mg, 0.911 mmol, 3.00 equiv) and phenylacetylene were combined according to the general procedure. Flash chromatography at this stage afforded 52 mg (60%) of the cross-coupled product. LiOH·H₂O (28 mg, 0.668 mmol, 4.00 equiv) hydrolysis gave 44 mg (99%) of the depicted cross-coupled carboxylic acid. \(^1\)H NMR (methyl ester, 300 MHz, CDCl₃) \(\delta\) 8.34 (s, 1H), 8.12 - 8.01 (m, 2H).
2H), 7.65 - 7.54 (m, 2H), 7.40 (dd, J = 3.2, 1.9 Hz, 3H), 3.98 (s, 3H).

(MM-2-3) Triflate MM-1-69 (2.40 g, 7.29 mmol), PdCl₂(PPh₃)₂ (510 mg, 0.73 mmol, 10 mol%), Cul (415 mg, 2.18 mmol, 30 mol%), TBAI (8.06 g, 21.8 mmol, 3.00 equiv), alkyne MM-1-70 (4.00 g, 14.6 mmol, 2.00 equiv) and LiOH·H₂O (1.30 g, 31.0 mmol, 4.25 equiv) were combined according to the general procedure. Flash chromatography (50:50:0.5 EtOAc:hexanes:AcOH) gave 1.69 g (81%) of the depicted cross-coupled carboxylic acid. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 1.8 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 8.05 (dd, J = 8.6, 1.8 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.19 (s, 1H).

(MM-1-276/278) Triflate MM-1-69 (176 mg, 0.534 mmol), PdCl₂(PPh₃)₂ (38 mg, 0.053 mmol, 1.0 mol%), TBAI (590 mg, 1.60 mmol, 3.00 equiv) and alkyne MM-1-274 (220 mg, 0.800 mmol, 1.50 equiv) were
combined according to the general procedure. Flash chromatography at this stage gave 117 mg (48%).
LiOH•H₂O (43 mg, 1.03 mmol, 4.25 equiv) employed in the hydrolysis step gave 112 mg (99%) of the depicted carboxylic acid. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 1.9 Hz, 1H), 8.31 (d, J = 1.7 Hz, 1H), 8.07 - 7.97 (m, 2H), 7.23 - 7.10 (m, 2H), 7.09 - 7.03 (m, 1H), 6.88 (ddd, J = 8.1, 2.5, 1.4 Hz, 1H).

\[\text{(MM-1-277/279)} \quad \text{Triflate XMM-1-69} \quad (176 \text{ mg, 0.534 mmol), PdCl}_2(\text{PPh}_3)_2 \quad (38 \text{ mg, 0.053 mmol, 10 mol%), TBAI (590 \text{ mg, 1.60 mmol, 3.00 equiv) and alkyne MM-1-275 (220 mg, 0.800 mmol, 1.50 equiv) were combined according to the general procedure. Flash chromatography at this stage gave 50 mg (31%).} \]

LiOH•H₂O (28 mg, 1.03 mmol, 4.00 equiv) employed in the hydrolysis step gave 48 mg (99%) of the depicted carboxylic acid. ¹H NMR (methyl ester, 400 MHz, CDCl₃) δ 8.39 (dd, J = 3.6, 1.9 Hz, 1H), 8.23 (dd, J = 8.8, 3.4 Hz, 1H), 8.10 (ddd, J = 8.8, 3.6, 1.9 Hz, 1H), 7.46 (dq, J = 5.4, 1.8 Hz, 1H), 7.39 - 7.31 (m, 1H), 7.03 (dd, J = 8.3, 3.3 Hz, 1H), 6.94 (td, J = 8.2, 3.4 Hz, 1H), 6.61 (d, J = 3.4 Hz, 1H), 4.00 (s, 3H).
Triflate **MM-1-494** (1.20 g, 3.64 mmol), PdCl$_2$(PPh$_3$)$_2$ (256 mg, 0.36 mmol, 10 mol%), Cul (208 mg, 1.09 mmol, 30 mol%), TBAI (4.00 g, 10.9 mmol, 3.00 equiv), alkyne **MM-1-70** (2.00 g, 7.3 mmol, 2.00 equiv) and LiOH*H$_2$O (381 mg, 9.08 mmol, 2.50 equiv) were combined according to the general procedure. Flash chromatography (SiC>2, 50:50:1 EtOAc:hexanes:AcOH) gave 365 mg (57%) of the depicted cross-coupled carboxylic acid.

Triflate **MM-2-6** (1.20 g, 3.64 mmol), PdCl$_2$(PPh$_3$)$_2$ (256 mg, 0.36 mmol, 10 mol%), Cul (208 mg, 1.09 mmol, 30 mol%), TBAI (4.00 g, 10.9 mmol, 3.00 equiv), alkyne **MM-1-70** (2.00 g, 7.3 mmol, 2.00 equiv.) were combined according to the general procedure. Flash chromatography at this stage afforded 788 mg (48%) of the cross-coupled product. LiOH »H$_2$O (251 mg, 6.00 mmol, 4.00 equiv. based on 679
mg of the starting methyl ester) hydrolysis and flash chromatography (SiO₂, 50:50:1 EtOAc : hexanes : AcOH) gave 133 mg (31%) of the depicted cross-coupled carboxylic acid.¹H NMR (methyl ester, 500 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 1.8 Hz, 1H), 7.68 (dd, J = 8.4, 1.8 Hz, 1H), 7.43 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 3.95 (s, 3H), 1.34 - 1.23 (m, 3H), 1.12 (d, J = 1.4 Hz, 18H).

(99 mg, 0.203 mmol), PdCl₂(PPh₃)₂ (15 mg, 0.020 mmol, 10 mol%), Cul (8 mg, 0.040 mmol, 20 mol%), TBAI (225 mg, 0.609 mmol, 3.00 equiv), alkyne MM-1-70 (111 mg, 0.406 mmol, 2.00 equiv) were combined according to the general procedure. Flash chromatography (SiO₂, 20% EtOAc/hexanes) at this stage afforded 88 mg (71%) of the cross-coupled product. Silyl ether cleavage (TBAF, 1 M in THF, 1.0 mL, 1.00 mmol, 6.9 equiv) and flash chromatography (SiO₂, 30% EtOAc/hexanes) gave 14 mg (22%) of the depicted cross-coupled free phenol. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (t, J = 1.9 Hz, 1H), 7.73 - 7.67 (m, 2H), 7.62 (dt, J = 7.8, 1.3 Hz, 1H), 7.44 - 7.36 (m, 5H), 7.21 (d, J = 7.1 Hz, 2H), 6.88 (d, J = 7.1 Hz, 2H), 4.81 (td, J = 7.0, 4.9 Hz, 1H), 2.83
2.66 \((m, 2H) \), 2.40 - 2.27 \((m, 1H) \), 2.14 \((ddd, J = 13.9, 9.9, 6.7 \text{ Hz}, 1H) \), 1.13 \((s, 9H) \).

General Procedure for Amine Coupling with Acid

![Chemical Structure](image)

Carboxylic acid (1.00 mmol), amine (1.00 mmol, 1 equiv), and 1-hydroxy-7-aza-benzotriazole (HOAt) (1.10 mmol, 1.1 equiv) were combined in a 20 mL scintillation vial equipped with a stir bar. Anhydrous DMF (5 mL) and 2,6-lutidine (5.0 mmol, 5.0 equiv) were added, and the mixture stirred until complete dissolution of the reagents. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI·HCl) (1.05 mmol, 1.05 equiv) was added, and the mixture was stirred 12-24 hours. The reaction mixture was diluted with EtOAc (30 mL), washed with 0.1 N HCl \((2 \times 25 \text{ mL}) \) and sat. aqueous NaCl (25 mL). The aqueous phase was extracted with EtOAc \((2 \times 10 \text{ mL}) \), and combined organic phases were dried over \(\text{Na}_2\text{SO}_4 \), decanted and concentrated. Purified products were isolated by flash chromatography.
The general procedure for amine coupling with acid was followed: Carboxylic acid MM-1-52/457 (44 mg, 0.165 mmol), HoPhε-OtBu (39 mg, 0.165 mmol, 1 equiv), HOAt (25 mg, 0.181 mmol, 1.1 equiv), 2,6-lutidine (95 µL, 0.823 mmol, 5.0 equiv) and EDCI'HCl (33 mg, 0.173 mmol, 1.05 equiv) were employed. Flash chromatography (S1O2, 10% EtOAc/hexanes) afforded 11.4 mg (14%) of coupled product. 1H NMR (400 MHz, CDCl3) δ 8.71 - 8.66 (m, 1H), 7.77 - 7.72 (m, 2H), 7.58 - 7.47 (m, 2H), 7.47 - 7.40 (m, 2H), 7.34 - 7.28 (m, 3H), 7.21 (d, J = 7.3 Hz, 3H), 6.71 (d, J = 7.7 Hz, 1H), 4.81 (ddd, J = 7.6, 6.6, 5.1 Hz, 1H), 2.84 - 2.62 (m, 2H), 2.32 (dddd, J = 13.8, 10.3, 6.5, 5.1 Hz, 1H), 2.13 (dddd, J = 13.8, 12.3, 10.9, 6.0 Hz, 1H), 1.53 (s, 9H).
The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (320 mg, 1.13 mmol, 1.00 equiv), HoPhe-OtBu (266 mg, 1.13 mmol), HOAt (170 mg, 1.24 mmol, 1.10 equiv), 2,6-lutidine (0.66 mL, 5.65 mmol, 5.00 equiv) and EDCI'HCl (230 mg, 1.18 mmol, 1.05 equiv) were employed. Flash column chromatography (SiO₂, hexanes → 30% EtOAc/hexanes) afforded 555 mg (98%) of the amide product. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 1.9 Hz, 1H), 7.64 (dd, J = 8.6, 2.0 Hz, 1H), 7.49 (d, J = 8.6 Hz, 2H), 7.35 – 7.28 (m, 2H), 7.25 – 7.17 (m, 3H), 6.86 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 7.6 Hz, 1H), 4.80 (td, J = 7.0, 4.8 Hz, 1H), 2.76 (t, J = 7.7 Hz, 2H), 2.37 (dtd, J = 13.1, 8.1, 4.8 Hz, 1H), 2.26 – 2.15 (m, 1H), 1.56 (s, 9H).

1-(Benzyloxy)-4-ethynylbenzene was prepared from 4-benzyloxyacetophenone (commercially available from Fisher) according to the method described by:

\[
\text{BnO} \quad \equiv \quad \equiv \quad H
\]
Triflate MM-1-69 (2.77 g, 8.40 mmol), PdCl$_2$(PPh$_3$)$_2$ (590 mg, 0.84 mmol, 10 mol%), Cul (240 mg, 1.26 mmol, 15 mol%), TBAI (9.3 g, 25.2 mmol, 3.00 equiv), 1-(benzyloxy)-4-ethynylbenzene (3.5 g, 16.8 mmol, 2.00 equiv) and LiOH•H$_2$O (0.46 g, 11.0 mmol, 4.00 equiv) were combined according to the general procedure for 2nd Sonogashira cross-coupling and hydrolysis (below). Flash chromatography (50:50:0.5 EtOAc:hexanes:AcOH) gave 1.05 g (33%) of the cross-coupled carboxylic acid. 1H NMR (MM-1-369, Me Ester, 400 MHz, CDCl$_3$) δ 8.35 (d, $J = 1.8$ Hz, 1H), 8.10 (d, $J = 8.6$ Hz, 1H), 8.05 (dd, $J = 8.5, 1.8$ Hz, 1H), 7.56 (d, $J = 8.7$ Hz, 2H), 7.49 - 7.32 (m, 9H), 7.00 (d, $J = 8.8$ Hz, 2H), 6.93 (d, $J = 8.8$ Hz, 1H), 5.11 (s, 2H), 3.99 (s, 3H).
The general procedure for amine coupling with acid was followed: carboxylic acid **MM-1-276/278** (73 mg, 0.258 mmol, 1.00 equiv), D-HoPhe-OtBu (45 mg, 0.191 mmol, 1.00 equiv), HOAt (30 mg, 0.210 mmol, 1.10 equiv), 2,6-lutidine (0.111 mL, 0.960 mmol, 5.00 equiv) and EDCI'HCl (39 mg, 0.200 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 10 to 30% EtOAc/hexanes) afforded 20 mg (18%) of the desired amide product.
mmol, 1.10 equiv), 2,6-lutidine (0.150 mL, 1.29 mmol, 5.00 equiv) and EDCI·HCl (52 mg, 0.271 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 50% EtOAc/hexanes) afforded 58 mg (48%) of the amide product.

(MM-1-282) The general procedure for amine coupling with acid was followed: carboxylic acid MM-1-277/279 (48 mg, 0.169 mmol, 1.00 equiv), HoPhe-OtBu (40 mg, 0.169 mmol, 1.00 equiv), HOAt (25 mg, 0.186 mmol, 1.10 equiv), 2,6-lutidine (0.100 mL, 0.847 mmol, 5.00 equiv) and EDCI-HCl (34 mg, 0.178 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 50% EtOAc/hexanes) afforded 36 mg (45%) of the amide product.
The general procedure for amine coupling with acid was followed: carboxylic acid **MM-1-495/496** (100 mg, 0.353 mmol, 1.00 equiv), HoPhe-OtBu (83 mg, 0.353 mmol, 1.00 equiv), HOAt (53 mg, 0.388 mmol, 1.10 equiv), 2,6-lutidine (0.205 mL, 1.77 mmol, 5.00 equiv) and EDCI•HCl (71 mg, 0.371 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 30 to 40% EtOAc/hexanes) afforded 88 mg (50%) of the amide product. ¾ NMR (500 MHz, CDCl₃) δ 8.37 (dt, J = 9.4, 2.0 Hz, 2H), 7.95 - 7.93 (m, 1H), 7.39 (d, J = 8.6 Hz, 2H), 7.32 - 7.16 (m, 5H), 6.83 (d, J = 8.6 Hz, 2H), 4.84 (dd, J = 7.6, 4.8 Hz, 1H), 2.78 (t, J = 7.8 Hz, 2H), 2.40 - 2.28 (m, 1H), 2.26 - 2.15 (m, 1H), 1.56 (s, 9H).
The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-9/11 (100 mg, 0.353 mmol, 1.00 equiv), HoPhe-OtBu (83 mg, 0.353 mmol, 1.00 equiv), HOAt (53 mg, 0.388 mmol, 1.10 equiv), 2,6-lutidine (0.205 mL, 1.77 mmol, 5.00 equiv) and EDCI-HCl (71 mg, 0.371 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 30% EtOAc/hexanes) afforded 154 mg (87%) of the amide product. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 8.5, 1.8 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 7.5 Hz, 2H), 7.26 - 7.15 (m, 3H), 6.81 (d, J = 8.6 Hz, 2H), 6.56 (d, J = 7.7 Hz, 1H), 4.80 (ddd, J = 7.7, 6.4, 4.9 Hz, 1H), 2.88 - 2.67 (m, 2H), 2.45 - 2.34 (m, 1H), 2.18 - 2.09 (m, 1H), 1.55 (s, 9H).
The general procedure for amine coupling with acid was followed: H-Nva (5-Ph) -OtBu (18 mg, 0.071 mmol) was added to a 1 dram scintillation vial equipped with stir bar and charged with carboxylic acid **MM-2-3** (20 mg, 0.071 mmol, 1.00 equiv) and HOAt (11 mg, 0.077 mmol, 1.10 equiv). The reagents were dissolved in anhydrous DMF (0.35 mL) and 2,6-lutidine (0.041 mL, 0.35 mmol, 5.00 equiv). EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv.) was added in one portion, and the reaction mixture stirred overnight. After 16 hours, the mixture was diluted with EtOAc (5 mL) and washed twice with 0.1 N HCl (5 mL). The aqueous phase was extracted with EtOAc (2 x 2.5 mL), and the combined extracts were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 40% EtOAc/hexanes) produced 30 mg (83%) of the amide product.
The general procedure for amine coupling with acid was followed: tert-Butyl ester (75 mg, 0.285 mmol), carboxylic acid MM-2-3 (81 mg, 0.285 mmol, 1.00 equiv), HOAt (43 mg, 0.313 mmol, 1.10 equiv), 2,6-lutidine (0.166 mL, 1.42 mmol, 5.00 equiv) and EDCI-HCl (57 mg, 0.299 mmol, 1.05 equiv) in anhydrous DMF (1.5 mL). Flash chromatography (SiO$_2$, 30% EtOAc/hexanes) afforded 45 mg (30%) of the racemic amide product.

The general procedure for amine coupling with acid was followed: carboxylic acid
MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), tert-pentyl ester (20 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography \((\text{SiO}_2, 20 \rightarrow 30\% \text{ EtOAc/hexanes})\) afforded 15 mg (42%) of the amide product.

\[^1\text{H NMR} (500 \text{ MHz, CDCl}_3) \delta 8.07 (d, J = 8.5 \text{ Hz, 1H}), 7.86 (d, J = 2.0 \text{ Hz, 1H}), 7.64 (dd, J = 8.6, 2.0 \text{ Hz, 1H}), 7.49 (d, J = 8.6 \text{ Hz, 2H}), 7.34 - 7.28 (m, 2H), 7.24 - 7.19 (m, 3H), 6.86 (d, J = 8.5 \text{ Hz, 2H}), 6.75 (d, J = 7.6 \text{ Hz, 1H}), 4.85 - 4.76 (m, 1H), 2.82 - 2.71 (m, 2H), 2.37 (dd, J = 10.8, 3.3 \text{ Hz, 1H}), 2.25 - 2.14 (m, 1H), 1.86 (m, 2H), 1.53 (d, J = 2.5 \text{ Hz, 6H}), 0.96 (t, J = 7.5 \text{ Hz, 3H}). \]

(MM-2-128) The general procedure for amine coupling with acid was followed: carboxylic acid

MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), adamantyl ester (25 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash
chromatography (SiO₂, 30% EtOAc/hexanes) afforded 32 mg (78%) of the amide product.

(MM-2-127) The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), neopentyl ester (20 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI-HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 40% EtOAc/hexanes) afforded 26 mg (72%) of the amide product.
The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (10 mg, 0.036 mmol, 1.00 equiv), isopropyl ester (8 mg, 0.036 mmol, 1.00 equiv), HOAt (5.4 mg, 0.040 mmol, 1.10 equiv), 2,6-lutidine (0.020 mL, 0.180 mmol, 5.00 equiv) and EDCI'HCl (7.2 mg, 0.038 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 30% EtOAc/hexanes) afforded 17 mg (97%) of the amide product. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\)

8.09 - 8.02 (m, 1H), 7.83 (d, \(J = 2.0\) Hz, 1H), 7.63 (d, \(J = 8.5\) Hz, 1H), 7.49 - 7.42 (m, 2H), 7.34 - 7.26 (m, 2H), 7.22 (q, \(J = 3.5\) Hz, 3H), 6.88 - 6.82 (m, 2H), 6.33 - 6.24 (m, 1H), 5.15 (p, \(J = 6.3\) Hz, 1H), 4.85 (td, \(J = 7.7, 3.5\) Hz, 1H), 2.77 (q, \(J = 7.7, 6.5\) Hz, 2H), 2.36 (qd, \(J = 8.7, 8.3, 4.8\) Hz, 1H), 2.27 - 2.16 (m, 1H), 1.34 (d, \(J = 6.2\) Hz, 6H).

![Chemical Structure](image)

The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (80 mg, 0.282 mmol, 1.00 equiv), ethyl ester (59 mg, 0.282 mmol, 1.00 equiv), HOAt (42 mg, 0.310 mmol, 1.10 equiv), 2,6-lutidine (0.165 mL, 1.41 mmol, 5.00 equiv) and EDCI'HCl (57 mg, 0.297 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 30% EtOAc/hexanes) afforded the amide product.
EtOAc/hexanes afforded 16 mg (12%) of the amide product.

The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (70 mg, 0.247 mmol, 1.00 equiv), methyl ester (48 mg, 0.247 mmol, 1.00 equiv), HOAt (37 mg, 0.272 mmol, 1.10 equiv), 2,6-lutidine (0.144 mL, 1.24 mmol, 5.00 equiv) and EDCI·HCl (50 mg, 0.259 mmol, 1.05 equiv) were employed. Flash chromatography (SiO$_2$, 40% EtOAc/hexanes) afforded 19 mg (17%) of the amide product.
The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (33 mg, 0.116 mmol, 1.00 equiv), carboxamide (25 mg, 0.116 mmol, 1.00 equiv), HOAt (17 mg, 0.128 mmol, 1.10 equiv), 2,6-lutidine (0.068 mL, 0.582 mmol, 5.00 equiv) and EDCI-HCl (23 mg, 0.122 mmol, 1.05 equiv) were employed. Unpurified reaction product was used in the reduction step.

The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), adamantyl amide (25 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (SiO$_2$, 40 to 50% EtOAc/hexanes) afforded 29 mg (71%) of the amide product.
The general procedure for amine coupling with acid was followed: carboxylic acid **MM-2-3** (21 mg, 0.074 mmol, 1.00 equiv), t-butyl amide (20 mg, 0.074 mmol, 1.00 equiv), HOAt (11 mg, 0.081 mmol, 1.10 equiv), 2,6-lutidine (0.043 mL, 0.353 mmol, 5.00 equiv) and EDCI-HCl (15 mg, 0.078 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 40% EtOAc/hexanes) afforded 31 mg (84%) of the amide product.

The general procedure for amine coupling with acid was followed: carboxylic acid **MM-2-3** (20 mg, 0.071 mmol, 1.00 equiv), neopentyl
amide (20 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI-HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (SiO2, 40 to 50% EtOAc/hexanes) afforded 28 mg (78%) of the amide product.

The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), n-hexyl amide (21 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI-HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (SiO2, 40 to 50% EtOAc/hexanes) afforded 13 mg (35%) of the amide product.
The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), n-octyl amide (23 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI·HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 40% EtOAc/hexanes) afforded 22 mg (56%) of the amide product.

The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), n-decyl amide
(25 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (Si0₂, 40% EtOAc/hexanes) afforded 23 mg (53%) of the amide product.

(MM-2-157) The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), n-dodecyl amide (27 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (Si0₂, 40% EtOAc/hexanes) afforded 23 mg (53%) of the amide product.
(MM-2-158) The general procedure for amine coupling with acid was followed: carboxylic acid MM-2-3 (20 mg, 0.071 mmol, 1.00 equiv), ii-tetradecyl amide (29 mg, 0.071 mmol, 1.00 equiv), HOAt (11 mg, 0.078 mmol, 1.10 equiv), 2,6-lutidine (0.040 mL, 0.353 mmol, 5.00 equiv) and EDCI'HCl (14 mg, 0.074 mmol, 1.05 equiv) were employed. Flash chromatography (SiO₂, 40% EtOAc/hexanes) afforded 30 mg (67%) of the amide product.

(MM-2-175) Carboxylic acid MM-2-3 (10 mg, 0.035 mmol, 1.00 equiv), α-methyl-3-phenylpropylamine XX (5.3 mg, 0.035 mmol, 1.00 equiv) and Et₃N (10 µL,
0.071 mmol, 2.00 equiv) were combined in a 1 dram scintillation vial. THF (200 µL) was added, followed by 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT, 11.6 mg, 0.039 mmol, 1.10 equiv)

After 16 hours, the reaction mixture was diluted with EtOAc (5 mL) and washed with 0.1 N HCl (5 mL). The organic phase was dried over Na₂SO₄ and concentrated. Flash chromatography (SiO₂, 40% EtOAc/hexanes) afforded 8.5 mg (58%) of the amide product. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 1.9 Hz, 1H), 7.60 (dd, J = 8.6, 2.0 Hz, 1H), 7.49 (d, J = 8.6 Hz, 2H), 7.30 (dd, J = 8.3, 6.8 Hz, 2H), 7.26 - 7.18 (m, 3H), 6.88 (d, J = 8.6 Hz, 2H), 5.99 (d, J = 8.2 Hz, 1H), 4.37 - 4.25 (m, 1H), 2.77 (m, 2H), 2.02 - 1.93 (m, 2H), 1.34 (d, J = 6.6 Hz, 3H).

General Procedure for Nitroaryl Alkyne Reduction

Nitroaryl alkyne (1.00 mmol) was dissolved in EtOAc (10 mL) in a two-neck round-bottom flask equipped with a stir bar and 3-way vacuum adapter. Pearlman's catalyst (5 mol%, 20% Pd w/w on carbon) was suspended in the reaction solvent, and the solvent was sparged with N₂ for 10 minutes. The reaction headspace was evacuated briefly until the solvent began to boil, and then back-filled with H₂. This process was repeated 15-20 times to ensure
maximum H$_2$ atmosphere above the reaction mixture. After stirring for 16 hours, the mixture was filtered through a plug of sand/Celite with a 2 mm top layer of SiO$_2$, washing thoroughly with EtOAc. Solvent was removed in vacuo and the residue subjected to flash/preparative thin layer chromatography to yield the fully reduced aniline.

\[
\text{(MM-1-460) The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-1-458 (11.4 mg, 0.024 mmol), EtOAc (1.20 rtL), Pearlman's catalyst (20 mg) were employed. Preparative thin-layer chromatography (SiO$_2$, 20% EtOAc/hexanes) gave 7.3 mg (68%) of the fully reduced product.} \\
^1H \text{NMR (500 MHz, CDCl$_3$) } \delta \text{ 7.75 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.1 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.36 - 7.26 (m, 3H), 7.21 (d, J = 7.6 Hz, 3H), 6.73 (m, 1H), 4.87 - 4.77 (m, 1H), 2.88 - 2.63 (m, 4H), 2.32 (dt, J = 9.8, 4.9 Hz, 1H), 2.12 (td, J = 15.6, 14.3, 6.7 Hz, 1H), 1.53 (s, 9H).}
\]
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne \textbf{MM-1-466} (530 mg, 1.06 mmol), EtOAc (10 mL), Pearlman's catalyst (250 mg) were employed. Flash chromatography (SiO$_2$, 30 to 50% EtOAc/hexanes) gave 411 mg (82%) of the fully reduced product, Neoseptin-3. 1H NMR (500 MHz, CDCl$_3$) \(\delta\) 7.44 (dd, \(J = 8.3, 2.2\) Hz, 1H), 7.34 (d, \(J = 2.2\) Hz, 1H), 7.32 - 7.28 (m, 2H), 7.25 - 7.16 (m, 3H), 6.99 (d, \(J = 8.4\) Hz, 2H), 6.78 (d, \(J = 8.4\) Hz, 2H), 6.63 (d, \(J = 8.3\) Hz, 1H), 6.49 (d, \(J = 7.8\) Hz, 1H), 4.82 - 4.76 (m, 1H), 2.90 - 2.61 (m, 6H), 2.28 (dddd, \(J = 13.7, 10.2, 6.3, 5.1\) Hz, 1H), 2.10 (m, 1H), 1.53 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) \(\delta\) 172.1, 167.2, 154.5, 147.8, 141.2, 133.0, 129.5, 129.1, 128.49, 128.48, 128.37, 126.3, 126.1, 125.2, 123.4, 115.6, 114.7, 82.5, 53.0, 34.5, 34.2, 33.4, 31.6, 28.1. HRMS (ESI-TOF) \(m/z\) calcd for \(\text{C}_{29}\text{H}_{35}\text{N}_2\text{O}_4\) [M+H]$^+$ 475.2591, found 475.2592.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne **MM-1-477** (20 mg, 0.0389 mmol), EtOAc (10 mL), Pearlman's catalyst (20 mg) were employed. Preparative thin-layer chromatography (SiO₂, 60% EtOAc/hexanes) gave 3.7 mg (23%) of the fully reduced product. ¹H NMR data matched that of Neoseptin-3.

MM-1-481

The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne **MM-1-281** (21.6 mg, 0.046 mmol), EtOAc (1.00 mL), Pearlman's catalyst (20 mg) were employed. Product obtained after filtration, 21.4 mg (99%), was homogeneous by TLC and not purified further. ¹H NMR
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-1-282 (5.7 g, 0.012 mmol), EtOAc (0.5 mL), Pearlman's catalyst (10 mg) were employed. Product obtained after filtration, 5.6 mg (98%), was homogeneous by TLC and not purified further. 1H NMR (400 MHz, CDCl$_3$) δ 7.57 (d, $J = 2.1$ Hz, 1H), 7.50 (dd, $J = 8.2$, 2.2 Hz, 1H), 7.32 - 7.27 (m, 2H), 7.24 - 7.14 (m, 3H), 7.08 (dd, $J = 7.7$, 1.7 Hz, 1H), 6.88 (td, $J = 7.3$, 1.0 Hz, 1H), 6.84 - 6.79 (m, 1H), 6.66 (d, $J = 7.8$ Hz, 1H), 6.63 (d, $J = 8.3$ Hz, 1H), 6.32 (s, 1H), 4.87 - 4.78 (m, 1H), 4.27 (s, 2H), 3.00 - 2.61 (m, 6H), 2.29 (ddt, $J = 15.4$, 11.1, 5.7 Hz, 1H), 2.16 - 2.06 (m, 1H), 1.53 (s, 9H).
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-1-497 (88 mg, 0.176 mmol), EtOAc (1.5 mL), Pearlman's catalyst (50 mg) were employed. Product obtained after filtration, 65 mg (78%), was homogeneous by TLC and not purified further. 1H NMR (400 MHz, CDCl$_3$) δ 7.31 - 7.26 (m, 2H), 7.21 - 7.18 (m, 3H), 6.94 (d, $J = 7.6$ Hz, 2H), 6.89 (s, 1H), 6.76 (d, $J = 7.6$ Hz, 2H), 6.67 (s, 1H), 6.61 (s, 1H), 6.49 (d, $J = 6.0$ Hz, 1H), 4.77 (dd, $J = 6.0$, 2.0 Hz), 1H), 2.86 - 2.67 (m, 6H), 2.25 (m, 1H), 2.13 (m, 1H), 1.52 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{29}$H$_{33}$N$_2$O$_4$ [M+H]$^+$ 475.2591, found 475.2590.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-12 (65 mg, 0.130 mmol), EtOAc (1.2 mL), Pearlman’s catalyst (50 mg) were employed. Product obtained after filtration, 58 mg (94%), was homogeneous by TLC and not purified further.

1H NMR (500 MHz, CDCl$_3$) δ 7.33 - 7.28 (m, 2H), 7.24 - 7.17 (m, 3H), 7.03 (dd, $J = 8.3$, 2.0 Hz, 1H), 6.97 (d, $J = 8.4$ Hz, 2H), 6.85 (d, $J = 2.1$ Hz, 1H), 6.82 - 6.76 (m, 2H), 6.62 (d, $J = 8.3$ Hz, 1H), 6.49 (d, $J = 7.9$ Hz, 1H), 4.76 (d, $J = 5.2$ Hz, 1H), 2.86 - 2.62 (m, 6H), 2.27 (dddd, $J = 13.7$, 9.9, 6.7, 5.1 Hz, 1H), 2.10 (m, 1H), 1.54 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{29}$H$_{35}$N$_2$O$_4$ [M+H]$^+$ 475.2591, found 475.2605.

The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-99 (30 mg, 0.058 mmol), EtOAc (0.5 mL), Pearlman’s catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO$_2$, 50% EtOAc/hexanes) gave 13.1 mg (47%) of the fully reduced product.

1H NMR (500 MHz, CDCl$_3$) δ 7.48 (dd, $J = 8.2$, 2.2 Hz, 1H), 7.42 (d, $J = 2.1$ Hz, 1H), 7.31 - 7.24 (m, 2H), 7.21 - 7.13 (m, 3H), 6.97 (d, $J = 8.4$ Hz, 1H), 2.27 (dddd, $J = 13.7$, 9.9, 6.7, 5.1 Hz, 1H), 2.10 (m, 1H), 1.54 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{29}$H$_{35}$N$_2$O$_4$ [M+H]$^+$ 475.2591, found 475.2605.
(MM-2-100) The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-83 (45 mg, 0.085 mmol), EtOAc (0.5 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO$_2$, 50% EtOAc/hexanes) gave 19.6 mg (47%) of the fully reduced product. 1H NMR (500 MHz, CDCl$_3$) δ 7.47 (dd, $J = 8.2$, 2.2 Hz, 1H), 7.45 (d, $J = 2.1$ Hz, 1H), 7.24 (d, $J = 7.5$ Hz, 2H), 7.19 - 7.13 (m, 3H), 6.98 (d, $J = 8.4$ Hz, 2H), 6.80 (d, $J = 8.4$ Hz, 2H), 6.62 (d, $J = 8.2$ Hz, 1H), 6.55 (d, $J = 7.7$ Hz, 1H), 4.75 - 4.67 (m, 1H), 2.86 - 2.65 (m, 4H), 2.61 (t, $J = 7.6$ Hz, 2H), 1.95 (ddd, $J = 10.9$, 8.2, 5.4 Hz, 1H), 1.84 - 1.74 (m, 1H), 1.73 - 1.62 (m, 2H), 1.47 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{35}$H$_{39}$N$_2$O$_4$ [M+H]$^+$ 503.2904, found 503.2912.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-138 (15 mg, 0.029 mmol), EtOAc (0.25 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 60% EtOAc/hexanes) gave 2.2 mg (16%) of the fully reduced product. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (dd, J = 8.3, 2.2 Hz, 1H), 7.32 (d, J = 2.1 Hz, 1H), 7.31 - 7.28 (m, 2H), 7.22 - 7.17 (m, 3H), 7.01 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.3 Hz, 1H), 6.44 (d, J = 7.8 Hz, 1H), 4.81 (td, J = 7.0, 5.0 Hz, 1H), 2.94 - 2.63 (m, 6H), 2.29 (ddt, J = 15.6, 11.1, 5.8 Hz, 1H), 2.13 - 2.03 (m, 1H), 1.90 - 1.75 (m, 2H), 1.50 (d, J = 2.9 Hz, 6H), 0.94 (t, J = 7.5 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C₃₀H₃₇N₂O₄ [M+H]⁺ 489.2748, found 489.2740.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-128 (32 mg, 0.055 mmol), EtOAc (0.5 mL), Pearlman’s catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (Si0₂, 50% EtOAc/hexanes) gave 11.3 mg (38%) of the fully reduced product. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, J = 8.3, 2.2 Hz, 1H), 7.37 (d, J = 2.2 Hz, 1H), 7.29 (d, J = 1.2 Hz, 2H), 7.20 (dd, J = 7.7, 2.4 Hz, 3H), 6.99 (d, J = 8.3 Hz, 2H), 6.79 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 8.3 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 4.83 - 4.76 (m, 1H), 3.82 (s, 2H), 2.86 - 2.63 (m, 6H), 2.33 - 2.24 (m, 1H), 2.21 (q, J = 3.3 Hz, 3H), 2.17 (d, J = 2.9 Hz, 6H), 2.14 - 2.05 (m, 1H), 1.70 (d, J = 3.6 Hz, 6H). HRMS (ESI-TOF) m/z calcd for C₃₅H₄₁N₂O₄ [M+H]+ 553.3061, found 553.3072.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-127 (26 mg, 0.051 mmol), EtOAc (0.5 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO$_2$, 50% EtOAc/hexanes) gave 8.6 mg (34%) of the fully reduced product. 1H NMR (500 MHz, CDC$_3$) δ 7.43 (dd, $J = 8.3, 2.2$ Hz, 1H), 7.36 (d, $J = 2.2$ Hz, 1H), 7.29 (d, $J = 7.9$ Hz, 2H), 7.20 (dt, $J = 5.9, 1.4$ Hz, 3H), 6.99 (d, $J = 8.3$ Hz, 2H), 6.79 (d, $J = 8.4$ Hz, 2H), 6.63 (d, $J = 8.3$ Hz, 1H), 6.48 (d, $J = 7.8$ Hz, 1H), 4.94 (td, $J = 7.3, 5.1$ Hz, 1H), 3.88 (q, $J = 10.5$ Hz, 2H), 3.83 (s, 2H), 2.88 - 2.63 (m, 6H), 2.33 (ddd, $J = 10.0, 5.0, 3.0$ Hz, 1H), 2.21 - 2.08 (m, 1H), 0.98 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{30}$H$_{37}$N$_2$O$_4$ [M+H]$^+$ 489.2748, found 489.2746.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-1-467 (18 mg, 0.037 mmol), EtOAc (0.25 mL), Pearlman's catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 50% EtOAc/hexanes) gave 10 mg (59%) of the fully reduced product.

^{1}H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.3, 2.1 Hz, 1H), 7.35 - 7.28 (m, 2H), 7.25 - 7.15 (m, 3H), 6.98 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.3 Hz, 1H), 6.51 (d, J = 7.9 Hz, 1H), 6.28 (q, J = 5.7 Hz, 1H), 5.12 (tt, J = 12.5, 6.2 Hz, 1H), 4.85 (ddt, J = 12.3, 7.3, 4.1 Hz, 1H), 2.91 - 2.62 (m, 6H), 2.40 - 2.22 (m, 1H), 2.14 (m, 1H), 1.31 (dd, J = 6.2, 2.3 Hz, 6H). HRMS (ESI-TOF) m/z calcd for C_{28}H_{33}N_{2}O_{4} [M+H]^+ 461.2435, found 461.2434.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne \textbf{MM-1-438} (16 mg, 0.034 mmol), EtOAc (0.4 mL), Pearlman's catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (SiO\textsubscript{2}, 50% EtOAc/hexanes) gave 5.2 mg (35%) of the fully reduced product. 1H NMR (400 MHz, CD\textsubscript{3}OD) \delta 7.77 (d, \textit{J} = 8.7 Hz, 2H), 7.34 - 7.16 (m, 5H), 6.87 (d, \textit{J} = 8.7 Hz, 2H), 4.55 (dd, \textit{J} = 9.3, 5.1 Hz, 1H), 4.21 (q, \textit{J} = 7.1 Hz, 2H), 2.92 - 2.68 (m, 4H), 2.22 (dd, \textit{J} = 28.3, 6.5 Hz, 4H), 1.29 (t, \textit{J} = 7.1 Hz, 3H).

The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne \textbf{MM-1-437} (19 mg, 0.041 mmol), EtOAc (0.4 mL).
Pearlman's catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 50% EtOAc/hexanes) gave 9 mg (50%) of the fully reduced product.

\[^1H\text{ NMR (400 MHz, CD₃OD) } \delta 8.64 (d, J = 2.1 Hz, 1H), 8.26 (dd, J = 8.5, 2.1 Hz, 1H), 8.15 (d, J = 8.8 Hz, 2H), 7.70 (dd, J = 10.3, 8.6 Hz, 2H), 7.30 - 7.11 (m, 5H), 6.91 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.7 Hz, 1H), 4.58 (dd, J = 9.6, 4.9 Hz, 1H), 3.72 (s, 3H), 2.88 - 2.62 (m, 4H), 2.32 - 2.07 (m, 4H). \]

\[\text{(MM-2-102)} \]

The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-94 (50 mg, 0.113 mmol), EtOAc (0.5 mL), Pearlman's catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (SiC₃, 10% MeOH/CH₂Cl₂) gave 40 mg (85%) of the fully reduced product. HRMS (ESI-TOF) m/z calcd for C₂₅H₂₈N₃O₃ [M+H]⁺ 418.2125, found 418.2128.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-121 (29 mg, 0.050 mmol), EtOAc (0.5 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 75% EtOAc/hexanes) gave 22.4 mg (81%) of the fully reduced product.

$ ^1 $H NMR (500 MHz, CDCl₃) δ 7.54 - 7.45 (m, 1H), 7.34 - 7.28 (m, 2H), 7.26 - 7.17 (m, 3H), 6.90 - 6.84 (m, 2H), 6.79 (dd, $ J = 9.1, 2.4 $ Hz, 2H), 6.71 (d, $ J = 2.2 $ Hz, 1H), 6.65 (d, $ J = 8.3 $ Hz, 1H), 6.15 (m, 1H), 5.88 (s, 1H), 4.47 (m, 1H), 3.89 (br s, 2H), 3.00 - 2.53 (m, 6H), 2.13 - 2.07 (m, 3H), 2.03 (d, $ J = 6.8 $ Hz, 6H), 1.74 - 1.67 (m, 6H). HRMS (ESI-TOF) m/z calcd for C₃₅H₄₂N₃O₃ [M+H]$ ^+$ 552.3221, found 552.3225.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-93 (31 mg, 0.063 mmol), EtOAc (0.5 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 50% EtOAc/hexanes) gave 16.2 mg (55%) of the fully reduced product. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (dd, J = 8.4, 2.2 Hz, 1H), 7.26 - 7.23 (m, 2H), 7.19 - 7.14 (m, 3H), 6.99 (d, J = 2.1 Hz, 1H), 6.86 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.3 Hz, 2H), 6.59 (d, J = 8.3 Hz, 1H), 6.56 (m, 1H), 4.53 (m, 1H), 2.88 - 2.62 (m, 6H), 2.57 (dt, J = 13.9, 7.5 Hz, 1H), 2.12 - 2.02 (m, 1H), 1.35 (s, 9H). HRMS (ESI-TOF) m/z calcd for C₂₉H₃₆N₃O₃ [M+H]⁺ 474.2751, found 474.2754.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-120 (28 mg, 0.055 mmol), EtOAc (0.5 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 75% EtOAc/hexanes) gave 23 mg (87%) of the fully reduced product. ¹H NMR (500 MHz, CDCl₃) δ 7.51 - 7.43 (m, 1H), 7.27 (dt, J = 4.7, 2.5 Hz, 2H), 7.23 - 7.15 (m, 3H), 6.86 - 6.82 (m, 2H), 6.77 (dd, J = 8.3, 1.3 Hz, 2H), 6.69 (d, J = 2.1 Hz, 1H), 6.66 - 6.61 (m, 1H), 6.56 (t, J = 6.3 Hz, 1H), 6.09 (d, J = 8.7 Hz, 1H), 4.60 (q, J = 7.5 Hz, 1H), 3.91 (br s, 2H), 3.15 - 3.05 (m, 2H), 2.90 (dd, J = 12.7, 6.4 Hz, 1H), 2.82 (dt, J = 12.5, 5.6 Hz, 1H), 2.78 - 2.51 (m, 4H), 2.30 - 2.18 (m, 1H), 2.16 - 2.02 (m, 1H), 1.74 (s, 1H), 0.91 (d, J = 1.2 Hz, 9H). HRMS (ESI-TOF) m/z calcd for C₁₀H₈N₃O₃ [M+H]⁺ 488.2909, found 488.2913.

For substitution sheet (Rule 26)
EtOAc/hexanes gave 4.2 g (34%) of the fully reduced product. 1H NMR (400 MHz, CDCl$_3$) δ 7.45 (dd, $J = 8.6$, 2.3 Hz, 1H), 7.18 (t, $J = 6.5$ Hz, 5H), 7.02 (s, 1H), 6.83 (d, $J = 8.2$ Hz, 2H), 6.76 (d, $J = 8.2$ Hz, 2H), 6.61 (d, $J = 8.4$ Hz, 1H), 6.56 (d, $J = 4.1$ Hz, 1H), 6.29 (d, $J = 8.7$ Hz, 1H), 4.57 (q, $J = 7.8$ Hz, 1H), 3.23 (m, 2H), 2.71 (m, 6H), 2.21 (m, 1H), 2.10 (m, 1H), 1.32 - 1.14 (m, 8H), 0.86 (t, $J = 6.4$ Hz, 3H).

HRMS (ESI-TOF) m/z calcd for C$_{31}$H$_{40}$N$_3$O$_3$ [M+H]$^+$ 502.3064, found 502.3069.

MM-2-160 The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne **MM-2-155** (22 mg, 0.040 mmol), EtOAc (1.0 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiC$_2$, 60% EtOAc/hexanes) gave 20.5 mg (98%) of the fully reduced product. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (dd, $J = 8.3$, 2.1 Hz, 1H), 7.31 - 7.24 (m, 2H), 7.19 (m, 3H), 6.85 (d, $J = 8.5$ Hz, 2H), 6.79 (d, $J = 8.4$ Hz, 2H), 6.70 (d, $J = 2.1$ Hz, 1H), 6.63 (d, $J = 8.4$ Hz, 1H), 6.17 (d, $J = 8.7$ Hz, 1H), 4.54 (td, $J = 8.1$, 6.4 Hz, 1H), 3.90 (s, 2H), 3.25 (m, 2H), 2.89 (m, 1H), 2.81 (dt, $J = 13.6$, 5.7 Hz, 1H), 2.76 - 2.52 (m, 4H).
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-156 (23 mg, 0.039 mmol), EtOAc (1.0 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 60% EtOAc/hexanes) gave 7.6 mg (35%) of the fully reduced product. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 8.3, 2.1 Hz, 1H), 7.32 - 7.23 (m, 2H), 7.19 (m, 3H), 6.85 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 2.1 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 6.48 (t, J = 5.8 Hz, 1H), 6.12 (d, J = 8.7 Hz, 1H), 4.63 - 4.47 (m, 1H), 3.90 (s, 2H), 3.25 (m, 2H), 2.90 (dd, J = 12.1, 6.0 Hz, 1H), 2.86 - 2.77 (m, 1H), 2.77 - 2.48 (m, 4H), 2.31 - 2.14 (m, 1H), 2.09 (m, 1H), 1.50 (m, 2H), 1.35 - 1.14 (m, 14H), 0.88 (t, J = 6.9 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C₃₅H₄₈N₃O₃ [M+H]+ 558.3690, found 558.3685.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-157 (23 mg, 0.038 mmol), EtOAc (1.0 mL), Pearlman's catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 60% EtOAc/hexanes) gave 8.0 mg (36%) of the fully reduced product. ¹H NMR (400 MHz, CDC1₃) δ 7.46 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 7.7 Hz, 2H), 7.23 - 7.14 (m, 3H), 6.84 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.71 (s, 1H), 6.62 (d, J = 8.5 Hz, 1H), 6.49 (t, J = 5.6 Hz, 1H), 6.16 (d, J = 8.7 Hz, 1H), 4.56 (m, 1H), 3.89 (s, 2H), 3.36 - 3.15 (m, 2H), 2.95 - 2.51 (m, 6H), 2.29 - 2.15 (m, 1H), 2.14 - 2.01 (m, 1H), 1.50 (t, J = 7.2 Hz, 2H), 1.26 (d, J = 11.2 Hz, 18H), 0.88 (t, J = 6.7 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C₃7H₅N₃O₃ [M+H]⁺ 586.4003, found 586.3989.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne \textbf{MM-2-158} (30 mg, 0.047 mmol), EtOAc (1.0 mL), Pearlman's catalyst (15 mg). Preparative thin-layer chromatography of the filtered material (SiO$_2$, 60% EtOAc/hexanes) gave 12.2 mg (42%) of the fully reduced product. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (dd, J = 8.3, 2.1 Hz, 1H), 7.31 - 7.23 (m, 2H), 7.18 (dd, J = 7.6, 5.2 Hz, 3H), 6.85 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.9 Hz, 2H), 6.62 (d, J = 8.3 Hz, 1H), 6.56 (t, J = 5.8 Hz, 1H), 6.24 (d, J = 8.6 Hz, 1H), 4.58 (q, J = 7.6 Hz, 1H), 3.89 (s, 2H), 3.25 (m, 2H), 2.93 - 2.50 (m, 6H), 2.21 (ddt, J = 13.4, 8.8, 6.6 Hz, 1H), 2.14 - 2.03 (m, 1H), 1.50 (m, 2H), 1.25 (d, J = 5.7 Hz, 22H), 0.88 (t, J = 6.8 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C$_{39}$H$_{55}$N$_3$O$_3$ [M+H]$^+$ 614.4316, found 614.4311.
The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-2-175 (8.5 mg, 0.021 mmol), EtOAc (0.75 mL), Pearlman's catalyst (10 mg). Preparative thin-layer chromatography of the filtered material (SiO₂, 60% EtOAc/hexanes) gave 2.8 mg (35%) of the fully reduced product.

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 2.2 Hz, 1H), 7.35 (dd, J = 8.2, 2.2 Hz, 1H), 7.30 (m, 2H), 7.24 - 7.16 (m, 3H), 7.02 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 8.2 Hz, 1H), 5.69 (d, J = 8.5 Hz, 1H), 4.27 (m, 1H), 3.80 (s, 2H), 2.84 (dd, J = 8.9, 6.1 Hz, 2H), 2.76 - 2.69 (m, 4H), 1.92 - 1.83 (m, 2H), 1.27 (d, J = 6.7 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C₂₅H₂₃N₂O₂ [M+H]⁺ 389.2223, found 389.2228.
Amino Acid Coupling with Acid and Reduction

The general procedures for amine coupling with acid and nitroaryl alkyne
reduction with Pearlman's catalyst were employed (0.035 mmol scale amine/acid) with the following amines. Yields are over two steps after preparative thin-layer chromatography (SiO₂, 50% EtOAc/hexanes) purification:

MM-2-43-Gly ¹H NMR (500 MHz, CDCl₃) δ 7.53 - 7.45 (m, 2H), 7.01 (d, J = 8.5 Hz, 1H), 6.98 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 8.2 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 6.52 (m, 1H), 4.19 - 4.07 (m, 2H), 2.80 (dd, J = 9.3, 6.3 Hz, 1H), 2.70 (dd, J = 9.2, 6.4 Hz, 1H), 1.51 (s, 9H). HRMS (ESI-TOF) m/z calcd for C₂₁H₂₇N₂O₂ [M+H]+ 371.1965, found 371.1979.

MM-2-44-Ala ¹H NMR (500 MHz, CDCl₃) δ 7.51 - 7.47 (m, 1H), 7.45 (d, J = 2.3 Hz, 1H), 7.04 - 6.95 (m, 2H), 6.80 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 8.0 Hz, 1H), 4.68 (m, 1H), 2.86 - 2.78 (m, 2H), 2.75 - 2.66 (m, 2H), 1.51 (s, 9H), 1.48 (d, J = 5.0 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C₂₂H₂₉N₂O₄ [M+H]+ 385.2122, found 385.2139.

MM-2-45-Abu ¹H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 8.2, 2.2 Hz, 1H), 7.45 (d, J = 2.2 Hz, 1H), 6.99 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.3 Hz, 1H), 6.57 (d, J = 7.7 Hz, 1H), 4.69 (m, 1H), 2.87 - 2.77 (m, 2H), 2.75 - 2.66 (m, 2H), 2.04 - 1.93 (m, 1H), 1.87 - 1.77 (m, 1H), 1.51 (s, 9H), 0.95 (t, J = 7.4 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C₂₃H₃₁N₂O₄ [M+H]+ 399.2278, found 399.2278.

MM-2-46-Val ¹H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 8.2, 2.2 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 6.98 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H).
(MM-2-47-Leu) 1H NMR (500 MHz, CDCl$_3$) δ 7.48 (dd, J = 8.2, 2.2 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 6.98 (d, J = 8.3 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.3 Hz, 1H), 6.36 (d, J = 8.3 Hz, 1H), 4.74 (td, J = 8.5, 5.2 Hz, 1H), 3.83 (br s, 2H), 2.89 - 2.62 (m, 4H), 1.79 - 1.58 (m, 3H), 1.50 (s, 9H), 0.99 (d, J = 3.4 Hz, 3H), 0.98 (d, J = 3.5 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C$_{25}$H$_{35}$N$_2$O$_4$ [M+H]$^+$ 427.2591, found 427.2599.

(MM-2-48-Ile) 1H NMR (500 MHz, CDCl$_3$) δ 7.49 (dd, J = 8.3, 2.2 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 6.99 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.2 Hz, 1H), 6.51 (d, J = 8.4 Hz, 1H), 4.71 (dd, J = 8.3, 4.6 Hz, 1H), 3.87 (br s, 2H), 2.89 - 2.67 (m, 4H), 2.02 - 1.92 (m, 1H), 1.51 (s, 9H), 0.98 (t, J = 7.4 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C$_{25}$H$_{35}$N$_2$O$_4$ [M+H]$^+$ 427.2591, found 427.2591.

(MM-2-49-Phe) 1H NMR (500 MHz, CDCl$_3$) δ 7.42 (dd, J = 8.2, 2.1 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.33 - 7.28 (m, 2H), 7.26 - 7.15 (m, 3H), 6.99 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 8.2 Hz, 1H), 6.43 (d, J = 7.5 Hz, 1H), 4.96 (dt, J = 7.5, 5.8 Hz, 1H), 3.83 (br s, 2H), 3.21 (d, J = 5.9 Hz, 2H), 2.90 - 2.64 (m, 4H), 1.44 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{25}$H$_{35}$N$_2$O$_4$ [M+H]$^+$ 427.2591, found 427.2591.
HRMS (ESI-TOF) m/z calcd for C_{28}H_{33}N_{2}O_{4} [M+H]^{+} 461.2435, found 461.2437.

(MM-2-50-Asn) ¹H NMR (500 MHz, Acetone-d$_6$) δ 7.59 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 2.1 Hz, 1H), 7.50 (dd, J = 8.3, 2.2 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 6.73 (d, J = 8.3 Hz, 1H), 5.00 (s, 1H), 4.77 (ddd, J = 8.1, 5.8, 4.9 Hz, 1H), 2.83 - 2.71 (m, 6H), 1.44 (s, 9H). HRMS (ESI-TOF) m/z calcd for C_{23}H_{30}N_{3}O_{5} [M+H]^{+} 428.2180, found 428.2184.

(MM-2-51-2-Nap-Ala) ¹H NMR (500 MHz, CDC1$_3$) δ 7.86 - 7.69 (m, 4H), 7.64 - 7.61 (m, 1H), 7.52 - 7.38 (m, 2H), 7.33 (dd, J = 8.3, 1.7 Hz, 1H), 7.30 (d, J = 2.2 Hz, 1H), 6.93 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 8.2 Hz, 1H), 6.42 (d, J = 7.6 Hz, 1H), 5.10 - 5.01 (m, 1H), 3.38 (d, J = 5.6 Hz, 2H), 2.93 - 2.60 (m, 4H), 1.44 (s, 9H). HRMS (ESI-TOF) m/z calcd for C_{32}H_{38}N_{2}O_{4} [M+H]^{+} 511.2591, found 511.2593.

(MM-2-52-HoPhe) ¹H NMR (500 MHz, CDC1$_3$) δ 7.44 (dd, J = 8.2, 2.1 Hz, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.32 - 7.28 (m, 2H), 7.25 - 7.16 (m, 3H), 7.00 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.3 Hz, 1H), 6.47 (d, J = 7.8 Hz, 1H), 4.80 (td, J = 7.2, 5.0 Hz, 1H), 3.83 (br s, 2H), 2.90 - 2.63 (m, 6H), 2.29 (m, 1H), 2.13 - 2.07 (m, 1H), 1.53 (s, 9H). HRMS (ESI-TOF) m/z calcd for C_{29}H_{33}N_{2}O_{4} [M+H]^{+} 475.2591, found 475.2581.

(MM-2-53-Met) ¹H NMR (500 MHz, CDC1$_3$) δ 7.57 (m, 1H), 7.48 (m, 1H), 7.37 (d, J = 2.3 Hz, 1H), 6.99 - 6.96 (m, 2H), 6.90 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H).
Hz, 2H), 6.69 (d, J = 8.6 Hz, 1H), 4.78 (m, 1H), 2.78 - 2.40 (m, 6H), 2.23 (m, 2H), 2.11 (s, 3H), 1.51 (s, 9H). HRMS (ESI-TOF) m/z calcd for C24H33N2O4 [M+H]+ 445.2155, found 445.2154.

(MM-2-54-4-Cl-Phe) 1H NMR (500 MHz, CDCl3) δ 7.42 (dd, J = 8.3, 2.1 Hz, 1H), 7.36 (d, J = 2.2 Hz, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.2 Hz, 1H), 6.44 (d, J = 7.1 Hz, 1H), 4.94 (m, 1H), 3.26 - 3.14 (m, 2H), 2.91 - 2.66 (m, 4H), 1.45 (s, 9H). HRMS (ESI-TOF) m/z calcd for C28H32CIN2O4 [M+H]+ 495.2045, found 495.2044.

(MM-2-55-TyrMe) 1H NMR (500 MHz, CDCl3) δ 7.43 (dd, J = 8.3, 2.1 Hz, 1H), 7.37 (d, J = 2.2 Hz, 1H), 7.10 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 8.3 Hz, 1H), 6.41 (d, J = 7.6 Hz, 1H), 4.96 - 4.90 (m, 1H), 3.78 (s, 3H), 3.15 (t, J = 6.1 Hz, 2H), 2.88 - 2.66 (m, 4H), 1.46 (s, 9H). HRMS (ESI-TOF) m/z calcd for C29H35N2O [M+H]+ 491.2540, found 491.2544.

(MM-2-56-Trp) 1H NMR (500 MHz, CDCl3) δ 8.33 (s, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.40 (dd, J = 8.3, 2.1 Hz, 1H), 7.35 - 7.32 (m, 1H), 7.19 (d, J = 2.1 Hz, 1H), 7.18 - 7.14 (m, 1H), 7.07 (dd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.98 (dd, J = 5.1, 2.7 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 8.3 Hz, 1H), 6.49 (d, J = 7.7 Hz, 1H), 5.03 (m, 1H), 3.37 (qd, J = 14.8, 5.5 Hz, 2H), 2.80 - 2.70 (m, 2H), 2.68 - 2.60 (m, 2H), 1.41 (s, 9H). HRMS (ESI-TOF) m/z calcd for C30H34N3O4 [M+H]+ 500.2544, found 500.2548.

-100-
(MM-2-57-Lys) 1H NMR (500 MHz, CDC$_1$$_3$) δ 7.51 - 7.45 (m, 2H), 6.96 (d, J = 7.7 Hz, 2H), 6.64 (d, J = 7.1 Hz, 2H), 6.29 (m, 1H), 6.18 (d, J = 12.0 Hz, 1H), 4.98 (m, 1H), 3.15 (m, 2H), 2.83 - 2.64 (m, 6H), 1.87 (m, 2H), 1.45 (s, 9H), 1.32 - 1.17 (m, 2H). HRMS (ESI-TOF) m/z calcd for C$_{25}$H$_{34}$N$_3$O$_4$ [M+H]$^+$ 442.2700, found 442.2690.

(MM-2-58-His) 1H NMR (500 MHz, Acetone-d$_6$) δ 8.23 (dd, J = 5.2, 3.3 Hz, 1H), 8.04 (dd, J = 8.6, 1.9 Hz, 1H), 7.96 (m, 1H), 7.70 (m, 1H), 7.50 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.77 - 6.72 (m, 1H), 6.68 - 6.63 (m, 1H), 4.78 - 4.72 (m, 1H), 3.23 - 3.02 (m, 4H), 2.91 - 2.79 (m, 2H), 1.39 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{25}$H$_{33}$N$_3$O$_4$ [M+H]$^+$ 451.2340, found 451.2340.

(MM-2-59-Ser) 1H NMR (500 MHz, Acetone-d$_6$) δ 8.08 (s, 1H), 7.65 (d, J = 2.2 Hz, 1H), 7.56 (dd, J = 8.3, 2.2 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.5 Hz, 2H), 6.73 (d, J = 8.3 Hz, 1H), 5.00 (br s, 1H), 4.59 (ddd, J = 8.1, 4.7, 3.6 Hz, 1H), 4.00 - 3.85 (m, 2H), 2.85 (s, 2H), 2.83 - 2.76 (m, 4H), 1.47 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{22}$H$_{33}$N$_2$O$_5$ [M+H]$^+$ 401.2071, found 401.2072.

(MM-2-60-Thr) 1H NMR (500 MHz, Acetone-d$_6$) δ 7.65 (d, J = 2.1 Hz, 1H), 7.57 (dd, J = 8.3, 2.2 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 7.5 Hz, 1H), 6.76 (d, J = 5.9 Hz, 2H), 6.74 (d, J = 5.6 Hz, 1H), 4.54 (dd, J = 8.8, 3.2 Hz, 1H), 4.33 (m, 1H), 2.89 - 2.76 (m, 6H), 1.47 (s, 9H), 1.20 (d, J = 6.4 Hz, 3H). HRMS (ESI-TOF) m/z calcd for C$_{23}$H$_{33}$N$_2$O$_5$ [M+H]$^+$ 415.2227, found 415.2226.
N- and O-Alkyl Neoseptin-3 Analogues

(NM-2-61-Asp) 1H NMR (500 MHz, Acetone-d$_6$) δ 7.62 (d, $J = 2.1$ Hz, 1H), 7.53 (dd, $J = 8.1$, 2.2 Hz, 1H), 7.45 (d, $J = 8.1$ Hz, 1H), 7.12 (d, $J = 8.4$ Hz, 2H), 6.75 (d, $J = 8.3$ Hz, 1H), 4.86 (m, 1H), 2.91 (d, $J = 5.8$ Hz, 2H), 2.86 - 2.74 (m, 4H), 1.45 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{23}$H$_{29}$N$_2$O$_6$ [M+H]$^+$ 429.2020, found 429.2020.

(NM-2-62-Tyr) 1H NMR (500 MHz, Acetone-d$_6$) δ 8.13 (d, $J = 45.8$ Hz, 1H), 7.58 (d, $J = 2.1$ Hz, 1H), 7.50 (dd, $J = 8.3$, 2.2 Hz, 1H), 7.15 (d, $J = 8.0$ Hz, 1H), 7.12 (d, $J = 2.9$ Hz, 2H), 7.11 (d, $J = 2.8$ Hz, 2H), 6.77 (d, $J = 2.2$ Hz, 2H), 6.75 (d, $J = 2.1$ Hz, 2H), 6.70 (d, $J = 8.4$ Hz, 1H), 4.98 (s, 1H), 4.70 (td, $J = 7.7$, 6.1 Hz, 1H), 3.08 (dd, $J = 13.8$, 6.1 Hz, 1H), 3.01 (dd, $J = 13.9$, 7.6 Hz, 1H), 2.85 (br s, 2H), 2.84 - 2.73 (m, 4H), 1.41 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{28}$H$_{33}$N$_2$O$_5$ [M+H]$^+$ 477.2384, found 477.2388.

Free phenol **MM-1-466** (80 mg, 0.200 mmol) was dissolved in CH$_2$Cl$_2$ (1 mL). Imidazole

-102-

SUBSTITUTE SHEET (RULE 26)
(15 mg, 0.209 mmol, 1.05 equiv) was added, followed by slow addition of TIPSC1 (43 μL, 0.200 mmol, 1.00 equiv). After stirring 12 hours at room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with sat. NH₄Cl (10 mL). The aqueous phase was extracted with CH₂Cl₂ (2 × 5 mL), and the combined extracts were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 10% EtOAc/hexanes) afforded 85 mg (81%) of the silyl ether.

(MM-1-471) Silyl ether MM-1-469 was subjected to the general procedure for nitroalkyne reduction: Silyl ether MM-1-469 (85 mg, 0.129 mmol), Pearlman's catalyst (40 mg) in EtOAc (0.75 mL) for 3.5 hours. After filtration and concentration, the residue was subjected to flash column chromatography (SiO₂, 20 to 50% EtOAc/hexanes) to yield 56 mg (70%) of the reduced aniline as a yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (t, J = 2.1 Hz, 1H), 7.50 (dt, J = 8.5, 2.2 Hz, 1H), 7.38 - 7.30 (m, 2H), 7.30 - 7.21 (m, 3H), 7.13 - 7.06 (m, 2H), 6.87 (dd, J = 8.3, 2.4 Hz, 2H), 6.66 (dd, J = 8.5, 2.3 Hz, 2H), 4.86 (dt, J = 7.4, 2.4 Hz, 1H), 3.83 (s, 2H), 2.98 - 2.88 (m, 2H), 2.46 - 2.31 (m, 2H), 1.64 - 1.43 (m, 4H), 0.92 (s, 9H).
2H), 2.87 - 2.67 (m, 4H), 2.42 - 2.27 (m, 1H), 2.21 - 2.07 (m, 1H), 1.58 (s, 9H), 1.37 - 1.24 (m, 3H), 1.16 (dd, $J = 7.1, 2.4$ Hz, 18H).

(13 mg, 0.021 mmol) and 4-dimethylaminopyridine (DMAP, 10.3 mg, 0.085 mmol, 4.00 equiv) were dissolved in CH$_2$Cl$_2$ (220 µL) at room temperature. Acetyl chloride (approx. 2 µL, 1.10 equiv) was added dropwise, resulting in a slight exotherm. After stirring overnight (about 18 hours), the reaction solvent was removed under a stream of N$_2$ and the resulting residue subjected to preparative thin-layer chromatography (SiO$_2$, 50% EtOAc/hexanes) to afford 7.6 mg (55%) of the acetamide as a white solid. 1H NMR (500 MHz, CDCl$_3$) δ 7.77 (d, $J = 8.4$ Hz, 1H), 7.70 (d, $J = 2.1$ Hz, 1H), 7.50 (dd, $J = 8.4, 2.1$ Hz, 1H), 7.32 - 7.27 (m, 2H), 7.21 (dt, $J = 8.1, 1.8$ Hz, 3H), 6.92 (d, $J = 8.4$ Hz, 2H), 6.81 (d, $J = 8.4$ Hz, 2H), 6.66 (d, $J = 7.6$ Hz, 1H), 6.35 (s, 1H), 4.86 - 4.74 (m, 1H), 2.88 (s, 4H), 2.76 (dd, $J = 9.9, 5.9$ Hz, 1H), 2.71 (dd, $J = 9.9, 5.9$ Hz, 1H), 2.36 - 2.27 (m, 1H), 2.14 (m, 1H), 1.95 (s, 3H), 1.53 (s, 9H), 1.33 - 1.18 (m, 3H), 1.10 (d, $J = 7.4$ Hz, 18H).

-104-

SUBSTITUTE SHEET (RULE 26)
Acetamide (7.6 mg, 0.011 mmol) was dissolved in TBAF solution (200 µL, 0.200 mmol, 175 equiv, 1 M in THF) at room temperature. After 1 hour, the reaction mixture was transferred directly to a plate for preparative thin-layer chromatography (10% MeOH : CH₂Cl₂), which provided 3.2 mg (56%) of the free phenol.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 1H), 7.57 (s, 1H), 7.50 (d, J = 8.3 Hz, 1H), 7.33 - 7.27 (m, 2H), 7.21 (d, J = 7.4 Hz, 3H), 6.90 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.3 Hz, 2H), 6.61 (d, J = 7.8 Hz, 1H), 6.46 (s, 1H), 4.79 (td, J = 7.0, 5.0 Hz, 1H), 3.30 - 3.20 (m, 1H), 2.86 (dd, J = 9.3, 6.9 Hz, 4H), 2.76 (dd, J = 9.8, 6.0 Hz, 1H), 2.69 (dd, J = 9.8, 6.0 Hz, 1H), 2.34 - 2.26 (m, 1H), 2.17 - 2.07 (m, 1H), 1.96 (s, 3H), 1.53 (s, 9H). HRMS (ESI-TOF) m/z calcd for C₉H₇N₂O₅ [M+H]+ 517.2697, found 517.2703.
Aniline **MM-1-471** (10.2 g, 0.016 mmol) was dissolved in anhydrous DMF (150 µL) at room temperature. K$_2$CO$_3$ (2.2 mg, 0.016 mol, 1.00 equiv) was suspended in the mixture, followed by addition of methyl iodide (approx. 1.5 µL, 0.024 mmol, 1.5 equiv). After stirring for 24 hours, the mixture was diluted with EtOAc (2 mL) and washed with ¾ 0 (3 mL). The organic phase was concentrated and the residual oil subjected to preparative thin-layer chromatography (SiO$_2$, 30% EtOAc/hexanes) to afford the mono-N-methylated compound ($R_f = 0.57$, 4.1 mg) and the N,N-dimethyl compound ($R_f = 0.70$, 2.0 mg), along with recovered starting material ($R_f = 0.50$, 2.2 mg).

1H NMR (**MM-1-474-Mid**, N-methyl, 500 MHz, CDCl$_3$) δ 7.60 – 7.55 (m, 2H), 7.31 – 7.28 (m, 2H), 7.24 – 7.16 (m, 3H), 7.05 (d, $J = 8.5$ Hz, 2H), 6.82 (d, $J = 8.4$ Hz, 2H), 6.57 (d, $J = 8.3$ Hz, 2H), 4.81 (ddd, $J = 7.6$, 6.6, 5.1 Hz, 1H), 3.88 (s, 1H), 2.87 (dd, $J = 9.7$, 6.2 Hz, 2H), 2.84 (s, 3H), 2.81 – 2.64 (m, 4H), 2.30 (ddt, $J = 13.7$, 11.0, 5.5 Hz, 1H), 2.14 – 2.05 (m, 1H), 1.52 (s, 9H), 1.30 – 1.21 (m, 3H), 1.11 (d, $J = 7.3$ Hz, 18H).

13C NMR (**MM-1-474-Higher**, N,N-dimethyl, 500 MHz, CDCl$_3$) δ 7.68 (d, $J = 2.3$ Hz, 1H), 7.54 (dd, $J = 8.3$, 2.3 Hz, 1H), 7.29 (m, 2H), 7.21 (d, $J = 7.7$ Hz, 1H).
(MM-1-475/476) N-Alkyl compounds MM-1-474-Mid and MM-1-474-Higher were individually dissolved in 1 M TBAF (0.100 mL, 0.100 mmol, about 16 equiv, 1.0 M in THF) at room temperature, and stirred for 1 hour. Each reaction mixture was transferred directly to a plate for preparative thin-layer chromatography (SiO$_2$, 50% EtOAc/hexanes) to give 1.2 mg of the N-methyl product and 0.9 mg of the N,N-dimethyl product. HRMS (MM-1-475, N-methyl, ESI-TOF) m/z calcd for C$_{30}$H$_{37}$N$_2$O$_4$ [M+H]$^+$ 489.2748, found 489.2756. HRMS (MM-1-476, N,N-dimethyl, ESI-TOF) m/z calcd for C$_{31}$H$_{39}$N$_2$O$_4$ [M+H]$^+$ 503.2904, found 503.2901.
(20 mg, 0.040 mmol) was dissolved in anhydrous DMF (250 µL) in a ½ dram scintillation vial. K₂CO₃ (11 mg, 0.080 mmol, 2.00 equiv) was suspended in the reaction solvent, and methyl iodide (about 3 µL, 0.044, 1.10 equiv) was added. After stirring overnight (about 19 hours), the mixture was diluted with EtOAc (3 mL) and washed with 1:1 sat. NH₄Cl and H₂O (1.5 mL each). The aqueous phase was extracted once with EtOAc (1 mL), and the combined EtOAc extracts were dried over Na₂SO₄, decanted and concentrated. Preparative thin-layer chromatography (SiO₂, 30% EtOAc/hexanes) gave 12.8 mg (62%) of the methyl ether. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.68 (dd, J = 8.5, 2.0 Hz, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.35 - 7.28 (m, 2H), 7.26 - 7.18 (m, 3H), 6.93 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 7.5 Hz, 1H), 4.85 - 4.74 (m, 1H), 3.86 (s, 3H), 2.75 (td, J = 7.2, 6.2, 2.3 Hz, 2H), 2.42 - 2.30 (m, 1H), 2.19 (m, 1H), 1.55 (s, 9H).
Methyl ether MM-2-15 was subjected to the general procedure for nitroalkyne reduction: Nitroalkyne MM-2-15 (12.8 mg, 0.025 mmol), Pearlman's catalyst (10 mg) and EtOAc (1 mL) hydrogenated for 3 hours. Filtration and concentration produced 7.8 mg (64%) of the aniline product which was not further purified. 1H NMR (500 MHz, CDCl$_3$) δ 7.51 (d, J = 2.1 Hz, 1H), 7.46 (dd, J = 8.2, 2.2 Hz, 1H), 7.32 - 7.28 (m, 2H), 7.23 - 7.17 (m, 3H), 7.12 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.64 (d, J = 8.3 Hz, 1H), 6.53 (d, J = 7.7 Hz, 1H), 4.79 (td, J = 7.6, 5.0 Hz, 1H), 3.79 (br s, 5H), 2.90 (dd, J = 9.4, 6.4 Hz, 2H), 2.82 - 2.62 (m, 4H), 2.35 - 2.24 (m, 1H), 2.14 - 2.06 (m, 1H), 1.52 (s, 9H). HRMS (ESI-TOF) m/z calcd for C$_{30}$H$_{37}$N$_2$O$_4$ [M+H]$^+$ 489.2748, found 489.2751.
Aniline \(\text{MM-2-18} \) (255 mg, 0.404 mmol), HOAt (61 mg, 0.445 mmol, 1.10 equiv) and Boc-Phe-OH (107 mg, 0.404 mmol, 1.00 equiv) were dissolved in anhydrous DMF (1.35 mL) at room temperature. 2,6-Lutidine (0.190 mL, 1.62 mmol, 4.00 equiv) and EDCI·HCl (81 mg, 0.424 mmol, 1.10 equiv) were added, and the mixture was stirred for 48 hours. After dilution with EtOAc (10 mL), the mixture was washed with 0.1 N HCl (10 mL) and saturated NaHCO\(_3\) (5 mL). The organic phase was washed with brine, dried over Na\(_2\)SO\(_4\), decanted and concentrated. Flash chromatography (SiO\(_2\), 25% EtOAc/hexanes) gave 226 mg (64%) of the amide product.
Amide MM-1-379 (226 mg, 0.257 mmol) was dissolved in anhydrous THF (1.5 mL). TBAF (1.00 mL, 1.00 mmol, 4.00 equiv) was added dropwise, and the mixture was stirred for 1.5 hours at room temperature. The mixture was diluted with EtOAc (10 mL) and washed with H₂O (10 mL) and brine (10 mL). The aqueous phase was extracted once with EtOAc (10 mL), and the combined extracts were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 40% EtOAc/hexanes) afforded 141 mg (76%) of the phenolic product.

Carboxylic Acid Analogues

General Procedure for tert-Butyl Ester Cleavage

Representative procedure:
Neoseptin-3 (4.0 mg, 0.015 mmol, 1.00 equiv) was dissolved in 4 N HCl (200 µL, 0.800 mmol, approx. 54 equiv) in a 0.5 dram scintillation vial, and stirred for 8 hours, after which the t-butyl ester was observed by LCMS to have been completely consumed. Concentration of the solvent provided 3.5 mg (99%) of the carboxylic acid product.
The general procedure for t-butyl ester cleavage was followed: ortho-Amine MM-2-14 (18.5 mg, 0.039 mmol, 1.00 equiv) in 4 N HCl (500 µL, 2.00 mmol, approx. 50 equiv) provided 12.9 mg (80%) of the carboxylic acid product. HRMS (ESI-TOF) m/z calcd for C_{25}H_{37}N_{2}O_{4} [M+H]^+ 419.1965, found 419.1963.

The general procedure for t-butyl ester cleavage was followed: meta-Amine MM-1-500 (6.7 mg, 0.014 mmol, 1.00 equiv) in 4 N HCl (250 µL, 2.00 mmol, approx. 50 equiv) gave 6.0 mg (99%) of the
carboxylic acid product. HRMS (ESI-TOF) m/z calcd for C_{25}H_{17}N_{2}O_{4} [M+H]^{+} 419.1965, found 419.1971.

(MM-2-456) The general procedure for nitroaryl alkyne reduction was followed: Nitroalkyne MM-1-454 (13 mg, 0.029 mmol), EtOAc (1.00 mL), Pearlman’s catalyst (10 mg) were employed. Preparative thin-layer chromatography (SiO₂, 20% EtOAc/hexanes) gave 8.0 mg (62%) of the fully reduced product. ^1H NMR (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 1H), 7.31 – 7.22 (m, 4H), 7.15 (d, J = 7.2 Hz, 2H), 6.97 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.71 (dd, J = 9.6, 8.4 Hz, 3H), 6.52 (d, J = 7.8 Hz, 1H), 4.75 (d, J = 5.9 Hz, 1H), 2.89 – 2.76 (m, 4H), 2.74 – 2.59 (m, 2H), 2.50 (m, 2H), 2.37 – 2.18 (m, 1H), 2.05 (d, J = 7.1 Hz, 1H), 1.48 (s, 9H).
The general procedure for t-butyl ester cleavage was followed: t-Butyl ester \(XX \) (3.6 mg, 0.007 mmol, 1.00 equiv) in 4 N HCl (100 µL, 0.400 mmol, approx. 57 equiv) provided 3.2 mg (99%) of the carboxylic acid product.

The general procedure for t-butyl ester cleavage was followed: o-Phenol \(MM-1-443 \) (1.3 mg, 0.003 mmol, 1.00 equiv) in 4 N HCl (100 µL, 0.400 mmol, approx. 266 equiv) gave 1.2 mg (99%) of the carboxylic acid product.
(MM-1-461) The general procedure for t-butyl ester cleavage was followed: m-Phenol MM-1-442 (5.2 mg, 0.003 mmol, 1.00 equiv) in 4 N HCl (100 µL, 0.400 mmol, approx. 364 equiv) afforded 4.6 mg (99%) of the carboxylic acid product.

(MM-1-464) The general procedure for t-butyl ester cleavage was followed: t-Butyl ester MM-1-460 (4.5 mg, 0.010 mmol, 1.00 equiv) in 4 N HCl (100 µL, 0.400 mmol, about 41 equiv) provided 3.2 mg (80%) of the carboxylic acid product.
The general procedure for t-butyl ester cleavage was followed: t-Butyl ester MM-2-18 (3.0 mg, 0.006 mmol, 1.00 equiv) in 4 N HCl (500 µL, 2.00 mmol, approx. 333 equiv) gave 2.5 mg (93%) of the carboxylic acid product.

The general procedure for t-butyl ester cleavage was followed: t-Butyl ester MM-1-403 (2.7 mg, 0.006 mmol, 1.00 equiv) in 4 N HCl (200 µL, 0.800 mmol, approx. 133 equiv) gave 1.5 mg (65%) of the carboxylic acid product. HRMS (ESI-TOF) m/z calcd for $C_{25}H_{23}N_2O_4$ [M+H] $^+$ 415.1652, found 415.1661.
The general procedure for t-butyl ester cleavage was followed: t-butyl ester MM-1-429 (2.2 mg, 0.004 mmol, 1.00 equiv) in 4 N HCl (200 µL, 0.800 mmol) gave 2.0 mg (99%) of the carboxylic acid product. HRMS (ESI-TOF) m/z calcd for C_{16}H_{22}N_{2}O_{5} [M+H]^+ 449.2071, found 449.2072.

The general procedure for t-butyl ester cleavage was followed: t-butyl ester MM-1-430 (2.2 mg, 0.004 mmol, 1.00 equiv) in 4 N HCl (200 µL, 0.800 mmol) gave 1.9 mg (99%) of the
carboxylic acid product. HRMS (ESI-TOF) m/z calcd for C$_{27}$H$_{31}$N$_2$O$_5$ [M+H]$^+$ 463.2227, found 463.2230.

The general procedure for t-butyl ester cleavage was followed: t-butyl ester MM-1-430 (2.0 mg, 0.005 mmol, 1.00 equiv) in 4 N HCl (200 µL, 0.800 mmol) gave 1.7 mg (99%) of the carboxylic acid product. HRMS (ESI-TOF) m/z calcd for C$_{23}$H$_{23}$N$_2$O$_4$ [M+H]$^+$ 391.1652, found 391.1658.

The general procedure for t-butyl ester cleavage was followed: t-butyl ester MM-1-89 (6.2 mg, 0.013 mmol, 1.00 equiv) in 4 N HCl (200 µL, 0.800 mmol) gave 5.5 mg (99%) of the
carboxylic acid product. HRMS (ESI-TOF) m/z calcd for
\[C_{26}H_{29}N_2O_4 \ [M+H]^+ 433.2122, \] found 433.2130.

\[\text{Boc-carbamate MM-1-379 (7 mg, 0.010 mmol) was dissolved in 4 N } \text{HCl (0.200 mL, 0.800 mmol, approx 80 equiv). The solution was stirred for 6 hours, then concentrated under a stream of } \text{N}_2 \text{ to reveal 5 mg (86%) of the amino acid as the HCl salt.} \]

Linker Analogues

\[\text{Nitroalkyne MM-1-466 (800 mg, 1.60 mmol, 1.00 equiv) was dissolved in acetone} \]
at room temperature. Zinc nanopowder (1.57 g, 23.4 mmol, 15.0 equiv) was suspended in the medium, and the mixture was stirred vigorously. Sat. NH₄Cl (12 mL) was added slowly, resulting in a zinc salt precipitate, accompanied by a lightening of the reaction mixture from dark red to pale yellow. After 15 minutes, the reaction mixture was filtered through a cotton plug and diluted with EtOAc (50 mL). The organic phase was washed with sat. NaHCO₃ (30-50 mL) and the aqueous phase extracted with EtOAc (2 x 30 mL). The combined extracts were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 40 to 50% EtOAc/hexanes) gave 463 mg (62%) of the aniline product. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 2.1 Hz, 1H), 7.55 (dd, J = 8.5, 2.2 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.30 (m, 2H), 7.23 - 7.16 (m, 3H), 6.87 (d, J = 8.6 Hz, 2H), 6.71 (d, J = 8.5 Hz, 1H), 6.60 (d, J = 7.6 Hz, 1H), 4.59 (ddd, J = 7.9, 6.7, 5.1 Hz, 1H), 2.83 - 2.55 (m, 2H), 2.35 - 2.25 (m, 1H), 2.23 - 2.08 (m, 1H), 1.53 (s, 9H). HRMS (ESI-TOF) m/z calcd for C₂₃H₃₁N₂O₄ [M+H]⁺ 471.2278, found 471.2270.

![TIPS-TIPSO](image)

(188) TIPS0 iodide MM-1-58 (700 mg, 1.86 mmol) was dissolved in anhydrous THF (9 mL) and cooled to -78 °C. n-BuLi (0.89 mL, 2.23 mmol, 2.5 M in hexanes) was added dropwise. After 30 minutes, triisopropyl borate (0.86 mL, 3.72 mmol, 2.00 equiv) was added. After an additional 20 minutes, the cold bath was removed, and the mixture was stirred for 1 hours. 2 N HCl (10 mL) was added slowly, and the
mixture was diluted and extracted with EtOAc (2 x 10 mL). The combined organic phases were washed with sat. aqueous NaCl, dried over Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 40% EtOAc/hexanes) gave 523 mg (96%) of the aryl boronic acid as a white solid.

![Diagram](image)

(MM-1-190) Aryl boronic acid MM-1-188 (300 mg, 1.00 mmol) and aryl triflate MM-1-69 (272 mg, 0.820 mmol, 0.800 equiv) were dissolved in anhydrous 1,2-DME (4 mL). The yellow reaction solution was sparged 15 min with N$_2$. Pd(PPh$_3$)$_4$ (120 mg, 0.100 mmol, 0.100 equiv) was added, followed by K$_3$PO$_4$ (145 mg, 0.700 equiv) as a solution in H$_2$O (1 mL). A condenser was attached to the reaction vessel, and the reaction medium heated to 85 °C under N$_2$ atmosphere. After 1.5 hours, the mixture was cooled to room temperature and diluted with EtOAc (25 mL). The organic phase was washed with sat. NH$_4$Cl (10 mL) and the aqueous phase extracted with EtOAc. The combined extracts were dried over Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 10% EtOAc/hexanes) gave 345 mg (98%) of the Suzuki-coupling product. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (d, $J = 1.8$ Hz, 1H), 8.09 (dd, $J = 8.4$, 1.9 Hz, 1H), 7.81 (d, $J = 8.4$ Hz, 1H), 7.21 (d, $J = 8.6$ Hz, 2H), 6.95 (d, $J = 8.6$ Hz, 2H), 3.98 (s, 3H), 1.29 (m, 3H), 1.13 (d, $J = 7.4$ Hz, 18H).
Suzuki-coupling product MM-1-190 (335 mg, 0.78 mmol) was dissolved in t-BuOH/H\textsubscript{2}O (2 mL ea.). LiOH \textendash H\textsubscript{2}O (36 mg, 0.85 mmol, 1.10 equiv) was added, and the suspension stirred vigorously for 2 hours. The reaction was quenched with 0.1 N HCl (about 10 mL), which was continuously added until the carboxylic acid was observed to precipitate. The mixture was diluted with EtOAc (10 mL) and extracted (3 \times 5 mL), dried over Na\textsubscript{2}SO\textsubscript{4}, decanted and concentrated to give 273 mg (84\%) of the biaryl carboxylic acid.

The general procedure for amine coupling with acid was followed: biaryl carboxylic acid MM-1-191 (100 mg, 0.241 mmol, 1.00 equiv), hoPhe-OtBu (57 mg, 0.241 mmol, 1.00 equiv), HOAt (36 mg, 2.65 mmol, 1.10 equiv), 2,6-lutidine (0.140 mL, 1.20 mmol, 5.00 equiv) and EDCI-HCl (48 mg, 0.253...
mmol, 1.05 equiv) were employed. Flash chromatography (SiO$_2$, 25% EtOAc/hexanes) afforded 142 mg (93%) of the amide product. 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, $J = 8.2$ Hz, 1H), 7.78 - 7.72 (m, 1H), 7.73 (d, $J = 1.5$ Hz, 1H), 7.29 (t, $J = 7.3$ Hz, 2H), 7.26 - 7.18 (m, 5H), 7.16 (d, $J = 7.8$ Hz, 1H), 7.02 - 6.95 (m, 2H), 6.90 (d, $J = 7.8$ Hz, 1H), 4.83 (dd, $J = 6.9$, 2.2 Hz, 1H), 4.16 (dd, $J = 7.0$, 1.3 Hz, 1H), 2.78 (t, $J = 7.7$ Hz, 2H), 2.37 (d, $J = 8.0$ Hz, 1H), 2.26 - 2.13 (m, 1H), 1.40 - 1.25 (m, 3H), 1.17 (d, $J = 7.4$ Hz, 18H).

(MM-1-195) The general procedure for hydrogenation was employed: Nitroarene MM-1-192 (142 mg, 0.224 mmol), Pd/C (27 mg, 10% by wt. on carbon) in EtOAc (2 mL). After 3 hours, the mixture was filtered through sand/Celite and concentrated to give 132 mg (98%) of the aniline. The product was used directly in the next step without further purification.
Aniline MM-1-195 (23 mg, 0.036 mmol) was dissolved in TBAF solution (100 µL, 0.100 mM, 2.75 equiv, 1 M in THF) at room temperature. After stirring 2 hours, the mixture was diluted with EtOAc (5 mL) and washed with Ñ0 (5 mL) and sat. aqueous NaCl (2 mL). The aqueous phase was extracted once with EtOAc (5 mL) and the combined extracts were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 50% EtOAc/hexanes) afforded 10 mg (63%) of the free phenol. ¼ NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.4, 2.2 Hz, 1H), 7.35 - 7.19 (m, 7H), 7.01 (d, J = 8.3 Hz, 2H), 6.77 (d, J = 8.5 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 4.89 (td, J = 7.1, 5.1 Hz, 1H), 4.20 (br s, 2H), 2.79 (m, 2H), 2.37 (td, J = 9.5, 5.2 Hz, 1H), 2.17 (ddd, J = 10.4, 7.6, 4.9 Hz, 1H), 1.59 (s, 9H). HRMS (ESI-TOF) m/z calcd for C₁₇H₁₇N₂O₄ [M+H]⁺ 447.2278, found 447.2277.

4-((2-Bromoethyl)phenol (1.00 g, 4.97 mmol, 1.00 equiv) was dissolved in anhydrous CH₂Cl₂ (30 mL) at room temperature. Imidazole (360
mg, 5.22 mmol, 1.05 equiv) was added in one portion. Upon dissolution of the base, TIPSC1 (1.06 mL, 4.97 mmol, 1.00 equiv) was added dropwise. After 16 hours, the mixture was washed with sat. NH₄Cl (20 mL) and H₂O (10 mL). The aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL), and the combined extracts were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 5% EtOAc/hexanes) gave 1.75 g (99%) of the silyl ether. ¹H NMR (300 MHz, CDC1₃) δ 7.06 (d, J = 8.3 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 3.53 (t, J = 7.8 Hz, 2H), 3.09 (t, J = 7.8 Hz, 1H), 1.29 - 1.20 (m, 3H), 1.11 (d, J = 7.0 Hz, 18H).

TIPSO- \overset{\text{I}}{\text{C}}

(125) (MM-1-82) Alkyl bromide MM-1-73 (800 mg, 2.24 mmol) was dissolved in acetone at room temperature. Sodium iodide (1.67 g, 11.2 mmol, 5.00 equiv) was added in one portion. The reaction vessel covered in aluminum foil, and the mixture was vigorously stirred for 36 hours. Et₂O (30 mL) was added, and the organic phase was washed with H₂O (30 mL). The aqueous phase was extracted with Et₂O (3 × 10 mL), and the combined extracts dried over Na₂SO₄, decanted and concentrated to give 875 mg (97%) of the alkyl iodide, which was used without further purification. ¹H NMR (300 MHz, CDC1₃) δ 7.03 (d, J = 8.1 Hz, 2H), 6.85 - 6.80 (d, J = 8.1 Hz, 2H), 3.35 - 3.26 (t, J = 7.9 Hz, 2H), 3.10 (t, J = 7.9 Hz, 2H), 1.27 - 1.19 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H).
In a two-neck round-bottomed (r.b.) flask equipped with condenser, alkyl iodide MM-1-82 (800 mg, 1.98 mmol) was dissolved in acetonitrile (3 mL). Triphenylphosphine (570 mg, 1.1 equiv) was added, and the reaction mixture was heated to 85 °C. After 16 hours, the mixture was cooled to room temperature and reconcentrated from CH₂Cl₂ (3 x 20 mL) to afford the phosphonium salt (1.30 g, 99%) as a sticky white foam.

Wittig salt X MM-1-82 (1.20 g, 1.80 mmol, 1.2 equiv) was dissolved in anhydrous THF (6 mL) and cooled to 0 °C. Freshly prepared lithium diisopropylamide (LDA; 6 mL, 2.10 mmol, 1.4 equiv, 0.35 M in THF) was added dropwise, producing a brilliant orange solution. After 30 minutes, methyl 3-formyl-4-nitrobenzoate (314 mg, 1.50 mmol, 1.00 equiv) was added dropwise as a solution in anhydrous THF (2 mL). After 1 hour, the reaction was quenched with H₂O (25 mL) and diluted with Et₂O (25 mL). The aqueous phase was extracted with Et₂O (3 x 20 mL), dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 10% EtOAc/hexanes) afforded 561 mg (66%) of the alkene product as a 3:1 mixture of Z/E isomers. ¹H NMR (z, major isomer, 300 MHz, CDCl₃) δ 8.04 (dd, J = 2.5, 1.7 Hz, 1H), 8.02 - 7.96 (m, 1H), 6.94 (d, J = 8.6 Hz, 2H), 6.79 (d, J = 11.4 Hz, 1H).
(MM-1-86) Methyl ester **MM-1-85** (500 mg, 1.06 mmol) was dissolved in a 4:1:1 mixture of THF/MeOH/H_2O (12 mL total). LiOH «H_2O (180 mg, 4.25 mmol, 4.00 equiv) was added in one portion. After 30 minutes, 1 N HCl (5 mL) was added, followed by 0.1 N HCl until the reaction pH = 3, whereupon the product was observed to precipitate. The aqueous phase was extracted with EtOAc (3 × 25 mL) and the combined extracts were washed with sat. aqueous NaCl, dried over Na_2SCl_2, decanted and concentrated to give 480 mg (99%) of the carboxylic acid lacking the silyl ether.

(MM-1-87) The general procedure for amine coupling with acid was followed: alkene carboxylic
acid MM-1-86 (300 mg, 0.66 mmol, 1.00 equiv), HoPhe-OtBu (155 mg, 0.66 mmol, 1.00 equiv), HOAt (99 mg, 0.72 mmol, 1.10 equiv), 2,6-lutidine (0.385 mL, 3.29 mmol, 5.00 equiv) and EDCI'HCl (133 mg, 0.69 mmol, 1.05 equiv) were employed. Flash column chromatography (SiO₂, 20% EtOAc/hexanes) afforded 292 mg (86%) of the amide product. \(^1\)H NMR \(\delta\) 8.03 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 1.9 Hz, 1H), 7.72 (dd, J = 8.4, 1.9 Hz, 1H), 7.41 - 7.19 (m, 5H), 7.11 (d, J = 7.9 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 11.4 Hz, 1H), 6.81 (d, J = 8.5 Hz, 2H), 6.08 (dt, J = 11.4, 7.5 Hz, 1H), 4.85 (td, J = 7.4, 3.5 Hz, 1H), 3.44 - 3.33 (m, 2H), 2.88 - 2.73 (q, 2H), 2.38 (ddd, J = 13.2, 9.4, 5.3 Hz, 1H), 2.22 (dd, J = 14.6, 7.4 Hz, 1H), 1.61 (s, 9H).

(MM-1-89) The general procedure for hydrogenation with Pearlman's catalyst was followed: Nitroalkene MM-1-87 (150 mg, 0.290 mmol), Pd(OH)₂ (50 mg, 20% Pd by wt.) in EtOAc (5 mL). Filtration, concentration and flash chromatography (SiO₂, 40 → 50% EtOAc/hexanes) afforded 115 mg (81%) of the fully reduced aniline product. \(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 7.59 (d, J = 2.1 Hz, 1H), 7.49 (dd, J = 8.3, 2.1 Hz, 1H), 7.39 - 7.20 (m, 5H), 7.05 (d, J = 8.4 Hz, 2H),
6.93 (d, J = 7.9 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H),
6.62 (d, J = 8.3 Hz, 1H), 4.90 (d, J = 5.3 Hz, 1H),
3.99 (s, 2H), 2.81 (dd, J = 7.0, 2.8 Hz, 1H), 2.63
(t, J = 7.4 Hz, 2H), 2.52 - 2.42 (m, 2H), 2.37 (tdd,
J = 11.7, 5.7, 3.5 Hz, 1H), 2.28 - 2.16 (m, 1H), 1.96
- 1.82 (m, 2H), 1.60 (s, 9H). HRMS (ESI-TOF) m/z
calcd for \textbf{C30H37N2O4} [M+H]^+ 489.2748, found 489.2753.

\begin{center}
\textbf{(MM-1-2 2) 3-Hydroxy-4-nitrobenzoic acid}
\end{center}

(272 mg, 1.49 mmol), HoPhe-OtBu (350 mg, 1.49 mmol,
1.00 equiv) and HOAt (223 mg, 1.64 mmol, 1.10 equiv)
were combined in a 25 mL round bottom flask with stir
bar. Anhydrous DMF (8 mL) and 2,6-lutidine (0.87 mL,
7.44 mmol, 5.00 equiv) were added, and the mixture
was stirred until dissolution of the reagents.
EDCI'HCl (300 mg, 1.56 mmol, 1.05 equiv) was added,
and the mixture stirred for 4 hours, then diluted
with EtOAc (30 mL). The organic phase was washed
with 1 N HCl (3 x 15 mL), then washed with H\textsubscript{2}O (10 mL)
and sat. aqueous NaCl (20 mL). After drying with
Na\textsubscript{2}SO\textsubscript{4}, the organic phase was decanted and
concentrated. Flash chromatography (SiO\textsubscript{2}, 15 → 30%
EtOAc/hexanes) provided 180 mg (30%) of the coupled
amide. 1H NMR (300 MHz, CDCl\textsubscript{3}) \(\delta\): 10.55 (s, 1H), 8.15
(dd, J = 8.8, 0.7 Hz, 1H), 7.42 (dd, J = 1.9, 0.7 Hz,
1H), 7.36 - 7.16 (m, 5H), 6.70 (d, J = 7.6 Hz, 1H),
An oven dried 50 mL round bottom flask equipped with stir bar was charged with NaH (80 mg, 60% dispersion in mineral oil). THF (5 mL) was added, and the mixture cooled to 0 °C. 4- (3-Hydroxypropyl) phenol (300 mg, 1.97 mmol) was added dropwise as a solution in THF (4 mL + 1 mL rinse). After effervescence ceased, the mixture was warmed to room temperature, and an additional 5 mL THF was added. After 1 hour at room temperature, TBSCl (312 mg, 2.07 mmol, 1.05 equiv) was added, and the mixture was allowed to stir for an additional hour, whereupon the mixture was diluted with Et₂O (15 mL). The ethereal phase was washed with sat. NH₄Cl (10 mL) and H₂O (5 mL). The aqueous phase was extracted with Et₂O (3 × 15 mL), and the combined extracts were dried over sat. aqueous NaCl (10 mL), Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 30% EtOAc/hexanes) gave 377 mg (72%) of the silyl ether.

^1H NMR (300 MHz, CDCl₃) δ 7.05 (s, J = 8.4 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 3.67 (m, 2H), 2.64 (dd, J = 8.5, 6.8 Hz, 2H), 1.95 - 1.79 (m, 2H), 0.99 (s, 9H), 0.20 (s, 6H).

TBS-ether MM-1-28 (200 mg, 0.751 mmol) and triphenylphosphine (197 mg, 0.751 mmol, TBS-ether MM-1-28 (200 mg, 0.751 mmol) and triphenylphosphine (197 mg, 0.751 mmol,
1.00 equiv) were dissolved in anhydrous CH$_2$Cl$_2$ (4 mL). After cooling to 0 °C, imidazole (61 mg, 0.901 mmol, 1.20 equiv) was added, and the mixture stirred until dissolution of the base. Iodine (200 mg, 0.788 mmol, 1.05 equiv) was added dropwise as a solution in CH$_2$Cl$_2$ (4 mL). Upon complete addition of the iodine, the reaction mixture maintained an orange color. After 20 minutes at 0 °C, the reaction was quenched with Na$_2$S$_2$O$_3$ * 5H$_2$O (5 mL, 10% w/v). The aqueous phase was extracted once with CH$_2$Cl$_2$ (5 mL), and the combined organic phases were washed with sat. aqueous NaCl (5 mL), dried over Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 10% EtOAc/hexanes) gave 229 mg (81%) of the alkyl iodide. ¹H NMR (300 MHz, CDC$_1_3$) δ 7.08 - 7.02 (m, 2H), 6.80 - 6.73 (m, 2H), 3.17 (t, J = 6.8 Hz, 2H), 2.66 (t, J = 6.8 Hz, 2H), 2.11 (p, J = 6.8 Hz, 2H), 0.99 (s, 9H), 0.20 (s, 6H).

((MM-1-31)) A 50 mL round bottom flask equipped with reflux condenser was charged with 4-(4-methoxyphenyl) butanoic acid (5.00 g, 25.7 mmol). Aqueous HBr (48% solution, approx 6 mL) was added. A tygon line was fed from the top of the condenser to the rear of the fume hood, to allow for complete exhaust of the HBr. The reaction mixture was heated to reflux for 6 hours. After cooling to about 50 °C, the mixture was poured into chilled H$_2$O (45 mL), causing immediate precipitation of the product as white solid needles. After 1 hour at 0 °C, the mixture was vacuum filtered and the needles collected, affording 3.86 g (83%) of the phenolic
product. \(^1H \) NMR (300 MHz, Acetone-\(d_6 \)) \(\delta \): 10.48 (s, 1H), 8.07 (s, 1H), 7.07 - 6.99 (m, 2H), 6.79 - 6.71 (m, 2H), 2.60 - 2.50 (m, 2H), 2.29 (t, \(J = 7.4 \) Hz, 2H), 1.92 - 1.77 (m, 2H).

\(\text{(MM-1-34)} \) Carboxylic acid \textbf{MM-1-31} (1.00 g, 5.55 mmol) was dissolved in anhydrous THF (10 mL) and cooled to 0 °C. Lithium aluminum hydride (1.0 M in THF, 12 mL) was added dropwise. An additional 15 mL THF was added, and the heterogeneous mixture was heated to reflux. After 2 hours, the mixture was cooled to room temperature and allowed to stir overnight (about 19 hours). Fieser workup: \(H_2O \) (1 mL), aqueous NaOH (15% w/v, 1 mL) and \(H_2O \) (3 mL) were respectively added. After 20 minutes, the mixture was filtered, and the \(Al_2O_3 \) filter cake was washed with \(Et_2O \) (3 X 50 mL), and the ethereal phase concentrated to give 700 mg (76%) of the primary alcohol. \(^1H \) NMR (300 MHz, Acetone-\(d_6 \)) \(\delta \): 8.07 (s, 1H), 7.01 (d, \(J = 8.5 \) Hz, 2H), 6.74 (d, \(J = 8.5 \) Hz, 2H), 3.56 (t, \(J = 6.3 \) Hz, 2H), 2.52 (t, \(J = 7.4 \) Hz, 2H), 1.55 (m, 4H).

\(\text{(MM-1-35)} \) An oven dried 100 mL round bottom flask equipped with stir bar was charged with NaH (145 mg, 60% dispersion in mineral oil). THF (10 mL) was added, and the mixture cooled to 0 °C. Primary alcohol \textbf{MM-1-34} (600 mg, 3.61 mmol) was added
dropwise as a solution in THF (6 mL + 2 mL rinse). After effervescence ceased, the mixture was warmed to room temperature, and an additional 6 mL THF was added. After 1 hour at room temperature, TBSCl (570 mg, 3.79 mmol, 1.05 equiv) was added, and the mixture was stirred for an additional hour, whereupon the mixture was diluted with Et$_2$O (30 mL). The ethereal phase was washed with sat. NH$_4$Cl (20 mL) and H$_2$O (10 mL). The aqueous phase was extracted with Et$_2$O (3 x 20 mL), and the combined ether extracts were dried over sat. aqueous NaCl (20 mL), Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 30% EtOAc/hexanes) gave 412 mg (41%) of the silyl ether.

1H NMR (300 MHz, CDCl$_3$) δ 7.07 - 7.00 (m, 2H), 6.78 - 6.73 (m, 2H), 3.66 (t, J = 6.1 Hz, 2H), 2.58 (t, J = 7.2 Hz, 2H), 1.74 - 1.53 (m, 2H), 0.99 (s, 9H), 0.19 (s, 6H).

(TBS-ether MM-1-36) TBS-ether MM-1-35 (300 mg, 1.07 mmol) and triphenylphosphine (281 mg, 1.07 mmol, 1.00 equiv) were dissolved in anhydrous CH$_2$Cl$_2$ (6 mL). After cooling to 0 °C, imidazole (87 mg, 1.28 mmol, 1.20 equiv) was added, and the mixture stirred until dissolution of the base. Iodine (285 mg, 1.12 mmol, 1.05 equiv) was added dropwise as a solution in CH$_2$Cl$_2$ (4 mL). Upon complete addition of the iodine, the reaction mixture maintained an orange color. After 20 minutes at 0 °C, the reaction was quenched with Na$_2$S$_2$O$_3$·5H$_2$O (8 mL, 10% w/v). The aqueous phase was extracted once with CH$_2$Cl$_2$ (10 mL), and the combined organic phases were washed with sat. aqueous NaCl...
mL), dried over Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 10% EtOAc/hexanes) gave 343 mg (82%) of the alkyl iodide.

(***-1-427) Arylnitro phenol ***-1-22 (30 mg, 0.075 mmol) and alkyl iodide ***-1-27 (30 mg, 0.080 mmol, 1.05 equiv) were dissolved in anhydrous DMF (0.375 mL). K$_3$CO$_3$ (31 mg, 0.225 mmol, 3.00 equiv) was added, and the heterogeneous mixture was stirred overnight (about 18 hours), after which the reaction mixture had changed from orange to yellow. The mixture was diluted with EtOAc (5 mL) and washed with sat. NH$_4$Cl (5 mL). The organic phase was dried over Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 25% EtOAc/hexanes) yielded 32 mg (67%) of the S_{N2} alkylation product.
Arylnitrophenol MM-1-22 (30 mg, 0.075 mmol) and alkyl iodide MM-1-35 (31 mg, 0.080 mmol, 1.05 equiv) were dissolved in anhydrous DMF (0.375 mL). K$_2$CO$_3$ (31 mg, 0.225 mmol, 3.00 equiv) was added, and the heterogeneous mixture was stirred overnight, after which the reaction mixture had changed from orange to yellow. The mixture was diluted with EtOAc (5 mL) and washed with sat. NH$_4$Cl (5 mL). The organic phase was dried over Na$_2$SO$_4$, decanted and concentrated. Flash chromatography (SiO$_2$, 25% EtOAc/hexanes) yielded 36 mg (72%) of the S_N2 alkylation product.
(MM-1-429) Nitroarene MM-1-427 (20 mg, 0.0308 mmol) was dissolved in acetone (0.5 mL). Zinc nanopowder (30 mg, 0.462 mmol, 15 equiv) was suspended in the medium and vigorous stirring was applied. Sat. NH₄Cl (0.1 mL) was added dropwise, producing a precipitate of zinc salts. After 20 minutes, the mixture was diluted with EtOAc (10 mL) and filtered through a 1 cm plug of Celite, washing with EtOAc. The filtrate was washed with sat. NaHCO₃ (5 mL), and the organic phase was dried over Na₂SO₄, decanted and concentrated. The resulting residue was dissolved in TBAF (0.200 mL, 1 M in THF). After 20 minutes, the mixture was diluted again with EtOAc (10 mL) and washed with H₂O (10 mL). After drying over Na₂SO₄, the extracts were decanted and concentrated. Flash chromatography (SiO₂, 40% EtOAc/hexanes) gave 11 mg (71%) of the desired product as a white foam.

¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.23 (m, 2H), 7.19 (d, J = 6.9 Hz, 3H), 7.11 (dd, J = 8.1, 1.8 Hz, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.1 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 4.79 (td, J = 7.1, 5.1 Hz, 1H), 4.24 - 4.05 (br s, 2H), 4.01 (t, J = 6.2 Hz, 2H), 2.71 (m, 4H), 2.34 - 2.22 (m, 1H), 2.15 - 2.01 (m, 3H), 1.52 (s, 9H). HRMS (ESI-TOF) m/z calcd for C₃H₃N₂O₅ [M+H]⁺ 505.2697, found 505.2694.
Nitroarene MM-1-428 (22 mg, 0.0332 mmol) was dissolved in acetone (0.5 mL). Zinc nanopowder (33 mg, 0.462 mmol, 15 equiv) was suspended in the medium and vigorous stirring was applied. Saturated NH₄Cl (0.1 mL) was added dropwise, producing a ppt. of zinc salts. After 20 minutes, the mixture was diluted with EtOAc (10 mL) and filtered through a 1 cm plug of Celite, washing with EtOAc. The filtrate was washed with sat. NaHCO₃ (5 mL), and the organic phase was dried over Na₂SO₄, decanted and concentrated. The resulting residue was dissolved in TBAF (0.200 mL, 1 M in THF). After 20 minutes, the mixture was diluted again with EtOAc (10 mL) and washed with H₂O (10 mL). After drying over Na₂SO₄, the extracts were decanted and concentrated. Flash chromatography (SiO₂, 40% EtOAc/hexanes) gave 13 mg (76%) of the desired product as a white foam.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 2.0 Hz, 1H), 7.34 (dd, J = 5.6, 2.0 Hz, 2H), 7.26 (dd, J = 7.8, 1.6 Hz, 3H), 7.16 (dd, J = 8.1, 1.8 Hz, 1H), 7.07 (d, J = 8.3 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 6.71 (t, J = 8.4 Hz, 2H), 4.86 (td, J = 7.1, 5.2 Hz, 1H), 4.19 (br s, 2H), 4.00 (t, J = 6.3 Hz, 2H), 2.90 – 2.69 (m, 2H), 2.63 (t, J = 7.4 Hz, 2H), 2.42 – 2.30 (m, 1H), 2.22
2.10 \(\text{m, 1H} \), 1.91 - 1.71 \(\text{m, 4H} \), 1.59 \(\text{s, 9H} \). HRMS (ESI-TOF) \(m/z \) calcd for \(C_{31}H_{39}N_2O_5 \) [M+H]+ 519.2853, found 519.2857.

\[
\begin{array}{c}
\text{O}_2\text{N} \\
\text{CO}_2\text{Me}
\end{array}
\]

\text{(MRS-3-49) Methyl 3-formyl-4-nitrobenzoate}

(1.20 g, 5.73 mmol) was dissolved in MeOH (10 mL) and cooled to 0 °C. Sodium borohydride (69 mg, 1.72 mmol) was added in one portion, and the reaction mixture was stirred for 20 minutes. The reduction was quenched with 1 N HCl (10 mL) and the methanol portion evaporated in vacuo. The aqueous phase was extracted with CH\(_2\)Cl\(_2\) (3 \times 10 mL) to afford 1.06 g of benzylic alcohol, which was used without further purification .

\[
\begin{array}{c}
\text{O}_2\text{N} \\
\text{CO}_2\text{Me}
\end{array}
\]

\text{(MRS-3-53) Benzylic alcohol MRS-3-49 (1.06 g, 5.35 mmol) was dissolved in Et\(_2\)O (15 mL) and cooled to 0 °C. Phosphorus tribromide (0.254 mL, 2.67 mmol) was carefully added dropwise. After 1 hour, the reaction mixture was poured into ice water (50 mL) and extracted with Et\(_2\)O (3 \times 20 mL). The ethereal phases were washed with sat. NaHCO\(_3\) (20 mL), water (10 mL) and sat. aqueous NaCl (10 mL), and dried over Na\(_2\)SO\(_4\). Evaporation of the Et\(_2\)O revealed 440 mg (30%) of the primary alkyl bromide.}
Benzylic bromide MRS-3-49 (150 mg, 0.547 mmol, 1.00 equiv.) and 4-((triisopropylsilyl)oxy) phenol (175 mg, 0.656 mmol, 1.20 equiv) were dissolved in acetone (10 mL). Potassium carbonate (113 mg, 0.820 mmol, 1.50 equiv) was added, and the mixture was heated at reflux overnight (about 18 hours). Evaporation of the solvent and flash chromatography (SiO₂, 5% EtOAc/hexanes) returned 170 mg (68%) of the alkylation product and 50 mg of starting bromide.

TIPS-ether MRS-3-57 (170 mg, 0.370 mmol) was dissolved in THF/MeOH/H₂O (4 mL: 1 mL: 1 mL). LiOH ·H₂O (1.48 mmol, 4.00 equiv) was added in one portion, and the reaction stirred for 1 hour, after which the reaction was observed to be complete.
by TLC. After diluting with H₂O (10 mL), the mixture was washed with Et₂O (10 mL) to remove the silyl alcohol byproduct. The aqueous phase was acidified with 1 N HCl to pH about 1, then extracted with EtOAc (3 x 10 mL). The EtOAc extracts were dried over Na₂SO₄, decanted and concentrated. To the resulting residue, HoPhe-OtBu (122 mg, 0.518 mmol, approx. 1.00 equiv), HOAt (85 mg, 0.622 mmol, 1.20 equiv) and 2,6-lutidine (0.180 mL, 1.55 mmol, 3.00 equiv) were added, and the mixture dissolved in anhydrous DMF (2.5 mL). EDCI'HCl (119 mg, 0.622 mmol, 1.20 equiv) was added, and the reaction stirred overnight (about 18 hours). The mixture was diluted with EtOAc (10 mL) and washed with 0.1 N HCl (10 mL), sat. NaHCO₃ (10 mL) and sat. aqueous NaCl (5-mL). The organic phase was dried over Na₂SO₄, filtered and concentrated to give the coupled amide, which was not further purified.

\[
\text{(MRS-3-73) Arylnitro MRS-3-59 (48 mg, 0.094 mmol) was dissolved in acetone (0.4 mL). Zn nanopowder (62 mg, 0.94 mmol, 10 equiv) was suspended in the mixture with vigorous stirring. Sat. NH₄Cl (0.1 mL) was added slowly. After 20 minutes, the mixture was filtered through cotton, diluted with}
\]

-140-
EtOAc (5 mL) and washed with sat. NaHCO$_3$ (5 mL) and sat. aqueous NaCl (2 mL). Flash chromatography (SiO$_2$, 50% EtOAc/hexanes) afforded 40 mg (91%) of the aniline product. 1H NMR (600 MHz, DMSO-d$_6$) δ 8.22 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 7.4 Hz, 1H), 7.30 – 7.20 (m, 5H), 6.90 (d, J = 7.2 Hz, 2H), 6.80 (d, J = 6.9 Hz, 2H), 5.40 (s, 2H), 4.80 (q, J = 6.4 Hz, 1H), 2.70 – 2.65 (m, 2H), 2.50 – 2.30 (m, 1H), 2.25 – 2.10 (m, 1H), 1.52 (s, 9H); MS-ESI (m/z) calcd for [C$_{28}$H$_3$O$_7$N$_2$O$_7$Na]$^+$ 529.2; found: 529.2.

(MRS-2-53) Methyl-3-formyl-4-nitrobenzoate (500 mg, 2.39 mmol, commercially available from Aldrich) was dissolved in MeOH (12 mL) and cooled to 0 °C. Sodium borohydride (28 mg, 0.700 mmol, 0.3 equiv) was added, and the mixture was stirred for 20 minutes. Water (10 mL) was added and the mixture was warmed to room temperature and diluted with EtOAc (30 mL). After extracting once with EtOAc (15 mL), the combined organic phases were dried over Na$_2$SO$_4$, filtered and concentrated to provide 450 mg (89%) of the benzylic alcohol, which was used without further purification.
(MRS-2-55) Benzylic alcohol MRS-2-53 (615 mg, 2.91 mmol) was dissolved in anhydrous Et₂O (15 mL) and cooled to 0 °C. Phosphorus tribromide (0.138 mL, 1.45 mmol, 0.5 equiv) was slowly added drop-wise to the stirring solution. After 40 minutes at 0 °C, the reaction was quenched with sat. NaHCO₃ (20 mL) and the mixture was diluted with EtOAc. The aqueous phase was extracted once with EtOAc (10 mL), and the combined extracts were dried over Na₂SO₄ and concentrated. Flash chromatography (SiO₂, 25% EtOAc/hexanes) gave 240 mg (30%) of the benzylic bromide.

(MRS-2-497) Benzylic bromide MRS-2-55 (170 mg, 0.620 mmol) and arylboronic acid MM-1-188 (274 mg, 0.930 mmol, 1.50 equiv) were dissolved in acetone/H₂O (3:1, 4 mL). Potassium carbonate (214 mg, 1.55 mmol, 2.50 equiv) and PdCl₂ (5.5 mg, 0.03 mmol, 5 mol%) were added, and the reaction mixture stirred at room temperature for 1 h. The reaction mixture was filtered through Celite, washing with EtOAc, and concentrated. Flash chromatography (SiO₂, 25% EtOAc/hexanes) gave 160 mg (58%) of the cross-coupled product. ¹H NMR (600 MHz, DMSO-d₆) δ 8.20 (d, J = 8.2 Hz, 1H), 7.95 (s, 1H), 7.80 (d, J = 7.4 Hz, 1H), 7.00 (d, J = 7.2 Hz, 2H), 6.65 (d, J = 7.2 Hz, 2H), 4.25 (s, 2H), 3.96 (s, 3H), 1.30 - 1.20 (m, 3H), 1.09 (d, J = 7.1 Hz, 18H); MS-ESI (m/z) calcd for [C₂4H₃₃NO₅Si+H]⁺ 444.2; found: 444.2.
(MRS-2-498) TIPS-ether MM-1-188 (160 mg, 0.360 mmol) was dissolved in THF/MeOH/H₂O (4 mL: 1 mL: 1 mL). LiOH·H₂O (1.44 mmol, 4.00 equiv) was added in one portion, and the reaction stirred for 1 hour, after which the reaction was observed to be complete by TLC. After diluting with H₂O (10 mL), the mixture was washed with Et₂O (10 mL) to remove the silyl alcohol byproduct. The aqueous phase was acidified with 1 N HCl to pH about 1, then extracted with EtOAc (3 × 10 mL). The extracts were dried over Na₂SO₄, decanted and concentrated to give 130 mg of the hydrolyzed product.

(MRS-3-1) Carboxylic acid MRS-2-498 (130 mg, 0.475 mmol) and HoPhe-OtBu (112 mg, 0.475 mmol, 1.00 equiv) were dissolved in anhydrous DMF. HOAt (78 mg, 0.570 mmol, 1.20 equiv), 2,6-lutidine (0.165 mL, 1.42 mmol, 3.00 equiv) and EDCI·HCl (109 mg, 0.570 mmol, 1.20 equiv) were added. After 12 hours,
the reaction mixture was washed with 0.1 N HCl (10 mL) and extracted with EtOAc (3 × 10 mL), dried over Na₂SO₄, filtered and concentrated. Flash chromatography (SiO₂, 25% EtOAc/hexanes) produced 120 mg (51%) of the coupled amide. ¹H NMR (600 MHz, DMSO-d₆) δ 8.15 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.45 (s, 1H), 7.30 - 7.20 (m, 5H), 7.00 (d, J = 7.2 Hz, 2H), 6.60 (d, J = 7.2 Hz, 2H), 4.25 (q, J = 6.4 Hz, 1H), 3.46 (s, 2H), 2.80 (t, J = 7.1 Hz, 2H), 2.70 - 2.50 (m, 2H), 1.45 (s, 9H); MS-ESI (m/z) calcd for [C₂H₃C₃N₂O₆+H]+ 491.2; found: 491.2.

(MRS-3-5) Amide MRS-3-1 (120 mg, 0.244 mmol) was dissolved in acetone/NH₄Cl (4 mL, 1 mL, respectively). Zinc nanopowder (159 mg, 2.44 mmol, 10 equiv) was suspended in the reaction mixture. After vigorous stirring for 1 hour, the reaction mixture was filtered through Celite, diluted with EtOAc (10 mL) and washed with sat. NaHCO₃ (10 mL) and sat. aqueous NaCl (5 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. Flash chromatography (SiO₂, 25% EtOAc/hexanes) gave 90 mg (80%) of the aniline compound. ¹H NMR (600 MHz, DMSO-d₆) δ 9.10 (s, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.45 (s, 1H), 7.40 - 7.25 (m, 5H), 7.00 (d, J = 7.2 Hz, 2H), 6.65 (d, J = 7.4 Hz, 2H),
5.40 (s, 2H), 4.15 (q, J = 6.6 Hz, 1H), 3.46 (s, 2H), 2.85 (t, J = 7.2 Hz, 2H), 2.70 - 2.50 (m, 2H), 1.49 (s, 9H); MS-ESI (m/z) calcd for [C_{28}H_{32}N_{2}O_{4}+H]^+ 461.2; found: 461.2.

4-(((Triisopropylsilyl) oxy) benzenethiol (above) was prepared according to the procedure described by Bubert et al., ChemMedChem, 3:1708 - 1730 (2008).

(MRS-1-500) 4-(((Triisopropylsilyl) oxy) - benzenethiol (710 mg, 2.51 mmol, 0.93 equiv) was dissolved in anhydrous DMF (10 mL) at room temperature. K_{2}CO_{3} (420 mg, 3.08 mmol, 1.14 equiv) was added, and the mixture stirred for 15 minutes. 3-Fluoro-4-nitrobenzoic acid (500 mg, 2.70 mmol, solution in 4 mL DMF) was added dropwise, and the mixture allowed to stir overnight (about 18 hours), then quenched with sat. NH_{4}Cl (15 mL) and diluted with EtOAc (30 mL). The organic phase was further washed with 0.1 N HCl (2 x 10 mL), and the combined aqueous phases were extracted with EtOAc (2 x 10 mL). The extracts were dried over Na_{2}SO_{4}, filtered and concentrated. Flash chromatography (3:2:0.1 hexanes :Et_{2}O :AcOH) gave 810 mg (72%) of the adduct.
Carboxylic acid MRS-1-500 (150 mg, 0.514 mmol), HoPhe-OtBu (121 mg, 0.514 mmol, 1.00 equiv) and HOAt (84 mg, 0.617 mmol, 1.20 equiv) were dissolved in anhydrous DMF (15 mL). 2,6-Lutidine (0.11 mL, 1.54 mmol, 3.00 equiv) and EDCI'HCl (118 mg, 0.617 mmol, 1.20 equiv) were added, and the mixture stirred overnight. The reaction mixture was diluted with EtOAc (25 mL) and washed with 0.1 N HCl (20 mL), sat. NaHCO₃ (20 mL) and sat. aqueous NaCl (10 mL), and the organic phase was concentrated. Flash chromatography (SiO₂, 25% EtOAc/hexanes) produced 200 mg (76%) of coupled amide. ³¹ NMR (600 MHz, DMSO-d₆) δ 8.30 (d, J = 8.9 Hz, 1H), 7.50 (s, 1H), 7.40 - 7.21 (m, 6H), 7.15 (d, J = 7.5 Hz, 2H), 6.95 (d, J = 7.3 Hz, 2H), 4.80 - 4.73 (m, 1H), 2.72 (t, J = 6.9 Hz, 2H), 2.50 - 2.30 (m, 2H), 1.50 (s, 9H); MS-ESI (m/z) calcd for [C₂₇H₂₈N₂O₆S+H]⁺ 509.1; found: 509.2.
Nitroarene MRS-2-1 (180 mg, 0.270 mmol) was dissolved in acetone/sat. NH₄Cl (10 mL, 2 mL, respectively). Zinc nanopowder (230 mg, 3.51 mmol, 13 equiv) was added, and the reaction mixture was stirred for 30 minutes. The heterogeneous mixture was filtered through Celite, diluted with EtOAc (30 mL) and washed with sat. NaHCO₃ (20 mL). The organic phase was washed with sat. aqueous NaCl (10 mL), dried over Na₂SO₄ and concentrated to give 125 mg (97%) of the aniline. ¹H NMR (600 MHz, DMSO-d₆) δ 8.30 (d, J = 8.4 Hz, 1H), 7.90 (s, 1H), 7.60 (d, J = 7.1 Hz, 1H), 7.45-7.25 (m, 5H), 7.00 (d, J = 7.5 Hz, 2H), 6.65 (d, J = 1.2 Hz, 2H), 5.80 (s, 2H), 4.25 - 4.10 (m, 1H), 2.80 (t, J = 7.1 Hz, 2H), 2.70 - 2.50 (m, 2H), 1.45 (s, 9H); MS-ESI (m/z) calcd for [C₂₇H₃₀N₂O₄S+H]⁺ 479.2; found: 479.2.

3-Fluoro-4-nitrobenzoic acid (720 mg, 3.89 mmol) was dissolved in PhMe:MeOH (8 mL ea) and cooled to 0 °C. (Diazomethyl)trimethylsilane (4.3 mL, 8.56 mmol, 2.2 equiv, 2 M in n-hexane) was added dropwise over 5 minutes. The reaction mixture was stirred 30 minutes, then quenched with slow addition of AcOH. Solvent was removed in vacuo and the residue purified by flash chromatography (SiO₂, 10% EtOAc/hexanes) to give 770 mg (99%) of the methyl ester.
(MRS-2-35) Methyl ester MRS-2-33 (500 mg, 2.51 mmol) was dissolved in DMSO (10 mL).

4-(Benzyloxy)aniline (1.18 g, 5.02 mmol, 2.00 equiv) was added and the reaction mixture was heated to 110 °C for 6 hours. The reaction was cooled to room temperature and diluted with EtOAc. The organic layer was washed with H₂O and sat. aqueous NaCl, dried over MgSO₄, filtered and concentrated. Flash chromatography (SiO₂, 10% EtOAc/hexanes) gave 864 mg (91%) of the biaryl aniline. [Saitoh, et al., J. Med. Chem. 52:6270-6276 (2009).]

4-(Benzyloxy)aniline was prepared according to the method described by Yang et al., Bioorg. Med. Chem. Lett., 18:1135-1139 (2008).

(MRS-2-33) 3-Fluoro-4-nitrobenzoic acid (720 mg, 3.89 mmol) was dissolved in toluene:MeOH (1:1 v/v) and cooled to 0 °C. Trimethylsilyldiazomethane (4.3 mL, 8.56 mmol, 2 M in n-hexane) was added dropwise over 5 minutes. After stirring for 30
minutes, AcOH was added to the reaction mixture slowly until N₂ evolution ceased, and the solvent was removed under reduced pressure. Flash chromatography (SiO₂, 10% EtOAc/hexanes) gave 770 mg (99%) of the arylfluoride methyl ester.

MRS-2-35) Arylfluoride methyl ester MRS-2-33 (500 mg, 2.51 mmol) and 4-(benzyl oxygen) aniline (1.18 g, 5.02 mmol, 2.00 equiv) were dissolved in DMSO (10 mL) and heated to 110 °C for 6 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (50 mL) and washed with H₂O (50 mL). The organic phase was dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 10% EtOAc/hexanes) afforded 865 mg (91%) of the biaryl aniline.

MRS-3-9) Carboxylic acid XX (150 mg, 0.411 mmol), HoPhe-OtBu (97 mg, 0.411 mmol, 1.00 equiv) and HOAt (67 mg, 0.494 mmol, 1.2 equiv) were dissolved in anhydrous DMF (2 mL). 2,6-Lutidine (0.143 mL, 1.23 mmol, 3.00 equiv) and EDCI'HCl (95
mg, 0.494 mmol, 1.20 equiv) were added, and the mixture was stirred overnight (about 18 hours). The reaction mixture was diluted with EtOAc (10 mL) and washed with 0.1 N HCl (10 mL), sat. NaHCO₃ (10 mL) and sat. aqueous NaCl (5 mL), and the organic phase was concentrated. Flash chromatography (SiO₂, 25% EtOAc/hexanes) produced 155 mg (65%) of coupled amide. ¹H NMR (600 MHz, DMSO-d₆) δ 8.20 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.40 - 7.20 (m, 13H), 7.00 (d, J = 7.5 Hz, 2H), 5.10 (s, 2H), 4.80 - 4.70 (m, 1H), 2.72 - 2.60 (m, 2H), 2.25 - 2.20 (m, 1H), 2.10 - 2.00 (m, 1H), 1.40 (s, 9H); MS-ESI (m/z) calcd for [C₁₄H₃₅N₃O₆+H]⁺ 582.2; found: 582.2.

(MRS-3-71) Nitroaryl benzyl ether MM-3-9
(80 mg, 0.138 mmol) was dissolved in MeOH (1.0 mL) Palladium on carbon (5 mol%, 20% Pd w/w on carbon) was suspended in the reaction solvent, and the solvent was sparged with N₂ for 10 minutes. After stirring for 2 hours under H₂ atmosphere, the mixture was filtered through a plug of sand/Celite, washing thoroughly with EtOAc. Solvent was removed in vacuo to yield the fully reduced aniline. ¹H NMR (600 MHz, DMSO-d₆) δ 8.25 (d, J = 8.2 Hz, 1H), 7.90 (s, 1H), 7.45 - 7.21 (m, 8H), 7.10 (d, J = 7.8 Hz, 2H), 5.80 (s, 2H), 4.83 - 4.70 (m, 1H), 2.70 - 2.60 (m, 2H), 2.35 - 2.20 (m, 1H), 2.10 - 2.00 (m, 1H), 1.45 (s,
HoPhe Analogue Intermediate Preparation

\[
\text{H-Nva} (5-\text{Ph}) - \text{OH} \quad (500 \text{ mg}, 2.59 \text{ mmol}) \text{ was suspended in anhydrous dioxane (5 mL) in a sealed tube reaction vessel. Cone. H}_2\text{SO}_4 (200 \mu\text{L}) \text{ was added, and the mixture was cooled to -78 °C. Condensed isobutylene (approx. 4 mL) was transferred via cannula onto the frozen reaction mixture. The reaction vessel was sealed tightly and warmed to room temperature overnight (about 18 hours). After \text{stirring 2 days, pressure was slowly released, the mixture was diluted with Et}_2\text{O (50 mL) and washed with sat. NaHCO}_3 (25 mL). The aqueous phase was extracted with Et}_2\text{O (2 \times 25 mL), and the combined ethereal phases were dried over Na}_2\text{SO}_4 and concentrated thoroughly. H-Nva (5-Ph) - \text{OtBu (464 mg, 72\%) obtained as a yellow oil was used without further purification.}
\]
\[
\text{H NMR (500 MHz, CDC}_1\text{)} \delta 7.30 - 7.25 (m, 2H), 7.21 - 7.16 (m, 3H), 3.37 - 3.28 (m, 1H), 2.65 (m, 2H), 1.71 (m, 4H), 1.45 (s, 9H).
\]

\[
(\text{MM-2-84}) \quad 4\text{-Phenyl-1-butanol (543 mg, 3.58 mmol) was dissolved in CH}_2\text{Cl}_2 (20 mL). \text{ Imidazole (810 mg, 9H) ; MS-ESI (m/z) calcd for } [\text{C}_2\text{H}_7\text{N}_3\text{O}_4\text{+H}]^+ 462.2; \text{ found: 462.2.}
\]
mg, 11.8 mmol, 3.00 equiv) was added, followed by PPh₃ (986 mg, 3.76 mmol, 1.05 equiv). Upon complete dissolution of the PPh₃, iodine (1.00 g, 3.94 mmol, 1.10 equiv) was added portionwise. After 1 hour, the reaction was quenched with Na₂S₂O₃ (10% w/v, 15 mL). The aqueous layer was extracted once with CH₂Cl₂ (10 mL), dried over Na₂SO₄, decanted and concentrated to reveal a white solid. The solid was triturated with n-pentane (3 × 15 mL) and filtered through a 6 cm silica plug, washing with 50% EtOAc/n-pentane, to remove the phosphine oxide. Solvent removal in vacuo revealed the alkyl iodide (868 mg, 93%) as a clear oil. ¾ NMR (500 MHz, CDC1₃) δ 7.34 - 7.27 (m, 2H), 7.25 - 7.17 (m, 3H), 3.22 (t, J = 6.9 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 1.93 - 1.83 (m, 2H), 1.82 - 1.70 (m, 2H).

(MM-2-71) Sodium hydride (350 mg, 60% dispersion in mineral oil) was carefully added to EtOH (20 mL) in a 50 mL two-neck round bottom flask equipped with condenser. Upon cooling to room temperature, diethyl acetylamidomalonate (1.38 g, 6.34 mmol) was added and the mixture was heated to reflux. After 15 minutes at reflux, 4-phenyl-l-iodobutane (1.57 g, 6.04 mmol) was added dropwise. After 16 hours at reflux, the mixture was cooled to room temperature and poured into 0.05 M KHSO₄ (60 mL)/hexanes (30 mL), pre-cooled to 0 °C. The product
crystallized at the phase interface. Filtration and recrystallization from boiling hexanes/EtOAc gave 736 mg (35%) of the alkylation product. [Procedure adopted from: Varnavas et al., J. Med. Chem. 54:5769-5785 (2011).] ^1H NMR (500 MHz, Acetone-\textsubscript{d}_6) δ 7.25 (t, \(J = 7.7 \) Hz, 2H), 7.20 - 7.11 (m, 3H), 4.15 (q, \(J = 7.1 \) Hz, 2H), 2.58 (t, \(J = 7.6 \) Hz, 2H), 2.36 - 2.24 (m, 2H), 1.96 (s, 3H), 1.68 - 1.55 (m, 2H), 1.18 (dt, \(J = 9.5, 5.8 \) Hz, 8H).

![Chemical structure](image)

\textbf{(MM-2-72) Alkylation product MM-2-71}

prepared by the methods discussed in Pevan et al., J. Med. Chem., 54:5769-5785 (2011) (700 mg, 2.00 mmol) was suspended in dioxane and 6 N HCl (7 mL ea) and the mixture was heated to reflux. After 3 hours, the reaction mixture was cooled to room temperature and the solvent removed under a stream of N\textsubscript{2}. The remaining residue was triturated with cold Et\textsubscript{2}O (10 mL) and filtered to give 327 mg (67%) of the amino acid hydrochloride salt. ^1H NMR (500 MHz, DMSO-\textsubscript{d}_6) δ 8.47 - 8.26 (br s, 1H), 7.27 (t, \(J = 7.5 \) Hz, 2H), 7.23 - 7.12 (m, 3H), 3.86 (q, \(J = 5.6 \) Hz, 1H), 3.64 - 3.23 (br s, 2H), 2.57 (t, \(J = 7.7 \) Hz, 2H), 1.86 - 1.77 (m, 2H), 1.63 - 1.51 (m, 2H), 1.51 - 1.39 (m, 1H), 1.39 - 1.27 (m, 1H).
Ammonium salt MM-2-72 (325 g, 1.34 mmol) was suspended in anhydrous dioxane (5 mL). Cone. \(\text{H}_2\text{SO}_4 \) (about 0.2 mL) was added, after which the starting material dissolved. The reaction mixture was cooled to -78 °C, and condensed isobutylene (5 mL) was added via cannula. The reaction vessel was sealed tightly, warmed to room temperature and stirred for 4 days. Pressure was slowly released, and the mixture was poured into \(\text{Et}_2\text{O} \) (50 mL). The ethereal phase was washed with sat. \(\text{NaHCO}_3 \) (50 mL). The aqueous phase was extracted with \(\text{Et}_2\text{O} \) (2 \(\times \) 15 mL), and the combined ethereal layers were dried over \(\text{Na}_2\text{SO}_4 \), decanted and concentrated to reveal the t-butyl ester MM-2-76 (284 mg, 80%), which was used without further purification. \(^1\text{H NMR} \) (500 MHz, \(\text{CDCl}_3 \)) \(\delta \) 7.31 - 7.24 (m, 2H), 7.21 - 7.14 (m, 3H), 3.36 (dd, \(J = 7.2, \ 5.6 \text{ Hz}, \ 1\text{H} \)), 2.63 (t, \(J = 7.7 \text{ Hz}, \ 2\text{H} \)), 2.19 (s, 2H), 1.80 - 1.55 (m, 4H), 1.48 - 1.40 (m, 2H), 1.44 (s, 9H).

Boc-HoPhe-OH (427 mg, 1.53 mmol, 1.00 equiv) was dissolved in anhydrous...
isopropanol and cooled to 0 °C. Thionyl chloride (155 µL, 2.14 mmol, 1.40 equiv) was added dropwise, and the mixture stirred overnight (about 18 hours), warming to room temperature. The reaction was quenched with sat. \(\text{NaHCO}_3 \) (10 mL) and \(\text{H}_2\text{O} \) (10 mL) and diluted with \(\text{Et}_2\text{O} \) (20 mL). The aqueous phase was extracted with \(\text{Et}_2\text{O} \) (5 x 10 mL), and the combined extracts dried over \(\text{Na}_2\text{SO}_4 \), decanted and concentrated to give 150 mg (44%) of the isopropyl ester. \(^1\text{H} \text{NMR} \)

\[
\delta 7.33 - 7.26 \ (m, 2H) , 7.24 - 7.17 \ (m, 3H), 5.06 \ (\text{sept}, J = 6.3 \text{ Hz, 1H}), 3.42 \ (dd, J = 7.7, 5.3 \text{ Hz, 1H}), 2.73 \ (\text{ddd}, J = 9.4, 6.5, 4.5 \text{ Hz, 2H}), 2.06 \ (\text{ddddd}, J = 13.4, 9.6, 6.9, 5.3 \text{ Hz, 1H}), 1.92 - 1.79 \ (m, 1H), 1.56 \ (s, 2H), 1.27 \ (d, J = 6.3 \text{ Hz, 2H}).
\]

\[\text{BocHN} \]

\[\text{O} \]

\[\text{Boc-HoPhe-OH} \]

(100 mg, 0.358 mmol), dicyclohexylcarbodiimide (DCC, 78 mg, 0.376 mmol, 1.05 equiv) and 4-dimethylaminopyridine (DMAP, 9 mg, 0.072 mmol, 0.200 equiv) were dissolved in \(\text{CH}_2\text{Cl}_2 \) (2 mL) at room temperature in a 20 mL scintillation vial. tert-Amyl alcohol (400 µL, 3.58 mmol, 10 equiv) was added, and the reaction mixture stirred for 2 days. The cloudy mixture was filtered through a 3 cm plug of Celite, diluted with \(\text{CH}_2\text{Cl}_2 \) (10 mL) and washed with aqueous citric acid (10%w/v, 10 mL) and sat. \(\text{NaHCO}_3 \). The halogenated phase was dried over \(\text{Na}_2\text{SO}_4 \), decanted, and concentrated. Flash
chromatography (SiO\sub{2}, 5% EtOAc/hexanes) returned 83 mg (66%) of the tert-pentyl ester. \(^1\)H NMR (400 MHz, CDC\sub{13}) \(\delta\) 7.47 - 7.38 (m, 2H), 7.37 - 7.29 (m, 3H), 5.27 (d, \(J = 8.4\) Hz, 1H), 4.41 (td, \(J = 7.8, 4.9\) Hz, 1H), 2.91 - 2.72 (m, 2H), 2.34 - 2.20 (m, 1H), 2.05 (ddddd, \(J = 13.9, 11.2, 7.5, 5.6\) Hz, 1H), 1.93 (p, \(J = 7.2\) Hz, 2H), 1.60 (s, 9H), 1.59 (s, 6H), 1.04 (t, \(J = 7.5\) Hz, 3H).

(MM-2-137) tert-Pentyl ester MM-2-135 (73 mg, 0.209 mmol) was dissolved in EtOAc (2 mL) in a 20 mL scintillation vial with stir bar. 4 N HCl in dioxane (0.5 mL, approx. 10 equiv) was added dropwise. After 5 hours, the stir bar was removed and the solvents were concentrated under an N\(_2\) stream overnight (about 18 hours) to reveal 51 mg (86%) of ammonium salt as a white powder.

(MM-2-118) Boc-HoPhe-OH (100 mg, 0.358 mmol), dicyclohexylcarbodiimide (DCC, 78 mg, 0.376 mmol, 1.05 equiv) and 4-dimethylaminopyridine (DMAP,
9 mg, 0.072 mmol, 0.200 equiv) were dissolved in CH$_2$Cl$_2$ (2 mL) at room temperature in a 20 mL scintillation vial. 1-Adamantanol (57 mg, 0.376 mmol, 1.05 equiv) was added, and the reaction mixture stirred for 24 hours. The cloudy mixture was filtered through a 3 cm plug of Celite, diluted with CH$_2$Cl$_2$ (10 mL) and washed with aqueous citric acid (10% w/v, 10 mL) and sat. NaHCO$_3$. The halogenated phase was dried over Na$_2$SO$_4$, decanted, and concentrated. Flash chromatography (SiO$_2$, 5 to 10% EtOAc/hexanes) provided 74 mg (50%) of the adamantyl ester. ¾ NMR (500 MHz, CDCl$_3$) δ 7.40 - 7.33 (m, 2H), 7.30 - 7.22 (m, 3H), 5.18 (d, J = 9.1 Hz, 1H), 4.33 (q, J = 6.8 Hz, 1H), 2.78 (dt, J = 10.8, 6.5 Hz, 1H), 2.71 (dt, J = 10.8, 6.5 Hz, 1H), 2.26 (m, 3H), 2.21 (d, J = 3.0 Hz, 6H), 2.08 - 1.94 (m, 1H), 1.75 (d, J = 3.2 Hz, 6H), 1.54 (s, 9H).

(MM-2-123) Adamantyl ester MM-2-118 (74 mg, 0.179 mmol) was dissolved in 4 N HCl in dioxane (2.0 mL, approx. 45 equiv). After 3 hours, the stir bar was removed and the solvent was concentrated under an N$_2$ stream overnight (about 18 hours) to reveal 61 mg (97%) of ammonium salt as a white powder.
(MM-2-117) Boc-HoPhe-OH (100 mg, 0.358 mmol), dicyclohexylcarbodiimide (DCC, 78 mg, 0.376 mmol, 1.05 equiv) and 4-dimethylaminopyridine (DMAP, 9 mg, 0.072 mmol, 0.200 equiv) were dissolved in CH₂Cl₂ (2 mL) at room temperature in a 20 mL scintillation vial. Neopentyl alcohol (66 mg, 0.749 mmol, 2.10 equiv) was added, and the reaction mixture stirred for 24 hours. The cloudy mixture was filtered through a 3 cm plug of Celite, diluted with CH₂Cl₂ (10 mL) and washed with aqueous citric acid (10% w/v, 10 mL) and sat. NaHCO₃. The halogenated phase was dried over Na₂SO₄, decanted, and concentrated. Flash chromatography (SiO₂, 5% EtOAc/hexanes) provided 83 mg (66%) of the neopentyl ester. ¾ NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 7.6 Hz, 2H), 7.23 - 7.15 (m, 3H), 5.09 (d, J = 8.4 Hz, 1H), 4.40 (q, J = 7.0 Hz, 1H), 3.83 (q, J = 10.5 Hz, 2H), 2.76 - 2.60 (m, 2H), 2.17 (m, 1H), 1.98 (m, 1H), 1.46 (s, 9H), 0.96 (s, 9H).

(MM-2-122) Neopentyl ester MM-2-117 (83 mg, 0.238 mmol) was dissolved in 4 N HCl in dioxane (2.0
mL, approx. 34 equiv). After 3 hours, the stir bar was removed and the solvent was concentrated under an N₂ stream overnight (about 18 hours) to reveal 58 mg (85%) of ammonium salt as a white powder.

\[
\begin{align*}
\text{Boc-HoPhe-OH} & \quad (250 \text{ mg, } 0.895 \text{ mmol}), \\
\text{ammonium chloride} & \quad (150 \text{ mg, } 2.69 \text{ mmol, } 3.00 \text{ equiv}), \\
\text{HOAt} & \quad (134 \text{ mg, } 0.984 \text{ mmol, } 1.10 \text{ equiv}) \text{ and } \\
\text{2,6-lutidine} & \quad (520 \mu\text{L}, 4.47 \text{ mmol, } 5.00 \text{ equiv}) \\
\end{align*}
\]

were dissolved at room temperature in anhydrous DMF (4.5 mL). EDCI-HCl (180 mg, 0.940 mmol, 1.05 equiv) was added, and the mixture stirred 2 days. The mixture was diluted with EtOAc (50 mL) and washed with 0.1 N HCl (2 × 25 mL) and sat. aqueous NaCl (10 mL). The aqueous phase was extracted once with EtOAc (20 mL), and the combined organic phases were dried over Na₂SO₄, decanted and concentrated. The residual material was redissolved in EtOAc, rewarshed with H₂O and dried to give 236 mg of the carboxamide as a white solid.
Carboxamide MM-2-81 (100 g, 0.359 mol) was dissolved in EtOAc (4 mL) and cooled to 0 °C. 4 N HCl in dioxane (1 mL) was added dropwise, and the mixture warmed to room temperature. After 5 hours, solvent was removed under an N₂ stream to give 75 mg (97%) of the carboxamide HCl salt.

Boc-HoPhe-OH (100 mg, 0.358 mmol), DEPBT (118 mg, 0.394 mmol, 1.10 equiv) and Et₃N (100 µL, 0.716 mmol, 2.00 equiv) were dissolved at room temperature in anhydrous THF (2 mL). After 15 minutes, tert-butylamine (41 µL, 0.394 mmol, 1.10 equiv) was added dropwise. After 12 hours, the mixture was diluted with EtOAc (15 mL) and washed with citric acid (10 mL, 10% w/v) and sat. NaHCO₃ (20 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. Flash chromatography (SiO₂, 10% EtOAc/hexanes) gave 120 mg (99%) of the t-butyl amide. H NMR (500 MHz, CDCl₃) δ 7.22 (dd, J = 8.2, 6.9 Hz, 2H), 7.13 (td, J = 6.0, 3.3 Hz, 3H), 6.18 (s, 1H), 5.42 (d, J = 8.4 Hz, 1H), 4.01 (q, J = 8.0 Hz, 1H), 2.63 (m, 1H), 2.09 - 2.00 (m, 1H), 1.88 (dt, J = 13.7, 7.9 Hz, 1H), 1.41 (s, 9H), 1.30 (s, 9H).
tert-Butyl amide MM-2-89 (60 g, 0.179 mmol) was dissolved in EtOAc (2 mL) at 0 °C. 4 N HCl in dioxane (0.5 mL, approx. 11 equiv.) was added dropwise. After 2 hours, the stir bar was removed and the solvent was concentrated under an N₂ stream overnight (about 18 hours) to reveal 41 mg (98%) of ammonium salt as a white powder.

Boc-HoPhe-OH (100 mg, 0.358 mmol), DEPB (118 mg, 0.394 mmol, 1.10 equiv.) and Et₃N (100 µL, 0.716 mmol, 2.00 equiv) were dissolved at room temperature in anhydrous THF (2 mL). After 15 minutes, 1-adamantylamine (60 mg, 0.394 mmol, 1.10 equiv) was added in one portion. After 12 hours, the mixture was diluted with EtOAc (15 mL) and washed with aqueous citric acid (10 mL, 10% w/v) and sat. NaHCO₃ (20 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. Flash chromatography (SiO₂, 20% EtOAc/hexanes) gave 132 mg (89%) of the adamantyl amide. ¾ NMR (400 MHz, CDCl₃) δ 7.42 - 7.33 (m, 2H), 7.28 (dt, J = 8.1, 3.8 Hz,
3H), 5.71 (s, 1H), 5.17 (d, J = 6.0 Hz, 1H), 4.03 (m, 1H), 2.86 - 2.64 (m, 2H), 2.16 (t, J = 5.5 Hz, 3H),
2.07 (t, J = 2.6 Hz, 6H), 2.01 - 1.91 (m, 1H), 1.80 -
1.70 (m, 6H), 1.54 (d, J = 2.7 Hz, 9H).

Adamantyl amide MM-2-113 (54 mg, 0.131 mmol) was dissolved in 4 N HCl in dioxane (2.0 mL, approx. 61 equiv). After 3 hours, the stir bar was removed and the solvent was concentrated under an N2 stream overnight (about 18 hours) to reveal 46 mg (99%) of ammonium salt as a white powder.

Boc-HoPhe-OH (100 mg, 0.358 mmol), DEPBT (118 mg, 0.394 mmol, 1.10 equiv) and Et3N (100 µL, 0.716 mmol, 2.00 equiv) were dissolved at room temperature in anhydrous THF (2 mL). After 15 min, neopentyl amine (46 µL, 0.394 mmol, 1.10 equiv) was added in one portion. After 12 hours, the mixture was diluted with EtOAc (15 mL) and washed with citric acid (10 mL, 10% w/v) and sat. NaHCO3 (20 mL). The organic phase was dried over Na2SO4.
filtered and concentrated. Flash chromatography (SiO₂, 20% EtOAc/hexanes) gave 85 mg (68%) of the neopentyl amide. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.20 (td, J = 7.6, 6.8 Hz, 3H), 6.25 – 6.09 (m, 1H), 5.02 (s, 1H), 4.05 (q, J = 7.4 Hz, 1H), 3.06 (m, 2H), 2.70 (t, J = 7.9 Hz, 2H), 2.19 (m, 1H), 1.92 (m, 1H), 1.46 (s, 9H), 0.91 (s, 9H).

(MM-2-115) Neopentyl amide MM-2-111 (46 mg, 0.132 mmol) was dissolved in 4 N HCl in dioxane (2.0 mL, approx. 60 equiv). After 3 hours, the stir bar was removed and the solvent was concentrated under an N₂ stream overnight (about 18 hours) to reveal 40 mg (99%) of ammonium salt as a white powder.

(MM-2-109/150/151/152/154) Representative procedure for n-hexylamine: Boc-HoPhe-OH (100 mg, 0.358 mmol), n-hexylamine (47 µL, 0.358 mmol, 1.00 equiv), HOAt (54 mg, 0.394 mmol, 1.10 equiv) and 2,6-lutidine (208 µL, 1.79 mmol, 5.00 equiv) were dissolved at room temperature in anhydrous DMF (2
mL). EDCI·HCl (72 mg, 0.376 mmol, 1.05 equiv) was added, and the mixture stirred overnight. The mixture was diluted with EtOAc (20 mL) and washed with 0.1 N HCl (2 × 10 mL) and sat. aqueous NaCl (10 mL). The aqueous phase was extracted once with EtOAc (10 mL), and the combined organic phases were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (SiO₂, 20% EtOAc/hexanes) returned 85 mg (65%) of the hexyl amide. By the same procedure, 122 mg (87%) of the n-octyl amide, 140 mg (94%) of the n-decyl amide, 148 mg (93%) of the ii-dodecyl amide, and 156 mg (92%) of the n-tetradecyl amide were obtained.

¾ NMR (MM-2-109, n = 1, 500 MHz, CDCl₃) δ 7.31 - 7.24 (m, 2H), 7.21 - 7.15 (m, 3H), 6.47 (s, 1H), 5.36 (d, J = 9.0 Hz, 1H), 4.23 - 4.01 (m, 1H), 3.34 - 3.13 (m, 2H), 2.68 (t, J = 8.0 Hz, 2H), 2.22 - 2.05 (m, 1H), 1.94 (m, 1H), 1.46 (m, 2H), 1.46 (s, 9H), 1.37 - 1.22 (m, 6H), 0.89 (t, J = 6.7 Hz, 3H).

¾ NMR (MM-2-150, n = 3, 500 MHz, CDCl₃) δ 7.32 - 7.25 (m, 2H), 7.23 - 7.16 (m, 3H), 6.04 (t, J = 5.7 Hz, 1H), 5.05 (s, 1H), 4.04 (m, 1H), 3.24 (q, J = 6.7 Hz, 2H), 2.68 (t, J = 8.4 Hz, 2H), 2.15 (dq, J = 7.1, 6.6 Hz, 1H), 1.93 (dt, J = 12.9, 7.7 Hz, 1H), 1.53 - 1.47 (m, 2H), 1.45 (s, 9H), 1.29 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H).
\(^1\)H NMR (MM-2-151, \(n = 5\), 500 MHz, CDCl\(_3\)) \(\delta\) 7.31 - 7.26 (m, 2H), 7.22 - 7.16 (m, 3H), 6.03 (t, \(J = 5.5\) Hz, 1H), 5.06 (d, \(J = 8.9\) Hz, 1H), 4.04 (q, \(J = 9.1\) Hz, 1H), 3.24 (q, \(J = 6.7\) Hz, 2H), 2.68 (t, \(J = 8.1\) Hz, 2H), 2.15 (m, 1H), 1.92 (m, 1H), 1.52 - 1.47 (m, 2H), 1.45 (s, 9H), 1.34 - 1.21 (m, 14H), 0.88 (t, \(J = 6.9\) Hz, 3H).

\(^1\)H NMR (MM-2-152, \(n = 7\), 500 MHz, CDCl\(_3\)) \(\delta\) 7.31 - 7.26 (m, 2H), 7.22 - 7.16 (m, 3H), 6.07 (t, \(J = 5.7\) Hz, 1H), 5.07 (s, 1H), 4.04 (d, \(J = 8.1\) Hz, 1H), 3.24 (q, \(J = 6.8\) Hz, 2H), 2.72 - 2.61 (m, 2H), 2.24 - 2.07 (m, 1H), 1.92 (m, 1H), 1.49 (t, \(J = 7.2\) Hz, 2H), 1.45 (s, 9H), 1.27 (m, 18H), 0.89 (t, \(J = 6.9\) Hz, 3H).

\(^1\)H NMR (MM-2-154, \(n = 9\), 500 MHz, CDCl\(_3\)) \(\delta\) 7.31 - 7.27 (m, 2H), 7.22 - 7.16 (m, 3H), 6.05 (t, \(J = 5.7\) Hz, 1H), 5.06 (s, 1H), 4.04 (q, \(J = 6.9\) Hz, 1H), 3.24 (q, \(J = 6.7\) Hz, 2H), 2.68 (t, \(J = 8.1\) Hz, 2H), 2.15 (m,..
Representative procedure for n-hexyl amide: Hexyl amide MM-2-109 (72 mg, 0.199 mmol) was dissolved in 4 N HCl in dioxane (2.0 mL, approx. 40 equiv). After 3 hours, the stir bar was removed and the solvent was concentrated under an N₂ stream overnight (about 18 hours) to reveal 57 mg (97%) of amine HCl salt as a white powder. By the same procedure, 92 mg (90%) of the n-octyl amide, 107 mg (90%) of the n-decyl amide, 109 mg (86%) of the n-dodecyl amide, and 126 mg (93%) of the n-tetradecyl amide were obtained.

Preparation of Neoseptin-4 and its Intermediates/Analologues

Sodium hydride (60%, 0.50 g, 12.4 mmol) was suspended in THF (10 mL) and 2-[4-(tri-isopropylsilyloxy)phenyl] ethanol (0.67 mL, 6.48 mmol) was added dropwise at 0 °C. The mixture was stirred at 0
°C for 15 minutes under an atmosphere of argon before 3-fluoro-4-nitrobenzoic acid (1.0 g, 5.4 mmol) was added. The mixture was stirred at 0 °C for 5 minutes and room temperature for 2 hours, quenched with saturated aqueous NH₄Cl, diluted with EtOAc, and extracted with aqueous HCl (0.1 M, x 2). The organic layer was collected, concentrated, and the product purified by flash chromatography (SiO₂, 3:2:0.1 hexanes/Et₂O/HOAc) to give the depicted Compound as a solid (1.26 g, 85%). ¹H NMR (600 MHz, DMSO-d₆) δ 11.78 (s, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 6.1 Hz, 1H), 7.73 (dd, J = 8.3, 1.6 Hz, 1H), 7.24 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.45 (t, J = 6.7 Hz, 2H), 3.08 (t, J = 6.7 Hz, 2H), 1.34-1.22 (m, 3H), 1.11 (d, J = 7.2 Hz, 18H); MS-ESI (m/z) calcd for [C₂H₃₃NO₆Si+Na⁺] 482.1969; found: 482.1964.

The above compound (95 mg, 0.30 mmol) was combined with HoPhe-OtBu (88 mg, 0.35 mmol) in DMF (0.75 mL) in a 0.5 dram vial. HOAt (61 mg, 0.45 mmol), EDCI (69 mg, 0.36 mmol), and 2,6-lutidine (0.17 mL, 1.5 mmol) were added. After stirring at room temperature for 12 hours, the reaction mixture was poured into aqueous 1 N HCl. The aqueous layer was extracted with EtOAc (2x). The combined ETOAc extract was washed with aqueous 1 N HCl, saturated
aqueous NaHCO₃ and saturated aqueous NaCl, dried over Na₂SO₄, filtered and evaporated in vacuo. Flash chromatography (SiO₂) yielded pure product amide (90%).

¹H NMR (600 MHz, DMSO-d₆) δ 7.80 (d, J = 8.3 Hz, 1H), 7.50 (s, 1H), 7.30-7.21 (m, 6H), 7.12 (d, J = 8.1 Hz, 2H), 6.85 (d, J = 7.3 Hz, 2H), 4.74-4.50 (m, 1H), 4.30 (t, J = 6.9 Hz, 2H), 3.10 (t, J = 6.7 Hz, 2H), 2.80-2.72 (m, 2H), 2.40-2.26 (m, 1H), 2.20-2.11 (m, 1H), 1.50 (s, 9H), 1.30-1.24 (m, 3H), 1.09 (d, J = 7.0 Hz, 18H); MS-ESI (m/z) calcd for [C₃₈H₅₂N₂O₇Si+H]⁺ 677.3; found: 677.3.

(MRS-2-477) The previous amide compound (250 mg, 350 mmol) was dissolved in anhydrous THF (8 mL) and treated with TBAF (0.43 mL, 1M solution in THF, 1.20 equiv). The reaction mixture was stirred at room temperature for 1 hour, and the solvent was removed in vacuo. Flash chromatography of the residue (25% EtOAc/hexanes) afforded 166 mg (91%) of the phenolic product MRS-2-477. ¹H NMR (600 MHz, DMSO-d₆) δ 7.82 (d, J = 7.9 Hz, 1H), 7.50 (s, 1H), 7.40-7.11 (m, 8H), 6.85 (d, J = 7.3 Hz, 2H), 5.40 (brs, 1H), 4.80-4.65 (m, 1H), 4.38 (t, J = 7.0 Hz, 2H), 3.10 (t, J = 6.7 Hz, 2H), 2.80-2.72 (m, 2H), 2.50-2.30 (m, 1H), 2.25-2.10 (m, 1H), 1.50 (s, 9H); MS-
ESI (m/z) calcd for \([C_{29}H_{34}N_2O_5+Na]^+\) 543.2; found: 543.2.

\[
\begin{align*}
\text{(MRS-2-481) Arylnitro Compound MRS-2-477} \\
(120 \text{ mg, 0.23 mmol) was dissolved in acetone/saturated aqueous NH}_4\text{CI (1:1, 5 mL each). Zn nanopowder (151 mg, 2.30 mmol, 10 equiv) was added portion-wise to the reaction mixture, which was stirred vigorously at \text{room temperature for 1 hour. The heterogeneous mixture was filtered through Celite to remove the Zn salts, and the filtrate was diluted with EtOAc (50 mL) and washed with H}_2\text{O (50 mL). The organic phase was dried over Na}_2\text{SO}_4, decanted and concentrated to give 113 mg (99\%) of the aniline Compound 4 (Neoseptin-4).} \\
\text{\(^1\text{H NMR (600 MHz, DMSO-d}_6)\}} \\
59.30 \text{ (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.50-7.30 (m, 7H), 7.20 (d, J = 7.1 Hz, 2H), 6.65 (d, J = 7.3 Hz, 2H), 5.25 (s, 2H), 4.80 (q, J = 6.0 Hz, 1H), 4.18 (t, J = 7.0 Hz, 2H), 3.00 (t, J = 6.7 Hz, 2H), 2.70-2.65 (m, 1H), 2.55-2.50 (m, 1H), 2.10-2.00 (m, 2H), 1.49 (s, 9H); MS-ESI (m/z) calcd for [C}_{29}H_{34}N_2O_5+H]^+ 491.2; found: 491.2.}
\end{align*}
\]
was dissolved in 4 N HCl/dioxane (1 mL), and the reaction medium was stirred for 8 hours. Solvent and excess HCl were evaporated under a stream of N₂ to reveal 17 mg (99%) of the carboxylic acid 5 MRS-2-491, which was not purified.

(MRS-3-23) The general procedure for amine coupling was followed: The above-depicted carboxylic acid (120 mg, 0.261 mmol), HoPhe-OEt (54 mg, 0.261 mmol, 1 equiv), 2,6-lutidine (0.91 mL, 0.783 mmol, 3 equiv), HOAt (43 mg, 0.313 mmol, 1.2 equiv) and EDCI-HCl (60 mg, 0.313 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 150 mg (88%) of the coupled product MRS-3-23.
NMR (600 MHz, DMSO-d$_6$) δ 7.75 (d, $J = 8.1$ Hz, 1H),
7.50 (s, 1H), 7.30-7.20 (m, 6H), 7.15 (d, $J = 8.1$ Hz, 2H), 6.50 (d, $J = 7.3$ Hz, 2H),
4.74-4.60 (m, 1H), 4.30-4.15 (m, 4H), 3.15 (t, $J = 6.7$ Hz, 2H), 2.80-
2.72 (m, 2H), 2.40-2.26 (m, 1H), 2.20-2.10 (m, 1H),
1.30-1.20 (m, 6H), 1.10 (d, $J = 7.2$ Hz, 18H); MS-ESI
(m/z) calcd for [C$_{36}$H$_{48}$N$_2$O$_7$Si+H]$^+$ 649.3; found: 649.3.

\[
\text{H}_2\text{N} \quad \text{CO}_2\text{Et} \\
\text{O} \quad \text{OTIPS}
\]

(MRS-3-29) The general procedure for zinc-nitro reduction was used: arylnitro MRS-3-23 (150
mg, 0.231 mmol), Zn nanopowder (150 mg, 2.31 mmol, 10 equiv) and acetone/saturated aqueous NH$_4$Cl (5 ml each)
were employed to give 130 mg (86%) of aniline MRS-3-
29, which was used without further purification.

\[
\text{H}_2\text{N} \quad \text{CO}_2\text{Et} \\
\text{O} \quad \text{OH}
\]
(MRS-3-37) TIPS-ether MRS-3-29 (120 mg, 0.19 mmol) was dissolved in anhydrous THF (3 mL) and treated with TBAF (0.39 mL, 0.39 mmol, 2 equiv). After stirring at room temperature for 1 hour, the mixture was diluted with EtOAc (20 mL) and washed with brine (20 mL). The organic phase was dried over Na₂SO₄, decanted and concentrated. Flash chromatography (50% EtOAc/hexanes) produced 76 mg (85%) of the phenolic product MRS-3-37. ¹H NMR (600 MHz, DMSO-d₆) δ 9.25 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.50-7.30 (m, 7H), 7.20 (d, J = 8.1 Hz, 2H), 6.50 (d, J = 7.3 Hz, 2H), 5.30 (s, 2H), 4.45-4.30 (m, 1H), 4.20-4.05 (m, 4H), 2.95 (t, J = 6.7 Hz, 2H), 2.80-2.60 (m, 2H), 2.00-1.90 (m, 2H), 1.20 (t, J = 6.1 Hz, 3H); MS-ESI (m/z) calcd for [C₂₇H₃₀N₂O₅+H]^+ 463.2; found: 463.2.

(MRS-3-31) The general procedure for amine coupling was followed: The above carboxylic acid (120 mg, 0.261 mmol), HoPhe-OMe (51 mg, 0.261 mmol, 1 equiv), 2,6-lutidine (0.91 mL, 0.783 mmol, 3 equiv), HOAt (43 mg, 0.313 mmol, 1.2 equiv) and EDCI'HCl (60 mg, 0.313 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 129 mg (78%) of MRS-3-31. ¹H NMR (600 MHz, DMSO-d₆) δ 7.80 (d, J =
8.2 Hz, 1H), 7.50 (s, 1H), 7.40-7.20 (m, 6H), 7.15 (d, J = 8.3 Hz, 2H), 6.60 (d, J = 7.3 Hz, 2H), 4.74 (q, J = 6.9 Hz, 1H), 4.45 (t, J = 6.6 Hz, 2H), 3.86 (s, 3H), 3.15 (t, J = 6.7 Hz, 2H), 2.72 (t, J = 6.4 Hz, 2H), 2.45-2.40 (br, 1H), 2.20-2.10 (m, 1H), 1.40-1.20 (m, 3H), 1.10 (d, J = 7.2 Hz, 18H); MS-ESI (m/z) calcd for [C_{13}H_{46}N_{2}O_{7}Si+H]^{+} 635.3; found: 635.3.

MRS-3-45 TIPS-ether **MRS-3-31** (123 mg, 0.19 mmol) was dissolved in anhydrous THF (3 mL) and treated with TBAF (0.39 mL, 0.39 mmol, 2 equiv). After stirring at room temperature for 1 hour, the mixture was diluted with EtOAc (20 mL) and washed with brine (20 mL). The organic phase was dried over Na_{2}SO_{4}, decanted and concentrated. The residue **MRS-3-45** was used directly in the next step.
The general procedure for zinc-nitro reduction was used: arylnitro MRS-3-45 (100 mg, 0.208 mmol), Zn nanopowder (137 mg, 2.08 mmol, 10 equiv) and acetone/saturated aqueous NH₄Cl (5 mL each) were employed. Flash chromatography (50% EtOAC/hexanes) gave 130 mg (86%, 2 steps) of MRS-3-45-II.

¾ NMR (600 MHz, DMSO-d₆) δ 9.15 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.40-7.15 (m, 7H), 7.10 (d, J = 8.2 Hz, 2H), 6.65 (d, J = 7.3 Hz, 2H), 5.20 (s, 2H), 4.25 (q, J = 6.2 Hz, 1H), 4.10 (t, J = 6.9 Hz, 2H), 3.60 (s, 3H), 2.95 (t, J = 6.7 Hz, 2H), 2.75-2.70 (m, 1H), 2.60-2.50 (m, 2H), MS-ESI (m/z) calcd for [C₂₆H₂₈N₂O₅⁺H]⁺ 449.2; found: 449.2.
The general procedure for amine coupling was followed: the above carboxylic acid (145 mg, 0.316 mmol), HoPhe-Oi-Pr (70 mg, 0.316 mmol, 1 equiv), 2,6-lutidine (0.110 mL, 0.95 mmol, 3 equiv), HOAt (52 mg, 0.380 mmol, 1.2 equiv) and EDCI·HCl (73 mg, 0.380 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 130 mg (62%) of the coupled product MRS-3-121.

1H NMR (600 MHz, DMSO-d$_6$) δ 8.20 (d, $J = 8.5$ Hz, 1H), 7.45 (s, 1H), 7.30-7.20 (m, 6H), 7.10 (d, $J = 8.3$ Hz, 2H), 6.62 (d, $J = 7.4$ Hz, 2H), 4.75 (q, $J = 6.6$ Hz, 1H), 4.40-4.30 (m, 1H), 4.10 (t, $J = 6.5$ Hz, 2H), 2.90 (t, $J = 6.7$ Hz, 2H), 2.80-2.70 (m, 1H), 2.60-2.40 (m, 1H), 2.00-1.95 (m, 2H), 1.30-1.20 (m, 9H), 1.10 (d, $J = 7.1$ Hz, 18H).

$\text{MS-ESI} \ [m/z] \ \text{calcd for} \ [C_{17}H_{25}N_2O_7Si+H]^+ 663.3; \ \text{found:} \ 663.3.$

The general procedures for TBAF deprotection and Zn nitro reduction were employed: Isopropyl ester MRS-3-121 (120 mg, 0.181 mmol), TBAF (0.105 mL, 2 equiv, 1 M in THF), Zn nanopowder (181 mg, 2.76 mmol, 10 equiv). Flash chromatography (50% EtOAc/hexanes) produced 80 mg (93%) of MRS-3-153.

1H NMR (600 MHz, DMSO-d$_6$) δ 8.35 (d, $J = 8.1$ Hz, 1H), 7.40 (s, 1H), 7.35-7.20 (m, 6H).
7.12 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 7.4 Hz, 2H), 5.25 (s, 2H), 4.80 (q, J = 6.8 Hz, 1H), 4.50-4.40 (m, 1H), 4.15 (t, J = 6.4 Hz, 2H), 2.95 (t, J = 6.7 Hz, 2H), 2.85-2.70 (m, 1H), 2.62-2.40 (m, 1H), 2.00-1.85 (m, 2H), 1.14-1.10 (m, 6H); MS-ESI (m/z) calcd for [C₂₈H₃₂N₂O₅]+ 477.2; found: 477.2.

(MRS-3-25) The general procedure for amine coupling was followed: the above carboxylic acid Compound 1 (120 mg, 0.261 mmol), 1-methyl-3-phenylpropylamine (39 mg, 0.261 mmol, 1 equiv), 2,6-lutidine (0.084 mL, 0.783 mmol, 3 equiv), HOAt (43 mg, 0.313 mmol, 1.2 equiv) and EDCI·HCl (60 mg, 0.313 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 126 mg (82%) of MRS-3-25. ¹H NMR (600 MHz, DMSO-d₆) δ 7.76 (d, J = 8.2 Hz, 1H), 7.50 (s, 1H), 7.30-7.20 (m, 6H), 7.10 (d, J = 8.3 Hz, 2H), 6.80 (d, J = 7.4 Hz, 2H), 4.30-4.20 (m, 3H), 3.05 (t, J = 6.4 Hz, 2H), 2.80-2.70 (m, 2H), 2.00-1.95 (m, 2H), 1.30 (d, J = 6.2 Hz, 3H), 1.20-1.10 (m, 3H), 1.09 (d, J = 7.2 Hz, 18H); MS-ESI (m/z) calcd for [C₄H₄N₂Si₅H₉]+ 591.3; found: 591.3.
The general procedures for TBAF deprotection and Zn nitro reduction were employed: Amide MRS-3-25 (120 mg, 0.203 mmol), TBAF (0.106 mL, 2 equiv, 1 M in THF), Zn nanopowder (120 mg, 1.84 mmol, 10 equiv). Flash chromatography (50% EtOAc/hexanes) produced 51 mg (62%) of aniline MRS-3-39. ^1H NMR (600 MHz, DMSO-d6) δ 9.20 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.30-7.20 (m, 7H), 7.15 (d, J = 8.1 Hz, 2H), 6.69 (d, J = 7.4 Hz, 2H), 5.10 (s, 2H), 4.10 (t, J = 6.8 Hz, 2H), 3.95-3.70 (m, 1H), 2.95 (t, J = 6.7 Hz, 2H), 2.55-2.45 (m, 2H), 1.80-1.60 (m, 2H), 1.10 (d, J = 6.2 Hz, 3H); MS-ESI (m/z) calcd for \([C_{25}H_{23}N_2O_3+H]^+\) 405.2; found: 405.2.
The general procedure for amine coupling was followed: the above carboxylic acid Compound 1 (120 mg, 0.261 mmol), 3-phenylpropylamine (35 mg, 0.261 mmol, 1 equiv), 2,6-lutidine (0.084 mL, 0.783 mmol, 3 equiv), HOAt (43 mg, 0.313 mmol, 1.2 equiv) and EDCI'HCl (60 mg, 0.313 mmol, 1.2 equiv) were employed. Flash chromatography (20% EtOAc/hexanes) gave 119 mg (79%) of MRS-3-27.

(MRS-3-27)

(MRS-3-41) The general procedures for TBAF deprotection and Zn nitro reduction were employed: Amide MRS-3-27 (100 mg, 0.173 mmol), TBAF (0.90 mL, 2 equiv, 1 M in THF), Zn nanopowder (124 mg, 1.90 mmol, 10 equiv). Flash chromatography (50% EtOAc/hexanes) produced 39 mg (58%) of MRS-3-41. 1H NMR (600 MHz, DMSO-d$_6$) δ 9.25 (s, 1H), 8.05 (d, $J = 8.1$ Hz, 1H), 7.30-7.20 (m, 7H), 7.15 (d, $J = 6.8$ Hz, 2H), 6.70 (d, $J = 7.4$ Hz, 2H), 5.10 (s, 2H), 4.10 (t, $J = 6.4$ Hz, 2H), 3.20-3.15 (m, 2H), 2.90 (t, $J = 6.7$ Hz, 2H), 2.60 (t, $J = 6.4$ Hz, 2H), 1.80-1.70 (m, 2H); MS-ESI (m/z) calcd for [C$_{24}$H$_{26}$N$_2$O$_3$+H]$^+$ 391.2; found: 391.2.
Sodium hydride (60%, 0.150 g, 6.22 mmol) was suspended in THF (10 mL) and 2-phenylethanol (0.317 g, 2.59 mmol) was added drop-wise at 0 °C. The mixture was stirred at 0 °C for 15 minutes under an atmosphere of argon before 3-fluoro-4-nitrobenzoic acid (0.400 g, 2.16 mmol) was added. The mixture was stirred at 0 °C for 5 minutes and room temperature for 2 hours, quenched with saturated aqueous NH₄Cl, diluted with EtOAc, and extracted with aqueous HCl (0.1 M, x 2). The organic layer was collected, concentrated, and the product purified by flash chromatography (SiO₂, 3:2:0.1 hexanes/Et₂O/HOAc) to give MRS-3-17 as a solid (0.428 g, 69%).

The general procedure for amine coupling was followed: carboxylic acid MRS-3-17 (100 mg, 0.348 mmol), HoPhe-OtBu (82 mg, 0.348 mmol, 1 equiv), 2,6-lutidine (0.120 mL, 1.04 mmol, 3 equiv).
HOAt (57 mg, 0.417 mmol, 1.2 equiv) and EDCI·HCl (80 mg, 0.417 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 148 mg (84%) of MRS-3-33.

1H NMR (600 MHz, DMSO-d$_6$) δ 7.75 (d, $J = 7.9$ Hz, 1H), 7.50 (s, 1H), 7.40-7.11 (m, 11H), 4.80-4.65 (m, 1H), 4.38 (t, $J = 7.0$ Hz, 2H), 3.10 (t, $J = 6.7$ Hz, 2H), 2.60-2.52 (m, 2H), 2.40-2.30 (m, 1H), 2.20-2.10 (m, 1H), 1.50 (s, 9H); MS-ESI (m/z) calcd for [C$_{23}$H$_{32}$N$_2$O$_4$+H] $^+$ 505.2; found: 505.2.

(MRS-3-47) The general procedure for zinc-nitro reduction was used: arylnitro MRS-3-33 (80 mg, 0.173 mmol), Zn nanopowder (113 mg, 1.73 mmol, 10 equiv) and acetone/saturated aqueous NH$_4$Cl (5 mL each) were employed. Flash chromatography (25% EtOAC/hexanes) gave 58 mg (71%, 2 steps) of aniline MRS-3-47.

1H NMR (600 MHz, DMSO-d$_6$) δ 8.20 (d, $J = 8.2$ Hz, 1H), 7.40-7.15 (m, 12H), 5.20 (s, 2H), 4.25 (q, $J = 6.0$ Hz, 1H), 4.18 (t, $J = 7.0$ Hz, 2H), 3.10 (t, $J = 6.7$ Hz, 2H), 2.70-2.62 (m, 1H), 2.60-2.55 (m, 1H), 2.10-2.00 (m, 2H), 1.45 (s, 9H); MS-ESI (m/z) calcd for [C$_{29}$H$_{34}$N$_2$O$_4$+H] $^+$ 475.2; found: 475.2.

(MRS-3-93) Sodium hydride (60%, 0.124 g, 2.59 mmol) was suspended in THF (5 mL) and 2-((triisopropylsilyl)oxy)phenyl ethanol (0.382 g, 1.29 mmol) was added drop-wise at 0 °C. The mixture was stirred at 0 °C for 15 minutes under an atmosphere of argon before 3-fluoro-4-nitrobenzoic acid (0.200 g, 1.08 mmol) was added. The mixture was stirred at 0 °C for 5 minutes and room temperature for 2 hours, quenched with saturated aqueous NH₄Cl, diluted with EtOAc, and extracted with aqueous HCl (0.1 M, × 2). The organic layer was collected, concentrated, and the product purified by flash chromatography (SiO₂, 3:1:0.1 hexanes/Et₂O/HOAc) to give MRS-3-93 as a solid (0.421 g, 85%).
The general procedure for amine coupling was followed: carboxylic acid MRS-3-93 (230 mg, 0.500 mmol), HoPhe-OtBu (114 mg, 0.500 mmol, 1 equiv), 2,6-lutidine (0.170 mL, 1.49 mmol, 3 equiv), HOAt (81 mg, 0.599 mmol, 1.2 equiv) and EDCI'\text{HCl} (114 mg, 0.599 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 337 mg (99%) of MRS-3-99. ^1H NMR (600 MHz, DMSO-d$_6$) δ 7.90 (d, $J = 8.2$ Hz, 1H), 7.55 (s, 1H), 7.40-7.35 (m, 5H), 7.20 (d, $J = 8.1$ Hz, 1H), 6.95 (d, $J = 7.4$ Hz, 1H), 6.90 (s, 1H), 6.85-6.80 (m, 1H), 6.75 (d, $J = 6.6$ Hz, 1H), 4.80 (q, $J = 6.9$ Hz, 1H), 4.40 (t, $J = 6.9$ Hz, 2H), 3.20 (t, $J = 6.8$ Hz, 2H), 2.80-2.70 (m, 2H), 2.45-2.35 (m, 1H), 2.23-2.11 (m, 1H), 1.60 (s, 9H), 1.40-1.24 (m, 3H), 1.15 (d, $J = 7.0$ Hz, 18H); MS-ESI (m/z) calcd for [C$_{38}$H$_{52}$N$_2$O$_7$Si+H]$^+$ 677.3; found: 677.3.
The general procedures for TBAF deprotection and Zn nitro reduction were employed: Amide MRS-3-99 (200 mg, 0.295 mmol), TBAF (0.590 mL, 2 equiv, 1 M in THF), Zn nanopowder (193 mg, 2.95 mmol, approx 10 equiv). Flash chromatography (50% EtOAc/hexanes) produced 99 mg (68%) of MRS-3-113. 1H NMR (600 MHz, DMSO-d$_6$) δ 9.40 (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.40-7.20 (m, 7H), 6.75-6.70 (m, 2H), 6.62-6.55 (m, 2H), 5.25 (s, 2H), 4.45 (q, J = 6.2 Hz, 1H), 4.20 (t, J = 7.2 Hz, 2H), 3.00 (t, J = 6.7 Hz, 2H), 2.70-2.60 (m, 1H), 2.55-2.50 (m, 1H), 2.00-1.95 (m, 2H), 1.49 (s, 9H); MS-ESI (m/z) calcd for \([C_{29}H_{34}N_2O_5+H]^+\) 491.2; found: 491.2.

The general procedure for amine coupling was followed: 3-hydroxybenzoic acid (47 mg, 0.348 mmol), HoPhe-OtBu (82 mg, 0.348 mmol, 1 equiv), 2,6-lutidine (0.120 mL, 1.04 mmol, 3 equiv), HOAt (57
Mg, 0.417 mmol, 1.2 equiv) and EDCI-HCl (80 mg, 0.417 mmol, 1.2 equiv) were employed. Flash chromatography (30% EtOAc/hexanes) gave 100 mg (81%) of phenol MRS-3-35.

\[
\text{(MRS-3-89)} \quad \text{Phenol MRS-3-35 (540 mg, 1.51 mmol) and alkyl bromide MM-1-73 (651 mg, 1.82 mmol, 1.20 equiv) were dissolved in acetone (10 mL) at room temperature. K}_2\text{CO}_3 (628 mg, 4.55 mmol, 3 equiv) was added, and the mixture was heating at reflux for 24 hours. The reaction mixture was cooled to room temperature, filtered, and concentrated. Flash chromatography (25% EtOAc/hexanes) provided 365 mg (38%) of ether MRS-3-89.} \]

\[
\begin{align*}
\text{H NMR (600 MHz, DMSO-d}_6) &\delta \\
&7.40-7.20 (m, 9H), 7.10 (d, J = 6.9 Hz, 2H), 6.80 (d, J = 6.6 Hz, 2H), 4.70 (q, J = 6.4 Hz, 1H), 4.18 (t, J = 7.2 Hz, 2H), 3.05 (t, J = 6.7 Hz, 2H), 2.80-2.60 (m, 2H), 2.30-2.20 (m, 1H), 2.10-2.00 (m, 1H), 1.50 (s, 9H), 1.30-1.20 (m, 3H), 1.10 (d, J = 6.4 Hz, 18H); MS-ESI (m/z) calcd for [CgeHssN0sSi+H]^+ 632.2; found: 632.2.
\end{align*}
\]
Ether MRS-3-89 (150 mg, 0.237
itimol) was dissolved in THF (1 mL). TBAF (0.474 mL, 2
equiv, 1 M in THF) was added, and the mixture was
stirred for 1 hour. After removal of the solvent,
flash chromatography (25% EtOAc/hexanes) gave 80 mg
(71%) of phenol MRS-3-95. ¾ NMR (600 MHz, DMSO-d₆) δ
7.40-7.10 (m, 11H), 6.68 (d, J = 6.4 Hz, 2H), 4.20 (q,
J = 6.4 Hz, 1H), 4.18 (t, J = 6.9 Hz, 2H), 2.90 (t, J
= 6.9 Hz, 2H), 2.70-2.65 (m, 1H), 2.60-2.55 (m, 1H),
2.10-2.00 (m, 2H), 1.39 (s, 9H); MS-ESI (m/z) calcd
for [C₂₅H₂₃N₅O₆+H]⁺ 476.2; found: 476.2.

General Procedure for Preparation of 3-halo- (4-
((triisopropylsilyl)oxy)phenyl) ethanols

X = Cl, F

The CI and F substituted phenols were
prepared by the above sequence from commercially
available benzoic acids. The LAH reduction was as
described in Bubert et al., ChemMedChem, 3:1708-1730
(2008). The double TIPS protection/selective mono -

(MRS-3-105) Sodium hydride (60%, 0.109 g, 4.53 mmol) was suspended in THF (5 mL) and 2-(3-chloro-4-(triisopropylsiloxy)phenyl) ethanol (0.747 g, 2.26 mmol) was added drop-wise at 0 °C. The mixture was stirred at 0 °C for 15 minutes under an atmosphere of argon before 3-fluoro-4-nitrobenzoic acid (0.350 g, 1.89 mmol) was added. The mixture was stirred at 0 °C for 5 minutes and room temperature for 2 hours, quenched with saturated aqueous NH₄Cl, diluted with EtOAc, and extracted with aqueous HCl (0.1 M, × 2). The organic layer was collected, concentrated, and the product purified by flash chromatography (SiO₂, 3:1:0.1 EtOAc/hexanes/HOAc) to give MRS-3-105 as a solid (0.747 g, 80%).
The general procedure for amine coupling was followed: carboxylic acid MRS-3-105 (247 mg, 0.500 mmol), HoPhe-OtBu (117 mg, 0.500 mmol, 1 equiv), 2,6-lutidine (0.170 mL, 1.49 mmol, 3 equiv), HOAt (81 mg, 0.599 mmol, 1.2 equiv) and EDCI'HCl (114 mg, 0.599 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 352 mg (99%) of MRS-3-109. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.10 (d, \(J = 6.9\) Hz, 1H), 7.50-7.20 (m, 8H), 6.80 (d, \(J = 8.1\) Hz, 1H), 6.60 (d, \(J = 7.4\) Hz, 1H), 4.80 (q, \(J = 6.9\) Hz, 1H), 3.70 (t, \(J = 6.4\) Hz, 2H), 2.60 (t, \(J = 6.8\) Hz, 2H), 2.55-2.50 (m, 2H), 2.45-2.35 (m, 1H), 2.23-2.11 (m, 1H), 1.50 (s, 9H), 1.40-1.24 (m, 3H), 1.15 (d, \(J = 6.9\) Hz, 18H); MS-ESI (m/z) calcd for [C\(_{38}\)H\(_5\)ClN\(_2\)O\(_7\)Si\(^+\) 711.2; found: 711.3.

The general procedures for TBAF deprotection and Zn nitro reduction were employed: Amide MRS-3-109 (350 mg, 0.482 mmol), TBAF (1.00 mL, 2 equiv, 1 M in THF), Zn nanopowder (297 mg, 4.54 mmol, approx 10 equiv). Flash chromatography (50% EtOAc/hexanes) produced 200 mg (78%, 2 steps) of MRS-3-105. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.30 (d, \(J = 8.2\) Hz, 1H), 7.55 (d, \(J = 6.8\) Hz, 1H), 7.43 (s, 1H), 7.35-7.25 (m, 6H), 6.75 (d, \(J = 6.2\) Hz, 1H).
6.2. Hz, 1H), 6.55 (d, J = 6.6 Hz, 1H), 5.57 (s, 2H),
4.25 (q, J = 6.4 Hz, 1H), 3.60 (t, J = 6.7 Hz, 2H),
2.70-2.60 (m, 4H), 2.00-1.95 (m, 2H), 1.49 (s, 9H);
MS-ESI (m/z) calcd for [C_{29}H_{33}ClN_{2}O_{5}+H]^+ 525.2; found: 525.2.

(MRS-3-111) Sodium hydride (60%, 0.037 g,
1.55 mmol) was suspended in THF (4 mL) and 2-(3-
fluoro-4-(triisopropylsiloxy) phenyl) ethanol (0.243 g,
0.77 mmol) was added dropwise at 0 °C. The mixture
was stirred at 0 °C for 15 minutes under an
atmosphere of argon before 3-fluoro-4-nitrobenzoic
acid (0.120 g, 0.65 mmol) was added. The mixture was
stirred at 0 °C for 5 minutes and room temperature
for 2 hours, quenched with saturated aqueous NH_{4}Cl,
diluted with EtOAc, and extracted with aqueous HCl
(0.1 M, × 2). The organic layer was collected,
concentrated, and the product purified by flash
chromatography (SiO_{2}, 3:1:0.1 EtOAc/hexanes/HOAc) to
give MRS-3-111 as a solid (0.238 g, 77%).
The general procedure for amine coupling was followed: carboxylic acid MRS-3-111 (238 mg, 0.498 mmol), HoPhe-OtBu (117 mg, 0.500 mmol, 1 equiv), 2,6-lutidine (0.170 mL, 1.49 mmol, 3 equiv), HOAt (81 mg, 0.599 mmol, 1.2 equiv) and EDCI'HCl (114 mg, 0.599 mmol, 1.2 equiv) were employed. Flash chromatography (25% EtOAc/hexanes) gave 250 mg (72%) of MRS-3-117. ¾ NMR (600 MHz, DMSO-d₆) δ 7.90 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.45-7.20 (m, 7H), 6.90 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 7.4 Hz, 1H), 4.55 (q, J = 6.4 Hz, 1H), 4.45 (t, J = 6.3 Hz, 2H), 3.20 (t, J = 6.4 Hz, 2H), 2.70-2.60 (m, 2H), 2.40-2.35 (m, 1H), 2.30-2.18 (m, 1H), 1.52 (s, 9H), 1.35-1.25 (m, 3H), 1.10 (d, J = 6.2 Hz, 18H); MS-ESI (m/z) calcd for [C₃₈H₅₁F₂N₂O₇Si+H]⁺ 694.3; found: 694.3.
The general procedures for TBAF deprotection and Zn nitro reduction were employed: Amide MRS-3-117 (250 mg, 0.359 mmol), TBAF (0.720 mL, 2 equiv, 1 M in THF), Zn nanopowder (300 mg, 4.58 mmol, approx 13 equiv). Flash chromatography (50% EtOAc/hexanes) produced 132 mg (72%, 2 steps) of aniline MRS-3-137. 1H NMR (600 MHz, DMSO-d_6) δ 9.55 (s, 1H), 8.25 (d, $J = 8.1$ Hz, 1H), 7.45-7.15 (m, 8H), 6.85 (d, $J = 6.9$ Hz, 1H), 6.65 (d, $J = 7.1$ Hz, 1H), 5.20 (s, 2H), 4.20 (q, $J = 6.9$ Hz, 1H), 4.15 (t, $J = 6.1$ Hz, 2H), 2.90 (t, $J = 6.7$ Hz, 2H), 2.75-2.70 (m, 1H), 2.62-2.58 (m, 1H), 2.00-1.95 (m, 2H), 1.40 (s, 9H); MS-ESI (m/z) calcd for [C$_{29}$H$_{33}$FN$_2$O$_5$] + 509.2; found: 509.2.
(MM-1-315) **TIPS-Neoseptin-4** (200 mg, 0.309 mmol), HOAt (46 mg, 0.340 mmol, 1.1 equiv) and Boc-Phe-OH (82 mg, 0.309 mmol, 1.0 equiv) were dissolved in anhydrous DMF (1.5 mL). 2,6-Lutidine (0.144 mL, 1.24 mmol, 4.0 equiv) was added. Upon dissolution of the reagents, EDCI'HCl (62 mg, 0.325 mmol, 1.05 equiv) was added, and the mixture was stirred 48 hours. After dilution with EtOAc (10 mL), the mixture was washed with 1 N HCl (5 mL), saturated NaHCO₃ (5 mL) and brine (5 mL). The organic phase was dried over Na₂SO₄, decanted and concentrated. The resulting residue was redissolved in anhydrous THF (2 mL) and TBAF (1.0 mL, 3.0 equiv, 1 M in THF) was added drop-wise at room temperature. After 30 minutes, H₂O (10 mL) was added, and the mixture was diluted with EtOAc (10 mL). The aqueous phase was extracted once with EtOAc (10 mL), and the combined organic phases were dried over Na₂SO₄, decanted and concentrated. Flash chromatography (40% EtOAc/hexanes) gave 192 mg (89%) of the amide **MM-1-315**.

¹H NMR (600 MHz, DMSO-d₆) δ 8.45 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.40-7.20 (m, 11H), 7.10 (d, J = 7.2 Hz, 2H), 6.65 (d, J = 7.1 Hz, 2H), 4.55 (q, J = 6.1 Hz, 2H), 4.50-4.45 (m, 1H), 4.15 (t, J = 6.4 Hz, 2H), 3.00 (t, J = 6.4 Hz, 2H), 2.70-2.60 (m, 4H), 2.35-2.25 (m, 1H), 2.15-2.00 (m, 1H), 1.50 (s, 9H), 1.45 (s, 9H); MS-ESI [m/z] calcd for [C₄₃H₅₁N₃O₈+H]⁺ 737.3; found: 738.3.
(Neoseptin-1) Compound **MM-1-315** (78 mg, 0.112 mmol) was dissolved in 4 N HCl/dioxane (1 mL, 4.00 mmol, approx. 36 equiv). The mixture was stirred for 6 hours, after which the solvent and excess HCl were evaporated under an N$_2$ stream to reveal 65 mg (99%) of **Neoseptin-1** as the HCl salt.

Each of the patents, patent applications and articles cited herein is incorporated by reference.

The foregoing description and the examples are intended as illustrative and are not to be taken as limiting. Still other variations within the spirit and scope of this invention are possible and will readily present themselves to those skilled in the art.
1. A compound that corresponds in structure to Formula I, below, or its pharmaceutically acceptable salt

wherein

- x is 0, s, NR^1, CH_2, where R^1 is H, or C_1-C_4 hydrocarbyl, or x is absent and two atoms link the depicted phenyl rings;
- y is 0, s, NR^2, CH_2, where R^2 is H, or a C_1-C_4 hydrocarbyl group;
- R^3 is a C_1-C_9 hydrocarbyl group;
- R^4 and R^5 are hydrido or hydroxyl but only one of R^4 and R^5 is hydrido, or both of R^4 and R^5 are hydroxyl;
- W is a ring structure that contains one or two rings and includes 5 to 12 atoms in the ring structure, said ring structure W optionally containing: a) 1, 2, 3 or 4 heteroatoms in the ring structure that are independently oxygen, nitrogen or...
sulfur, and b) one or more substituent groups bonded to one or more ring atoms, in which said one or more substituents contain a total of up to 8 atoms, selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof; and

a dotted line (---) represents one or more optional double bonds.

2. The compound according to claim 1, wherein X is absent or 0.

3. The compound according to claim 1, wherein Y is CH2.

4. The compound according to claim 1, wherein ring structure W contains up to 10 atoms in the ring structure.

5. The compound according to claim 1, wherein W is a single ring structure.

6. A compound that corresponds in structure to Formula II, below, or its pharmaceutically acceptable salt
wherein A, B, E, G, L and M are of ring system W being carbon (C) or nitrogen (N), with no more than three of A, B, E, G, L and M being nitrogen, and wherein W optionally contains one or more substituent groups bonded to one or more ring atoms, in which said one or more substituents contain a total of up to 8 atoms, selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof;

X is 0, s, NR¹, CH₂, where R¹ is H, or C₁-C₄ hydrocarbyl, or X is absent and two atoms link the depicted phenyl rings; and

R³ is a C₁-C₆ hydrocarbyl group.

7. The compound according to claim 6, wherein no more than two of A, B, E, G, L and M are nitrogen.

8. The compound according to claim 6, wherein X is absent or 0.

9. The compound according to claim 6, wherein R³ is a bulky hydrocarbyl group containing 4-6 carbon atoms.

10. The compound according to claim 6, wherein ring structure W contains a substituent selected from the group consisting of azido, fluoro, methyl, methoxy and trifluoromethyl groups, and said substituent is present at 4-position of a 6-membered ring and the 3-position of a 5-membered ring counting from the position of attachment to the remainder of the molecule.
11. A compound that corresponds in structure to Formula III or Formula IV, below, or its pharmaceutically acceptable salt

![Chemical Structures]

wherein ring \(W \) optionally contains one or more substituent groups bonded to one or more ring atoms, in which said one or more substituents contain a total of up to 8 atoms, selected from the group consisting of fluorine, chlorine, carbon, nitrogen, oxygen and sulfur, and mixtures thereof, \(A, B, E, G, L \) and \(M \) are carbon (C) or nitrogen (N) atoms, with no more than two of \(A, B, E, G, L \) and \(M \) being nitrogen, and \(R^3 \) is a bulky hydrocarbyl group containing 4-6 carbon atoms.

12. The compound according to claim 11, wherein \(R^3 \) is a tert-butyl group, a neopentyl group, a cyclopentyl group or cyclohexyl group.

13. The compound according to claim 11, wherein ring structure \(W \) is phenyl.
14. A compound corresponding in structure to the structural formula below, or a pharmaceutically acceptable salt thereof:

15. A compound corresponding in structure to the structural formula below, or a pharmaceutically acceptable salt thereof:

16. A pharmaceutical composition that comprises an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof dissolved or dispersed in a physiologically acceptable carrier.

17. The pharmaceutical composition according to claim 16 wherein said effective amount is an adjuvant effective amount.
18. The pharmaceutical composition according to claim 16 wherein said effective amount is a TLR4 agonist effective amount.

19. An improved method of vaccination wherein mammalian cells in need of vaccination are contacted with an immunizing composition that comprises an effective amount of an immunogen and an effective amount of an adjuvant, wherein the improvement comprises use of a compound or a pharmaceutically acceptable compound salt of claim 1 as the adjuvant.

20. The method according to claim 19, wherein said immunogen and said adjuvant are administered in the same composition.
Fig. 1

Fig. 1A

LPS (5 ng/ml)

C57BL/6 (no stimulation)
C57BL/6
Thr2LenLen
Thr3+/
ThrLps3Lps3
Thr6IntInt
Thr7CpgCpg1
Thr9Cpg3/Cpg3
MD-2+/+
CD14HoloHolo
MyD88FlocFloc
Trilps2/lps2
Mavs-/-
Iruk4+/+/Dgr
Ikbkapm2/Y

TNF-α production (normalized by WT)
Fig. 1B

Neoseptin-3 (50 uM)

C57BL/6 (no stimulation)
C57BL/6
Tlr2^{Dde/Leu}
Tlr3^{−/−}
Tlr4^{Wt/tg;ps2}
Tlr^{Int/Int}
Tlr7^{−/−}
Tlr^{G3G3pG3}
MD-2^{−/−}
CD14^{Indo/Ind}
MyD88^{Ado/Por}
Trif^{Wt/tg;ps2}
Mavs^{−/−}
Irak4^{Ind/Ind}
lkbkg^{Pam2/V}

TNF-a production (normalized by WT)
Fig. 2
Fig. 3B
Fig. 6
Fig. 9

LM (OVA 100 ug)

n=3

OVA-specific IgG (OD450)

- Neoseptin-3 (250 mg/kg)
- LPS (1 mg/kg)
- MPLA (1.5 mg/kg)
- Alum (25 mg/kg)

Day 14
Fig. 10
Fig. 11B

substituents tolerated

weak agonist if Ph removed

length of linker important
2 > 3 >> 1 or 4 atom linker

i-Pr, Et, Me ester,
ester removal & H led to progressive
loss of activity and amides less active

enantiomer inactive

NMe vs NH inactive
Fig. 11C

amine deletion, alkylation, & acylation are inactive, movement to adjacent sites led to progressive loss of activity

O = agonist
S or H₂ inactive

2-3 atom linker with O-incorporation tolerated, others led to loss in activity
2, 3 > 0, 1, 4 atoms
CH₂ & O > S, NH

X = -, Neoseptin-3
X = O, Neoseptin-4

m-substitution led to diminished activity

m-phenol less active H & OMe are inactive as agonists
OMe is an antagonist
INTERNATIONAL SEARCH REPORT

PCT/US2014/018380

A. CLASSIFICATION OF SUBJECT MATTER
C07C 237/20(2006.01)i, A61K 31/166(2006.01)i, A61P 37/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C 237/20; C07D 487/02; A61K 39/02; A61K 39/00; C07D 471/04; A61K 31/522; C07F 9/09; C07F 9/00; A61K 35/74; A61K 3/519; A61K 3/166; A61P 37/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: MD-2:TLR4 complex agonist

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2011-0081365 AI (CORTEZ ALEX et al.) 07 April 2011 See the whole document.</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 2005-0004144 AI (CARSON DENNIS A.et al.) 06 January 2005 See the whole document.</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 2012-0148660 AI (CARSON DENNIS A. et al.) 14 June 2012 See the whole document.</td>
<td>1-18</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search
03 June 2014 (03.06.2014)

Date of mailing of the international search report
08 June 2014 (08.06.2014)

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Further documents are listed in the continuation of Box C.

See patent family annex.

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
KIM, Jong Ho
Telephone No. +042 481 8657

Form PCT/ISA/210 (second sheet) (July 2009)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: 19-20
 because they relate to subject matter not required to be searched by this Authority, namely:
 Claims 19-20 pertain to methods for treatment of the human by therapy, as well as diagnostic method, and thus relate to a subject matter which this International Searching Authority is not required, under Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☑ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.

3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2009-222105 B2</td>
<td>17/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2716706 Al</td>
<td>11/09/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2716706 C</td>
<td>18/02/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102015651 A</td>
<td>13/04/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6321278 A2</td>
<td>20/09/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 018068 Bl</td>
<td>30/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201001413 Al</td>
<td>29/04/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP10010513 A</td>
<td>30/11/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2268618 Al</td>
<td>05/01/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 207580 DO</td>
<td>30/12/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05380465 B2</td>
<td>08/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1208778 Bl</td>
<td>05/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100119824 A</td>
<td>10/11/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 201009738 A</td>
<td>30/09/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 588191 A</td>
<td>29/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 16212009 Al</td>
<td>19/11/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 2010003657 A</td>
<td>23/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200951132 A</td>
<td>16/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-0253002 Al</td>
<td>26/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8466167 B2</td>
<td>18/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-016235 A3</td>
<td>16/03/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006-265986 B2</td>
<td>23/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2611721 Al</td>
<td>11/01/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101213199 AO</td>
<td>02/07/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101213199 B</td>
<td>18/12/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103012169 A</td>
<td>03/04/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103012304 A</td>
<td>03/04/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1910387 Al</td>
<td>16/04/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2292628 A2</td>
<td>09/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2292628 A3</td>
<td>11/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 187819 A</td>
<td>30/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 187819 DO</td>
<td>07/08/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 213173 DO</td>
<td>31/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 213174 A</td>
<td>31/10/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 213174 DO</td>
<td>31/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05-214446 B2</td>
<td>19/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009-502742 A</td>
<td>29/01/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009-502742 T</td>
<td>29/01/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012-162562 A</td>
<td>30/08/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1294455 Bl</td>
<td>07/08/2013</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>KR 20080031350 A</td>
<td>08/04/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2010-0197951 A</td>
<td>05/08/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2012-232298 Al</td>
<td>13/09/2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014-012011 A</td>
<td>09/01/2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7683200 B2</td>
<td>23/03/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 8198474 B2</td>
<td>12/06/2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 8519170 B2</td>
<td>27/08/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006-283524 A2</td>
<td>01/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2620182 Al</td>
<td>01/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101304748 A</td>
<td>12/11/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101304748 CO</td>
<td>12/11/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1931352 A2</td>
<td>18/06/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009-504803 A</td>
<td>05/02/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009-504803 T</td>
<td>05/02/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-040209 A</td>
<td>28/02/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009-0324551 Al</td>
<td>31/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-165455 Al</td>
<td>27/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008-227128 B2</td>
<td>06/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2677733 Al</td>
<td>25/09/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101790380 A</td>
<td>28/07/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101790380 B</td>
<td>10/07/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 019151 Bl</td>
<td>30/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200901078 Al</td>
<td>30/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2125007 A2</td>
<td>02/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2125007 Bl</td>
<td>08/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2510946 Al</td>
<td>17/10/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 200240 DO</td>
<td>29/04/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010-518082 A</td>
<td>27/05/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010-518082 T</td>
<td>27/05/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-127004 A</td>
<td>27/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090109121 A</td>
<td>19/10/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-156807 Al</td>
<td>20/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8357374 B2</td>
<td>22/01/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-115319 A3</td>
<td>05/03/2009</td>
</tr>
</tbody>
</table>