I*I Innovation, Sciences et Innovation, Science and CA 3098766 A1 2020/01/16
Développement économique Canada Economic Development Canada
en 3 098 766

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépo6t PCT/PCT Filing Date: 2019/10/15

(87) Date publication PCT/PCT Publication Date: 2020/01/16
(85) Entrée phase nationale/National Entry: 2020/10/29

(86) N° demande PCT/PCT Application No.: CN 2019/111316
(87) N° publication PCT/PCT Publication No.: 2020/011287

(51) CLInt./Int.Cl. HO4L 29/08(2006.01)

(71) Demandeur/Applicant:
ALIPAY (HANGZHOU) INFORMATION TECHNOLOGY
CO, LTD.,, CN

(72) Inventeur/Inventor:
ZHUO, HAIZHEN, CN

(74) Agent: KIRBY EADES GALE BAKER

(54) Titre : INDEXATION ET RECUPERATION DE DONNEES DE CHAINE DE BLOCS CODEES
(54) Title: INDEXING AND RECOVERING ENCODED BLOCKCHAIN DATA

Blockd1 see Blockd® | Block100

604
ECC 602
/
Encoded vos Encodad | Encoded
Blockd4 Block38 | Block100
606
Data Division
508
/

Datal Data2 Datad Vlatal

(57) Abrégé/Abstract:

910 600
Index table ' d
Datat,
Blocks Date?,
9100 Deted,
Vdatat
Datat Node!
606~
Indexing
Dala NodeZ
[atad Noded
Vilatat Norded
FIG. 6

Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media for
indexing blockchain data for storage. One of the methods includes generating a plurality of encoded blocks based on performing
error correction coding (ECC) on a plurality of blocks of a blockchain; for each encoded block of the plurality of encoded blocks:
dividing the encoded block into a plurality of datasets based on a data storage scheme associated with the plurality of blocks,
wherein the data storage scheme provides assignments of the plurality of datasets to a plurality of blockchain nodes; storing at
least one of the plurality of datasets based on the assignments provided in the data storage scheme; and providing an index that
indexes each of the plurality of datasets to each of the plurality of the blockchain nodes at which a respective dataset is stored.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 ® Gatineau, Quebec

noes < e Canada

w0 2020/011287 A3 |0 H000 00O 0 0 RO

CA 03098766 2020-10-29

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Propert N
B organisation > O O 0 0 0 O 0 R
International Bureau / (10) International Publication Number
(43) International Publication Date ——’/ WO 2020/011287 A3
16 January 2020 (16.01.2020) WIPO I PCT
(51) International Patent Classification: (72) Inventor: ZHUO, Haizhen; No. 556 Xixi Road, 8th Floor,
HO4L 29/08 (2006.01) Section B, Suite 801-11, West Lake District, Hangzhou,

(21) International Application Number: Zhejiang 310000 (CN).

PCT/CN2019/111316 (74) Agent: BEIJING BESTIPR INTELLECTUAL PROP-
ERTY LAW CORPORATION; Room 409, Tower B, Ka
Wah Building, No. 9 Shangdi 3rd Street, Haidian District,
Beijing 100085 (CN).

(22) International Filing Date:

15 October 2019 (15.10.2019)
(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BI1, BN, BR, BW, BY, BZ
(71) Applicant: ALIPAY (HANGZHOU) INFORMATION Cg’ cH CILJ’ N, CO. CR. CS’ 7 DE DJ bKWbM D6,
TECHNOLOGY CO., LTD. [CN/CN]; No. 556 Xixi il et Bl A St Sebe i et

Rpad, 8th Floor, Sggtion B, Suite 801-11, West Lake Dis- EIZ{ EI%% EGIESIEIIS%OG?P?{]EE?(% % %{II;I\FI)
trict, Hanzhou, Zhejiang 310000 (CN). KR, KW.KZ, LA,LC, LK. LR, LS, LU, LY, MA, MD, ME.,
MG, MK, MN, MW, MX, MY, MZ. NA, NG. NI, NO, NZ,
OM. PA. PE, PG, PH, PL. PT, QA, RO, RS, RU, RW, SA.,

(54) Title: INDEXING AND RECOVERING ENCODED BLOCKCHAIN DATA

600
610
!,4
index lable
Blockd1 ese Blockd® | Block100 Datat,
Blocks Data2,
91100 Data3,
Vilatat
604
ECC 602 Detal Nodet
/606~
Indexing
Encoded con Encoded | Encoded Data? Node?
Blockg1 Block39 | Block100
606 Deta3 Node3
Data Division
608
/ Vdaiat Noded
Datat Data? Data3 Vdata!
FIG. 6

(57) Abstract: Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media
for indexing blockchain data for storage. One of the methods includes generating a plurality of encoded blocks based on performing
error correction coding (ECC) on a plurality of blocks of a blockchain; for each encoded block of the plurality of encoded blocks:
dividing the encoded block into a plurality of datasets based on a data storage scheme associated with the plurality of blocks, wherein
the data storage scheme provides assignments of the plurality of datasets to a plurality of blockchain nodes; storing at least one of the
plurality of datasets based on the assignments provided in the data storage scheme; and providing an index that indexes each of the
plurality of datasets to each of the plurality of the blockchain nodes at which a respective dataset is stored.

[Continued on next page]

CA 03098766 2020-10-29

WO 20207011287 A3 | [I 11000000 0000 O O

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— upon request of the applicant, before the expiration of the
time limit referred to in Article 21(2)(a)

(88) Date of publication of the international search report:
20 August 2020 (20.08.2020)

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

INDEXING AND RECOVERING ENCODED BLOCKCHAIN DATA

TECHNICAL FIELD

[0001] This specification relates to indexing and recovering blockchain data encoded

based on error correction coding.

BACKGROUND

[0002] Distributed ledger systems (DLSs), which can also be referred to as consensus
networks, and/or blockchain networks, enable participating entities to securely and
immutably store data. DLSs are commonly referred to as blockchain networks without
referencing any particular user case. Examples of types of blockchain networks can include
public blockchain networks, private blockchain networks, and consortium blockchain
networks. A consortium blockchain network is provided for a select group of entities, which
control the consensus process, and includes an access control layer.

[0003] Blockchain-based programs can be executed by a distributed computing platform.
For example, the distributed computing platform can include a virtual machine that provides
the runtime environment for executing smart contracts. A blockchain computing platform can
be viewed as a transaction-based state machine. State data in the platform can be assembled
to a global shared-state referred to as a world state. The world state includes a mapping
between account addresses and account states. The world state can be stored in data
structures such as the Merkle Patricia tree (MPT).

[0004] Besides state data, blockchain networks can also store other types of data such as
block data and index data. Block data can include block header and block body. The block
header can include identity information of a particular block and the block body can include
transactions that are confirmed with the block. As transactions are increasingly entered into
the blockchain, state data and block data can grow very large in size. In some DLSs, every
node stores an entire copy of the blockchain, which can take large amount of storage space.
This is because all block data and state data are stored going back to the first transaction
recorded to the blockchain. In some DLSs, a few shared nodes store the entire copy of the
blockchain and share blockchain data with other blockchain nodes which can create “data
inequality.” That is, when data are unevenly distributed across different nodes, the risk of

data security can be high when nodes that store majority of data are at fault.

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0005] Accordingly, it would be desirable to enable such storage in a manner that
maintains data equality and data processing efficiency. It would also be desirable to enable
storage of data on nodes in the DLS in a manner that reduces consumption of computational
resources or memory, while being able to efficiently recover and retrieve the original data

when needed.

SUMMARY
[0006] Described embodiments of the subject matter can include one or more features,
alone or in combination.
[0007] For example, a computer-implemented method is provided for indexing
blockchain data for storage. The method comprises: generating a plurality of encoded blocks
based on performing error correction coding (ECC) on a plurality of blocks of a blockchain;
for each encoded block of the plurality of encoded blocks: dividing the encoded block into a
plurality of datasets based on a data storage scheme associated with the plurality of blocks,
wherein the data storage scheme provides assignments of the plurality of datasets to a
plurality of blockchain nodes; storing at least one of the plurality of datasets based on the
assignments provided in the data storage scheme; and providing an index that indexes each of
the plurality of datasets to each of the plurality of the blockchain nodes at which a respective
dataset is stored.
[0008] In some embodiments, these general and specific aspects may be implemented
using a system, a method, or a computer program, or any combination of systems, methods,
and computer programs. The foregoing and other described embodiments can each,
optionally, include one or more of the following features:
[0009] A first feature, combinable with any of the following features, specifies that the
index provides a correspondence between a dataset identifier (ID) of a dataset and a node 1D
of a blockchain node at which the dataset is stored.
[0010] A second feature, combinable with any of the previous or following features,
specifies that the index provides a plurality of block IDs corresponding to the plurality of
blocks that the data storage scheme is associated with.
[0011] A third feature, combinable with any of the previous or following features, further

comprises: hashing a remainder of the plurality of datasets other than the at least one of the

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

plurality of datasets to generate hash values corresponding to the remainder of the plurality of
datasets; storing the hash values; and deleting the one or more blocks. .

[0012] A fourth feature, combinable with any of the previous or following features,
further comprises: receiving a request for blockchain data from a computing device;
determining that the blockchain data is included in the one or more blocks; and sending,
based on the index, hash values to a remainder of the blockchain nodes of the blockchain
network to retrieve the remainder of the plurality of datasets..

[0013] A fifth feature, combinable with any of the previous or following features, further
comprises: receiving at least one dataset from each of the remainder of the blockchain nodes;
hashing the at least one dataset to generate at least one hash value corresponding to each of
the remainder of the blockchain nodes; and determining whether the at least one hash value is
stored in the blockchain node.

[0014] A sixth feature, combinable with any of the previous or following features, further
comprises: in response to determining that the at least one hash value is not stored in the
blockchain node, determining a blockchain node that the at least one dataset corresponding to
the at least one hash value is received from; and reporting the blockchain node as a faulty
node.

[0015] A seventh feature, combinable with any of the previous or following features,
further comprises: in response to determining that the at least one hash value corresponding
to each of the remainder of the blockchain nodes is stored in the blockchain node, decoding
the one or more blocks based on the at least one of the plurality of datasets stored in the
blockchain node and the at least one dataset received from each of the remainder of the
blockchain nodes.

[0016] An eighth feature, combinable with any of the previous or following features,
specifies that the one or more blocks are historical blocks that have been created for a
predetermined amount of time.

[0017] A ninth feature, combinable with any of the previous or following features,
specifies that the ECC is performed when utilization rate of computational resource of the
blockchain node is less than or equal to a predetermined value or usage of storage space of

the blockchain node is greater than or equal to a predetermined percentage.

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0018] A tenth feature, combinable with any of the previous or following features,
specifies that the ECC is erasure coding performed by adding redundant bits to the plurality
of blocks.

[0019] An eleventh feature, combinable with any of the previous or following features,
specifies that the plurality of blocks are infrequently accessed blocks that are appended to the
blockchain for a predetermined amount of time.

[0020] It is appreciated that methods in accordance with this specification may include
any combination of the aspects and features described herein. That is, methods in accordance
with this specification are not limited to the combinations of aspects and features specifically
described herein, but also include any combination of the aspects and features provided.
[0021] The details of one or more embodiments of this specification are set forth in the
accompanying drawings and the description below. Other features and advantages of this

specification will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0022] FIG. 1 depicts an example of an environment that can be used to execute
embodiments of this specification.
[0023] FIG. 2 depicts an example of an architecture in accordance with embodiments of
this specification.
[0024] FIG. 3 depicts an example of a block data encoding and hashing process in
accordance with embodiments of this specification.
[0025] FIG. 4 depicts an example of a data storage scheme in accordance with
embodiments of this specification.
[0026] FIG. 5 depicts another example of a block data encoding and hashing process in
accordance with embodiments of this specification.
[0027] FIG. 6 depicts an example of a process for indexing encoded datasets in
accordance with embodiments of this specification.
[0028] FIG. 7 depicts an example of a process for data retrieving and recovering in
accordance with embodiments of this specification.
[0029] FIG. 8 depicts an example of a process that can be executed in accordance with

embodiments of this specification.

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0030] FIG. 9 depicts examples of modules of an apparatus in accordance with
embodiments of this specification.
[0031] Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

[0032] This specification describes technologies for indexing blockchain data for storage.
These technologies generally involve generating one or more encoded blocks by executing
error correction coding (ECC) on one or more blocks of a blockchain, dividing each of the
one or more encoded blocks into a plurality of datasets, and providing an index for the one or
more blocks, the index indexing each of the plurality of datasets to a blockchain node at
which a respective dataset is stored.

[0033] As described herein, blockchain networks can store different types of data such as
state data, block data, and index data. Block data includes all transactions in the blockchain
network, which can take a large amount of storage space as new blocks are constantly adding
to the blockchain. It can be inefficient for the blockchain nodes to each store an entire copy
of the block data, especially for data of infrequently accessed blocks (e.g., blocks added to
the blockchain long time ago). Accordingly, embodiments of this specification provide that
each blockchain node stores a portion of infrequently accessed blocks and retrieves the rest
of the block data from other blockchain nodes when needed, to reduce storage consumption.
However, if faulty nodes or unreliable nodes exist in the blockchain network, the retrieved
data cannot be trusted and data loss may occur.

[0034] In some embodiments, the blockchain nodes can perform ECC, such as erasure
coding, to encode the infrequently accessed blocks. The ECC encoded blocks can then be
divided into a plurality of datasets. The plurality of datasets can be indexed and assigned to
different blockchain nodes to store based on a data storage scheme. When data from an
infrequently accessed block is needed by a blockchain node to execute a smart contract, the
blockchain node can retrieve corresponding datasets from other blockchain nodes based on
the index to form the ECC encoded block and recover the original block. By sharing ECC
encoded blocks, even if unauthentic data exists or data loss occurs, the original block data
can be recovered as long as the percentage of honest blockchain nodes is greater than or

equal to the code rate of the ECC.

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0035] The techniques described in this specification produce several technical effects.
For example, embodiments of the subject matter reduce the burden on storage resources of
blockchain nodes, while maintaining computational efficiency and data equality of the
blockchain nodes. Because some blocks are infrequently accessed (e.g., older blocks),
storage resources of blockchain nodes are conserved by saving only a portion of the ECC
encoded blocks (also referred to herein as encoded blocks) on each blockchain node and
sharing the remainder of the data with other blockchain nodes.

[0036] In some embodiments, an ECC encoded block can be divided to a plurality of
datasets. A blockchain node can store a selected portion of the plurality of datasets and hash
values corresponding to the remainder of the datasets. The selection can be based on a data
storage scheme agreed to by blockchain nodes of the blockchain network. The plurality of
datasets and the hash values can be indexed to block IDs associated with the ECC encoded
blocks and node IDs associated with the blockchain nodes in which the respective datasets
and hash values are stored. The index can be shared to the blockchain nodes of the
blockchain network. When original blockchain data needs to be recovered by a blockchain
node, the blockchain node can refer to the index to quickly locate where the datasets are
stored, retrieve the datasets, and decode the original block that contains the blockchain data
based on the datasets.

[0037] To retrieve the datasets, the blockchain node can send hash values of the datasets
to other blockchain nodes that store the corresponding datasets. Since hash values are
irreversible, the blockchain node can verify whether the retrieved datasets are authentic, by
hashing the received datasets and comparing the hashed values with hash values that were
locally stored. As such, data security can be ensured and faulty nodes can be identified.
[0038] To provide further context for embodiments of this specification, and as
introduced above, distributed ledger systems (DLSs), which can also be referred to as
consensus networks (e.g., made up of peer-to-peer nodes), and blockchain networks, enable
participating entities to securely, and immutably conduct transactions, and store data.
Although the term blockchain is generally associated with particular networks, and/or use
cases, blockchain is used herein to generally refer to a DLS without reference to any

particular use case.

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0039] A blockchain is a data structure that stores transactions in a way that the
transactions are immutable. Thus, transactions recorded on a blockchain are reliable and
trustworthy. A blockchain includes one or more blocks. Each block in the chain is linked to a
previous block immediately before it in the chain by including a cryptographic hash of the
previous block. Each block also includes a timestamp, its own cryptographic hash, and one or
more transactions. The transactions, which have already been verified by the nodes of the
blockchain network, are hashed and encoded into a Merkle tree. A Merkle tree is a data
structure in which data at the leaf nodes of the tree is hashed, and all hashes in each branch of
the tree are concatenated at the root of the branch. This process continues up the tree to the
root of the entire tree, which stores a hash that is representative of all data in the tree. A hash
purporting to be of a transaction stored in the tree can be quickly verified by determining
whether it is consistent with the structure of the tree.

[0040] Whereas a blockchain is a decentralized or at least partially decentralized data
structure for storing transactions, a blockchain network is a network of computing nodes that
manage, update, and maintain one or more blockchains by broadcasting, verifying and
validating transactions, etc. As introduced above, a blockchain network can be provided as a
public blockchain network, a private blockchain network, or a consortium blockchain
network. Embodiments of this specification are described in further detail herein with
reference to a consortium blockchain network. It is contemplated, however, that
embodiments of this specification can be realized in any appropriate type of blockchain
network.

[0041] In general, a consortium blockchain network is private among the participating
entities. In a consortium blockchain network, the consensus process is controlled by an
authorized set of nodes, which can be referred to as consensus nodes, one or more consensus
nodes being operated by a respective entity (e.g., a financial institution, insurance company).
For example, a consortium of ten (10) entities (e.g., financial institutions, insurance
companies) can operate a consortium blockchain network, each of which operates at least one
node in the consortium blockchain network.

[0042] In some examples, within a consortium blockchain network, a global blockchain
is provided as a blockchain that is replicated across all nodes. That is, all consensus nodes are

in perfect state consensus with respect to the global blockchain. To achieve consensus (e.g.,

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

agreement to the addition of a block to a blockchain), a consensus protocol is implemented
within the consortium blockchain network. For example, the consortium blockchain network
can implement a practical Byzantine fault tolerance (PBFT) consensus, described in further
detail below.

[0043] FIG. 1 is a diagram illustrating an example of an environment 100 that can be
used to execute embodiments of this specification. In some examples, the environment 100
enables entities to participate in a consortium blockchain network 102. The environment 100
includes computing systems106, 108, and a network 110. In some examples, the network 110
includes a local area network (LAN), wide area network (WAN), the Internet, or a
combination thereof, and connects web sites, user devices (e.g., computing devices), and
back-end systems. In some examples, the network 110 can be accessed over a wired and/or a
wireless communications link. In some examples, the network 110 enables communication
with, and within the consortium blockchain network 102. In general the network 110
represents one or more communication networks. In some cases, the computing systems106,
108 can be nodes of a cloud computing system (not shown), or each of the computing
systems 106, 108 can be a separate cloud computing system including a number of computers
interconnected by a network and functioning as a distributed processing system.

[0044] In the depicted example, the computing systems 106, 108 can each include any
appropriate computing device that enables participation as a node in the consortium
blockchain network 102. Examples of computing devices include, without limitation, a server,
a desktop computer, a laptop computer, a tablet computing device, and a smartphone. In
some examples, the computing systems 106, 108 host one or more computer-implemented
services for interacting with the consortium blockchain network 102. For example, the
computing system 106 can host computer-implemented services of a first entity (e.g., user A),
such as a transaction management system that the first entity uses to manage its transactions
with one or more other entities (e.g., other users). The computing system 108 can host
computer-implemented services of a second entity (e.g., user B), such as a transaction
management system that the second entity uses to manage its transactions with one or more
other entities (e.g., other users). In the example of FIG. 1, the consortium blockchain network

102 is represented as a peer-to-peer network of nodes, and the computing systems 106, 108

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

provide nodes of the first entity, and second entity respectively, which participate in the
consortium blockchain network 102.

[0045] FIG. 2 depicts an example of an architecture 200 in accordance with embodiments
of this specification. The example conceptual architecture 200 includes participant systems
202, 204, 206 that correspond to Participant A, Participant B, and Participant C, respectively.
Each participant (e.g., user, enterprise) participates in a blockchain network 212 provided as
a peer-to-peer network including a plurality of nodes 214, at least some of which immutably
record information in a blockchain 216. Although a single blockchain 216 is schematically
depicted within the blockchain network 212, multiple copies of the blockchain 216 are
provided, and are maintained across the blockchain network 212, as described in further
detail herein.

[0046] In the depicted example, each participant system 202, 204, 206 is provided by, or
on behalf of Participant A, Participant B, and Participant C, respectively, and functions as a
respective node 214 within the blockchain network. As used herein, a node generally refers
to an individual system (e.g., computer, server) that is connected to the blockchain network
212, and enables a respective participant to participate in the blockchain network. In the
example of FIG. 2, a participant corresponds to each node 214. It is contemplated, however,
that a participant can operate multiple nodes 214 within the blockchain network 212, and/or
multiple participants can share a node 214. In some examples, the participant systems 202,
204, 206 communicate with, or through the blockchain network 212 using a protocol (e.g.,
hypertext transfer protocol secure (HTTPS)), and/or using remote procedure calls (RPCs).
[0047] Nodes 214 can have varying degrees of participation within the blockchain
network 212. For example, some nodes 214 can participate in the consensus process (e.g., as
miner nodes that add blocks to the blockchain 216), while other nodes 214 do not participate
in the consensus process. As another example, some nodes 214 store a complete copy of the
blockchain 216, while other nodes 214 only store copies of portions of the blockchain 216.
For example, data access privileges can limit the blockchain data that a respective participant
stores within its respective system. In the example of FIG. 2, the participant systems 202, 204,
and 206 store respective, complete copies 216°, 216", and 216’ of the blockchain 216.
[0048] A blockchain (e.g., the blockchain 216 of FIG. 2) is made up of a chain of blocks,

each block storing data. Examples of data include transaction data representative of a

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

transaction between two or more participants. While transactions are used herein by way of
non-limiting example, it is contemplated that any appropriate data can be stored in a
blockchain (e.g., documents, images, videos, audio). Examples of a transaction can include,
without limitation, exchanges of something of value (e.g., assets, products, services,
currency). The transaction data is immutably stored within the blockchain. That is, the
transaction data cannot be changed.

[0049] Before storing in a block, the transaction data is hashed. Hashing is a process of
transforming the transaction data (provided as string data) into a fixed-length hash value
(also provided as string data). It is not possible to un-hash the hash value to obtain the
transaction data. Hashing ensures that even a slight change in the transaction data results in a
completely different hash value. Further, and as noted above, the hash value is of fixed length.
That is, no matter the size of the transaction data the length of the hash value is fixed.
Hashing includes processing the transaction data through a hash function to generate the hash
value. An example of a hash function includes, without limitation, the secure hash algorithm
(SHA)-256, which outputs 256-bit hash values.

[0050] Transaction data of multiple transactions are hashed and stored in a block. For
example, hash values of two transactions are provided, and are themselves hashed to provide
another hash. This process is repeated until, for all transactions to be stored in a block, a
single hash value is provided. This hash value is referred to as a Merkle root hash, and is
stored in a header of the block. A change in any of the transactions will result in change in its
hash value, and ultimately, a change in the Merkle root hash.

[0051] Blocks are added to the blockchain through a consensus protocol. Multiple nodes
within the blockchain network participate in the consensus protocol, and perform work to
have a block added to the blockchain. Such nodes are referred to as consensus nodes. PBFT,
introduced above, is used as a non-limiting example of a consensus protocol. The consensus
nodes execute the consensus protocol to add transactions to the blockchain, and update the
overall state of the blockchain network.

[0052] In further detail, the consensus node generates a block header, hashes all of the
transactions in the block, and combines the hash value in pairs to generate further hash values
until a single hash value is provided for all transactions in the block (the Merkle root hash).

This hash is added to the block header. The consensus node also determines the hash value of

10

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

the most recent block in the blockchain (i.e., the last block added to the blockchain). The
consensus node also adds a nonce value, and a timestamp to the block header.

[0053] In general, PBFT provides a practical Byzantine state machine replication that
tolerates Byzantine faults (e.g., malfunctioning nodes, malicious nodes). This is achieved in
PBFT by assuming that faults will occur (e.g., assuming the existence of independent node
failures, and/or manipulated messages sent by consensus nodes). In PBFT, the consensus
nodes are provided in a sequence that includes a primary consensus node, and backup
consensus nodes. The primary consensus node is periodically changed. Transactions are
added to the blockchain by all consensus nodes within the blockchain network reaching an
agreement as to the world state of the blockchain network. In this process, messages are
transmitted between consensus nodes, and each consensus nodes proves that a message is
received from a specified peer node, and verifies that the message was not modified during
transmission.

[0054] In PBFT, the consensus protocol is provided in multiple phases with all consensus
nodes beginning in the same state. To begin, a client sends a request to the primary consensus
node to invoke a service operation (e.g., execute a transaction within the blockchain network).
In response to receiving the request, the primary consensus node multicasts the request to the
backup consensus nodes. The backup consensus nodes execute the request, and each sends a
reply to the client. The client waits until a threshold number of replies are received. In some
examples, the client waits for f+1 replies to be received, where f is the maximum number of
faulty consensus nodes that can be tolerated within the blockchain network. The final result
is that a sufficient number of consensus nodes come to an agreement on the order of the
record that is to be added to the blockchain, and the record is either accepted, or rejected.
[0055] In some blockchain networks, cryptography is implemented to maintain privacy
of transactions. For example, if two nodes want to keep a transaction private, such that other
nodes in the blockchain network cannot discern details of the transaction, the nodes can
encrypt the transaction data. An example of cryptography includes, without limitation,
symmetric encryption, and asymmetric encryption. Symmetric encryption refers to an
encryption process that uses a single key for both encryption (generating ciphertext from
plaintext), and decryption (generating plaintext from ciphertext). In symmetric encryption,

the same key is available to multiple nodes, so each node can en-/de-crypt transaction data.

11

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0056] Asymmetric encryption uses keys pairs that each include a private key, and a
public key, the private key being known only to a respective node, and the public key being
known to any or all other nodes in the blockchain network. A node can use the public key of
another node to encrypt data, and the encrypted data can be decrypted using other node’s
private key. For example, and referring again to FIG. 2, Participant A can use Participant B’s
public key to encrypt data, and send the encrypted data to Participant B. Participant B can use
its private key to decrypt the encrypted data (ciphertext) and extract the original data
(plaintext). Messages encrypted with a node’s public key can only be decrypted using the
node’s private key.

[0057] Asymmetric encryption is used to provide digital signatures, which enables
participants in a transaction to confirm other participants in the transaction, as well as the
validity of the transaction. For example, a node can digitally sign a message, and another
node can confirm that the message was sent by the node based on the digital signature of
Participant A. Digital signatures can also be used to ensure that messages are not tampered
with in transit. For example, and again referencing FIG. 2, Participant A is to send a message
to Participant B. Participant A generates a hash of the message, and then, using its private
key, encrypts the hash to provide a digital signature as the encrypted hash. Participant A
appends the digital signature to the message, and sends the message with digital signature to
Participant B. Participant B decrypts the digital signature using the public key of Participant
A, and extracts the hash. Participant B hashes the message and compares the hashes. If the
hashes are same, Participant B can confirm that the message was indeed from Participant A,
and was not tampered with.

[0058] FIG. 3 depicts an example of a block data encoding and hashing process 300 in
accordance with embodiments of this specification. In this example, a blockchain network of
four blockchain nodes is depicted, which are blockchain nodes 302, 304, 306, and 308. Using
blockchain node 302 as an example to illustrate the encoding and hashing process 300, the
blockchain node 302 can store block data of the blockchain network to block body of a block
312. In the illustrated example, the block data is stored in block 100. Afterwards, the
blockchain node 302 can engage in a consensus process with other blockchain nodes 304,

306, and 308. During the consensus process, the blockchain node 302 can perform a

12

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

consensus algorithm, such as proof of work (PoW) or proof of stake (PoS) to create a
corresponding block on the blockchain.

[0059] In some embodiments, the blockchain node 302 can identify one or more
infrequently accessed blocks. In practice, the longer a block has been created, the less likely
the corresponding block data is needed for operations such as executing smart contracts. The
blockchain node 302 can determine that locally stored blocks are infrequently accessed when
they are historical blocks that have been created on the blockchain for a predetermined
amount of time. For example, the predetermined amount of time can be one or two times of
the average time a block is created. In some examples, a block can also be determined as
infrequently accessed when no block data in the block is retrieved for the predetermined
amount of time to execute smart contracts.

[0060] After identifying infrequently accessed blocks, the blockchain node 302 can
perform ECC 314 of block data in the block body of each of the infrequently accessed blocks.
ECC can be used for controlling errors or losses of data over unreliable transmissions by
adding redundant bits (also referred to as redundancy) to the data. Redundant bits can be a
complex function of many original information bits. The redundancy can allow errors or
losses of data to be corrected without retransmission of the data. The original information
may or may not appear literally in the encoded output. ECC codes that include the
unmodified original information in the encoded output are referred to as systematic ECC
codes, while those that do not are referred to as non-systematic ECC codes. The maximum
fractions of errors or of missing bits that can be corrected by ECC is determined by the
design of the ECC code. Therefore, different error correction codes are suitable for different
conditions. In general, a stronger ECC code induces more redundancy, which increases
storage consumption of the code and reduces communication efficiency if the encoded
information is to be transmitted.

[0061] One example ECC can be the erasure coding. Using the erasure coding, a message
of k symbols can be encoded to a codeword with n symbols, where k and n are natural
numbers, and k < n. The message can be recovered from a subset of the n-symbol codeword.
The fraction r = k/n is the code rate of the erasure code.

[0062] By using ECC, each of the blockchain nodes can store a portion of the encoded

block data and retrieve the rest of the encoded block data from other blockchain nodes when

13

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

needed. In some embodiments, the ECC can be performed when utilization rate of
computational resource of the blockchain node 302 is lower than a predetermined value (e.g.,
40%). As such, the interference with other computational operations on the blockchain node
302 can be reduced. In some embodiments, ECC can be performed when the usage of storage
space of the blockchain node 302 is greater than or equal to a predetermined percentage, such
that after ECC, some portions of the encoded block data can be deleted to free up storage
space.

[0063] Again, using block 100 as an example, assuming that the blockchain node 302
determines the block 100 as an infrequently accessed block and performs ECC 314, the ECC
encoded data can be divided into a plurality of datasets based on a data storage scheme. A
data storage scheme can be provided as a set of computer-executable instructions that define
where and/or how data is to be stored within the blockchain network. In some examples, the
data storage scheme can be provided by a trusted node with proof of authority and agreed to
by the blockchain nodes. In some examples, the data storage scheme can be agreed to by the
blockchain nodes through consensus. Generally, the data storage scheme can include one or
more predetermined rules for dividing the encoded data to a plurality of datasets based on the
number of blockchain nodes in a blockchain network. The data storage scheme can also
include assignments of one or more datasets of the plurality of datasets to be stored or hashed
by each of the blockchain nodes. To ensure data equality, the data storage scheme can
include an assignment of at least one dataset to be stored by each blockchain node of the
blockchain network.

[0064] In the example shown in FIG. 3, the encoded block data of block 100 is divided
into four datasets, which are Datal, Data2, Data3, and Vdatal, each to be stored by one of
the blockchain nodes 302, 304, 306, and 308. Vdatal can represent the redundant bits of the
ECC for error correction. Datal is selected to be stored by the blockchain node 302
according to the data storage scheme. Data2, Data3, and Vdatal are selected to be separately
hashed 316 to generate hash values Dhash2, Dhash3, and Vhashl, respectively. In
accordance with embodiments of this specification, the encoded data can be divided to more
than four datasets when the blockchain network has more than four nodes. In some examples,
each of the blockchain nodes can store more than one dataset and hash the rest of the datasets

assigned to be stored by other nodes.

14

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0065] Referring now to FIG. 4, FIG. 4 depicts an example of a data storage scheme 400
in accordance with embodiments of this specification. As discussed earlier, Datal is selected
to be stored by the blockchain node 302 according to the data storage scheme 400. Based on
the data storage scheme 400, blockchain node 304 stores Data2 and separately hashes Datal,
Data3, and Vdatal to generate hash values Dhashl, Dhash3, and Vhashl, respectively.
Blockchain node 306 stores Data3 and separately hashes Datal, Data2, and Vdatal to
generate hash values Dhashl, Dhash2 and Vhashl, respectively. Blockchain node 308 stores
Vdatal and separately hashes Datal, Data2, and Vdata3 to generate hash values Dhashl,
Dhash2 and Dhash3, respectively.

[0066] Referring back to FIG. 3, because the hash values correspond to encoded datasets
of the same block, they can be indexed by a block ID of the block. For example, the
blockchain node 302 can index Datal, Dhashl, Dhash2, and Vhashl associated with block
100 with a block ID 100. As such, the blockchain node 302 can use the indexed block 1D to
map the hash values to their corresponding blocks. A more detailed example of indexing the
datasets and hash values is discussed in the description of FIG. 6.

[0067] It is to be understood that other data storage schemes can be made for the
blockchain nodes 302, 304, 306, and 308, according to the data storage scheme. In some
examples, the encoded block data of block 100 can be divided to more than four datasets. It
is to be understood that other data storage schemes can be made for the blockchain nodes 502,
504, 506, and 508, according to the data storage scheme.

[0068] After generating and storing Dhash2, Dhash3, and Vhashl, the blockchain node
302 can delete Data2, Data3, and Vdatal from storage to save storage space. As such, for
each block, the blockchain node 302 only stores one ECC encoded dataset (i.e., Datal) and
three hash values (i.e., Dhash2, Dhash3, and Vhashl), instead of the entire block. As such,
storage space can be significantly reduced. Similar to block 100, the encoding and hashing
process can be performed for other infrequently accessed blocks that are stored by the
blockchain nodes 304, 306, and 308.

[0069] When the blockchain node 302 determines that block data of the block 100 is
needed for executing a smart contract, it can retrieve Data2, Data3, and Vdatal from
blockchain nodes 304, 306, and 308, respectively, according to the data storage scheme. To

retrieve datasets from other blockchain nodes 304, 306, and 308, blockchain node 302 can

15

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

send hash values corresponding to the datasets to be retrieved according to the data storage
scheme.

[0070] For example, to retrieve Data2, the blockchain node 302 can send Dhash?2 to the
blockchain node 304. If the blockchain node 304 has Data2 stored, it can send the Data2 back
to the blockchain node 302 in response to receiving the Dhash2. After receiving the Data2
from the blockchain node 304, the blockchain node 302 can hash the received dataset and
compare the hash value with Dhash2. If the hash value is the same as Dhash2, the blockchain
node 302 can determine that the received dataset is authentic. Otherwise, the received dataset
is determined to be unauthentic. When the received dataset is determined as unauthentic, the
blockchain node 302 can report the blockchain node 304 as a faulty node (or a Byzantine
node). If the percentage of unauthentic data received by the blockchain node 302 is less than
or equal to the maximum fraction of erroneous or missing bits that can be corrected by the
ECC, block 100 can be recovered from the locally stored and received datasets.

[0071] As described earlier, blockchain networks can store different types of data such as
state data, block data, and index data. State data are often stored as a content-addressed state
tree, such as the MPT or the fixed depth Merkle tree (FDMT). Content-addressed state trees
are incremental in nature. That is, changes of account states are reflected by adding new tree
structures instead of only updating values of the existing state tree. Therefore, the content-
addressed state trees can grow very large in size when blocks are continuously added to the
blockchain. Under the FDMT storage scheme, state data can be separated into current state
data associated with the current block and historic state data associated with all blocks of the
blockchain. Most data in the FDMT are infrequently used historic state data. Storing all
historic state data in every consensus node can be quite inefficient in terms of storage
resource usage.

[0072] In some embodiments, similar to encoding and sharing block data, ECC such as
erasure coding can be used to encode the historic state data. Each consensus node in the
blockchain network stores only a portion of the historic state data and retrieves the rest of the
historic state data from other nodes to reduce storage consumption. By sharing ECC encoded
historic state data instead of the original historic state data, even if unauthentic data exists or

data loss occurs, the original historic state data can be recovered, as long as the percentage of

16

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

unauthentic data or data loss is less than or equal to the maximum fraction of erroneous or
missing bits that can be corrected by the ECC.

[0073] FIG. 5 depicts another example of a block data encoding and hashing process 500
in accordance with embodiments of this specification. In this example, a blockchain network
of four blockchain nodes is depicted, which are blockchain nodes 502, 504, 506, and 508.
Using blockchain node 502 as an example to illustrate the encoding and hashing process 500,
when new block data are added to the block 512, the blockchain node 502 can perform ECC
514 to encode the block data. As compared to the encoding and hashing process 300
discussed in the description of FIG. 3, the blockchain node 502 performs ECC on the block
data as they are written to a block. As such, the blockchain node 502 does not need to store
the entire block, but can instead, store a selected portion of the ECC encoded block data and
hash values corresponding to the rest of the encoded block data based on the data storage
scheme. This encoding and hashing process 500 can be especially suitable for scenarios when
blockchain node 502 has low disk space.

[0074] In some embodiments, instead of storing data as blocks, the blockchain node 502
can store a write-ahead log (WAL) file or other similar roll-forward journal files. The WAL
file can record block data that have been committed but not yet stored by the blockchain node
502. Using the WAL file, the original blockchain data can be preserved in the database file,
while changes of the blockchain data can be written into a separate WAL file. A commit to
roll-forward with the changes can happen without ever writing to the original blockchain data.
This arrangement allows continued operations of the blockchain data while changes are
committed into the WAL file. By using the WAL file to store changes made through the
encoding and hashing process 500, the blockchain node 502 can indicate that it has the block
data for consensus, while performing the ECC in the background when appropriate. As such,
the ECC can be performed when utilization rate of computational resource of the blockchain
node 302 is low, in order to reduce the impact on computational efficiency or latency of the
CONSensus process.

[0075] In some embodiments, the blockchain node 502 can store the block data in a
buffer. The blockchain node 502 can perform ECC to the block data stored in the buffer
when the size of the data is greater than a predetermined threshold or when the buffer is full.

After performing ECC, the blockchain node 502 can follow the encoding and hashing

17

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

process 500 to store encoded block data and hash values, as discussed in the description
below.

[0076] Using block 100 as an example again, after performing the ECC, the encoded
block data can be divided into a plurality of datasets based on the data storage scheme.
Similar to the example discussed in the description of FIG. 3, the encoded block data of
block 100 can be divided into four datasets, which are Datal, Data2, Data3, and Vdatal, each
to be stored by one of the blockchain nodes 502, 504, 506, and 508. Vdatal can represent the
redundant bits of the ECC. Datal is selected to be stored by the blockchain node 502
according to the data storage scheme. Data2, Data3, and Vdatal are selected to be separately
hashed 516 to generate hash values Dhash2, Dhash3, and Vhashl, respectively.

[0077] The hash values can be indexed by a block ID of a corresponding block of the
hash values. For example, the blockchain node 502 can index Datal, Dhashl, Dhash2, and
Vhash1 associated with block 100 with a block ID 100. As such, the blockchain node 502
can use the indexed block ID to map the hash values to their corresponding blocks. A more
detailed example of indexing the datasets and hash values is discussed in the description of
FIG. 6.

[0078] It is to be understood that other data storage schemes can be made for the one or
more blockchain nodes 502, 504, 506, and 508, according to the data storage scheme. For
example, the encoded block data of block 100 can be divided into more than four datasets.
Each of the blockchain nodes 502, 504, 506, and 508 can store more than one dataset and
hash the rest of the datasets stored by other nodes.

[0079] After generating Dhash2, Dhash3, and Vhashl, the blockchain node 502 can store
Datal, Dhash2, Dhash3, and Vhashl and delete Data2, Data3, and Vdatal from storage to
save storage space. As such, for each block of the blockchain, the blockchain node 502 only
stores one dataset (i.e., Datal) and three hash values (i.e., Dhash2, Dhash3, and Vhashl) of
the ECC encoded block data instead of the original block data to save on storage space.
When the blockchain node 502 determines that block data of the block 100 is needed for
executing a smart contract, it can retrieve Data2, Data3, and Vdatal from blockchain nodes
504, 506, and 508, respectively, according to the data storage scheme.

[0080] To retrieve datasets from other blockchain nodes 504, 506, and 508, blockchain

node 502 can send hash values corresponding to the datasets to be retrieved according to the

18

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

data storage scheme. For example, to retrieve Data2, the blockchain node 502 can send
Dhash?2 to the blockchain node 504. If the blockchain node 504 has Data2 stored, it can send
the Data2 back to the blockchain node 502 in response to receiving the Dhash2. After
receiving the Data2 from the blockchain node 504, the blockchain node 502 can hash the
received dataset and compare the hash value with Dhash2. If the hash value is the same as
Dhash2, the blockchain node 502 can determine that the received dataset is authentic.
Otherwise, the received dataset can be determined as unauthentic. When the received dataset
is determined as unauthentic, the blockchain node 502 can report the blockchain node 504 as
a faulty node (or a Byzantine node). If the percentage of unauthentic data received by the
blockchain node 502 is less than or equal to the maximum fraction of erroneous or missing
bits that can be corrected by the ECC, block 100 can be recovered from the locally stored and
received datasets.

[0081] As discussed earlier, by performing the encoding and hashing process, blockchain
data can be ECC encoded and divided into a plurality of datasets. To save on storage space,
each blockchain node can store one or more of the plurality of datasets and hash values of
rest of the datasets based on a data storage scheme. The stored datasets and hash values can
be indexed with Block IDs in order for a blockchain node to retrieve datasets from other
nodes to recover original data.

[0082] FIG. 6 depicts an example of a process 600 for indexing encoded datasets in
accordance with embodiments of this specification. The process 600 can be performed by a
blockchain node of a blockchain network. The blockchain network can include four
blockchain nodes, denoted as Nodel, Node2, Node3, and Node4. In the depicted example,
blocks 91-100 are used to illustrate the process 699 for indexing ECC encoded datasets. The
blocks 91-100 can be infrequently accessed blocks as discussed in the description of FIG. 3.
In some cases, the blocks 91-100 can also represent historical state data under the FDMT
structure corresponding to blocks 91-100. In such cases, the process 600 can be performed to
index datasets divided from encoded historical state data.

[0083] In some embodiments, a blockchain node can perform ECC 604 to each of the
blocks 91-100 to generate ECC encoded blocks 602. The blockchain node can then divide
each of the ECC encoded blocks 602 into four datasets 608, which are Datal, Data2, Data3,

and Vdatal, where Vdatal corresponds to the redundant bits for error correction. The

19

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

division of each of the ECC encoded blocks 602 can be performed based on a data storage
scheme as discussed in the descriptions of FIGS. 3 and 4. The data storage scheme can
provide how the ECC encoded blocks 602 should be divided into datasets. The data storage
scheme can also provide assignments of the datasets to the blockchain nodes.

[0084] After the datasets 608 are generated for each of the blocks 91-100, the blockchain
node can perform indexing 606 of the datasets 608 by creating an index table 610. The index
table 610 can be created based on the data storage scheme agreed to by the blockchain nodes
of the blockchain network.

[0085] The index table can include block IDs of blocks that are subject to the data
storage scheme and the dataset(s) to be stored by each of the blockchain nodes. For example,
the index table 610 can indicate data storage scheme of blocks 91-100. The ECC encoded
data is divided to four datasets including Datal, Data2, Data3, and Vdatal. For each of
blocks 91-100, Nodel stores Datal, Node2 stores Data2, Node3 stores Data3, and Noded
stores Vdatal. Therefore, instead of storing the entire blocks, each blockchain node stores
only one dataset of each encoded block according to the index table 610.

[0086] FIG. 7 depicts an example of a process 700 for data retrieving and recovering in
accordance with embodiments of this specification. When a client device 710 needs to get
block or state data to execute a smart contract, it can send a request to a blockchain node (e.g.,
Nodel 720a) to get the block data or state data from the blockchain. Upon receiving the
request, Nodel can identify one or more blocks that include the requested data. Assuming
that the requested data is included in block 100, the Nodel 720a can read index table 714 that
indicates data storage schemes for blocks 91-100. According to the index table 714, Nodel
stores Datal and Vhashl. Node2 720b stores Data2, Node3 720c stores Data3, and Node4
720d stores Vdatal. To collect the entire ECC encoded block 100, Nodel can then get Data2
from Node2 720b, Data3 from Node3 720c, and Vdatal from Node4 720d. To get Data2,
Data3, and Vdatal, Nodel 720a can send requests that includes hash values of the datasets to
the corresponding blockchain nodes. For example, by receiving the hash value of Data2 from
Nodel 720a, Node2 720b can determine that Data2 is requested and return it to Nodel 720a.
[0087] After receiving the datasets from Node2 720b, Node3 720c, and Node4 720d,
Nodel 720a can verify the received datasets by generating hash values of the received

datasets and compare them with hash values stored in a hash table 716. The hash table 716

20

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

indicates a mapping relationship between the datasets and their hash values, namely, Data2
and its hash value Dhash2, Data3 and its hash value Dhash3, and Vdatal and its hash value
Vhashl. If the hash value of the dataset received from Node2 720b matches Dhash2, the hash
value of the dataset received from Node3 720c¢ matches Dhash3, and the hash value of the
dataset received from Node4 matches Vhashl, the Nodel 720a can determine that the
received data are authentic. The Nodel 720a can combine the received data (i.e., Data2,
Data3, and Vdatal) with the Datal it stores to form the ECC encoded block 100. The Nodel
720 can then decode the ECC encoded block to recover block 100. If any of the hash values
does not match, the Nodel 720a can report that the corresponding blockchain node that sends
the dataset is a faulty node. After block 100 is recovered, the Nodel 720a can return the
requested block or state data in block 100 to the client device 710.

[0088] FIG. 8 is a flowchart of an example of a process 800 for communicating and
sharing blockchain data. For convenience, the process 800 will be described as being
performed by a blockchain node. The blockchain node can be a computer or a system of one
or more computers, located in one or more locations, and programmed appropriately in
accordance with this specification. For example, a computing device in a computing system,
e.g., the computing system 106, 108 of FIG. 1, appropriately programmed, can be a
blockchain node that performs the process 800.

[0089] At 802, a blockchain node generates a plurality of encoded blocks based on
performing ECC on a plurality of blocks of a blockchain. In some examples, the one or more
blocks are infrequent accessed blocks that have been appended to the blockchain for a
predetermined amount of time. In some examples, the ECC is performed when utilization
rate of computational resource of the blockchain node is less than or equal to a predetermined
value or usage of storage space of the blockchain node is greater than or equal to a
predetermined percentage. In some examples, the ECC is performed by adding redundant bits
to the one or more blocks. In some examples, the ECC is erasure coding.

[0090] At 804, for each encoded block of the plurality of encoded blocks, the blockchain
node divides the encoded block into a plurality of datasets based on a data storage scheme
associated with the plurality of blocks, wherein the data storage scheme provides

assignments of the plurality of datasets to a plurality of blockchain nodes.

21

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0091] At 806, the blockchain nodes stores at least one of the plurality of datasets based
on the assignments provided in the data storage scheme.

[0092] At 808, the blockchain node provides an index that indexes each of the plurality
of datasets to each of the plurality of the blockchain nodes at which a respective dataset is
stored. In some examples, the index provides a correspondence between a dataset ID of a
dataset and a node ID of a blockchain node at which the dataset is stored. In some examples,
the index provides a plurality of block IDs corresponding to the plurality of blocks that the
data storage scheme is associated with.

[0093] In some examples, the process 800 further comprises: hashing a remainder of the
plurality of datasets other than the at least one of the plurality of datasets to generate hash
values corresponding to the remainder of the plurality of datasets; storing the hash values;
and deleting the one or more blocks.

[0094] In some examples, the process 800 further comprises: receiving a request for
blockchain data from a computing device; determining that the blockchain data is included in
the one or more blocks; and sending, based on the index, hash values to a remainder of the
blockchain nodes of the blockchain network to retrieve the remainder of the plurality of
datasets.

[0095] In some examples, the process 800 further comprises: receiving at least one
dataset from each of the remainder of the blockchain nodes; hashing the at least one dataset
to generate at least one hash value corresponding to each of the remainder of the blockchain
nodes; and determining whether the at least one hash value is stored in the blockchain node.
[0096] In some examples, the process 800 further comprising: in response to determining
that the at least one hash value is not stored in the blockchain node, determining a blockchain
node that the at least one dataset corresponding to the at least one hash value is received from;
and reporting the blockchain node as a faulty node.

[0097] In some examples, the process 800 further comprising: in response to determining
that the at least one hash value corresponding to each of the remainder of the blockchain
nodes is stored in the blockchain node, decoding the one or more blocks based on the at least
one of the plurality of datasets stored in the blockchain node and the at least one dataset

received from each of the remainder of the blockchain nodes.

22

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0098] FIG. 9 is a diagram of an example of modules of an apparatus 900 in accordance
with embodiments of this specification.

[0099] The apparatus 900 can be an example of an embodiment of a blockchain node
configured to communicate and share blockchain data. The apparatus 900 can correspond to
the embodiments described above, and the apparatus 900 includes the following: a generating
module 902 that generates one or more encoded blocks by executing ECC on one or more
blocks of a blockchain; a dividing module 904 that divides the encoded block into a plurality
of datasets based on a data storage scheme associated with the plurality of blocks, wherein
the data storage scheme provides assignments of the plurality of datasets to a plurality of
blockchain nodes; a storing module 906 that stores at least one of the plurality of datasets
based on the assignments provided in the data storage scheme; and an indexing module 908
that provides an index for the one or more blocks, the index indexing each of the plurality of
datasets to a blockchain node at which a respective dataset is stored.

[0100] In an optional embodiment, the index provides a correspondence between a
dataset ID of a dataset and a node ID of a blockchain node at which the dataset is stored.
[0101] In an optional embodiment, the index provides a plurality of block IDs
corresponding to the plurality of blocks that the data storage scheme is associated with.
[0102] In an optional embodiment, the apparatus 900 further comprising: hashing a
remainder of the plurality of datasets other than the at least one of the plurality of datasets to
generate hash values corresponding to the remainder of the plurality of datasets; storing the
hash values; and deleting the one or more blocks.

[0103] In an optional embodiment, the apparatus 900 further comprising: receiving a
request for blockchain data from a computing device; determining that the blockchain data is
included in the one or more blocks; and sending, based on the index, hash values to a
remainder of the blockchain nodes of the blockchain network to retrieve the remainder of the
plurality of datasets.

[0104] In an optional embodiment, the apparatus 900 further comprising: receiving at
least one dataset from each of the remainder of the blockchain nodes; hashing the at least one
dataset to generate at least one hash value corresponding to each of the remainder of the
blockchain nodes; and determining whether the at least one hash value is stored in the

blockchain node.

23

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0105] In an optional embodiment, the apparatus 900 further comprising: in response to
determining that the at least one hash value is not stored in the blockchain node, determining
a blockchain node that the at least one dataset corresponding to the at least one hash value is
received from; and reporting the blockchain node as a faulty node.

[0106] In an optional embodiment, the apparatus 900 further comprising: in response to
determining that the at least one hash value corresponding to each of the remainder of the
blockchain nodes is stored in the blockchain node, decoding the one or more blocks based on
the at least one of the plurality of datasets stored in the blockchain node and the at least one
dataset received from each of the remainder of the blockchain nodes.

[0107] In an optional embodiment, the one or more blocks are historical blocks that have
been created for a predetermined amount of time.

[0108] In an optional embodiment, the ECC is performed when utilization rate of
computational resource of the blockchain node is less than or equal to a predetermined value
or usage of storage space of the blockchain node is greater than or equal to a predetermined
percentage.

[0109] In an optional embodiment, the ECC is erasure coding performed by adding
redundant bits to the plurality of blocks.

[0110] In an optional embodiment, the plurality of blocks are infrequently accessed
blocks that are appended to the blockchain for a predetermined amount of time.

[0111] The system, apparatus, module, or unit illustrated in the previous embodiments
can be implemented by using a computer chip or an entity, or can be implemented by using a
product having a certain function. A typical embodiment device is a computer, and the
computer can be a personal computer, a laptop computer, a cellular phone, a camera phone, a
smartphone, a personal digital assistant, a media player, a navigation device, an email
receiving and sending device, a game console, a tablet computer, a wearable device, or any
combination of these devices.

[0112] For an embodiment process of functions and roles of each module in the
apparatus, references can be made to an embodiment process of corresponding steps in the
previous method. Details are omitted here for simplicity.

[0113] Because an apparatus embodiment basically corresponds to a method embodiment,

for related parts, references can be made to related descriptions in the method embodiment.

24

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

The previously described apparatus embodiment is merely an example. The modules
described as separate parts may or may not be physically separate, and parts displayed as
modules may or may not be physical modules, may be located in one position, or may be
distributed on a number of network modules. Some or all of the modules can be selected
based on actual demands to achieve the objectives of the solutions of the specification. A
person of ordinary skill in the art can understand and implement the embodiments of the
present application without creative efforts.

[0114] Referring again to FIG. 9, it can be interpreted as illustrating an internal
functional module and a structure of a blockchain node. An execution body in essence can be
an electronic device, and the electronic device includes the following: one or more processors;
and one or more computer-readable memories configured to store an executable instruction
of the one or more processors. In some embodiments, the one or more computer-readable
memories are coupled to the one or more processors and have programming instructions
stored thereon that are executable by the one or more processors to perform algorithms,
methods, functions, processes, flows, and procedures as described in this specification. This
specification also provides one or more non-transitory computer-readable storage media
coupled to one or more processors and having instructions stored thereon which, when
executed by the one or more processors, cause the one or more processors to perform
operations in accordance with embodiments of the methods provided herein.

[0115] This specification further provides a system for implementing the methods
provided herein. The system includes one or more processors, and a computer-readable
storage medium coupled to the one or more processors having instructions stored thereon
which, when executed by the one or more processors, cause the one or more processors to
perform operations in accordance with embodiments of the methods provided herein.

[0116] Embodiments of the subject matter and the actions and operations described in
this specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in hardware, including the structures disclosed in this
specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one
or more computer programs, e.g., one or more modules of computer program instructions,

encoded on a computer program cartier, for execution by, or to control the operation of, data

25

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

processing apparatus. For example, a computer program carrier can include one or more
computer-readable storage media that have instructions encoded or stored thereon. The
carrier may be a tangible non-transitory computer-readable medium, such as a magnetic,
magneto optical, or optical disk, a solid state drive, a random access memory (RAM), a read-
only memory (ROM), or other types of media. Alternatively, or in addition, the carrier may
be an artificially generated propagated signal, e.g., a machine-generated electrical, optical, or
electromagnetic signal that is generated to encode information for transmission to suitable
receiver apparatus for execution by a data processing apparatus. The computer storage
medium can be or be part of a machine-readable storage device, a machine-readable storage
substrate, a random or serial access memory device, or a combination of one or more of them.
A computer storage medium is not a propagated signal.

[0117] A computer program, which may also be referred to or described as a program,
software, a software application, an app, a module, a software module, an engine, a script, or
code, can be written in any form of programming language, including compiled or
interpreted languages, or declarative or procedural languages; and it can be deployed in any
form, including as a stand-alone program or as a module, component, engine, subroutine, or
other unit suitable for executing in a computing environment, which environment may
include one or more computers interconnected by a data communication network in one or
more locations.

[0118] A computer program may, but need not, correspond to a file in a file system. A
computer program can be stored in a portion of a file that holds other programs or data, e.g.,
one or more scripts stored in a markup language document, in a single file dedicated to the
program in question, or in multiple coordinated files, e.g., files that store one or more
modules, sub programs, or portions of code.

[0119] Processors for execution of a computer program include, by way of example, both
general- and special-purpose microprocessors, and any one or more processors of any kind of
digital computer. Generally, a processor will receive the instructions of the computer
program for execution as well as data from a non-transitory computer-readable medium
coupled to the processor.

[0120] The term “data processing apparatus” encompasses all kinds of apparatuses,

devices, and machines for processing data, including by way of example a programmable

26

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

processor, a computer, or multiple processors or computers. Data processing apparatus can
include special-purpose logic circuitry, e.g., an FPGA (field programmable gate array), an
ASIC (application specific integrated circuit), or a GPU (graphics processing unit). The
apparatus can also include, in addition to hardware, code that creates an execution
environment for computer programs, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating system, or a combination of one
or more of them.

[0121] The processes and logic flows described in this specification can be performed by
one or more computers Or processors executing one or more computer programs to perform
operations by operating on input data and generating output. The processes and logic flows
can also be performed by special-purpose logic circuitry, e.g., an FPGA, an ASIC, or a GPU,
or by a combination of special-purpose logic circuitry and one or more programmed
computers.

[0122] Computers suitable for the execution of a computer program can be based on
general or special-purpose microprocessors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive instructions and data from a read only
memory or a random access memory or both. Elements of a computer can include a central
processing unit for executing instructions and one or more memory devices for storing
instructions and data. The central processing unit and the memory can be supplemented by,
or incorporated in, special-purpose logic circuitry.

[0123] Generally, a computer will also include, or be operatively coupled to receive data
from or transfer data to one or more storage devices. The storage devices can be, for example,
magnetic, magneto optical, or optical disks, solid state drives, or any other type of non-
transitory, computer-readable media. However, a computer need not have such devices. Thus,
a computer may be coupled to one or more storage devices, such as, one or more memories,
that are local and/or remote. For example, a computer can include one or more local
memories that are integral components of the computer, or the computer can be coupled to
one or more remote memories that are in a cloud network. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Positioning System (GPS) receiver,

or a portable storage device, e.g., a universal serial bus (USB) flash drive, to name just a few.

27

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0124] Components can be “coupled to” each other by being commutatively such as
electrically or optically connected to one another, either directly or via one or more
intermediate components. Components can also be “coupled to” each other if one of the
components is integrated into the other. For example, a storage component that is integrated
into a processor (e.g., an L2 cache component) is “coupled to” the processor.

[0125] To provide for interaction with a user, embodiments of the subject matter
described in this specification can be implemented on, or configured to communicate with, a
computer having a display device, e.g., a LCD (liquid crystal display) monitor, for displaying
information to the user, and an input device by which the user can provide input to the
computer, e.g., a keyboard and a pointing device, e.g., a mouse, a trackball or touchpad.
Other kinds of devices can be used to provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a device that is used by the user; for
example, by sending web pages to a web browser on a user’s device in response to requests
received from the web browser, or by interacting with an app running on a user device, e.g., a
smartphone or electronic tablet. Also, a computer can interact with a user by sending text
messages or other forms of message to a personal device, e.g., a smartphone that is running a
messaging application, and receiving responsive messages from the user in return.

[0126] This specification uses the term “configured to” in connection with systems,
apparatus, and computer program components. For a system of one or more computers to be
configured to perform particular operations or actions means that the system has installed on
it software, firmware, hardware, or a combination of them that in operation cause the system
to perform the operations or actions. For one or more computer programs to be configured to
perform particular operations or actions means that the one or more programs include
instructions that, when executed by data processing apparatus, cause the apparatus to perform
the operations or actions. For special-purpose logic circuitry to be configured to perform
particular operations or actions means that the circuitry has electronic logic that performs the

operations or actions.

28

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

[0127] While this specification contains many specific embodiment details, these should
not be construed as limitations on the scope of what is being claimed, which is defined by the
claims themselves, but rather as descriptions of features that may be specific to particular
embodiments. Certain features that are described in this specification in the context of
separate embodiments can also be realized in combination in a single embodiment.
Conversely, various features that are described in the context of a single embodiments can
also be realized in multiple embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as acting in certain combinations and
even initially be claimed as such, one or more features from a claimed combination can in
some examples be excised from the combination, and the claim may be directed to a
subcombination or variation of a subcombination.

[0128] Similarly, while operations are depicted in the drawings and recited in the claims
in a particular order, this should not be understood as requiring that such operations be
performed in the particular order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In certain circumstances, multitasking
and parallel processing may be advantageous. Moreover, the separation of various system
modules and components in the embodiments described above should not be understood as
requiring such separation in all embodiments, and it should be understood that the described
program components and systems can generally be integrated together in a single software
product or packaged into multiple software products.

[0129] Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions recited
in the claims can be performed in a different order and still achieve desirable results. As one
example, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In some examples,

multitasking and parallel processing may be advantageous.

29

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

CLAIMS

1. A computer-implemented method for indexing blockchain data for storage, the
method comprising:
generating a plurality of encoded blocks based on performing error correction coding
(ECC) on a plurality of blocks of a blockchain;
for each encoded block of the plurality of encoded blocks:
dividing the encoded block into a plurality of datasets based on a data storage
scheme associated with the plurality of blocks, wherein the data storage scheme provides
assignments of the plurality of datasets to a plurality of blockchain nodes;
storing at least one of the plurality of datasets based on the assignments
provided in the data storage scheme; and
providing an index that indexes each of the plurality of datasets to each of the

plurality of the blockchain nodes at which a respective dataset is stored.

2. The method of claim 1, wherein the index provides a correspondence between a
dataset identifier (ID) of a dataset and a node ID of a blockchain node at which the dataset is

stored.

3. The method of any previous claim, wherein the index provides a plurality of block

IDs corresponding to the plurality of blocks that the data storage scheme is associated with.

4. The method of any previous claim, further comprising:

hashing a remainder of the plurality of datasets other than the at least one of the
plurality of datasets to generate hash values corresponding to the remainder of the plurality of
datasets;

storing the hash values; and

deleting the one or more blocks.

5. The method of claim 4, further comprising:

30

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

receiving a request for blockchain data from a computing device;
determining that the blockchain data is included in the one or more blocks; and
sending, based on the index, hash values to a remainder of the blockchain nodes of

the blockchain network to retrieve the remainder of the plurality of datasets.

6. The method of claim 5, further comprising:
receiving at least one dataset from each of the remainder of the blockchain nodes;
hashing the at least one dataset to generate at least one hash value corresponding to
each of the remainder of the blockchain nodes; and

determining whether the at least one hash value is stored in the blockchain node.

7. The method of claim 6, further comprising:

in response to determining that the at least one hash value is not stored in the
blockchain node, determining a blockchain node that the at least one dataset corresponding to
the at least one hash value is received from; and

reporting the blockchain node as a faulty node.

8. The method of claim 6, further comprising:

in response to determining that the at least one hash value corresponding to each of
the remainder of the blockchain nodes is stored in the blockchain node, decoding the one or
more blocks based on the at least one of the plurality of datasets stored in the blockchain
node and the at least one dataset received from each of the remainder of the blockchain

nodes.

9. The method of any previous claim, wherein the one or more blocks are historical

blocks that have been created for a predetermined amount of time.

10. The method of any previous claim, wherein the ECC is performed when utilization
rate of computational resource of the blockchain node is less than or equal to a predetermined
value or usage of storage space of the blockchain node is greater than or equal to a

predetermined percentage.

31

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

11. The method of any previous claim, wherein the ECC is erasure coding performed by

adding redundant bits to the plurality of blocks.

12. The method of any previous claim, wherein the plurality of blocks are infrequently

accessed blocks that are appended to the blockchain for a predetermined amount of time.

13. A system communicating shared blockchain data, comprising:

one or more processors; and

one or more computer-readable memories coupled to the one or more processors and
having instructions stored thereon that are executable by the one or more processors to

perform the method of any of claims 1 to 12.

14. An apparatus for communicating shared blockchain data, the apparatus comprising a

plurality of modules for performing the method of any of claims 1 to 12.

32

CA 03098766 2020-10-29

PCT/CN2019/111316

WO 2020/011287

100

FIG. 1

1/9

CA 03098766 2020-10-29

PCT/CN2019/111316

WO 2020/011287

00¢

i

2 3 Wedpied

¢ DId

e 2 2rn arn 2 2w oy 2 A A A G AR AN (6 N AN AN AN @ A N6 e 0 N o i

.

g uedioned

Y Juedioed

2/9

CA 03098766 2020-10-29

WO 2020/011287

304 306 308

{ ieckchain
Node /

(Blockehain \

WL
Nﬁﬁle ..::.;::E 3

Node

Block100

/ Blockehain
\ Node

312 \@ Store Block Datat
Error Data?
Correction

Coding Data3

Block %9 /
Vdatal

314
(Genesis
Block
FIG. 3

3/9

Selective
Daia
Hashing

\
316

PCT/CN2019/111316

300

Dhash?

Dhash3

Vhash1

CA 03098766 2020-10-29

PCT/CN2019/111316

WO 2020/011287

EHsEU(

AR

LUSEU(

LHSBUA

AR

V™
| ueyosolg |

—
80€

00y

LUSEU(

{ ooy
\ ueuoyolg

90€

¥ "OId

LHSBUA

EYseu(]

LHSBUA

EYsEu(]

LUSeU(

gusEu(]

BpON
\ ueupyog)

—
06

%..m.. mgz >

| Ueyoyoolg |

¢0f

4/9

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

504 506 508
\ \ A

Y

Blockchain

Blockchain Blockehaln :
Node Node . Node 7
Blocki00

ssca \ 502

\ Node ¢

Block 100 Block %8 Block 0

5’f Z\QB, Adding Transacton o D!
DaabBlok -
, g Seleclive
ﬁ Dab ,
Eror Dak? Hashing Dhash? Dhash? 889 Dhagh?
Comection
Colig Dalad 4 Dash3 | Dhesid | ®ew | Dhashd
5 g/ Vdatat Vhashi Vhashi LY - Yhash
FIG. 5

5/9

CA 03098766 2020-10-29

PCT/CN2019/111316

WO 2020/011287

¥ePON LBIBDA
£9PON geeq
{3PON REQ
L9PON |ee]
BIRPA
‘Ceg 001-i6
LAl SY20ig
gy
_ 9iqe} Xepyj
/
019

9 ‘D4

Bunepuy

{BIEDA 4104 R e
809
uoISInG e
909-"
lovpolg | eowolg | | oo
pepodly | Paplouy papoouy
209
001 ¥0id fEA0I8 880 LGAICIH

6/9

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316
700
710
Glient Devics
—]
. (— 720d
Retum Block/State o,
714 Get Blockitae - N
\
¥ index teble v 120

Gt Daid

Datat, P
Block Data?, _ Vi
91400 Ddial, Read index {able Nods '
Vdatat \\% ’
Datat Nodsf

Verify Deta | Get Vdatat 720d
and Vdaa o
Data? Node?
Datag NOdeS \\‘ v Mg
Hash iable
Vd alat Noded Datat i

Data? Dhash?

Daia3 Dhash3

Vdaiat Vh ash?

FIG. 7

7/9

CA 03098766 2020-10-29

WO 2020/011287 PCT/CN2019/111316

800

J

generale a pluralily of encoded blocks based on performing ECC on a plurallty of 802
blocks of a Wockchain -

divide each sncoded block into a pluralfty of datasets based on a data siorage scheme 804
associated with the plurality of blocks

provids an index that indexes each of the plurality of datasets to sach of the plurdliy of the 808
Blockchain nodes atwhich a respective datasel is stored

FIG. 8

8/9

WO 2020/011287

CA 03098766 2020-10-29

Generating Module - 902
Dividing Module - 904
Stering Module - 906
Indexing Module ~908

FIG. 9

9/9

PCT/CN2019/111316

900

J

610 660

Index table
Blockg1 see Blockg9 | Blocki00 Data,
Blocks Deta?,
94100 Deted,
Vlatat
604
ECC 602 Datat Nexded
606~
Indexing

Encoded vas Encoded | Encoded Dete Node2

Blockd1 Blockd9 | Block100
;606 Deted | Naded

Deta Division
608

/ Vdatat Noded

Detat Data2 Datad Vilatal
FIG. 6

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - REPRESENTATIVE_DRAWING

