一种例如髓内钉之类的用于骨的内部固定的矫形装置及其制造方法，所述矫形装置可以通过增材制造过程由医疗级金属制成，形成过程可以包括热处理增材制造的部件和加工应力处理的增材制造部件，以形成矫形装置。此外，所述矫形装置可以形成为包括在装置的一部分或全部部分内延伸但不穿过壁的外部突出的内部传感器探头通道。实施例还包括动态髓内钉，其适应对矫形装置的一个或多个部件的相对轴向位置的调整，该装置可以包括可改变矫形装置的弹性模量的处于所述矫形装置的内部区域中的特征。
1. 一种用于制造矫形装置的方法，包括：
 由医疗级粉并且经由增材制造过程来形成增材制造的矫形部件；
 热处理所述增材制造的矫形部件；以及
 加工已热处理的增材制造的矫形部件，以形成所述矫形装置。

2. 如权利要求1所述的方法，其特征在于，所述形成的步骤包括产生所述增材制造的矫形部件的三维模型。

3. 如权利要求1或2所述的方法，其特征在于，所述形成的步骤包括利用至少300瓦的激光功率的直接金属烧结，并且其中，所述医疗级粉至少为5级粉。

4. 如任一前述权利要求所述的方法，其特征在于，所述医疗级粉为TiAl6V4粉。

5. 如任一前述权利要求所述的方法，其特征在于，所述热处理的步骤包括使用至少1000℃的温度对所述增材制造的矫形部件进行热等静压，并且以0.24℃min⁻¹和72℃min⁻¹之间的冷却速率来冷却所述增材制造的矫形部件。

6. 如任一前述权利要求所述的方法，其特征在于，所述加工的步骤包括抛光已热处理的增材制造的矫形部件。

7. 如任一前述权利要求所述的方法，其特征在于，所述形成的步骤包括形成具有非圆形截面形状的增材制造的矫形部件。

8. 如任一前述权利要求所述的方法，其特征在于，所述矫形装置为髓内钉。

9. 如权利要求8所述的方法，其特征在于，所述髓内钉具有在84厘米和156厘米之间的曲率半径。

10. 如权利要求1、2和4-9中任一项所述的方法，其特征在于，形成所述增材制造的矫形部件的步骤包括：
 激光烧结所述医疗级粉以形成所述增材制造的矫形部件提供形状的多个激光烧结层；以及
 重新熔化所述多个激光烧结层。

11. 如权利要求10所述的方法，其特征在于，所述重新熔化的步骤包括沿两个单侧方向的双扫描过程。

12. 如权利要求10所述的方法，其特征在于，所述重新熔化的步骤包括交替射线激光光栅和周向激光光栅，所述交替射线激光光栅包括沿两个单侧方向的扫描过程。

13. 如权利要求1、2和4-9中任一项所述的方法，其特征在于，形成所述增材制造的矫形部件的步骤包括激光烧结所述增材制造的矫形部件的外表面和内表面，激光烧结的外表面通过至少多个未烧结的医疗级粉与激光烧结的内表面分离，并且其中，所述热处理的步骤包括熔化所述多个未烧结的医疗级粉。

14. 如权利要求1-4和6-13中任一项所述的方法，其特征在于，热处理所述增材制造的矫形部件的步骤包括：
 将所述增材制造的矫形部件所在的环境净化至约15mb的压力；
 将所述增材制造的矫形部件的温度升至920℃和1000℃之间；
 将所述增材制造的矫形部件所在的环境的压力维持在98MPa至108MPa下；以及
 以10℃/分钟或小于10℃/分钟的速率冷却所述增材制造的矫形部件的温度。

15. 如权利要求14所述的方法，还包括对已热处理的增材制造的矫形部件进行应力释
放的步骤。

16. 如权利要求14或15所述的方法，还包括对已热处理的增材制造的矫形部件进行退火的步骤。

17. 如任一前述权利要求所述的方法，其特征在于，加工已热处理的增材制造的矫形部件的步骤包括使用喷砂来去除所述增材制造的矫形部件的a壳层。

18. 如权利要求17所述的方法，其特征在于，所述加工的步骤还包括在所述矫形装置上形成残余应力的压缩层的步骤。

19. 如权利要求18所述的方法，其特征在于，所述加工的步骤还包括挤压研磨所述矫形装置的内表面的步骤。

20. 如任一前述权利要求所述的方法，还包括在所述增材制造的矫形部件的内部中形成内部传感器探头通道的步骤，所述内部传感器探头通道不延伸穿过所述矫形装置的外部。

21. 如任一前述权利要求所述的方法，还包括将重金属离子沉积到所述矫形装置上以形成抗微生物的矫形装置的步骤。

22. 一种髓内钉，包括：
 包括医疗级粉的一个或多个激光烧结层的壁，所述壁具有外部和内部，所述内部大致限定了所述髓内钉的内部区域；以及
 内部传感器探头通道，其延伸到所述壁的至少一部分中，所述内部传感器探头通道不延伸穿过所述壁的外部。

23. 如权利要求22所述的髓内钉，其特征在于，所述内部传感器探头通道的尺寸设定为接收配置用于手术中螺钉孔瞄准的传感器探头的插入。

24. 如权利要求23所述的髓内钉，其特征在于，所述内部传感器探头通道的至少一部分大致平行于并且不延伸穿过所述壁的内部。

25. 如权利要求24所述的髓内钉，其特征在于，所述内部传感器探头通道不与配置成从所述髓内钉去除未烧结的医疗级粉的孔口连通。

26. 如权利要求22-25中任一项所述的髓内钉，其特征在于，所述内部的至少一部分包括锥形内壁。

27. 如权利要求26所述的髓内钉，其特征在于，所述锥形内壁在所述髓内钉的远侧孔螺钉和近侧孔螺钉之间延伸。

28. 一种髓内钉，包括：
 通过伸缩部分联接到第二部段的第一部段，所述伸缩部分具有外径，所述外径的尺寸设定成滑动地接收在所述第一和第二部段中的至少一个的内部区域中，以适应所述第一和第二部段的相对轴向位置的调整，所述第一和第二部段结构用于植入到骨中；以及
 致动器，其适于提供偏置力以使所述第一和第二部段的相对轴向位置偏置。

29. 如权利要求28所述的髓内钉，其特征在于，所述伸缩部分是所述第一部段或所述第二部段的端部。

30. 如权利要求28所述的髓内钉，其特征在于，所述伸缩部分是由定位在所述第一和第二部段二者的内部区域中的套管，所述套管适于适应所述第一和第二部段二者的轴向位移。
31. 如权利要求28-30中任一项所述的髓内钉，其特征在于，所述髓内钉还包括限制所述第一部分和所述第二部分的至少相对轴向位移的一个或多个突起。

32. 如权利要求28-31中任一项所述的髓内钉，其特征在于，所述第一和第二部分中的一个或两个的伸缩部分和内部区域中的一个包括一个或多个凹槽，所述一个或多个凹槽各被接收在所述第一和第二部分中的一个或两个的伸缩部分和内部区域中的另一个中的匹配凹部中，所述一个或多个凹槽和所述匹配凹部构成防止所述第一部分相对于所述第二部分的旋转位移。

33. 如权利要求28-32中任一项所述的髓内钉，其特征在于，所述致动器是非线性或可变速率的弹簧。

34. 如权利要求28-33中任一项所述的髓内钉，其特征在于，所述致动器被嵌入可降解聚合物中，所述可降解聚合物适于随着所述可降解聚合物降解而释放生物活性剂，所述生物活性剂被构造成刺激所述骨的骨折愈合和/或防止骨中的感染。

35. 如权利要求34所述的髓内钉，其特征在于，所述可降解聚合物被构造成提供力以将所述致动器维持在膨胀或压缩状态中的一个，直到所述可降解聚合物降解到所述致动器的偏置力能够克服所述可降解聚合物的力的程度。

36. 如权利要求34或35所述的髓内钉，其特征在于，所述可降解聚合物适于在将外部物理能量源施加于所述可降解聚合物时至少部分地降解。

37. 如权利要求28-32中任一项所述的髓内钉，其特征在于，所述致动器是弹性衬套。

38. 如权利要求28-37中任一项所述的髓内钉，还包括绕伸缩部分的至少一部分定位的套环，所述套环能够选择性地在第一尺寸和较小的第二尺寸之间调整，以改变所述致动器的压缩状态。

39. 如权利要求38所述的髓内钉，其特征在于，所述套环是通过施加和移除激活能量源在所述第一和第二尺寸之间调整的形状记忆材料。

40. 如权利要求39所述的髓内钉，其特征在于，所述激活能量源是以下中的至少一个，即：阈值体温或接收的电子电压。

41. 如权利要求28-33和37-40中任一项所述的髓内钉，其特征在于，所述致动器包括定位在所述髓内钉中的槽中的第一弹簧和第二弹簧，所述第一弹簧封装在第一可再吸收壳体中，所述第二弹簧封装在第二可再吸收壳体中，所述第一可再吸收壳体和所述第二可再吸收壳体在位于所述第一可再吸收壳体和所述第二可再吸收壳体之间的中间元件上施加相反的力。

42. 如权利要求28-41中任一项所述的髓内钉，其特征在于，所述第一和第二部分各自包括具有外部和内部的壁，并且其中，所述第一和第二部分中的至少一个的壁包括延伸到所述壁的至少一部分中并且不延伸穿过所述壁的外部的的内部传感器探头通道。

43. 如权利要求42所述的髓内钉，其特征在于，所述第一和第二部分各自包括医疗级粉的一个或多个激光烧结层。

44. 如权利要求43所述的髓内钉，其特征在于，所述医疗级粉至少为5级粉。

45. 如权利要求44所述的髓内钉，其特征在于，所述医疗级粉为TiAl6V4粉。

46. 如权利要求45所述的髓内钉，其特征在于，所述一个或多个激光烧结层已经受热处理过程。
47. 一种髓内钉，包括：
具有内外和内部的壁，所述内部大致限定了所述髓内钉的内部区域；
第一螺钉孔和第二螺钉孔，所述第一和第二螺钉孔延伸穿过所述壁的至少外部；以及
在所述第一和第二螺钉孔之间的所述壁中的一个或多个突起，所述一个或多个突起不
延伸穿过所述壁的外部，所述一个或多个突起造成功能地改变所述髓内钉的弹性模
量。

48. 如权利要求47所述的髓内钉，其特征在于，所述一个或多个突起包括从所述内部延
伸到所述壁中的一个或多个凹槽。

49. 如权利要求47所述的髓内钉，其特征在于，所述一个或多个突起包括在所述壁的内
部区域内延伸的多个通道，所述多个通道不延伸穿过所述壁的内部和外部。

50. 如权利要求49所述的髓内钉，其特征在于，所述多个通道中的至少一些具有圆柱形
构造。

51. 如权利要求50所述的髓内钉，其特征在于，所述多个通道大致平行于所述髓内钉的
纵向轴线。

52. 如权利要求47-50中任一项所述的髓内钉，其特征在于，所述壁包括医疗级粉的一
个或多个激光烧结层。

53. 如权利要求52所述的髓内钉，其特征在于，所述医疗级粉至少为5级粉。

54. 如权利要求53所述的髓内钉，其特征在于，所述医疗级粉为TiAl6V4粉。

55. 如权利要求54所述的髓内钉，其特征在于，所述一个或多个激光烧结层已经受热处
理过程。

56. 一种髓内钉，包括：
具有壁的第一部段，所述壁大致限定了所述第一部段的内部区域；以及
联接到内部部段的第二部段，所述内部部段的尺寸设定成用于在所述第一部段的内部
区域的至少一部分中侧向移位，所述内部部段能够通过锁定螺钉选择性地从所述第一部段
拆卸，以改变所述髓内钉的弹性模量。

57. 如权利要求56所述的髓内钉，其特征在于，所述第一部段、所第二部段和所述内
部部段各自包括医疗级粉的一个或多个激光烧结层。

58. 如权利要求57所述的髓内钉，其特征在于，所述医疗级粉至少为5级粉。

59. 如权利要求58所述的髓内钉，其特征在于，所述医疗级粉为TiAl6V4粉。

60. 如权利要求59所述的髓内钉，其特征在于，所述一个或多个激光烧结层已经受热处
理过程。
DMLS矫形髓内装置及制造方法

【0001】相关申请的交叉引用

本申请要求于2014年4月11日提交的美国临时专利申请序号61/978,804和于2014年4月11日提交的美国临时专利申请序号61/978,806的权益，二者通过引用整体地结合于本文中。

技术领域

【0002】本发明总体上涉及用于矫形外科手术或手术中的植入物，并且更具体但不排他地，涉及例如矫形髓内钉之类的用于骨的内部固定的矫形髓内装置，以及制造该装置的方法。

背景技术

【0003】矫形固定装置可用于例如稳定损伤，支撑骨折，融合关节和/或矫正畸形。矫型外科固定装置可以永久地或暂时地附接，并且可以在各种位置处附接到骨，包括植入骨的管或其他腔内；植入在软组织下方并附接到骨的外表面，或设置在外部并通过诸如螺钉、销和/或线之类的紧固件附接。一些矫形固定装置允许两个或更多个骨块或两个或更多个骨的位置和/或取向相对于彼此调整。矫形固定装置通常由各向同性材料加工或模制而成，例如包括例如钛、钛合金、不锈钢、钴铬合金和钽的金属。

【0004】此外，髓内(CM)钉的主要功能是稳定骨折碎片，并且由此使得能够跨越骨折部位进行负载传递，同时保持骨的解剖学对准。虽然在市场上存在大量的市售髓内钉，但是没有通用的指南，说明每种钉在给定情况下将其最佳性能执行的条件。此外，最佳植入物刚度和程度是一些争论的话题，并且基本上在局部机械环境和骨折愈合之间的相互作用的机制通常是未知的。

【0005】此外，在扭转和弯曲方面，改变的固定刚度对骨折愈合的影响可以提供对骨折和非联合的发病机理和理想治疗的洞察。然而，至少由于成本控制原因，相似的植入物被用于简单和复杂的骨折等。因此，在更靠近骨而不是钛或不锈钢的轴向弯曲和扭转刚度方面找到相对最佳的解决方案可能加速特定类型的骨折的骨折愈合。

【0006】仍然需要提供用于骨的内部固定的改进的矫形髓内装置及其制造方法。本发明满足这种需要，并以新颖和非显而易见的方式提供其他益处和优点。

发明内容

【0007】本发明的一个方面是一种用于制造矫形装置的方法，其包括由医疗级粉并且通过增材制造过程来形成增材制造的矫形部件。该方法还包括热处理增材制造的矫形部件，并加工后热处理的增材制造的矫形部件，以形成矫形装置。

【0008】本发明的另一方面是一种髓内钉，其包括壁，所述壁包括医疗级粉的一个或多个激光烧结层。所述壁具有外部和内部，所述内部通常限定髓内钉的内部插管区域。所述髓内钉还包括用于、收容延伸到壁的至少一部分中的小型化传感器探头的内部通道。另外，内部
传感器探头通道不延伸穿过壁的外部。

[0009] 另外，本发明的一个方面是具有通过伸缩部分联接到第二部段的第一部段的键内钉。所述伸缩部分具有外径，其尺寸设定成可滑动地接收在第一和第二部段中的至少一个的内部区域中，以适应第一和第二部段的相对轴向位置的调整。此外，第一和第二部段是用于植入骨中的结构。所述键内钉还包括机械致动器，其适于提供偏置力以偏置第一和第二部段的相对轴向位置。

[0010] 本发明的另一方面是一种键内钉，其包括具有外部和内部的壁，所述内部通常限定键内钉的内部区域。所述键内钉还包括第一螺钉孔和第二螺钉孔，所述第一和第二螺钉孔至少延伸穿过壁的外部。另外，键内钉包括在第一和第二螺钉孔之间的壁中的一个或多个突起，所述一个或多个突起至少不延伸穿过壁的外部。此外，一个或多个突起被构造成改变键内钉的扭转和弯曲模量。

[0011] 本发明的另一方面是一种键内钉，其具有带有壁的第一部段，所述壁大致限定第一部分的内部区域。所述键内钉还包括联接到内部部段的第二部段，所述内部部段的尺寸设定成用于在第一部段的内部区域的至少一部分中侧向移位。此外，内部部段通过锁定螺钉选择性地从第一部段可拆卸，以选择性地改变键内钉的机械性能。

附图说明

[0012] 本文的描述参考附图，其中在几个视图中相同的附图标记表示相同的部件。

[0013] 图1A示出了具有143个钉的竖直堆叠的假想构建程序的三维(3D)模型的等距视图。

[0014] 图1B示出了具有143个钉的竖直堆叠的假想构建程序的三维(3D)模型的顶视图。

[0015] 图1C示出了具有143个钉的竖直堆叠的假想构建程序的三维(3D)模型的侧视图。

[0016] 图2A示出了具有30％孔隙率的直接金属激光烧结(DMLS)键内钉的远中轴位置的微观视图。

[0017] 图2B示出了在4点弯曲疲劳测试之后在键内钉的远侧位置处的钉断裂部位。

[0018] 图3A示出了以最小后加工要求制造的ALM钉，即在CAD文件中开启的所有设计特征。

[0019] 图3B示出了在CAD文件中关闭所有设计特征制造的ALM钉以及用于将该部件保持在CNC机器的卡盘中的支撑结构。

[0020] 图3C示出了在CAD文件中的远端处关闭设计特征的情况下制造的ALM钉。

[0021] 图4示出了在SLM500上构建钉的时间，SLM500与钉的尺寸(长度)近似线性地缩放。

[0022] 图5示出了16个测试棒的示例构建时间的比较，包括使用不同机器来构建280毫米(mm)高的键内钉的时间和成本的内插。

[0023] 图6A示出了使用竖直定向制造键内钉的透视图。

[0024] 图6B示出了使用水平定向制造键内钉的透视图。

[0025] 图7A示出了在截面图中包括锥形内壁部分的三维(3D)CAD键内钉模型。

[0026] 图7B以局部透视图示出了三维(3D)CAD键内钉模型，并且其包括在键内钉的壁中的多孔或通道内部结构。

[0027] 图7C以透视、局部剖视图示出了包括可拆卸内部部段的三维(3D)CAD键内钉模型。
图7D以部分剖视图示出了包括内部有槽段部的三维（3D）CAD箍内螺模型。
图8示出了箍内螺的最佳截面几何构型的示例。
图9示出了在Renishaw SLM250上执行的构造再现的逐层的激光烧结增材制造过程参数的示意图。
图10A示出了箍内螺的横截面，其突出了与双扫描策略相关联的壁部段中的排线区域。
图10B示出了与用于重熔化构造的激光烧结层的双扫描策略相关联的单向X和Y扫描。
图10C示出了与用于重熔化构造的激光烧结层的双扫描策略相关联的多方向X和Y扫描。
图10D示出了利用双扫描策略重熔化构造的烧结层的参数。
图11A示出了箍内螺的横截面，其突出了箍内螺的壁部段，所述壁部段与用于重熔化构造的激光烧结层的双扫描策略的X和Y交替的排线激光光栅相关联。
图11B示出了与用于重熔化构造的激光烧结层的双扫描策略相关联的X和Y交替排线激光光栅。
图11C示出了箍内螺的横截面，其突出了箍内螺的壁部分，该壁部分与用于重熔化构造的激光烧结层的双扫描策略的周向激光光栅相关联。
图11D示出了与用于重熔化构造的激光烧结层的双扫描策略相关联的周向激光光栅。
图12示出了Ti-64添加层加工的（“ALM”）部分的焊头应力分布。
图13示出了试图克服标准箍内螺的远端的ALM测试部分的三维模型。
图14示出了作为沿着ALM样品的位置的函数的激光功率对孔隙率的影响的示例。
图15示出了从烧结到400瓦（W）的ALM部分激光器的断裂表面采集的SEM图像。
图16示出了描绘在5赫兹（Hz）下进行的四点弯曲测试的结果的表格。将加工的Ti6-4钉切割成类所需的长度并使用300至3000牛（N）的方法进行测试以验证具有短钉的试验台的使用。钉存活10个周期，而没有损伤迹象，并且在试验台上不移动。使用相同的方法但使用200至2000牛（N）的载荷条件测试ALM样品。
图17示出了激光功率对以5赫兹（Hz）在步进负载2000至200牛（N）下进行的Ti-64 ALM部分的四点弯曲疲劳性能的影响。
图18提供了Ti-64材料的激光烧结和电子束熔化的示例性机器供应商的列表。
图19A示出了简化的测试试样几何构型的2D图。
图19B示出了插管Ti-64试样的后加工/热处理的照片。
图20示出了作为机器供应商的函数的激光烧结和电子束熔化的试样的四点弯曲疲劳性能。试样在200-2000牛、5赫兹（Hz）下进行。
图21A和图21B示出了在不同放大率下的EOS样品的微观切片，并且用Kroll’s试剂进行蚀刻以见颗粒结构可视化。
图22示出了作为机器供应商的函数的HIPED激光烧结和电子束熔化试样的四点弯曲疲劳性能。测试在300至3000牛、5赫兹（Hz）下进行。
图23A示出了在热等静压处理之前在EOS M280机器上作为制造部件生产的Grade
23钛的晶体结构。
[0052] 图23B示出了在部件已经经受热等静压处理之后的图21A的Grade 23钛产生的部件的晶体结构。
[0053] 图24示出了加热到1005°C的β转变温度并以100°C/min-1至700°C的速率冷却，稳定2小时，然后在烤箱中冷却的常规薄片型Ti-6Al-4V钛锻造合金的通常有序的结构。
[0054] 图25提供了经过后加工的完成部件的表面光洁度或粗糙度的表格。
[0055] 图26提供了所研究的ALM样品中q薄片的平均测量厚度。
[0056] 图27提供了决定薄片型钛合金的疲劳性能的关键参数。D=颗粒大小，t=薄片的宽度，d=平行薄片的集落的大小。
[0057] 图28示出了作为机器供应商的函数的表面抛光和HIPPED激光烧结和电子束熔化等的四点弯曲疲劳性能。在400至4000牛下以5赫兹Hz进行测试。
[0058] 图29示出了热处理和非热处理的ALM部分的负载延伸曲线。点F和J表示非热处理部分的性能。这些部件坚固但脆。
[0059] 图30示出了从锻造和ALM Ti-64部分捕获的强度(UTS)和延展性(％伸长率)数据。
[0060] 图31示出了使用单、双和四激光器以正常扫描速度生产100个完全密度的凝聚钉的计算。
[0061] 图32示出了以超扫描速度生产100个完全密度的凝聚钉的计算。
[0062] 图33A示出了使用标准扫描条件制造100个凝聚钉的每步骤的生产成本($)的示例性分解。假设：- 运行ALM机器的成本=每小时$97。植入级粉的成本=每Kg $255。制造100个钉96小时构建时间。
[0063] 图33B示出了图27A中所示的生产成本，作为一个制造步骤的百分比成本。
[0064] 图34A示出了使用比与图31A～32A所示的示例相关的扫描条件更高的扫描条件制造100个凝聚钉的生产成本的示例性分解。
[0065] 图34B示出了图34A中所示的生产成本，作为一个制造步骤的百分比成本。
[0066] 图35示出了Trigen Meta筋骨钉的近端，并且突出了边界层扫描的概念。
[0067] 图36A示出了在边界扫描之后的矩形凝聚钉的模型，并且其在尺寸上被调整以考虑尺寸收缩。
[0068] 图36B示出了HIPPING之后的矩形凝聚钉的模型，其指示满足所需CAD文件部分规范的完全致密部分。
[0069] 图37A示出了显示通过5％边界扫描“原位脱壳(In situ shelling)”产生的粉核的照片。
[0070] 图37B示出了CAD文件，其突出了用于防止残余粉末在从构建板移除之后从核心逸出的远侧挤压部段。
[0071] 图38示出了在热处理后从远侧末端的壁部段的抛光面获取的光学图像。测得的孔隙率和平均孔尺寸分别为约0.25％和3.4微米。
[0072] 图39A示出了在超激光扫描之后的矩形凝聚钉的模型，并且其在尺寸上被调整以考虑尺寸收缩。
[0073] 图39B示出了HIPPING之后的矩形凝聚钉的模型，并且其指示满足所需CAD文件部分规范的完全致密部分。
图40示出经受可变扫描策略（全皮、无核心、全皮、部分核心）的SLM溶液所产生
的ALM部分的四点弯曲疲劳性能。图41示出经受HIPPING烘箱的载离截面，其突出了ALM部分暴露于阴蒸气。
图42示出经受阴粒喷射程序的示意图，其突出了在精加工操作期间阴沉积到工作部
件上。图43A示出经置通道的插管内壁的三维（3D）模型，所述内置通道大致平行于
插管延伸以临时收容传感器探头。图43B示出经置通道（直径1.5mm）的阴的microCT图像，其突出了在构造之
后在通道中没有残留粉末。图44示出经置的传感器探头的三维（3D）模型，其可以被设计成在图43所示的
插管内壁的内置传感器探头通道中操作。图45A和图45B示出经置的插管内壁的模型，该插管内壁具有在适于传统制造技术的插管内壁的
近端和外表面中形成的开放通道。图46A示出经置可以使用增材制造产生的内部传感器探头通道的示例性几何构型的
端视图。图46B示出经置可以使用增材制造产生的内部传感器探头通道的示例性几何构型的
等距视图。图47示出经置的插管内壁，其包括内部传感器探头通道。图48示出经置的插管内壁的近端的透射图，并且其包括适于接收可
移除的传感器探头的插入的内置传感器探头通道。图49示出根据本发明的示例性实施例的插管内壁的远端的透射视图。
图50A、图50B和图50C示出经置在插管内壁的远端、中间部分和近侧区域处具有伸
缩部分的插管内壁。图51示出线性和非线性弹簧力-位移关系的示例。图52A和图52B提供了位于长骨骨折中的动态化、致动加载的插管内壁的可再吸收聚
合物的降解的示意图。图53A和图53B示出经置的插管内壁的近端，其被构造为适应地为插管内壁提供单向和双向平移。
图54和图55示出经置的插管内壁的近端，其伸缩部分包括呈销形式的突
起。图56示出壁厚度对插管内壁的机械刚度测量的影响。图57示出经置三个衬套的示例的透射图，这三个衬套被构造为与插管内壁一起使用以
在骨折部位处局部地产生循环负载。图58A示出经置具有可激活形状记忆套管或套环的插管内壁的端部的外部纵向视图。图58B和图58C示出经置的插管内壁的内部的透射图，其包括分别处于活动
和非活动状态的可激活形状记忆套管或套环。图59示出经置包括一对相对的缝合的芯部元件的插管内壁的各部分的示意图。图60示出经置标准
圆形截面插管内壁和插管内壁的截面形状示例，这些截面形状可以减小前-后平面中的弯曲刚度，同时相对保持正交的中间-外侧平面中的刚度。
图61A和图61B示出了基于标准10毫米外径Trigen Meta胫骨钉和在钉的外表面上具有不同尺寸的槽的10毫米外径Trigen Meta胫骨钉的扭转和弯曲刚度数据。

图62以截面图示出了三维(3D)CAD黏内钉模型，其在钉的中间部段处包括锥形内壁。

图63示出了标示具有锥形内壁的黏内钉的中间部段的理论弯曲和扭转刚度的表格。

图64A示出了黏内钉的三维(3D)CAD模型的局部透视图和剖视图，该黏内钉在钉的内壁部段中配备有周向布置的内部槽。

图64B示出了图65A所示的黏内钉的中间部段的一部分的截面图。

图65以局部剖视图示出了黏内钉的三维(3D)CAD模型，该黏内钉包含在黏内壁的壁中的有序多孔或通过内部结构。

图66示出了从黏内钉的中间部段所取的图65所示的黏内钉的一部分的端视图。

图67示出了标准黏内钉和如图66和65所示的具有多孔或通道内部结构的黏内钉的理论弯曲刚度和扭转刚度的比较。

图68示出了提供松质骨、胶原、Ti 40％孔隙率、皮质骨、TI-6Al-4V 40％孔隙率、Ti合金、CO-Cr合金、钢和Ti-6Al-4V的数据的弹性模量对密度图。

图69示出了包括可拆除内部部段的黏内钉的三维(3D)模型的一部分的透视、局部剖视图。

图70示出了提供标准Trigen Meta胫骨钉和具有与图69所示的类似的可拆除内部部段的钉的弯曲和扭转刚度之间的比较的表格。

当结合附图阅读时，将更好地理解前述发明内容以及本发明的某些实施例的以下详细描述。为了说明本发明的目的，在附图中示出了某些实施例。然而，应当理解的是，本发明不限于附图中所示的布置和工具。

具体实施方式

为了促进对本发明的原理的理解，现在将参考附图中所示的实施例，并且将使用特定语言来描述这些实施例。然而，应当理解，本发明的范围不限于此。在本发明所涉及领域的技术人员通常会想到的是，所述的实施例中的任何改变和进一步的修改，以及本文所描述的本发明的原理的任何进一步的应用。本发明的非限制性形式和实施例的以下描述和说明在本质上是示例性的，应当理解的是，与其相关的描述和说明绝不意在限制本文公开的本发明和/or其应用和用途。

矫形装置需要某些材料性质和/或公差，用于在人体内的应力负载条件下的最佳制造和性能。对于固定装置，例如钳内(CM)钉，这种性质或特性可以包括四点弯曲疲劳、弯曲模量、扭转刚度、拉伸强度/延展性/屈服强度、孔隙率、表面光洁度以及几何公差/零件精度。虽然传统的锻造/加工的Ti-64钉可以满足当前所需的标准，但随着快速制造技术(RMT)的出现，存在相当显著地减少粗制造和货物整体成本的机会。此外，使用钛制造的可植入装置的全球市场销售估计将在2020年达到260亿美元，这强调了需要改变制造工艺以满足预期的需求。此外，增材制造具有向多个市场提供近净形状产品/部件的优点，而不必依赖高技能的劳动力。另外，考虑到其设计自由度，在设计和制造例如钳内钉之类的植入装置中使
用增材制造可以打开针对患者特征开发特定的植入物的可能性。所述特征包括患者个体的年龄、骨质量和损伤类型以及其他特征。

[0111] RMT技术包括但不限于直接金属制造 (DMD)、直接金属激光烧结 (DMLS)、电子束焊接 (EBM) 和固体自由形式制造。这些技术已经用于各种行业，包括用于重建、创伤和康复装置的矫形术。一般来说，DMLS可以使用三维 (3D) 计算机辅助设计 (CAD) 模型，其可以通过程序创建。例如，Materialise 的 Magic 的 Magics，以产生通过用激光照射金属粉末逐层产生的三维金属烧结模型。例如，图1A-1C分别示出了由Magic程序创建的假想构建程序的三维 (3D) 模型的等距视图，顶视图和侧视图。该程序具有在25厘米×25厘米 (x 轴以 y) 的构造板上的143个钉的竖直堆叠。

[0112] 然而，DMLS的使用可产生在矫形装置中不能容忍的与材料性能和功能相关的许多问题，包括孔隙率、零件公差、零件设计和表面光洁度，这需要额外的后处理，其中每一个将在下面依次总结。

[0113] （A）孔隙率：次优的激光束光学器件可以在材料内产生多孔隙区域，这导致差的材料特性和随后的不良/降低的性能。这些孔隙率问题通常归因于制造部件内的未烧结粉末和烧结期间经验氢和氧之类的残余气体的捕获。例如，图2A示出了在远中轴位置处具有30％孔隙率的DMLS钢内钉的远中轴，而图2B示出了作为4点弯曲测试结果的在钢内钉的远侧位置处的相关的钉断裂部位。

[0114] （B）零件公差：次优的激光束 (功率) 可以产生规格超出所需公差的器件。例如，对于钢内钉，在可由次优选激光束产生的所需公差之外的这种区域包括钉的内部/外部部分以及与内部螺钉相关的区域。

[0115] （C）部件设计：考虑到诸如钢内钉之类的创伤固定装置的复杂几何形状，确定在激光烧结阶段期间应当打开哪些设计特征是至关重要的。同样，识别在后加工期间保持部件所需的合适的支撑结构设计对于最终部件的质量也是至关重要的。图3A示出了在构建阶段期间打开所有设计特征的区域。考虑到壁较薄，在部件的远端处的设计特征对疲劳应力特别敏感。部件通常沿竖直方向构建，并且因此，横向螺钉孔周围的微结构由于部件散热的性质而特别容易出现缺陷。因此，尽管需要最少量的后加工，该部件设计并不产生令人满意的机械疲劳性能。图3B描绘了更保守的设计，因为在构建阶段期间所有的设计特征 (横向螺钉孔、键槽等) 已经被关闭。在部件还在远端配有突出部以将零件固定在CNC机床的卡盘中。尽管这种设计产生了令人满意的机械性能，但后加工阶段非常密集。图3C描绘了植入物设计提供了后加工需求和所需机械性能之间的平衡。远侧特征在钉的最脆弱部分被关闭，这减少了后加工时间，但解决了早期疲劳失效的风险。

[0116] （D）附加加工：目前，赋予机械性能的最佳后DMLS处理通常是未知的或次优的。技术是本领域已知的，例如，热等静压处理 (HIP)，其中，植入物经受升高的温度和等静压气体压力以巩固和降低材料内孔隙率；喷丸硬化，其中，植入物被轰击以产生塑性变形，并且再熔化烧结层以降低生长期分的孔隙率是针对改善部件性能的其他策略。

[0117] 此外，DMLS的使用可产生与商品成本和生产率相关的许多问题。例如，在至少某些情况下，取决于所购买的Ti-6AL4V粉的等级，例如等离子体旋转电极工艺 (PREP)、气体雾化和ELI等级23，金属粉末的成本可以在约200-400/kg。此外，机器成本/构建时间可以是大约397/小时，这取决于制造单元的尺寸、资本设备和折旧水平以及工作人员。另外，与例如
每天600个钉（每个钉2.4分钟）相比，可以使用高度的钉来获得可以是每个构件100钉的零件吞吐量，可以花费大约109小时来完成（每个钉65.4分钟）在医疗器械制造单元中进行的激光焊接。可以使用具有较大占地面积并配备有4个扫描仪（例如SLM 500四线扫描仪）的激光焊接机来提高制造工艺的效率。800个钉（尺寸20厘米长×10毫米OD）可以在160小时中构建，这相当于使用边沿扫描“原位脱壳”战略每钉12分钟。如果运行到满容量并采用边沿扫描策略，SLM500每年能够生产约40,000个钉。如果可以使用价格为£30/kg的雾化粉末的供应优先于从粉末供应商提供的材料（通常为£250-400/kg），则每个钉的平均成本可以接近每部分£120。图4示出了在SLM500上构建钉的时间，SLM500与钉的尺寸（长度）近似线性地缩放。例如，320 mn钉需要25分钟的平均每钉建造时间，图4。[0118] 金属粉末的成本通常由供应商控制，供应商可能在某些市场中有限量的供应商收取费用。例如，与现有的钛生产方法（例如，能量密集的气体雾化和毒性Kroll方法）相比，欧洲供应商，更具体地是英国供应商通常提供基本上更便宜和环境友好的粉末，这构成了昂贵和劳动密集的四步骤过程。这种供应商可以采用金红石并且使用电解将其直接转换为粉末钛，这是成本有效的并且因此对于供应链通常是必要的。低成本钛粉末可以用于多种新的应用中，而以前该金属对于用于批量生产低价值物品而过于昂贵。例如，直接来自棒料的气体雾化粉末是将Ti-6Al4V动力成本降低到大约3£30/kg的潜在路线。

[0119] 图5示出了使用标识为Arcam S12, Concept M2, EOS M270, Realizer, Renishaw AM250和SLM Solutions 280HL的不同机器的16个测试棒的构建时间的比较的示例，包括插入时间和成本建立280毫米（mm）高的钛内钉。部件的构建时间可能受到多个相互关联的变量的影响，包括例如DMLS机器规格，以及操作成本，例如气体、电力和资本设备以及其他成本，如图5所示的示例性表格所示。虽然可以存在相关显着的范围来减少部件制造的成本，但是其不一定与加工这些部件的成本相匹配，这消除了对诸如部件设计，扫描速度和扫描图案的其他成本降低策略的需要。

[0120] 本发明为具有与锻造/铸造/加工钛部件相匹配的材料性能的竣工装置提供了最佳的DMLS制造路线。

[0121] 在发明的一种形式中，提供了一种通过直接激光烧结制造柱长的竣工装置的方法，其包括以下步骤：a）产生虚拟三维（3D）细长装置模型；b）使用至少300瓦特（W）的激光功率，并且使用至少5级质量的粉末，例如TiAl6V4粉，根据所述三维（3D）模型，通过直接金属烧结沿适当的成形方向制造细长的装置；c）使用所述细长装置经受使用至少1000度的温度的热等静压（HIP），其中冷却速率在0.24和72摄氏度min-1之间；d）加工和抛光HIP处理的细长装置；以及e）其中，机械性能等同于锻造钛的四点弯曲性能。

[0122] 在发明的另一种形式中，通过以下步骤和过程制造竣工装置的内入物，例如钛内钉：
(A) CAD文件的创建：将适当的文件类型（例如，.stl格式化文件）沿用于制造的定向上传到三维（3D）软件提供者，例如Materialise®的Magics®。这样的文件也可以包括例如筒内（IM）和钉的非支撑的竖直构建结构，以及其他部件或装置。

(B) 构造定向：零件可以沿从0到90度的多个构建定向建立，这将产生对机械负载敏感的各向异性的物理性质。它们也可以使用或不使用定制设计的支撑结构来辅助后加工过程，图3b。此外，使用配备有软性再涂覆并且没有任何支撑结构的添加层机器（“ALM”）竖直地构建例如筒内钉之类的部件，可以减少后加工的负担。例如，图6A和图6B示出了使用
竖直定向（图6A）和水平定向（图6B）的突出鳗内钉的制造的三维（3D）CAD文件，其中，竖直和水平定向适于具有软和硬的再涂覆器的ALM。图6A表示了处于竖直构造/取向的构建部分，并且可以通过设计允许部件层叠的支撑结构而更加经济。图6B表示出了在0至90度之间的角度下的构造/定向的构建部分，并且可以有助于减小它们的各向异性行为。但是，可以在单构建运行中制造较少数量的装置。

0124 (C) 设计优化：RMT可用于给予关于鳗内钉的内部几何形状（图5A-5D）和外部几何形状（图6）的相当大的设计自由度，以修改钉特性，例如，使用常规制造方法难以实现的扭转/弯曲刚度。具体而言，图7A-7D以截面图示出了三维（3D）CAD鳗内钉模型，并且其突出了锥形壁部段（图7A）、多孔内结构（图7B）、可拆卸内部部段（图7C）以及内部槽段（图7D）。另外，图8示出了鳗内钉的最佳截面几何形状的示例，其中：A = Solid Schneider，B = Diamond，C = Sampson Fluted，D = Kuntscher，E = Rush，F = Ender，G = Mondy，H = Halloran，I = Huckstep，J = AO/ASIF，K = Grosse-Kempf，L = Russell Taylor，M = Trigen。这些钉几何形状中的至少一些可以具有设计成减小刚度或降低鳗内压力的截面。此外，这些钉的多样性范围从可以是紧配合、铰孔、无锁定的Kuntscher nail（D）到包括使用互锁螺钉的Universal nail（K）。

0125 RMT还可以用于通过优化鳗内钉的曲率来产生患者匹配的植入物。这可以避免鳗内钉和骨，特别是远侧肢骨之间的曲率半径不匹配，这否则可能导致前皮质穿孔。例如，股骨的曲率半径估计为120cm（+/- 36cm）。然而，股骨钉设计通常具有较小的曲率，其中，半径范围从186至300cm。此外，钉也可以设计成适合每个单独的骨折。根据这样的实施例，可以创建每个单独骨折的计算机模型，然后可以使用该模型来测试不同的固定策略，以便选择将为假定的承载需求创建特定机械环境的系统。

0126 (D) 三维（3D）打印机的选择：鳗内钉可以用来自诸如SLM Solutions、Renishaw，Realizer，EOS，Concept Laser和Arcam的供应商的各种商用机器来构建。每种技术的相对优点通常基于：(a) 机器生产率（即腔室的尺寸（沿x、y和z轴），扫描速度和激光器数量）；(b) 部件质量（即精度、表面光洁度、公差/分辨率）；以及(c) 资本和运行成本（例如，气和电的消耗）。

0127 (E) 激光烧结：硬式再涂覆器，例如来自EOS的EOS M270/M280/M290可以产生具有优异的机械性能和降低的孔隙率的部件。但是考虑到任何弱结合的、部分烧结的材料更可能在每个构造层分被去除。软式再涂覆器可能产生也可能被硅树脂刀片碎片污染的部件，这需要进行研究以满足规定。软式再涂覆器刀片在一次构建之后可能磨损，这对于制造过程增加了额外的成本。硬式再涂覆器刀片可以由高速钢制成，并且从这些臂释放到部件中的碎屑被观察到比软式再涂覆器刀片产生更少的问题。硬式再涂覆器刀片对于粉使用也更经济。由SLM Realizer提供的现代激光烧结机可以产生30微米的聚焦束斑尺寸，其可以产生具有优异的配粒结构和分辨率的部件，使得能够实现新颖的设计特征，例如内置通道。

0128 (F) 粉末规格：医疗级Ti-64粉有多种不同的样式，这取决于最终应用和三维（3D）打印机的选择。5级气体或等离子体雾化粉末通常用于激光烧结中，可具有15至45微米（μm）或20至63微米（μm）的粒度范围，并且通常以£150/千克的成本提供。23级ELI粉末可以是气体雾化或离心PREP粉末，其粒度范围在45至100微米（μm）之间，并且通常以250美元/千克供应，并且可以含有降低水平的氧、氮、碳和/或铁。可以从建筑部件和粉末床的QA测试中确定
决定切换到用于后续构建的原始粉末，或利用来自先前构建的未使用的粉末。显然，从先前构建物保留的未使用的粉末中构建部件将减少成本负担并且需要购买几吨粉末以覆盖大量的箱内钉(即，10,000或更多)的制作。

(6) 构建参数的选择: 在箱内钉的生产中，除了其他技术之外，为包括选择性层熔化(SLM)、激光烧结和电子束处理的增材制造技术选择的构建参数可以是用于执行增材制造的设备的品牌或生产商所独有的。例如，Ti-6Al4V的激光烧结或电子束处理可能是机床供应商特有的。此外，图9提供了用于Renishaw SLM250来生产箱内钉的构建参数的示意图。具体而言，图9是从在Renishaw SLM250上进行的构建逐层再现的激光烧结增材制造过程参数的示意图，其中，激光功率在30kW至60kW之间，点距离在30至90微米(μm)之间，排线距离为65至90微米(μm)，层厚度为50至100微米(μm)，暴露(Ex)为50至500微秒(μs)。

(7) 关于扫描策略，虽然某些添加制造技术(例如选择性层熔化(SLM))能够产生完全致密的材料，但使用以下扫描策略中的一个或多个来减少部分孔隙率可能是必要的或有益的；

1. 层再熔化: 如图10A至10D所示，激光烧结层的再熔化可以使用双扫描策略帮助降低生长部分的孔隙率。此外，在一些系统中，例如1千瓦(kW) SLM Renishaw SLM250系统中的可变聚焦光学器件可以使得能够以相对慢的速度使用高激光功率，而在层的中心具有相对大的斑点尺寸以补偿高热损失。此外，可以在表面区域(即，层的边缘)处利用相对快速的高激光功率，以便实现高表面质量。图10A示出了箱内钉的横截面，其突出了与双扫描策略相关联的箱内钉的壁部段中的排线区域。图10B示出了单向X和Y扫描(即，方向彼此平行)，并且图10C示出了多向X和Y扫描(即，方向以例如90度彼此横置)。图10D示出了在使用双扫描策略的层的再熔化中使用的参数。

(2) 替代扫描: 如图11A至11D所示，可以实现替代扫描策略，例如，通过使用Realiser SLM 100系统。这种替代的扫描策略可以包括如图11A和11B所示的X和Y交替影像激光光栅以及如图11C和11D所示的周向激光光栅。

(3) 在线监测: 在构建过程中监测可以保持超低氧含量。当处理反应材料时，低于50ppm的氧浓度可能是至关重要的，并且可能对材料完整性有相当大的贡献。对于实时熔池监测系统，通过创建数据库的SLM和电子束鉴定，该数据库可以包括各种信息，例如激光功率、扫描策略、影像策略，以及可以描述工艺的参数对构建部件(例如构建的箱内钉)的机械性能的影响的其他信息。

(4) RMT部件的后处理: RMT部件的后处理可以包括但不限于以下步骤或过程。

(1) 热处理: 对通过增材制造工艺构建的部件进行热处理可以涉及HIPPING(热等静压系统)、应力消除和退火等步骤的任何组合。

(2) HIPPING处理: 可使用热等静压(HIP)以降低金属的孔隙率并提高材料的机械性能和可加工性。HIPPING可以包括以下步骤:

(1) 抽空/清洗(例如，3次至低于15mb);

(2) 保持温度: 典型的HIP温度可以是例如在大约920℃和大约1000℃之间，并且最佳温度可以是大约980℃+10℃。如果HIP温度高于1000℃，则增材制造的部件可能被镍污染，因为HIPPING设备通常由镍基合金制成。这在HIP温度接近1050℃时更加明显。这可以通过(a)将部件包裹在钛(Ti)箔中，(b)将部件放置在再结晶的氧化铝板或盒上，使钛(Ti)不
能与基于镍(Ni)的负载板接触,或(c)将包裹的部件放置在锯屑毯上；
(3)保持压力(0.1MPa);例如, HIP过程的至少一部分期间的压力为103MPa +/−5MPa；
(4)保持时间(分钟);例如, HIP过程的120分钟+15/−0分钟的持续时间；
(5)冷却速率(℃/分钟);例如,小于10℃/分钟；以及
(6)加热速率(℃/分钟);例如,小于10℃/分钟。
[0136] (b)应力消除过程:应力消除可以在应力消除炉中在氢气氛下或在真空炉中进行。除了其它步骤之外,应力消除过程可以包括以下步骤中的一个或多个；
(1)在Centorr真空炉中在60分钟内使增材制造的温度升高到升高的温度,例如约800℃的温度；
(2)将增材制造的构建部件的高温保持预定的时间段,例如约2小时；以及
(3)当增材制造的构建部件的温度下降到设定的冷却温度(例如大约400℃的温度)时,断开炉加热功率并打开炉门。将从高温增材制造的构建部件的温度降低到设定冷却温度的最大冷却速率可以是但不限于55℃/分钟,而从设定的冷却温度到基础温度(例如约100℃的温度)的冷却速率可以较慢,例如约35℃/分钟；
(c)退火:退火过程可以包括以下步骤；
(1)在氢气氛性气氛中,在退火温度例如约1000℃下,将制造的制造部件加热2小时,该温度超过Ti-64合金的β转变温度995℃；以及
(2)氮气骤冷至室温,注意,1000℃的热处理可以用于将α相取入溶液中并且完全烧结可能仅部分烧结到部件的相邻粉末。
[0137] (2)加工操作:下面概述的用于增材制造的部件的外部和内部几何形状的表面改
进技术可以用于改善机械性能的成品表面,并且通过消除通常在大多数机加工表面上固有
的表面负面降低细菌污染的风险。从增材制造的构建部件去除尖锐边缘还可有助于有利于
更高平滑,更少破坏性地引入到人体中,否则组织可能被锋利的边缘等损坏或创伤。
[0138] (a)加工操作:外部几何形状:以下可选的表面精加工步骤可用于从增材制造的
构建部件的外表面去除α壳层,这是典型的三维(3D)印制Ti−64部件,表面精加工操作还可以
帮助使表面平整,提高部件精度,并且将压缩层引入到表面的第一个0.2毫米(mm)中。
[0139] (1)通过吹砂除去α壳层;除去α壳层,其可以为约30微米深,但不一定是均匀的,可以
以各种不同的方式去除α壳层,包括使用氧化铝介质形式的机械磨蚀方法。该步骤可以基
于经验手工作业,以观察由α情况产生的火花,以帮助确定衬底何时被破坏(即,当α客体已
被移除时火花将被熄灭)。在生产环境中,可以建立自动化组,这可以进而给出均匀的金
属去除。机械去除具有帮助准备表面用于后续操作的优点,以及与化学铣削相比更低的成本
选择。保持增材制造的构建部件的几何形状也可能提供一些挑战,因为α壳层和基板之间
的材料去除速率将显著变化。该方法可用于攻击文献的外表面和内表面。来自该步骤的
材料损失(通常为0.2微米(μm))将被考虑到构建增材制造部件和/或CAD文件的相关模型的
外径(OD)和内径(ID)中。
[0140] (2)振动抛光:根据抛丸后的表面状况,可能需要对零件进行粗磨,以在喷丸前去
除或截断峰。该步骤可以确保喷丸工艺压缩整个表面,而没有折叠在否则将产生应力集中
的表面粗糙度上的风险。
[0141] (3)创建残余应力的压缩层:在去除α壳层和制备表面之后,将规定喷丸硬化参数
以诱导最佳压缩残余应力层，最大量值在约800-1000兆帕（MPa），以及约0.2毫米（mm）的深度。图12示出了压缩层将具有精细的晶粒结构并且将有效地延迟疲劳裂纹的引发和传播。具体而言，图12示出了Ti-64 ALM部件的典型的锥头应力分布曲线。样片表面的喷丸处理具有增加表面硬度的作用，以及引入降低在表面处感觉到的拉伸应力的有益的压缩残余应力。

[0142]（b）加工操作 - 内部几何；以下可选的表面精加工步骤可用于完成零件的内表面。

[0143]（1）挤压珩磨；挤压珩磨是一种内表面精加工工艺，其特征在于使含磨料的流体流通过工件，其有效地执行腐蚀。这种流体通常非常粘稠，并且具有油灰或面团的粘度。它可以特别地用于去除毛刺，抛光表面，形成半径，甚至去除材料。AFM的性质使其对于硬度在高剪切面达到的区域的内表面是有利的。

[0144]在本发明的另一种形式中，模形植入物的制造可以在部件形成期间利用最佳加工条件。在一个实施例中，整体外科植入物的制造包括三维（3D）印刷Ti-64部件的优化的疲劳性能。

[0145]（A）激光功率：增材制造部件的机械性能可以取决于使用多少功率来构建它们，例如用于生产部件的激光束的能量密度。一般来说，用于制造零件的能量密度越大，零件表面光洁度越粗糙。这种现象可能是由于部件“泄漏”到周围的粉末材料中并且促使粉末熔合到部件的表面上的热引起的。因此，增加激光束的能量密度可以增加部件的表面粗糙度和整体强度。

例如通过激光烧结形成一批十二（12）个类似于胫骨钉远侧段部的增材制造的Ti-64样品。使用Renishaw 250 ALM实施以下加工条件：（a）150毫米/秒（mm/s）的扫描速度；（b）0毫米（mm）的聚焦偏移；（c）65微米（μm）的点距离；（d）250μs的暴光时间；以及（e）在120瓦（W）和400瓦（W）之间变化的激光功率。这种处理包括并提供关于以下的相关信息：

（1）金相学：将十二个ALM样品暴露于120W、160W、200W、240W、280W和350W的变化的激光功率，然后进行轴向切片成四个部分（S1-S4（图13））；远侧到近侧，并且根据图13中所示的示意图使用随后的冶金学研究。具体而言，图13示出了试图克隆标准铱内钉的近端的ALM测试部件的三维（3D）模型。

[0147]在切片之后，将切片的Ti-6Al-4V ALM样品冷安装在丙烯酸树脂中，并用SiC纸（80、220、800、1200、2400粒度）抛光至1微米。使用标准图像分析软件从扫描电子显微镜（SEM）图像测量样品的壁部段中的孔隙率。根据使用图像分析软件捕获的SEM图像在壁部分中测定每个切片样品的孔隙率。研究的结果总结在图14中，图14示出了作为沿着ALM样品（S1至S4（图13））的位置的函数的激光功率对孔隙率的影响的实例。在壁部分中孔隙率在0.03％和1.7％之间，并且趋向于朝向样品的近端最高（S4）。一般而言，孔隙率相对于增加的激光功率降低，从而意味着粉末结构的改善的固结。

[0148]从烧结到400瓦（W）的ALM部分激光器的断裂表面捕获的SEM图像在图15中示出，其是延展性和脆性失效的特征。这又表明在芯结构中存在与一些未烧结的粉末结合的一些孔隙率。具体而言，图15示出从烧结到400瓦（W）的ALM部件激光器的断裂表面捕获的SEM图像。形态主要是延性的，但是由于合金的相对较差的可加工性，预先存在的裂纹周围的变形相当差。
(2) 四点弯曲试验：关于轴内固定装置的四点弯曲疲劳试验方法，参照ASTM试验方法(F1264-03)。暴露于140W、180W、220W、260W、300W和400W的变化激光功率的样品进行四点弯曲循环疲劳试验。使用两个载荷条件，即200牛顿(N)至3000牛顿(N)和300牛顿(N)至3000牛顿(N)。另外，将加工的Ti-64钉切削成与最短样品钉类似的长度(77.04mm)，并使用300牛(N)至3000牛(N)方法测试，以验证使用相对短的钉的测试台。加工的Ti-64钉存活10个周期，没有损坏的迹象，并且在试验台上不移动。使用相同的方法但使用200牛(N)至3000牛(N)的负载条件测试ALM样品。记录每个样品的失效循环次数，并对样品进行拍照以记录失效模式。在所有情况下，长度/直径(L/D)比率固定在7:1，所有测试在5赫兹(Hz)下进行。测试结果总结在图11和图13中，图16示出了在5Hz下进行的测试的测试结果。图17示出了激光功率对在步进负载为2000:2000牛顿(N)、5赫兹(Hz)下的Ti-64ALM部件的四点弯曲疲劳性能的影响。

(3) 激光烧结和电子束熔化试验的标准疲劳性能：为了确定在使用特定的机器供应商的Ti-64钉时是否存在任何累积的益处，如图18所示，可以创建与最终设备相关的部件几何形状，这又允许进行直接比较。具体而言，图18列出了用于Ti-64材料的激光烧结和电子束熔化的机器供应商，在图19A中示出了简化的测试试样几何形状的2D图，图19B示出了简化的测试试样几何形状的光致蚀刻。

(4) 当图19中概述的ALM Ti-64样件使得不同的机器供应商在“完工条件”下进行四点弯曲疲劳试验时，如图20所示，它们倾向于在约125个周期失效。相反，相同几何形状的锻造金属在4000牛(N)加载到400牛(N)以5赫兹(Hz)加载时可以运行1M个循环。当在显微镜下观察这些ALM Ti-64样件时，发现它们是高度多孔的，表现出粗糙的表面，并且具有次优的微观结构。具体地，图20示出了作为机器供应商的函数的激光烧结和电子束熔化的Ti-64样件的四点弯曲疲劳性能。部件几何形状：- 100毫米(mm)长×10毫米(mm)外径和4.7毫米(mm)内径；测试条件：根据ASTM 1264在5赫兹(Hz)下-2000牛(N)至200牛(N)。这种测试表明激光烧结和电子束熔化的试样的平均性能为约125k循环的失效。

(5) 参考图21A和21B，其中示出了激光烧结Ti-64部分的典型晶体结构，其包括在基体α内的带β，并且是Widmanstatten型。具体地，图21A和21B示出了在不同放大率下的EOS样品的微切片，并且用Kroll’s试剂进行蚀刻。这非常类似于在加热到1000℃并强制空气冷却之后产生的锻造微观结构。晶粒尺寸在100微米(μm)的范围内。这种类型的结构可能不会产生良好的机械性能，并且可能需要适当的溶液和时效热处理以产生具有可接受的机械性能的材料。用Kroll试剂蚀刻的EOS Ti-64部分在低放大倍数(图21A)和更高放大倍数(图21B)下显示晶体结构，显示单晶的Widmanstatten型结构。

(6) HIPPPING：热压可以非常有效地提高ALM Ti-64零件的疲劳性能，如图22所示。一般而言，当ALM Ti-64部件在980℃的温度下在200MPa的压力下以4℃的初始冷却速率和10℃/分钟的HIPPPED进行4小时时，疲劳性能可以提高100%。对于由SLM解决方案生产的样品，当以5赫兹(Hz)加载在4000牛(N)和400牛(N)之间时，在26,891个循环发生极限破坏。具体地，图22示出了具有以下参数的HIPPPED激光烧结和电子束熔化试验的四点弯曲疲劳性能作为机器供应商的函数：部件几何形状为100毫米(mm)长，外径为10毫米（mm)，内径为4.7毫米(mm)；根据ASTM 1264在5赫兹(Hz)下的3000牛顿(N)至300牛顿(N)的测试条件；HIPPPED在980℃的温度下在200MPa的压力下以10℃/分钟的初始冷却速率持续4(4)小
时，失效通常发生在大约200,000次循环，其中由实验器的HIPED部分耗尽1M次循环，
图22。
【0154】HIP处理可以细化晶体结构以产生薄膜结构，当加热到高于T转变温度并缓慢冷却
时，与常规制造的钛具有相似度性。图23A和23B示出了HIP处理对EOS设备上产生的23级
钛的影响，其中图23A示出了铸造的部件，图23B示出了HIP处理后的部件。虽然薄膜的宽度
和整体晶粒尺寸随其他样品而变化，但是图示是对来自其他机器的样品观察到的典型修改
类型。与常规Ti-6Al-4V钛的主要区别是在所有这些样品中观察到的薄膜的相当有序的
性质。用激光烧结粉末观察到的微观结构包括由β的非常小区域分离的α带。
【0155】如图24所示，常规的薄膜型Ti-6Al-4V钛在晶体中形成平行薄膜的较大区域。具体
而言，图24示出了常规薄膜型Ti-6Al-4V钛合金的典型有序结构。HIP处理的样品（图23B）
比图24所示的常规薄膜型Ti-6Al-4V钛合金更有序。这有助于这些样品在疲劳测试期间的较
低的疲劳性能。还可以看出，在常规样品中存在明显的晶界，但是在检查的测试样品中
这些是无定义的，因为在晶粒间和晶粒边界之间几乎没有明显的区别。具体地，图24
示出了Ti-6Al-4V钛合金，其通常锻造并加热至10°C的转变温度，以10°C/min-1至700°C
的速率冷却，稳定2小时，然后在烘箱中冷却。
【0156】ALM样品在980°C下进行HIP处理，因此很可能没有达到T转变，而没有实现到β的
相变，这种发生与缓慢的冷却速率10°C/min-1结合解释了铸造微观结构和研究的ALM样品
之间的差异。为了通过热处理产生合适的结构，必须达到T转变温度，这将允许在冷却时产生
有序的薄膜结构。薄膜的宽度由冷却速率决定，以较快的冷却速率实现更精细的结构。已经
发现，薄膜的宽度(t)应为3微米，并且平行薄膜(d)的集落的大小应为30微米，以获得最大
疲劳强度。
【0157】如果HIP温度增加到1000°C，则应当实现更有序的平行结构，使实现完全β转变。
为了实现a+β晶粒合金的有序结构，从β转变温度的冷却速率应在0.24°C/min-1和72°C
min-1之间，较快的冷却速率产生较小的薄膜。在用于本批次的ALM部件的HIP炉中的冷却速
率为10°C/min-1，并且所形成的薄膜具有在4.05微米和6.72微米之间的宽度，图26。这与最
大疲劳强度的最佳尺寸相去不远。因此，如果HIP温度增加到1000°C，从而实现完全β转变，
应当实现更有序的平行结构。
【0158】(D) HIPPING & 加工/抛光：零件外表面的后加工具有显着的疲劳性能的改善。例
如：诸如磨料流体加工之类技术导致表面变平并且减少测试部件中的裂纹引发部位的数量。
如图25所示，经受这样的后加工的经制造零件的外部几何形状的表面光洁度或粗糙度从
5.43μm(Ra)至23.4μmRa(Arcam)在磨料流体加工之后增加到0.4μmRa。
【0159】HIPPING和外部抛光的联合影响产生具有与锻造部件相当的疲劳性能的部件(即，
当以5赫兹(Hz)在1000牛(N)和400牛(N)之间加载时，在1M次循环时用完)，如图28所示。结
果还表明，由TiAl6V4 Grade 5材料(更高的氧含量)制造的ALM部件表现良好。该结果可提
供显着的益处，因为5级粉末材料通常比23级材料成本低35%，使得该方法的经济论证相对
更显着地更有吸引力。具体地，图28示出了作为机器供应商的函数的表面抛光和HIPPED激
光烧结和电子束熔化试样的点弯曲线性能，并具有以下参数：具有100毫米(mm)长的部分
几何形状，外径为10毫米，内径为4.7毫米(mm)；以及根据ASTM 1264在5赫兹(Hz)下的
4000牛(N)至400牛(N)的测试条件。图29-30示出了热处理和非热处理的ALM部件的负载延
伸曲线。点F和J表示非热处理部分的性能，这些部件坚固但脆。

【0160】本发明相对于现有技术提供至少以下优点：(1)类似于锻造部件的机械性能；(2)可以使用5级Ti粉末，这也可以提供经济优势；以及(3)改善零件公差。然而，应当理解，这些优点是示例性的，并且不以任何方式限制本发明的范围。

【0161】本发明的实施例还提供用于矫形装置的最佳DMLS制造路线，其制造时间可能为1/6。在另一个实施例中，提供了一种通过直接激光烧结制造伸长的矫形装置的方法，包括以下步骤：

(1) 制造虚拟3D立体外部包长装置模型；

(2) 使用至少300瓦特的激光功率和至少5级质量的TiAl6V4粉末，根据3D模型，通过直接金属烧结在合适的构造方向上制造包长装置，并且其中，粉末仅在模型的外部和内部周围包围烧结到设定直径，使得在内部和外部周围之间的中心部分基本上由未烧结的粉末；

(3) 以大于激光烧结的正常速度的4倍（即3000毫米/秒）扫描；

(4) 使用至少1000℃的温度，以0.24℃min⁻¹和72℃min⁻¹之间的冷却速率对包长ALM装置进行热等静压（HIP），由此确保中心粉末段烧结；以及

(5) 将HIP处理的细长装置加工和抛光到所需的几何形状和表面公差（例如，32Raμm（Realizer））。

【0162】以下两种扫描策略（“超”激光扫描和“边界扫描 - 原位炮轰”）假定制造ALM钉的商品的大部分成本与DMLS机器中的构建时间相关联。

【0163】(A) “超”激光扫描：以“超扫描速度”操作激光烧结机的经济优点从图31和32中描绘的数据显而易见。所述数据是测试台配备单、双和四扫描仪光学功能的DMLS机器生成。对于单激光系统的常规激光扫描程序，一批100个钉需要大约4.5天完成，相当于每钉65分钟（图25）。这不能与从标准加工操作获得的吞吐量相比，其相对地相当于每钉约2.5分钟或每天600个钉。如果配备有两个激光器的DMLS机器被设置为以更高的扫描速度操作，每个钉仅需要12分钟来构建（图32），由此使得该工艺对于大批量制造显出其吸引力（即，每年10,000个部件）。通过以更高的扫描速度（通常为激光烧结的3-4×标准速度：1000mm/s）操作，部件将仅部分烧结（通常为部件的整个体积的50%）。这种加速的扫描速度仍然显着低于在电子束熔融过程中使用的扫描速度（1000-8000米/秒）。该扫描策略假设如下：a) 在热处理之后去除构建后留下的任何残余孔隙；b) 使用标准热处理循环；c) 由于零件收缩引起的高度天化被考虑在CAD文件的原始设计中或由Magic®程序控制，以及(d) 超扫描速度部分的机械性能等同于正常扫描。

【0164】图31示出了在正常扫描速度下使用单、双和四激光器并利用以下参数生成100个完全密度的髓内钉的计算：切片计数=3911；切片时间=31,288秒；扫描速度=600mm/s。图32示出了用于在“超扫描速度”下生产100个完全密度的髓内钉的计算，并且利用以下参数：切片计数=3911；切片时间=31,288秒；以及扫描速度=3000mm/s。

【0165】图33A-34B示出了用于制造添加剂制造的Ti-64钉的成本的分解。固定成本包括粉末（假设当前供应链选择合格粉末，无法获得较低成本的金属熔炼设备），后加工和包装/灭菌的成本。使用该制造路线制造ALM钉的总成本为$149.50。以超扫描速度操作的成本对构建时间成本具有显著影响，将其从总制造成本的62%降低到25.6%，如图33B和图34B所示。
此外，产生“超扫描”部件的成本从$149.50降低到$75.90，这与制造等同几何形状的机加工零件的成本一致。

【0166】使用SLM DMLS机器的标准扫描条件(扫描速度<1000mm/s)制造100个钉的生产成本在图33A中示出为成本分解(美元/制造步骤)，并且图33B作为每个制造步骤的百分比成本，并且具有以下假设：运行ALM的成本是$97/小时；植入级粉的成本为$255/kg；以及构建时间为制造100个钉96小时。

【0167】图34A和图34B示出了对于SLM DMLS机器使用“较高速度”扫描条件(扫描速度<1000mm/s)制造100个钉的生产成本示出了每个制造步骤的成本分解(图34A)以及每个制造步骤的百分比成本(图34B)，并使用以下假设：运行ALM的成本是$97/小时；植入级粉的成本为$255/kg；构建时间为96小时制造100个钉，并且热处理循环为1050℃下HIP 6小时，并且随后在空气中尽可能快地冷却，随后在840℃下热处理退火6小时，其中，所有热处理在惰性氩气气氛中进行。

【0168】(B)边界扫描：用于降低在DMLS室中构建部件的成本的第二种方法是使用扫描策略，其限制烧结到边界层(即，插管部分的外表面和内表面)，恰当地称为“烧结”，明”模型。此扫描策略省略零件的剖面线或核心扫描。突出边界层扫描的概念的Trigen Meta衬骨钉的从图35A中示出。使用这种扫描方法，只有部件总体积的5%在构建平台上烧结。具体地，图35示出了用于致密Trigen Meta衬骨钉(近侧锥形区域)的外层和内层以减少DMLS室中的构建时间的边界或“烧结”扫描策略的模型。部件的核心包含在热处理之后致密化的自由流动的粉末。在该示例中，某些部件设计特征，例如键槽和槽螺钉孔，已被关闭。

【0169】另外，在本发明的某些实施例中，通过以下步骤和过程制造镶内钉或其他类型的植入物。

【0170】(1)边界扫描：图36A和图36B示出了在边界扫描之后包括增材制造部件100的镶内钉110的截面，其突出尺寸调整的部分以考虑收缩效应(图36A)，指示热处理后的最终“稳定”尺寸110尺寸的HIP加工的增材制造的部件(图36B)。具体地，图36A示出了添加制造的部件100，其将在边界扫描之前提供矫形外镶钉110，指示尺寸调整的CAD文件以考虑尺寸收缩(通常<5%)，并且图36B示出了HIPPING之后的矫形镶内钉110，其指示具有指针几何形状的完全致密部分。参考图36A，使用具有仅边界扫描方法的DMLS技术来制造添加制造部件100。在传统实践中，使用各种扫描策略来产生表示完整镶内钉装置110的烧结模型。在所提出的方法中，通过将三维模型，更具体地将外表面102和内表面104激光烧结到期望的厚度，可以制造增材制造部件100的“烧结”，所述厚度可以在约100微米(μm)的范围内。除了未烧结的压粉芯108之外，内部插管106将利用这种扫描方法保持。参考图36B，在HIPPING之后，镶钉110通过具有其表面尺寸的变化的热处理变得致密，这反映了在热处理步骤期间由增材制造部件100经历的收缩量。通常，使用如图37a所示的边界扫描策略为镶钉提供粉末核心。部件在建造室中以5%的密度致密化。镶钉的底部在在Machings软件中挤出至3mm，以防止粉末在从平台移除之后从该部件的远端逸出，图37b。图38示出了保留部件的截面中的孔隙度，通常，测量的孔隙率为0.3%，图38。此外，平均孔尺寸为约3.4微米，图38。

【0171】(II)超激光扫描：图39A和图39B示出了在部分中产生50%致密化的超激光扫描之后包括增材制造部件200的镶内钉206的截面。该图突出了尺寸调节钉206，其占收缩影响到
制造部件200的添加剂，热处理（图39A），之后，可能会发生，并且HIP处理钉210指示热处理后的最终的“稳定化”的一部分的尺寸（图39B）。具体地，图339A示出了在超级激光扫描之后将用于形成砂形外模钉210的附加制造部件200，超级激光扫描指示尺寸调整的CAD文件以解决尺寸收缩，并且图39B示出砂形后模具内钉210之后HIPPING，表示具有所需几何形状的完全致密部件。

[0172] 参考图39A，使用具有超激光扫描的DMLS技术制造增材制造部件200。在传统实践中，使用各种扫描策略来产生表示完整内钉装置210的烧结模型。在所提出的方法中，插管202被半烧结核心204包。参见图39B，在HIPPING之后，钉206通过热处理而致密化，所述热处理具有一些伴随的尺寸变化，其反映了在热处理步骤期间部件经历的收缩量。

[0173] 由SLM溶液提供的超扫描部件仅经受热处理，并且与在该过程中的相同步骤之后产生的标准扫描部件相比失效的循环次数，图40。超扫描部分由三组部分组成：具有压粉芯的全表层，具有压粉芯的全表层，具有挤出的远端以允许部件在构建平台上热处理，以及具有完全表皮和部分粉末芯的部件。当在3000和300N之间加载时，在热处理步骤之后，对于具有完全表皮和粉末芯的部件，平均破坏周期为1,161 +/− 288。在热处理步骤之后，对于具有完全表皮和压粉芯的部件，具有挤出的远端的相应的平均断裂周期为34.7 +/− 9.6k。对于具有完全皮肤和部分扫描的芯的部件，热处理步骤之后的相应的平均断裂周期为180,068 +/− 38.7k，其具有挤出的远端。在包含挤出的远端之后在压粉芯样品的疲劳性能中观察到的改进被认为是由于远离构件板的热处理而产生的益处。挤出的“板”防止粉末出来。将钉定位在平台上方，然后下降2mm（在CAD空间中）。假设HIP将不会与没有挤压机床的钉子工作良好，因为短距离会有应力和微裂纹，这将使它们相当“密”。为了比较目的，经过标准扫描策略（EOS，Arcam和SLM解决方案）的部件也包括在该图中。数据表明，部分烧结的芯的疲劳性能与经受标准扫描策略的EOS提供的部件相当，图40。

[0174] 在本发明的另一个实施例中，可以提供抗微生物的钉。从上面讨论的扫描策略实现的成本节省可以使得其他成本有效的过程能够包括在过程图内。

[0175] 在本发明的另一实施例中，可以提供骨髓植入物。具体而言，如图41所示，在HIPPING步骤期间，骨沉积在髋关节植入物上，并且可以使用以下方法：(a) 钢钉/涂覆的工件；以及(b) 改性或退火方法（氢气–氧气）两种方法使用非视线方法产生骨涂覆产品，其己知具有抗微生物性能。具体地，图41示出通过HIPPING炉的倾斜制面，其突出了AAL部分暴露于氢气蒸气。该涂覆技术假定沉积的骨层厚于0.1毫米（mm）以适应任何后加工操作。

[0176] 在本发明的另一个实施例中，可以提供骨涂覆宝石喷丸处理。如图42所示，这种实施方案可以构成一步法，其涉及使用由在表面上烧结的钢涂覆层或硝酸钢涂层制备的钢涂覆的陶瓷颗粒。除了产生所需的表面光泽度，颗粒产生具有抗微生物性能的钢–二氧化钛的硬化层。具体地，图42是突出显示在使用涂覆的网格或球粒喷射的精加工操作期间钢在工作组件上的沉积的珠粒喷射方法的示意图。

[0177] 本发明提供了在商品成本方面相对于现有植入物和制造方法的显著节省。然而，应当理解，这些优点是示例性的，并且不以任何方式限制本发明的范围。

[0178] 本发明的另一个实施例提供一种矫形植入装置，例如具有增材制造的设计自由度的髋内钉，并且其包括能够容纳可移除的传感器探头的纵向内部通道，所述可移除的传感器探头被配置成对准远端锁定孔和近端锁定孔。整形外科植入装置还可具有促进}
P) 平面和内侧外侧（M/L）平面中的可变刚度和/或为较大患者提供较低刚度植入物的内部几何形状的内部几何形状。本发明的另一实施例提供了一种用于自动机械化的微创方法，以便为愈合性骨骨折提供生物力学负载。

【0179】（A）用于手术中螺钉孔准备的原位远侧和近侧传感器探针：本发明的实施例包括在矫形装置（例如髋内钉）的壁部分中产生的纵向内部通道，其使用增材制造用于容纳用于配准远侧和近侧螺钉孔的可移除的传感器探针。例如，图43a示出了具有平行于插入管304延伸的内部传感器探头通道302的髋内钉300。此外，图43b示出了从具有在壁部分中的内部通道的ALM部分捕获的microCT图像。通过该部件的纵向截面显示在构建阶段之后在通道中没有残留粉末，图48示出了通过增材制造构建的髋内钉300的近端，并且其包括在壁部分306中的内部传感器探针通道302（图43a），其适于接收传感器探针308的插入。在通道302中包括可移除的传感器探针可以有利于近侧锁定，因为传感器探针不位于钉的插管中，从而允许外科医生钻井并将螺钉插入钉300中。

【0180】内部传感器探头通道302的形状可以使用基于由髋内钉300的几何形状施加的约束的增材制造来创建。在所示的实施例中，内部传感器探头通道302位于髋内钉300的壁部分306内，以确保可容纳在通道302中的探头在移除期间不会被夹在髋内腔中。纵向通道的直径大约为1.5mm，延伸钉的长度并终止于上远端螺钉孔的正上方。将内部传感器探头通道302定位在壁部分306内将避免对焊接盖的需要，否则这会增加制造过程的复杂性和成本。

【0181】图44示出了设计成在该通道302中操作的可移除的传感器探头的实施例。典型的探头和传感器尺寸可以包括但不限于1.422毫米（mm）外径，1.22毫米（mm）内径，1.12毫米（mm）高度。0.61毫米（mm）宽度和30毫米（mm）长。另外，传感器探头可以由各种不同的材料构成，包括例如不锈钢或另一种刚性或半刚性金属材料。它还可以包括聚丙烯或聚氨酯等，以保护电子部件免受水分和振动力。此外，印刷电路板（PCB）上的传感器部件的配置，即两个卷绕铁氧体（也称为自由度跟踪传感器）优选地彼此成180度布置。这样的构造可以使传感器单元的总直径最小，例如减小到1毫米（mm），并且其可以位于内部传感器探头通道302中，其在钉壁中的直径小于1.5mm。通道的位置允许钉被锁定在远端或近端，首先为外科医生提供更多的选择。探针还被设计成在钉已经被锁定在骨通道302内之后被移除。图45A和图45B示出了髋内钉400的模型，其具有在适于传统制造技术的近端处在钉400的外表面404中形成的通道402。如所描绘的，图45B中的通道包括可移除的传感器探针406。该设计需要焊接板以防止探针在从骨管中拔出期间被阻塞。

【0182】图46A和46B示出了可以使用附加制造产生的内部传感器探头通道302的示例性几何形状，并突出显示通道302相对于中性轴线的位置。根据某些实施例，内部传感器探头通道302的尺寸尺寸可以被最小化，以减少不利疲劳故障的风险。包括通道302可以使通道302的平面中的弯曲刚度减小约11%，这在临床上不可能引起任何问题。此外，在所示的模型中，如图46A所示，在通道302的平面中的“x”轴经历惯性矩的约11%的减小。另外，垂直于通道302的“y”轴可以经历惯性矩的约1%的减小。此外，对内部传感器探头通道302的端面建模，具有不具有通道302的惯性矩计算为：X：878.8mm²；Y：990.5mm²和X：993.9mm²；Y：993.9mm²。观察43a中所示的髋内钉300可以以各种不同的方式制造，包括例如通过使用激光或电子束三维（3D）打印。用于Realiser SLM100系统的激光扫描条件的示例在图47所示的表
中概述。另外，髋内钉300的壁306的厚度可以增加，例如，增加壁306，以便至少且预防止内部传感器探针通道302在热处理（HIPPING）期间变形。例如，髋内钉的壁306可以增加，使得髋内钉的外径增加0.5毫米（mm）。根据这样的实施例，壁306的附加厚度可以在后加工操作期间牺牲。

[0184] 另外，添加制造的使用可允许制造髋内钉300，而不使用可与由内部传感器探针通道302去除非烧结粉末相联的出口点或开口。具体地，微CT在三维（3D）打印之后从测试髋内钉300获取的图像指示内部传感器探针通道302未被残留的未烧结粉末污染，图43b。因此，根据某些设计，髋内钉300可以不包括与内部传感器探针通道302流体连通的这样的移除点或出口。不存在移除点或出口，其可以至少适用于去除残余的非烧结粉末可有助于简化内部传感器探针通道302的设计以及髋内钉300的制造。

[0185] （B）自动化钻子：矫形外科的基本概念之一是理解适当的机械负荷加速骨折愈合。这基于适应的过程，根据该过程，骨架结构响应于机械环境而不断地优化，并且其响应于动态而非静态负载而发生。更具体地，其与峰值应变幅度和负载频率相关。虽然常规的髋内钉允许在其上施加承载力，但是由于存在锁定螺钉，其常常将压裂力与压缩力隔离，锁定螺钉的主要目的是防止旋转。此外，由于髋内钉的刚性结构，髋内钉实际上可导致由于断裂端之间的固定距离和过速施加在骨折上的整个愈合周期中的恒定载荷份额的结果而导致的非愈合的骨折情况。

[0186] 常规的静态锁定髋内钉的轴向动态化包括在门诊设置中的初始手术后两到三个月时移除一个或多个互锁螺钉。该方法需要侵入性手术，并且通常具有大约1至5毫米（mm）的分辨率，其通常由髋内钉中的狭槽的宽度决定，并且可能仅在髋内钉的一个部分中可用。主动的髋内钉将克服这些缺陷中的一些，并且通过连续调整来帮助骨折部位的负荷分担来提供加速骨折愈合的逐步改善。此外，自动动力髋内钉可允许骨的断裂端朝向彼此的适当轴向运动来帮助防止骨折的延迟愈合或不愈合的发生。

[0187] 根据某些实施例，开发自动动力化髋内钉可包括以下：

（1）可伸缩髋内钉组件：图49示出了根据本发明的所示实施例的动力髋内钉500的远端的透视图。如图所示，动力髋内钉500包括第一部分502a和第二部分502b。此外，静态髋内钉500被构造成使得第一部分502a和第二部分502b中的至少一个的轴向位置可相对于第一部分502a和第二部分502b中的至少另一个进行调节。第一部分502a和/或第二部分502b的轴向位置的这种相对变化可适于至少调节动态髋内钉500的总长度。

[0188] 在图49所示的实施例中，动力髋内钉500包括伸缩部分504。如图53a所示，根据某些实施例，伸缩部分504可以是从第一部分502a或第二部分502b的端部延伸并且被接合在第一部分502a或第二部分502b的内部区域506a，506b中的套管第一和第二部分502a，502b中的另一个。在图53a所示的实施例中，第一部分502a的外壁505的端部503的尺寸可以减小，使得外壁505的一部分的尺寸被设定为被接纳在第二部分的内部区域506b中502b。此外，根据某些实施例，外壁505在第一部分502a的端部503处的直径可以减小1.5毫米（mm）直径，使得端部503处的外壁505具有不大于大于15毫米（mm），其可以小于内部区域506b中的其中将容纳外端503的部分的至少一部分的直径。或者，如图53b所示，伸缩部分504可以是滑动地容纳在第一和第二部分502a，502b的内部区域506a，506b
中的单独部件。

【0189】另外，如图5A-50C所示，伸缩部分504可以位于沿着动态轴内轴500的多种不同位置。例如，如图所示，伸缩部分504可以在远侧区域（图50A），中间部分（图50B）或近侧区域（图50C）。这种不同定位可以促进不同类型的骨折的连续动态负载。

【0190】根据某些实施例，伸缩段504，504’的远端508a和/或近端508b可以包括一个或多个引导件或脚510，其可以被设置为保持第一段502a或第二段502b沿着或者，根据其他实施例，第一引导件或脚510从第一或第二部分502a，502b的内壁514延伸，其中伸缩部分504被滑动地容纳在其中。根据其他实施例，可伸缩部分504，504’的外壁516可以相对于配合内部区域506a，506b来设定尺寸，伸缩部分504滑动地容纳在其中，以便防止第一和第二部分502a，502b沿着中心纵向轴线512。

【0191】参考图5A-55，其中可滑动地容纳伸缩部分504的内部区域506a，506b可包括一个或多个突起518，其被配置为限制伸缩部分504的轴向位移。例如，根据某些实施例，突起518可定位成至少限制第一和/或第二部分502a，502b可以以减小活动性钉500的长度的方式轴向位移的程度。此外，根据某些实施例，518可以以限定第一和第二部分502a，502b中的一个或两个可以增加动力钉500的长度的程度的方式定位在内部区域506a，506b内。突起518可以采取各种不同的形式，包括例如是通过机械紧固件520（例如螺钉或锁）和其他突起518和紧固件520保持在适当位置的垫圈。根据图4和图54所示的实施例，如图55所示，突起518可以是延伸穿过第一和第二部分502a，502b中的一个并且被接收在伸缩部分504，504’的外壁516的狭槽522中的。根据这样的实施例，槽522的尺寸，例如长度，可以限制第一和第二部分502a，502b中的一个或两者可以相对于彼此移动的距离。此外，如图53A所示，根据某些实施例，轴向位移可以由第一和第二部分502a，502b的肩部524限制，该肩部524大于另一部分502a的相邻内部区域506a，506b的尺寸，502b。

【0192】（2）致动器控制的致动：致动钉500可以配备有至少一个机械致动器526，其可以偏置和/或影响致动钉500的取向。例如，根据某些实施例，致动器526可以是弹簧，其对第一和第二部分506a，506b的相对区域施加力以延伸或压缩活动性钉500的长度。参考图53A，根据某些实施例，致动器526可以是弹簧，其被配置为使力抵消最下部分502a的肩部524并抵消第二部分502b的端壁528。此外，参考图53B和45，根据其他实施例，致动器526可以分别对第一和第二部分502a，502b的端壁528a，528b施加力。

【0193】另外，致动器526可以是本质上可以是线性或非线性的弹簧，如图51所示。与线性弹簧相比，非线性或可变速率弹簧可以提供增强的控制和支撑以防止过度冲击力适用于骨端。非线性弹簧的示例包括但不限于锥形弹簧，以及可变螺距或可变直径的线弹簧。公式1表示一般非线性弹簧力位移关系：

\[F = Kx + Kn \]

其中K是弹簧刚度，Ko是恒定速率（线性部分），Kn是位移（非线性部分）的函数。另外，根据某些实施例，致动器526可以进一步包括缓冲器，其例如可以与弹簧一起使用以提供更均匀和稳定的位移，以在重量支撑期间稳定骨端位移。

【0194】致动器526或致动器526的组合（包括与其它类型的致动器组合的弹簧）可促进或以其它方式允许与可由远端螺钉的常规动态化引起的位移相当的轴向移动。例如，根据某些实施例，致动器526可以促进大约1至5毫米（mm）的轴向位移。另外，这种板载致动器526
还可以提供受控的循环压缩力，控制骨折的端部之间的间隙的尺寸，并且提供可调节的髓内钉硬度，从而至少帮助制造钉500随意愈合的进行，更适合围绕的骨。

【0195】图52A和52B提供了在长骨骨折中的致动负载的动力钉600的示意图，突出了可再吸收聚合物的降解。可再吸收聚合物的降解还可以通过允许嵌入式致动器626随时间接合在释放能够刺激骨折愈合的/或减少感染的一种或多种生物活性剂。根据某些实施例，致动器626可以是容纳在可再吸收的生物相容性聚合物包封物中的弹簧（恒定或可变频率），其同时可控制弹簧压缩或玻璃状不可再吸收聚合物，例如在暴露于外部施加反应加热器的。合适的可再吸收的生物相容性聚合物的实例可以包括但不限于聚（乙丙酯），聚（乳酸）和聚（乙醇酸），以及其它可再吸收的生物相容性聚合物。聚合物的降解可以将致动器626置于致动器626的松弛状态，从面向骨折的骨632a，632b提供连续的循环荷载。或者，通过感应加热使玻璃状聚合物松弛也将允许弹簧在周期性下响应。根据这种情况，当力施加至滑动时，可支撑骨折632a，632b的端部630a，630b。当聚合物封装件不再能够承受由于感应加热或退化的结果的负载时，肢段632a，632b可以相对于彼此移动。如果从肢体移除感应加热器，则玻璃状不可再吸收聚合物可以防止弹簧的运动，从而允许聚合物结晶和硬化。可以优化该机构以促进仅仅压紧断裂间隙634，从而不会阻碍骨愈合，如果断裂间隙634被拉伸并且骨头端部630a，630b被拉开，则可以延迟骨愈合。

【0196】或者，致动器626可以被封装在其延伸状态，允许两个骨片632a，632b在聚合物包封件降解时被拉到一起。致动器626和/或聚合物封装体也可填充有活性剂或分子，以帮助促进骨折愈合和/或使用生长因子减少植入物600的细菌定居。这样的活性剂可以包括但不限于重金属离子，例如金和银。

【0197】根据另一个实施例，聚合物封装的致动器626通过物理能量（例如热，超声波或电）的外部应用周期性地激活。这样的活化可有助于改变聚合物包封物的物理性质，例如弯曲模量的杨氏模量以及其它性质。聚合物包封物的物理性质的这种改变可以改变聚合物包封物处于其中聚合物包封物至少有助于阻止或以其他方式抵抗钉子600的第一部分602a和/或第二部分602b的相对轴向位置的状态，可以另外导致动力钉600的长度的压缩或膨胀。因此，致动器626的移动可以按需提供。

【0198】动态髓内钉500，600的伸缩部分504，604可以被开发为使得它提供单向或双向平移，例如分别如图53A和53B所示。此外，伸缩部分504，604以及联接到伸缩部分504，604的钉500的其它部件的旋转可以通过槽530在内部部分或套管532的内侧和外侧方向上防止类似的凹槽820和配合凹部822的示例也在图53A中示出。或者，前述的突出部518（例如螺钉或销）的插入延伸通过髓内钉500，600的内部部分中的机加工槽522可用于防止第一和第二部分502a，502b的旋转，同时保持机械致动器526位于钉子500的凹陷区域内。在这种情况下，突起518也可以由外科医生机械地调节以控制机械致动器526的位移。另外，突起518可以位于钉500中以防止骨骼间隙增加。

【0199】图56示出了壁厚度对三个髓内钉的机械刚度测量的影响，即(1)标准钉，(2)在钉的外径的截面中具有机加工凹部的钉，其提供25％和(3)在钉的内径的一部分中具有机械加工部分的钉，所述钉在所述钉的凹入部分中减小钉的内径，在所述加工部分处钉的内径的尺寸增加25％。更具体地，图56示出了对于四个外径，即直径为13,11.5,10和8.9毫米（mm）的三个上述识别的钉中的每一个测量的刚度。结果表明，与增加髓内钉的内径的一部
分比相，加工轴内镀的外表面中，增加加法部分中形成于不同部分的机械弯曲强度具有更显著的效果。例如，对于13毫米（mm）直径的径，增加径的一部的内径的尺寸将径的刚度从标准径所经历的42,000磅每平方英寸（PSI）减到刚度为29,000PSI，如包含具有较大内径的机械加工内部反应的径所经历的，对于在外径中包含凹陷部分的径，其进一步减小至7,000PSI的刚度。因此，与定位在轴内径500,600的外表面的致动器相比，将致动器（例如，图52A-53B中所示的致动器526，626）容纳在轴内径500,600的内部中，径500,600对疲劳性能具有较小的影响，并且可以通过使用增材制造来构造。

[0200] (3) 致动 - 控制的致动：根据某些实施例，如上文关于至少图52A-53B所讨论的致动器526,626可以是被构造在断裂部位处局部地产生循环负载的套管。衬套可由各种材料构成，包括例如弹性体材料，例如橡胶，以及其它材料。此外，根据某些实施例，衬套可以代替至少某些类型的致动器526,626，例如可变弹簧。此外，如图57所示，衬套700a-c可以具有壁702，该壁通常限定衬套700的内部区域704，并且其尺寸为接收第一和/或第二部分502a,502b的至少一部分，502b，602a,602b。还如图57所示，壁702的外部可以具有各种形状和尺寸。

[0201] (4) 致动 - 弹簧和形状记忆轴环元件：根据某些实施例，动态轴内径800还可以包括可激活形状记忆套管或套环802，如图58A-58C所示，其被构造为控制致动器804，例如控制由弹簧致动器经受的位移和施加在骨上的合力。如图58A-58C所示，根据某些实施例，套管或套环802可围绕轴800的伸缩部分806定位，伸缩部分806的尺寸设置成容纳在第一部分810a的内部区域812和/或第二部分根据所示实施例，套管或套环802的第一端814a可以定位成接致动器804的相邻端，而套管或套环802的第二端814b可以是定位成接第二部分810b的相邻部分。此外，在图58A-58C所示的实施例中，在套管或套环802和致动器804位于轴800的远侧区域中。然而，套管或套环802与致动器804一起可定位在沿着轴800的其它位置。

[0202] 套管或套环802可以是形状记忆环，例如形状记忆聚合物或者金属合金，其被激发以在被激活时收缩，例如在被加热到高于其温度时，以适应固定至移或者，套管或套环802可以由压电材料构造，该压电材料在非活动状态激活到活动状态时，以增加或减小尺寸的方式响应于外部施加的电压而变形因此，当套管或套环802被调节为处于活动或非活动状态时，套管或套环802可以为自动致动轴800提供锁定机构。因此，套管或套环802可以具有第一尺寸，例如当处于活动或非活动状态之一的长度（如图58A中的“L”所示），其大于套环或套管802的第二尺寸当套管或套环802处于活动或非活动状态中的另一个尺寸。此外，套管或套环802和致动器804组件或组合的总长度可以大体恒定，但不管套管或套环802是处于非活动状态还是活动状态。当套管或套环802处于活动或非活动状态时，套管或套环802的尺寸的这种差异可以改变致动器804是处于压缩状态还是至少部分未压缩状态。

[0203] 例如，根据某些实施例，如图58B所示，当形状记忆套管或套环802具有至少有助于将致动器804压缩到压缩状态的第一尺寸或长度时，致动器804可处于其压缩状态。相反，如图58C所示，当套管或套环802被致动使得套管或套环的形状记忆将套管或套环802从第一尺寸调整到第二更小尺寸时，弹簧致动器804可以压缩状态延伸到延伸的或部分延伸的状态，并且由此至少有助于在动力轴800的相应长度中适应即使是暂时的调整。

[0204] 另外，致动器804的位移以及因此对第一和第二部分810a,810b的相对位置的调节
可以通过使用可调节控制器816（例如销或螺钉）来控制。如图58A所示的实施例所示，可调节控制器816可以被接收在第二部分810a中的孔817中，以及第一部分810a的外壁808中的狭槽818中；狭槽818的尺寸被设置成接收在第二部分810b的内部区域812中。根据这样的实施例，控制器816可以被外科医生机械地调节，并且可以被配置成防止骨折的骨段在致动器804的运动期间被拉开。另外，根据某些实施例，控制器816可以被紧固以便防止第一和第二部分810a，810b的相对位移。

【0205】（5）使用可再吸收的封装物激活平衡弹簧。

【0206】参考图59，根据某些实施例，动力髓内钉900可以包括一个或多个偏置元件902a，902b，例如弹簧，其各自封装在可再吸收壳体904中。平衡弹簧的轴孔是屏蔽骨折的骨头免受可能干扰愈合过程的过度和冲击力。此外，封装的偏压元件902a，902b和中间元件906的尺寸可设置成定位在钉子900中的狭槽906内。该狭槽可以位于钉的近端，中间轴或远端区域。可再吸收壳体904可以防止偏置元件902a，902b激活。在这种情况下，偏压元件902a，902b可经由可再吸收壳体904施加抵靠中间元件906的力，例如定位在可再吸收壳体904之间的螺钉的一部分。作为可再吸收壳体904的相关联的偏置元件902a，902b能够处于活动状态，其中偏置元件902a，902b朝向和/或朝向部分可再吸收壳体904延伸，或完全膨胀或松弛状态，并且其中偏置元件902a，902b可以仅提供用于压缩裂缝间隙的支撑。这种偏压元件902a，902b的使用有利于使钉900自调节和控制，并且屏蔽断裂或受可能干扰愈合过程的过度和冲击力。

【0207】（C）前 - 后（A / P）和内侧 - 外侧（M / L）平面中的可变断面钉：在A / P和M / L平面中独立控制弯曲或扭转刚度的能力可允许髓内钉被结构化以获得最佳的骨折愈合或减少假体周围骨折的发生率。如果患者接受关节置换，钉的远端处的弯曲刚度的局部减小可以防止假体骨折的风险。图60中的项目B - II所示的横截面提供了髓内钉的横截面几何形状的示例，其可以在A / P平面中将弯曲刚度减小约20%，同时保持正交M / L平面中的刚度。同样，该横截面几何形状可以仅适于增量制造。此外，与图60中的项目A所示的圆形横截面相比，图60中的项目B - II所示的各种横截面可以在A / P平面中提供以下惯性矩减小：项目B为11%项目C为17-28%；项目D为7%；项目E为8%；项目F为14%；项目G为7%；项目H为10%。

【0208】图61A和61B提供了基于标准10毫米Trigen胫骨钉和10毫米Trigen Meta胫骨钉的扭转和弯曲刚度数据，其在钉的表面上具有不同尺寸的狭槽。此外，图61A和61B展示了横截面几何形状对机械性能的敏感性。如图所示，与标准钉相比，在A / P平面中钉子外侧上包括窄（1.5毫米），宽（3毫米）或阶梯槽（1.5-3毫米）降低了扭转刚度从3.5Nm /度到小于1Nm /度。类似地，弯曲刚度也从23Nm²减小到小于20Nm²。虽然图61A和61B所示的数据涉及包括位于钉外侧的狭槽，但是数据通常突出了调节特定截面平面中的钉刚度的原理。

【0209】（D）为较大患者提供较低刚度植入物的内部几何形状，用较低刚度植入物填充较大尺寸患者的髓内管的能力可以有助于加速骨折的愈合，特别是当骨是病理性的。为了避免与外部设计的几何特征（例如骨向内生长）相关的任何并发症，下面概述了利用增材制造的设计自由度的许多设计。

【0210】图62示出了髓内钉1000的横截面图，其具有位于钉1000的远端和近端螺钉孔之间的钉1000的中间部分1004处的锥形内壁1002。根据某些实施例，锥形中间部1002可以是燕
尾形。钉子1000的插管的内表面1006上的这种锥形构造可以对扭转刚度具有显着的影响。如果该设计特征与骨折部位相交，这可能具有有益的影响。此外，这样的钉1000可允许在骨折愈合的早期阶段期间快速吸收载荷，而不损害钉1000的疲劳性能。

【0211】图63提供了识别具有锥形内壁1002和外径1008的髓内钉1000的中间部分1004（“定制壁厚度”）中的理论弯曲和扭转刚度的表格。为了比较的目的，Trigen Meta胫骨钉（“标准”）也包括在图63的表中。对于具有用于三个识别的外径1008尺寸的锥形内壁1002的髓内钉1000的理论弯曲和扭转刚度的减小，即外部直径为10毫米（mm），11.5毫米和13毫米，假定恒定壁厚度为1.5毫米，分别为17%，27%和21.3%。在中间部分1004中配备有定制的锥形内壁1002的10毫米（mm）外径1000的理论抗弯刚度计算为42.5Nm²。钉子1000的该定制部分具有与以下比较的弯曲刚度：具有9毫米外径的实心型材40通用胫骨钉（Synthes），其被确定为40Nm²；未开槽轮廓钉。B＆K钉，其被确定为45Nm²；以及壁厚为1.2毫米的开槽轮廓钉。K＆S钉，其被确定为40Nm²。还如图63所示，在扭转中，在中间部分1004，1.5毫米（mm）壁厚和10毫米外径中具有锥形内壁1002的定制钉1000的理论扭转刚度为29.8Nm²/2。该硬度与9.0毫米（mm）外径罗素·泰勒三角钉（22.5Nm²）和8.5毫米（mm）外径Trigen Met胫骨钉（18.4Nm²）相当。

【0212】图7A－7D，64A－66和69提供了为较大患者提供降低的刚度的附加植入物设计。这种设计可以包括进入或穿过钉子的凹部，例如，图64A示出了髓内钉1000的中间部分1102的一部分的剖视图，并且图64B示出了其一部分的剖视图，该髓内钉1000在其内壁部分1106中配备有周向布置的内凹槽1104。凹槽1104可以定位在远侧螺钉孔1108a和近侧螺钉孔1108b之间的钉1100的中间部分1102中。包括槽纹1104可以减小钉子1100的理论抗弯刚度。例如，具有圆形横截面形状的标准10毫米外径，4.8毫米内径的钉子可以具有51.2Nm²的弯曲刚度。然而，将槽纹1104包括到这种钉子可以将弯曲刚度降低到48.5Nm²。

【0213】参考图7B，图65和图66，根据其他实施例，髓内钉1200可以包括在钉1200的壁1204内延伸并贯穿钉120的壁1204的一系列周向布置的开槽通道1202。壁1204可以包括内壁部分1203，其通常限定钉子1200的中空内部区域1205。通道1202可以沿髓内钉1200的中间部分1206延伸，例如在远侧和近侧螺钉孔1208a，1208b之间的区域中延伸。通道1202可以是平行于钉子1200的中心纵向轴线1210。通道1202可以沿着一个或多个径向布置。例如，如图66所示，根据某些实施例，通道1202的至少一部分可围绕第一外径1212a布置，而其它通道围绕第二小内径1212b布置。通道1202还可以具有各种不同的形状和尺寸，例如，形状为圆柱形。虽然已经根据钉的中间部分1206讨论了上述示例，但是所讨论的通道1202结构也可以与植入物的其他部分一起使用，以便确保骨折部位可以与低模量部分的钉1200。

【0214】根据示例性实施例，图65和66所示的钉子1200可包括周向布置的通道1202，其具有大约1毫米直径的圆形横截面形状。在具有13毫米外径和4.8毫米直径内壁部分1200的钉子1200的壁1204中包括这样的通道1202可以减小壁1204中的材料。例如榆的体积分于100%至76%，由通道1202提供的壁1204中的空隙的体积分数为24%，从而产生较低的孔隙率结构。例如图67所示的表中所示，在这种情况下，钉子1200的理论弯曲刚度和扭转刚度可以分别从156.9N.m²/119.2Nm²减小到110.1 / 83.4Nm²。

【0215】图68提供了可用于估计匹配皮层骨的弹性模量所需的孔隙度的弹性模量对密度
图。如图所示，无孔钛-64,316不锈钢和钴铬的弹性模量分别为114吉帕斯卡（GPa），193GPa和235GPa。此外，骨，Ti-64和316不锈钢的密度可分别为2.4 g / cm³，4.7 g / cm³和8.8 g / cm³。使用复合材料的混合物规则，将钛-64合金的孔隙率从0增加到40％将弹性模量从114GPa降低到6.8.4GPa，这更接近皮质骨的上限（40GPa）。因此，多孔钛植入物可以减少植入物（例如髓内钉）和骨组织之间的刚度差异，从而减少应力屏蔽。然而，增加孔隙率和孔径可导致植入物机械性能的降低。因此，机械性能和生物学性能之间的平衡可以对于不同的植入物应用而变化。

[0216] 参考图69，根据另一个实施例，髓内钉1300的弹性模量也可以通过在钉1300的外部部分1304的至少一部分中容纳可拆卸内部部分1302来调节。内部部分1302可以是固定的在钉的近端1308a和远端1308b中的一个处的的髓内钉1300的内表面1306，也可以通过在钉的近端1308a或远端1308b中的另一个处的锁定螺钉（未示出）如图所示，内部部分1302包括具有外部部分1312和内部部分1314的壁1310，壁1310的内部部分1314通常限定内部部分1302的中空内部区域。外部部分1312壁1310的尺寸设置成适应内部部分1302围绕钉1300的外部部分1304的横向位移以及钉1300的近端1308a的至少连接部分相对于钉的远端1308b的位移1300，或反之亦然。

[0217] 这种可变模量钉1300可以使植入物能够在骨折愈合期间呈现更高的刚度，这可用于至少严重粉碎的骨折，其中在初始愈合期间需要更大的钉硬度和稳定性。然而，髓内钉1300的构造可以使得一旦骨折的骨已经愈合，最小侵入方式减小钉1300的弹性模量，并且不需要移除钉1300。例如，如果另一个刚性的髓内钉在骨愈合后被去除，在骨上的负载可以显著增加，这可以导致在具有显著的患者活动的情况下的再骨折。这种情况可以包括骨质疏松性骨折，其中高刚度钉，例如具有骨质疏松性股骨的弯曲刚度的约300％的钉，可以降低骨强度。然而，在骨折愈合后，低硬度钉，例如具有可拆卸内部部分1302的图69的髓内钉1300，可以减少应力屏蔽的效果，并且可以比相对硬的钉。例如，图70示出了提供具有8.5毫米（mm）和10mm外径的标准Trigen Meta胫骨钉的弯曲和扭转刚度与类似于图13中所示的钉1300的“定制”钉的比较的表69，其具有10毫米的外径。此外，图70中提及的“定制”钉具有具有壁1310的内部部分1302，该壁1310包括具有7.6毫米直径的外部部分1312和具有4.8毫米直径的内部部分1314。如图70所示，这种钉的扭转和弯曲刚度可分别为8.5 / 26.2Nm²和12.1 / 37.3Nm²。

[0218] 尽管已经结合整形外髓钉描述了上述植入物和方法，但是应当理解，植入物和方法也可以用于其他技术领域和/或与其他类型的整形外科植入物相关联。对本文所述的所描述的实施例的各种改变和修改对于本领域技术人员将是显而易见的，并且可以在不脱离本发明的精神和范围并且不减少其预期优点的情况下进行这样的改变和修改。另外，尽管在附图和前面的描述中已经详细地示出和描述了本发明，但是应该认为本发明的特性而不是限制性的，应当理解，仅示出和描述了所选择的实施例，并且期望保护落入本文所描述的或由所附权利要求限定的本发明的范围内的修改。
<table>
<thead>
<tr>
<th>激光功率</th>
<th>平台尺寸</th>
<th>构建时间</th>
<th>层厚度</th>
<th>估计重涂时间</th>
<th>总重涂</th>
<th>估计扫描时间</th>
<th>每次扫描时间的件数</th>
<th>最大编打的件数</th>
<th>重涂时间</th>
<th>扫描时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Watts)</td>
<td>mm x mm</td>
<td>(hrs)</td>
<td>(mm)</td>
<td>(secs)</td>
<td>(hrs)</td>
<td>(hrs)</td>
<td>(secs)</td>
<td>#</td>
<td>(hrs)</td>
<td>(hrs)</td>
</tr>
<tr>
<td>ARCAM S12</td>
<td>3000</td>
<td>200 x 200</td>
<td>18</td>
<td>0.07</td>
<td>1429</td>
<td>12.00</td>
<td>4.8</td>
<td>13.2</td>
<td>2.09</td>
<td>484</td>
</tr>
<tr>
<td>CONCEPT M2</td>
<td>200</td>
<td>250 x 250</td>
<td>21</td>
<td>0.03</td>
<td>3333</td>
<td>10.00</td>
<td>9.3</td>
<td>11.7</td>
<td>0.79</td>
<td>484</td>
</tr>
<tr>
<td>EOS M280</td>
<td>340</td>
<td>250 x 250</td>
<td>10</td>
<td>0.06</td>
<td>1667</td>
<td>9.00</td>
<td>4.2</td>
<td>5.8</td>
<td>0.79</td>
<td>484</td>
</tr>
<tr>
<td>REALIZER</td>
<td>172</td>
<td>125 x 125</td>
<td>22</td>
<td>0.05</td>
<td>2000</td>
<td>9.00</td>
<td>5.0</td>
<td>17.0</td>
<td>1.91</td>
<td>484</td>
</tr>
<tr>
<td>RENISHAW Am250</td>
<td>200</td>
<td>250 x 250</td>
<td>17</td>
<td>0.05</td>
<td>2000</td>
<td>9.48</td>
<td>5.266</td>
<td>11.7</td>
<td>1.32</td>
<td>484</td>
</tr>
<tr>
<td>SLM-SOLUTIONS 280 HL</td>
<td>275</td>
<td>280 x 280</td>
<td>12.6</td>
<td>0.05</td>
<td>2000</td>
<td>8.00</td>
<td>4.4</td>
<td>8.2</td>
<td>0.92</td>
<td>484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>构建时间</th>
<th>构建时间</th>
<th>每个件的</th>
<th>每年的</th>
<th>机器</th>
<th>每部分的</th>
<th>使用材料</th>
<th>材料</th>
<th>激光</th>
<th>测试中使用的氮气</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hrs)</td>
<td>(days)</td>
<td>(hrs)</td>
<td>(lbs)</td>
<td>(估)</td>
<td>机器</td>
<td>机器</td>
<td>次数</td>
<td>等级</td>
<td>(mm)</td>
</tr>
<tr>
<td>ARCAM S12</td>
<td>1152.38</td>
<td>48.02</td>
<td>5.95</td>
<td>3679.21</td>
<td>600000</td>
<td>32.62</td>
<td>2</td>
<td>23</td>
<td>0.2</td>
</tr>
<tr>
<td>CONCEPT M2</td>
<td>1020.37</td>
<td>42.52</td>
<td>5.27</td>
<td>4155.21</td>
<td>500000</td>
<td>24.07</td>
<td>12</td>
<td>23</td>
<td>n/a</td>
</tr>
<tr>
<td>EOS M280</td>
<td>517.42</td>
<td>21.56</td>
<td>2.67</td>
<td>8194.25</td>
<td>600000</td>
<td>12.20</td>
<td>5</td>
<td>23/5</td>
<td>0.08</td>
</tr>
<tr>
<td>REALIZER</td>
<td>1463.23</td>
<td>60.97</td>
<td>7.56</td>
<td>2857.58</td>
<td>400000</td>
<td>27.61</td>
<td>1</td>
<td>5</td>
<td>0.03</td>
</tr>
<tr>
<td>RENISHAW Am250</td>
<td>1018.44</td>
<td>42.44</td>
<td>5.26</td>
<td>4183.05</td>
<td>500000</td>
<td>24.02</td>
<td>130</td>
<td>23</td>
<td>0.075</td>
</tr>
<tr>
<td>SLM-SOLUTIONS 280 HL</td>
<td>711.52</td>
<td>29.65</td>
<td>3.66</td>
<td>5958.89</td>
<td>500000</td>
<td>16.78</td>
<td>3</td>
<td>5</td>
<td>0.083</td>
</tr>
</tbody>
</table>
图 8
图 13
图 15

在刷的壁部段中的不受控制的孔隙度

未烧结的粉
图 16

ALM激光烧结功率对胫骨钉的循环疲劳失效的影响
以5hz加载200N至2000N

$$y = 318.87x - 37,535.19$$
$$R^2 = 0.95$$

红色=在孔处失败
蓝色=在主体中失败

图 17
<table>
<thead>
<tr>
<th>机器供应商</th>
<th>机器类型</th>
<th>来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Laser</td>
<td>激光</td>
<td>德国</td>
</tr>
<tr>
<td>EOS</td>
<td>激光</td>
<td>德国</td>
</tr>
<tr>
<td>SLM Solutions</td>
<td>激光</td>
<td>德国</td>
</tr>
<tr>
<td>Phenix</td>
<td>激光</td>
<td>法国</td>
</tr>
<tr>
<td>Realizer</td>
<td>激光</td>
<td>德国</td>
</tr>
<tr>
<td>Renishaw</td>
<td>激光</td>
<td>英国</td>
</tr>
<tr>
<td>Arcam</td>
<td>电子束</td>
<td>瑞典</td>
</tr>
</tbody>
</table>

图 18

图 19A
图 19B

图 20
<table>
<thead>
<tr>
<th>供应商</th>
<th>Ra (μm)</th>
<th>Rp (μm)</th>
<th>Rv (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realizer</td>
<td>5.43</td>
<td>29.04</td>
<td>24.60</td>
</tr>
<tr>
<td>Concept Laser</td>
<td>6.52</td>
<td>20.81</td>
<td>24.23</td>
</tr>
<tr>
<td>SLM Solutions</td>
<td>7.58</td>
<td>28.11</td>
<td>23.27</td>
</tr>
<tr>
<td>EOS Grade 23</td>
<td>9.54</td>
<td>45.84</td>
<td>28.52</td>
</tr>
<tr>
<td>EOS Grade 5</td>
<td>9.62</td>
<td>53.59</td>
<td>27.55</td>
</tr>
<tr>
<td>Renishaw</td>
<td>10.62</td>
<td>43.95</td>
<td>38.37</td>
</tr>
<tr>
<td>Arcam</td>
<td>23.4</td>
<td>36.30</td>
<td>48.20</td>
</tr>
<tr>
<td>样品</td>
<td>平均薄片厚度，微米</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLM</td>
<td>4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renishaw</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realizer</td>
<td>5.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOS Grade 23</td>
<td>5.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOS Grade 5</td>
<td>6.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Laser</td>
<td>4.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcam</td>
<td>4.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 26

图 27
<table>
<thead>
<tr>
<th>ID</th>
<th>机器/粉末等级</th>
<th>热处理</th>
<th>伸长率 (%)</th>
<th>UTS (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EOS (23)</td>
<td>HIP</td>
<td>18.6</td>
<td>991</td>
</tr>
<tr>
<td>B</td>
<td>EOS (5)</td>
<td>HIP</td>
<td>17.5</td>
<td>946</td>
</tr>
<tr>
<td>C</td>
<td>Renishaw (23)</td>
<td>HIP</td>
<td>18.4</td>
<td>960</td>
</tr>
<tr>
<td>D</td>
<td>Concept Laser (23)</td>
<td>HIP</td>
<td>15.8</td>
<td>983</td>
</tr>
<tr>
<td>E</td>
<td>SLM (23)</td>
<td>HIP</td>
<td>13.7</td>
<td>969</td>
</tr>
<tr>
<td>F</td>
<td>Realizer (G5)</td>
<td>None</td>
<td>1.5</td>
<td>1103</td>
</tr>
<tr>
<td>G</td>
<td>Realizer (G5)</td>
<td>HIP</td>
<td>17.2</td>
<td>988</td>
</tr>
<tr>
<td>H</td>
<td>Arcam (G23)</td>
<td>HIP</td>
<td>10.4</td>
<td>875</td>
</tr>
<tr>
<td>J</td>
<td>Phenix</td>
<td>None</td>
<td>8.8</td>
<td>1249</td>
</tr>
<tr>
<td>K</td>
<td>Wrought Ti-64</td>
<td>HIP</td>
<td>5.3</td>
<td>1069</td>
</tr>
</tbody>
</table>

图 30

<table>
<thead>
<tr>
<th>扫描仪光学器件</th>
<th>激光打开次数</th>
<th>机器工作时间</th>
<th>100个髓内钉的生产时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>单</td>
<td>360,784</td>
<td>392,072 (108 hrs 52 min)</td>
<td>4 days 13 hrs 15 min</td>
</tr>
<tr>
<td>双</td>
<td>180,392</td>
<td>211,680 (58 hrs 48 min)</td>
<td>2 days 10 hrs 48 min</td>
</tr>
<tr>
<td>四</td>
<td>90,196</td>
<td>121,484 (33 hrs 40 min)</td>
<td>1 day 9 hrs 40 min</td>
</tr>
</tbody>
</table>

图 31

<table>
<thead>
<tr>
<th>扫描仪光学器件</th>
<th>激光打开次数</th>
<th>机器工作时间</th>
<th>100个髓内钉的生产时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>单</td>
<td>173,120</td>
<td>204,408 (58 hrs 52 min)</td>
<td>2 days 8 hrs 48 min</td>
</tr>
<tr>
<td>双</td>
<td>86,560</td>
<td>117,848 (32 hrs 46 min)</td>
<td>1 day 8 hrs 46 min</td>
</tr>
<tr>
<td>四</td>
<td>43,280</td>
<td>74,568 (20 hrs 42 min)</td>
<td>0 days 20 hrs 42 min</td>
</tr>
</tbody>
</table>

图 32
图 33A
图 34B

图 35

外边界层
插管 内边界层
图 40
图 41
<table>
<thead>
<tr>
<th>参数</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>层厚度</td>
<td>60 µm</td>
</tr>
<tr>
<td>斑点尺寸</td>
<td>20 µm</td>
</tr>
<tr>
<td>暴露</td>
<td>60 µs</td>
</tr>
<tr>
<td>点距离</td>
<td>60 µm</td>
</tr>
<tr>
<td>激光功率</td>
<td>300 W</td>
</tr>
<tr>
<td>扫描速度</td>
<td>1000 mm/s</td>
</tr>
</tbody>
</table>

图 47

图 48
图 50B

图 50C

图 51

图 52A
图 56

图 57
图 61B
图 66

<table>
<thead>
<tr>
<th>5G</th>
<th>D1</th>
<th>壁厚度</th>
<th>孔隙率</th>
<th>理论弯曲刚度</th>
<th>理论扭转刚度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 67
图 68
<table>
<thead>
<tr>
<th>定制10mm OD钉</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内部段</td>
<td>24</td>
<td>12</td>
<td>48</td>
<td>123</td>
<td>3</td>
</tr>
<tr>
<td>外部段</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>83</td>
<td>6</td>
</tr>
<tr>
<td>标准TRIGEN META [胫骨钉]</td>
<td>8.5</td>
<td>1.9</td>
<td>4.3</td>
<td>26.3</td>
<td>16.5</td>
</tr>
<tr>
<td>[12.5 mm OD]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>标准TRIGEN META [胫骨钉]</td>
<td>16</td>
<td>2.3</td>
<td>5.4</td>
<td>51.2</td>
<td>35.9</td>
</tr>
<tr>
<td>[110 mm OD]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>