Title: MEMORY CELLS, SEMICONDUCTOR DEVICE STRUCTURES, SYSTEMS INCLUDING SUCH CELLS, AND METHODS OF FABRICATION

Abstract: Memory cells including cell cores having free regions are disclosed. The free regions exhibit a strain that affects a magnetization orientation within the cell core. A stressor structure may exert a stress upon at least a portion of the cell core to effect the strain state of the free region. Also disclosed are semiconductor device structures and systems including such memory cells as well as methods for forming such memory cells.
Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))
TITLE
MEMORY CELLS, SEMICONDUCTOR DEVICE STRUCTURES, SYSTEMS INCLUDING SUCH CELLS, AND METHODS OF FABRICATION

PRIORITY CLAIM
This application claims the benefit of the filing date of United States Patent Application Serial No. 13/427,339, filed March 22, 2012, for “Memory Cells, Semiconductor Device Structures, Systems Including Such Cells, and Methods of Fabrication.”

TECHNICAL FIELD
The present disclosure, in various embodiments, relates generally to the field of memory device design and fabrication. More particularly, the present disclosure relates to design and fabrication of memory cells characterized as Spin Torque Transfer Magnetic Random Access Memory (STT-MRAM).

BACKGROUND
Magnetic Random Access Memory (MRAM) is a non-volatile computer memory technology based on magnetoresistance. MRAM is non-volatile and so can maintain memory content when the memory device is not powered. MRAM data is stored by magnetoresistive elements. Generally, the magnetoresistive elements in an MRAM cell are made from two magnetic regions, each of which accepts and sustains magnetization. The magnetization of one region (the “pinned region”) is fixed in its magnetic orientation, and the magnetization orientation of the other region (the “free region”) can be changed. Thus, a programming current can cause the magnetic orientations of the two magnetic regions to be either parallel, giving a lower electrical resistance across the magnetoresistive elements (which may be defined as a “0” state), or antiparallel, giving a higher electrical resistance across the magnetoresistive elements (which may be defined as a “1” state) of the MRAM cell. The switching of the magnetic orientation of the free region and the resulting high or low resistance states across the magnetoresistive elements provide for the write and read operations of the typical MRAM cell.
One type of MRAM cell is a spin torque transfer MRAM (STT-MRAM) cell. A conventional STT-MRAM cell may include a magnetic cell core, which may include a magnetic tunnel junction (MTJ) or a spin valve structure. An MTJ is a magnetoresistive data storing element including two magnetic regions (one pinned and one free) and a non-magnetic, electrically insulating region in between, which may be accessed through data lines (e.g., bit lines), access lines (e.g., word lines), and an access transistor. A spin valve has a structure similar to the MTJ, except a spin valve has a conductive region in between the two magnetic regions.

In operation, a programming current may flow through the access transistor and the magnetic cell core. The pinned region within the cell core polarizes the electron spin of the programming current, and torque is created as the spin-polarized current passes through the core. The spin-polarized electron current interacts with the free region by exerting a torque on the free region. When the torque of the spin-polarized electron current passing through the core is greater than a critical switching current density (J_s) of the free region, the torque exerted by the spin-polarized electron current is sufficient to switch the direction of the magnetization of the free region. Thus, the programming current can be used to cause the magnetization of the free region to be aligned either parallel to or antiparallel to the magnetization of the pinned region, and, when the magnetization of the free region is switched between parallel and antiparallel, the resistance state across the core is changed.

The free regions and pinned regions of conventional STT-MRAM cells exhibit magnetization orientations that are horizontal, also known as “in-plane,” with the width of the regions. Accordingly, the magnetization orientations are parallel (or antiparallel) to a plane defined by a primary surface of a substrate supporting the STT-MRAM cell. These wide, in-plane STT-MRAM cells have large footprints, making scaling of the cells below twenty-five nanometers a challenge.

Perpendicularly oriented STT-MRAM cells may require smaller cell widths than in-plane STT-MRAM cells, accommodating greater cell packing. Also, the associated perpendicular magnetizations (also known in the art as perpendicular magnetic anisotropy (“PMA”)) of perpendicularly oriented STT-MRAM cells may have greatly reduced required switching voltage compared to an in-plane
STT-MRAM cell. Therefore, efforts have been made to form perpendicularly oriented ("out-of-plane") STT-MRAM cells in which the pinned regions and the free regions exhibit vertical magnetization orientations. However, finding and implementing suitable materials and designs for the cell core to achieve the vertical magnetization orientations has been a challenge.

DISCLOSURE

A memory cell is disclosed. The memory cell a magnetic cell core. The magnetic cell core comprises a free region exhibiting strain effecting a vertical magnetization orientation.

Also disclosed is a memory cell comprising a cell core. The cell core comprises a free region in a strained state exhibiting a vertical magnetization orientation. The cell core also comprises a pinned region and another region disposed between the free region and the pinned region.

A method of forming a memory cell is also disclosed. The method comprises forming a cell core and applying a stress to the cell core to affect a magnetization orientation exhibited by a material within the cell core.

A semiconductor device structure is also disclosed. The semiconductor device structure comprises a spin torque transfer magnetic random access memory (STT-MRAM) array. The array comprises a plurality of STT-MRAM cells. Each STT-MRAM cell of the plurality comprises a cell core comprising a strained free region exhibiting a vertical magnetization orientation. Each STT-MRAM cell of the plurality also comprises a stressor structure external to the cell core. The stressor structure stress the strained free region.

A spin torque transfer magnetic random access memory (STT-MRAM) cell is also disclosed. The cell comprises a magnetic cell core comprising a free region. The cell also comprises a word line in operable communication with the cell core and a bit line in operable communication with the cell core. The free region exhibits a strain effecting a magnetization orientation directed toward one of the word line and the bit line.
BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram of a portion of a memory array having memory cells fabricated according to an embodiment of the present disclosure;

FIGs. 2A through 2F are cross-sectional, elevation, schematic illustrations of STT-MRAM cells according to embodiments of the present disclosure;

FIGs. 3A through 3F are cross-sectional, plan, schematic illustrations of the STT-MRAM cells of FIGs. 2A through 2F, respectively, taken along section lines A-A, B-B, C-C, D-D, E-E, and F-F, respectively, according to embodiments of the present disclosure;

FIGS. 4A through 4F are cross-sectional, plan, schematic illustrations of the STT-MRAM cells of FIGs. 2A through 2F, respectively, taken along section lines A-A, B-B, C-C, D-D, E-E, and F-F, respectively, according to embodiments of the present disclosure;

FIGs. 5A through 5C are cross-sectional, elevation, schematic illustrations of a free region during various stages of application of lateral compressive stress according to an embodiment of the present disclosure;

FIGs. 6A through 6C are cross-sectional, elevation, schematic illustrations of a free region during various stages of application of vertical tensile stress according to an embodiment of the present disclosure;

FIG. 7 is a simplified block diagram of a semiconductor device including memory cells of an embodiment of the present disclosure; and

FIG. 8 is a simplified block diagram of a system implemented according to one or more embodiments described herein.

MODE(S) FOR CARRYING OUT THE INVENTION

Memory cells, semiconductor device structures including such memory cells, systems including arrays of such memory cells, and methods of forming such memory cells are disclosed. The memory cells include cell cores that have a free region exhibiting strain effecting a vertical magnetization orientation. Thus, the vertical magnetization orientation of the strained free region of the memory cell is influenced by the applied stress. The applied stress may be a mechanical stress, a thermal stress, or both. The applied stress and the effected vertical magnetization orientation exhibited by the free region may be permanent or temporary.
As used herein, the term “substrate” means and includes a base material or construction upon which components, such as those within memory cells, are formed. The substrate may be a semiconductor substrate, a base semiconductor material on a supporting structure, a metal electrode, or a semiconductor substrate having one or more materials, structures, or regions formed thereon. The substrate may be a conventional silicon substrate or other bulk substrate including a semiconductive material. As used herein, the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOI”) substrates, such as silicon-on-sapphire (“SOS”) substrates or silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, or other semiconductor or optoelectronic materials, such as silicon-germanium (Si$_{1-x}$Ge$_x$, where x is, for example, a mole fraction between 0.2 and 0.8), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), or indium phosphide (InP), among others. Furthermore, when reference is made to a “substrate” in the following description, previous process stages may have been utilized to form materials, regions, or junctions in the base semiconductor structure or foundation.

As used herein, the term STT-MRAM cell means and includes a magnetic cell structure that may include an MTJ, as discussed above, if a non-magnetic region, disposed between the free region and the pinned region, is insulative. Alternatively, the magnetic cell structure of the STT-MRAM cell may include a spin valve, if the non-magnetic region, disposed between the free region and the pinned region, is conductive.

As used herein, the term “pinned region” means and includes a region of magnetic material within the STT-MRAM cell that has a fixed magnetization orientation during use and operation of the STT-MRAM cell. The fixed magnetization orientation of the pinned region may be influenced by an externally applied stress, which may be applied by a stressor structure, such that the pinned region may exhibit a strain. The magnetization orientation exhibited by the strained pinned region may be different, due to the application of the stress upon the pinned region, than it would be without application of the stress. Alternatively, the magnetization orientation exhibited by the pinned region may be uninfluenced by an applied stress, such that the magnetization exhibited by the strained pinned region would be the same regardless as a magnetization exhibited by a non-strained pinned
region. The magnetization orientation of the pinned region of the present disclosure may exhibit a vertical magnetization orientation.

As used herein, the term “free region” means and includes a region of magnetic material within the STT-MRAM cell that has a switchable magnetization orientation during use and operation of the STT-MRAM cell. The magnetization orientation may be switched between a “parallel” direction, in which the magnetization orientation exhibited by the free region and the magnetization orientation exhibited by the pinned region are directed in the same direction, to an “antiparallel” direction, in which the magnetization orientation exhibited by the free region and the magnetization orientation exhibited by the pinned region are directed in opposite directions.

As used herein, the term “cell core” means and includes a memory cell structure comprising the free region and pinned region and through which, during operation of the memory cell, current flows to effect a parallel or antiparallel magnetic orientation within the free region.

As used herein, the term “vertical” means and includes a direction that is perpendicular to the width of the respective region. “Vertical” may also mean and include a direction that is perpendicular to a primary surface of a substrate supporting the STT-MRAM cell.

As used herein, the terms “first,” “second,” “third,” etc., may describe various elements, components, regions, materials, and/or sections, none of which are limited by these terms. These terms are used only to distinguish one element, component, region, material, or section from another element, component, region, material, or section. Thus, “a first element,” “a first component,” “a first region,” “a first material,” or “a first section” discussed below could be termed a second element, a second component, a second region, a second material, or second section without departing from the teachings herein.

As used herein, spatially relative terms, such as “beneath,” “below,” “lower,” “bottom,” “above,” “upper,” “top,” “front,” “rear,” “left,” “right,” and the like, may be used for ease of description to describe one element’s or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. Unless otherwise specified, the spatially relative terms are intended to encompass different orientations of the materials in addition to the orientation depicted in the figures.
For example, if materials in the figures are inverted, elements described as “below” or “beneath” or “under” or “on bottom of” other elements or features would then be oriented “above” or “on top of” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below, depending on the context in which the term is used, which will be evident to one of ordinary skill in the art. The materials may be otherwise oriented (rotated 90 degrees, inverted, etc.) and the spatially relative descriptors used herein interpreted accordingly.

As used herein, reference to an element as being “on” or “over” another element means and includes the element being directly on top of, adjacent to, underneath, or in direct contact with the other element. It also includes the element being indirectly on top of, adjacent to, underneath, or near the other element, with other elements present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.

As used herein, the terms “comprises,” “comprising,” “includes,” and/or “including” specify the presence of stated features, regions, integers, stages, operations, elements, materials, components, and/or groups, but do not preclude the presence or addition of one or more other features, regions, integers, stages, operations, elements, materials, components, and/or groups thereof.

As used herein, “and/or” includes any and all combinations of one or more of the associated listed items.

As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.

The illustrations presented herein are not meant to be actual views of any particular material, component, structure, device, or system, but are merely idealized representations that are employed to describe embodiments of the present disclosure.

Embodiments are described herein with reference to the illustrations. Variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein are not to be construed as being limited to the particular shapes or regions as illustrated but include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as box-shaped may have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature.
and their shapes are not intended to illustrate the precise shape of a region and do
not limit the scope of the present claims.

The following description provides specific details, such as material types
and processing conditions, in order to provide a thorough description of
embodiments of the disclosed devices and methods. However, a person of ordinary
skill in the art will understand that the embodiments of the devices and methods may
be practiced without employing these specific details. Indeed, the embodiments of
the devices and methods may be practiced in conjunction with conventional
semiconductor fabrication techniques employed in the industry.

The fabrication processes described herein do not form a complete process
flow for processing semiconductor device structures. The remainder of the process
flow is known to those of ordinary skill in the art. Accordingly, only the methods
and semiconductor device structures necessary to understand embodiments of the
present devices and methods are described herein.

Unless the context indicates otherwise, the materials described herein may be
formed by any conventional technique including, but not limited to, spin coating,
blanket coating, chemical vapor deposition ("CVD"), plasma enhanced CVD,
atomic layer deposition ("ALD"), plasma enhanced ALD, or physical vapor
deposition ("PVD"). Alternatively, the materials may be grown *in situ*. Depending
on the specific material to be formed, the technique for depositing or growing the
material may be selected by a person of ordinary skill in the art.

Reference will now be made to the drawings, where like numerals refer to
like components throughout. The drawings are not necessarily to scale.

A memory cell is disclosed. The memory cell includes a magnetic cell core
having a free region exhibiting strain. The strain effects a vertical magnetization
orientation.

FIG. 1 illustrates a STT-MRAM system 80 that includes periphery
devices 90 in operable communication with an STT-MRAM cell 100, a plurality of
which may be fabricated to form an array of memory cells in a grid pattern including
a number of rows and columns, or in various other arrangements, depending on the
system requirements and fabrication technology. The STT-MRAM cell 100
includes a cell core 110, an access transistor 130, a conductive material that may
function as a bit line 140, a conductive material that may function as a word
line 150, and a conductive material that may function as a source line 160. The periphery devices 90 of the STT-MRAM system 80 may include read/write circuitry 170, a bit line reference 180, and a sense amplifier 190. The cell core 110 may include a magnetic tunnel junction (MTJ), including a free region and a pinned region. The STT-MRAM cell 100 may also include at least one stressor structure 120, which is external to the cell core 110. As used herein, a structure “external” to another structure may include a structure that is physically isolated from the another structure, a structure that is electrically isolated from the another structure, a structure that is not in electrical communication with the another structure, a structure that is not positioned vertically between the uppermost region of the cell core 110 that is in electrical communication with the bit line 140 and the lowermost region of the cell core 110 that is in electrical communication with the word line 150, or a combination thereof.

In use and operation, when the STT-MRAM cell 100 is selected to be programmed, a programming current is applied to the STT-MRAM cell 100, and the current is spin-polarized by the pinned region and exerts a torque on the free region, which switches the magnetization of the free region to “write to” or “program” the STT-MRAM cell 100. In a read operation of the STT-MRAM cell 100, a current is used to detect the resistance state of the cell core 110. The stressor structure 120 may exert a stress upon at least a portion of the cell core 110. Due to the application of the stress, a free region within the cell core 110 may exhibit a strain effecting a vertically oriented magnetization exhibited by the free region within the cell core 110, which vertical orientation may decrease the critical switching current required to switch the magnetization of the free region, thus allowing a smaller programming current to write the STT-MRAM cell 100. The vertical magnetization orientation may further allow for use of a cell core 110 with a smaller lateral dimension, thus allowing for improved scalability and device density.

As previously discussed, a programming current is applied for the write operation of the STT-MRAM cell 100. To initiate the programming current, the read/write circuitry 170 may generate a write current to the bit line 140 and the source line 160. The polarity of the voltage between the bit line 140 and the source line 160 determines the switch in magnetization of the free region in the cell
core 110. Once the free region is magnetized according to the spin polarity of the
programming current, the programmed state is written to the STT-MRAM cell 100.

To read the STT-MRAM cell 100, the read/write circuitry 170 generates a
read current to the bit line 140 and the source line 160 through the cell core 110 and
the access transistor 130. The programmed state of the STT-MRAM cell 100 relates
to the resistance across the cell core 110, which may be determined by the voltage
difference between the bit line 140 and the source line 160. In some embodiments,
voltage difference may be compared to the bit line reference 180 and amplified
by the sense amplifier 190.

FIG. 2A illustrates a plurality of STT-MRAM cells 100 according to an
embodiment of the present disclosure. Each STT-MRAM cell 100 includes a cell
core 110 supported by a substrate 10. The cell core 110 includes a free region 112
and a pinned region 114. A non-magnetic region 113, which may be conductive or
insulative, is disposed between the free region 112 and the pinned region 114. The
cell core 110 forms an MTJ if the non-magnetic region 113 is insulative, or forms a
spin valve if the non-magnetic region 113 is conductive. In embodiments in which
the cell core 110 forms an MTJ, the non-magnetic region 113 between the free
region 112 and the pinned region 114 may serve as an insulator between the two
regions 112, 114. The non-magnetic region 113 may be formed from or comprise
Al₃O₅, MgO, AlN, SiN, CaOₓ, NiOₓ, HfₓOᵧ, TaₓOᵧ, ZrₓOᵧ, NiMnOₓ, MgₓFᵧ, SiC,
SiO₂, SiOₓNᵧ, or any combination of the above materials.

The free region 112 and pinned region 114 may be formed from or comprise
ferromagnetic materials, such as Co, Fe, Ni or its alloys, NiFe, CoFe, CoNiFe, or
doped alloys CoX, CoFeX, CoNiFeX (X=B, Cu, Re, Ru, Rh, Hf, Pd, Pt, C), or other
half-metallic ferromagnetic material such as NiMnSb and PtMnSb, for example.
More particularly, for example, the free region 112 may be formed from or comprise
one or more of a material exhibiting magnetostriction (e.g., without limitation,
CoₓFeᵧBₓ), a material exhibiting an L1₀ crystal structure, a material exhibiting a
uniaxial magnetic anisotropy, and a Heusler alloy, which characteristics are not
mutually exclusive. Alternatively or additionally, in some embodiments, the free
region 112 may be formed from or comprise layered materials. For example, and
without limitation, the free region 112 may be formed from or comprise repeating
layers of cobalt and platinum, with a layer of platinum disposed between layers of
cobalt and vice versa. As another example, without limitation, the free region 112 may comprise repeating layers of cobalt and nickel, with a layer of nickel disposed between layers of cobalt and vice versa.

The pinned region 114 is so named because it has a fixed magnetization with a fixed or pinned preferred orientation, which is represented by the unidirectional arrow illustrated in the pinned region 114 of FIGs. 2A through 2F. The bidirectional arrow illustrated in the free region 112 represents that the free region 112 may be magnetized either in a direction parallel to the orientation of the pinned region 114, which gives a low resistance, or in a direction antiparallel to the orientation of the pinned region 114, which gives a high resistance.

The cell core 110 may optionally also include other regions in addition to the free region 112, non-magnetic region 113, and pinned region 114. For example, as illustrated in FIG. 2A, the cell core 110 may include an antiferromagnetic region 115, which may be situated below the pinned region 114 to achieve the pinning through exchange coupling. Additional non-magnetic regions may be included in the cell core 110. For example, another non-magnetic region 111 may be situated over the free region 112. Other regions within the cell core 110 may include any of piezoelectric regions, additional free regions, additional pinned regions, additional antiferromagnetic regions, or other regions of known STT-MRAM cells.

External to the cell core 110, at least one stressor structure 120 may be present. The stressor structure 120 exerts a stress, either directly or indirectly, upon the free region 112. The exerted stress may be due, at least in part, to the configuration and positioning of the stressor structure 120 relative to the free region 112. The stressor structure 120 may, directly or indirectly, exert a stress upon at least a portion of the cell core 110 to thereby effect a strain exhibited by the free region 112. The strained state of the free region 112 effects a vertical magnetization orientation in the free region 112. Accordingly, the stress exerted by the stressor structure 120 causes the strain exhibited by the free region 112, which effects the vertical magnetization orientation of the free region 112.

The stressor structure 120 may be formed of or comprise one or more stressor materials. Such stressor materials may include, for example and without limitation, SiO or SiN. In other embodiments, the stressor material may include,
for example and without limitation, a spin-on glass material formulated to shrink substantially upon annealing. In still other embodiments, the stress material may include, for example and without limitation, an amorphous material formulated to densify upon annealing.

5 The stressor structure 120 exerts a stress upon a neighboring material or structure, such as upon at least one region of the cell core 110 or an insulative material disposed between the stressor structure 120 and at least one region of the cell core 110. The stressor structure 120 may be configured and positioned to apply either a compressive stress or a tensile stress to a neighboring material.

10 Additionally, the stressor structure 120 may be configured and positioned to exert an essentially lateral stress or an essentially vertical stress upon a neighboring material. As used herein, a “lateral stress” is a stress directed in a direction parallel with the width of the structure upon which the lateral stress is exerted. A lateral stress may be directed in a direction that is parallel with a plane defined by the primary surface of a substrate supporting the STT-MRAM cell in which the structure, upon which the lateral stress is exerted, is supported. Also, as used herein, a “vertical stress” is a stress directed in a direction parallel with the height of the structure upon which the vertical stress is exerted. A vertical stress may be directed in a direction that is perpendicular with the plane defined by the primary surface of the substrate supporting the STT-MRAM cell in which the structure, upon which the vertical stress is exerted, is supported.

20 In other embodiments, the stressor structure 120 may be configured and positioned to exert an angled stress upon the neighboring material. Therefore, the stressor structure 120 may exert a lateral compressive stress, a lateral tensile stress, a vertical compressive stress, a vertical tensile stress, an angled compressive stress, or an angled tensile stress upon at least one neighboring material, which neighboring material may be the free region 112 of the cell core 110 or another material disposed between the stressor structure 120 and the free region 112 of the cell core 110. It is contemplated that the material comprising the stressor structure 120 be selected so as to exert, following formation of the stressor structure 120, the desired amount of stress of the desired type (e.g., compressive or tensile), in the desired direction (e.g., lateral, vertical, or angled) on the neighboring material so as to exhibit the desired
strain by the free region 112 and to effect a vertical magnetization orientation within
the strained free region 112 of the cell core 110.

As illustrated in FIG. 2A, the STT-MRAM cell 100 may include more than
one stressor structure 120. For example, as shown, the STT-MRAM cell 100 may
include a laterally-adjacent stressor structure 120L and a vertically-adjacent stressor
structure 120V. Such laterally-adjacent stressor structure 120L within the
STT-MRAM cell 100 may be situated such that the cell core 110 is disposed
laterally between at least two segments of the laterally-adjacent stressor
structure 120L. Such laterally-adjacent segments of the laterally-adjacent stressor
structure 120L may be configured and positioned to exert, either directly or
indirectly, a lateral stress, either compressive or tensile, upon at least the free
region 112 of the cell core 110.

The vertically-adjacent stressor structure 120V may be disposed above or
below the cell core 110, or may be disposed both above and below the cell core 110,
as shown in FIG. 2A. Such vertically-adjacent stressor structures 120V may be
configured and positioned to exert, either directly or indirectly, a vertical stress,
either compressive or tensile, upon at least the free region 112 of the cell core 110.

The word line 150 of each STT-MRAM cell 100 may be formed in and
supported by the substrate 10. The bit line 140 and word line 150 may be disposed
between the cell core 110 and a vertically-adjacent stressor structure 120V, as shown
in FIG. 2A, and the conductive material forming the bit line 140 and the word
line 150 may be in operable communication with the cell core 110. In such
embodiments, the vertically-adjacent stressor structures 120V may be configured
and positioned to exert the vertical stress more directly upon each or either of the bit
line 140 and the word line 150 before such vertical stress is indirectly exerted upon
the free region 112 of the cell core 110.

In other embodiments (not shown), a vertically-adjacent stressor
structure 120V may be disposed, additionally or alternatively, between the bit
line 140 and the cell core 110, such as between the bit line 140 and the non-magnetic
region 111. Likewise, such embodiments may also or alternatively include a
vertically-adjacent stressor structure 120V disposed between the word line 150 and
the cell core 110, such as between the word line 150 and the antiferromagnetic
region 115.
The stressor structure 120 may be physically or electrically isolated, or both physically and electrically isolated, from the cell core 110. For example, an insulative material 20 may isolate the stressor structure 120 from the cell core 110. The insulative material 20 may be formed from or comprise known interlayer dielectric materials, such as, for example and without limitation, silicon dioxide.

The laterally-adjacent segments of the stressor structure 120L may extend all or only a portion of a height defined by the cell core 110. For example, as shown in FIG. 2A, the laterally-adjacent segments of laterally-adjacent stressor structure 120L may extend all of a height defined by the free region 112, non-magnetic region 113, and pinned region 114 of the cell core 110 but may not physically contact or extend between the bit line 140 and word line 150.

The laterally-adjacent segments of the at least one laterally-adjacent stressor structure 120L may define a width that is less than or equal to a width defined by the wider of the bit line 140 and the word line 150. In such embodiments, therefore, the width of the wider of the bit line 140 and the word line 150 may define the width of the STT-MRAM cell 100.

With reference to FIG. 2B, in some embodiments, the stressor structure 120 of the STT-MRAM cell 100 may not be physically isolated from the cell core 110. In such embodiments, the laterally-adjacent stressor structure 120L may be formed directly on the cell core 110, such as being formed on sidewalls defined by the cell core 110. Such laterally-adjacent stressor structure 120L may be in direct physical contact with one or more of the free region 112, the bit line 140, and the word line 150.

Also, as shown in FIG. 2B, in some embodiments, the laterally-adjacent stressor structure 120L may extend the height of the cell core 110. The laterally-adjacent stressor structure 120L may also span a distance between neighboring cell cores 110, rather than defining discrete segments of laterally-adjacent stressor structure 120L between neighboring cell cores 110.

With reference to FIG. 2C, in some embodiments, the laterally-adjacent stressor structure 120L may extend essentially the height of the cell core 110 while being physically and electrically isolated from the cell core 110 by insulative material 20.
With reference to FIG. 2D, in some embodiments, the laterally-adjacent stressor structure 120L may extend essentially only the height of the free region 112 of the cell core 110. Such laterally-adjacent stressor structures 120L may essentially span between free regions 112 of neighboring cell cores 110 while being physically and electrically isolated from the cell core 110 by insulative material 20.

With reference to FIG. 2E, in some embodiments, the laterally-adjacent stressor structure 120L includes more than one stressor material. Such laterally-adjacent stressor structures 120L may include a first stressor material 122 proximate to the cell core 110 with a second stressor material 124 proximate to the first stressor material 122, the first stressor material 122 being disposed between the cell core 110 and the second stressor material 124. In other embodiments, more than two stressor materials may be included in the laterally-adjacent stressor structure 120L. Though the laterally-adjacent stressor structure 120L is illustrated as being in physical contact with the cell core 110, in other embodiments (not shown), the laterally-adjacent stressor structure 120L of more than one stressor material may be electrically isolated, physically isolated, or both electrically and physically isolated from the cell core 110. Likewise, though the laterally-adjacent stressor structure 120L is illustrated as extending the height of the cell core 110, in other embodiments (not shown), the laterally-adjacent stressor structure 120L of more than one stressor material may extend only a portion of the height of the cell core 110, e.g., extending only along the height of the free region 112 of the cell core 110.

With reference to FIG. 2F, in some embodiments, the laterally-adjacent stressor structure 120L may be directly adjacent and in contact with the cell core 110, while not spanning between neighboring cell cores 110.

In other embodiments (not shown), the STT-MRAM cell 100 may include vertically-adjacent stressor structures 120V (e.g., FIG. 2A) of one or more materials in addition to the laterally-adjacent stressor structures 120L illustrated in FIGs. 2B-2F. In such embodiments, the vertically-adjacent stressor structures 120V may form discrete individual vertically-adjacent stressor structures 120V relative to its respective STT-MRAM cell 100. In other such embodiments, the vertically-adjacent stressor structures 120V may be continuous over and between a plurality of STT-MRAM cells 100. In still other such embodiments, the
vertically-adjacent stressor structures 120V may be formed of more than one material in a mixture or film structure.

In some embodiments, the cell core 110 may be essentially cylindrically shaped. In such embodiments, a laterally-adjacent stressor structure 120L may surround the cell core 110, and the cell core 110 may be centrally disposed within the laterally-adjacent stressor structure 120L. For example, FIGs. 3A through 3F illustrate a cross-sectional view taken along section lines A-A of FIG. 2A, B-B of FIG. 2B, C-C of FIG. 2C, D-D of FIG. 2D, E-E of FIG. 2E, and F-F of FIG. 2F, respectively.

In other embodiments, the cell core 110 may be essentially box shaped. In such embodiments, a laterally-adjacent stressor structure 120L may surround the cell core 110, and the cell core 110 may be centrally disposed within the laterally-adjacent stressor structure 120L. For example, FIGs. 4A through 4F illustrate a cross-sectional view taken along section lines A-A of FIG. 2A, B-B of FIG. 2B, C-C of FIG. 2C, D-D of FIG. 2D, E-E of FIG. 2E, and F-F of FIG. 2F, respectively.

In other embodiments (not shown), a laterally-adjacent stressor structure 120L is formed in discrete segments such that the laterally-adjacent stressor structure 120L does not completely laterally surround the cell core 110. In such embodiments, segments of the laterally-adjacent stressor structure 120L may be laterally adjacent to only one or some, but not all, sides of the cell core 110, such as, laterally adjacent to a pair of sides of the cell core 110, as for example, shown in FIG. 1.

Further disclosed is a method of forming a memory cell. The method includes forming a cell core and applying a stress to the cell core to affect a magnetization orientation exhibited by a material within the cell core.

Forming the memory cell may include forming a cell core including a free region 112 and forming a stressor structure 120 isolated from the free region 112 by insulative material 20. The cell core with free region 112 may be formed using conventional methods, which are not described in detail herein. Likewise, insulative material 20 may be formed on sidewalls of the free region 112 using conventional methods. The laterally-adjacent stressor structure 120L may be formed on sidewalls of either the free region 112, in embodiments in which no insulative material 20
isolates the laterally-adjacent stressor structure 120L and the free region 112, or may be formed on the insulative material 20. The stressor structure 120 may be formed by conventional techniques, such as plasma-enhanced CVD, under parameters (e.g., flow rates, temperatures, pressures, concentrations, exposure times) appropriate to form a stressor structure 120 exerting stress upon at least one neighboring material, which such neighboring material may be the free region 112 or the insulative material 20, for example. The stress exerted by the stressor structure 120 may be due to thermal mismatch during temperature changes in the fabrication process, due to volume expansion and shrinkage (e.g., due to a differing coefficient of thermal expansion between the stressor material comprising the stressor structure 120 and a coefficient of thermal expansion of the neighboring material), or due to lattice mismatch stress due to material compositions and impurities within the material comprising the stressor structure 120, or any combination thereof. In other embodiments, such as those in which the stressor structure 120 includes a spin-on glass material formulated to shrink upon annealing, the stress exerted by the stressor structure 120 may be generated upon the shrinkage of the stressor material. In still other embodiments, such as those in which the stressor structure 120 includes an amorphous material formulated to densify upon annealing, the stress exerted by the stressor structure 120 may be generated due to the densification of the stressor material.

With reference to FIGs. 5A–5C, for example, forming a memory cell including a cell core with laterally-adjacent stressor structure 120L may include forming the cell core 110 (FIGs. 2A–2F) with a free region 112', and, at initial formation, the free region 112' may not exhibit a strain. Insulative material 20 may be formed on sidewalls of the cell core 110, and the laterally-adjacent stressor structure 120L may be formed on the insulative material 20. In other embodiments, the laterally-adjacent stressor structure 120 may be formed directly on the cell core 110. The free region 112' and laterally-adjacent stressor structure 120 may, along with other materials of the memory cell, be formed at processing temperatures in excess of room and operating temperatures. At such processing temperatures, the laterally-adjacent stressor structure 120 may exhibit physical properties, such as a lattice structure, that may change as the laterally-adjacent stressor structure 120, and other materials within the STT-MRAM cell 100 (FIGs. 2A–2F), cool to room or
operating temperatures. For example, at initial formation, illustrated in FIG. 5A, the laterally-adjacent stressor structure 120L may define a first structure. As the laterally-adjacent stressor structure 120L cools, as illustrated in FIG. 5B, the laterally-adjacent stressor structure 120L may expand at a greater rate than a neighboring material, e.g., insulative material 20, and therefore may intrude upon space previously occupied by the neighboring material and thereby exert a compressive stress upon the free region 112", causing the free region 112" to exhibit an amount of strain. This mismatch in expansion exerts a lateral compressive stress 500 upon the neighboring material, which strained material may thereafter carry forward the exerted stress by exerting at least a fraction of the lateral compressive stress 500 to its neighboring materials, which may include the free region 112" of the cell core 110 (FIGs. 2A–2F). Expansion may continue to a maximum expansion, as illustrated in FIG. 5C, which may be exhibited when the laterally-adjacent stressor structure 120L and other materials within the STT-MRAM cell 100 (FIGs. 2A–2F) have cooled to room or operating temperatures. The laterally-adjacent stressor structure 120L, the resulting lateral stress 500, and the state of strain of the free region 112 may remain essentially unchanged following completion of formation and cooling of the laterally-adjacent stressor structure 120L and neighboring materials as they are during use and operation of the STT-MRAM cell 100 (FIGs. 2A–2F).

As also illustrated in FIGs. 5A–5C, the non-strained free region 112', upon initial formation, illustrated in FIG. 5A, may exhibit a magnetization orientation 200 that may be essentially horizontally disposed. The free region 112' may continue to exhibit such horizontally-oriented magnetization orientation 200 in the absence of a state of strain caused by stress exerted on the free region 112'. However, as illustrated in FIG. 5B, as the lateral compressive stress 500 is exerted on the free region 112" by the laterally-adjacent stressor structure 120L and the free region 112" takes on a strained state, the magnetization orientation 200 may be altered to a more vertical orientation compared to the magnetization orientation 200 exhibited by the free region 112' (FIG. 5A) at initial formation and not in a strained state. At the completion of the formation of the free region 112 and the laterally-adjacent stressor structure 120L, as illustrated in FIG. 5C, the free region 112, now in a state of strain, may exhibit an essentially vertical magnetization orientation 200.
Though FIG. 5C illustrates an essentially vertical magnetization orientation 200 with upwardly-pointed arrows, the represented upward direction may represent the magnetization direction exhibited by the strained free region 112 either when in parallel or when antiparallel with the magnetization direction exhibited by the pinned region 114 (FIGs. 2A–2F). Due to the parallel-to-antiparallel switching of the free region 112, an induced vertical magnetization orientation 200 within the free region 112, due to a lateral compressive stress, may, alternatively, be represented by a downwardly-pointed arrow. Further, because the direction of the magnetization orientation 200 exhibited by a strained free region 112 under a lateral compressive stress 500 may depend on the material or materials comprising the free region 112, it should be understood that the present disclosure is not limited to achieving a vertical magnetization orientation within the strained free region 112 via a lateral stress that is compressive. In other embodiments, the material comprising the free region 112 may be such that exerting a lateral tensile stress, directly or indirectly, upon the free region 112 may exhibit the strain that affects the magnetization orientation within the free region 112 so as to achieve the desired vertical magnetization orientation therein. In such embodiments, therefore, the composition of the laterally-adjacent stressor structure 120L and the technique for forming the laterally-adjacent stressor structure 120L may be tuned to achieve a laterally-adjacent stressor structure 120L configured to exert the lateral tensile stress, directly or indirectly, upon the free region 112.

With reference to FIGs. 6A–6C, illustrated is another embodiment. A method of forming the memory cell according to this embodiment includes forming a first vertically-adjacent stressor structure 120V’, forming the cell core 110 above the first vertically-adjacent stressor structure 120V’, and forming a second vertically-adjacent stressor structure 120V’’ above the cell core 110. The stressor material or materials comprising the vertically-adjacent stressor structures 120V’, 120V’’ may be formulated such that, as a result of fabrication or other treatment, the material contracts away from neighboring materials, exerting a vertical tensile stress indirectly upon the free region 112, which is in a state of strain. Accordingly, at initial formation, the free region 112’, not in a strained state, may exhibit an essentially horizontal magnetization orientation 200, as illustrated in FIG. 6A. As
the vertically-adjacent stressor structures 120V', 120V" contract, as, for example, during cooling, the vertically-adjacent stressor structures 120V', 120V" exert a vertical tensile stress 600 upon neighboring materials, and therefore, indirectly exerts a vertical tensile stress 600 upon the free region 112", altering the direction of the magnetization orientation 200 of the somewhat-strained free region 112", as illustrated in FIG. 6B. After completion of fabrication, the vertically-adjacent stressor structures 120V', 120V" continues to exert a vertical tensile stress 600 upon the free region 112 such that the strained free region 112 exhibits an essentially vertical magnetization orientation 200, as illustrated in FIG. 6C. The contraction of the vertically-adjacent stressor structures 120V', 120V" and the resulting vertical stress 600 may be essentially unchanging following completion of formation and cooling of the vertically-adjacent stressor structures 120V', 120V" and neighboring materials.

Again, though FIG. 6C illustrates an essentially vertical magnetization orientation 200 with upward-pointed arrows, the represented upward direction may represent the magnetization direction exhibited by the strained free region 112 either when in parallel or when antiparallel with the magnetization direction exhibited by the pinned region 114 (FIGs. 2A–2F). An induced vertical magnetization orientation 200 within the strained free region 112 due to a vertical tensile stress may, alternatively, be represented by a downwardly-pointed arrow (not depicted). Further, because the direction of the magnetization orientation 200 exhibited by a strained free region 112 under a vertical tensile stress 600 may depend on the material or materials comprising the free region 112, it should be understood that the present disclosure is not limited to achieving a vertical magnetization orientation within the free region 112 via a vertical stress that is tensile. In other embodiments, the materials comprising the free region 112 may be such that exerting a vertical compressive stress, directly or indirectly, upon the free region 112 may affect the magnetization orientation within the free region 112 so as to effect the desired vertical magnetization orientation in the strained free region 112. In such embodiments, therefore, the composition of the vertically-adjacent stressor structures 120V', 120V" and the technique for forming the vertically-adjacent stressor structures 120V', 120V" may be tailored to achieve
vertically-adjacent stressor structures 120V', 120V" configured to exert the vertical compressive stress, directly or indirectly, upon the free region 112.

In some embodiments, the free region 112 of the cell core may exhibit a vertically-oriented magnetization orientation 200 even when not in a strained state, \textit{i.e.}, when not under an externally-exerted stress (\textit{e.g.}, the lateral compressive stress 500, the vertical tensile stress 600, a lateral tensile stress, or a vertical compressive stress). In such embodiments, the stressor structure 120 (\textit{e.g.}, laterally-adjacent stressor structure(s) 120L, vertically-adjacent stressor structure(s) 120V', 120V") according to the present embodiment may be formulated and configured to maintain the vertical magnetization orientation exhibited by the strained free region 112.

In other embodiments, the free region 112 of the cell core may be formed in a non-strained state, \textit{i.e.}, not under an externally-exerted stress. The material forming such free region 112 may be formulated to exhibit a vertically-oriented magnetization orientation 200 when, during use of the cell core, the local temperature of the cell increases. The increase in temperature during use may exert a stress on the free region 112 so as to effect a temporary vertically-oriented magnetization orientation 200. The stress may be caused by thermally-induced expansion of the free region 112, to thermally-induced expansion of one or more neighboring materials, or to both. For example, during read or write of the cell, the local temperature may increase, exerting the stress upon the free region 112 such that it will be in a strained state and exhibit a vertically-oriented magnetization orientation 200. Following use of the cell, the local temperature may decrease, relieving the stress, and transitioning the free region 112 back to the non-strained state. In the non-strained state, the free region 112 may no longer exhibit the vertically-oriented magnetization orientation 200. Such embodiments may not include a stressor structure 120. Thus, the stress exerted on the free region 112 may be either permanent or temporary and may be one or more of a mechanical stress and a thermal stress.

Also disclosed is a semiconductor device structure including at least one STT-MRAM cell, \textit{e.g.}, an array of STT-MRAM cells. With reference to FIG. 7, illustrated is a simplified block diagram of a semiconductor device structure 700 implemented according to one or more embodiments described herein. The
semiconductor device structure 700 includes a memory array 702 and a control logic component 704. The memory array 702 may include a plurality of any of the STT-MRAM cells 100 depicted in FIGs. 2A through FIG. 4F. The control logic component 704 may be configured to operatively interact with the memory array 702 so as to read from or write to any or all memory cells (e.g., STT-MRAM cell 100) within the memory array 702.

Also disclosed is a system including a memory array, e.g., memory array 702. With reference to FIG. 8, depicted is a processor-based system 800. The processor-based system 800 may include various electronic devices manufactured in accordance with embodiments of the present disclosure. The processor-based system 800 may be any of a variety of types such as a computer, pager, cellular phone, personal organizer, control circuit, or other electronic device. The processor-based system 800 may include one or more processors 802, such as a microprocessor, to control the processing of system functions and requests in the processor-based system 800. The processor 802 and other subcomponents of the processor-based system 800 may include magnetic memory devices manufactured in accordance with embodiments of the present disclosure.

The processor-based system 800 may include a power supply 804. For example, if the processor-based system 800 is a portable system, the power supply 804 may include one or more of a fuel cell, a power scavenging device, permanent batteries, replaceable batteries, and rechargeable batteries. The power supply 804 may also include an AC adapter; therefore, the processor-based system 800 may be plugged into a wall outlet, for example. The power supply 804 may also include a DC adapter such that the processor-based system 800 may be plugged into a vehicle cigarette lighter, for example.

Various other devices may be coupled to the processor 802 depending on the functions that the processor-based system 800 performs. For example, a user interface 806 may be coupled to the processor 802. The user interface 806 may include input devices such as buttons, switches, a keyboard, a light pen, a mouse, a digitizer and stylus, a touch screen, a voice recognition system, a microphone, or a combination thereof. A display 808 may also be coupled to the processor 802. The display 808 may include an LCD display, an SED display, a CRT display, a DLP display, a plasma display, an OLED display, an LED display, a three-dimensional
projection, an audio display, or a combination thereof. Furthermore, an RF sub-system/baseband processor 810 may also be coupled to the processor 802. The RF sub-system/baseband processor 810 may include an antenna that is coupled to an RF receiver and to an RF transmitter (not shown). A communication port 812, or more than one communication port 812, may also be coupled to the processor 802. The communication port 812 may be adapted to be coupled to one or more peripheral devices 814, such as a modem, a printer, a computer, a scanner, a camera, or to a network, such as a local area network, remote area network, intranet, or the Internet, for example.

The processor 802 may control the processor-based system 800 by implementing software programs stored in the memory. The software programs may include an operating system, database software, drafting software, word processing software, media editing software, or media playing software, for example. The memory is operably coupled to the processor 802 to store and facilitate execution of various programs. For example, the processor 802 may be coupled to system memory 816, which may include one or more of spin torque transfer magnetic random access memory (STT-MRAM), magnetic random access memory (MRAM), dynamic random access memory (DRAM), static random access memory (SRAM), and other known memory types. The system memory 816 may include volatile memory, non-volatile memory, or a combination thereof. The system memory 816 is typically large so that it can store dynamically loaded applications and data. In some embodiments, the system memory 816 may include semiconductor device structures, such as the semiconductor devices 700 of FIG. 7, memory cells such as the STT-MRAM cells 100 of any of FIGs. 2A through 4F, or both.

The processor 802 may also be coupled to non-volatile memory 818, which is not to suggest that system memory 816 is necessarily volatile. The non-volatile memory 818 may include one or more of STT-MRAM, MRAM, read-only memory (ROM) such as an EPROM, resistive read-only memory (RROM), and flash memory to be used in conjunction with the system memory 816. The size of the ROM is typically selected to be just large enough to store any necessary operating system, application programs, and fixed data. Additionally, the non-volatile memory 818 may include a high capacity memory such as disk drive memory, such
as a hybrid-drive including resistive memory or other types of non-volatile solid-state memory, for example. The non-volatile memory 818 may include STT-MRAM devices formed in accordance with embodiments of the present disclosure, such as semiconductor device structures 700 of FIG. 7, memory cells such as the STT-MRAM cells 100 of any of FIGs. 2A through 4F, or both.

Accordingly, a memory cell is disclosed. The memory cell comprises a magnetic cell core comprising a free region exhibiting strain effecting a vertical magnetization orientation.

Also disclosed is a memory cell comprising a cell core. The cell core comprises a free region in a strained state exhibiting a vertical magnetization orientation. The cell core also comprises a pinned region and another region disposed between the free region and the pinned region.

Further disclosed is a method of forming a memory cell, the method comprising forming a cell core and applying a stress to the cell core to affect a magnetization orientation exhibited by a material within the cell core.

Still further disclosed is a semiconductor device structure comprising a spin torque transfer magnetic random access memory (STT-MRAM) array comprising a plurality of STT-MRAM cells. Each STT-MRAM cell of the plurality comprises a cell core comprising a strained free region exhibiting a vertical magnetization orientation. Each cell also comprises a stressor structure external to the cell core. The stressor structure stresses the strained free region.

Moreover, disclosed is a system comprising a memory array comprising a plurality of magnetic memory cells. Each magnetic memory cell of the plurality comprises at least one stressor structure applying a stress to a free region demonstrating a vertical magnetization orientation.

While the present disclosure is susceptible to various modifications and alternative forms in implementation thereof, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure encompasses all modifications, combinations, equivalents, variations, and alternatives falling within the scope of the present disclosure as defined by the following appended claims and their legal equivalents.
CLAIMS

What is claimed is:

5
1. A semiconductor device comprising:
at least one memory cell, the at least one memory cell comprising a magnetic cell
core comprising a free region exhibiting strain effecting a vertical
magnetization orientation.

10
2. The semiconductor device of claim 1, wherein the at least one
memory cell further comprises at least one stressor structure external to the magnetic
cell core and applying stress to the magnetic cell core.

3. The semiconductor device of claim 2, wherein the at least one
stressor structure exerts at least one of a lateral stress and a vertical stress upon the
free region.

4. The semiconductor device of claim 2, wherein the at least one
stressor structure exerts at least one of a compressive stress and a tensile stress upon
the free region.

5. The semiconductor device of claim 4, wherein the at least one
stressor structure laterally surrounds the magnetic cell core.

25
6. The semiconductor device of claim 2, wherein the magnetic cell core
is disposed laterally between at least two segments of the at least one stressor
structure.

7. The semiconductor device of claim 6, wherein the at least one
stressor structure applies a lateral compressive stress to the free region.
8. The semiconductor device of claim 2, wherein the magnetic cell core is disposed vertically between at least two segments of the at least one stressor structure.

9. The semiconductor device of claim 8, wherein the at least one stressor structure applies a vertical tensile stress to the free region.

10. The semiconductor device of claim 2, wherein the at least one stressor structure comprises a plurality of stressor materials.

11. The semiconductor device of claim 1, wherein the free region comprises a material exhibiting magnetostriction.

12. The semiconductor device of claim 1, wherein the free region comprises a Heusler alloy.

13. The semiconductor device of claim 1, wherein the magnetic cell core further comprises a pinned region exhibiting a vertical magnetization orientation.

14. The semiconductor device of any one of claims 1 through 13, wherein the at least one memory cell comprises a plurality of memory cells in an array comprising:

 a word line in operable communication with the magnetic cell core of each memory cell of the plurality of memory cells; and

 a bit line in operable communication with the magnetic cell core of each memory cell of the plurality of memory cells;

 wherein the vertical magnetization orientation of the free region of each memory cell of the plurality of memory cells is directed toward one of the word line and the bit line in operable communication therewith.

15. A method of forming a memory cell, the method comprising:

 forming a cell core; and
applying a stress to the cell core to affect a magnetization orientation exhibited by a material within the cell core.

16. The method of claim 15, wherein forming a cell core comprises:
forming a pinned region;
forming a non-magnetic region over the pinned region; and
forming a free region over the non-magnetic region.

17. The method of claim 15, further comprising applying the stress to the cell core with at least one stressor structure external to the cell core.

18. The method of claim 17, further comprising forming the at least one stressor structure on the cell core, the at least one stressor structure comprising a stressor material having a coefficient of thermal expansion differing from a coefficient of thermal expansion of a neighboring material of the cell core.

19. The method of claim 18, further comprising, following forming the at least one stressor structure, reducing a temperature of the at least one stressor structure to stress the neighboring material and affect the magnetization orientation of a free region within the cell core.

20. The method of claim 17, further comprising disposing an insulative material between the cell core and the at least one stressor structure.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2013/033344

A. CLASSIFICATION OF SUBJECT MATTER
G11C 11/15(2006.01)i, H01L 27/115(2006.01)i, H01L 21/8247(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
G11C 11/15; H01L 21/8246; H01L 35/24; H01L 21/338; G11B 5/66; G11B 5/127; H01L 27/115; H01L 21/8247

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: memory, magnetic, change, direction, vertical, free layer and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011-017146 A1 (FUJI ELECTRIC HOLDINGS) 06 January 2011 See paragraphs 25, 28; and figures 2a, 5a-5d.</td>
<td>1,11-13,15</td>
</tr>
<tr>
<td>Y</td>
<td>US 2005-0106810 A1 (MAHENDRA PAKALA et al.) 19 May 2005 See paragraphs 27-30; and figure 2.</td>
<td>2,4-5,10,16-18,20 3,6-9,14,19</td>
</tr>
<tr>
<td>Y</td>
<td>US 2005-0211973 A1 (KIIYOTAKA MORI et al.) 20 September 2005 See paragraphs 18, 27, 48; and figure 7.</td>
<td>2,4-5,10,16-18,20</td>
</tr>
<tr>
<td>A</td>
<td>US 6384745 B1 (YOI IWASAKI et al.) 14 May 2002 See column 7, line 14 - column 9, line 16; and figures 1-23.</td>
<td>4-5,18</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0007429 A1 (DIMITAR V. DIMITROV et al.) 13 January 2011 See paragraphs 33-38; and figures 3, 5.</td>
<td>1-20</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
25 June 2013 (25.06.2013)

Date of mailing of the international search report
28 June 2013 (28.06.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
BYUN, Sung Cheol
Telephone No. 82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 2385548 A4</td>
<td>27.03.2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0134201 A1</td>
<td>31.05.2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1683161 A4</td>
<td>04.04.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007-513501 A</td>
<td>24.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-050653 A2</td>
<td>02.06.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-050653 A3</td>
<td>27.10.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007-531279 A</td>
<td>01.11.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-072089 A</td>
<td>27.03.2008</td>
</tr>
<tr>
<td>US 6387476 B1</td>
<td>14.05.2002</td>
<td>JP 04568926 B2</td>
<td>20.08.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-028466 A</td>
<td>30.01.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011-023306 A</td>
<td>03.02.2011</td>
</tr>
</tbody>
</table>