Office de la Propriete Canadian CA 2398043 C 2004/10/05

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 398 043
g'rngL%?rri]ciesgaenada ﬁ?:luagt?;%/aﬁ;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2002/08/27 (51) CL.Int."/Int.CI." GOB6F 13/38, GO6F 17/30

(41) Mise a la disp. pub./Open to Public Insp.: 2004/02/27 (72) Inventeur/Inventor:

(45) Date de délivrance/lssue Date: 2004/10/05 JAMESON, KEVIN W., CA
(73) Proprietaire/Owner:
JAMESON. KEVIN W. CA

(54) Titre : DEVELOPPEUR DE VUES DE COLLECTION
(54) Title: COLLECTION VIEW EXPANDER

110

APPLICATION

PROGRAM
MEANS

111 120 112

COLL VIEW USE COLL
EXPANDER VIEW INFO

GET COLL
VIEW

MEANS MEANS MEANS

(57) Abrége/Abstract:
A Collection View Expander process improves human productivity by expanding collection views into detailed collection view

Information that can be used by application programs to manipulate collection views In advanced ways that were not previously
possible. Collection views are groups of related collection references that can be processed by human workers using a single
operation on a single set of collection references, rather than by performing a series of individual operations on individual
collections. In operation, a Collection View Expander recelves expansion requests from request originators, expands collection
views Into collection view information using detailed, user-defined collection view member reference type definitions, and returns
aggregated collection view Information to the request originators. Collection View Expanders improve human productivity by
enabling people to represent and manipulate whole groups of collections as collection views.

EORUIORIOR . o
g0
s

=

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02398043 2002-08-27

32

ABSTRACT

A Collection View Expander process improves human productivity by expanding collection
views 1nto detailed collection view information that can be used by application programs to
manipulate collection views in advanced ways that were not previously possible. Collection
views are groups of related collection references that can be processed by human workers using a
single operation on a single set of collection references, rather than by performing a series of
individual operations on individual collections. In operation, a Collection View Expander
receives expansion requests from request originators, expands collection views into collection
view information using detailed, user-defined collection view member reference type definitions,
and returns aggregated collection view information to the request originators. Collection View
Expanders improve human productivity by enabling people to represent and manipulate whole
groups of collections as collection views.

L s - A

CA 02398043 2002-08-27

Collection View Expander

RELATED APPLICATIONS
Collection Information Manager, CA 2,352,407, Kevin W Jameson, June 21, 2001.

Collection Knowledge System, CA 2,352,577, Kevin W Jameson, June 21, 2001.

FIELD OF INVENTION

This invention relates to software program methods for using single collections to represent
and manage groups of other collections, thereby forming recursive data structures that can be
easily manipulated by humans and programs, and thereby improving the productivity of people
and computer systems that work with collections of computer files.

BACKGROUND OF THE INVENTION

The present invention addresses the general problem of low productivity among human
knowledge workers who use tedious manual procedures to work with collections of computer
files. The most promising strategy for solving this productivity problem is to build automated
computer systems to replace manual human effort.

One new software technology for improving productivity—software collections—enables
computer programs to process collections of computer files more productively than previously
possible. Collections are normal directory structures (“file folders™) of normal computer files, but
they contain a special collection specifier file in the root directory of the collection. Collection
specifier files specify, among other things, data types for collections. Computer programs can use
collection data type values as lookup keys into databases to obtain detailed information about
known collection data types. The detailed information obtained from the database enables
computer programs to better understand the structure and content of the collections that they are
processing. Having access to detailed information about collections enables programs to process
collections 1n more intelligent ways than were previously possible

Collections are useful and practical because they make it easier for computer programs to
manipulate the contents of collections. In one typical scenario, users invoke computer programs
within a working directory contained within a collection directory structure. Computer programs
recognize the location of the current collection by searching upwards for the special collection
specifier file. Once programs know the physical location—the root directory—of the current
collection, they can proceed to manipulate the collection to fulfill their processing functions.

Although the fundamental collection data structure enables programs to conveniently
manipulate individual collections, programs cannot conveniently work with groups of related

CA 02398043 2002-08-27

collections. No disciplined mechanisms exist for representing or manipulating groups of related
collections.

The present Collection View Expander invention contemplates a method for representing and
managing groups of related collections. Collection views solve the problem of representing
groups of related collections by making it possible to list multiple collection view members
within the collection specifier file of a host collection. But the collection view problem is
somewhat complex, and so has several subproblems that require solutions. The following
paragraphs briefly characterize several of those problems.

The Collection View Problem is one problem to solve. It is the problem of how to use
individual collections to model groups of other collections. Solving this problem will enable users
and programs to perform operations on whole groups of collections as easily as they can perform
operations on individual collections.

The Collection View Problem has the following interesting aspects: multiple views may
appear 1n a collection; a collection view may be comprised of an arbitrary number of collection
view member references; each collection reference in the view collection may itself be a view
collection that contains other views, thereby forming a recursive collection view data structure:
collections may have arbitrary internal collection types; the referencing collection may want to
treat referenced collections 1n various defined ways; and arbitrary operations may be performed
on collection views.

The Collection View Type Problem is another problem to solve. It is the problem of how to
assign different attributes to different collection views within the same collection. Solving this
problem will enable people to treat different views in different ways, even if all members of the
views are 1dentical.

The Collection View Type Problem has the following interesting aspects: multiple attributes
may be associated with each view type definition; view type definitions may be shared among
many collections; view type attributes may be customized or overridden to meet special
requirements; operations defined by view type definitions are typically applied to all members of
the view, so they are called “view level” operations (as distinct from “collection level”
operations).

The Collection View Member Reference Problem is another problem to solve. It is the
problem of how to reference collection view members when members are stored in various data
storage systems such as configuration management systems. A solution requires a practical
syntax for referencing sets of collections, individual collections, or parts of collections within
large repositories of collections.

The Collection View Member Reference Problem has these interesting aspects: a practical
solution must permit references to individual collections, multiple collections within categories of
collections, categories of collections, and all collections at a server location.

The Collection View Member Reference Type Problem is another problem to solve. It is
the problem of how to associate sets of predefined attributes with view member references.

CA 02398043 2002-08-27

The Collection View Member Reference Type Problem has these interesting aspects: an
arbitrary number of attributes may be involved in an attribute set; and attributes and attribute sets
can be user-defined.

The Collection View Information Problem is another problem to solve. It is the problem of
how to construct and deliver useful information about view member references to application
programs.

The Collection View Information Problem has these interesting aspects: a solution must be
independent of application program; it must allow different sites to control the values and
meanings of view and view member reference attributes; it must provide for platform dependent
information; and it must provide for arbitrary numbers of both view attributes and view member
reference attributes and user-defined sets of view attributes.

The Platform Dependent Collection View Member Reference Problem is another problem
to solve. It is the problem of how to represent platform-dependent collection view member
references, so that people can include different references in a collection view, according to
various computing platforms.

The Platform Dependent Collection View Member Reference Problem has these interesting
aspects: platforms can be user-defined; an arbitrary number of platforms may be defined:;
hierarchies of virtual platforms may be defined; some references are platform independent.

The Product Dependent Collection View Problem is another problem to solve. It is the
problem of how to represent collection views that are relevant to particular collection products.

The Product Dependent Collection View Problem has these interesting aspects: an arbitrary
number of product dependent views may be specified; and the same view may be relevant to
multiple products within a collection.

General Shortcomings Of The Prior Art

The prior art contains no references that are relevant to the subject of the present invention.
Even the related patent applications listed at the beginning of this document contain no mention
of the problem of referencing collections by name. Accordingly, the following discussion is
general 1n nature, because there are no specific works of prior art to discuss.

Prior art approaches lack support for collections. This is the largest limitation of all because
it prevents people and programs from using high-level collection abstractions that can
significantly improve productivity.

Prior art approaches lack means for referencing collections by name. This limitation prevents
people and programs from referencing collections by name, within a collection namespace that is
independent of local file system pathnames. For example, this prior art limitation prevents client
programs from referencing collections that are stored on a server, where the client and server do
not share file systems.

S y— W A te nm L el . . e 4R A g A ad ..d-..‘w.swunwwwmlhwkwmw- wmm.*--.*“mm-.w-w-u--——-n-um_n-.—-m.

CA 02398043 2002-08-27

Prior art approaches lack means for using one collection to reference groups of other
collections. This prevents people from processing groups of collections as easily as they can
process individual collections. Instead, people must process groups of collections by tediously
processing each collection in the group individually, one at a time.

Prior art approaches lack means for associating attributes and values with groups of
collections, thereby preventing people from reusing shared sets of properties among groups of
collections.

Prior art approaches lack means for associating attributes and values with individual members
of a group of collections, thereby preventing people from reusing shared properties of individual
group members for other group members.

Prior art approaches lack means for constructing and delivering useful attribute-value
information about groups of collections to application programs. This prevents people and
application programs from processing groups of collections in convenient, practical ways.

As can be seen tfrom the above descriptions, prior art approaches lack the means to make it
easy—or even possible—for people to conveniently work with groups of related collections. Prior
art approaches lack practical means for modelling collections of files, for referencing collections
by name, for modelling groups of related collections, for using stored knowledge in the form of
data types and type definitions to understand groups of collections, and for automatically
processing groups of collections.

In contrast, the present invention has none of these limitations, as the following disclosure
will show.

SUMMARY OF THE INVENTION

Collection View Expanders improve the productivity of knowledge workers in the
information industry by organizing information about groups of related collections into collection
view information data structures that can be used by automated collection processing systems.
Collection views are normal collections that contain lists of collection view member references to
other collections that comprise the collection view.

Collection view information 1s comprised of a collection view, including a collection view
type and a list of collection view member references, and collection view type definition
information and a list of corresponding collection view member reference type definition

information.

In operation, collection view expanders analyze collection views to produce information-rich
collection view information data structures for use by application programs. Application
programs use collection view information to process collection views in useful, practical ways.

By using collection view information, automated programs can perform more complex
software processes involving groups of collections than were previously possible, thereby
improving the productivity of human knowledge workers. As manual human processes are

CA 02398043 2002-08-27

replaced by automated collection processing systems, corresponding amounts of human effort
will be treed up for more creative uses elsewhere.

OBJECTS AND ADVANTAGES

The main object of the present invention is to improve the productivity of human knowledge
workers by making it possible for them to conveniently work with groups of collections in the
form of collection views.

Another object is to solve the Collection View Problem by providing a collection view
modelling means for using individual collections to model groups of other collections. For
example, collection views can be used to model lists of collections, software releases comprised
of multiple collections, programs and their associated link libraries, and particular versions of
groups of collections.

Another object 1s to solve the Collection View Type Problem by providing a collection view
typing means for associating collection views with view type indicators and view type definitions.

Another object is to solve the Collection View Member Reference Problem by providing a
collection view member reference syntax means for referencing collection view members in
remote data storage systems.

Another object is to solve the Collection View Member Reference Type Problem by
providing a collection view member reference typing means for associating type indicators and
collection view member reference type definitions with collection view member references.

Another object is to solve the Collection View Information Problem by providing means for
constructing and producing information-rich collection view information data structures for use

by application programs.

Another object 1s to solve the Platform Dependent Collection View Member Reference
Problem by providing means for associating collection view member references with particular,
user-defined virtual platform names.

Another object 1s to solve the Product Dependent Collection View Problem by providing
means for representing collection views within collection specifier product specification blocks.

Another object is to provide user-definable collection view types, thereby enabling
application programs to access detailed information about collection views, and to process
collection views in ways that were not previously possible.

Another object 1s to provide application programs with detailed information about collection
views, thereby enabling more process automation among application programs that work with
collection views.

As can be seen from the objects above, Collection View Expanders provide many useful and
practical services to people and computer programs that work with collections.

T TNV PUPN PRI LB FRSANR = 302t Tt i v v ATV AR R A s e - T R A . Tl Pl e . el A e Wb P A St

CA 02398043 2002-08-27

Further advantages of the present Collection View Expander invention will become apparent
from the drawings and disclosure that follow.

BRIEF DESCRIPTION OF DRAWINGS

The following paragraphs introduce the drawings.
FIG 1 shows a sample prior art file system folder from a typical personal computer.

FIG 2 shows how a portion of the prior art folder in FIG 1 has been converted into a
collection 100 by the addition of a collection specifier file 102 named “cspec” FIG 2 Line 5.

FIG 3 shows the contents of a collection specifier file 102, implemented with a simple text
file from a typical personal computer system.

FIG 4 shows the structure of a full collection reference.
FIG 5 shows several example collection references.
FIG 6 shows a table of example shortcut references and their associated meanings.

FIG 7 shows an example collection specifier containing two collection views. Each
collection view contains multiple collection view member references, which are also known as
typed collection references.

FIG 8 shows the structure of a collection view member reference.

FIG 9 shows several example collection view member references.

FIG 10 shows an example name table for collection type names.

FIG 11 shows an example collection type definition file for C program collections.

FIG 12 shows an example name table for collection view member reference type names.

FIG 13 shows an example collection view member reference type definition file for collection
view member references of type “coll.”

FIG 14 shows an example name table for collection view type names.

FIG 15 shows an example collection view type definition file for collection views of type
“view-default.”

FIG 16 shows a simplified architecture for an Application Program Means 110 that uses a
Collection View Expander Means 120 to obtain collection view information for use by the

application program.

CA 02398043 2002-08-27

FIG 17 shows a simplified, client-server architecture for an Application Program Means 110
that uses a Collection View Expander Client Means 140 and a Collection View Expander Server
Means 141 to obtain collection view information for use by the application program.

FIG 18 shows a simplified architecture for a Collection View Expander Means 120.
FIG 19 shows a simplified algorithm for a Collection View Expander Means 120.
FIG 20 shows a simplified data structure for collection view type information.

FIG 21 shows a simplified data structure for a collection view member reference.

FIG 22 shows a simplified data structure for a collection view member reference type
definition.

FIG 23 shows a simplified data structure for collection view information.

FIG 24 shows an example source tree for a parent collection that contains a collection view
that 1s comprised of a program and several link libraries.

FIG 25 shows an example source tree for a link library referenced by the collection view
member reference shown in FIG 7 Line 11.

FIG 26 shows an example source tree comprised of a parent source tree and source trees for
each collection view member reference that is part of the parent’s collection view specification.
This combined source tree illustrates how an application program could checkout a whole
collection view in one operation, thereby improving human productivity.

FIG 27 shows an example collection specifier file that contains platform-dependent collection

view references.

FIG 28 shows an example collection specifier file that contains product-dependent collection
view references.

LIST OF DRAWING REFERENCE NUMBERS

100 A collection formed trom a prior art file folder
102 Collection specifier information

110 An Application Program Means
111 A Get Collection View Means
112 A Use Collection View Information Means

120 A Collection View Expander Means

121 A Get Collection View Type Name Means

122 A Get Collection View Type Definition Means
123 A Database of Collection View Type Definitions

CA 02398043 2002-08-27

124 A Get Collection View Member Reference Type Name Means

125 A Get Collection View Member Reference Type Definition Means
126 A Database of Collection View Member Reference Type Definitions
127 A Get Collection View Member Information Means

140 A Collection View Expander Client Means
141 A Collection View Expander Server Means

e TR A b s e oo T e s e 6 S Y A TSR DI AN RIS s 15T i 11

T A MR VNI S YR S M —rrd = v s S A s

CA 02398043 2002-08-27

DETAILED DESCRIPTION

The following disclosure describes the present Collection View Expander invention with
reference to a preferred file system implementation of the invention. However, the invention is
not limited to any particular computer architecture, operating system, file system, database, or
other software implementation. The descriptions that follow should be considered as
implementation examples only and not as limitations of the invention.

Introduction To Collections

Collections are sets of computer files that can be manipulated as a set, rather than as
individual files. Collection information is comprised of three major parts: (1) a collection
specifier that contains information—such as a collection data type—about a collection instance,
(2) a collection type definition in a knowledge base that contains information about how to
process all collections of a particular type, and (3) optional collection content in the form of
arbitrary computer files that belong to a collection.

Collection specifiers contain information about a collection instance. For example, collection
specifiers may define such things as the collection type, a text summary description of the
collection, collection content members, derivable output products, collection processing
information such as process parallelism limits, special collection processing steps, and program
option overrides for programs that manipulate collections. Collection specifiers are typically
implemented as simple key-value pairs in text files or database tables.

Collection type definitions are user-defined sets of attributes that are stored in a central
knowledge base so they can be shared among multiple collections. In practice, collection
specifiers contain collection type indicators that reference detailed collection type definitions that
are externally stored and shared among all collections of a particular type. Collection type
definitions typically define such things as collection types, product types, file types, action types,
administrative policy preferences, and other information that is useful to application programs for
understanding and processing collections.

Collection content 1s the set of all files and directories that are members of the collection. By
convention, all files and directories recursively located within a collection subtree are collection
content members. In addition, collection specifiers can contain collection content directives that
add further files to the collection membership. Collection content is also called collection

membership.

Collection is a term that refers to the union of a collection specifier and a set of collection
content.

Collection information is a term that refers to the union of collection specifier information,
collection type definition information, and collection content information.

CA 02398043 2002-08-27

10

Collections have many practical applications in the technical arts. They make it convenient
for programs and human knowledge workers to manipulate whole sets of computer files where
only individual files could be manipulated before. They make it possible to manipulate
collections according to standard processing policies that are part of the collection type definition
in a database.

Collection Representations
FIGs 1-3 show a preferred embodiment of collections for a typical personal computer.
FIG 1 shows a sample prior art file system folder from a typical personal computer.

FIG 2 shows the prior art folder of FIG 1, but with a portion of the folder converted into a
collection 100 by the addition of a collection specifier file FIG 2 Line 5 named "cspec". In this
example, the collection contents FIG 2 Lines 4-8 of collection 100 are defined by two implicit
policies of a preferred implementation.

First 1s a policy to specify that the root directory of a collection is a directory that contains a
collection specifier file. In this example, the root directory of a collection 100 is a directory
named "c-myhomepage" FIG 2 Line 4, which in turn contains a collection specifier file 102
named "cspec” FIG 2 Line S.

Second is a policy to specify that all files and directories in and below the root directory of a
collection are part of the collection content. Therefore directory "s" FIG 2 Line 6, file
"homepage.html" FIG 2 Line 7, and file "myphoto.jpg" FIG 2 Line 8 are part of the collection
content for collection 100.

FIG 3 shows an example collection specifier file 102, FIG 2 Line §, for use on a typical
personal computer file system.

Introduction to Collection References

Collections are useful and practical software containers for computer files because they make
it easier to work with sets of related computer files. Programs can work with collections directly
if the programs are invoked within the collection directory structure, but programs cannot
reference collections from outside a collection without a proper means for doing so. The
restriction of always being forced to work on collections from within their directory structures is
a significant limitation in processing flexibility.

Collection references overcome this limitation by making it possible to conveniently refer to
collections from outside a collection directory structure. Several different kinds of references are
possible, as the following discussion shows. The discussion starts with simple expressions and
builds up to collection references.

e YU UV U T A -3 o A A e e e A O O T A ARG e T L S e

s TEmAT e As A,

CA 02398043 2002-08-27

11

Expressions are comprised of sequences of characters. Expressions have no meaning until a
human or program interprets them with respect to a set of interpretation rules. For example,
numeric expressions are comprised of numbers. Alphabetic expressions are comprised of letters.
Alphanumeric expressions are comprised of both letters and numbers.

References are comprised of expressions that refer to something when humans or programs
interpret the references with respect to a set of interpretation rules. For convenience, humans
often name or classify references according to (1) the syntactic form of the reference or to (2) the
target of the reference (the referent). Examples of naming references after their syntactic form
include numeric references, pointer references, HTTP URL references, and FTP references.
Examples of naming references after the referents that are pointed to include document
references, file references, and collection references.

Collection References are comprised of expressions that, when interpreted, refer to
collections. Collection references can refer to collections in three ways: by name, by location, or
by internal properties such as type or content. ~

References to collections by name only have meaning within collection namespaces that are
defined by humans or application programs that manage entries in the namespace. For example,
a configuration management system that “understood” collections would specify a particular
syntax for referring to collections by name within the managed namespace. One example of a
collection name syntax 1s “<category>: <authority>: <collection>.” The category part is a
hierarchical expression that categorizes collections within the collection namespace. The
authority part is the name of an authority (usually an Internet hostname such as foo.bar.com) that
manages the collection namespace. The collection part is the name of a collection, within the
category, within a collection namespace, that is managed by an authority.

References to collections by location are references to file folders or directories in computer
file systems. This method works because collections are normally stored in file folders or
hierarchical directory structures in computer file systems. The content of a directory structure,

namely the presence of a collection specifier, ultimately determines whether the directory actually

contains a collection.

References to collections by properties are search expressions that programs use to find and
select interesting collections for processing. For example, a searcher might want to refer to all
collections of a particular collection type within a collection namespace or within a computer file
system.

Shortcut Collection References are short-form references that save people typing effort.
The main idea of shortcut references is that people can save typing by omitting various parts of
normal collection references. Application programs fill in the missing parts, using default values
from the current local working collection, or from default values specified by the application
program. Shortcut collection references are very useful in practice because they reduce typing
effort and reduce knowledge burdens on human users. People don’t have to remember details of
long collection references. They can use easy-to-remember shortcut references instead.

CA 02398043 2002-08-27

12

Collection Reference Representations
FIGs 4-6 show several formats for collection references and shortcut references.

FIG 4 shows the structure of a complete collection reference. FIG 4 Line 3 shows three main
components of a preferred implementation of a complete collection reference—a collection name,
a set of scoping arguments, and a set of content selector arguments.

A collection name 1s comprised of three parts—a category name, an authority name, and a
collection name. A category name is a hierarchically structured name that groups related
collections into categories, just as directory folders group related computer files into directories.
An authority name 1s the name of the authority that is responsible for managing a collection. In
practice, an authority name 1s an Internet Domain Name of a host computer that executes a server
program for managing collections. A collection name is the name of a collection.

A collection reference scoping argument modifies a collection reference to refer to particular
portions of a whole collection. For example, a “-recursive” scoping argument indicates that a
reference should recursively include all directories and filenames below the recursion starting
directory. Other examples of scoping arguments include “-new,” “-changed,” “-o0ld,” “-local,” “-
remote,” and “-locked.” These arguments limit the scope of a collection reference to particular
directories and filenames by comparing a local collection copy with a remote authoritative
collection copy. Scoping arguments help people to reference just the collection directories and
files that interest them.

A collection reference content selector is a particular category, directory, or filename that
limits a collection reference to include particular named categories, directories, or filenames.
Whereas scoping arguments use properties of collection elements (e.g. new, locked, changed) to
limit collection references, content selectors use explicit names of collection content members to
limit collection references.

FIG 5 shows several example collection references that use scoping arguments and content
selector arguments. Lines 3-4 show a normal “whole collection” reference for the collection
shown in FIG 2. Lines 6-7 show a collection reference that is limited by scoping and selector
arguments to a recursive subtree of the collection that 1s rooted at the “s” directory shown in FIG
2 Line 6. Lines 9-10 show a collection reference that is limited by selector arguments to the
“cspec” file FIG 2 Line § and to the “s/homepage.html” file FIG 2 Line 7.

Shortcut Collection References

FIG 6 shows a table of shortcut collection references and their meanings. A shortcut
collection reference omits one or more parts of a normal three-part collection name. For example,
FIG 6 Line 6 shows a shortcut reference that omits the third component of a collection name, and
thereby refers to “all collections” in the specified category at the specified authority.

Shortcut collection references are very useful in practice. They save typing. They reduce
reference errors. They provide increased power and flexibility for referencing individual and
multiple categories of collections, authorities, and individual collections. In fact, shortcut

iehende

e T D et TNt s et b sy St 1 A T MR IR 11 SR e s s s svan - CE e AMRAMHNTNGS SN AT —— -

CA 02398043 2002-08-27

13

collection references have more referential power than complete three-part collection names.
This 1s because complete collection names must provide specific values for a category and a
collection, and so cannot refer to all categories, or all collections.

Local and Remote Collection References

FIG 6 also shows both local and remote collection references. Lines 12-14 show local
collection references, and Lines 5-10 show remote collection references.

Local Collection References refer to the current working collection. A current working
collection for a program that is making a local collection reference is defined to contain the
working directory of the program. Local collection references have no meaning, and are invalid,
1f no collection contains the working directory of a computer program that is making a local
collection reference. In the examples presented in this disclosure, local collection references

66, .,

begin with a double colon “::” as shown in FIG 6 Lines 12-14. Other syntaxes are also possible.

Remote Collection References do not depend on a program’s current working directory
being within a collection directory structure. A valid remote collection reference can be made
from within any file system directory, whether inside or outside of a collection directory
structure. In the examples presented in this disclosure, remote collection references do not start

66,9

with a double colon ““::” character sequence. Other syntaxes are also possible.

FIG 6 Line 14 shows a reference that could be construed as a remote reference that means
“all categories at all authorities that contain a collection called ‘dir’.” This interpretation is
legitimate because it 1s in accordance with the conventions that have been presented above for
remote collection references. But that is not the meaning used in this disclosure. Instead, it is
more advantageous to use this particular syntax (“::dir”) to refer to local partial collections, for
two reasons. First, this syntax is rarely, if ever, used for remote references in practice. Second,
the double colon at the beginning of the reference makes it look like a local reference, so it would
cause confusion among users 1f it were used as a remote reference. For these reasons, preferred

implementations treat the syntax (““::dir’’) as a local collection reference.

Keep in mind that the interpretation of any collection reference is ultimately determined by
the implementation policies of the computer program that interprets the reference. This is why
other syntaxes are also possible. For example, an application program could specify that local
collection references should begin with a double sequence of a non-colon character such as “x.”
Then the three shortcut local references shown in FIG 6 Lines 12-14 would be “xx” “xx<dot>”
and “xxdir” (where <dot> means a period). Or a slash could be used, giving *“//”” “//<dot>" and
“//dir.” This disclosure, which explains a preferred implementation, uses double colons for
shortcut local collection references, to maintain a consistent look among all collection references.
Other implementations are also possible.

CA 02398043 2002-08-27

14

Introduction To Collection Views

Collections are useful for representing sets of computer files, and collection references are
useful for referring to individual collections. But neither collections nor collection references are
useful for referencing sets of collections. This is a significant limitation, because people often
want to work with sets of collections, just as they want to work with sets of computer files.

Collection views solve the problem of referencing sets of collections by making it possible
for one collection to represent sets of other collections. Collection views enable people and
programs to perform operations on whole sets of collections as easily as they can perform
operations on single collections.

Collection Views are lists of references to other collections. FIG 7 Lines 17-21 show an
example collection view. Collection views are comprised of a view name, a view type, and a list
of view member references. A collection view name is a user-defined value that provides a means
for referring to the view. A collection view type is a type indicator that associates a view with a
particular set of attribute-value pairs that specify useful information about all views of a particular
view type. Each unique set of attribute-value pairs is called a collection view type definition. A
collection view member reference is a reference that is part of the contents of a collection view.

Collection View Members are physical collections or source trees that are targets of
collection view member references contained in collection views. FIG 2 shows a collection that
could be a collection view member. Collection view members are pointed to by collection view

member references.

Collection View Member References are references that point to collection view members.
FIG 7 Line 19 shows a collection view member reference. Collection view member references are
comprised of collection view member reference types and collection view member reference
exXpressions.

Collection View Member Reference Types are type indicators that associate view member
references with particular sets of attribute-value pairs that specify useful information about all
view member references of a particular collection view member reference type. Each unique set
of attribute-value pairs is called a collection view member reference type definition. FIG 7 Line
18 Column 2 shows a collection view member type indicator.

Collection View Member Reference Expressions identify particular collections or source
trees of computer files that comprise a collection view member. FIG 7 Line 19 Column 2 shows
one example of a collection view member reference expression. FIG 7 Line 14 Columns 2-N
shows a second example of a collection view member reference expression. Application
programs use view member reference expressions to access or manipulate view member
collections or source trees.

Collection view member reference expressions can take many syntactic forms, corresponding
to how the physical collections or source trees are stored. For example, view member reference
expressions can be collection reference expressions that name collections, expressions that name
modules stored in configuration management systems, URL (Uniform Resource Locator)

R L L e T T e O A T P e e VY PP e i

CA 02398043 2002-08-27

15

expressions that point to directories stored on remote servers, or any other kinds of expressions
that can be used to identify source trees of computer files that comprise collection view members.

Collection View Representations
FIGs 7-9 illustrate the structure and format of collection views.

FIG 7 shows an example collection specifier that contains two collection views. Lines 8-15
show a first view named “view-1" and Lines 17-21 show a second view named “view-2.”

FIG 7 Lines 17-21 show the structure of a collection view. Line 17 begins the view and
specifies the collection view name. Line 18 specifies the collection view type, which associates
the view with a set of attribute-value pairs defined in a corresponding collection view type
definition. Lines 19-20 specify two collection view member references. Line 21 terminates the
collection view.

FIG 7 Line 19 shows the structure of a collection view member reference. Column 1
specifies a collection view member reference type, which associates a view member reference
expression Column 2 with a set of attribute-value pairs defined in a corresponding collection view
member reference type definition. Columns 2-N specify a collection view member reference
expression and optional arguments.

FIG 8 shows the formal structure of a collection view member reference. Line 2 specifies
that a collection view member reference is comprised of three parts—a view member reference
type, a view member reference expression, and optional arguments. The functions of these three
parts were described in the previous paragraph.

FIG 9 shows several example collection view member references that contain different view
member types and view member reference expression syntaxes.

Introduction to Types and Decorations

Collections, collection references, and collection views are all useful data structures for
holding information, but none of them provides information to help programs process the
contents of data structures in smart ways.

A better approach to smart processing of these data structures is to provide programs with a
separate source of information that contains detailed information about the data structures and the
contents therein. That way, programs can read the separate information to easily understand how
to process the information content of the three data structures. Types and decorations are a means
for providing the separate information.

Types are comprised of a type indicator and a type definition. A type definition contains sets
of attribute-value pairs.

. .--—W-Ww,w.h..m-. e A MRt . sah yeleedas P RLPlAme de ..-&.wpwmammmmmmm-.-_ww- P S ——— R sameni & = & (mea e mesems ""'*M“WHM L

CA 02398043 2002-08-27

16

Decorations are attribute-value pairs from a type definition. When a collection, collection
reference, or collection view is combined with a set of attribute-values pairs from a type
definition, we say that it is “decorated.”

Programs usually decorate data structures using the following process. First, programs obtain
a collection, collection reference, or collection view data structure to decorate. Second, programs
obtain a type indicator for, or from, the data structure. Third, programs use the type indicator to
obtain type definition information (decorations) corresponding to the type indicator. Fourth,
programs decorate the original data structure by associating it with the attribute-value pairs
(decorations) retrieved from the type definition.

Programs determine type indicators in two ways. If a type indicator is part of the original
data structure, as 1s the case for collections and collection views, programs retrieve the type
indicator from the data structure. If a type indicator is not part of the original data structure, as is
the case with collection references, then programs must calculate a type indicator using other
means. Perhaps programs analyze the contents of the data structure to calculate a type, or perhaps
they retrieve an external, but associated, type indicator that is not part of the original data
structure.

The use of types and decorations gives rise to several new classifications of collection,
collection reference, and collection view data structures. Now we can have typed and decorated
versions of each data structure. The following paragraphs define each new combination.

Typed Data Structures

Typed Collections are the same as normal collections because normal collections already
contain a type indicator as part of the collection data structure. The terms “collection” and “typed
collection” are synonymous. FIG 3 Line 2 Column 2 shows a collection type indicator within a
collection specifier file.

Typed Collection References are comprised of an external type indicator and a normal
collection reference. FIG 7 Line 19 shows a typed collection reference. Column 1 specifies a
collection reference type and Column 2 specifies a collection reference. Typed collection
references are called collection view member references when they appear within collection

VIEWS.

Typed Collection Views are the same as normal collection views because normal collection
views already contain a type indicator as part of the collection view data structure. The terms
“collection view” and “typed collection view” are synonymous. FIG 7 Line 18 Column 2 shows a
collection view type indicator within a collection view within a collection specifier.

Decorated Data Structures

Decorated Collections are comprised of a collection and decorations in the form of attribute-
value pairs from a collection type definition. Decorations specify interesting properties shared by

W T T R TN P PP PP e - T2 81 =AMl 4T TSI 0 T e A e s b A e A MU A NI v I e v S S e o i ST AP SRS = e M e

CA 02398043 2002-08-27

17

all collections of a particular collection type. Decorated collections are the most useful type of
collections to application programs, because they contain decorations that help to tell application
programs how to process the decorated collections. FIG 10 shows an example lookup name table
of collection type names. FIG 11 shows an example collection type definition (decorations). In
operation, application programs look up type names in a name table FIG 10 Column 1 to obtain
names of corresponding type definition files FIG 10 Column 2.

Decorated Collection References are comprised of a collection reference and decorations in
the form of attribute-value pairs from a collection reference type definition. Decorations specify
Iinteresting properties shared by all collection references of a particular collection reference type.
Decorated collection references are the most useful type of collection references for application
programs, because the decorations help to tell application programs how to process the decorated

collection references. For example, suppose that some attribute-value pairs specified the name of
a collection namespace, and how to contact the authority for that namespace. Then an application

program could use those attribute-value pairs to contact the authority responsible for the
namespace. FIG 12 shows an example lookup name table of collection view member reference
type names. FIG 13 shows an example collection view member reference type definition
(decorations).

Decorated Collection Views are comprised of (1) a collection view, (2) decorations that

spectfy properties of the collection view, and (3) decorations that specify interesting properties of

each of the typed collection references in the view. Decorated collection views are the most
useful kind of collection views for application programs because they contain detailed
information that help to tell the application programs how to process decorated collection views.

FIG 14 shows an example lookup table of collection view type names. FIG 15 shows an example

collection view type definition (decorations).

Each of the normal, typed, and decorated forms listed above is useful for particular purposes.
The normal form of a data structure is efficient for holding the core data content of interest. The
typed form of a data structure is most convenient for humans, because it replaces long lists of
decorations with a single type indicator token. Finally, the decorated form of a data structure is
most convenient for application programs, because it contains additional useful information that
helps programs to process the decorated data structures in more useful and more appropriate
ways.

Conversion Among Normal, Typed, and Decorated Forms

Since each of the normal, typed, and decorated forms is useful for particular purposes, it is
also useful for application programs to convert back and forth among the various representations.

Collection Information Managers are programs that convert typed collections into
decorated collections. Recall that typed collections are the same as normal collections because
normal collections already contain collection type indicators. Collection information managers
produce “collection information” that represents decorated collections.

Collection Information is comprised of a collection specifier, collection type definition
information, and collection content information.

T W”w“_w\- ham s ee e ee .. . S T PO T '.'.‘“MM"M"““"‘IWWHW' A pnd.r smpdges o - .. Tt A et r AT LS W I PP A 4 4L Bk b 1 ek S Eiih sides ey sl e ey vl —

CA 02398043 2002-08-27

18

Collection Shortcut Expanders are programs that convert shortcut collection references into
complete collection references.

Collection View Expanders are programs that convert typed collection views into decorated
collection views. Recall that typed collection views are the same as normal collection views
because normal collection views already contain collection view types. Collection view
expanders produce “collection view information” that represents decorated collection views.

Collection View Information is comprised of a collection view, including a collection view
type and a list of collection view member references, and collection view type definition
information and a list of corresponding collection view member reference type definition
information. Collection view information is nearly equivalent to a list of decorated collection
references, with the addition of collection view type definition information.

Collection View-Enabled Program Architectures

FIGs 16-17 show example collection view-enabled application program architectures. The
term “collection view enabled” denotes an ability to work with collections and collection views.
For example, collection view enabled programs can recognize collections, read collection
specifier files, and obtain collection type information and collection view information from a
database. Collection view enabled programs can process collection contents and collection views
according to policies defined collection type definitions and collection view type definitions.

FIG 16 shows how a collection view enabled application program 110 could work with
collection views.

In operation, the application program 110 would obtain one or more collection views from a
collection specifier FIG 7 using a Get Collection View Means 111, expand the collection view
into collection view information using a Collection View Expander Means 120, and then utilize
the obtained collection view information using a Use Collection View Information Means 112.
Typically, human users improve their productivity by invoking collection view enabled programs
to perform useful operations on whole collection views.

FIG 17 shows how a collection view enabled application program 110 could obtain collection
view information using a client-server implementation comprised of a Collection View Expander
Client Means 140 and a Collection View Expander Server Means 141. A client-server
implementation can share a single database of type information among many application
programs.

One example of a typical collection view operation is to check out a whole collection view
from a configuration management system. This operation solves a typical problem faced by
software developers, who frequently need to simultaneously work on multiple source trees that
comprise a software application. Without views, developers must identify and check out each
individual source tree that is part of the application program. But with collection views,
developers only need to check out a parent collection view. The checkout operation is
automatically expanded and extended to all source trees that are referenced in the collection view.

P — Www.mv,g_. R e b mmmmeee e e s fe e s s et e edn o R T A st el - T W e s . . s s " g s e O S Myl A —p— ——— — mmu&-n.- S i —

CA 02398043 2002-08-27

19

Expansion Of Collection Views

The main goal of the present invention is to deliver collection view information to application
programs, so that the programs can usefully manipulate collection views in productive ways that
were not previously possible.

In operation, an application program invokes a collection view expander to produce
collection view information from collection views cited in collection specifiers.

Having summarized the structure and some typical uses of collections, collection view
references, and collection view reference type definitions, we now describe a preferred
embodiment of the present Collection View Expander invention.

Module Expand Collection Reference Means
FIG 18 shows a simplified architecture for a Collection View Expander Means 120.

Module Get Collection View Type Name Means 121 obtains a collection view type indicator
FIG 7 Line 18 Column 2 from a collection specifier file.

Module Get Collection View Type Definition Means 122 obtains collection view type
definition information FIG 15 from a database of collection view type definitions 123.

Module Get Collection View Member Reference Type Name Means 124 obtains collection
view member reference type indicators FIG 7 Lines 19-20 Column 1 for collection view member
references 1n the collection view.

Module Get Collection View Member Reference Type Definition Means 125 obtains
collection view member reference type definitions FIG 13 from a database of collection view
member reference type definitions 126, in accordance with the type indicator names obtained by
Get Collection View Member Reference Type Name Means 124.

Module Get Collection View Member Information 127 obtains collection view member
names and arguments from collection view member references in the collection view.

FIG 19 shows a simplified algorithm for a Collection View Expander Means 120.

In operation, module Collection View Expander Means 120 receives a collection view to
expand, from a calling module. The collection view could be stored in a partially filled data
structure such as the one shown in FIG 23. An unexpanded collection view would normally
populate FIG 23 Lines 3-4, 8-11, and possibly other fields represented by Line 15.

For each collection view, module Collection View Expander Means 120 first calls module
Get Collection View Type Name Means 121 to obtain a collection view type name FIG 7 Line 18
Column 2.

CA 02398043 2002-08-27

20

Next, it passes the obtained view type name to module Get Collection View Type Definition
Means 122, which looks up the type name in Column 1 of a name-coll-type.tbl FIG 10 to obtain a
corresponding collection type definition filename from FIG 10 Column 2. The filename points to
a collection type definition such as shown in FIG 11. Collection view type definition information
could be stored in a data structure such as the one shown in FIG 20.

For each collection member reference in a collection view, module Collection View
Expander Means 120 calls Get Collection View Member Reference Type Name Means 124 to
obtain a collection view member reference type name FIG 7 Line 19 Column 1. Collection view
member references could be stored 1n a data structure such as the one shown in FIG 21.

Next, it passes the obtained type names to module Get Collection View Member Reference
Type Definition Means 125, which looks up each type name in FIG 12 Column 1 of a name-coll-
view-mem-ref-type.tbl, to obtain a corresponding collection view member reference type
definition filename from FIG 12 Column 2. Having the name of a type definition filename,
module Get Collection View Member Reference Type Definition Means 125 can access a
corresponding detailed collection view member reference type definition file FIG 13. The
obtained type definition information could be stored in a data structure such as the one shown in

FIG 22.

Next, it calls module Get Collection View Member Information Means 127 to obtain
collection view member information from the collection view member references. This
information would normally be stored in a data structure specifically designed for the number of
tokens 1n the collection member reference expression. Such a data structure would be easily
designed by one of ordinary skill in the art.

Finally, module Collection View Expander Means 120 passes all obtained collection view
information back to its caller module. Obtained collection view information could be stored in a
collection view information data structure such as the one shown in FIG 23.

FIG 23 shows a simplified data structure for collection view information. The data structure
1s comprised of a collection view name Line 3, a collection view type Line 4, a set of collection
view type definition attributes Lines 5-7, a list of collection view member references Lines 8-11,
a list of associated collection view member reference type definitions Lines 12-14, and other
collection view information.

Although the data structure FIG 23 1s shown here as a single data structure, those of ordinary
skill in the art know that collection view information could easily be represented in multiple
smaller data structures, or in other equivalent data structures, without loss of purpose or

functionality.

An Example Collection View Checkout Operation

Collection views offer significant productivity advantages because they enable application
programs and human knowledge workers to perform single operations on whole collection views,
instead of having to perform tedious multiple, repetitive operations on individual collections.

NI VEAETINDY | ¥t 1 HNAIr I S oo 1 001430300 LMY WVt Y TR 5 LM 2P MRS S LA AL ov b M s €= © 200 it s e e -

CA 02398043 2002-08-27

21

Collection views thereby promote the increased use of automation, as well as conceptual
simplicity.

FIGs 24-26 illustrate a typical application of collection views.

F1G 24 shows an example collection for a simple application program “c-myprogram” that
uses several link libraries to accomplish its function. FIG 7 shows an example collection
specifier for the collection shown FIG 24, The collection specifier contains several collection
view references FIG 7 Lines 11-14.

FIG 25 shows an example standalone collection source tree for one of the libraries “c-library-
1” required by the program collection shown in FIG 24.

Without the use of collection views, a software developer would normally follow several
repetitive steps in order to build “c-myprogram” from its various parts. Specifically, the
developer would check out the “c-myprogram” collection, check out the “c-library-1" collection,
check out the “c-library-2” collection, check out the “c-mytree” source tree, then build each
library individually, then finally build the “c-myprogram™ and link in the library files. This
sequence involves 4 checkouts and 4 builds, totaling 8 operations.

In contrast, collection views enable the software developer to issue only two commands:
check out the view, and then build the view.

FIG 26 shows an example composite source tree created by using collection views to check
out the parent “c-myprogram” collection and the associated libraries. A comparison of FIG 24
Lines 3-11 (the non-views checkout) with FIG 26 Lines 3-11 (the views checkout) shows an
identical structure for the parent collection “c-myprogram.”

FIG 26 Line 12 shows a special directory into which collection view members are placed
during check out operations. This directory “views” is specified by the collection view type
definition attribute shown in FIG 15 Line 5.

FIG 26 Lines 13-20 show an example source tree for the “c-library-1” collection as part of
the views checkout directory structure. It was shown in standalone form in FIG 25.

FIG 26 Lines 21-23 show where other collection view members would be placed during
checkout operations.

Once the whole collection view is checked out, a software developer can issue a single
“build” order, to a collection-view-enabled application program, to build the entire view.

Platform-Dependent Collection View Member References

FIG 27 shows an example collection specifier file that contains platform-dependent collection
view member references. Platform-dependent collection view member references are practical
because they enable people to create platform dependent collection views. For example, it is
common for software application programs to require different source trees or different libraries

CA 02398043 2002-08-27

22

for proper operation on different computing platforms. Platform dependent collection views
enable programmers to use the same collection to represent multiple different platform dependent
VIEWS.

FIG 27 Lines 10-12 show several platform dependent collection view member reference
statements. Platform dependence 1s indicated by a string comprised of a slash *“/” character
followed by the user-defined name of a computing platform. For example, *“/win98” and
“/gnulinux” are user-defined (non-trademarked) platform specifiers. Line 12 shows a platform
specifier “/p1” that means “platform independent,” so the collection view member reference on
Line 12 would be included in collection views on all platforms.

Product-Dependent Collection Views

FIG 28 shows an example collection specifier file that contains a product-dependent
collection view. A collection specifier can contain multiple product definitions. Multiple product
definitions enable people to build multiple products from the collection contents of a single
collection.

FIG 28 Lines 5-14 show one product definition within the collection specifier. Other integral
product blocks of similar structure could also appear within the collection specifier. Line 5
specifies the symbolic product name. Line 6 defines the product type. Line 7 shows where other
product specification lines would normally appear.

FIG 23 Lines 8-12 show a product-dependent collection view. The view is product dependent
because 1t appears within a collection specifier product block (that is, between Lines 5-14, which
define the boundaries of the product block). Application programs would only process these
particular collection view lines as part of working on the product block specified by Lines 5-14.

CONCLUSION

The present Collection View Expander invention has many practical applications in the
technological arts. It enables programs and people to reference and manipulate whole groups of
related collections using convenient collection views.

It provides practical solutions to seven important problems faced by people who work with
groups of related collections. The problems are: (1) the Collection View Problem, (2) the
Collection View Type Problem, (3) the Collection View Member Reference Problem, (4) the
Collection View Member Reference Type Problem, (5) the Collection View Information
Problem, (6) the Platform Dependent Collection View Member Reference Problem, and (7) the
Product Dependent Collection View Problem.

In particular, the present invention makes it possible for people and computer programs to
reference groups of collections, using a scalable and convenient syntax that was not previously

known to the art.

CA 02398043 2002-08-27

23

RAMIFICATIONS

Although the foregoing descriptions are specific, they should be considered as example
embodiments of the invention, and not as limitations of the invention. Many other possible
ramifications can be imagined within the teachings of the disclosures made here.

General Software Ramifications

The foregoing disclosure has recited particular combinations of program architecture, data
structures, and algorithms to describe preferred embodiments. However, those of ordinary skill in
the software art can appreciate that many other equivalent software embodiments are possible
within the teachings of the present invention.

As one example, data structures have been described here as coherent single data structures
for convenience of presentation. But information could also be spread across a different set of
coherent data structures, or could be split into a plurality of smaller data structures for
implementation convenience, without loss of purpose or functionality.

As a second example, particular software architectures have been presented here to strongly
associate primary algorithmic functions with primary modules in the software architectures.
However, because software is so flextble, many different associations of algorithmic functionality
and module architectures are also possible, without loss of purpose or technical capability. At the
under-modularized extreme, all algorithmic functionality could be contained in one big software
module. At the over-modularized extreme, each tiny algorithmic function could be contained in a
separate little software module. Program modules could be contained in one executable, or could
be implemented 1n a distributed fashion using client-server architectures and N-tier application
architectures, perhaps involving application servers and servlets of various kinds.

As a third example, particular simplified algorithms have been presented here to generally
describe the primary algorithmic functions and operations of the invention. However, those
skilled in the software art know that other equivalent algorithms are also easily possible. For
example, if independent data items are being processed, the algorithmic order of nested loops can
be changed, the order of functionally treating items can be changed, and so on.

Those skilled 1n the software art can appreciate that architectural, algorithmic, and resource
tradeoffs are ubiquitous in the software art, and are typically resolved by particular
implementation choices made for particular reasons that are important for each implementation at
the time of its construction. The architectures, algorithms, and data structures presented in this
disclosure comprise one such implementation, which was chosen to emphasize conceptual clarity.

From the above, it can be seen that there are many possible equivalent implementations of
almost any software architecture or algorithm. Thus when considering algorithmic and functional
equivalence, the essential inputs, outputs, associations, and applications of information that truly
characterize an algorithm should be considered. These characteristics are much more fundamental
to software inventions than are flexible architectures, simplified algorithms, or particular
organizations of data structures.

i IS PRy . .

CA 02398043 2002-08-27

24

Means For Storing and Retrieving Information

The foregoing disclosure used simple text files to illustrate structured tables of information,
but other implementations are also possible. For example, all software means for retrieving
information from the simple text files shown here might also be implemented to retrieve
information from a relational database, or from a Collection Knowledge System (see the section
on related patent applications at the beginning of this document).

Collection View Member Reference Syntax

The foregoing disclosure used a simple text-oriented, token-oriented syntax for collection
specifier files and collection view member references. However, other syntaxes and
representations are also posstble. For example, collection specifiers and collection view
reterences could also be implemented using relational databases, or binary data files, without loss
of purpose or function.

Collection View Member Reference Expressions

The foregoing disclosure used three example syntaxes for collection view member reference
expressions within collection view references, as illustrated in FIG 9 Lines 3-10. However, other
syntaxes for collection view member references are possible. For example, collection view
member reference expressions could be formulated for use with relational databases, for other
local application programs that provided access to source trees, or for use with network servers of
various kinds. The essential functions provided by collection view member reference expressions
are to identify, or provide access to, a collection view member (a source tree) that is part of a
collection view.

Collection View Member Reference Types

The foregoing disclosure cited several collection view member reference types that were
strongly associated with systems that provided access to collection view member source trees.
For example, the disclosure cited “css” (a collection storage system), “cvs” (a version control
system) and “http” (a web protocol system) as possible (non-trademarked) collection view
member reference types. However, other schemes for organizing type names are possible. For
example, type names could be chosen according to the purpose intended for the collection view
reference. Types could be associated with tasks such as “assemble and build,” or “do test runs.”
Or type names could cause application programs to dynamically invoke a calculation means to
dynamically determine an appropriate collection view member reference type for the collection

view member reference.

CA 02398043 2002-08-27

25

Collection View Member Reference Type Definitions

The foregoing disclosure described several possible attributes for collection view member
reference type definitions, as shown in FIGs 12-13. However, the attributes shown here are
neither essential nor mandatory. Type definition attributes are user-defined, and can be adjusted
to suit the requirements of the application programs that will ultimately read and use attribute
values to process collections and collection views.

Collection View Expander Means

The foregoing disclosure described a Collection View Expander Means as a software
architecture comprised of five major subordinate modules. However, other groupings of
functionality into subordinate modules are possible. For example, since the functions performed
by the subordinate modules shown here are simple, all functionality could be easily combined
into one module by one of ordinary skill in the art.

Alternative Implementations

The foregoing disclosure used a simple architecture to illustrate how a Collection View
Expander Means 120 could be used by an Application Program 110 to expand collection view
references into collection view information. But other implementations are possible. For
example, the functions performed by subordinate modules could be implemented as a client-
server means that provided services across a network, as shown in FIG 17. This approach would
reduce the risk of having different expansion policies and behaviors among various application
programs within an organization.

Practical Applications

The present Collection View Expander invention has many practical applications in the
technical arts. For example, configuration management systems and automated software build
systems could use Collection View Expanders to make it easier for people to perform operations
on whole groups of collections. In general, any human or computer program that works with
groups of collections can benefit from the present invention.

SCOPE

The full scope of the present invention should be determined by the accompanying claims
and their legal equivalents, rather than from the examples given in the specification.

CA 02398043 2003-05-27

CLAIMS
I claim;

l. A Collection View Expander method 1or expanding a collection view and delivering
corresponding collection view information to programs, to be performed on or with the aid of a
computer, comprising the following steps:

(a) recerving an expansion request from a request originator to expand said collection view,

(b) pertorming an expansion action {o produce said collection view information, using
mformation from said collection view, and

(c) returning said collection view information to said request originator,

wherein said collection view 1s comprised of a collection view type and collection view
member references, and whercin said collection view member reterences are comprised of a
collection view member retercnce type indicator and a collection view member reference
expression. and wherein saiwd collection view information 1s comprised of said collection view,
sald collection view type, collection view type definition intormaten, a list of said collection
view member references, and a list of corresponding collection view member reference type
definition information.

I Y e L LLHR LEEEE R U B (e T R T NIRRT R e BT N DAL e T PR D 1T T P RETLV RN L ST OO SRR SR PR ICRRILEERH E ERPORC AR SNV SVEITN IO TR o FEECIERRNCREr B TSR) B DAY NG SR B WL LTI Pl PR R zg;gsmz!:::m\:\.\mmé||:|=~.i§!h|1§i§5;g:;:_r;n-:;-_-gf;sulsbw’]h.a‘ou N L LR T TP PR -:it“s&:‘z\l“!&Q‘mz‘ilﬂﬁiﬁk!l:;ﬂw&;aﬁuflﬁh VRN WA R B R e S b e A R R RS bR S e e A bt s

CA 02398043 2003-05-27

2. The method of claim 1. whercin

(a) said step of performing an expanston action uses a Get Collection View Type Name
Means to obtain a collection view type indicator from said collection view.

3. The method of claim 1. whercin

(a) said step of performing an expansion action uses a Get Collection View Member
Reference Type Name Means to obtain a collection view member reference type name for a
collection view member reterence from said collection view.

4. The method of claim 1, wherein

(a) said step of performing an expansion action uses a database ot collection view type
definitions to obtain collection view type definition information.

5. The method of claim |. wherein

(a) said step of performing an expansion action uses a database of collection view member
reference type definitions to obtain collection view member reterence type definition information.

6. The method of claim |, wherein

(a) said step of performing an expansion action uses a Get Collection View Member
Information Means to obtain collection view member expression information from said collection
VIEW.

7. The method of claim 1, wherein

(a) said step of performing an expansion action uses a platform dependent collection view
member reference from said collection view.

8. The method of claim 1. wherein

(a) said step of performing an expansion action uses a product dependent collection view
from said collection view.

TR I FROR TR T ':.-.;::'.--"l-‘.::é>=':'.|1fr‘..'f?;:u‘.:JdI?}:.n'l'M»{ﬁ|l|6.IJl!4(I4-'l:m!-"f::nw{-:ie'..’lviwiwz-jtiiu-:I'.Nd&llHﬁl:uumm.‘u%::«i--‘N#H:iw’viéuriqiiamiu‘.inﬁliMIIuN(uoIum-lnlhl:i%'ﬁdu!|~.--ftsl-l:m+.w!.l1nlawa.i:llﬂlimm'l,l!'.h;l'mﬂj:i~u':41:'1!1!tmt!'!ﬁim|}ﬁ?.lﬁs'n;ilkln|I$ﬂ1|{lﬂl'l.{l!1lii."fi55*3‘.‘1{1-'-:&.--:-"! HER R I ---"-'--i---::-'3-‘-;-i-|§a,,.-';q(.1.::_s;;];,;,,:m|!,;.:;1'.,Jm{"““m,{;J,:.mxlf;;\:|u.:+4;1§:;gu;m;;,_gu.4r,,l.dl.uuquuwm"..uhmn‘mlmu-!4&,';:',4,.|g:;;.m.'oq.'.ug;.;u{gqmmmNammnm,mnwuwmm,‘nﬁ..;.'g:g-,-,-nmq-munu U R R L LT T L L L Bl LI LT L T L Tl AL TR R DT T R PYE PR E R [EOR Y

CA 02398043 2003-05-27

9. A programmable Collection View Expander apparatus tor expanding a collection view and
delivering corresponding collection view information to programs, comprising:

(a) means for receiving an expansion request from a request originator to expand said
collection view,

(b) means for performing an expansion action to produce said collection view information,
using information from said collection view, and

(¢) means for returning said collection view information to said request originator.

wherein said collection view is comprised of a collection view type and collection view
member references, and wherein said collection view member references are comprised of a
collection view member reference type indicator and a collection view member reference
expression, and wherein said collection view information is comprised of said collection view,
said collection view type, collection view type definition information, a list of said collection
view member references, and a list of corresponding collection view member reference type
definition information.

LR B YT L Lo TP T 1T O L B TR R T L] L S T R LIR | 11 [B e R O A R e T D T T e T TR T | R T T R TSR B LD R R R A U B AR L R et

N T T T T

CA 02398043 2003-05-27

10. The programmable apparatus of claim Y, wheremn

(a) said means for performing an ¢xpansion action uscs a Get Collection View Type Name
Means to obtain a collection view type indicator trom said collection view.

1 1. The programmable apparatus of claim 9, wherein

(a) said means for performing an expansion action uses a Get Collection View Member
Reference Type Name Means to obtain a collection view member reference type name for a
collection view member refercnce from said collection view.

12. The programmable apparatus ot claim 9, wheren

(a) said means for performing an ¢xpansion action uses a database of collection view type
definitions to obtain collection view type defimtion information.

13. The programmable apparatus of claim 9, wherein

(a) said means for performing an cxpansion action uses a database ot collection view member
reference type definitions to obtain collection view member reference type definition information.

14. The programmable apparatus of claim 9, wherein

(a) said means for performing an expansion action uses a Get Collection View Member
Information Means to obtain collection view member expression information from said collection
VIEW.,

15. The programmable apparatus of claim 9, wherein

(a) said means for performing an expansion action uses a platform dependent collection view
member reference from said collection view,

16. The programmable apparatus ot claim 9, wheremn

(a) said means for performing an expansion action uses a product dependent collection view
from said collection view.

A SR R SR A UMY B0 RO e A PSS B LSBT 7Rl ATV om0 e M- SR RN WA 22adm e A RS SRRSO PRV A e M 10 IR AL S R S50 D0l IEE SRR A, D6 BT lyeV WRHOSS fon s e v 1 bt oo oz g e s ikl & Selesd oo st A AR Rl iabvtesf oo WA R A R 8 L 0 SR AN LT S s B f et ST A Hatfetane i Sl e e cfetennt

CA 02398043 2003-05-27

17. A computer program product, comprising a computer readable storage medium having
computer readable Collection View Expander program code means for expanding a collection
view and delivering corresponding collection view information to programs, the computer
program product comprising computer readable program code means for:

(a) receiving an expansion request from a request originator to expand said collection view.

(b) performing an expansion action to produce said collection view information, using
information from said collection view, and

(¢) returning said collection view intormation to said request originator,

wherein said collection view is comprised of a collection view type and collection view
member references, and whercin said collection view member references are comprised of a
collection view member reference type indicator and a collection view member reference
expression, and wherein said collection view information is comprised of said collection view,
said collection view type, collection view type definition intformation, a hist of said collection
view member references, and a list of corresponding collection view member reference type
definition information.

T A R T LTI LR CER S PR I T T LT PR T A R R PP L TP PO R TR R A igde Iyt s Aot ad (1T e A R R 37 1085 i | b b L M4 a8 Pt == (a0 by 50 1SR R i s el PRI g aio e bz sl e d Lo [e U s g S L e R 2 R @i SR g il OB RN L HOR AR R e A AR VAW vl 1] NG 1A SR 0 [bt 15 i N M M S N R s At

@i il

CA 02398043 2003-05-27

{
”lw—

| 8. The computer program product of claim 17, wherein

(a) said means tor performing an expansion action uses a Get Collection View Type Name

Means to obtain a collection view type indicator trom said collection view.

19. The computer program product of claim 17, whercin

(a) said means for performing an expansion action uscs a Get Collection View Member
Reference Type Name Means to obtain a collection view member reference type name for a
collection view member reference trom said collection view.

20. The computer program product of claim 17. wherein

(a) said means for performing an cxpansion action uses a database ot collection view type
definitions to obtain collection view typec defimtion information.

21. The computer program product of claim 17, wheren

(a) said means for performing an expansion action uses 4 database of collection view member
reference type definitions to obtain collection view member reference type definition information.

22. The computer program product of claim 17, wherein

(a) said means for performing an expansion action uses a (et Collection View Member
Information Means to obtain collection view member expression information tfrom said collection
vView,

23. The computer program product of claim 17, wheren

(a) said means for performing an expansion action uses a plattorm dependent collection view
member reference from said collection view.

24. The computer program product of claim 17, wherein

(a) said means for performing an cxpansion action uses a product dependent collection view
from said collection view.

Qe TR T PP R HITPHL SRR TR IR SRR ST N R P H RN B TR U R 3% RO TP R EE e B M A C S ST AT B TR FEH, o0t ot TR o0 L2 O IRIT R LT T ST PP R IR ST L L 7+ TRP y cLIER CTPERS F B DY S s PR e s TH T R T Rt b i{l'i;i.l.i;a:;f}mluiifﬂ@]i‘i{E{}o#i{]iwil’_’::’;.}:u':‘:‘.l;‘]|$‘.Zq§i{§!$!i{.:‘.':!:i21b:;ij;-i'..l.éi'i'll"\;dll'l‘]ﬂla'il;!;-{f‘rk;--ilid!)lddliél{{:ﬁiiL!Illqi!u..-fl'uiﬂalh.‘ﬂ’lc‘l:-||l&l|,‘51

---“-ﬂ-_-_——ﬂ“-—-““--“—_--_-“"--nhm—-ﬂﬂ--n-—““-

--ﬂ----“"-"----“““““-*—-m--*ﬂﬁ-—-w---hﬁ------h

CA 02398043 2002-08-27

1/15

R

FIG. 1
PRIOR ART
1 c:\collections
2 notes.txt
3 myletter.doc
4 c-myhomepage
5
6 S
7 homepage.html
8 myphoto.jpg
FIG. 2
1 c:collections
2 notes.txt
3 myletter.doc
4 c-myhomepage
5 cspec
6 S
7 homepage.htmi
8 myphoto.jpg
FIG. 3
collection c-myhomepage
coll-type cf-web-page
coll-home
coll-desc

end-collection

100

TRl AT AR PRI L Y Ta o - e ol T

cf-colls:mysite.com:c-myhomepage
A sample homepage collection

-_--——-‘J

102

—
OC OO NOOSL,WN-

- A o -
N WN -

OCOWOONOONEHE WN -

—

CA 02398043 2002-08-27

2/15

FIG. 4

Five components of a full collection reference

#

<coll-name><scope arguments><content selector names>

where <coll-name> = category:authority:collection

#

category the hierarchical category name of the coll
e.qg. site/prod/release4

authority the authority name responsible for managing the coll
e.g. colls.mysite.com

collection the collection name
e.g. mycoll

scope-args command line arguments that select scope within coll
e.g. —recursive —-new —changed —locked

selectors names of categories, directories, or files
e.g. mydir, mydir/myfile.c, collspec.txt

FIG. 5

Example collection references

coll c-myhomepage in cat cf-colls at mysite.com (FIG 2-3)
cf-colls:mysite.com:c-myhomepage

the ‘s’ directory (recursively) in the coll of FIG 2
cf-colls:mysite.com:.c-myhomepage —recursive s

two files in the collection of FIG 2
cf-colls:mysite.com:c-myhomepage cspec s/Thompage.html

CA 02398043 2002-08-27

3/15

FIG. 6

1 # Shortcut collection references and their meanings

2 #

3 # Shortcut Meaning

4

S5 cat:auth:coll a full collection name reference

6 cat:auth: all collections in category at authority

{ cat:.coll this coll in this cat at default authority

8 cat:: all colls in this cat at default authority

9 .auth:coll this coll in all cats at this authority
10 :auth: all colls in all cats at this authority
11
12 current coll if inside a coll; invalid outside a coll
13 ... current coll and current dir if inside; invalid outside
14 .:mydir current coll and mydir if inside; invalid outside

[. . A..——Nwml'ﬂ' Ll R e s ms sqeme ses sgese « o . %8 o SS S, mas s, s, T L T2 e "‘mw.“**“"‘w““ PR - v e - . T dnmtn b e giei i e re— NN e e e s rvaus s TR

—
OQCOONONDWN-

NN IDMNN —m A)) o o oA
WN 2000 NOTOILLDEEWN -

Example collection specifier file containing two views

#

CA 02398043 2002-08-27

4/15

FIG. 7

collection c-myprogram

coli-home site/tools:mysite.com:.c-myprogram
cf-program-c
coll-desc A simple hello world program with libraries

coll-type

view view-1
view-type view-default

two libraries are stored as collections at mysite.com

coll site/tools:mysite.com:c-library-1
coll site/tools:mysite.com:c-library-2

one library is stored in a cvs repository at foo.com
cvs pserver.user@foo.com /usr/local/cvs checkout mytree

end-view

view view-2
view-type view-colls

coll products:colls.widgets.com:app-program-1
coll products:colls.widgets.com:app-program-2

end-view

end-collection

S AL S VR | R I AT IR R4 1 S = s e sl e A e

0 VA AR SR ¥ N G O SBPAA b VTVl (0 ol D I mm d - - e

ittty

N

OO ~NOOONBWN-

C OO NOOOPLAWN-

CA 02398043 2002-08-27

5/15

FIG. 8

Structure of a collection view member reference
<v-mem-ref-type><view-mem-expression><optional args>
#
v-mem-ref-type the type of the view member reference
e.g. default, collection, CVS, pathname
view-mem-expr expression for identifying member source tree
e.g. my-group:my-coll-host:my-collection
e.g. my-cvs-module-or-pathname
e.g. /home/smith/collections/my-collection
e.g. http://some-site.com/collections/my-directory
arguments optional arguments
e.g. —recursive, a text comment, or whatever

FIG. 9

Example collection view member references

a view member reference to a program collection
coll site/users/smith.my-company.com:my-c-program

a view member reference to a CVS module
cvs pserver.user@foo.com:/usr/local/cvs checkout myproj

a view member reference to a directory of files on a web server
http http://my-site.com/programs/my-program-directory

T T T AT T T ATTIN Ao 00 b et 19 -4 558 e, AN MUY WOt - o e T T S T IR M A 44 S gk A bt

ONH WN -

-
COONOOOONDHWN -

N NN - - Oy A o o A
N 22O OO0 00O ~NOOTLE, WN -

CA 02398043 2002-08-27

6/15

FIG. 10

name-coll-type.tbl:
a table of collection type names

name definition file

cf-program-c cf-program-c.def

cf-library-c cf-library-c.def

cf-doc-html cf-doc-html.def
FIG. 11

cf-program-c.def:
a definition file for a C program collection

collection content directory locations

dir_source _files ROOT/s

dir doc files ROOT/doc

content type recognition definitions

content_policy subtree below cspec file
content_file type .C file c

content_file type .h file_c _include

content_ file type doc file_ms_word
content_file_type html file_html

collection processing definitions

compile c files yes

compiler windows VC++

compiler_unix gcc

build platforms Win98, Win2000, gnulinux
process files compile link

link libraries stdio math sock

|

O~NONHELWN -~

-
COOONOO P WN -

S U L L G |
N WN -

CA 02398043 2002-08-27

7115

FIG. 12

name-coll-view-mem-ref-type.tbl
coll-view-mem-ref-type names and definition files

name definition-filename
#
default crt-default.def
coll crt-collection.def
CVS cri-cvs.def
http cri-http.def

FIG. 13

crt-collection.def

coll-ref-type definition for coll view mem ref type ‘coll’

#

name of the manager program that stores the collection
crt-managercss

number of arguments in a collection reference
crt-n-args 1

#

operations supported by the manager program
crt-process coll-checkout

cri-process coll-format

crt-process coll-build

crt-process coll-checkin

#
... other coll ref type definition attributes and values

U S P I 4TS St n s s e e tiaee 5 IR ORI T vk e s s N p——

QO NOOT A WN

OO NOONEWN -

10
11
12
13
14
15
16
17
18
19
20
21

CA 02398043 2002-08-27

8/15

FIG. 14

name-coll-view-type.tbl
view type names and definition files

name definition-filename

#

view-default cvt-view-default.def

view-colls cvi-view-colls.def

view-readonly cvt-view-readonly.def

view-docs cvt-view-docs.def
FIG. 15

cvt-view-default.def

coll-view-type definition for “view-default” collection views
#

put checked out view members into this subdirectory
cvi-view-dir views

#

these are view-level operations for the whole view

programs traverse all view members and apply these ops
cvi-process view-checkout

cvi-process view-gen-makefile

cvt-process view-build

cvi-process view-checkin

cvi-process view-cleanup

#

check out view members when parent is checked out
cvi-view-checkout yes

#

build view members when parent is built
cvt-view-build yes

#

... other coll view type definition attributes and values

GET COLL
VIEW
MEANS

GET COLL
VIEW REF
MEANS

111

111

CA 02398043 2002-08-27

9/15
FIG. 16
110
APPLICATION
PROGRAM
MEANS
120

COLL VIEW
EXPANDER
MEANS

FIG. 17
110
APPLICATION
PROGRAM
MEANS
140

COLL VIEW
EXPANDER
CLIENT MEANS

141

COLL VIEW
EXPANDER

SERVER MEANS

. 1 eeue s, wmw..“ﬂ.mmmmwhdmma vnd =y

USE COLL

VIEW INFO
MEANS

USE COLL
VIEW INFO
MEANS

112

112

CA 02398043 2002-08-27

10/15

FIG. 18

120 121

GET COLL
VIEW TYPE
NAME MEANS 123

COLL VIEW

EXPANDER
MEANS

1
2
3
4
o
6
7
8
9
0
1

122
GET COLL
VIEW TYPE COLL
DEF MEANS VIEW TYPE
DEFINITIONS
124
GET COLL VIEW
MEM REF TYPE
NAME MEANS 126
GET COLL VIEW
MEM REF TYPE COLL VIEW
DEF MEANS MEM REF TYPE
DEFINITIONS
127

GET COLL VIEW

MEM REFINFO
MEANS

FIG. 19

Simplified algorithm for coll view expander means

#

Receive coll view expansion request

Call get coll view type def name means

Call get coll view type definition means

Loop for each coll view member ref in coll view

- call get coll view member reference type def name means
- call get coll view member reference type definition means
- call get coll view member reference info means

- add coll view information to data structure

Return coll view information data structure to caller

—

T UMD IO . R, 7 T T T T Y A o 0 A TN ATV ST ST AT AN A et et

O ~NOOWHSL WON -

~NO AL WN -

O~NOONHE WN -

CA 02398043 2002-08-27

11/15

FIG. 20

A collection view type definition data structure
coll-view-type-def {

+ coll-view-type

+ attribute-01 value-01

+ attribute-02 value-02

+ attribute-value pairs

+ other coll-view-type-def information

FIG. 21

A collection view member reference data structure
coll-view-mem-ref {

+ coll-view-mem-ref-type

+ coll-view-mem-ref-member

+ coll-view-mem-ref-args

+ other coll-view-mem-ref information

FIG. 22

A collection view member ref type def data structure
coll-view-mem-ref-type-def {

+ coll-view-mem-ref-type

+ attribute-01 value-01

+ attribute-02 value-02

+ attribute-value pairs

+ other coll-view-mem-ref-type-def information

CA 02398043 2002-08-27

12/15

FIG. 23
1 # A decorated collection view data structure
2 coll-view-info {
3 + coll-view-name
4 + coll-view-type
5 + coll-view-type-definition-information
6 + attribute-value-pair-01
7 + attribute-value-pair-02
8 + coll-view-mem-refs
9 + coll-view-mem-ref-01
10 + coll-view-mem-ref-02
11 + other collection view member references
12 + coll-view-mem-ref-type-definitions
13 + coll-view-mem-ref-type-def-01
14 + other coll-view-mem-ref-type-defs
15 + other coll-view-info information
16}

— —

—— -

- O O O NOOONPL,WN-

- O OO ~NOODEWN -~

CA 02398043 2002-08-27

13/15

FIG. 24

source tree for parent hello world collection
#
c-myprogram
cspec
S
hello.c
hello.h
win98.plt
makefile
helio.obj
hello.exe

FIG. 25

source tree for collection “c-library-1"
#
c-library-1
cspec
S
library-1.c
library-1.h
win98.pit
makefile
library-1.0obj
c-library-1.lib

O OO NOOWPL,WN -~

—

-
N

13
14
15
16
17
18
19
20

21
22

23

CA 02398043 2002-08-27

14/15

FIG. 26

source tree for parent collection plus view members

#
c-myprogram
cspec
S
hello.c
hello.h
win98.pit
makefile
hello.obj
hello.exe

views

c-library-1

cspec

S
library-1.c
library-1.h

win98.plt
makefile
... other files for c-library-1

c-library-2

... other view members are checked out here

L R 3 g 1 TNV e I ' 1 E0T TN S A4 MR A T s L e L e e e

aadh
COWOWOAONOONPLELWN-

G G N
S WN -

. N
OCOWOO~NOOOPESWN -

- A A A .
N~ WN -

CA 02398043 2002-08-27

15/15

FIG. 27

Example of platform-dependent collection view references
#

collection c-myprogram

coll-home site/tools:mysite.com:c-myprogram

coll-type cf-c-program

coll-desc A simple hello world program with libraries

view view-1

view-type view-default

coll/win98 site/tools:mysite.com:c-library-1
coll/unix site/tools:mysite.com:c-library-2
coll/pi site/tools:mysite.com:c-library-3
end-view

end-collection

FIG. 28

A product-dependent collection view
#
collection c-myprogram

product product-1
prod-type cf-java-program

view view-1

view-type view-default

coll site/tools:mysite.com:c-library-4
coll site/tools:mysite.com:c-library-5
end-view

end-product
end-collection

110

APPLICATION

PROGRAM
MEANS

111 120 112

GET COLL COLL VIEW USE COLL
VIEW EXPANDER VIEW INFO
MEANS MEANS MEANS

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

