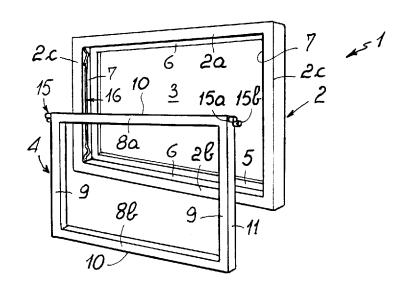
(12) (19) (CA) **Demande-Application**



(21) (A1) **2,237,211**

(22) 1998/05/08 (43) 1998/11/09

- (72) MENEGAZZO, Giovanni, US
- (71) MENEGAZZO, Giovanni, US
- (51) Int.Cl.⁶ E06B 3/26
- (30) 1997/05/09 (MI97A 001079) IT
- (54) CADRE DE FENETRE A EMPLOIS MULTIPLES AVEC CHASSIS BASCULANT
- (54) MULTI-PURPOSE WINDOW FRAME WITH A SHUTTER OF THE JUTTING AND BASCULE TYPE

(57) Cette invention concerne un cadre de fenêtre à emplois multiples avec châssis du type basculant, comportant les éléments suivants : un cadre fixe (2) présentant des faces internes horizontales (6) et verticales (7) définissant une ouverture (3) dans laquelle s'insère le châssis (4), dont les faces externes horizontales (10) et verticales (11) se placent contre lesdites faces internes (6, 7) dudit cadre fixe (2); un dispositif de fixation du châssis (4) au cadre fixe (2) constitué d'axes de pivotement (15) et de logements (20) pour ces axes de pivotement, plus précisément de deux paires d'axes de pivotement (15) faisant saillie sur l'une et l'autre des deux faces externes verticales (11) du châssis (4) et s'insérant et coulissant dans les chemins de guidage (16) sur les faces internes verticales (7), qui leur servent de logements (20) lorsque le châssis (4) est mis en place.

(57) A multi-purpose window frame with a shutter of the jutting and bascule type is disclosed, which comprises: a fixed framework (2) internally having horizontal (6) and vertical (7) borders, a mounting opening (3) delimited by said borders (6, 7), a shutter (4) insertable in the mounting opening (3) and externally having horizontal (10) and vertical (11) sidepieces to be positioned adjacent to the fixed framework borders (6, 7), and connecting means extending between the shutter (4) and framework (2) and comprising pivot pins (15) and seatings (20) for the pins, the connecting means comprising two pairs of pivot pins (15), each projecting from one of the vertical sidepieces (11) of the shutter (4) and each insertable in an adjacent vertical border (7), and guide channels (16) formed in the vertical borders (7), to be traveled over by said pivot pins (15) and internally forming pairs of seatings (20) defining steady positions of the shutter (4).

ABSTRACT OF THE DISCLOSURE

A multi-purpose window frame with a shutter of the jutting and bascule type is disclosed, which comprises: a fixed framework (2) internally having horizontal (6) and vertical (7) borders, a mounting opening (3) delimited by said borders (6, 7), a shutter (4) insertable in the mounting opening (3) and externally having horizontal (10) and vertical (11) sidepieces to be positioned adjacent to the fixed framework borders (6, 7), and connecting means extending between the shutter (4) and framework (2) and comprising pivot pins (15) 10 and seatings (20) for the pins, the connecting means comprising two pairs of pivot pins (15), each projecting from one of the vertical sidepieces (11) of the shutter (4) and each insertable in an adjacent vertical border (7), and guide channels (16) formed in the vertical borders (7), to be traveled over by said pivot pins (15) and internally forming pairs of seatings (20) defining steady positions of the shutter (4).

MULTI-PURPOSE WINDOW FRAME WITH A SHUTTER OF THE JUTTING AND BASCULE TYPE

Field of the Invention

1

20

The invention relates to a multi-purpose window frame with a shutter of the jutting and bascule type.

It is known that window frames with a shutter of the jutting and bascule type are widespread in the case of small windows having a major horizontal extension and above all for rooms and premises where relatively simple window frames are preferred, such as cellars and attics.

Description of the Prior Art

These window frames have a fixed framework delimiting a mounting opening where a shutter of the jutting and bascule type is inserted, said shutter currently consisting of a glazed panel. Also provided are connecting elements engaging the jutting and bascule shutter in a manner adapted to enable rotation of same about a horizontal crosspiece.

Practically the jutting and bascule shutter can rotate in the fixed framework about a horizontal rotation axis extending along an upper or lower horizontal crosspiece thereof.

The rotation axis is defined by hinges or pins in alignment with the rotation axis.

The open position is made steady by appropriate tie rods, if rotation takes place at the lower crosspiece and opening occurs on top, or by struts if rotation takes place at the upper crosspiece and opening occurs at the bottom.

These window frames have some drawbacks.

A first drawback consists in that purchasers are obliged to make an immediate and definitive choice between an upper opening and a lower opening.

If the frame opening takes place outwardly, rotation about
the upper crosspiece offers the advantage of protecting from
rain in the open position as well, but it has the drawback
that light passage is reduced, above all if the glass is of
the semitransparent type.

On the contrary, rotation about the lower crosspiece enables the maximum light passage, when the window is in the open position, and ensures maximum safety, since the window base is always closed, but if the shutter is open, in case of bad weather there is conveyance of rain inwardly, for example. If the shutter opening takes place inwardly, rotation about the upper crosspiece gives the greatest brightness, but there is also a complete exposure to the inclemency of the weather, whereas rotation about the lower crosspiece gives the maximum of safety.

The optimal choice among the different possibilities also depends either on the height of these windows from the ground, as said windows are often used as cellar windows and therefore located not very far from the ground level, or on the presence of upper protections, such as balconies located above the windows.

10

2.0

30

Practically, due to the above variety of situations, the initial choice may prove to be wrong in a second time. In this case it is necessary to intervene by carrying out complicated works for reversing the opening position.

A second drawback resides in that in many cases these windows have either a reduced aperture, due to the difficulty of locking and holding the shutter when the latter is completely in cantilevered fashion, or a single steady open position. For this reason there are also windows the shutter of which is hinged on an axis intermediate the fixed framework: by this solution the shutter is in equilibrium and can be positioned at any angle, even at a completely transverse location relative to the fixed framework.

However, with an intermediate axis, there is a problem in that the open shutter takes up room both inwardly and outwardly. This situation can be unacceptable for practical reasons, when cumbersome bulks are not admitted at the outside or at the inside.

A further drawback of window frames with a jutting and bascule shutter resides in cost of same: although they are of simple construction, they are expensive, due above all to the presence of hinges and tie rods or struts that need to be arranged in a precise manner and must be strong, due to the cantilevered loads they involve. In addition, all elements must be submitted to a mounting step that, if carried out by

qualified staff, greatly increases costs.

2.0

30

Summary of the Invention

Under this situation the technical task of the present invention is to devise a frame capable of obviating the above mentioned drawbacks.

Within the scope of this technical task, it is an important aim of the invention to devise a frame to be used both for shutters rotating about their lower crosspiece, and for shutters rotating about their upper crosspiece.

A further aim is to devise a frame in which the shutter offers a plurality of open positions, while in the absence of tie rods and struts.

Another important aim of the invention is to devise a frame formed of a minimum number of elements, which is cheap, strong, of easy setting up and use.

The technical task mentioned and the aims specified are substantially achieved by a multi-purpose window frame with a shutter of the jutting and bascule type comprising: a fixed framework internally having horizontal and vertical borders, and abutment projections defining an abutment plane transverse to and contiguous with said borders, a mounting opening delimited by said borders, a shutter to be inserted into said mounting opening and externally having horizontal and vertical sidepieces to be positioned adjacent to said borders of said fixed framework, and connecting means extending between said shutter and fixed framework and comprising pivot pins and seatings for said pivot pins, said connecting means comprising two pairs of said pivot pins, each projecting from one of said vertical sidepieces of said shutter and each insertable into one of said vertical borders, and guide channels formed in said vertical borders along which said pivot pins can run and internally delimiting a plurality of pairs of said seatings.

Brief Description of the Drawings
Further features and advantages are highlighted in the
detailed description of a window frame in accordance with the
invention, illustrated in the accompanying drawings, in
which:

- Fig. 1 diagrammatically shows the framework and shutter of a window frame in accordance with the invention, in a perspective and exploded view;
 - Fig. 2 is a vertical section of the frame, in an assembled and closed position;
 - Fig. 3 shows in a detailed vertical section how the framework of the window frame appears in an isolated position;
 - Fig. 4 is a front view of a shutter portion, seen in a position of rotation about its upper crosspiece;

- Fig. 5 diagrammatically shows an overall section in which the shutter, represented simplified, in chain lines and rotating about its upper horizontal crosspiece, is in a closed position relative to the framework:
- Fig. 6 is a diagrammatic overall section in which two open positions of the shutter are shown in chain lines, said shutter being represented simplified and rotating about its upper horizontal crosspiece;
- Fig. 7 is a front view of a shutter portion, in the position of rotation about its lower crosspiece;
 - Fig. 8 is an overall section in which the shutter, represented simplified, in chain lines and rotating about its lower horizontal crosspiece, is in a closed position relative to the framework; and
 - Fig. 9 is a diagrammatic overall section in which two open positions of the shutter are shown in chain lines, which shutter is represented simplified and rotating about its lower horizontal crosspiece.
- Description of the Preferred Embodiment

 With reference to the drawings, the window frame in accordance with the invention has been generally identified by reference numeral 1.

It comprises a framework 2 to be fastened to a wall, having shaped rods, horizontal rods 2a, 2b and vertical rods 2c, for example. The horizontal rods in the solution shown are comprised of one upper horizontal rod 2a and one lower horizontal rod 2b.

Irrespective of how it is made, framework 2 internally

delimits at least one mounting opening 3 where a shutter 4, a glazed panel for example, is inserted.

In particular, shutter 4 is inserted against abutment projections defining an abutment plane 5 coincident with the main extension plane of framework 2. Shown in Fig. 3 is a mounting axis, denoted by 5a, centrally passing through the mounting opening 3, in a direction perpendicular to the abutment plane 5.

The mounting opening 3 is surrounded by surfaces or borders
extending on the inner faces of the shaped rods of framework

In particular there are horizontal borders 6 and vertical borders 7, substantially flats and perpendicular to and contiguous with the abutment plane 5.

Shutter 4 is made up of crosspieces and posts and is externally delimited by surfaces or sidepieces that are positioned adjacent to borders 6 and 7 of framework 2. In more detail, shutter 4 has a first and a second crosspiece 8a, 8b and posts 9 perpendicular to crosspieces 8a, 8b and joining the latter.

The first crosspiece 8a can substantially rotate about its extension axis when shutter 4 is mounted on the fixed framework 2, whereas the second crosspiece 8b is movable and oscillatable for opening and closing shutter 4.

The surfaces or sidepieces on the outer faces of crosspieces 8a, 8b and posts 9 are divided into horizontal sidepieces 10, located on crosspieces 8a, 8b and to be positioned adjacent and parallel to the horizontal borders 6 of framework 2, and vertical sidepieces 11 located on posts 9 and to be positioned adjacent to the vertical borders of framework 2.

Physical connection between the fixed framework 2 and shutter 4 is obtained by connecting means in particular comprising sealing elements 12, closing elements 13a, 13b and hinging elements 14.

30

The sealing elements 12 comprise several different seals made of rubber or plastic material, integral with a shutter 4 face for example, as shown in Fig. 2.

The closing elements, as shown in Fig. 2 as well, comprise a bolt 13a passing through the second crosspiece 8b, and

1 corresponding cavities 13b formed in both the horizontal borders 6.

The hinging elements 14 enable rotation of shutter 4 about its first crosspiece 8a and extend both close to pivotal-mounting regions 11a on the vertical sidepieces 11 of shutter 4, and close to support regions 7a, 7b on the vertical borders 7 of framework 2.

As shown in Figs. 1, 4 and 7, each of the vertical sidepieces 11 of shutter 4 has a pivotal-mounting region 11a which is in alignment with the first crosspiece 8a and from which a pair of cylindrical pivot pins 15 emerge that are perpendicular to the vertical sidepieces 11 and turned to the vertical borders 7.

10

2.0

30

In each pair there is a first pivot pin 15a and a second pivot pin 15b which are spaced from each other by a distance corresponding to the shutter 4 thickness.

The first pivot pin 15a is the farther from the abutment plane 5, when shutter 4 is in the closed position, and is located at one end of the related vertical sidepiece 11, at the boundary with a horizontal sidepiece 10.

Practically, the first pivot pin 15a emerges from a corner of the vertical sidepiece 11.

In addition, pivot pins 15 in each pair are placed along an alignment direction inclined at an angle of about thirty degrees relative to the adjoining horizontal sidepiece 10, and at an angle of about sixty degrees relative to the abutment plane 5, as shown in Figs. 5 and 8.

The support regions 7a, 7b comprise an upper support region 7a and a lower support region 7b, placed at the upper and lower ends respectively of each vertical border 7 of framework 2.

Formed on these support regions 7a, 7b are main portions of a guide channel 16, grooved into the framework 2 and the width in section of which is based on the size of pivot pins 15. In detail, as shown in particular in Fig. 3, the guide channel 16 in each of said support regions 7a, 7b has lengths at least partly symmetrical with each other, defined by a first furrow 17 and a second furrow 18 consecutive and

perpendicular to each other. 1

10

20

30

The first furrow 17 and second furrow 18 together define a right-angled shape the vertex of which is turned to the abutment plane 5.

Each first furrow 17 begins in a blind configuration from a corner of a vertical border 7, close to a horizontal border 6, and with an inclination of substantially thirty degrees relative to the adjacent horizontal border 6 and of substantially sixty degrees relative to the abutment plane 5. It has the same length as the distance between the first and

second pivot pins 15a, 15b.

Therefore, the pivot pins 15 of each pivotal-mounting region 11a engage the ends of the first furrow 17 when shutter 4 is in a closed position, as shown in Figs. 5 and 8.

Each second furrow 18 is then connected to a long intermediate cut 19 extending parallelly to the abutment plane 5 and joining the second furrows 18 together. The first and second furrows 17 and 18 form a plurality of

pairs of seatings 20 for pivot pins 15, so as to define a plurality of positions for shutter 4. These seatings 20 are defined by blind ends or niches of the furrows themselves. In more detail, there are two end seatings 20a located at the blind ends of the first furrows 17 respectively, on the corners of each vertical border 7.

Then, there are two vertex seatings 20b at the central vertex of each square formed by the two furrows 17 and 18. Two intermediate seatings 20c are placed along the second furrows 18, and abutment seatings 20d are placed at the ends of the second furrows 18 spaced apart a greater distance from said vertex.

Two auxiliary seatings 20e are finally provided: one along the second upper furrow 18, that is located on the side of the upper support region 7a, and one along the first lower furrow 17, on the side of the lower support region 7b. The seatings individually identified above can be operatively associated with each other in pairs so as to form, in each support region 7a, 7b, three pairs of seatings corresponding to three steady positions of shutter 4: a closed position, a

partially open position and a completely open position.

Each pair comprises two seatings spaced apart from each other by the same distance as between the two pivot pins 15.

Briefly, in a closed position the first pivot pin 15a engages the end seating 20a and the second pivot pin 15b engages the vertex seating 20b.

In a position of partial opening shutter 4 is such located that the second pivot pin 15b engages the intermediate seating 20c. Finally, in a position of complete opening the second pivot pin 15b engages the abutment seating 20d. In more detail, a first pair of seatings comprises an end seating 20a and a vertex seating 20b: this first pair defines the closed position of shutter 4 shown in Figs. 5 and 8 and the second pivot pin 15b is located in the vertex seating 20b.

10

2.0

A second pair of seatings defines the position of partial opening of shutter 4 and still comprises an intermediate seating 20c in which the second pivot pin 15b fits, when it leaves the former position. Associated with this intermediate seating 20c is, depending on whether the upper 7a or lower 7b support region is concerned, an upper vertex seating 20b or a lower auxiliary seating 20e.

A third pair of seatings still comprises an abutment seating 20d in which the second pivot pin 15b fits, as the last position of said pivot pin. Associated with this abutment seating is, depending on whether the upper support region 7a or lower support region 7b is concerned, an upper auxiliary seating 20e or a lower vertex seating 20b. This third pair defines the position of complete opening of shutter 4.

In accordance with the invention, in addition, the framework 2 and shutter 4 are each of one piece construction and made of molded plastic material, and pivot pins 15 are arranged integral with shutter 4 during the molding step. For instance, pivot pins 15 can be made of metal and fitted into the molds so as to be perfectly integral with the window frame 1.

Preferably however, pivot pins 15 too are made of plastic material and exactly the same material as said framework and

shutter, and consequently they are made during the molding step too.

The plastic material used is injection-molded polypropylene or an externally rigid and internally foamed two-component material. By the last-mentioned solution a shrinkage phenomenon is avoided.

Use of the window frame is as follows.

The window frame appears formed of only two elements, framework 2 and shutter 4, and there are no hinges to be applied for making the two pieces integral with each other. 10 Engagement between the two elements is obtained, with reference to Figs. 1 and 3, by grasping shutter 4 - initially parallel to framework 2 - and rotating the same about its first crosspiece 8a until pivot pins 15 on each sidepiece 11 are vertically aligned in parallel relationship with the intermediate cut 19. Then, while keeping this position of pivot pins 15, the first crosspiece 8a is inclined causing a slight rotation of shutter 4 about the mounting axis 5. In this position pivot pins 15 can be fitted in the 20 intermediate cut 19 and the first crosspiece 8a can be then brought back to a horizontal position.

If initially pivot pins 15 are at an upper position, as shown in Fig. 1, it is necessary to make pivot pins 15 slide upwardly until they take place in seatings 20a and 20b of the first upper furrow 17.

When assembled in this manner, the window frame 1 appears of the type having a shutter rotating about an upper rotation axis, adjacent to the upper horizontal rod 2a of framework 2. However it is also possible to make the shutter rotate about a lower rotation axis, adjacent to the lower horizontal rod 2b of the fixed framework 2.

30

As a matter of fact, the above described assembling operations can be executed starting from a position in which the first crosspiece 8a is at the lower part of shutter 4, as shown in Fig. 7.

Practically the shutter in Fig. 1 is to be overturned through 180 degrees about the mounting axis 5a or in a plane parallel to the abutment plane 5.

In this case, once pivot pins 15 have been fitted in the intermediate cut 19, they are caused to slide downwardly until they reach the first lower furrow 17.

Bolt 13a is usable in both cases, since the cavity 13b is provided on both the horizontal borders 6a, 6b.

Irrespective of how it has been mounted, shutter 4 has three use positions.

As shown in Figs. 5 and 8, the first position is the closed one, with pivot pins 15 in the first pair of seatings 20a and 20b. This position is made steady by the framework weight and by the bolt 13a.

The intermediate position is reached by a gradual opening bringing pivot pins 15 into the second pair of seatings, formed by one seating 20c and one seating 20b or 20e, as shown in Figs. 6 and 9.

10

By a further rotation, as still shown in Figs. 6 and 9, a position of complete opening is reached, with pivot pins 15 fitted into the third pair of seatings, formed of one seating 20d and one seating 20e or 20b.

The last-mentioned position is completely steady because the weight of shutter 4 and its being positioned in cantilevered fashion prevent the shutter itself from carrying out further movements, its displacement taking place only if it is manually raised.

In conclusion, it is pointed out that the envisaged window frame, made of only two pieces, is of simple structure, low cost and easy mounting. Above all, it can be indifferently mounted so as to rotate about a lower or upper sidepiece, and mounting can be redone and modified practically immediately.

Irrespective of how mounted, the window frame has three use positions that are steady without requiring the presence of tie rods or struts.

CLAIMS

1. A multi-purpose window frame with a shutter of the jutting and bascule type, comprising:

1

10

2.0

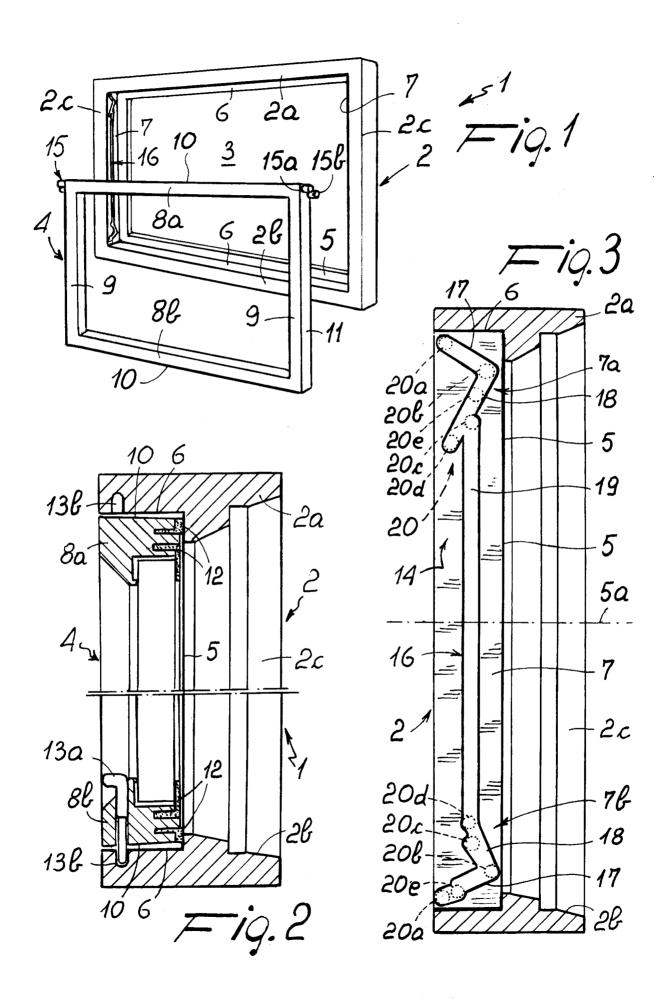
30

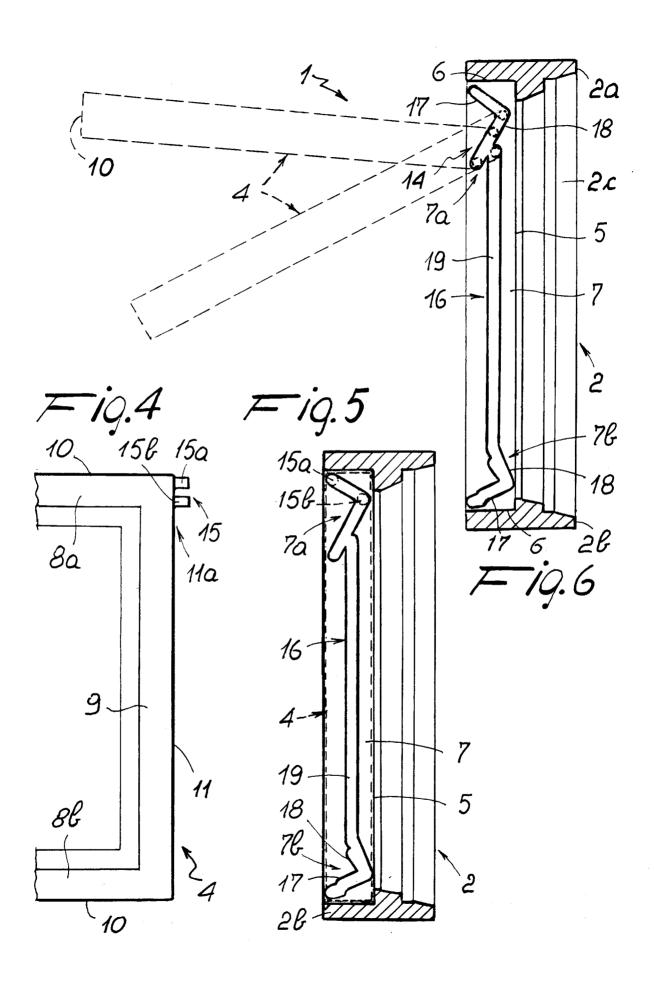
- -a fixed framework (2) internally having horizontal (6) and vertical (7) borders, and abutment projections defining an abutment plane (5) transverse to and contiguous with said borders (6, 7),
 - -a mounting opening (3) delimited by said borders (6, 7),
- -a shutter (4) insertable in said mounting opening (3) and externally having horizontal sidepieces (10) and vertical sidepieces (11) to be positioned adjacent to said borders (6, 7) of said fixed framework (2),
- -and connecting means extending between said shutter (4) and fixed framework (2) and comprising pivot pins (15) and seatings (20) for said pins (15),
- -said connecting means comprising two pairs of said pivot pins (15) each projecting from one of said vertical sidepieces (11) of said shutter (4) and each insertable in one of said vertical borders (7), and guide channels (16) formed in said vertical borders (7), that can be traveled over by said pivot pins (15) and internally delimiting a plurality of pairs of said seatings (20).
- 2. A window frame as claimed in claim 1, wherein said vertical sidepieces (11) of said shutter (4) comprise, at one end thereof, a pivotal-mounting region (11a) supporting a pair of said pivot pins (15), and wherein said vertical borders (7) of said framework (2) have, at their ends, upper (7a) and lower (7b) support regions for said pivot pins (15), said guide channels (16) extending at least at said upper (7a) and lower (7b) support regions and said shutter (4) being susceptible of engagement with said framework (2) at two positions rotated through 180 degrees from each other in a plane parallel to said abutment plane (5).
- 3. A window frame as claimed in claim 2, wherein said guide channels (16) have similar shapes in said upper support regions (7a) and lower support regions (7b).
- 4. A window frame as claimed in claim 2, wherein said guide channels (16) continuously extend between said upper

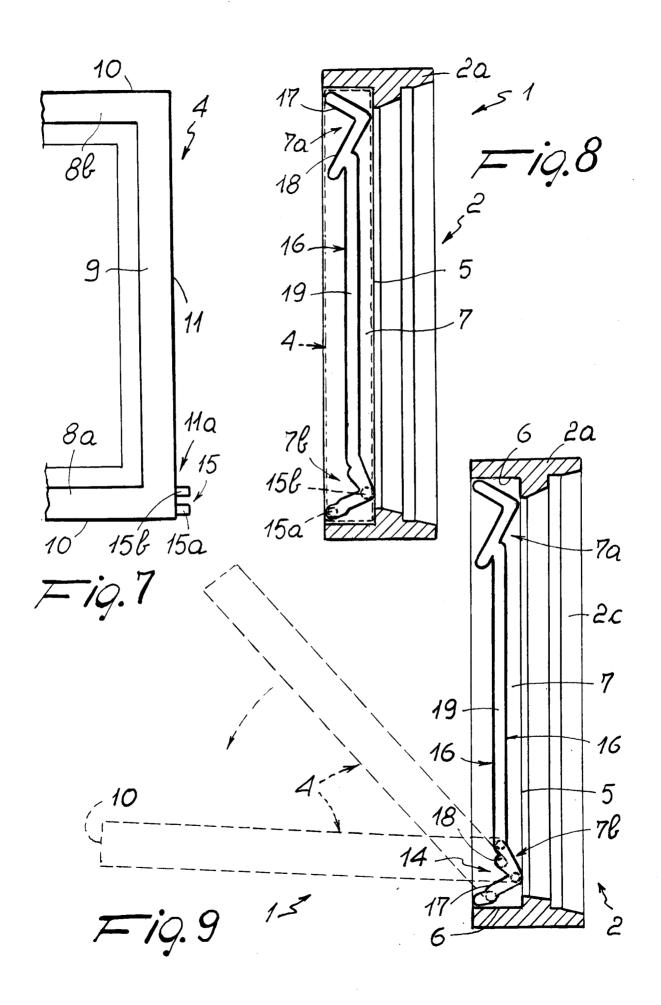
- 1 support regions (7a) and lower support regions (7b) of said fixed framework (2).
 - 5. A window frame as claimed in claim 1, wherein each of said guide channels (16) can be traveled over by one of said pairs of pivot pins (15).
 - 6. A window frame as claimed in claim 5, wherein said pivot pins (15) in each pair are made up of a first pivot pin (15a) and a second pivot pin (15b) spaced apart from each other by a distance corresponding to the thickness of said shutter (4), wherein said first pivot pin (15a) is located close to a corner of one said vertical sidepiece (11) of said shutter (4), and wherein said first and second pivot pins (15a, 15b) are aligned in a direction forming an angle of substantially thirty degrees with an adjacent horizontal sidepiece (10) of said shutter (4).

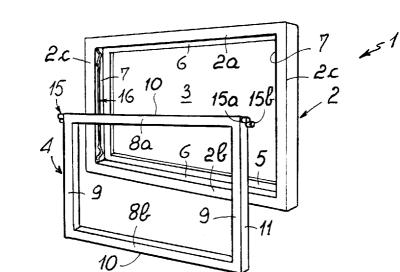
20

30


- 7. A window frame as claimed in claim 6, wherein each vertical border (7) of said fixed framework (2) is provided with a guide channel (16) having at least one first furrow (17) extending from a corner of one said vertical border (7) and one second furrow (18) consecutive and perpendicular to the first one, said first and second furrows (17, 18) defining a right-angled shape with a vertex turned to said abutment plane (5) and said first furrow (17) substantially having an inclination of thirty degrees relative to an adjacent horizontal border (6) of said framework (2), said first furrow (17) having the same length as the distance between said first and second pivot pins (15a, 15b).
- 8. A window frame as claimed in claim 7, wherein said guide channel (16) comprises at least one end seating (20a) located at a blind end of said first furrow (17), one vertex seating (20b) located at the vertex of said square formed by said first and second furrows (17, 18), one intermediate seating (20c) located along said second furrow (18), one abutment seating (20d) located at the end of said second furrow (18) different from said vertex, and an auxiliary seating (20e) located along said furrow and distinct from said intermediate seating (20c).
 - 9. A window frame as claimed in claim 8, wherein said


- seatings (20) can be associated so as to form three pairs, each of which is adapted to engage said first and second pivot pins (15a, 15b) in order to selectively define a closed position, a position of partial opening and a position of complete opening of said shutter (4) relative to said framework (2), in each of said pairs being included two of said seatings (20) spaced apart from each other a distance corresponding to the distance between said first and second pivot pins (15a, 15b).
- 10. A window frame as claimed in claim 9, wherein in said closed position said first pivot pin (15a) engages said end seating (20a) and said second pivot pin (15b) engages said vertex seating (20b), wherein in said partially-open position said second pivot pin (15b) engages said intermediate seating (20c), and wherein in said completely- open position said second pivot pin (15b) engages said abutment seating (20d).
 - 11. A window frame as claimed in claim 10, wherein each vertical border (7) of said fixed framework (2) is provided with a guide channel (16) having said right-angled shape and said seatings (20) close to both the ends of said vertical border (7), and wherein provision is made for an intermediate cut (19) joining said second furrows (18) together.


2.0


30

- 12. A window frame as claimed in claim 1, wherein said connecting means comprises a bolt (13a) in engagement with said shutter (4) and passing through one of said horizontal sidepieces (10), and cavities (13b) for said bolt (13a) passing through both said horizontal borders (6) of said fixed framework (2).
- 13. A window frame as claimed in claim 1, wherein each of said fixed framework (2) and shutter (4) are of one piece construction and made of molded plastic material, and wherein said pivot pins (15) are made integral with said shutter (4) during the molding step of same.
 - 14. A window frame as claimed in claim 13, wherein said pivot pins (15) are made of plastic material and of one piece construction with said shutter (4), by a molding step.

