发明名称
显示设备和显示方法

摘要
本发明涉及显示设备和显示方法。显示设备包括：获得单元，用于获得与要检查的人体相关信息；形成单元，用于基于所获得的信息中包括的、射线拍摄设备针对要检查的人体的射线拍摄范围的信息，而将示出射线拍摄设备的射线拍摄范围的图形形成到要检查的人体的身体图上；以及显示控制单元，用于控制显示单元显示所形成的图形。
1. 一种显示设备，包括：
 获得单元，用于获得与要检查的人体相关联的信息；
 形成单元，用于基于所述获得单元所获得的信息中包括的，与射线拍摄设备对所述要
 检查的人体进行射线拍摄的区域有关的信息，在所述要检查的人体的身体图上形成示出所
 述射线拍摄设备进行射线拍摄的区域的标记；以及
 显示控制单元，用于控制显示单元，以显示所述单元所形成的标记。
2. 根据权利要求1所述的显示设备，其特征在于，所述单元包括图形、图像和符号。
3. 根据权利要求1所述的显示设备，其特征在于，所述单元针对不同的射线拍摄
 设备形成不同的标记。
4. 根据权利要求1所述的显示设备，其特征在于，所述单元显示控制单元控制所述显示单元，以显示示出所述单元的大小的标度。
5. 根据权利要求1所述的显示设备，其特征在于，所述单元所获得的信息还包括与进行了射线拍摄的所述人体的高度有关的信息，并且所述单元反映所述高度。
6. 根据权利要求1所述的显示设备，其特征在于，所述单元所获得的信息还包括与所述人体在进行射线拍摄时的姿势有关的信息，并且所述单元反映所述姿势。
7. 根据权利要求1所述的显示设备，其特征在于，所述单元所获得的信息还包括与在进行射线拍摄时作用于所述人体的重力方向有关的信息，并且所述单元控制所述显示单元，以显示示出所述重力方向的标记。
8. 根据权利要求1所述的显示设备，其特征在于，将所述与要检查的人体相关联的信息作为与多个医学图像相关联的列表显示在所述单元上，并且所述单元还获得与在所述列表上指定的位置相对应的信息。
9. 一种显示方法，包括：
 获得与要检查的人体相关联的信息；
 基于所获得的信息中包括的，与射线拍摄设备对所述要检查的人体进行射线拍摄的区
 域有关的信息，在所述要检查的人体的身体图上形成示出所述射线发射设备进行射线拍摄
 的区域的标记；以及
 控制显示单元，以显示所形成的标记。
10. 一种显示设备，包括：
 列表显示单元，用于以列表的形式显示多个医学图像的显示项；
 选择单元，用于从所显示的多个医学图像中选择一个医学图像；以及
 标记显示单元，用于在人体的身体图上的适当位置处显示出所选择的医学图像的属
 性信息的标记。
11. 根据权利要求10所述的显示设备，其特征在于，所述单元显示单元通过对所选择
 的医学图像的多个属性信息使用不同的标记，在所述身体图的适当位置处显示多个标
 记。
12. 一种显示设备，包括：
 列表显示单元，用于以列表的形式显示多个医学图像的显示项；
 获得单元，用于从所显示的多个医学图像中获得具有同一患者ID的多个医学图像；以
标记显示单元，用于在人体的身体图上的适当位置处同时或逐次显示出所获得的多个医学图像的属性信息的标记。

13. 一种显示方法，包括：
以列表的形式显示多个医学图像的显示项；
从所显示的多个医学图像中选择一个医学图像；以及
在人体的身体图上的适当位置处显示出所选择的医学图像的属性信息的标记。
显示设备和显示方法

技术领域
[0001] 本发明涉及用于显示要检查的人体的射线拍摄 (radiographing) 范围的技术。

背景技术
[0002] 现有技术中医学图像的列表显示设备将列表显示项 (射线拍摄信息, 患者的属性信息, 医学图像的属性信息) 作为字符串进行显示。通常，在列表的一行上显示与一次检查（射线拍摄）所获得的医学图像有关的列表显示项。
[0003] 日本特开 2008-264167 公开了以下技术：当用户在通过字符串显示的医学图像列表上选择一个医学图像时，在人体的身体图上示出显示医学图像的射线拍摄区域和图像类型的图。因此，用户可以容易地辨别所选择的医学图像的射线拍摄区域和图像类型。

发明内容
[0004] 然而，根据上述参考文献公开的技术，由于使用了通过人体模型的区域图像示出射线拍摄区域的方法，因而难以示出与所准备的区域图像不一致的射线拍摄区域。而且，根据上述参考文献公开的技术，不能示出患者进行射线拍摄时的姿势，即患者相对于射线拍摄设备或重力方向的姿势。此外，有存在同一患者的不同医学图像的情况，例如对同一患者进行不同检查（使用不同方式 (modality) 的射线拍摄）的情况，或者在多次进行射线拍摄的情况等。然而，根据现有技术，该处理不能实现以下效果：在图上示出同一患者的多个医学图像，并且在图上与医学图像同时地示出多个医学图像的属性信息。因此，通过现有技术容易地辨别信息是有限的。存在以下的问题：用户不能容易地辨别有用的信息，例如，患者的确切的射线拍摄区域、患者在射线拍摄时的姿势、同一患者的多个医学图像的属性信息。考虑到这些问题做出了本发明，并且本发明的目的是提供可以解决上述问题的设备。
[0005] 为了解决上述问题，本发明提供一种显示设备，包括：获得单元，用于获得与要检查的人体相关联的信息，形成单元，用于基于所述获得单元所获得的信息中包括的射线拍摄设备对所述要检查的人体进行射线拍摄的区域有关的信息，在所述要检查的人体的身体图上形成示出所述射线拍摄设备进行射线拍摄的区域的标记；以及显示控制单元，用于控制显示单元，以显示所述形成单元所形成的标记。
[0006] 本发明还提供一种显示方法，包括：获得与要检查的人体相关联的信息，基于所述获得的信息中包括的射线拍摄设备对所述要检查的人体进行射线拍摄的区域有关的信息，在所述要检查的人体的身体图上形成示出所述射线拍摄设备进行射线拍摄的区域的标记；以及显示控制单元，以显示所述形成的标记。
[0007] 本发明还提供一种显示设备，包括：列表显示单元，用于以列表的形式显示多个医学图像的显示项；选择单元，用于从所显示的多个医学图像中选择一个医学图像；以及标记显示单元，用于在人体的身体图上的适当位置处显示所选择的医学图像的属性信息的标记。
本发明还提供一种显示设备，包括：列表显示单元，用于以列表的形式显示多个医学图像的显示项；获得单元，用于从所显示的多个医学图像中获得具有同一患者 ID 的多个医学图像；以及标记显示单元，用于在人体的身份图上将适当位置处同时或延时显示所获得的多个医学图像的属性信息的标记。

本发明还提供一种显示方法，包括：以列表的形式显示多个医学图像的显示项；从所显示的多个医学图像中选择一个医学图像；以及在人体的身份图上的适当位置处显示所选择的医学图像的属性信息的标记。

根据本发明的显示设备，可以容易地辨别需要检查的人体的射线拍摄范围。

通过以下参考附图对典型实施例的说明，本发明的其它特征将变得明显。

附图说明

图 1 是示出根据第一和第二实施例的显示设备的结构示例的图。
图 2 是示出根据第一实施例的显示设备的第一显示画面的显示示例的图。
图 3 是示出根据第一实施例的显示设备的第二显示画面的显示示例的图。
图 4 是示出根据第一实施例的显示设备的第三显示画面的显示示例的图。
图 5 是示出根据第一实施例的显示设备的控制过程的流程图。
图 6 是示出根据第二实施例的显示设备的第一显示画面的显示示例的图。
图 7 是示出根据第二实施例的显示设备的控制过程的流程图。

具体实施方式

以下将参考附图说明根据本发明的显示设备及其控制方法的典型实施例。本发明的范围不限于图中示出的例子。

第一实施例

图 1 是示出根据第一实施例的显示设备的结构示例的图。显示设备 1 具有控制单元 10、显示器 104、鼠标 105 和键盘 106。控制单元 10 具有中央处理单元 (CPU) 100、主存储器 101、磁盘 102 和显示存储器 103。CPU 100 执行主存储器 101 中存储的程序，从而进行诸如与医学图像数据库 2 的通信和显示设备 1 的整体控制等的各种控制。

CPU 100 主要控制显示设备 1 的各组成元件的操作。主存储器 101 存储 CPU 100 所执行的控制程序，并提供 CPU 100 执行程序时的工作区域。磁盘 102 存储操作系统 (OS)、外围装置的装置驱动程序和包括用于进行后述的诊断支持处理的程序的各种应用程序软件等。显示存储器 103 临时存储用于显示器 104 的显示数据。显示器 104 是例如 CRT 监视器或液晶监视器等，并基于来自显示存储器 103 的数据显示图像。鼠标 105 和键盘 106 用于由用户（医生）使用来进行指向输入和字符等的输入。通过公共总线 107 连接以上组成元件，以使得可以相互通信。

在本实施例中，显示设备 1 可以通过 LAN（局域网）3 从医学图像数据库 2 中读出图像数据。可以使用已有的 PACS（Picture Archiving and Communication System，图像编档和通信系统）作为医学图像数据库 2。还可以用以下方式构造：将诸如 FDD、HDD、CD 驱动器、DVD 驱动器、MO 驱动器或 ZIP 驱动器等的外部存储装置连接至显示设备 1，并且从这些驱动器中读出图像数据。
可以通过使用一般的计算机及其外围装置来实现上述设备结构。可以将以下使用图5所述的根据本发明的显示设备的控制过程实现为在计算机上执行的程序。

作为医学图像的类型，存在单纯X射线图像、X射线CT图像、MRI图像、PET图像、SPECT图像和超声波图像等。通常，将医学图像存储为符合称为DICOM标准的与医学图像的通信和存储有关的国际标准规范的文件（DICOM文件）。在DICOM文件的前半部分（报头部）中记录诸如射线拍摄信息、患者的属性信息和医学图像的属性信息等的各种信息。可以使用这些信息的一部分作为列表显示项。或者，可以将LAN3从用于指示DICOM文件的创建和存储的系统的放射科信息系统（RIS）（未示出）接收的射线拍摄信息、患者的属性信息和医学图像的属性信息等。

图2是示出根据第一实施例的显示设备的第一显示画面的显示示例的图。在图中，在医学图像列表210上将列表显示项显示为字符串。在该图的例子中，在行的各行显示通过一次检查（射线拍摄）所获得的医学图像有关的列表显示项。在该图的例子中，作为列表显示项显示读取状态、射线拍摄日期、检查ID、系列数、图像的数量、患者ID、方式、射线拍摄区域和请求科室。读取状态表示图像诊断的进度情况。系列数显示通过CT或MRI的某一次射线拍摄所获得的多个切片图像的集合的数量。图像的数量显示通过一次检查射线拍摄的所有系列的图像的数量。方式显示射线拍摄设备的类型和是否使用造影剂。作为其它项，可以显示诸如患者的姓名和图像诊断医生的名字等。

在图形信息显示区域220中显示用作人体的身体图的图形HI，示出医学图像II的预定属性信息AI的图形F1和示出患者的尺寸和射线拍摄范围的大小的标度MI。使用图形HI示出示用于以图形方式显示人体的信息。可以使用图像或符号等其它标记来代替图形。类似地，使用图形F1示出示用于以图形方式显示医学图像II的预定属性信息AI的信息。可以使用图像或符号来代替图形。根据需要来显示标度MI。医学图像II是由用户在医学图像列表210上选择的医学图像。在该图的例子中，使用射线拍摄区域作为医学图像的预定属性信息AI。在适当地示出医学图像II的射线拍摄区域的位置处将图形F1显示为示出射线拍摄范围的矩形。针对图形HI将图形F1配置在适当的位置。因此，如果可以使用更精确的射线拍摄位置信息来代替射线拍摄区域，则可以在精确的射线拍摄位置处以精确的矩形大小来显示图形F1。例如，存在以下情况：在胸部区域的CT图像的DICOM文件的报头部，以毫米为单位标记沿坐标轴的精确的射线拍摄范围，在该坐标轴中，将锁骨设置为基点（位置0mm）并将从头部朝向胸部的方向设置为+方向。通过从DICOM文件的报头部读出这样的精确的位置信息并使用该信息作为属性信息AI，可以针对图形HI在更精确的位置处显示图形F1。此外，如果可以从DICOM文件的报头部读出患者的高度，则可以针对图形F1的大小是适当地显示标度MI的大小（标度的刻度宽度）。或者，相反地，固定标度MI的大小，并且可以适当地调整和显示图形F1的大小。

图3是示出根据第一实施例的显示设备的第二显示画面的显示示例的图。然而，由于医学图像列表与图2所示的例子相同，因此省略其显示并仅显示图形信息显示区域320。

在图3的例子中，假定射线拍摄医学图像II的方式是具有床的射线拍摄设备的情况。在图中，用作人体的肢体的图形HI示出相对于示出射线拍摄设备的床的图形D1的、射线拍摄医学图像II时患者的姿势。通过预定方法预先获得患者的姿势。例如，如果将示
出患者的姿势的信息存储在医学图像数据库 2 或放射科信息系统 (RIS)（未示出）中，可以通过 LAN 3 从这些设备获得示出患者姿势的信息。或者，即使不能直接获得示出患者姿势的信息，也存在以下情况：如果方式和射线拍摄区域已知，则可以辨别患者是处于俯卧位置还是仰卧位置。例如，如果方式是 CT 或 PET，则患者的姿势通常是仰卧位置。例如，如果方式是 MRI 且射线拍摄区域是乳房，则患者的姿势通常是俯卧位置。因此，如果不能获得示出患者姿势的精确的信息，则从诸如方式或射线拍摄区域等的其它属性信息辨别患者的一般姿势就足够了。此外，可以以与图 2 相同的方式根据需要来显示标度 M1。

[0030] 图形 G1 表示重力方向。在该图的例子中，由于患者躺在床上，因此已知重力方向是从患者朝向床的方向。在适当示出医学图像 11 的射线拍摄区域的位置处，将示出作为医学图像 11 的属性信息 A1 的射线拍摄区域的图形 F1 显示为示出射线拍摄范围的矩形。

[0031] 图 4 是示出根据第一实施例的显示设备的第三显示画面的显示示例的图。以与图 3 相同的方式，省略医学图像列表的显示，并仅显示图形信息显示区域 420。

[0032] 在图 4 的例子中，假定通过可以从不同方向进行射线拍摄的射线拍摄设备（例如，平板型 X 射线拍摄设备）射线拍摄同一患者的医学图像 11 和 12 的情况。在图中，用作人体的实体图的图形 H1 出示相对于图形 G1 所示的重力方向的、射线拍摄医学图像 11 和 12 时患者的姿势。显示与医学图像 11 和 12 的射线拍摄方向 B1 和 B2（未示出）相对应的图形 D1 和 D2，从而示出该射线拍摄设备相对于由图形 H1 所示的患者的配置。通过预定方法预先获得射线拍摄设备相对于患者的配置和重力方向。例如，如果将示出该射线拍摄设备相对于患者的配置和重力方向的信息存储在医学图像数据库 2 或 RIS（未示出）中，则可以透过 LAN 3 从这些设备获得必要的信息。此外，可以以与图 2 相同的方式根据需要显示标度 M1。

[0033] 图 5 是示出根据第一实施例的显示设备的控制过程的流程图。

[0034] 在步骤 S501，获得医学图像列表的列表显示条件。列表显示条件是用于确定如图 2 中的例子所示的医学图像列表 210 和图形信息显示区域 220 的显示方法的条件。通过根据用户的指示改变列表显示条件，可以改变医学图像列表 210 上显示的列表显示项的类型、图形信息显示区域 220 上显示的图形 F1 的类型、显示位置和显示大小等。在步骤 S501 中，将之前存储在磁盘 102 中的列表显示条件读入主存储器 101 中，从而获得列表显示条件的初始值。此外，在步骤 S501 中，当从鼠标 105 或键盘 106 输入用户的指示时，根据用户的指示改变列表显示条件，并将改变后的列表显示条件存储到主存储器 101 中。

[0035] 在步骤 S502 中，根据列表显示条件通过 LAN 3 从医学图像数据库 2 读出显示医学图像列表所需的信息（列表显示项）。在步骤 S503 中，将步骤 S502 中读出的信息编辑为表格，并且之后写入显示存储器 103 中，从而将医学图像列表显示到显示器 104 上。在步骤 S504 中，根据从鼠标 105 或键盘 106 输入的用户的指示从医学图像列表中选择一个医学图像 I1。

在步骤 S506 中，判断属性信息 A1 是否包括精确的大小信息（精确的射线拍摄范围和患者的身高）。如果属性信息 A1 包括精确的大小信息，则进行步骤 S507 和 S508。如果属性信息 A1 不包括精确的大小信息，则进行步骤 S509。

在步骤 S507 中，根据属性信息 A1 中包括的精确的大小信息来确定人体的身体图（图 2 的例子中的图形 H1）的大小和标注 M1 的大小。在步骤 S508 中，将标注 M1 和之前存储在磁盘 102 中的身体图读入并写入显示存储器 103 中的图形信息显示区域中，从而将身体图读显示到监视器 104 上。使用图 3 的例子中所示的显示方式的情况下，在下一体步骤 S510 中，以与确定图形 F1 的类型和显示位置的情况相同的方式，基于医学图像的属性信息来确定身体图的类型。在该情况下参考的属性信息是示出患者相对于床的姿势的信息。身体图具有诸如仰卧位置、侧卧位置和侧卧位置等的几种类型。

在步骤 S509 中，将之前存储在磁盘 102 中的身体图（图 2 的例子中的图形 H1）读入并写入显示存储器 103 中的图形信息显示区域中，从而将身体图读显示到监视器 104 上。使用图 3 的例子中所示的显示方式的情况下，在下一体步骤 S510 中，以与确定图形 F1 的类型和显示位置的情况相同的方式，基于医学图像的属性信息来确定身体图的类型。

在步骤 S510 中，确定显示属性信息 A1 的图形 F1 的类型和显示位置。作为图形 F1 的类型，例如，存在具有各种显示属性（颜色、线宽、图案等）的框线或涂抹图形（具有透射色的矩形等）。例如，可以针对不同的射线拍摄设备形成不同的图形。并且，当医学图像 I1 具有多个属性信息时，对该多个属性信息使用不同的图形，并且在身体图上的适当位置处显示该多个图形。在图 2 和 3 的例子中，使用具有网格图案的框线图形。将图形 F1 的显示位置确定与医学图像 I1 的射线拍摄区域相对应的身体图上的适当位置。由于将身体图（图形 H1）显示在图形信息显示区域中的预定位置（坐标），因此也将图形 F1 显示在与医学图像 I1 的射线拍摄区域相对应的预定位置（坐标）就足够了。上述的图形 F1 的类型和显示位置预先确定并存储在磁盘 102 中。在步骤 S501 中，在获得列表显示条件时，将上述的图形 F1 的类型和显示位置读出至主存储器 101 中。

在步骤 S511 中，将步骤 S510 中确定的图形 F1 重叠显示到身体图上。在步骤 S511 中，将图形 F1 或与 F1 相似的显示效果（背景颜色、框线的颜色等）绘制在医学图像列表 210 的医学图像 I1 的显示区域（列表的一行）中。因此，使得医学图像列表 210 上的医学图像 I1 的显示区域清楚，并且用户通过身体图上的图形 F1，一眼就可以理解医学图像 I1 的属性信息 A1。

通过以上控制过程，可以在身体图的适当位置处显示出所选择的医学图像 I1 的属性信息 A1 的图形 F1。

第二实施例

在该实施例中，在身体图上的适当位置处同时显示出具有同一患者 ID 的多个医学图像的属性信息的图形。由于根据第二实施例的显示设备的结构例子与图 1 相同，并已在第一实施例中说明，因此这里省略其说明。

图 6 是示出根据第二实施例的显示设备的第一显示画面的显示示例的图。由于该图与第一实施例中的图 2 具有许多相同点，因此省略对这些相同点的说明，并且以下仅说明与图 2 的不同点。

在图 6 中，将具有同一患者 ID 的医学图像列表显示在医学图像列表 610 上。通过
指定特定患者 ID 和射线拍摄日期的范围（例如，过去一年内）作为列表显示条件，用户可以获得图 6 的例子中所示的医学图像列表 610。

在图形信息显示区域 620 中显示用作人体的身体图的图形 H1 和示出具有同一患者 ID 的医学图像 II ～ In 的预定属性信息 A1 ～ An 的图形 F1 ～ Fn。在该图的例子中，n = 4。使用图形 F1 ～ Fn 来示出用于以图形方式显示医学图像 II ～ In 的预定属性信息 A1 ～ An 的信息。可以使用图像或符号来代替图形。在该图的例子中，使用射线拍摄区域作为医学图像的预定属性信息 A1 ～ An。在适当示出医学图像 II ～ I4 的射线拍摄区域的位置处，分别显示作为示出射线拍摄范围的矩形的图形 F1 ～ F4。如第一实施例所述，如果可以使用更精确的射线拍摄位置信息来代替射线拍摄区域，则可以通过使用这些信息针对图形 H1 在更精确的位置处显示图形 F1 ～ F4。

图 7 是示出根据第二实施例的显示设备的控制过程的流程图。

在步骤 S701 中，获得医学图像列表的列表显示条件。通过指定特定患者 ID 和射线拍摄日期的范围（例如，过去一年内）作为列表显示条件，用户可以获得图 6 的例子中所示的医学图像列表 610。

在步骤 S702 中，根据列表显示条件通过 LAN 3 从医学图像数据库 2 中读出显示医学图像列表所需的信息（列表显示项）。在步骤 S703 中，将步骤 S702 中读出的信息编辑为表格格式，并且之后写入显示存储器 103 中，从而将医学图像列表显示到监视器 104 上。在步骤 S704 中，将之前存储在磁盘 102 中的身体图（图 6 的例子中的图形 III）读出并写入到显示存储器 103 中的图形信息显示区域中，从而将身体图显示到监视器 104 上。

在步骤 S705 中，将值 1 代入索引 k。索引 k 用于指定医学图像列表 610 上显示的医学图像 II ～ In 中的一个医学图像 Ik(k = 1 ～ n)。假定将医学图像 Ik 的属性信息设置为 Ak，并将示出属性信息 Ak 的图形设置为 Fk。在步骤 S706 中，获得医学图像 Ik 的属性信息 Ak。

在步骤 S707 中，确定示出属性信息 Ak 的图形 Fk 的类型和显示位置。现在假定图形 Fk 是具有与其它图形 Fk’(k’ ≠ k) 不同类型的显示属性（颜色、线宽度、图案等）的图形。将图形 Fk 的显示位置确定为与医学图像 Ik 的射线拍摄区域相对应的身体图上的适当位置。由于在图形信息显示区域的预定位置（坐标）处显示身体图（图形 III），因此，也在与医学图像 Ik 的射线拍摄区域相对应的预定位置（坐标）处显示图形 Fk 就足够了。

在步骤 S708 中，将步骤 S707 中确定的图形 Fk 重叠显示到身体图上。在步骤 S708 中，将图形 Fk 或与 Fk 相似的显示效果（背景颜色、框线的颜色等）绘制在医学图像列表 610 的医学图像 Ik 的显示区域（列表的一行）中。因此，使得医学图像列表 610 上的医学图像 Ik 的显示区域清楚，并且用户通过身体图上的图形 Fk，一眼就可以理解医学图像 Ik 的属性信息 Ak。

在步骤 S709 中，对索引 k 加上值“1”。在步骤 S710 中，判断索引 k 的值是否大于医学图像列表 610 上显示的具有同一患者 ID 的医学图像的数量 (n)。如果 k 等于或小于 n，则处理返回至步骤 S706。如果 k 大于 n，则处理结束。

通过以上控制过程，可以在身体图上适当的区域处同时显示示出具有同一患者 ID 的多个医学图像 II ～ In 的属性信息 A1 ～ An 的图形 F1 ～ Fn。
在图7的步骤S708中，当显示图形F_{k}时，通过进行显示控制以在擦除先前绘制的图形F_{k-1}之后绘制图形F_{k}，可以在切换的情况下在身体图上顺序显示图形F_{1}～F_{n}。此外，通过重复进行步骤S705～S710的处理直到从用户输入指示为止，可以重复多次进行图形F_{1}～F_{n}的顺序显示。

如上所述，根据本发明的显示设备，具有以下优点：通过在身体图上的适当位置处显示示出医学图像的属性信息的图形，可以容易地辨别患者的精确的射线拍摄区域和患者在射线拍摄时的姿势。此外，具有以下优点：通过在身体图上的适当位置处同时或顺序显示示出具有同一患者ID的多个医学图像的属性信息的图形，可以容易地辨别同一患者的多个医学图像的属性信息。

其它实施例

还通过进行以下处理来实现本发明。即，经由网络或各种存储介质将用于实现上述实施例的功能的软件（程序）供给至系统或设备，并且系统或设备的计算机（或者CPU或MPU等）读出程序并执行与该程序相对应的处理。

尽管已经参考典型实施例说明了本发明，但是应该理解，本发明不限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释，以包含所有这类修改、等同结构和功能。
图 1
<table>
<thead>
<tr>
<th>图像 ID</th>
<th>图像编号</th>
<th>射线区域</th>
<th>患者 ID</th>
<th>图像数量</th>
<th>检查日期</th>
<th>状态</th>
<th>科室</th>
</tr>
</thead>
<tbody>
<tr>
<td>070101</td>
<td>MRI</td>
<td>头部</td>
<td>00232</td>
<td>640</td>
<td>07/01/2010</td>
<td>确定</td>
<td>头部</td>
</tr>
<tr>
<td>070102</td>
<td>MRI</td>
<td>上腹部</td>
<td>00167</td>
<td>723</td>
<td>07/01/2010</td>
<td>确定</td>
<td>上腹部</td>
</tr>
<tr>
<td>070103</td>
<td>MRI</td>
<td>胸腹部</td>
<td>00244</td>
<td>231</td>
<td>07/01/2010</td>
<td>确定</td>
<td>胸腹部</td>
</tr>
<tr>
<td>070104</td>
<td>MRI</td>
<td>乳腹部</td>
<td>00029</td>
<td>384</td>
<td>07/01/2010</td>
<td>已读</td>
<td>乳腹部</td>
</tr>
<tr>
<td>070105</td>
<td>MRI</td>
<td>乳腹部</td>
<td>00040</td>
<td>687</td>
<td>07/01/2010</td>
<td>已读</td>
<td>乳腹部</td>
</tr>
<tr>
<td>070106</td>
<td>MRI</td>
<td>胸腹部</td>
<td>00003</td>
<td>434</td>
<td>07/01/2010</td>
<td>已读</td>
<td>胸腹部</td>
</tr>
<tr>
<td>070107</td>
<td>MRI</td>
<td>胸腹部</td>
<td>00271</td>
<td>285</td>
<td>07/01/2010</td>
<td>已读</td>
<td>胸腹部</td>
</tr>
<tr>
<td>070108</td>
<td>MRI</td>
<td>胸腹部</td>
<td>00016</td>
<td>394</td>
<td>07/01/2010</td>
<td>已读</td>
<td>胸腹部</td>
</tr>
<tr>
<td>070109</td>
<td>MRI</td>
<td>胸腹部</td>
<td>00342</td>
<td>417</td>
<td>07/01/2010</td>
<td>已读</td>
<td>胸腹部</td>
</tr>
<tr>
<td>070110</td>
<td>MRI</td>
<td>胸腹部</td>
<td>00410</td>
<td>528</td>
<td>07/01/2010</td>
<td>已读</td>
<td>胸腹部</td>
</tr>
</tbody>
</table>

图 2

12
开始
"获得列表显示条件"
"读取医学图像"
"显示医学图像列表"
将人体的模型图显示到图形信息显示区域中
"k = 1"
获得医学图像Ik的属性信息Ak
"确定与属性信息Ak相对应的图形Fk的类型和显示位置"
将图形Fk显示到医学图像列表和图形信息显示区域中
"k = k+1"
"k > n?"
是
结束
图7