(54) 发明名称

一种薄荷脑结晶控制系统

(57) 摘要

本发明公开了一种薄荷脑结晶控制系统，属于薄荷脑领域。包括结晶器、结晶桶和温度控制系统，所述在结晶器顶部设有第一温控装置，在结晶器底部设有第二温控装置，所述在结晶桶下部、上部分别设有一个温度传感器的探头，所述在结晶桶上部设有摄像头，所述温度控制系统包括：人机交互计算机和 PLC 控制系统。可以实时对晶体生成过程完全监测的薄荷脑结晶控制系统，为晶体的生产提供更有利的温度条件，增加产率和提高晶体质量。
1. 一种薄荷脑结晶温度控制系统，其特征在于：包括结晶箱、结晶桶和温度控制系统，
所述在结晶箱顶部设有第一温控装置，在结晶箱底部设有第二温控装置，所述在结晶桶下
部、上部分别设有温度传感器的探头，所述在结晶桶上部设有摄像头，所述温度控制系统
包括：

人机交互计算机，所述人机交互计算机与所述 PLC 控制系统相连，用于输入各个生产
参数和过程参数来控制 PLC 控制系统调节结晶箱顶部、底部的温度，监测结晶桶内薄荷脑
的结晶状况，对数据进行存储计算生成报表和时间 - 浓度 - 温度表；

PLC 控制系统，所述 PLC 控制系统信号输入端口分别与所述第一温控装置、第二温控装
置、温度传感器、摄像头信号输出端口相连，用于对所述温度传感器探测的底部温度进行分
析控制所述第二温控装置的输出温度，用于对温度传感器探测的表面温度进行分析控制第
一温控装置的输出温度，用于摄像头探测的晶体成长情况控制第一温控装置的输出温度。

2. 如权利要求 1 所述的一种薄荷脑结晶温度控制系统，其特征在于：所述结晶箱的四
周和顶部采用保温材料，所述结晶桶为底口小，顶口大的锥形结构。

3. 如权利要求 1 所述的一种薄荷脑结晶温度控制系统，其特征在于：所述摄像头为 CCD
摄像头。

4. 如权利要求 1 或 3 所述的一种薄荷脑结晶温度控制系统，其特征在于：所述人机交
互计算机内设有图像处理模块，用于晶体的成长历程进行记录存储。
一种薄荷脑结晶控制系统

技术领域
[0001] 本发明涉及一种薄荷脑结晶控制系统，适用于薄荷脑领域。

背景技术
[0002] 结晶技术是薄荷脑提纯工艺中的中心环节，也就是利用薄荷油在一定浓度、一定温度下，采用下晶种或是骤冷的方式通过局部缓慢温控的温控技术，制造一个自下而上总低到高的温差环境，创造一个符合晶体有序发育趋向趋定定向稳定生产的条件，在其它参数稳定的情况下，温度对晶体的生长具有很重要的作用。

发明内容
[0003] 本发明所要解决的技术问题在于，提供一种为薄荷油提供一个自动控温，可以实时对晶体生成过程完全监测，为晶体的生产提供更有力的温度条件，增加产率和提高晶体质量的薄荷脑结晶控制系统。
[0004] 本发明所要解决的技术问题采取以下技术方案来实现：
[0005] 一种薄荷脑结晶温度控制系统，包括结晶箱、结晶桶和温度控制系统，所述在结晶箱顶部设有第一温控装置，在结晶箱底部设有第二温控装置，所述在结晶箱底部上部分别设有温度传感器的探头，所述在结晶箱上部设有摄像头，所述温度控制系统包括：
[0006] 人机交互计算机，所述人机交互计算机与所述 PLC 控制系统相连，用于输入各个生产参数和过程参数来控制 PLC 控制系统调节结晶箱顶部、底部的温度，监测结晶箱内薄荷脑的结晶状况，对数据进行存储计算生成报表和时间 - 浓度 - 温度表；
[0007] PLC 控制系统，所述 PLC 控制系统信号输入端口分别与所述第一温控装置、第二温控装置、温度传感器、摄像头信号输出端口相连，用于对所述温度传感器探测的底部温度进行分析控制所述第二温控装置的输出温度，用于对温度传感器探测的表面油温进行分析控制所述第一温控装置的输出温度，用于摄像头探测的晶体成像情况控制第一温控装置的输出温度。
[0008] 作为优选实例，所述结晶箱的四周和顶部采用保温材料，所述结晶桶为底口小，顶口大锥形结构。
[0009] 作为优选实例，所述摄像头为 CCD 摄像头。
[0010] 作为优选实例，所述人机交互计算机内设有图像处理模块，用于晶体的成长历程进行记录存储。
[0011] 本发明的有益效果是，根据温度传感器的测量数据和摄像头监测到的晶体生长情况，在结晶体外通过人机交互计算机使 PLC 控制系统调节结晶箱内的温度或结晶桶底的温度，实时传输方便快捷，更好的为晶体成长提供有力的温度条件。

附图说明
[0012] 图 1 为结晶箱和结晶桶的结构示意图。
具体实施方式

为了对本发明的技术手段、创作特征、达成目的与功效易于明白了解，下面结合具体图示，进一步阐述本发明。

如图1所示，一种薄荷脑结晶温度控制系统，包括结晶厢1、结晶桶2和温度控制系统，所述在结晶厢1顶部设有第一温控装置3，在结晶厢1底部设有第二温控装置4，所述在结晶桶2下部、上部分别设有一个温度传感器的头5，所述在结晶厢1上部设有摄像头6，所述温度控制系统包括：

人机交互计算机，所述人机交互计算机与所述PLC控制系统相连，用于输入各个生产参数和过程参数来控制PLC控制系统调节结晶厢1顶部、底部的温度，监测结晶桶2内薄荷脑的结晶状况，对数据进行存储计算生成报表和时间－浓度－温度表；

PLC控制系统，所述PLC控制系统信号输入端口分别与所述第一温控装置3、第二温控装置4、温度传感器5、摄像头6信号输出端口相连，用于对所述温度传感器5探测的底部温度进行分析控制所述第二温控装置4的输出温度，用于对温度传感器5探测的表面油温进行分析控制所述第一温控装置3的输出温度，用于摄像头探测的晶体成长情况控制第一温控装置3的输出温度。

进一步的，所述结晶厢1的四周和顶部采用保温材料，所述结晶桶2为底口小，顶口大锥形结构。

进一步的，所述摄像头6为CCD摄像头。

进一步的，所述人机交互计算机内设有图像处理模块，用于晶体的成长历程进行记录存储。

一种薄荷脑结晶温度控制系统在使用过程中，通过温度传感器5采集结晶桶底部和油面温度数据，通过CCD摄像头监测到晶体产生情况和生长情况，这些数据再配合储存的前测量的温点温度和进厢温度，工作人员通过人机交互计算机设置PLC控制系统程序启动参数和程序，来控制第一温控装置3的输出温度和第二温控装置4的输出温度。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解，本发明不受上述实施例的限制，在不脱离本发明精神和范围的前提下，本发明还会有各种变化和改进，这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
图 1