Title: COMBINATION PRESSURE THERAPY FOR TREATMENT OF SERUM LIPID LEVELS, STEROID LEVELS, AND STEROIDOGENESIS

Abstract: Methods for administering pressure changes to a user for the treatment and prevention of diseases and conditions are disclosed herein. Methods of administering Cyclic Variations in Altitude Conditioning Sessions (CVAC Session(s)) for the treatment of steroidogenesis, steroid levels, and treatment of serum lipid levels are disclosed herein. Also disclosed herein are methods of administering CVAC Session(s) for the treatment of steroid levels and steroidogenesis associated with HTV infection.
COMBINATION PRESSURE THERAPY FOR TREATMENT OF SERUM LIPID LEVELS, STEROID LEVELS, AND STEROIDOGENESIS

CROSS-REFERENCE
[0001] This application claims the benefit of U.S. Provisional Application No. 60/891,696, filed February 26, 2007, U.S. Provisional Application No. 60/953,973, filed August 3, 2007, U.S. Provisional Application No. 60/953,972, filed August 3, 2007, and U.S. Provisional Application No. 61/025,272, filed January 31, 2008, which applications are incorporated herein by reference.

FIELD OF THE INVENTION
[0002] The invention relates to the use of air pressure therapy for the treatment and prevention of diseases and conditions that benefit from hypoxic conditioning and/or total body vaso-pneumatic compression.

BACKGROUND OF THE INVENTION
[0003] Hyperlipidemia, hyperlipoproteinemia or dyslipidemia is the presence of elevated or abnormal levels of lipids and/or lipoproteins in the blood. Lipids (fatty molecules) are transported through and around the body in the blood. Easily recognizable categories of these lipids include low-density lipoproteins, high-density lipoproteins, and cholesterol. Lipid and lipoprotein abnormalities are extremely common in the general population, and are regarded as a highly modifiable risk factor for cardiovascular disease due to the influence of cholesterol, one of the most clinically relevant lipid substances, on atherosclerosis.

Hyperlipidemia becomes most seriously symptomatic when interfering with the coronary circulation supplying the heart or cerebral circulation supplying the brain, and is considered the most important underlying cause of strokes, heart attacks, various heart diseases including congestive heart failure and most cardiovascular diseases in general. Atheroma in the arm, or more often leg, arteries often produces decreased blood flow and is called Peripheral artery occlusive disease (PAOD).

[0004] Cholesterol is also the main building block of in the process of steroidogenesis. Steroidogenesis involves the synthesis of steroid compounds, including the hormones testosterone and estrogen, as well as mineralocorticoids and glucocorticoids. Dysregulation of steroid and hormone synthesis results in detrimental effects on men and women. For example, dysregulation of testosterone can result in changes in body composition, increases in fat mass, and decreases in lean body mass. [Kupehan, V et al., Low Sex Hormone-Binding Globulin, Total Testosterone, and Symptomatic Androgen Deficiency are Associated with Development of the Metabolic Syndrome in Non-Obese Men, J Clin Endocrinol & Metabol, 91(3): 843-50 (2007)]. Similar problems occur in women, and hormone dysregulation related to estrogens and menopause is well documented. Thus, steroidogenesis and hormone dysregulation are a continuing health problem.

[0005] Additionally, infection with the human immunodeficiency virus ("HIV") can have complications such as dysregulation of steroidogenesis. Androgen deficiency is known to be prevalent among HIV-infected men with low weight and wasting. Initial estimates demonstrated that androgen deficiency occurs in 50% of men with ATDS-related wasting, and more recently has been shown to be present in, on average,
20% of men who receive highly active antiretroviral therapy (“HAART”). Similarly, testosterone levels are reduced among women with HIV disease as compared with levels in age- and sex-matched control subjects [Steven Gnann spoon, Androgen Deficiency and HIV infection, Clin Infect. Diseases, 41 1804-05 (2005).]

Abnormalities in the process of steroidogenesis (including the modulation of steroid levels) are commonly treated with pharmaceuticals. Examples of such pharmaceuticals include, but are not limited to, supplemental testosterone, estrogens, and other hormones. There is a need for alternative therapies for the modulation of steroidogenesis and serum lipid levels. There is also a need for modulation of steroid levels in HIV infected individuals.

SUMMARY OF THE INVENTION

The present invention provides for a method of administering pressure changes to a user for the treatment of cholesterol and lipid levels. The present invention further provides for a method of administering pressure changes to a user for the treatment of steroid levels. Treatment as used herein includes application of the disclosed methodologies for prevention, prophylactic treatment, current treatment, amelioration, and recovery of the aforementioned conditions. Treatment further includes modulation of the levels, positively or negatively, serum lipids including but not limited to cholesterol, low density lipoproteins (LDL), high density lipoproteins (HDL), as well as steroid levels including but not limited to androgens, estrogens, progestogens, mineralocorticoids, and glucocorticoids. Application of the disclosed methodologies aids in the modulation of cholesterol levels, serum lipid levels, and the process of steroidogenesis.

One aspect of the invention is the administration of one or more Cyclic Variations in Altitude Conditioning Sessions (CVAC Session(s)) for the treatment of serum lipid levels. CVAC sessions may be administered in defined intervals or at random occurrences. In an embodiment of the invention, at least one CVAC session is administered to modulate cholesterol levels. In an additional embodiment, CVAC sessions are administered to modulate LDL levels. In a further embodiment, at least one CVAC session is administered to modulate HDL levels. In some embodiments, the effect of such administrations is a lowering of cholesterol levels, LDL levels, or an increase in HDL levels.

Another aspect of the invention is the administration of one or more Cyclic Variations in Altitude Conditioning Sessions (CVAC Session(s)) for the modulation of steroidogenesis. In one embodiment, at least one CVAC session is administered for the modulation of steroidogenesis in HIV infected individuals. Non-limiting examples of steroids modulated by the administration of at least one CVAC session include testosterone, estrogen, androgens, glucocorticoids, and mineralocorticoids. In a further embodiment, CVAC sessions are administered to increase steroidogenesis while decreasing cholesterol levels. In yet a further embodiment, CVAC sessions are administered to increase steroidogenesis while cholesterol levels remain stable.

In another embodiment of the invention, physiological parameters are monitored to assess the efficacy of CVAC sessions on modulating serum lipid levels. In one embodiment, cholesterol levels in a user are measured to assess the efficacy of CVAC sessions. In another embodiment, VLDL, LDL, or HDL levels are measured. In a further embodiment, physiological parameters are monitored to assess the efficacy of CVAC sessions on modulating steroid levels in a user. In one embodiment, testosterone
levels in a user are measured to assess the efficacy of CVAC sessions. In another embodiment, estrogen levels in a user are measured to assess the efficacy of CVAC sessions. In yet another embodiment, mineraicorticoids or glucocorticoids are measured. In additional embodiments, efficacy of CVAC sessions for the treatment of metabolic syndrome, diabetes, and/or insulin resistance is determined via changes in physiological markers including insulin levels, glucose tolerance, glucose transport, testosterone, or any combination thereof

[0011] A CVAC session consists of a set of targets which are pressures found in the natural atmosphere. A CVAC session includes start and end points and more than one target which are executed between the start and end points. These targets are delivered in a precise order, and are executed in a variety of patterns including, but not limited to, cyclic, repeating, and/or linear variations. The starting points and ending points in any CVAC session are preferably the ambient pressure at the delivery site. The targets inherent in any CVAC session are connected or joined together by defined transitions. These transitions are either rises in pressure or falls in pressure, or a combination of the two. Additional targets which modulate time, temperature, or humidity are also run concurrently, sequentially, or at other intervals with the pressure targets when such additional targets and conditions are desired.

[0012] In an additional embodiment, including the aforementioned embodiments and aspects, the targets of the CVAC sessions include pressure, temperature, time, and/or humidity parameters. Parameters of targets and sessions can be customized to individual needs. In yet another embodiment of the invention, including the aforementioned embodiments and aspects, CVAC sessions are administered in combination with pharmaceutical regimens for the treatment of serum lipid levels. In still another embodiment of the invention, including the aforementioned embodiments and aspects, CVAC sessions are administered in combination with pharmaceutical regimens for the modulation of steroidogenesis. In yet another embodiment of the invention CVAC sessions are administered in combination with pharmaceutical regimens for the modulation of steroidogenesis in HIV-infected individuals. Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point. Also provided herein is a method of increasing muscle mass in an HIV-infected mammal by administering at least one CVAC session to an HIV-infected mammal. Provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session. In additional embodiments, weight gain, increases in muscle mass, and increases in muscle strength are obtained by the administration of at least one CVAC session that modulates testosterone levels in HIV-infected mammals. Further embodiments, including the aforementioned embodiments and aspects, include administration of CVAC sessions in combination with alternative therapies and non-pharmaceutical therapies.

[0013] Provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.
Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of
measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

[0022] Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

[0023] Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

[0024] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

[0025] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging.

[0026] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging.

[0027] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging.
Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of administering at least one pharmaceutical therapy.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological
marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of administering at least one pharmaceutical therapy.

[0035] Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of administering at least one pharmaceutical therapy.

[0036] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of administering at least one pharmaceutical therapy.

[0037] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy.

[0038] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of administering at least one non-pharmaceutical therapy.

[0039] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and further comprising the step of administering at least one non-pharmaceutical therapy.

[0040] Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of administering at least one non-pharmaceutical therapy.
[0041] Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, further
comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and
further comprising the step of administering at least one non-pharmaceutical therapy

[0042] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, further
comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers,
wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or
erthropoietin (EPO) production, and further comprising the step of administering at least one non-
pharmaceutical therapy

[0043] Provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, and
wherein the mammal can modulate the parameters of a session.

[0044] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, where the
serum lipid is selected from among VLDL, LDL, HDL or cholesterol, and wherein the mammal can
modulate the parameters of a session.

[0045] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, where the
serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of
measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the mammal
can modulate the parameters of a session.

[0046] Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, where the
serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of
measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological
marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO)
production, and wherein the mammal can modulate the parameters of a session.

[0047] Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, further
comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and
wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring the efficacy of the CVAC sessions via changes in physiological markers, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, where the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of measuring the efficacy of the CVAC sessions by non-invasive imaging, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of measuring the efficacy of the CVAC sessions by invasive imaging, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the serum lipid is selected from among VLDL, LDL, HDL or cholesterol and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among VLDL, LDL, HDL, cholesterol or erythropoietin (EPO) production, and further comprising the step of administering at least one non-pharmaceutical therapy and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen.
Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the mammal is an HIV-infected mammal.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, and wherein the mammal is an HIV-infected mammal.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, and wherein the mammal is an HIV-infected mammal.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, and wherein the mammal is an HIV-infected mammal.

Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the mammal is an HIV-infected mammal.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, and wherein the mammal is an HIV-infected mammal.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, and wherein the mammal is an HIV-infected mammal.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, and wherein the mammal is an HIV-infected mammal.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.
Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the administration of at least one CVAC session modulates testosterone levels in said mammal.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the administration of at least one CVAC session modulates testosterone levels in said mammal.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the administration of at least one CVAC session increases testosterone levels in said mammal.

Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the administration of at least one CVAC session increases testosterone levels in said mammal.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the administration of at least one CVAC session increases testosterone levels in said mammal.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one pharmaceutical therapy.
Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one non-pharmaceutical therapy.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one non-pharmaceutical therapy.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralcorticoids, and glucocorticoids, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, and further comprising the step of administering at least one pharmaceutical therapy.
Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, and further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estπols, and estrones.
wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

[00122] Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

[00123] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

[00124] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

[00125] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one pharmaceutical therapy.

[00126] Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one pharmaceutical therapy.

[00127] Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one pharmaceutical therapy.

[00128] Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one pharmaceutical therapy.
Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and further comprising the step of administering at least one pharmaceutical therapy.

Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, and further comprising the step of administering at least one pharmaceutical therapy.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens,
mineralocorticoids, and glucocorticoids, further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, further comprising the step of modulating at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, and further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, and further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens,
mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00145] Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, wherein the mammal is an HIV-infected mammal, further comprising the step of administering at least one non-pharmaceutical therapy.

[00146] Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00147] Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00148] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00149] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00150] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, wherein the mammal is an HIV-infected mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00151] Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one non-pharmaceutical therapy.
Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of administering at least one non-pharmaceutical therapy.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

Also provided herein is a method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.
levels in said mammal, and further comprising the step of administering at least one non-pharmaceutical therapy.

[00160] Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

[00161] Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

[00162] Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

[00163] Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

[00164] Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

[00165] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

[00166] Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
Further provided herein is a method of modulating steroid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, wherein
the steroid modulated is an estrogen, and further comprising the step of measuring efficacy of CVAC
sessions via changes in physiological markers.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, wherein
the mammal is an HIV-infected mammal, and further comprising the step of measuring efficacy of
CVAC sessions via changes in physiological markers.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, where the
steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens,
mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, wherein
the steroid produced by steroidogenesis is testosterone, wherein the mammal is an HIV-infected
mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in
physiological markers.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, wherein
the steroid produced by steroidogenesis is selected from among estradiols, estnols, and estrones,
wherein the mammal is an HIV-infected mammal, and further comprising the step of measuring
efficacy of CVAC sessions via changes in physiological markers.

Provided herein is a method of modulating steroid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, wherein
the mammal is an HIV-infected mammal, and further comprising the step of measuring efficacy of
CVAC sessions via changes in physiological markers.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of
administering at least one CVAC session to a mammal, said CVAC session having a start point, an end
point and more than one target which is executed between said start point and said end point, wherein
the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids,
and glucocorticoids, wherein the mammal is an HIV-infected mammal, and further comprising the
step of measuring efficacy of CVAC sessions via changes in physiological markers.
Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, wherein the mammal is an HIV-infected mammal, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, wherein the mammal is an HIV-infected mammal, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Provided herein is a method of increasing efficacy in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralcorticoids, and glucocorticoids, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralcorticoids, and glucocorticoids, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.
Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, where the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralcorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.
Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.
Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in
physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralocorticoids, or glucocorticoids.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is testosterone, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid produced by steroidogenesis is selected from among estradiols, estriols, and estrones, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is selected from among androgens, progestogens, estrogens, mineralocorticoids, and glucocorticoids, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is testosterone, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid modulated is an estrogen, wherein the mammal is an HIV-infected mammal, and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the mammal can modulate the parameters of a session.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and wherein the mammal can modulate the parameters of a session.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal, and wherein the mammal can modulate the parameters of a session.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, and wherein the mammal can modulate the parameters of a session.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the administration of at least one CVAC session increases testosterone levels in said mammal, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal can modulate the parameters of a session.

Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.
[00235] Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising
administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a
start point, an end point and more than one target which is executed between said start point and said
end point, further comprising the step of administering at least one non-pharmaceutical therapy, and
wherein the mammal can modulate the parameters of a session.

[00236] Further provided herein is a method of increasing muscle strength in an HIV-infected mammal
comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC
session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and wherein the mammal can modulate the parameters of a session.

[00237] Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering
at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an
end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the mammal can modulate the parameters of a session.

[00238] Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising
administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a
start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the mammal can modulate the parameters of a session.

[00239] Further provided herein is a method of increasing muscle strength in an HIV-infected mammal
comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC
session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, and wherein the mammal can modulate the parameters of a session.

[00240] Provided herein is a method of increasing weight in an HIV-infected mammal comprising administering
at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an
end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids, and wherein the mammal can modulate the parameters of a session.

[00241] Also provided herein is method of increasing muscle mass in an HIV-infected mammal comprising
administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a
start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids, and wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers, wherein the physiological marker measured is selected from among androgens, progestogens, estrogens, mineralcorticoids, or glucocorticoids, and wherein the mammal can modulate the parameters of a session.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone.
Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy.

Further provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.
Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.
physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.
Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid level is increased, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the steroid is testosterone, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.
Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, further comprising the step of administering at least one non-pharmaceutical therapy, and further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers and wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

Also provided herein is a method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal can modulate the parameters of a session.
Further provided herein is a method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal can modulate the parameters of a session.

Further provided herein is a method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point, wherein the mammal can modulate the parameters of a session.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts a graphed profile of the various pressures applied over time during an exemplary CVAC session. The Y-axis represents atmospheric pressure levels and the X-axis represents time. The varying pressures, as indicated by the changes in values on the Y-axis, were applied for various lengths of time, as indicated by changes values on the X-axis. The exemplary CVAC session depicted in FIG 1A was 20 minutes in length.

FIG. 1B depicts a different graphed profile of the pressures applied over time during another exemplary CVAC session. The Y-axis again represents atmospheric pressure levels and the X-axis represents time. Different pressures were again applied, as indicated by changes in value on the Y-axis, for various lengths of time, as indicated by the changes in values on the X-axis. This exemplary CVAC session was also 20 minutes in length.

FIG. 2 depicts a chart summarizing the serum lipid levels from 7 subjects following treatment with CVAC sessions. Total cholesterol, triglycerides, HDL, VLDL, and LDL levels are represented prior to and following administration of CVAC sessions for 40 minutes, twice a week throughout the study period.

FIG. 3 depicts a chart summarizing Testosterone levels from 7 subjects following treatment with CVAC sessions. Total testosterone, free testosterone, and ratios of free testosterone to total testosterone are represented prior to and following administration of CVAC sessions for 40 minutes, twice a week throughout the study period.

FIG. 4 depicts a graph of the various pressures applied over time during a CVAC session using profile BRG at tier 2.

FIG. 5 depicts a graph of the various pressures applied over time during a CVAC session using profile RBG at tier 2.

FIG. 6 depicts a graph of the various pressures applied over time during a CVAC session using profile GRB at tier 2.

FIG. 7 depicts a graph of the various pressures applied over time during a CVAC session using profile sham at tier 2.

FIG. 8 depicts a graph of the various pressures applied over time during a CVAC session using profile BRG at tier 3.

FIG. 9 depicts a graph of the various pressures applied over time during a CVAC session using profile RBG at tier 3.
FIG. 10 depicts a graph of the various pressures applied over time during a CVAC session using profile GRB at tier 3.

FIG. 11 depicts a graph of the various pressures applied over time during a CVAC session using profile sham at tier 3.

FIG. 12 depicts a graph of the various pressures applied over time during a CVAC session using profile BRG at tier 4.

FIG. 13 depicts a graph of the various pressures applied over time during a CVAC session using profile RBG at tier 4.

FIG. 14 depicts a graph of the various pressures applied over time during a CVAC session using profile GRB at tier 4.

FIG. 15 depicts a graph of the various pressures applied over time during a CVAC session using profile sham at tier 4.

FIG. 16 depicts a graph of the various pressures applied over time during a CVAC session using profile BRG at tier 5.

FIG. 17 depicts a graph of the various pressures applied over time during a CVAC session using profile RBG at tier 5.

FIG. 18 depicts a graph of the various pressures applied over time during a CVAC session using profile GRB at tier 5.

FIG. 19 depicts a graph of the various pressures applied over time during a CVAC session using profile sham at tier 5.

FIG. 20 depicts a graph of the various pressures applied over time during a CVAC session using profile GLESS at tier 2.

FIG. 21 depicts a graph of the various pressures applied over time during a CVAC session using profile GLESS at tier 3.

FIG. 22 depicts a graph of the various pressures applied over time during a CVAC session using profile GLESS at tier 4.

FIG. 23 depicts a graph of the various pressures applied over time during a CVAC session using profile GLESS at tier 5.

FIG. 24 depicts a graph of the various pressures applied over time during a CVAC session using profile BMORE at tier 2.

FIG. 25 depicts a graph of the various pressures applied over time during a CVAC session using profile BMORE at tier 3.

FIG. 26 depicts a graph of the various pressures applied over time during a CVAC session using profile BMORE at tier 4.

FIG. 27 depicts a graph of the various pressures applied over time during a CVAC session using profile BMORE at tier 5.

FIG. 28 depicts a graph of the various pressures applied over time during a CVAC session using profile RMORE at tier 2.

FIG. 29 depicts a graph of the various pressures applied over time during a CVAC session using profile RMORE at tier 3.
FIG. 30 depicts a graph of the various pressures applied over time during a CVAC session using profile REMORE at tier 4

FIG. 31 depicts a graph of the various pressures applied over time during a CVAC session using profile REMORE at tier 5

DETAILED DESCRIPTION OF THE INVENTION

While oxygen deprivation of the body or specific tissues can cause tissue damage, and even death, controlled deprivation of oxygen to the body and/or specific tissues has been shown to be beneficial when imposed for specific periods of time under particular conditions. In practice, most current hypoxic conditioning protocols utilize static pressures for blocks of time ranging from 30 minutes to an hour or more to achieve the desired and reported responses. Hypoxic conditioning may be provided by decreased oxygen levels in the atmosphere or by a reduction in atmospheric pressure (hypobaric conditions), thus reducing the availability of oxygen for efficient respiration. Both methods can provide beneficial results including protection of tissues from damage due to injury and ischemia.

Moderate static hypoxic preconditioning is known to provide protection from ischemic damage via tolerance. When the environmental oxygen levels are reduced (hypoxia), downstream effects include protection from damage due to subsequent hypoxia [Sharp, F., et al., Hypoxic Preconditioning Protects against Ischemic Brain Injury, NeuroRx J. Am. Soc. Exp. Neuro., Vol. 1 26-25 (2004)]. This tolerance is not yet completely understood, but it has been linked to various cellular mechanisms and molecules, including, but not limited to, molecules such as erythropoietin (EPO), hypoxia-inducible factor (HIF), Tumor Necrosis Factor (TNF), glycogen, lactate, and others [Sharp, F., et al., Hypoxic Preconditioning Protects against Ischemic Brain Injury, NeuroRx J. Am. Soc. Exp. Neuro., Vol. 1 26-25 (2004)]. Additionally, beneficial static hypoxic conditioning is not purely additive. Administration of sequential sessions can have detrimental effects. Oxygen concentrations that are too low result in detrimental effects to the tissues as well as the entire body. Similarly, hypoxic conditioning of longer durations can have detrimental effects in addition to providing some desired beneficial effects [Sharp, F., et al., Hypoxic Preconditioning Protects against Ischemic Brain Injury, NeuroRx J. Am. Soc. Exp. Neuro., Vol. 1 26-25 (2004)].

Initial understanding in the art about the effects of hypoxia focused on increased oxygenation of the blood via increased production of red blood cells mediated by increases in EPO production. While increases in EPO production are believed to increase red blood cell production, its effects are not limited to this activity. Additional studies also show protective activity for EPO in white and gray matter (brain and spinal cord tissue), inflammatory and demyelinating conditions, and other various ischemic events [Eid, T and B predominantly, M., Recombinant human erythropoietin for neuroprotection, what is the evidence?, Chn. Breast Cancer, 3 Suppl 3 S109-15, Dec 2002]. Furthermore, molecules such as HIF, induced by hypoxia, regulate EPO production in addition to a variety of other activities including metabolism, angiogenesis, and vascular tone - the stimulation of which may all play a role in protecting tissue from subsequent hypoxic damage both prophylactically and post-ischemic or traumatic events. [Eckardt K U., Kurtz, A., Regulation of erythropoietin production, Eur. J Clin. Invest, 35(Suppl 3) 13 - 19, (2005)].

Vascular endothelial growth factor (VEGF) is a known hypoxia induced
protein under the control of HIF-1α. VEGF has been shown to have direct neuroprotective effects on mammalian spinal cord neurons following spinal cord injury [Ding XM, et al., Neuroprotective effect of exogenous vascular endothelial growth factor on rat spinal cord neurons in vitro hypoxia, Chin. Med J (Engl), 118(19):1644-50, Oct 5, 2005].

[00341] Static hypoxic therapy for extended durations of time has been shown to significantly reduce total cholesterol, LDL, very low-density lipoprotein (VLDL), as well as increase HDL. Thus, the overall serum lipid profile was also significantly reduced [TinKov, A.N and Aksenov, V A., Effects of Intermittent Hypobaric Hypoxia on Blood Lipid Concentrations in Male Coronary Heart Disease Patients, High Alt Med. & Biol., 3(3). 277-282 (2002)] Type 2 Diabetes has been regarded as a relatively distinct disease entity, but recent understanding has revealed that Type 2 Diabetes (and its associated hyperglycaemia or dysglycaemia) is often a manifestation of a much broader underlying disorder, which includes metabolic syndrome. This syndrome may also be referred to as Syndrome X, and is a cluster of cardiovascular disease risk factors that, in addition to glucose intolerance, includes hyperinsulinaemia, dyslipidaemia, hypertension, visceral obesity, hypercoagulability, and microalbuminuria. Provided herein are methods of treating metabolic syndrome and/or insulin resistance. In one embodiment, metabolic syndrome is treated by modulation of testosterone levels via application of at least one CVAC session.

[00342] Alternative therapies such as oxygen deprivation are known to provide some beneficial effect as well. While oxygen deprivation of the body or specific tissues can cause tissue damage, and even death, controlled deprivation of oxygen to the body or specific tissues or a combination thereof has been shown to be beneficial when imposed for specific periods of time under particular conditions. Hypoxic conditioning may be provided by decreased oxygen levels in the atmosphere or by a reduction in atmospheric pressure (hypobaric conditions), thus reducing the availability of oxygen for efficient respiration. Both methods can provide beneficial results including prevention of damage due to inflammation and swelling. However, all current forms of hypoxic conditioning involve applications of static pressures and involve relatively long periods of application.

[00343] Additionally, application of physical energy or force to the body through relatively low levels vibrational therapy has been linked to increases in steroidogenesis, [Bosco, C. et al., Hormonal responses to whole-body vibration in men, Eur J Appl Physiol, 81 449-454 (2000)], and application of physical force to the epidermal layers of the skin through endermologie has also been shown to modulate estradiol (an estrogen) levels in women [Benelli, L., et al., Endermologie humoral repercussions and estrogen interaction, Aesthetic Plast. Surg 23(5) 312-15 (1999)].

[00344] There is a high prevalence of low testosterone levels in HIV-infected individuals, and 20-25% of HIV-infected men who receive highly active antiretroviral therapy (HAART) also suffer from reduce testosterone levels. Furthermore, low testosterone levels are associated with weight loss, progression to AIDS, wasting, depression and loss of muscle mass. [Bahsin et al., Testosterone Therapy in Adult Men with Androgen Deficiency Syndromes An Endocrine Society Clinical Practice Guideline, J Clin Endocrinol & Metab, 91(6) 1995-2010 (2006). Arver et al., Serum Dihydrotestosterone and testosterone concentrations in Human Immunodeficiency Virus-infected men with and without weight loss, J Andrology, 20(5).611-618 (1999)] Testosterone therapy in HIV-infected individuals is known to
improve weight gain, improve muscle strength, and provide gains in lean-body mass. Provided herein are methods for modulating steroidogenesis in HIV-infected individuals. In one non-limiting example, administration of at least one CVAC session to an HIV-infected individual increases testosterone levels in the HIV-infected individual.

Abnormalities in serum lipid levels and the process of steroidogenesis (including the modulation of steroid levels) are commonly treated with pharmaceuticals. Examples of such pharmaceuticals include, but are not limited to, Lipitor®, Zocor®, Vytoris®, and other statins as well as supplemental testosterone, estrogens, and other hormones. There is a need for alternative therapies for modulation of serum lipid levels, the modulation of steroidogenesis, and the modulation of steroid levels.

Further there is a need for such therapies without the potential negative side-effects of pharmaceutical regimens. Alternatively, there is a need for such therapies that could lessen the negative side-effects of pharmaceutical regimens by altering pharmaceutical regimens, could work beneficially with pharmaceutical regimens, or could work synergistically when used in combination with pharmaceutical regimens. There is a further need for hypobaric or hypoxic conditioning which maximizes the beneficial effects within short treatment periods that do not lead to the detrimental effects of such conditioning as found with current methods of static hypobaric conditioning. There is a further need for such hypobaric or hypoxic conditioning that utilizes multiple and/or varying pressures throughout the conditioning. There is yet a further need for hypobaric or hypoxic conditioning that incorporates vaso-pneumatic effects in addition to the hypoxic considerations.

The invention disclosed herein may provide for such needs and may do so in a manner unique and generally advantageous compared to all previous forms of hypobaric conditioning. Similarly, the invention disclosed herein can provide for vaso-pneumatic effects in a manner both unique and generally advantageous to previous vibrational therapies and endermologie. Additionally, CVAC sessions can provide for vaso-pneumatic beneficial effects. Although not limited, CVAC sessions are believed to act like a vaso-pneumatic pump on the user's body, thus stimulating flow of fluids in the body, including but not limited to blood and lymphatic fluids. The negative and positive pressures imposed by the CVAC session can affect the fluid flow or movement within a body, thus improving the delivery of beneficial nutrients, immune factors, blood, and oxygen while also improving the removal of harmful toxins, fluids, and damaged cells or tissues. Furthermore, the vaso-pneumatic effects generated during any given CVAC session can exert pressures on the body and tissues of a user. CVAC can also provide similar application of force and/or transfer of mechanical energy into the cells and tissue of a user via vaso-pneumatic pressure. However, CVAC sessions provide for a novel and unique application of varying pressure changes and times superior to the static application of force described previously, thus providing the beneficial effects of physical forces in a novel and generally advantageous way. By use of the present invention, CVAC sessions can modulate steroid levels and/or steroidogenesis in a subject. Examples of steroids modulated include, but are not limited to, testosterone and estrogen. The combination of the beneficial effects of CVAC sessions results in treatment and modulation of serum lipids and/or the modulation of steroidogenesis and steroid levels, including all the aforementioned aspects and embodiments.
A Pressure Vessel Unit (PVU) is a system for facilitating pressure changes accurately and quickly in the environment surrounding a user. A PVU can provide both reduced and increased atmospheric pressures. An example of a unique PVU and associated methods for controlling the pressure within such a PVU are described in U.S. Patent Publication number 2005/0056279 A1 which is incorporated herein by reference. A variety of PVUs may be used in conjunction with the methods disclosed herein, including but not limited to those described in the U.S. Patent Publication number 2005/0056279, such as variable or fixed pressure and temperature hypobaric units. Other pressure units or chambers will be known to those of skill in the art and can be adapted for use with the disclosed methodologies.

Methodology of the Cyclic Variations in Altitude Conditioning (CVAO Program):

The methodology of the present invention encomasses a set of pressure targets with defined transitions. Additional targets can be included such as temperature or humidity, and these targets can be implemented concurrently, prior to, or subsequent to the pressure targets. The permutations of targets are customizable to the individual and condition to be treated. Some of the terms relating to this methodology are defined below for a better understanding of the methodology as used in the context of the present invention.

A **CVAC Program:** Every user will respond in a unique manner to changes in air pressure, temperature and oxygen levels that occur during cyclic variations in altitude conditioning. This necessitates a customized approach to delivering a highly effective and efficacious CVAC program to each user. The program consists of a set of sessions, which are administered to the user as a serial round or cycle. This means that a user may have a session that they start and repeat a given number of times and then proceed to the next scheduled session which will be repeated a given number of times. A program may contain a set of one or more sessions, each of which preferably has a repetition schedule. The sessions are preferably delivered in a scheduled order, which repeats itself like a loop such that the user is administered one session at a time for a specified number of times. The user may then be administered the next scheduled session a specified number of times. This process is preferably repeated until the user is administered the last element of the scheduled sessions set. When the requisite repetitions have been accomplished, preferably the process repeats itself beginning at the first element of the scheduled sessions set. A session or groups of sessions may be repeated multiple times before changing to a subsequent session or group of sessions, however, sessions may also be administered as few as one time before beginning the next session in the sequence. Subsequent sessions can contain targets that are identical to the previous session, or they can implement new permutations of desired targets. The combination of sessions and targets within sessions is customizable based on the desired physiological outcome and assessment of the user. Alternatively, a user may also modulate the parameters of a CVAC session, in certain embodiments from within the unit, thus providing for real-time user feedback and alterations. As used in reference to parameter of a CVAC session, modulation includes any changes, positive and negative, made to the parameters of the CVAC session. The parameters are described herein. This comprises a Cyclic Variations in Altitude Conditioning (CVAC) Program.
A CVAC Session comprises a set of targets which are multiple atmospheric pressures, and a CVAC session includes start and end points, and more than one target which is executed between the start and end points. These targets are delivered in an order that may vary and are executed in a variety of patterns including, but not limited to, cyclic, repeating, and/or linear variations. When a target is executed as contemplated herein, executed includes a change in pressure from one pressure value to another pressure value within a CVAC device as also described herein. The methodologies described herein provide superior benefits compared to previously described static hypobaric pressure therapies in multiple ways, which can include reduced time frames of application and unique variations and combinations of atmospheric pressures. Furthermore, CVAC sessions can also provide beneficial effects via the vaso-pneumatic properties associated with the application of such sessions. The starting points and ending points in any CVAC Session are preferably the ambient pressure at the delivery site. The targets inherent in any CVAC Session are connected or joined together by defined transitions. These transitions are either increases in pressure (descent) or decreases in pressure (ascent), or a combination of the two. The nature of any transition may be characterized by the function of "delta P/T" (change in pressure over time). Transitions may be linear or produce a waveform. Preferably, all transitions produce a waveform. The most desirable waveforms are Sine, Trapezoidal and Square. Additional targets which modulate tune, temperature, and/or humidity are also run concurrently, sequentially, or at other intervals with the pressure targets when such additional targets and conditions are desired. The entire collection of targets and transitions are preferably delivered in a twenty minute CVAC Session, although the time of each session may vary in accordance with the desired outcome of the administration of the CVAC Sessions. For example, CVAC sessions may be administered over minute increments such as 5, 10, 15, 16, 17, 18, 19, 20, 25, 30 minutes and/or more. The length of each CVAC Session is customizable for each user.

A Set-Up Session may also be considered a Program. It is a single Session designed to prepare a new user for the more aggressive maneuvers or transitions encountered in the subsequent Sessions that the user will undergo. The Set-Up session accounts for all ages and sizes and conditions, and assumes a minimal gradient per step exercise that allows the ear structures to be more pliant and to allow for more comfortable equalization of pressure in the ear structures. The purpose of the Set-Up session is to prepare a new user for their custom Program based upon the group into which they have been placed. The function of the Set-Up session is to qualify a user as being capable of adapting to multiple pressure changes in a given Session with acceptable or no discomfort. Set-Up session transitions may be linear or produce a waveform. Preferably, all transitions are linear. This is accomplished by instituting a gradient scale increase in pressure targets from very slight to larger increments with slow transitions increasing until a maximum transition from the widest difference in pressure targets is accomplished with no discomfort. The structure of a preferred Set-Up session is as follows: as with any Session, the starting point and ending point are both preferably at ambient pressure. A target equivalent to 1000ft above ambient is accomplished via a smooth linear transit. A second target equivalent to 500ft less than the first target is accomplished via a slow to moderate transit. These two steps are repeated until the user returns a "continue" or "pass" reply via an on-board interface. When the user has indicated that they are prepared to continue, the initial target (1000ft) is increased by
a factor of 500 ft, making it 1500 ft. The secondary target (500 ft less than the first target) remains the same throughout the session until the exit stage is reached. In this example, each time the user indicates that they are ready to increase their gradient, the target is increased by a factor of 500 ft. At this time, the transits remain the same but the option of increasing gradient (shorter time factor) in the transits is available. A user preferably has the option of resuming a lower gradient if desired. There can be an appropriate icon or pad that allows for this option on the on-board interface display screen. Preferably, the Set-Up Session lasts no longer than 20 minutes. A Set-Up session typically runs for twenty minutes maximum and executes a final descent to ambient atmospheric pressure upon beginning the last transit. The Set-Up session is a new user's Program until the user is able to fully complete the Set-Up session (that is to continue the targets and transits to the highest gradient) with no interrupts or aborts. When administering CVAC sessions for medical treatment, Set-Up sessions may be customized to suit the requirements of their medical condition. The determination of the appropriate Set-Up Session can be made with guidance from or consultation with a user's qualified health professional, such as a treating physician.

5 [00353] The Interrupt - During any phase in a Session wherein a user desires to stop the Session at that point for a short time, they may do so by activating an icon or other appropriate device on the on-board interface touch screen or control pad or notifying the operator of the device. This will hold the Session at the stage of interruption for a predetermined time period, such as a minute, at which time the Session will continue automatically. Preferably, a Session may be interrupted three times after which a staged descent will occur and the user will be required to exit the pressure vessel. The user's file may be flagged and the user may be placed back on the Set-Up Sessions until they can satisfactorily complete it. A warning or reminder may be displayed on the screen each time an interrupt is used that informs the user of how many times interrupt has been used and the consequences of further use. During any session, be it a Set-Up session or other type of session, a staged descent is also available if the user develops ear or sinus discomfort or wishes to terminate the session for any reason. A staged descent is characterized by slow, 1000 ft sine wave descent transits with re-ascensions of 500 ft at each step. The descents can be of greater or lesser transits but the ratio is usually about 1:5-1. At any time during the staged descent, the user can interrupt the descent and hold a given level or resume a previous level until comfort is achieved. The user may also re-ascend at their option if the staged descent is too aggressive. Any re-ascension is done in stages as described above. The user can subsequently indicate a "continue" on the descent and the staging will resume. This stepping continues until ambient pressure is reached whereupon the canopy or entrance to the device opens such that the user can exit the pressure vessel.

10 [00354] The Abort - When a user wishes to end a session immediately and quickly exit the pressure vessel, the abort function can be activated. Touching the "abort" icon on the on-board interface touch pad/screen or notifying the operator of the device enables this option. A secondary prompt is activated acknowledging the command and asking the user if they are sure they want to abort. The user indicates their commitment to the command by pressing "continue" or "yes." The program is aborted and a linear moderate descent is accomplished to ambient pressure whereupon the canopy or entrance to the device opens and the user exits. The user's file is flagged. The next time the user comes in for their session, the user is asked whether the abort was caused by discomfort. If yes, the user is placed back on
the Set-Up session program. If no, the user is asked if they wish to resume their regularly scheduled session. The client is given the option of resuming their regularly scheduled Session or returning to the Set-Up session.

Program and Target Criteria. Including Medically Significant Criteria:

[00355] Preferably, a user is categorized into a group of users having similar body-types with similar characteristics based upon answers to a questionnaire or information otherwise obtained from the user. The information from the user guides the construction of custom CVAC programs for each individual. When administering CVAC programs for treatment of serum lipid levels or treatment of steroidogenesis, the medical status of the user can also be used to determine appropriate pressures and additional parameters (such as duration, temperature, or humidity) of the targets. Custom session targets may be administered based upon the medical condition and therapy desired. The acceptable and appropriate target parameters may be obtained as described herein and through consultation with the user's physician or other appropriate health-care provider prior to designing session targets and administering a CVAC session. However the known contraindications of CVAC are similar to those of commercial air travel, allowing for a broad range of application.

METHODS OF TREATMENT:

[00356] In one aspect of the invention, CVAC sessions for the treatment of serum lipid levels are administered preferably for at least 10 minutes, and more preferably at least 20 minutes, with variable frequency. Additional administration periods may include, but are not limited to, about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 60 minutes, between 10 and 20 minutes, between 20 and 30 minutes, between 30 and 60 minutes, and between 60 and 120 minutes. Frequencies of sessions or series of sessions may include, but are not limited to, daily, monthly, or when medically indicated or prescribed. The frequency and duration of the sessions can be altered to suit the medical condition to be treated, and CVAC sessions may be administered as single sessions, or as a series of sessions, preferably with a Set-Up Session as described herein. For example, the frequency of sessions or series of sessions can be administered 3 times a week for 8 weeks, 4 times a week for 8 weeks, 5 times a week for 8 weeks, or 6 times a week for 8 weeks. Additional frequencies can be easily created for each individual user. Similarly, the targets in the sessions can also be altered or adjusted to suit the individual and medical condition to be treated. If at any time the user or attendant determines that die session is not being tolerated well, an abort may be initiated and the user brought down safely and exited. The permutations of targets can be customized to the individual, and may again be identified with the help of any person skilled in the art, such as a treating physician. Furthermore, the variations may be administered in regular intervals and sequence, as described, or in random intervals and sequence. The variations in number, frequency, and duration of targets and sessions can be applied to all methods of treatment with CVAC described herein. Treat or treatment, as used herein refers to the treatment of a disease or disorder related to abnormal levels of lipids. This includes, but is not limited to, inhibiting the disease or disorder, arresting the development of the disease or disorder, relieving the disease or disorder, or stopping the symptoms of the disease or disorder. Thus, as used herein, the term "treatment" is used synonymously with the terms "amelioration," "prophylaxis," or "prevention."

Treatment can refer to a reduction in lipid levels compared to no treatment (e.g. about 1% less, about
2% less, about 3% less, about 4% less, about 5% less, about 10% less, about 20% less, about 50% less, about 100% less, and any range therein).

In an embodiment of the present invention, Cyclic Variations in Altitude Conditioning Program (CVAC) is used to treat users who wish to modulate their serum lipid levels. CVAC is administered to stimulate the reduction in serum lipid levels in a user as well as stimulate other associated physiological processes affected by CVAC treatment such as fluid movement, vas-pneumatic pressure on the user, and the cellular processes initiated by hypoxic exposure. Treatment is administered through the use of one or more CVAC sessions. Such sessions may be user defined or custom-defined with input from the user's physician. In an embodiment of the present invention, Cyclic Variations in Altitude Conditioning Program (CVAC) is used to treat users who wish to lower their serum lipid levels. In another embodiment of the present invention, CVAC is used to modulate LDL. In another embodiment of the present invention, CVAC is used to modulate cholesterol. In another embodiment of the present invention, CVAC is used to modulate VLDL (very low-density lipoprotein). In yet another embodiment of the present invention, CVAC is used to modulate HDL. In further embodiments, two or more of, in any combination of, cholesterol, VLDL, LDL, and HDL can be modulated by the same application of at least one CVAC session.

In another aspect of the present invention, CVAC sessions are administered for the modulation of steroidogenesis. As described herein, modulation of steroidogenesis includes, but is not limited to, increases and decreases in steroid levels in the user. Steroidogenesis includes, but is not limited to, the production of steroids. Steroid as used herein includes, but is not limited to, all hormones and steroid compounds produced from cholesterol. Examples of groups of such compounds include androgens, estrogens, progestogens, mineralocorticoids, and glucocorticoids. Further examples of hormones include testosterone and estrogens. Still further examples of estrogens include estradiols, estriols, and estrones. Similarly, the treatment of steroidogenesis includes administration for modulation of steroid levels and steroidogenesis. CVAC sessions for the treatment of steroidogenesis are administered preferably for at least 10 minutes, and more preferably at least 20 minutes, with variable frequency. Additional administration periods may include, but are not limited to, about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 60 minutes, between 10 and 20 minutes, between 20 and 30 minutes, between 30 and 60 minutes, and between 60 and 120 minutes. Frequencies of sessions or series of sessions may include, but are not limited to, daily, monthly, or when medically indicated or prescribed. The frequency and duration of the sessions can be altered to suit the medical condition to be treated, and CVAC sessions may be administered as single sessions, or as a series of sessions, preferably with a Set-Up Session as described herein. For example, the frequency of sessions or series of sessions can be administered 3 times a week for 8 weeks, 4 times a week for 8 weeks, 5 times a week for 8 weeks, or 6 times a week for 8 weeks. Additional frequencies can be easily created for each individual user. Similarly, the targets in the sessions can also be altered or adjusted to suit the individual and medical condition to be treated. If at any time the user or attendant determines that the session is not being tolerated well, an abort may be initiated and the user brought down safely and exited. The permutations of targets can be customized to the individual, and may again be identified with the help of any person skilled in the art, such as a treating physician. Furthermore, the variations
may be administered in regular intervals and sequence, as described, or in random intervals and sequence. The variations in number, frequency, and duration of targets and sessions can be applied to all methods of treatment with CVAC described herein. As used herein, "modulation" includes increases or decreases in steroidogenesis as well as increases or decreases in serum and/or tissue steroid levels.

Modulation can refer to increases in serum or tissue steroid levels compared to no treatment (e.g., about 1% more, about 2% more, about 3% more, about 4% more, about 5% more, about 10% more, about 20% more, about 50% more, about 100% more, and any range therein).

[00359] In an embodiment of the present invention, CVAC is administered to increase the levels of testosterone in the user. In a further embodiment, CVAC is administered to modulate levels of steroids in an HIV-infected or HIV-positive individual. In one non-limiting example, at least one CVAC session is administered to and HIV-infected individual to increase the levels of testosterone in the HIV-infected individual. In an additional embodiment, CVAC is administered to a user to increase the levels of estrogen in an HIV-infected user. In an additional embodiment, CVAC is administered to a user to decrease the levels of testosterone or estrogen in the user. In yet another embodiment, CVAC is administered to a user to modulate the levels of glucocorticoids, mmenalocorticoids, or androgens. In still further embodiments, CVAC is administered to modulate steroid levels and cholesterol levels in an HIV-infected user. In still further embodiments, CVAC is administered to modulate both steroid levels and serum lipid levels in an HIV-infected user. In further embodiments, at least one CVAC session is administered to increase steroid levels in an HIV-infected subject for the treatment of weight loss, wasting syndrome, or loss of muscle mass. Treatment is administered through the use of one or more CVAC sessions. Such sessions may be user defined or custom-defined with input from the user's physician.

[00360] In yet another embodiment, at least one CVAC session is administered to a user to modulate steroid levels in a subject for the treatment, prevention or amelioration of metabolic syndrome. In additional embodiment, at least one CVAC session is administered to modulate steroid levels in an individual for the treatment prevention or amelioration of type-2 diabetes. In yet another embodiment, at least one CVAC session is administered to modulate steroid levels in an individual for the treatment, prevention or amelioration of insulin resistance. In a further embodiment, at least one CVAC session is administered to increase steroid levels in a subject for the treatment of metabolic syndrome. In another embodiment, at least one CVAC session is administered to increase steroid levels in a subject for the treatment of type-2 diabetes. In yet another embodiment, at least one CVAC session is administered to increase steroid levels in a subject for the treatment of insulin resistance. In one non-limiting example, at least one CVAC session is administered to increase testosterone in a subject for the treatment of metabolic syndrome. In another non-limiting example, at least one CVAC session is administered to increase testosterone in a subject for the treatment of type-2 diabetes. In additional embodiments, CVAC sessions are administered to increase steroid levels for the prevention of metabolic syndrome or insulin resistance.
CVAC sessions for any of the aforementioned aspects and embodiments may also be used in combination with pharmaceutical regimens or non-pharmaceutical therapies such as physical therapy or homeopathic therapies. As described above, CVAC sessions of any combination or permutation can be administered prior to, concurrent with, or subsequent to administration of a pharmaceutical, pharmaceuticals, or non-pharmaceutical therapy. Myriad permutations of pharmaceutical therapies, non-pharmaceutical therapies, and CVAC session combinations are possible, and combinations appropriate for the type of medical condition and specific pharmaceutical may be identified with the help of any person skilled in the art, such as a treating physician.

Specific examples of a CVAC session are shown graphically in Figures 1A and 1B. In both figures, the parameters of the program are shown as a line graph with axes that correspond to time (x-axis) and pressure change (y-axis).

Efficacy of Treatment

Assessment of CVAC efficacy in the aforementioned aspects and embodiments can be investigated through various physiological parameters. Changes in serum lipid levels can be assessed by evaluation of cholesterol, VLDL, LDL, and HDL levels in a user. By example only, when levels of LDL are the physiological parameter examined, decreases in the levels of LDL in a user's blood or serum are indicative of efficacious CVAC treatments. Similarly, when the physiological parameter is cholesterol, reductions in cholesterol levels are indicative of efficacious CVAC treatment. Serum steroid and hormone levels can be assayed via RIA, ELISA, immunometric assays, equilibrium dialysis, or liquid chromatography tandem mass spectrometry. Additional steroid and hormone assays are known in the art and contemplated herein. In one example, serum total testosterone is determined by RIA, with free testosterone determined by equilibrium dialysis. Additionally, weight gain, increases in lean-body mass, and/or increases in muscle strength indicate efficacy of CVAC for increasing steroid levels in an HIV-infected subject.

Further methods of assessing CVAC efficacy for changes in serum lipid levels include non-invasive imaging techniques such as MRI as well as invasive imaging techniques such as catheterization and endoscopy. Additional imaging techniques will be well known in the art and easily applied to the present invention.

When treating or modulating steroidogenesis and/or steroid levels, a user's steroid or hormone levels may be assessed for determination of CVAC efficacy. For but one example only, when testosterone is the physiological parameter assessed, increases in testosterone levels can be indicative of efficacious CVAC treatment. Similarly, increases in estrogen levels can be indicative of efficacious CVAC treatment. In further embodiments, modulation of a user's androgen levels, progestogen levels, mineralocorticoid levels, or glucocorticoid levels are indicative of efficacious CVAC treatment. In still further embodiments, decreases in a user's androgen levels, progestogen levels, mineralocorticoid levels, or glucocorticoid levels are indicative of efficacious CVAC treatment.
Additionally, increases in a subject's weight, muscle mass, or lean-body mass are indicative of efficacious CVAC treatment for increasing steroid levels in an HIV-infected subject. Similarly, increases in muscle strength can also be indicative of efficacious CVAC treatment for increasing steroid levels in an HIV-infected subject. Established methods of monitoring and assessing weight gain, muscle mass, lean-body mass, and muscle strength are known in the art and contemplated herein.

Efficacy of CVAC treatments for modulation of steroid levels for the treatment of metabolic syndrome, type-2 diabetes, or insulin resistance can be evaluated by assessment of insulin regulation, glucose tolerance, and glucose transport. Assays for such criteria are well known in the art and can be evaluated with a variety of imaging and assessment techniques. By example only, increase of insulin levels is indicative of efficacious CVAC treatments for modulation of steroid levels to treat metabolic syndrome, type-2 diabetes, or insulin resistance. Similarly, a decrease of glucose levels is indicative of efficacious CVAC treatment for the modulation of steroid levels to treat metabolic syndrome, type-2 diabetes, or insulin resistance. Conversely, a lack of change in the user's insulin (or with any of the physiological markers described herein) does not necessarily indicate that the CVAC treatments are not achieving positive results.

Efficacy of CVAC sessions for the modulation of steroid levels to treat metabolic syndrome, type-2 diabetes, or insulin resistance can also be determined by assessment of testosterone levels in a user, as described above.

Additional content for assessing the efficacy of the aforementioned aspects and embodiments will be known by those of skill in the art and can be employed to assess the beneficial effects of CVAC programs.

Methods for treating serum lipid levels and treating steroidogenesis by administration of various environmental pressure levels for hypoxic conditioning are disclosed herein. Previously described PVU and CVAC methodology is used to implement the methods for treatment of the aforementioned conditions, and alternative PVUs can be used with the disclosed methodologies.

Examples

Example 1. To assess the efficacy of CVAC sessions, 13 individuals, all between the ages of 20 and 40 years old, were administered CVAC sessions and changes in their erythropoietin (EPO) levels were measured. Frequency of CVAC administration was 3 CVAC sessions per day, 5 days per week, for seven weeks. Each subject was administered three different profiles, entitled BRG, RBG, and GRB. Each CVAC session profile cycled through a rotation of the pressures and parameters associated with that given profile. After completing three 20-minute CVAC sessions consisting of a given profile, each subject then switched to a second CVAC session profile. The subjects then experienced three CVAC sessions of this second profile before switching to the third CVAC session profile. After completion of three CVAC sessions based on the third profile, the subject then returned to the first profile, with each profile being repeated in triad form. All CVAC sessions, regardless of the profile used, had a pressure ceiling corresponding to a specific tier. Subjects then progressed through five tiers, and each tiered level included a maximum pressure ceiling that corresponded to an altitude of 4000 feet higher than the previous tier. A subject was not allowed to switch to the next higher tier until the subject had
experienced fifteen CVAC sessions at the lower tier. Sham sessions (or control sessions) correspond to the cycling of the five tier levels but do not contain any meaningful pressure changes (e.g. pressure changes equivalent to altitude of 2000 feet with very few changes in duration), thus the subjects experience the CVAC session for the equivalent 20 minute session, but without the pressure changes and durations. In this study, profiles BRG (FIGS. 4, 8, 12, and 16), RBG (FIGS. 5, 9, 13, and 17), GRB (FIGS. 6, 10, 14, and 18) (tiers 2-5 respectively) were administered in sequential order for tiers 2-5 as described above. Sham sessions corresponding to tiers 2, 3, 4, and five (FIGS 7, 11, 15, and 19) were administered where indicated and the graphical representations corresponding to pressures are not indicative of the pressure changes in the CVAC unit. The simulated graphical output was for control purposes to keep the subjects blinded to the sham sessions.

Increases in EPO were measured prior to administration of CVAC and three hours post-administration of CVAC, and EPO concentration is expressed as mlU/ml. Thus changes in EPO can be represented by the formula: \(\text{deltaEPO} = \text{Post-CVAC EPO mlU/ml} - \text{pre-CVAC EPO mlU/ml} \). The study found that EPO levels changed over the study period in the population. Specifically, mean changes in EPO concentration increased from 0.2 mlU/ml following the first 2 weeks of CVAC administration to 2.0 mlU/ml following 8 weeks of the CVAC administration. The changes in EPO levels found in the study population indicate that the administration of CVAC sessions can positively modulate EPO production, hence providing an alternative and efficacious method to exogenous EPO administration.

Example 2: Two diabetic subjects (Type-1 and Type-2) were administered 20 minute CVAC sessions, three times a week over a 9 week period. Subject #1 was administered a rotation classified as GLESS, which comprised profiles, for tiers 2 and 3 respectively, GLESS (FIGS. 20, 21), BMORE (FIGS. 24, 25), RMORE (FIGS. 28, 29), RBG (FIGS. 5, 9), and BRG (FIGS. 4, 8). Subject #2 was administered a rotation classified as BRG, which comprised profiles BRG (FIGS. 4, 8), RBG (FIGS. 5, 9), GLESS (FIGS. 20, 21), RMORE (FIGS. 28, 29), and BMORE (FIGS. 24, 25). Triglycerides (TGC), Cholesterol levels (HDL and LDL), and Hemoglobin A1c levels were assessed during the study period. Subject #1 underwent additional CVAC sessions and was additionally assessed at a 14-week time-point. Study time periods and results are shown in Table 1.

Table 1.

<table>
<thead>
<tr>
<th>Physiological Marker</th>
<th>Baseline</th>
<th>9 Weeks</th>
<th>14 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject #1</td>
<td>Subject #2</td>
<td>Subject #1</td>
</tr>
<tr>
<td>Triglycerides (TGC)</td>
<td>102</td>
<td>81</td>
<td>118</td>
</tr>
<tr>
<td>HDL</td>
<td>49</td>
<td>72</td>
<td>49</td>
</tr>
<tr>
<td>LDL</td>
<td>106</td>
<td>111</td>
<td>67</td>
</tr>
<tr>
<td>HbA1c</td>
<td>6.7</td>
<td>8.4</td>
<td>6.8</td>
</tr>
<tr>
<td>(LDL + TGC)/HDL</td>
<td>4.2</td>
<td>2.7</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Subject #1: Type-2 diabetic, female
Subject #2: Type-1 diabetic, male
n/d = not determined
The results from the two different subjects show a decrease in their (LDL + TGC)/HDL ratios, indicating improvement in HDL as well as reductions in LDL and/or TGC. Thus in this study, the administration of CVAC sessions resulted in a greater than 10% reduction in the (LDL + TGC)/HDL ratio in subject #2, and a 50% reduction in subject #1. Further, CVAC successfully reduced the LDL and TGC levels of both diabetic individuals, and raised the HDL levels in the diabetic individuals. Thus, in some embodiments, the application of at least one CVAC session may result in at least a 5% reduction in the (LDL + TGC)/HDL ratio, at least a 5-10% reduction in (LDL + TGC)/HDL ratio, or greater than a 10% reduction in the (LDL + TGC)/HDL ratio.

[00373] Example 3: A 36 year old male was administered CVAC sessions for 40 minutes (two twenty-minute CVAC sessions administered in immediate succession), 4 times a week for 12 weeks. In this study, the CVAC session rotation was classified as RBG which included five profiles, for tiers 2-5, RBG (FIGS. 5, 9, 13, and 17), BRG (FIGS. 4, 8, 12, and 16), RMORE (FIGS. 28, 29, 30, and 31), GLESS (FIGS. 20, 21, 22, and 23), and RBG again. Testosterone (T) levels, total testosterone levels (TT), LDL levels (LDL), Total Cholesterol (C), and Insulin levels (I) were assessed. Results of physical markers prior to CVAC treatment and after CVAC treatment are shown in Table 2.

<table>
<thead>
<tr>
<th>Physiological Marker</th>
<th>3 months prior to CVAC treatment</th>
<th>3 months after beginning CVAC treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Testosterone (T)</td>
<td>80</td>
<td>177</td>
</tr>
<tr>
<td>Total Testosterone (TT)</td>
<td>298</td>
<td>706</td>
</tr>
<tr>
<td>Total Cholesterol (C)</td>
<td>275</td>
<td>258</td>
</tr>
<tr>
<td>Serum LDL</td>
<td>208</td>
<td>191</td>
</tr>
<tr>
<td>Serum Insulin (I)</td>
<td>5.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The results of the study demonstrate that CVAC administration increased T levels while also decreasing LDL, C, and I. Specifically, LDL was reduced by 9%, T was increased by 121%, TT was increased by 58%, and I was reduced by 60%. Thus, in some embodiments, the application of at least one CVAC session may result in at least a 10% increase in T, at least a 20% increase in T, at least a 30% increase in T, at least a 40% increase in T, at least a 50% increase in T, at least a 75% increase in T, at least a 100% increase in T, or greater than a 100% increase in T. Similarly, the application of at least one CVAC session may result in at least a 1% reduction in LDL, at least a 2% reduction in LDL, at least a 3% reduction in LDL, at least a 4% reduction in LDL, at least a 5% reduction in LDL, at least a 10% reduction in LDL, or greater than a 10% reduction in LDL. The application of at least one CVAC session may further result in at least a 1% reduction in serum insulin, at least a 5% reduction in serum insulin, at least a 10% reduction in serum insulin, at least a 20% reduction in serum insulin, at least a
30% reduction in serum insulin, at least a 60% reduction in serum insulin, or greater than a 60% reduction in serum insulin.

Example 4 Effect of CVAC exposure of 40 minutes twice a week on endogenous testosterone. Six subjects (S-I, S-3, S-6, M-9, M-18, and M-23) and a control subject (M-14) are administered two twenty-minute CVAC sessions, administered in immediate succession, twice a week throughout the study period. The CVAC sessions experienced by each subject consisted of a profile of pressure levels and durations for each pressure level. There were three different profiles used in the study, entitled BRG, RBG, and GRB. Each CVAC session profile cycled through a rotation of the pressures and parameters associated with that given profile. After completing three 20-minute CVAC sessions consisting of a given profile, each subject then switched to a second CVAC session profile. The subjects then experienced three CVAC sessions of this second CVAC session profile. After completion of three CVAC sessions based on the third profile, the subject then returned to the first profile, with each profile repeated in triad form. AUCVAC sessions, regardless of the profile used, had a pressure ceiling corresponding to a specific tier. Subjects then progressed through tiers 2-5, and each tiered level included a maximum pressure ceiling that corresponded to an altitude of 4000 feet higher than the previous tier. A subject was not allowed to switch to the next higher tier until the subject had experienced fifteen CVAC sessions at the lower tier. Sham sessions (or control sessions) correspond to the cycling of the five tier levels but do not contain any meaningful pressure changes (e.g., pressure changes equivalent to altitude of 2000 feet with very few changes in duration), thus the subjects experience the CVAC session for the equivalent 20 minute session, but without the pressure changes and durations. In this study, profiles BRG (FIGS 4, 8, 12, and 16), RBG (FIGS 5, 9, 13, and 17), GRB (FIGS 6, 10, 14, and 18) (tiers 2-5 respectively) were administered in sequential order for tiers 2-5 as described above. Sham sessions corresponding to tiers 2, 3, 4, and five (FIGS 7, 11, 15, and 19) were administered where indicated and the graphical representations corresponding to pressures are not indicative of the pressure changes in the CVAC unit. The simulated graphical output was for control purposes to keep the subjects blinded to the sham sessions.

Blood samples were drawn prior to beginning the study period and after the final CVAC session at the end of the study period. Blood samples were analyzed for total testosterone, free testosterone, and the ratio of total testosterone to free testosterone. Results are shown in Figure 3 (FIG 3).

Example 5 Effect of CVAC exposure of 40 minutes twice a week on serum lipid levels. Six subjects (S-I, S-3, S-6, M-9, M-18, and M-23) and a control subject (M-14) are administered two twenty-minute CVAC sessions, twice a week for throughout the study period. The CVAC sessions experienced by each subject consisted of a profile of pressure levels and durations for each pressure level. There were three different profiles used in the study, entitled BRG, RBG, and GRB. Each CVAC session profile cycled through a rotation of the pressures and parameters associated with that given profile. After completing three 20-minute CVAC sessions consisting of a given profile, each subject then switched to a second CVAC session profile. The subjects then experienced three CVAC sessions of this second
profile before switching to the third CVAC session profile. After completion of three CVAC sessions based on the third profile, the subject then returned to the first profile, with each profile be repeated in triad form. All CVAC sessions, regardless of the profile used, had a pressure ceiling corresponding to a specific tier. Subjects then progressed through tiers 2-5, and each tiered level included a maximum pressure ceiling that corresponded to an altitude of 4000 feet higher than the previous tier. A subject was not allowed to switch to the next higher tier until the subject had experienced fifteen CVAC sessions at the lower tier. Sham sessions (or control sessions) correspond to the cycling of the five tier levels but do not contain any meaningful pressure changes (e.g. pressure changes equivalent to altitude of 2000 feet with very few changes in duration), thus the subjects experience the CVAC session for the equivalent 20 minute session, but without the pressure changes and durations. In this study, profiles BRG (FIGS. 4, 8, 12, and 16), RBG (FIGS. 5, 9, 13, and 17), GRB (FIGS. 6, 10, 14, and 18) (tiers 2-5 respectively) were administered in sequential order for tiers 2-5 as described above. Sham sessions corresponding to tiers 2, 3, 4, and five (FIGS 7, 11, 15, and 19) were administered where indicated and the graphical representations corresponding to pressures are not indicative of the pressure changes in the CVAC unit. The simulated graphical output was for control purposes to keep the subjects blinded to the sham sessions.

[00377] Blood samples were drawn prior to beginning the study period and after the final CVAC session at the end of the study period. Blood samples are analyzed for a variety of serum lipid levels including HDL, VLDL, and LDL. The results are summarized in Figure 2.

[00378] The aspects and embodiments of the present invention described above are only examples and are not limiting in any way. Various changes, modifications or alternations to these embodiments may be made without departing from the spirit of the invention and the scope of the claims.
WHAT IS CLAIMED IS:

1. A method of treating serum lipid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

2. The method of claim 1, where the serum lipid is VLDL, LDL, HDL, or cholesterol.

3. The method of claim 1 or 2, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

4. The method of claim 3, wherein the physiological marker measured is VLDL, LDL, HDL, cholesterol, or erythropoietin (EPO) production.

5. The method of any one of claims 1-4, further comprising the step of measuring efficacy of the CVAC sessions by non-invasive imaging.

6. The method of any one of claims 1-4, further comprising the step of measuring efficacy of the CVAC sessions by invasive imaging.

7. The method of any one of claims 1-4, further comprising the step of administering at least one pharmaceutical therapy.

8. The method of any one of claims 1-4, further comprising the step of administering at least one non-pharmaceutical therapy.

9. The method of any one of claims 1-8, wherein the mammal can modulate the parameters of a session.

10. A method of modulating steroidogenesis in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

11. The method of claim 10, where the steroid produced by steroidogenesis is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

12. The method of claim 10, wherein the steroid produced by steroidogenesis is testosterone.

13. The method of claim 10, wherein the steroid produced by steroidogenesis is an estradiol, an estriol, or an estrone.

14. A method of modulating steroid levels in a mammal comprising the step of administering at least one CVAC session to a mammal, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

15. The method of claim 14, wherein the steroid modulated is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

16. The method of claim 14, wherein the steroid modulated is testosterone.
17. The method of claim 14 wherein the steroid modulated is an estrogen
18. The method of any one of claims 10-17, wherein the mammal can modulate the parameters of the session.
19. The method of any one of claims 10-18, wherein the mammal is an HIV-infected mammal
20. A method of increasing weight in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point
21. A method of increasing muscle mass in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point
22. A method of increasing muscle strength in an HIV-infected mammal comprising administering at least one CVAC session to a mammal infected with HIV, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point
23. The method of any one of claims 20-22, wherein the administration of at least one CVAC session modulates testosterone levels in said mammal.
24. The method of any one of claims 20-22, wherein the administration of at least one CVAC session increases testosterone levels in said mammal.
25. The method of any one of claims 10-24 further comprising the step of administering at least one pharmaceutical therapy
26. The method of any one of claims 10-24, further comprising the step of administering at least one non-pharmaceutical therapy.
27. The method of any one of claims 10-24, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers
28. The method of claim 27, wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoids, or a glucocorticoid
29. The method of any one of claims 10-28, wherein the mammal can modulate the parameters of a session
30. A method of treating metabolic syndrome in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.
31. A method of treating type-2 diabetes in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.
32. A method of treating insulin resistance in a mammal comprising the step of modulating steroid levels in said mammal by administering at least one CVAC session, said CVAC session having a start point, an end point and more than one target which is executed between said start point and said end point.

33. The method of any one of claims 30-32 wherein the steroid level is increased.

34. The method of any one of claims 30-32, wherein the steroid is testosterone.

35. The method of any one of claims 30-32, further comprising the step of administering at least one pharmaceutical therapy.

36. The method of any one of claims 30-32, further comprising the step of administering at least one non-pharmaceutical therapy.

37. The method of any one of claims 30-36, further comprising the step of measuring efficacy of CVAC sessions via changes in physiological markers.

38. The method of claim 37, wherein the physiological marker measured is an androgen, a progestogen, an estrogen, a mineralocorticoid, or a glucocorticoid.

39. The method of any of claim 37, wherein the physiological marker measured is insulin, glucose tolerance, glucose transport, testosterone, or any combination thereof.

40. The method of any of claims 30-32, wherein the mammal can modulate the parameters of a session.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>CVAC Exposure Summer 2007</th>
<th>CVAC Exposure Fall 2007</th>
<th>Total chol.</th>
<th>Tri.</th>
<th>HDL</th>
<th>VLDL</th>
<th>LDL</th>
<th>Total chol.</th>
<th>Tri.</th>
<th>HDL</th>
<th>VLDL</th>
<th>LDL</th>
<th>Total chol.</th>
<th>Tri.</th>
<th>HDL</th>
<th>VLDL</th>
<th>LDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>45</td>
<td>M</td>
<td>None</td>
<td>Sham</td>
<td>209</td>
<td>224</td>
<td>43</td>
<td>45</td>
<td>121</td>
<td>193</td>
<td>289</td>
<td>41</td>
<td>58</td>
<td>94</td>
<td>-16</td>
<td>65</td>
<td>-2</td>
<td>13</td>
<td>-27</td>
</tr>
<tr>
<td>S-3</td>
<td>70</td>
<td>M</td>
<td>None</td>
<td>CVAC</td>
<td>165</td>
<td>107</td>
<td>50</td>
<td>21</td>
<td>94</td>
<td>166</td>
<td>84</td>
<td>47</td>
<td>17</td>
<td>102</td>
<td>1</td>
<td>-23</td>
<td>-3</td>
<td>-4</td>
<td>8</td>
</tr>
<tr>
<td>S-6</td>
<td>25</td>
<td>F</td>
<td>None</td>
<td>CVAC</td>
<td>140</td>
<td>64</td>
<td>57</td>
<td>13</td>
<td>70</td>
<td>190</td>
<td>70</td>
<td>66</td>
<td>14</td>
<td>110</td>
<td>50</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>M-9</td>
<td>37</td>
<td>M</td>
<td>CVAC</td>
<td>CVAC</td>
<td>158</td>
<td>36</td>
<td>49</td>
<td>7</td>
<td>102</td>
<td>164</td>
<td>66</td>
<td>40</td>
<td>13</td>
<td>111</td>
<td>6</td>
<td>30</td>
<td>-9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>M-18</td>
<td>28</td>
<td>M</td>
<td>CVAC</td>
<td>CVAC</td>
<td>177</td>
<td>90</td>
<td>59</td>
<td>18</td>
<td>100</td>
<td>165</td>
<td>96</td>
<td>51</td>
<td>19</td>
<td>95</td>
<td>-12</td>
<td>6</td>
<td>-8</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>M-23</td>
<td>60</td>
<td>M</td>
<td>Sham</td>
<td>CVAC</td>
<td>201</td>
<td>132</td>
<td>42</td>
<td>26</td>
<td>133</td>
<td>214</td>
<td>164</td>
<td>50</td>
<td>33</td>
<td>131</td>
<td>13</td>
<td>32</td>
<td>8</td>
<td>7</td>
<td>-2</td>
</tr>
<tr>
<td>M-14</td>
<td>49</td>
<td>M</td>
<td>None</td>
<td>None</td>
<td>187</td>
<td>63</td>
<td>65</td>
<td>13</td>
<td>109</td>
<td>173</td>
<td>76</td>
<td>52</td>
<td>15</td>
<td>106</td>
<td>-14</td>
<td>13</td>
<td>-13</td>
<td>2</td>
<td>-3</td>
</tr>
</tbody>
</table>

FIG. 2
<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>CVAC Exposure</th>
<th>CVAC Exposure</th>
<th>Total Serum Testosterone Sept. to Dec. 2007</th>
<th>Serum Free Testosterone Sept. to Dec. 2007</th>
<th>Ratio of Serum Free Testosterone to Total Testosterone Sept. to Dec. 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>45</td>
<td>M</td>
<td>None</td>
<td>Sham</td>
<td>355</td>
<td>316</td>
<td>-39</td>
</tr>
<tr>
<td>S-3</td>
<td>70</td>
<td>M</td>
<td>None</td>
<td>CVAC</td>
<td>573</td>
<td>746</td>
<td>173</td>
</tr>
<tr>
<td>S-6</td>
<td>25</td>
<td>F</td>
<td>None</td>
<td>CVAC</td>
<td>43</td>
<td>70</td>
<td>27</td>
</tr>
<tr>
<td>M-9</td>
<td>37</td>
<td>M</td>
<td>CVAC</td>
<td>CVAC</td>
<td>365</td>
<td>566</td>
<td>201</td>
</tr>
<tr>
<td>M-18</td>
<td>28</td>
<td>M</td>
<td>CVAC</td>
<td>CVAC</td>
<td>656</td>
<td>799</td>
<td>143</td>
</tr>
<tr>
<td>M-23</td>
<td>60</td>
<td>M</td>
<td>Sham</td>
<td>CVAC</td>
<td>475</td>
<td>505</td>
<td>30</td>
</tr>
<tr>
<td>M-14</td>
<td>49</td>
<td>M</td>
<td>None</td>
<td>None</td>
<td>866</td>
<td>841</td>
<td>-25</td>
</tr>
</tbody>
</table>

FIG. 3
Select a Profile

- T4RGB
- T4RGBR
- T4RLESS
- T4RMORE
- T5BGR
- T5BLESS
- T5BMORE
- T5BRG
- T5GBR
- T5GLESS
- T5GMORE
- T5GRB
- T5RGB
- T5RGBR
- T5RLESS
- T5RMORE

Classes

- RBG

Profile Graph

Amplitude

0 2500 5000 7500 10000 12500 15000 17500 20000 22500

Time

00:00:0 02:00:0 04:00:0 06:00:0 08:00:0 10:00:0 12:00:0 14:00:0 16:00:0 18:00:0 20:00:0

FIG. 17
SHAM/PLACEBO

Select a Profile

TS1
TS2
TS3
TS4
TS5

Classes

stanford

Profile Graph

Amplitude

0
2500
5000
7500
10000
12500
15000
17500
20000
22500

00:00.0 02:00.0 04:00.0 06:00.0 08:00.0 10:00.0 12:00.0 14:00.0 16:00.0 18:00.0 20:00.0

Time

FIG. 19
Select a Profile

- T2GBR
- T2GLESS
- T2GMORE
- T2GRB
- T2RGB
- T2RLESS
- T2RMORE
- T3BGR
- T3BLESS
- T3BMORE
- T3BRG
- T3GBR
- **T3GLESS**
- T3GMORE
- T3GRB

Classes

- B = R > G

Profile Graph

Amplitude

Time

FIG. 21
Select a Profile
T3GBR
T3GLESS
T3GMORE
T3GRB
T3RGB
T3RLESS
T3RMORE
T4BGR
T4BGR
T4BGR
T4GBR
T4GBR
T4GBR
T4GBR
T4GBR
T4GBR
T4GBR
B=R>G

Profile Graph

Amplitude
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Time
00:00.0 02:00.0 04:00.0 06:00.0 08:00.0 10:00.0 12:00.0 14:00.0 16:00.0 18:00.0 20:00.0

FIG. 22
<table>
<thead>
<tr>
<th>Select a Profile</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2RBG</td>
<td>G=R<B</td>
</tr>
<tr>
<td>T2RGB</td>
<td></td>
</tr>
<tr>
<td>T2RLESS</td>
<td></td>
</tr>
<tr>
<td>T2RMORE</td>
<td></td>
</tr>
<tr>
<td>T3BGR</td>
<td></td>
</tr>
<tr>
<td>T3BLESS</td>
<td></td>
</tr>
<tr>
<td>T3BMORE</td>
<td></td>
</tr>
<tr>
<td>T3BRG</td>
<td></td>
</tr>
<tr>
<td>T3GBR</td>
<td></td>
</tr>
<tr>
<td>T3GLESS</td>
<td></td>
</tr>
<tr>
<td>T3GMORE</td>
<td></td>
</tr>
<tr>
<td>T3GRB</td>
<td></td>
</tr>
<tr>
<td>T3RGB</td>
<td></td>
</tr>
<tr>
<td>T3RLESS</td>
<td></td>
</tr>
<tr>
<td>T3RMORE</td>
<td></td>
</tr>
</tbody>
</table>

Profile Graph

Amplitude

Time

FIG. 25
Select a Profile

Classes

B=G<R

T3GMORE
T3GRB
T3RBG
T3RGB
T3RLESS
T3RMORE
T4BGR
T4BLESS
T4BMORE
T4BRG
T4GBR
T4GLESS
T4GMORE
T4GRB
T4RBG
T4RGB

Profile Graph

Amplitude

Time

FIG. 29
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A61 B 5/00, A61 B 19/00 (2008.04)
USPC - 600/300, 600/553

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC - 600/300, 600/553

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 435/1 1, 436/71, 436/817

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST (DB-USPT, USOC, PGPB, EPAB, JPAB), Google Scholar
Search Terms: CVAC, Hyperbaric, Hypobaria, estrogen, androgen, estradiol, hormone, muscle mass, muscle strength, HIV, steroidogenesis, LDL, HDL, VLDL, cholesterol, mineralocorticoid, glucocorticoid, testosterone, lipid

C DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No

Y Tin'Kov et al Effects of intermittent hypobaria hypoxia on blood lipid concentrations in male coronary heart disease patients High Altitude Medicine & Biology, 01 Sep 2002, Vol 1, No 3 pages 277-282, abstract 1-4
Y Hu et al Comparisons of serum testosterone and corticosterone between exercise training during normoxia and hypobaria hypoxia in rats European Journal of Applied Physiology, Sep 1998, Vol 78, No 5, abstract 10, 12, 14, 16, 18, 20-24, 30-36, 40
Y Boyanov et al Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency The Aging Male, Mar 2003, Vol 6, Issue 1, pages 1-7, abstract 30-36, 40

[] Further documents are listed in the continuation of Box C

* Special categories of cited documents
"A" document defining the general state of the art which is not considered to be of particular relevance
"R" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on patentability claim(s) or which is cited to establish the publication date of another citation or other special reason as specified
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 04 May 2008 (04 05 2008)
Date of mailing of the international search report 01 AUG 200B

Name and mailing address of the ISA/US
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
PO Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201

Authorized officer
Lee W. Young
PCT H[pat]/IA, 571 273-4300
PCT OSP, 571-272 7774

Form PCT/ISA/2 10 (second sheet) (April 2007)
INTERNATIONAL SEARCH REPORT

PCT/US 08/54923

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claim Nos**
 - (L J)
 - Because they relate to subject matter not required to be searched by this Authority, namely

2. **Claim Nos**
 - (L J)
 - Because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically

3. (X)
 - Claim Nos 5-9, 19, 25-29 and 37-39
 - Because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6(4(a))

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **(L J)**
 - As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims

2. **(L J)**
 - As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees

3. **(L J)**
 - As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos

4. **(L J)**
 - No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claim Nos

Remark on Protest

- (L J)
 - The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee

- (D)
 - The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation

- (D)
 - No protest accompanied the payment of additional search fees

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2007)