DEMANDE DE BREVET D’INVENTION

<table>
<thead>
<tr>
<th>Référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Date de dépôt : 22.07.03.</td>
</tr>
<tr>
<td>24</td>
<td>Priorité :</td>
</tr>
<tr>
<td>27</td>
<td>Demandeur(s) : RATIER FIGEAC — FR.</td>
</tr>
<tr>
<td>43</td>
<td>Date de mise à la disposition du public de la demande : 28.01.05 bulletin 05/04.</td>
</tr>
<tr>
<td>54</td>
<td>Inventeur(s) : GAIANI ROBERT.</td>
</tr>
<tr>
<td>56</td>
<td>Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule</td>
</tr>
<tr>
<td>58</td>
<td>Références à d’autres documents nationaux apparentés :</td>
</tr>
<tr>
<td>74</td>
<td>Titulaire(s) :</td>
</tr>
<tr>
<td>77</td>
<td>Mandataire(s) : CABINET FEDIT LORIOT.</td>
</tr>
</tbody>
</table>

SYSTEME DE CONTROLE D’UNE BARRE DE SECURITE D’UN VERIN A VIS.

L’invention concerne un système de contrôle de l’activation d’une barre de sécurité (22) d’un vérin à vis. L’édit vérin comprend des moyens d’entraînement en rotation d’une tige filetée tubulaire, reliée à une structure par une attache primaire, ladite tige filetée tubulaire présentant une extrémité à laquelle est reliée ladite barre de sécurité (22) qui la traverse longitudinalement. Ladite barre de sécurité (22) présente une extrémité libre (32) débouchant à extérieur en regard d’une attache secondaire (36) qui est solidaire de ladite structure. Le système de contrôle comprend des moyens de détection (50, 52) du déplacement relatif en translation de ladite extrémité libre (32) de ladite barre de sécurité (22), par rapport à ladite attache secondaire (36).
Système de contrôle d’une barre de sécurité d’un vérin à vis

La présente invention se rapporte à un système de contrôle de la sollicitation d’une barre de sécurité d’un vérin à vis destiné notamment à contrôler les avions.

Un domaine d’application envisagé est notamment, mais non exclusivement celui du vérin commandant le plan horizontal desdits avions.

Les vérins à vis sont très largement utilisés dans l’industrie aéronautique pour entraîner des organes permettant le pilotage des avions et en particulier les vérins à vis à billes, lesquels présentent un rendement de l’ordre de 95%.

Les contraintes de sécurité attachées aux appareils de transport aériens obligent les constructeurs à doubler systématiquement certains organes de commande de vol de façon à pouvoir assurer le pilotage de l’avion lorsque l’un d’entre eux défaillie.

Une difficulté de mise en œuvre des organes de commande en double qui doivent suppléer les organes principaux en cas d’incident réside en ce qu’ils ne doivent pas être sollicités durant le fonctionnement normal des organes principaux ou à tout le moins que leur sollicitation puisse être détectée.

Dans ce but le vérin de commande à vis présentent non seulement un écrou de sécurité destinés à suppléer l’écrou principal et qui n’est pas sollicité lorsque ledit écrou principal est intégre, mais aussi une barre de sécurité apte à suppléer la vis lorsqu’elle se rompt ou que ses moyens d’entraînement et de liaison se désolidarisent de la structure de l’appareil.

Alors que l’écrou principal est relié à un élément mobile pour l’entraîner en mouvement, la vis est, elle, solidaire de la structure. Pour ce faire, la tige filetée de ladite vis présente une extrémité à laquelle est reliée ladite barre de sécurité qui la traverse longitudinalement et ladite barre de sécurité présente une extrémité libre qui débouche à extérieur en
regard d’une attache secondaire solidaire de la structure de l’appareil. Ladite extrémité libre est adaptée à être reliée par des moyens de liaison à ladite attache secondaire lorsque ladite tige filetée ou ses moyens d’entraînement se désolidarisent de la structure.

Afin de détecter l’éventuelle mise en œuvre de la barre de sécurité, cette dernière est liée en rotation avec ladite tige filetée, de sorte que lorsque les moyens de liaison sont mis en œuvre, ladite extrémité libre est en friction contre les moyens de liaison, ce qui augmente le couple moteur nécessaire à l’entraînement de la tige filetée. Cette augmentation du couple moteur est détectable au-delà d’un certain seuil et permet théoriquement de savoir si la barre de sécurité a été sollicitée.

Cependant, il s’avère qu’une dislocation partielle des moyens d’entraînement de la tige filetée ou de son attache primaire par rapport à la structure de l’appareil peut entraîner ladite extrémité libre de la barre de sécurité en friction contre les moyens de liaison sans qu’un sur-couple suffisant des moyens d’entraînement ne soit détecté. Ainsi, les moyens de liaison s’usent sans que l’on puisse le détecter et dès que la barre de sécurité est mise en œuvre, par exemple lors d’une rupture franche de l’attache primaire, les moyens de liaison usés sont susceptibles de se rompre au-dessous des charges spécifiées. Ils ne permettent plus alors, de relier ensemble la barre de sécurité et l’attache secondaire. Le contrôle des moyens de commande est alors impossible et l’appareil ingouvernable.

Un problème qui se pose et que vise à résoudre la présente invention est alors non seulement de détecter la friction de ladite extrémité libre de la barre de sécurité qui est susceptible d’être entraînée en rotation contre lesdits moyens de liaison mais aussi de détecter le déplacement relatif en translation de ladite extrémité libre par rapport à l’attache secondaire.

A cet effet, la présente invention propose un système de contrôle de l’activation de ladite barre de sécurité comprenant des moyens de
détectection du déplacement relatif en translation de ladite extrémité libre de ladite barre de sécurité, par rapport à ladite attache secondaire.

Ainsi, une caractéristique de l'invention réside dans la détection directe du déplacement relatif de l'extrémité libre de la barre de sécurité, par rapport à l'attache secondaire, ladite extrémité libre étant théoriquement, dans des conditions normales, immobile en translation par rapport à l'attache primaire en autorisant néanmoins des débattements angulaires et des déplacements en rotation. De la sorte, dès qu'un déplacement en translation est détecté pour la première fois en cours de vol, les moyens de liaison sont susceptibles d'être sollicités et de remplir leur fonction au moins jusqu'à l'atterrissage de l'appareil ; ce n'est qu'au sol qu'ils pourront être inspectés pour déterminer si la détection du déplacement n'a été qu'un signal intempestif inhérent au système et auquel cas ils sont susceptibles de remplir encore leur fonction ou si la détection témoigne d'une réelle défaillance due à une rupture et alors, une opération de maintenance doit être effectuée.

Selon un mode de mise en œuvre de l'invention particulièrement avantageux, lesdits moyens de détection sont adaptés à détecter le déplacement relatif de ladite extrémité libre par rapport à ladite attache secondaire selon un axe longitudinal de ladite attache secondaire qui dans les conditions nominales du vérin au point zéro est confondu avec l'axe longitudinal de ladite barre de sécurité. La tige filetée étant essentiellement sollicitée en traction ou en compression, il en sera de même pour la barre de sécurité interne à la tige filetée, de sorte que la détection des déplacements relatifs de ladite extrémité libre par rapport à ladite attache secondaire, selon la direction longitudinale de ladite attache secondaire, est suffisante dans la majorité des cas d'applications.

Selon un premier mode de réalisation de l'invention particulièrement avantageux, lesdits moyens de liaison comprennent un premier et un second éléments d'appui solides de ladite attache secondaire, adaptés à être entraînés, à partir de leur position de repos, respectivement en translation par ladite extrémité libre lorsque la barre de sécurité est dans
ladite position activée, vers deux positions d’appui opposées, une première position dans laquelle ledit premier élément est rapproché de ladite attache secondaire et une deuxième position dans laquelle ledit second élément est éloigné de ladite attache secondaire et lesdits moyens de détection sont adaptés à fournir un signal représentatif du déplacement desdits deux éléments d’appui.

Ainsi, dès la moindre dislocation de l’attache primaire ou de la tige filetée en translation longitudinale par rapport à ses moyens d’entraînement, qui entraîne un déplacement de la barre de sécurité en translation longitudinale dans la direction de l’attache secondaire ou dans une direction opposée, le premier élément d’appui ou le second élément d’appui est sollicité que l’extrémité libre ait été ou non, entraînée en rotation, par la tige filetée.

Selon un deuxième mode de réalisation de l’invention particulièrement advantageux, ladite extrémité libre présente un renflement définissant une première surface d’appui opposée à une seconde surface d’appui, ladite première surface d’appui étant susceptible de prendre appui contre ledit premier élément et ladite seconde surface d’appui étant susceptible de prendre appui contre ledit second élément et lesdits éléments d’appui sont maintenus par des moyens élastiquement déformables dans leur position de repos.

Ainsi, les surfaces d’appui opposées respectives de l’extrémité libre sont respectivement maintenues en regard desdits éléments de façon que l’extrémité libre puisse entraîner en translation l’un ou l’autre desdits éléments dans deux directions opposées. En outre, grâce aux moyens élastiquement déformables, dès que les moyens de liaison ne sont plus sollicités dans une direction ou dans l’autre, les éléments d’appui retrouvent leur position de repos.

Selon un troisième mode de réalisation de l’invention particulièrement advantageux, lesdits moyens de détection sont adaptés à détecter le déplacement relatif desdits deux éléments d’appui dans des directions opposées l’une de l’autre.
Avantageusement, les moyens de détection sont constitués d'au moins un capteur de type micro-contact ou inductif adapté à fournir un signal représentatif du déplacement relatif en translation de ladite extrémité libre de ladite barre de sécurité. Ce type de capteurs comprend une source en regard de laquelle est disposée une cible, et comme on l'expliquera plus en détail dans la suite de la description, le déplacement relatif de la source et de la cible induit une variation de signal qui est mesurable.

Bien évidemment, tout type de capteur permettant de mesurer le déplacement relatif de deux pièces, l'une par rapport à l'autre est susceptible de convenir.

De façon particulièrement avantageuse, le système de contrôle conforme à l'invention comprend des moyens d'activation mécaniques des moyens de détection adaptés à être entraînés en gardant ladite extrémité libre de la barre de sécurité en position fixe par rapport à l'attache secondaire de façon à tester le fonctionnement desdits moyens de détection. Ainsi, grâce à ces moyens d'activation mécaniques, susceptibles d'être mis en œuvre au sol au moyen d'un simple outillage, le fonctionnement des moyens de détection peut être testé sans démontage particulier.

D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après d'un mode de réalisation particulier de l'invention, donné à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :

- la Figure 1 est une vue schématique en coupe longitudinale d'un organe de commande d'un plan horizontal d'un appareil de transport aérien ;

- la Figure 2 est une vue en perspective d'une attache primaire et secondaire de l'organe de commande représenté sur la Figure 1 ;

- la Figure 3 est une vue schématique de détail en coupe vertical selon le plan III-III illustré sur la Figure 2, d'un mode de réalisation d'un système de contrôle conforme à l'invention ;
la Figure 4 est une vue schématique en coupe d'un détail de la Figure 2 selon un plan IV-IV perpendiculaire au plan de la Figure 3 ; et,
la Figure 5 est une vue schématique de détail de la Figure 3 selon une variante de mise en oeuvre.
La Figure 1 illustre un vérin à vis à bille de commande de plan horizontal d'un appareil aérien.
Le vérin comprend une tige filetée tubulaire 10 qui est filetée uniquement sur une portion 12 dans laquelle elle est adaptée à coopérer avec un écrou à bille non représenté, lequel est solidaire du plan horizontal à commander. La tige filetée tubulaire 10 comporte une autre portion 14 montée dans des moyens de guidage en rotation 16 adaptés à bloquer la tige filetée 10 en translation selon son axe principal par rapport à un carter 17.
En outre, au voisinage des moyens de guidage en translation 16, des moyens d'entraînement de la tige filetée 10 en rotation, non représentés, sont destinés à l'entraîner en rotation autour de son axe principal A notamment au moyen de la roue engrenable 18.
Les moyens de guidage 16 et les moyens d'entraînement en rotation sont maintenus ensemble dans le carter 17 et sont rattachés à la structure de l'appareil par une attache primaire 20 formée d'un cardan que l'on distingue sur la Figure 2 en perspective. Des axes 21 assurent la liaison entre le cardan 20 et le carter 17. Cette attache primaire permet de monter les moyens de guidage 16 et les moyens d'entraînement en rotation, articulé sur la structure de l'appareil autour d'un axe O, ce qui est nécessaire car le plan horizontal auquel est rattaché l'écrou est lui-même monté à pivotement.
Dans la tige filetée tubulaire 10 s'étend une barre de sécurité 22 concentrique qui est également évidée axialement dans une partie substantielle pour limiter son poids. Cette barre de sécurité 22 présente une première extrémité 24 qui est solidaire en translation de la tige filetée tubulaire 10 grâce à un épaulement et un écrou terminal, et elle est solidaire en rotation, avec un jeu fonctionnel grâce à des moyens 25
formant crabots. Elle présente en outre, une partie médiane 26 qui est entièrement libre par rapport à la tige filetée tubulaire 10 et une seconde extrémité 28 dont une portion 30 est liée en rotation avec l’autre portion 14 de la tige filetée tubulaire 10 et dont une extrémité libre 32 située en dehors de la tige filetée tubulaire 10 est emprisonnée dans des moyens de liaison 34 que l’on détaillera dans la suite de la description en référence aux Figures 2 et 3.

Ces moyens de liaison 34 sont destinés à relier l’extrémité libre 32 de la barre de sécurité 22, en cas de besoin, à une attache secondaire 36 qui est entièrement solidaire de la structure de l’appareil.

Lorsque tous les éléments du vérin ci-dessus décrits sont intégrés, l’extrémité libre 32 est libre par rapport aux moyens de liaison 34 et ces derniers sont entièrement libres par rapport à l’attache primaire 20.

On retrouve sur la Figure 2 les moyens de liaison 34 insérés sans contact dans l’attache primaire 20 qui forme cardan et qui emprisonnent l’extrémité libre 32 de la barre de sécurité 22.

On se référera désormais à la Figure 3 pour décrire en détail les moyens de liaison 34 qui comportent des moyens de détection 38 du déplacement relatif d’éléments d’appui 40, 42, lesquels sont adaptés à se mouvoir par rapport à l’attache secondaire 36.

Sur cette Figure, on retrouve partiellement la barre de sécurité 22 et son extrémité libre 32 qui présente un renflement de symétrie sensiblement sphérique et qui s’étend entre les deux éléments d’appui 40, 42. Dans cette position, la barre de sécurité n’est pas activée, la position du vérin par rapport à la structure de l’appareil est donc a priori tout à fait normale.

Lorsqu’une rupture intervient, soit au niveau de l’attache primaire 20 ou de l’un de ses composants, soit au niveau de la tige filetée tubulaire 10 et particulièrement entre l’écrou à bille et la portion 12 sur laquelle il est monté, la barre de sécurité 22 est a priori, entraînée soit en traction dans le sens de la flèche T, soit en compression dans le sens de la flèche C. En conséquence, l’extrémité libre 32 qui présente une première surface
d’appui 44 sensiblement annulaire est susceptible de prendre appui, en compression, contre le premier élément d’appui 42 de symétrie cylindrique dans une portion formant cloche 46.

De plus, l’extrémité libre 32 est adaptée à entraîner le premier élément d’appui 42, à partir de sa position de repos, telle que représentée sur la Figure 3, vers une première position, rapprochée de l’attache secondaire 36. Le premier élément d’appui 42 est maintenu dans cette position de repos par un ressort hélicoïdal 48 relié à l’attache secondaire 36, de la sorte, dès que l’extrémité libre 32 cesse de l’entraîner vers l’attache secondaire 36, il retrouve ladite position de repos.

Par ailleurs, un élément formant cible 50 est entièrement solidaire du premier élément d’appui 42, et il est étendu en regard d’au moins un capteur 52 qui lui est solidaire du second élément d’appui 40 que l’on va décrire ci-après.

Le second élément d’appui 40 forme un manchon dont une première portion 54 recouvre entièrement le premier élément d’appui 42 et il est monté coulissant sur une extrémité 56 de l’attache secondaire 36. Les éléments d’appui 40, 42 et l’extrémité 56 sont coaxiaux et sont adaptés à coulisser les uns par rapport aux autres avec certains degrés de liberté que l’on décrira dans la suite de la description.

Par ailleurs, le manchon formé par le second élément d’appui 40 présente une seconde portion 58 qui s’étend autour du renflement de l’extrémité libre 32 et qui se resserre longitudinalement vers son bord libre 60 dont le diamètre est inférieur au diamètre maximum de l’extrémité libre 32. Dans sa partie resserrée la seconde portion 58 forme une surface d’appui 61 contre laquelle une seconde surface d’appui 62 sensiblement annulaire de l’extrémité libre 32 opposée à la première surface d’appui 44, est apte à venir s’appuyer. De la sorte, on comprend que cette extrémité libre 32 est entièrement prisonnière des deux éléments d’appui 40, 42.

Ainsi, lorsque la barre de sécurité 22 est entraînée en traction selon la flèche T, l’extrémité libre 32 entraîne longitudinalement le second
élément d'appui 40 dans une direction opposée à l'attache secondaire 36 et l'entraîne en mouvement également par rapport au premier élément d'appui 42 qui lui, reste immobile par rapport à l'attache secondaire 36. Par ailleurs, le ressort hélicoidal 48 entraîne élastiquement le second élément d'appui 40 vers l'attache secondaire 36 de sorte qu'il revient dans sa position de repos, telle que représentée sur la Figure 3, lorsque l'extrémité libre 32 retrouve sa position centrale.

Par ailleurs, on a représenté sur la Figure 4, selon un plan perpendiculaire au plan de coupe illustré sur la Figure 3 les pièces de détail permettant la liaison longitudinale des éléments de d'appui 40, 42 et de l'extrémité 56 de l'attache secondaire 36.

Des premiers pions radiaux 66 traversent la première portion 54 du second élément d'appui 40 dont ils sont solides et traversant des premiers trous oblongs 68, 70 en regard respectivement de l'extrémité 56 et du premier élément d'appui 42, une extrémité 73 desdits premiers pions radiaux 66 étant liés en translation avec une bague 63 apte à coulissir dans le premier élément d'appui 42 et contre laquelle une extrémité 64 du ressort hélicoidal 48 est en appui.

De plus des seconds pions 74 solidaires de l'extrémité 56 traversant des seconds trous oblongs 76 ménagés dans le premier élément d'appui 42 qui présente un fond 78 contre lequel le ressort hélicoïdal 48 est en appui. Le ressort hélicoïdal 48 est précontraint entre le fond 78 du premier élément d'appui 42 et la bague 63.

Par ailleurs, afin d'éviter de cisaillement lesdits premier 66 et second 74 pions, lorsque l'extrémité libre 32 est entraînée en friction contre lesdits moyens de liaison, lesdits premier et second éléments d'appui 40, 42 comprennent respectivement des premier et second moyens de blocage en rotation par rapport à ladite attache secondaire 36. Ces premier et second moyens de blocage en rotation sont constitués d'une part, par des premières cannelures 77 ménagées longitudinalement à la fois à la périphérie du premier élément d'appui 42 et dans la paroi interne de l'extrémité 56 de l'attache secondaire dans laquelle il est emmanché et
d'autre part, par des secondes cannelures 79 également longitudinales, ménagées à la fois dans la paroi externe de l'extrémité 56 et dans la paroi interne de la première portion 54 du manchon 40 dans laquelle elle est elle-même emmanchée.

Ainsi, les premières cannelures 77 qui sont ménagées sur toute la circonférence du premier élément d'appui 42 et de la paroi interne de l'extrémité 56, sont adaptées à coopérer entre elles pour bloquer en rotation le premier élément d'appui 42 par rapport à l'attache secondaire 36 ; et les secondes cannelures 79, ménagées également sur toute la circonférence de la paroi externe de l'extrémité 56 et de la paroi interne de la première portion 54, sont adaptées à coopérer entre elles pour bloquer en rotation le second élément d'appui 40 par rapport à l'attache secondaire 36.

Ces cannelures, 77, 79 présentent l'avantage d'autoriser le déplacement longitudinal des éléments d'appui 40, 42 l'un par rapport à l'autre et chacun par rapport à l'attache secondaire 36.

Ainsi, le second élément d'appui 40 est susceptible d'être entraîné à force en traction selon la direction T, la seconde surface d'appui 62 de l'extrémité libre 32 étant alors en appui contre la surface d'appui 61 du second élément d'appui 40, et de comprimer le ressort hélicoïdal 48 grâce à la bague 63 qui est solidaire du second élément d'appui 40 par l'intermédiaire des premiers pions radiaux 66, contre le premier élément d'appui 42 qui lui, est bloqué en translation par rapport à l'extrémité 56 dans la direction de T par les seconds pions 74. Ainsi, le capteur 52 que l'on retrouve sur la Figure 3 et qui est solidaire du second élément d'appui 40 se rapproche de la cible 50 et est adapté à fournir un premier signal représentatif de l'éloignement du second élément d'appui 40 par rapport à l'extrémité 56 de l'attache secondaire 36.

Inversement, en se référant à la Figure 4, on observe que le premier élément d'appui 42 est susceptible d'être entraîné en compression selon la flèche C, la première surface d'appui 44 de l'extrémité libre 32 étant alors en appui dans la portion formant cloche 46 du premier élément
d'appui 42, et de comprimer le ressort hélicoïdal 48 dont l'extrémité 64 comprime la bague 63 qui maintient le second élément 40 contre l'extrémité 56 par l'intermédiaire des pions 66. Ainsi, ce n'est plus le capteur 52 illustré sur la Figure 3 qui se déplace par rapport à la cible 50, mais bien la cible 50 qui est rapprochée du capteur 52, lequel est adapté à fournir un signal identique au premier signal représentatif du rapprochement du premier élément d'appui 42 de l'extrémité 56 de l'attache secondaire.

Lorsque les éléments d'appui 40, 42 sont dans leur position de repos, et que l'extrémité libre 32 n'est pas en appui contre eux, le capteur 52 et sa cible 50 sont dans des positions relatives extrêmes. Toute sollicitation en compression ou en traction tend à les rapprocher l'un de l'autre.

Les capteurs utilisés sont des capteurs inductifs dits « DPI » (détecteur de proximité inductif) ou des capteurs de déplacement de type « LVDT ». D'autres capteurs sont susceptibles d'être utilisés, ils doivent pouvoir fournir un signal représentatif du déplacement relatif de deux éléments, en continu ou à partir d'un certain seuil comme pour les systèmes à micro-contact.

Selon un mode de mise en œuvre des moyens de détection 50, 52 particulièrement advantageux, illustré sur la Figure 5, ils comprennent un capteur 52' et une cible 50' en regard, respectivement solidaires desdits éléments d'appui 40, 42 et ledit capteur 52' et ladite cible 50' sont noyés ensemble à l'intérieur d'un boîtier 90 qui est solidaire du second élément d'appui 40, dans un milieu fluide à basse température de solidification, inférieure à 273°K, par exemple 233°K. Le choix dudit milieu fluide est tel qu'il ne perturbe en rien le fonctionnement normal du capteur 52' ni le déplacement relatif de la cible 50' dans toute la gamme de température de fonctionnement du système. Ledit milieu fluide peut revêtir différentes formes, homogène ou hétérogène, mais il est, de préférence, continu et constitué d'une graisse ou d'un gel.
Plus précisément, le boîtier 90 se compose de deux compartiments, un premier compartiment 92 dans lequel s'étend le corps du capteur 52' et un second compartiment 94 dans lequel s'étend la cible 50'.

Les deux compartiments 92, 94 sont séparés par une cloison étanche 96 et le capteur 52' présente une extrémité 98 formant source qui traverse ladite cloison 96 en regard de la cible 50'.

Par ailleurs, la cible 50' est montée sur une platine 100 solidaire du premier élément d'appui 42 et qui est mobile en translation dans le second compartiment 94 en regard de la source 98. La platine 100 traverse la base du boîtier 90 à travers une fente orientée selon la course de la platine 100. Un arrangement de joint 102, en appui contre la face interne de la base du boîtier 90 et qui entoure la platine 100, assure l'étanchéité dynamique entre le boîtier 90 et la platine 100.

C'est dans ce second compartiment 94 que ledit milieu fluide est logé, et de façon avantageuse, il est constitué d'une graisse de manière à permettre le déplacement relatif de la cible 50' et de la source 98. En outre, le second compartiment 94 présente deux orifices, un premier sur lequel est monté un graisseur et un second adapté à l'échappement de la graisse. Ainsi, lors du chargement du second compartiment en graisse, le second orifice constitue un témoin de remplissage.

Grâce à ce dispositif, non seulement la cible 50' et la source 98 sont protégées de toute particule ou poussière mais aussi, elles sont préservées du givre qui pourrait perturber leur fonctionnement au cours du vol en donnant de fausses alertes par des signaux intempestifs.

En outre, la Figure 3 montre des moyens d'activation mécaniques des moyens de détection formés par deux paires de perçages 80, 82 et 81, 84. Les perçages de chacune desdites paires sont respectivement en regard l'un de l'autre et ils sont ménagés respectivement pour l'une 80, 82, dans l'extrémité 56 de l'attache secondaire et dans le premier élément d'appui 42 et pour l'autre, 81, 84, dans une extrémité 83 qui est solidaire du second élément d'appui 40 par l'intermédiaire des premiers pions radiaux 66 et dans l'extrémité 56 de l'attache secondaire 36.
Les moyens d’activation mécaniques sont susceptibles d’être activés au moyen d’un outillage formé d’une tige rectiligne 88, dont une extrémité libre présente deux portées sphériques espacées l’une de l’autre et qui est adapté à être introduit simultanément dans les perçages de chacune desdites paires, une portée sphérique dans chacun des perçages.

De la sorte, l’outillage 88 est adapté à être introduit dans l’une 80, 82 des deux paires de perçage et à être entraîné en pivotement longitudinal dans la direction de la première extrémité 24 de la barre de sécurité 22, pour entraîner l’élément d’appui 42 en compression et rapprocher ainsi la cible 50 du capteur 52.

En outre, l’outillage 88 est adapté à être introduit dans l’autre paire 81, 84 de perçage et à être entraîné en pivotement longitudinal également dans la direction de la première extrémité 24 de la barre de sécurité 22 pour entraîner le second élément d’appui 40 et rapprocher ainsi le capteur 52 de la cible 50.

Pour des raisons de facilité de test et pour éviter tout arc-boutement des éléments d’appui par rapport à l’extrémité 56, on utilise avantageusement deux tiges 88 que l’on introduit respectivement dans deux paires de perçages diamétralement opposées : soit dans l’une des paires de perçage 80, 82 et dans une paire de perçages opposée non représentée qui est également ménagée dans l’extrémité 56 de l’attache secondaire et dans le premier élément d’appui 42, pour l’un des tests, soit dans l’autre paire de perçages 81, 84 et dans une paire de perçage opposée non représentée qui est ménagée dans l’extrémité 83 et dans l’extrémité 56 de l’attache secondaire 36, pour l’autre test. Ainsi, les tiges engagées dans les paires de perçages opposées sont manœuvrées simultanément dans la même direction.

Grâce à ces moyens il est aisé de tester le fonctionnement des moyens de détection sans agir sur la barre de sécurité 22 ni procéder au démontage desdits moyens.
REVENDICATIONS

1. Système de contrôle de l’activation d’une barre de sécurité (22) d’un vérin à vis destiné notamment à contrôler les avions, ledit vérin comprenant des moyens d’entraînement en rotation d’une tige filetée tubulaire (10), reliés à une structure par une attache primaire (20), ladite tige filetée tubulaire (10) présentant une extrémité à laquelle est reliée ladite barre de sécurité (22) qui la traverse longitudinalement, ladite barre de sécurité (22) présentant une extrémité libre (32) débouchant à l’extérieur en regard d’une attache secondaire (36) qui est solidaire de ladite structure, ladite extrémité libre (32) étant adaptée à être reliée par des moyens de liaison à ladite attache secondaire lorsque ladite barre de sécurité (22) est dans une position activée, caractérisé en ce qu’il comprend des moyens de détection (50, 52) du déplacement relatif en translation de ladite extrémité libre (32) de ladite barre de sécurité (22), par rapport à ladite attache secondaire (36).

2. Système de contrôle selon la revendication 1, caractérisé en ce que lesdits moyens de détection (50, 52) sont adaptés à détecter le déplacement relatif de ladite extrémité libre (32) par rapport à ladite attache secondaire (36) selon un axe longitudinal A de ladite attache secondaire (36).

3. Système de contrôle selon la revendication 2, caractérisé en ce que lesdits moyens de liaison comprennent un premier et un second éléments d’appui (42, 40) solidaire de ladite attache secondaire (36), adaptés à être entraînés, à partir de leur position de repos, respectivement en translation par ladite extrémité libre (32) lorsque la barre de sécurité (22) est dans ladite position activée, vers deux positions d’appui opposées, une première position dans laquelle ledit premier élément d’appui (42) est rapproché de ladite attache secondaire (36) et une deuxième position dans laquelle ledit second élément d’appui (40) est éloigné de ladite attache secondaire (36) et en ce que lesdits moyens de
détectio (50, 52) sont adaptés à fournir un signal représentatif du déplacement desdits deux éléments d’appui (40, 42).

4. Système de contrôle selon la revendication 3, caractérisé en ce que lesdits premier et second éléments d’appui (40, 42) comprennent respectivement des premier et second moyens de blocage en rotation par rapport à ladite attache secondaire (36) adaptés à bloquer en rotation l’un desdits éléments d’appui (40, 42) par rapport à ladite attache secondaire (36), respectivement dans l’une ou l’autre desdites positions d’appui.

5. Système de contrôle selon la revendication 3 ou 4, caractérisé en ce que ladite extrémité libre (32) présente un renflement définissant une première surface d’appui (44) opposée à une seconde surface d’appui (62), ladite première surface d’appui (44) étant susceptible de prendre appui contre ledit premier élément (42) et ladite seconde surface d’appui (62) étant susceptible de prendre appui contre ledit second élément (40) et en ce que lesdits éléments d’appui (40, 42) sont maintenus par des moyens élastiquement déformables (48) dans leur position de repos.

6. Système de contrôle selon l’une quelconque des revendications 3 à 5, caractérisé en ce que lesdits moyens de détection (50, 52) sont adaptés à détecter le déplacement relatif desdits éléments d’appui (40, 42) dans des directions opposées l’une de l’autre.

7. Système de contrôle selon la revendication 6, caractérisé en ce que lesdits moyens de détection (50, 52) comprennent un capteur et une cible en regard, respectivement solidaires desdits éléments d’appui et en ce que ledit capteur et ladite cible sont noyés ensemble dans un milieu fluide à basse température de solidification, inférieure à 273°C.

8. Système de contrôle selon l’une quelconque des revendications 1 à 7, caractérisé en ce que les moyens de détection (50, 52) comprennent un capteur de type micro-contact ou inductif adapté à fournir un signal représentatif du déplacement relatif en translation de ladite extrémité libre (32) de ladite barre de sécurité (22).
9. Système de contrôle selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend des moyens d'activation mécaniques (80, 81, 82, 84, 88) des moyens de détection (50, 52) adaptés à être entraînés en gardant ladite extrémité libre (32) de la barre de sécurité (22) en position fixe par rapport à l'attache secondaire (36) de façon à tester le fonctionnement desdits moyens de détection (50, 52).
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 762 205 A (ORTMAN MICHAEL J) 9 août 1988 (1988-08-09) * abrégé; figure 1 *</td>
<td>1</td>
<td>F16H25/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B64C13/28</td>
</tr>
<tr>
<td>A</td>
<td>US 5 360 185 A (DERRIEN MICHEL) 1 novembre 1994 (1994-11-01) * abrégé; figures *</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 5 avril 2004

Examineur: Mende, H
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 05-04-2004
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4762205 A</td>
<td>09-08-1988</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 5360185 A</td>
<td>01-11-1994</td>
<td>FR 2686855 A1</td>
<td>06-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2088569 A1</td>
<td>04-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0555122 A1</td>
<td>11-08-1993</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82